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ABSTRACT

Wine quality is attributed to many di�erent factors of the wine working collectively to

bear a sensory experience that is not apparent from considering these components in isola-

tion. The various chemical components in wine give the wine its distinct taste and aroma.

Appreciation of wine quality involves moving beyond our innate preferences. Currently,

about 1300 components relating to wine quality have been identi�ed in wine and new com-

ponents continue to be found. These physicochemical properties can be used to model wine

quality.

This review presents an analysis to extend what P. Cortez, A. Cerdeira, F. Almeida, T.

Matos and J. Reis accomplished using support vector machine and neural network methods

for modeling wine preferences by data mining from physicochemical properties. Two logistic

regression approaches are used to predict human wine taste preferences with the goal of better

predictions. The data were subject to the logistic regression analysis to develop suitable

equations to predict which components were signi�cant in the determination of quality of

wine. Since ordering exists in the dependent variable, we �rst considered using ordinal logistic

regression. Ordinal logistic regression is a statistical technique whose dependent variable

is the order response category variable and the independent variables may be categorical,

interval or ration scale. An order response variable is useful for subjective assessment of

quality, importance or relevance. After applying this technique, we realized that sulphate,

which improves the scent of wine, and citric acid were signi�cant as an indication of quality

in both red and white wine. As some of the assumptions of the ordinal logistic model were

violated, we employed multinomial logistic regression as well. Multinomial logistic regression

is used when the dependent (response) variable in question is nominal, i.e. a set of categories

which cannot be ordered in any meaningful way (for example, societal class) and consists of

more than two categories. It assumes that data are case speci�c (each independent variable

has a single value for each case), independent of inappropriate options. Using this technique,

alcohol was statistically signi�cant and had a negative e�ect throughout the various quality

levels of red wine. pH was statistically signi�cant and had a negative e�ect throughout the

various quality levels of white wine.

This research provides a useful basis for assessing the various chemical components in

wine that give wine its quality, using two regression approaches. The model built for wine

quality in this analysis is anticipated to be of great use because of its dependence on only

seven components for red wine and eight components for white wine.
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1 Introduction

Wine is a beverage that is associated with relaxing, socializing with others, and is comple-

mentary to food consumption. Vinho verde wine accounts for 15% of the total Portuguese

wine production [7] and around 10% is exported, most of this being white wine. The determi-

nation of wine quality deals with an artistic scheme or culture that is outside our mainstream

preferences. Wine quality, therefore, is incredibly `outside ourselves'. According to the im-

measurable possible disparities in its making, wine varies greatly in scent and taste. Over

time, wines made by a certain winery or from a certain region or vineyard can develop a

reputation as being better, and be more desired and thus more costly than those from other

sources.

Quality as a concept within the discipline of marketing is a vast subject, characterized

by its complexity. A more relevant aspect of this topic is how quality is evaluated and how

it is conceptualized. Di�erent perceptions of the quality of wine exist. Thus, a production

management method tends to view it as an objective concept, measurable alongside external

norms, whereas economists may contend that it is relative to price [20]. Perceived quality

tends to be the prevailing perspective within the discipline of marketing [6], [21]. Thus it is

not a concrete characteristic of a product but it is `abstracted' from those attributes.

Quality of wine is therefore a characteristic involving the combination of di�erent com-

ponents of the wine to give a sensory experience. All of these components have a strong

in�uence on the quality and character of wine, and are therefore not only important for

the characterization and di�erentiation of wines, but also for the detection of frauds [4].

The whole chemical composition of a wine re�ects the stages of the wine producing process,

including the grape variety, yeast strain, the containers used for fermentation and storage,

and the enological practice [3]. To the user deciding whether to purchase a wine, ful�lling

requirements is linked with the taste of wine. Such a status for quality for a particular wine

product or origin, and the price a consumer is prepared to pay, can be improved or ruined

over time.

The basic factors of wine quality include wine components, quality evaluation and wine

certi�cation. There is a convergence of objective and subjective characteristics which describe

the relative `greatness' of a particular wine. The simple action of marking down one's

thoughts about a wine forces one to examine the quality of each wine and put those intuitions

into words. Such a practice can be very helpful and concentrates one's analysis. Instead of

receiving a general instinctual reaction for a wine, it allows one to research profoundly into

its depths and really appreciate, or criticize, the wine's components and its features. Quality

evaluation is a critical part of the certi�cation process which can be used to enhance wine
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making by identifying the major factors a�ecting wine quality. Wine certi�cation is usually

completed by physicochemical and sensory analysis.

