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Abstract 

We investigate solving a differential equation boundary value problem. Using 

"variational" or "energy" methods, we transform the problem into one of minimizing 

the value of a certain functional expression involving a definite integral. Finally, we show 

the existence and uniqueness of solutions to positive bounded below operator 

equations. 
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Introduction 
 

 The purpose of this thesis is to show the existence and uniqueness of solutions 

to positive bounded below operator equations.  The operator equations studied here 

are applicable to ordinary and partial differential equation boundary value problems 

arising in solid mechanics. 

Problems of this type were analyzed in detail by Soviet mathematicians during 

the 1930’s and 1940’s.  One of the most notable works of the Soviet school is that of 

S.G. Mikhlin’s Variation Methods in Mathematical Physics. [3] 

The theory described in this thesis helped lay the foundation for several 

approximate solution procedures that are known as “variational” or “energy” methods.  

The theory transforms the problem of solving a differential equation boundary value 

problem into the problem of minimizing the value of a certain functional expression 

involving a definite integral.  Variational approaches to solving boundary value problems 

were instrumental in the development of finite element methods for approximating the 

solution of boundary value problems that arise in structural analysis and a variety of 

other areas of engineering analysis. 
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Fundamental Notions 
 

Definition 1:  A vector space  is said to be normed if we can assign to every element  

of  a value , the norm of  with the following properties. 

1)  

2)  

3)  for any scalar  

4)  

 

Definition 2:  A sequence of vectors  in a normed vector space V is said to be a 

Cauchy sequence if for every  there exists an integer  (which may depend on ) 

,  whenever . 

 

Definition 3:  A normed vector space  is said to be a complete vector space if every 

Cauchy sequence in  has a limit in .  Complete normed vector spaces are also called 

Banach spaces. 

 

Definition 4:  Let  be a real vector space,. Suppose to each pair of vectors  

there is assigned a real number, denoted by .  This function is called a (real) inner 

product on , if it satisfies the following axioms. 

(i.) Bilinearity property: .  

Also,    

(ii.) Symmetry property:  
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(iii.) Positive definite property: 

  

The vector space with a (real) inner product is called a (real) inner product space. 

 

Definition 5:  An inner product space in which  for all   in the space is a 

Euclidean space. 

 

Definition 6:  A Hilbert Space is a complete Euclidean space.  

An example of a Hilbert space is the space  of square integrable real fuctions of a 

single variable with inner product  and norm 

.  (See the appendix for the inner product and norm of vector 

valued  functions.)  It is shown in many standard references (see, for example, [6]) 

that  is a complete Euclidean space.  (It is proved in Theorem 3 of this thesis that 

every normed vector space “can be completed”.) 

 

Definition 7:  Let  be a vector space and  be a subset of ; i.e. if  then . If 

 is a vector space with the same operations as those in , then  is called a subspace of 

. 

 

Theorem 1:  (Cauchy-Schwartz Inequality) Let  and  be any vectors in a real Euclidean 

space .   Then 

. 
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Proof:    

Since the norm is defined by the inner product, for any real number α,  

            

                         

which must hold for all real .  If the discriminant of the quadratic expression is 

negative, then quadratic equation  has no solution.  If the discriminant is zero, 

then  has exactly one root. Therefore,  implies 

. 

Hence,  

                                           , ,     and                      

                                                                   . 

 

If  and  are elements of the Hilbert space , then , or 

 . 

Theorem 2:  (Triangle Inequality) For any vectors  and  in a Euclidean space , 

. 

Proof: 

 

     

     

       

Therefore,   
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If  and  are elements of , the triangle inequality implies that 

 

 
The Space L2 

Definition 8:  The space of all square integrable functions on a domain Ω in  is 

denoted as . 

,   where 

 

The zero function in  is defined to be the equivalence class of functions  such 

that .   

 

Convergence in  and Completeness of  

Theorem 3 [5]  Every normed vector space   can be completed to form a complete 

normed vector space  such that  is dense in .  If  is Euclidean,  is a Hilbert space. 

Proof: 

To establish the theorem we will form a new space  and show that there is a subspace 

 of  that has all the properties of .  We then identify  with . 

If  and  are two Cauchy sequences of elements of  which satisfy   

,  then the two sequences will be called equivalent.  The class of 

all Cauchy sequences in  that are equivalent to  we will denote by .  We now 
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define the space  to be the set of all classes .  That is,  is a set of equivalence 

classes of Cauchy sequences. 