Knowledge of wine sensory characteristics and wine composition is an extremely demand-

ing task. From tasting grapes for estimation of the development and quality in the vineyard

to the evaluation of completed wine post-bottling, the observations based on sensory as-

sessment are made throughout the winemaking process. Sensory evaluation or taste is the

least understood of the human senses making wine classi�cation a complicated task [17]. For

instance, in commercial wine treatment, wines are given a quality category label on the basis

of standard physicochemical properties con�rmed by a certi�ed laboratory as based upon

the sensory assessment of authorized expert wine tasters.

The concept of unbalanced and badly managed vines producing poor wines is commonly

espoused in the wine industry, and it is believed that the assessment of aspects of a vineyard

by experienced practitioners can allow judgment of the likely quality of wine produced from

the vines. This sensory evaluation is completed by highly experienced winemakers based on

their own sensory impressions and experiences.

Using physicochemical laboratory analysis, density, alcohol and pH values have been used

to describe wine. Wine also consists of more speci�c chemical components which give it its

characteristics. These include sulphates, total sulphur dioxide, alcohol, volatile acidity, free

sulfur dioxide, �xed acidity, residual sugar, chloride and citric acid.

This research aims to predict whether sulphates, total sulphur dioxide, alcohol, volatile

acidity, free sulfur dioxide, total sulfur dioxide, �xed acidity, residual sugar, chloride or citric

acid can be used to predict wine quality in both red wine and white wine from a region in

Portugal (vinho verde), using both ordinal and multinomial logistic regressions.

Linear/multiple regression (MR) is the typical approach used when modeling continuous

data. Regression estimates are often biased, but the bias is small with large samples. The

ordinal logistic regression model assumes that the response variable to be analyzed has

more than two categories, which are ordered qualitatively. It also assumes ordinality of the

outcomes. The proportional odds assumption under the ordinal logistic regression model

plays an imperative role in this analysis.

Multinomial logistic regression makes no statistical assumptions concerning normality,

linearity and homogeneity of variance for the independent variables. However it assumes

that the di�erent outcomes are classi�ed nominally and they are mutually exclusive [1]. It

is possible to model multinomial data in an ordinal way and vice versa, but if the wrong

method is used this may introduce bias or loss of e�ciency and information.

According to Paulo Cortez et al [9], the support vector machine achieved promising

results, outperforming the multiple regression and neural network methods in modeling the
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preference of wine using physicochemical properties. They proposed that their model be

used for understanding how physicochemical tests a�ect the sensory preferences. Moreover,

they concluded that their model can support the expert wine evaluations and ultimately

improve the production.

In 2001 Block et al [5], categorized three sensory attributes of Californian wine using

neural networks (NNs), on the basis of grape maturity levels and chemical analysis. Only

6% error was achieved after using 36 samples.

Most recently, partial least-squares (PLS) regression models have been used to suggest

that defective and negative odorants exert a strong aroma suppression e�ect on fruity aroma

in the work of Cullere et al [10]. Their result shows that the quality of red wine is primarily

related to the presence of defective or negative odorants, and secondarily to the presence of

a relatively large number of fruit-sweet odorants.

In 1993, Lawrence S. Lockshin and W. Timothy Rhodus [16] compared wine quality

evaluations by wine consumers and wine wholesalers for the same Chardonnay wine at three

price levels and four di�erent oak levels using multiple regression. They concluded that

consumers judged wines mainly by price, regardless of the oak level. Wholesalers ignored

the prices and judged the wines by the oak level. They concluded that wholesalers predicted

that consumers would respond based on the wholesalers' quality judgments, and were unable

to accurately predict the consumers' responses.

In recent research [15], Tony Lima examined price and quality in the California wine

industry using medals won in nine tasting events in 1995 as indices of quality using multiple

regression. He then proposed that a wine that wins a medal in a particular tasting is valued

more highly by consumers because of the medal.

Chapter 2 presents an overview. Chapter 3 explains the technique used for performing

this research. Chapter 4 consists of the analysis of the results obtained using both the

ordinal and the multinomial logistic regressions. Chapter 5 interprets the results in the

previous chapter. Conclusions are presented in Chapter 6.
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2 Overview

This research focuses on modeling the quality of wine based on its various components. This

work employs multivariate data obtained from the University of California Irvine Machine

Learning Repository and donated by Professor I-Cheng Yeh of Chung-Hua University on

2009-10-07 [2]. The University of California Repository contains large data sets composed

of di�erent kinds of data types, task types and submission areas. The main purpose of this

repository is to motivate researchers to scale existing and upcoming data analysis algorithms

to extremely large and complicated datasets.

Each wine obtained in the laboratory consists of the raw form of a mixture with respect

to a speci�c quality. White wines are wines that contain little or no red pigmentation. These

wines are almost always made from white grapes, but can be made from black grapes as well.

Red wine is derived from a vast assortment of grape varieties ranging from grapes that are

reddish, deep purple, or even blue. The main di�erence between red and white wines is

the amount of tannins they possess. Tannins are compounds present in grapes and other

plants. For the purpose of this study, two datasets related to 1599 red wine samples and 4898

white wine variants of the Portuguese �Vinho Verde� wine were evaluated. Each evaluation

consisted of eleven input variables and one output variable. Only physicochemical (inputs)

and sensory (the output) variables are available. The inputs involved unbiased tests made

by laboratory technicians. The output is the median of at least three assessments of wine

quality made by wine experts. The wine quality was measured on a scale of 0 − 10, with

0 representing poor quality and 10 representing superior quality. The variables assessed in

this analysis are presented in Table 1.

The choice of appropriate statistical models is important, as it can a�ect the outcome and

thus the interpretation of results. To determine the quality of wine, ordinal and multinomial

logistic regression approaches were used to �t the model. Outliers were present in the data

set. During the selection of the best model, the stepwise regression technique was used to

delete some of the red wine and white wine variables from the dataset due to departures

from the linearity assumption and the normal quartile-quartile plot. In all, the proposed

best model was �t to eight variables for red wine and seven variables for white wine.

Residual tests were carried out to determine whether the normality, constant variance

and independence assumptions were satis�ed. This was also examined through the use

of diagrams as shown in the Analysis section. Scatterplots of the original datasets were

drawn to determine if there exists a relationship between the various variables involved. The

prediction and con�dence intervals were also analyzed to see whether the model was a good

�t. SPSS statistical software was used in the analysis of the data.
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alcohol pH
chloride quality
citric acid residual sugar
density sulphate

�xed acidity total sulfur dioxide
free sulfur dioxide volatile acidity

Table 1: Wine Component Variables

We will now further de�ne the components in the data set to measure the quality of wine.

Alcohol Alcohol is a series of hydroxyl compounds, the simplest of which is derived from

saturated hydrocarbons, has the general formula CnH2n+1OH, and include ethanol and

methanol. It is measured in percentage of volumes (vol.%).

Chloride Chloride is a highly irritating, greenish-yellow gaseous halogen, capable of com-

bining with nearly all other elements. It is a component of salt produced principally by

electrolysis of sodium chloride. It is normally found in combination with sodium ions

or potassium ions and is often found in large amounts in processed foods. It is usually

absorbed completely by the human digestive system. It is measured in milligrams of

sodium chloride per cubic decimeter.

Citric Acid Citric acid is a colorless crystalline acid originating from the fermentation of

carbohydrates or from lemon, lime, and pineapple. It is present in almost all plants

(especially citrus fruits) and in many animal tissues and �uids. It has a sharp sour

taste and is used in many foods, confections, and soft drinks to improve their stability

in metal containers. Its standard unit is grams per cubic decimeter.

Density Density is de�ned in a qualitative manner as a measure of the relative `heaviness'

of an object with constant volume. It is a physical characteristic of a material, as each

element and compound has density associated with it. It is measured in grams per

cubic decimeter.

Fixed Acidity Fixed acids are fruit acids (nonvolatile) that are organic to grapes. The

predominant �xed acids found in wines are tartaric, malic, citric, and succinic. All

of these acids are derived from grapes with the exception of succinic acid, which is

produced by yeast during fermentation process. It is measured in grams of tartaric

acid per cubic decimeter.
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Free Sulfur Dioxide Free sulfur dioxide is that which does not combine with wine. Exces-

sive amounts of it can produce an undesirable trait indicated by a slight biting sensation

at the back of the throat and in the upper part of the nose [18]. The standard unit for

free sulfur dioxide is milligrams per cubic decimeter.

pH Potential of Hydrogen (pH) is an expression used in food processing which is the measure

of acidity or basicity of a solution. It is determined by the hydrogen concentration in

water and is presented on a scale from 0 to 14. A solution with a pH value of 7 is

neutral; a solution with a pH value less than 7 is acidic; a solution with a pH value

greater than 7 is basic. pH is measured in moles.