In order to show that  is a vector space, we define our various vector operations in the 

following way. 

1)  if  is equivalent to . 

2)  for any scalar  

3) . 

It is not hard to confirm that these operations are independent of the sequences 

chosen.  For example, suppose  is equivalent to   and   is equivalent to .  

Then 

 ,     

 

Therefore 

 

and 

 

The zero vector in  will be denoted .  It is defined to be  where  is the Cauchy 

sequence of vectors in  all of whose elements are zero vectors.  Therefore,  is a 

vector space. 

Now for every element  in  the sequence  with  for every  is a Cauchy 

sequence. Consequently, if we set up the correspondence:  

,                  (1)  
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we see that this sets up a one-to-one correspondence between elements of  and some 

subset  of .  The correspondence maintains the operations of multiplication by a 

scalar and addition.  That is, if  

,                   (2) 

then it follows that 

 

 

If the norm on  is defined as an inner product norm, we will define the inner product 

of two elements of  by 

.              (3)  

That this limit does indeed exist can be seen as follows (using bilinearity of the inner 

product, the triangle inequality, and the Cauchy-Schwartz inequality): 

. 

Since the sequences  and  are Cauchy sequences, it follows that the right-hand 

side tends to zero as  and  tend to infinity.  The limit exists because Cauchy sequences 

of real numbers converge, and the limit is independent of the sequences chosen from 

 and .  We can show, too, that the operation of taking the inner product is 

preserved under the correspondence (1), and we have that 

                   

If the norm in is not defined in terms of an inner product, we define instead,  

                                                                                                (4) 

The existence of this limit follows from the observation that 
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.  

Also, 

.  

Therefore, 

                  

Since  is a Cauchy sequence, the existence of the limit follows.  A similar inequality 

establishes that (4) is independent of the choice of sequence from .   To see this, 

suppose that .   Then 

 , 

which implies that 

 . 

Also we see that the operation of taking this norm is preserved under the 

correspondence (1) since  implies 

. 

The norm just defined satisfies the requirements expected of a norm.  For example, the 

triangle inequality follows from the following observation. 

 

Therefore, we have shown that  has exactly the same properties as  and we say that 

is embedded in . 

We now show that  is dense in .  To this end let  be any element in .  Define 

 for every .  Therefore, for fixed  is in . We shall show that 
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and so establish that  is dense in . 

For any fixed , the sequence  is a Cauchy sequence.  We have shown, above, 

that the limit of norms of the elements of a Cauchy sequence exists.  Therefore 

   exists.  

That is 

 

and we have established that  is dense in . 

Finally, we must show that  is complete.  Let  be a Cauchy sequence 

in . Then if , there exists an integer  such that when  

. 

Therefore, for each  and  there is an integer  such that  

. 

Since, by definition,  is a Cauchy sequence for fixed , there is a number  

such that 

 

The sequence  is also a Cauchy sequence because whenever 

 we can always choose a number   

which will ensure that 

 

                   

The completeness of  will be established if we can show that 

. 
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This requires that we show, for  and sufficiently large , that: 

 

Fix , then 

 

                       

         

Therefore for ,  .  

 

Functionals and Linear Operators 

Definition 9:  Let  be a Hilbert Space and  be a subset of .  If to each  in   there 

corresponds a real number , then  is called a (real) functional with domain . 

 

Definition 10:  A functional T is a bounded functional if there exists a positive number c 

such that  

 

for all u in  .  The smallest c for which this inequality holds is the norm of T, denoted 

as , and given by 

 

Hence, .  A functional T is continuous at if, for any , there 

exists a  such that if  then   If T is continuous at 

each point of  then T is continuous on . 
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Definition 11:  A functional  is said to be a linear functional if 

1. its domain  is a linear (vector) space  

2.  

  

(Note if  is linear, then  ) 

 

Theorem 4:  If a linear functional  is continuous at 0, then  is continuous on its entire 

domain . 

Proof:   

Let u be in the domain of T.  Since T is continuous at 0, there is a  such that if 

, then   By the linearity of T, we have  

implies that   Hence T is continuous at u. 

 

Theorem 5:  [2] A linear functional is continuous if and only if it is bounded. 

Proof:    

Suppose T is bounded.  Let , and let .  Then  implies 

 

Therefore, T is continuous at 0.  Now, suppose T is continuous at 0 and T is not bounded.  