Quality Quality is the degree to which a speci�c product satis�es the wants of a speci�c

consumer [13]. It is a measure of the level of excellence or standard of a product or

service.

Residual Sugar Residual sugar is the sugar remaining in wine after its fermentation. It

is the amount of sugar not converted to alcohol throughout fermentation and a�ects

a wine's relative sweetness. Its standard unit of measurement is grams per cubic

decimeter.

Sulphate Sulphate is a chemical compound containing the sulphate radical. Sulphates are

salts or esters of sulfuric acid formed by replacing one or both of the hydrogens with

a metal (e.g., sodium) or a radical (e.g., ammonium or ethyl) [12]. It is measured in

grams of potassium sulphate per cubic decimeter.

Total Sulfur Dioxide Total sulfur dioxide is a measure of both the bound and free sulfur

dioxide in wine. Sulfur Dioxide is used throughout all stages of the winemaking process

to prevent oxidation and microbial growth. It can inhibit fermentation and cause

undesirable sensory e�ects when used excessively [14]. It is measured in milligrams per

cubic decimeter.

Volatile Acidity Volatile acidity is an unstable acid formed by dissolving carbon dioxide

in water. It is the basis of carbonated beverages and is related to the carbonate group

of compounds. It is an acetic acid (vinegar) created by spoilage organisms that are

introduced by contact with fruit �ies or other air-borne insects and contaminants. It

is regarded as a fault in wine since it is quite disagreeable when excessive, although a

tiny amount may enhance aromas in wine. Its standard unit of measurement is grams

of acetic acid per cubic decimeter.
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3 Methodology

3.1 Regression

Regression is a statistical measure that attempts to determine the strength of the relationship

between one dependent variable (usually denoted by Y ) and a series of other changing

variables (known as independent variables). It takes a group of random variables, thought

to be useful in the prediction of Y , and attempts to �nd a mathematical relationship between

them. This relationship is typically in the form of a straight line that best approximates

all the individual data points. The striking idea about statistical properties of regression

concerns the relationship between the probability distribution of the parameter estimates

and the actual values of those parameters.

In situations where nonlinear relationships exist using scatterplots, we attempt to trans-

form them into a linear path (for example, log-transformation might �x this issue). The

reason for modeling nonlinear relationships in this manner is that the estimation of linear

regressions is much easier and their statistical properties are very recognized. However,

when this approach is impossible, techniques for the estimation of nonlinear regressions have

been made available. The two basic types of regression are linear regression and multiple

regression.

3.2 Linear Regression

Linear regression uses one independent variable to explain and/or predict the outcome of Y .

Since the response variables are normally distributed, we use t-test or F -test statistics for

testing signi�cance of explanatory variables. It takes the form

Y = α + βX + u

where Y is the variable that we are trying to predict, X is the independent variable, α is

the intercept, β is the slope, and u is the regression residual.

The assumptions of linear regression are listed in the next section.

3.3 Multiple Regression

Multiple regression uses two or more independent variables to predict the outcome. Multiple

regression analysis is in fact capable of dealing with a large number of explanatory variables.
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The general form of this type of regression is:

Y = α + β1X1 + β2X2 + β3X3 + · · ·+ βkXk + u

where Y is the dependent variable, X1, X2, . . . , Xk are the independent variables, α is the

intercept, β1, β2, . . . , βk are the slopes and u is the regression residual.

Linear and multiple regression models have the following assumptions.

Homoscedasticity The variance of the error terms is constant for each value of X. We

normally use scatter plots and plot(s) of the residuals versus the X value(s) to verify

this.

Linearity The relationship between each independent variable and dependent variable is

linear. To verify this, we usually look at the plot(s) of Y versus the X value(s).

Normally Distributed Error Terms The error terms follow the normal distribution

(multivariate normality). This assumption can be checked with a histogram, goodness-

of-�t test, a �tted normal curve, or a P − P Plot.

Independence of Error Terms There must be no serial correlation in the error terms.

The Durbin Watson statistic and scatter plots are used to check this assumption.

3.4 Logistic Regression

We considered logistic regression in our modeling of wine preference because it is a variation

of ordinary regression which is used when the dependent (response) variable is a dichotomous

variable (i.e., it bears only two values, which normally correspond to the occurrence or non-

occurrence of some outcome event, usually coded as 0 or 1) and the independent (input)

variables are continuous, categorical, or both. For instance, logistic regression could be used

in analyzing the factors that in�uence whether a political candidate wins or loses an election.

The outcome variable is binary (i.e., either a win or a loss). The independent variables of

interest could include the amount of money spent on the campaign, the amount of time spent

campaigning and whether the candidate is an incumbent.

Logistic regression can handle all sorts of relationships, because it applies a non-linear

log transformation to the predicted odds ratio. The �odds� of an event is de�ned as the prob-

ability of the outcome event occurring divided by the probability of the event not occurring.

Therefore, in general, the �odds ratio� is one set of odds divided by another.

In logistic regression, hypotheses on signi�cance of explanatory variables cannot be tested

in relatively the same manner as in linear regression. Since the response variables are
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Bernoulli distributed with mean value (i.e. the probability of success) related to the explana-

tory variables through the logit transformation, we use di�erent test statistics (for example,

the likelihood ratio statistic and Wald statistic) whose distributions are fair approximations

to the distributions of the test statistics.

Although logistic regression requires much more data (at least 50 data points per predictor

is necessary) to achieve stability, it is a simple method both computationally and theoretically

because the independent variables do not have to be normally distributed or have equal

variance in each group. It assumes independent error terms. Moreover, it can handle ordinal

and nominal data as independent variables and the explanatory variables do not need to

be metric. As a contrast to ordinary linear regression, logistic regression does not assume

that the relationship between the dependent variables and the independent variable is linear.

Multicollinearity occurs when the independent variables are not independent from each other.

The multicollinearity e�ect is �xed by centering the variables involved. This minimizes the

mean of each variable. Applications of logistic regression have also been extended to cases

where the dependent variable is of more than two cases, known as multinomial or polytomous

logistic regression.

The logistic regression function uses the logit transformation of θ which takes the form:

θ =
exp(α + β1X1 + β2X2 + · · ·+ βkXk)

1 + exp(α + β1X1 + β2X2 + · · ·+ βkXk)

where θ is the logit, α is the intercept of the equation, the logistic regression parameters

β1, β2, . . . , βk are the coe�cients of the predictor variables X1, X2, . . . , Xk and exp is the base

of the natural logarithm (about 2.718).

There are numerous types of logistic regression that can be used for exposition and thesis

analysis. They consist of direct, stepwise and sequential logistic regressions. The type of

research determines which one to use.

Direct logistic regression Direct logistic regression involves entering all the predictor

variables into the equation at the same time. This is used when there is no indi-

cation about the order of the predictor variables or the importance of them in relation

to the constant (for example, multinomial logistic regression).

Stepwise logistic regression Stepwise logistic regression is viewed as a data screening

tool because it is used to test the involvement of all the variables to determine if the

variables are signi�cant after new variables have been added. It is a regression model in

which the selection of independent variables is carried out by a step-by-step automatic

procedure that allows the most signi�cant variable to enter at each step.
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Sequential logistic regression Sequential logistic regression is used in situations where

there is an indication of a certain order for the predictor variables (for example, or-

dinal logistic regression). Regrettably, there is no easy way to achieve this with most

statistical software packages. Hence multiple �runs� are then used to complete the

analysis.

3.5 Ordinal Logistic Regression

Ordinal logistic regression was used because there is ordering (from low to high) in the

dependent variable (quality). It models the probability of an event in comparison to all other

events. The ordinal logistic regression model is known as the proportional-odds model since

the odds ratio of the outcome is independent of the category j. The odds ratio is assumed

to be constant for all categories. It concurrently generates multiple equations (cumulative

probability). The number of equations it estimates is one less than the number of categories

in the dependent variable. Ordinal logistic regression gives only one set of coe�cients for

each independent variable. Thus, the coe�cients for the variables in the equations do not

di�er signi�cantly if they were estimated individually. The intercepts di�er, but the slopes

are fundamentally the same. An ordinal logistic regression model is given by

ln

(
P (Event)

1− P (Event)

)
= β0 + β1X1 + β2X2 + β3X3 + · · ·+ βkXk

where the quantity to the left of the equal sign is called logit representing the dependent

variable, P is the probability,X1, X2, . . . , Xk are the independent variables, β0 is the intercept

and β1, β2, . . . , βk are the slopes.

Logit is the log of the odds that an event occurs. The odds that an event occurs is the

ratio of the probability that the event occurs to the probability that the event does not occur.

The expected values for the ordinal logit model are replications of the predicted probabilities

for each category and given by

E(Y = j) =
exp(τj −Xiβ)

1 + exp(τj −Xiβ)
− exp(τj−1 −Xiβ)

1 + exp(τj−1 −Xiβ)

where τj represents the j
th category.