Then for each natural number n, there is a vector  such that .  The 

sequence  where  , approaches zero as   We note that 

   for all n, 
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contradicting the continuity of T at zero.  Therefore, T must be bounded.  

 

Example:  Let H be a Hilbert space and let f be an element of H.  Now define the 

functional T by 

 

for all u in H.  It follows from the bilinearity of the inner product that T is linear.  By the 

Cauchy-Schwartz Inequality, 

 

We will show that .  By the definition of bounded functional,  .  

Suppose that .  Letting  we have 

 

which is a contradiction.  Hence, .  By Theorem 5, T is also continuous. 

 

Theorem 6:  [2] (Riesz Representation)  Every continuous linear functional  on a Hilbert 

space  can be expressed in the form , where  is in .  Furthermore,  is 

unique. 

Proof: 

Let  be the null space of ; i.e., .  Then  is a closed subspace of .  

If , then select .  If , then write , where  is the set of 

all vectors that are orthogonal to each vector in .  Since  contains a nonzero 

element; say, .  By normalization, set  Let , where  is 
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arbitrary.  Clearly,  is in , since .  Thus, with  in 

 and  in , we have . 

Now,  

 

           

           

Therefore, for any  in , 

 

Therefore, 

 for all  in , with . 

To prove uniqueness, suppose , for all  in .  Then 

 for all .  In particular, for  , we obtain  , which implies .  

 

Definition 12:  Let  be a vector space and  an operator that assigns to each element  

in a linear subspace  of  a vector  (i.e.  such that for any  and 

, 

.  Then  is a linear operator with domain  and range .  

That is,  

, for every  

 

Definition 13:  A linear operator  with Domain  is said to be a bounded linear 

operator if there exists a real number  such that 
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(the smallest c that satisfies the above inequality is called the norm of the linear 

operator , denoted .  Then 

 

A linear operator is continuous if and only if it is bounded. Further, if it is continuous at 

0, then it is continuous on the entire domain. (See [6]) 

 

Definition 14:  A linear operator , with domain  and range  that are subspaces of 

a Hilbert space , is said to be a symmetric linear operator if 

 for all  and  in  

 

Definition 15:  Let  be a symmetric linear operator that is defined on a dense subspace 

 of a Hilbert Space , with range in .  Then  is said to be a positive definite linear 

operator if   and  if and only if .  is positive bounded 

below if there exists a constant  such that   

for all  in . 

Example:  Positive Bounded Below Operator 

Let    , where  

To show that A is symmetric, we note that and integrate by parts 

twice, making use of the boundary conditions on u and v. 
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Next we show that A is positive bounded below.  For each   (using integration by 

parts), 

 

.  The Cauchy-Schwartz inequality 

implies that 

. 

Therefore 

, which implies 

  .   

Therefore, 

  

Therefore,  is positive bounded below. 

 
Convergence in Energy 

Definition 16:  If  is a positive definite linear operator, the quantity  defines an 

inner product on  called the energy inner (or scalar) product denoted by 

 

To show this defines an inner product, note first that for any real α, 

 and  
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Next, since  is symmetric 

 

Finally, since  is positive definite 

and . 

The quantity  is called the energy norm of the function . 

 

Definition 17:  Let  and  be in  for a positive definite operator .  The 

sequence  is said to converge in energy to  if , denoted by 

. 

 

Theorem 7:  [2] If the operator A is positive bounded below and the sequence  in 

 converges to u in energy, then     

Proof:    

There is a positive number c such that  for all u in .  Therefore, 

.  Therefore, .  Therefore, if , 

then   

 

The Minimum Principle for Operator Equations 

Let  be a positive definite linear operator and consider the problem of finding a 

solution  of  

                                                                                       (5) 
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By this is meant, find a function  in  that satisfies this equation.  The fact that  is in 

 implies that it satisfies the boundary conditions of the problem.  In our problem, the 

boundary conditions are homogeneous.  Thus  is a dense subspace of , where Ω 

is a bounded, open subset of .  Also,  belongs to .   For example, let   

and 

  

 

Theorem 8:  [2] (Minimum Functional Theorem) Let  be a positive definite linear 

operator with domain that is dense in .  If  has a solution, then the 

solution is unique and minimizes the energy functional 

               (6)  

over all . Conversely, if there exists a function  in  that minimizes , then 

it is the unique solution of  . 