The predicted value is drawn from the logit and observed as one of the J discrete out-

comes.

The di�erence in each one of the predicted probabilities is given by

P (Y = j|Xi)− P (Y = j|X)
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for j = 1, 2, . . . J .

As a contrast to simple linear regression, we did not use the R−square in ordinal regres-

sion because R−square provides information about how much variance is explained by the

independent variable.

3.6 Assumptions of Ordinal Logistic Regression

We will now itemize the assumptions of ordinal logistic regression.

One dependent variable There should be no multiple dependent variables in ordinal re-

gression.

Parallel lines assumption There should be one regression equation for each category.

Thus, the coe�cients across these equations should not vary. This assumption is

responsive to the number of cases. Samples with larger numbers of cases are more

likely to show a statistically signi�cant test, and indicate that the parallel regression

assumption has been violated.

Adequate cell count It is required that 80% of cells must have more than 5 counts. There

should not be a zero count for any of the cells.

3.7 Multinomial Logistic Regression

The multinomial logit model generates sets of parameter estimates, comparing di�erent levels

of the dependent variable to a base level (i.e., one category of the dependent variable is chosen

as the comparison category). This makes the model considerably more complex. The model

can be written as

log

(
P (i)

P (r)

)
= β0 + β1X1 + β2X2 + β3X3 + · · ·+ βkXk

where the quantity to the left of the equal sign is called relative risk (odds) representing

the dependent variable with i standing in for an event or a particular level of the dependent

variable, r is the comparison category (reference group), X1, X2, . . . , Xk are the independent

variables, β0 is the intercept and β1, β2, . . . , βk are the slopes.

Our goal is to associate the quality with the predictor variables. We assumed a linear

relationship between the outcome variable and our predictor variables. Since there are

multiple categories, we chose a base category as the comparison group.

An important feature of the multinomial logit model is that it estimates k − 1 models,

where k is the number of levels of the outcome variable. In this instance, SPSS, by default,
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sets one quality level as the reference group, and therefore estimated a model for each of

the quality levels. Since the parameter estimates are relative to the reference group, the

standard interpretation of the multinomial logit is that for a unit change in the independent

variable, the logit of outcome m relative to the reference group is expected to change by its

respective parameter estimate (which is in log-odds units) given that the other variables in

the model are held constant.

The multinomial logit model can also be interpreted using relative risk ratio (RRR). Rel-

ative risk is the ratio of the probability of choosing one outcome category over the probability

of choosing the reference category. It is also sometimes referred to as odds. Separate relative

risk ratios are determined for all predictor variables for each category of the independent

variable with the exclusion of the comparison category of the dependent variable, which is

excluded from the analysis. They can be attained by exponentiating the multinomial logit

coe�cients. The RRR of a coe�cient shows how the risk of the outcome falling in the com-

parison group compared to the risk of the outcome falling in the reference group alters with

the variable to be examined. This is a change in the odds of being in the dependent variable

category versus the comparison category related with a one unit change on the predictor

variable. An RRR > 1 implies that the risk of the outcome falling in the comparison group

comparative to the risk of the outcome falling in the reference group increases as the variable

increases. An RRR < 1 indicates that the risk of the outcome falling in the comparison group

relative to the risk of the outcome falling in the reference group diminishes as the variable

increases. Thus, generally, if the RRR < 1, the outcome is more likely to be in the reference

category.

3.8 Assumptions of Multinomial Logistic Regression

We now outline the assumptions of multinomial logistic regression.

• Data are case speci�c. Each predictor variable has a single value for each case.

• Collinearity is assumed to be relatively low. It is very di�cult to di�erentiate between

the e�ect of several variables if they are highly correlated.

• The dependent variable cannot be perfectly predicted from the independent variables

for any case.

• Independence of irrelevant alternatives (IIA). This assumption states that the odds do

not rely on other alternatives that are not relevant.
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To aid in model selection, Portuguese red and white wine data stored in Excel was

analyzed with the SPSS statistical software to obtain the output for both ordinal and multi-

nomial logistic regression models.

To eliminate insigni�cant variables from the model, we used stepwise regression which was

proposed by Efroymson [11]. Stepwise regression is an automatic process for statistical model

selection in situations where there are a large number of possible explanatory variables and

no underlying theory on which to base the model selection. The procedure is used mainly in

regression analysis, though the basic approach is applicable in many forms of model selection.

The �t of the model was tested after the elimination of each variable to ensure that the model

still adequately �t the data. The process terminates when the available improvement falls

below some critical value or when the measure is maximized. The main methods are:

Forward Selection Forward Selection entails starting with no variables in the model, try-

ing out the variables one by one and incorporating them if they are statistically signif-

icant.

Backward Elimination Backward Elimination involves beginning with all candidate vari-

ables and testing them one by one for statistical signi�cance, deleting any that are not

signi�cant.

Methods that are a blend both Forward and Backwards Selections This involves test-

ing at each stage for variables to be included or excluded. This procedure was used in

this analysis.

The Wald test, described by Polit [19], was used to test whether the parameters asso-

ciated with the explanatory variables were signi�cantly di�erent from zero. It has the null

hypothesis that the parameters associated with these variables are zero (i.e., not signi�cant).

Thus, those explanatory variables could be omitted from the model. Given a single param-

eter the Wald statistic is just the square of the t-statistic. The Wald statistic is the square

of the Z-value in the equation

Z =
SS

SE

where SS represents the point estimate for each coe�cient, β, in the model and SE is the

standard error. It is asymptotically chi-square distributed with estimated degrees of freedom

of n− 1, where n is the sample size. The reason for considering the Wald statistic was that

it was computationally easy and was given automatically in the output of the SPSS package.

The likelihood ratio signi�cance test was computed by executing a logistic regression

with each parameter omitted from the model and evaluating the log likelihood ratio for the

model with and without the parameter. This signi�cance test was used because it was more
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reliable (i.e., it maintained a nominal level with higher accuracy) than the Wald signi�cance

test. The likelihood ratio (log likelihood) statistic is denoted by −2 logL and is de�ned

as the di�erence between the model �t for the reduced model and the full model. It is an

observation from a chi-square distribution with n − 1 degrees of freedom, where n is the

sample size. It has the null hypothesis that the explanatory variables are non-signi�cant

(i.e., the reduced model explains the data as well as the full model). This happens when the

di�erence between the reduced model and the full model is close to zero.

The Durbin-Watson test was used to check independence of the residuals. It has the

null hypothesis that the error terms are not linearly auto-correlated. The Durbin-Watson

statistic is denoted by d. It is approximately equal to 2(1−R), where R equals the coe�cient

of correlation between successive residuals. The statistic takes on values between 0 and 4. It

is more likely that the residuals are independent (no autocorrelation) of each other whenever

the Durbin-Watson statistic approaches 2. However the Durbin-Watson test is restricted to

linear autocorrelation and direct neighbors.

The Pearson's and Deviance goodness-of-�t tests were used to measure how well the given

model explained the data (the lower the better). These two tests have the null hypothesis

that the di�erence between observed and expected events is simultaneously zero for all the

groups. Thus, the model does not �t. The Pearson statistic is given by

X2
HL =

g∑
i=1

(Oi −NiΠi)
2

NiΠi(1− Πi)

where Ni is the total frequency of subjects in the ith group, Oi is the observed number of

cases in the ith group, and Πi is the average estimated probability of an event outcome for the

ith group. Large values of X2
HL show a lack of �t of the model. It is a chi-square distribution

with (n − g) degrees of freedom, where g is the number of categories and n is the sample

size.

The Deviance statistic is given by

D = 2
n∑

i=1

n∑
j=1

Oij ln

(
Oij

Eij

)

where Oij is the observed value for the various categories and Eij is the expected value.

A scatterplot of the entire data was employed to determine whether there is a relationship

between the dependent and independent variables. Prediction and con�dence intervals were

also evaluated to check the accuracy of the best model.
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4 Analysis

This research work considers vinho verde wine from the Minho (far north) region of Portugal.

It is a �zzy wine of less than 10% of alcohol. The major export markets are France, the

United States, and Germany, followed by Angola, Canada, and the United Kingdom [8].

This analysis focuses on the two most common Portuguese red and white wines. Using

only the protected designation of source samples that were tested at the o�cial certi�cation

center (CVRVV), the data were collected from May 2004 to February 2007. Concerning the

preferences, each sample was estimated by sensory assessors which graded the wine on a scale

that varies from 0 (very bad) to 10 (excellent). Since there was no quality level as bad as

zero, one, or two, the data had entries of quality levels starting from three. The analysis was

performed individually, since the red and white wine samples are relatively diverse. We �rst

looked at the dataset as being ordered by performing the ordinal logistic regression followed

by the non-ordered (multinomial) logistic regression. Parameter estimate tables, goodness-

of-�t tables, results of independence tests, model-�tting information, parallel line test results,

normal P − P plots and histograms for both red and white wines will be discussed.