Proof: 

(i.) (uniqueness) Assume there are two solutions,  and , of  in . Then, 

 satisfies .  Thus,  

Since  is positive definite, .  Hence, .  

(ii.) Next let  in  so that .  Substitution for  in  yields 
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It is clear that  assumes its minimum value if and only if . 

(iii.) Now suppose that there exists a function  in  that minimizes the functional 

.  Let  be an arbitrary function from  and let  be an arbitrary real 

number.  Then .  Using symmetry of the operator , we 

obtain  

.  As a function of α, 

the function  takes on its minimum value of zero at .  

Thus, its derivative with respect to  at  must be zero; i.e., 

, for all  in . Since  is dense in  it follows that .  

 

The minimum functional theorem provides a rigorous proof of the principle of minimum 

total potential energy and allows the problem of solving a differential equation under 

specified boundary conditions to be replaced by the problem of seeking a function that 

minimizes the functional  in the preceding theorem. 

 

Definition 18:  Let A be a positive bounded below operator with domain . (  is 

dense in   The energy space  is the completion of  in the energy norm.  That is, 

every element of   is an element of  and every sequence of vectors in  that is 

Cauchy in the energy norm, converges in the energy norm to a point of .   We may 

also refer to  as the “space of functions of finite energy.” 
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The preceding definition makes sense by virtue of Theorem 3, proved earlier.  Also, from 

the proof of Theorem 3 we can define the inner product and norm on  in the 

following way.  Given vectors u and v in , there are Cauchy sequences  and  

in  such that u and v are the respective limits.  Then 

               (7) 

                (8) 

We note that  is, by definition, a Hilbert space.  The next theorem tells us that  is a 

subspace of . 

 

Theorem 9:  Let A be a positive bounded below operator, defined on , where is a 

dense subspace of a Hilbert space H.  Let  be the completion of  in the energy norm 

(as per Definition 18).  Then . 

Proof: 

Let u be a vector in .  Then there is a sequence  in  such that  converges to u 

in the energy norm.  By Theorem 7,  converges to u in the norm of H.  Hence, u is an 

element of H.  

 

Definition 19:  For a positive bounded below operator  on a domain , the energy 

functional  can be extended to all of the energy space  as                         

 

We will now prove an important existence and uniqueness result. 

 



20 
 

Theorem 10:  [2]  In the energy space  of a positive bounded below operator , for 

each  in , there exists one and only one element for which the energy functional 

attains a minimum.  

Proof:  

Since  is positive bounded below,  for some  and all  in 

.  

Consider the linear functional  defined on . Then 

, which implies that  is a continuous linear functional on .  By 

the Riesz representation theorem, there exists a unique element  in  such that 

, for all  in .  The energy functional  can now be written as 

 , from which it follows that the 

minimum of  is attained at .   

 

Generalized Solutions of the Equation  

Definition 20:  We will say that  is a generalized solution to  if  is in  and 

 for every  in .  

 We can now establish existence and uniqueness of generalized solutions to the 

positive bounded below operator equation . 

 

Theorem 11:  In the energy space  of a positive bounded below operator A, for each 

 in , there exists a unique generalized solution to . 

Proof:  
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(i.) (uniqueness) Let  and  both be generalized solutions to .  Then 

 and  for all  in .  Therefore, 

 (by the lemma in the appendix). 

(ii.) (existence) By Theorem 10, there is an element  in  that minimizes the 

energy functional .  Now, let  be any arbitrary element 

of .  Then, .  Using the symmetry of we have, for 

any real   

. 

 The expression  is a function of the real number .  As such, 

this expression takes its minimum value of zero when .  Therefore, its derivative 

with respect to  at must be zero i.e. 

 

for all  in . 
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Appendix 

Let Ω be an open set in Rn .  A vector valued function  of a vector variable , defined 

on Ω, is denoted as                                                                        

   ;   x  =  

The zero vector vector is  

 

The Hilbert space  is the space of square integrable functions (in the Lebesque 

sense), with domain Ω, and inner product and norm defined as follows. 

 

Properties:  

i.  

ii.  

iii.  

iv.  

v.  only if  

 

Lemma Let V be an inner product space.  If  for all  in ,then . 

Proof: 

 Since  for all  in V, then . Hence, , and by the 

properties of norms it follows that . 
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