4.1 Specifying the Analysis for Ordinal Regression for Red Wine

The SPSS Ordinal Regression process or Polytomous Universal Model (PLUM) is an exten-

sion of the general linear model to ordinal categorical data. We considered the probability

of an event and all other events that were ordered before it. Using graphs and displays we

proceeded to test if the red wine data met the assumptions of ordinal regression.

4.1.1 Non-Normal Standardized Residual for Red Wine

The normal P-P plot was used to check if the error terms were not normally distributed.

The normal plot in Figure 1 has some departures which indicates non-normality in the error

terms. Thus, the error terms are not normally distributed. Hence this assumption was met.

4.1.2 Non-Normal Error Terms for Red Wine

The normal P-P plot was also used to check the assumption of non-normally distributed error

terms. The histogram in Figure 2 is slightly skewed which con�rms from the normal P-P

plot that the normality assumption has been violated. Hence the non-normality assumption

has been met.
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Figure 1: Normal P-P Plot of Expected Cumulative Probability vs. Observed Cumulative
Probability for Red Wine
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Figure 2: Histogram of Frequency vs. Regression Standardized Residual for Red Wine
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Figure 3: Scatterplot of Regression Standardized Residual vs. Regression Standardized
Predicted Value for Red Wine

4.1.3 Non-Equal Variance of Regression Standardized Residual for Red Wine

The scatterplot of the regression standardized residual was used to check the assumption

of heteroscedasticity. Figure 3 shows how the error terms are not scattered evenly. This

indicates that the variance of the error terms is not homogeneous.

4.1.4 Stepwise Regression for Red Wine

Stepwise regression analysis was used to remove an already selected variable if that variable

was not signi�cant because of its association with the other variables. Table 2 displays the

signi�cant variables for red wine. Only seven of the predictor variables were signi�cant so

those seven variables were used in this analysis. Fixed acidity, citric acid, residual sugar and

density were not signi�cant. �VIF� represents the variance in�ation factor. The cut-o� point

for the variance in�ation factor is 10. A predictor variable is omitted from our model if its

variance in�ation factor is more than 10. Tolerance is the reciprocal of the variance in�ation

factor.
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Model Tolerance VIF
Quality
Alcohol .820 1.220
Sulphate .805 1.242

Residual Sugar .024 27.543
Density .064 13.567

Volatile Acidity .756 1.332
Chloride .514 1.944

Total Sulfur Dioxide .750 1.333
Free Sulfur Dioxide .797 1.255

pH .531 1.883
Fixed Acidity .084 11.987
Citric Acid .056 14.654

Table 2: Stepwise Regression For Red Wine

4.1.5 Parameter Estimates for Red Wine

To �t the ordinal logit model, we found the parameter estimates for red wine. We estimated

coe�cients that capture di�erences between all possible pairs of groups. These coe�cients

tell how much the logit changes based on the values of the predictor variables. Multicollinear-

ity in the model was checked by examining the standard errors for the estimated coe�cients.

A standard error bigger than 2.0 indicates numerical problems.

Table 3 contains the Wald statistic, the estimated coe�cients, the standard errors for the

coe�cients and associated p-values for the model. The estimates labeled �Threshold� are αj,

the intercept equivalent terms. The estimates labeled �Location� are of most interest. They

are the coe�cients for the predictor variables. Considering all the independent variables at

95% con�dence interval, we realized they are all statistically signi�cant since all the p-values

are less than α = .05. Moreover, none of the standard errors exceeded 2.0, Hence, there was

no multicollinearity problem.

Let A=Alcohol, V=Volatile Acidity, S=Sulphate, T=Total Sulfur Dioxide, F=Free Sul-

fur Dioxide, C=Chloride and P=pH.

Since qualities 3 and 4 are not statistically signi�cant, the model for the �fth quality is

then written as

P (Y = Quality 5|X) =
expg(X)

1 + expg(X)

where

g(X) = 3.981 + .884A− 3.070V + 2.784S − .012T − 5.778C − 1.312P + .017F.
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Estimate Standard Error Wald Sig
Threshold quality= 3 −1.638 1.640 .200

quality= 4 .279 .050 .823
quality= 5 3.981 10.236 .001
quality= 6 6.830 29.649 .000
quality= 7 9.834 58.767 .000

Location Alcohol .884 .045 245.416 .000
Volatile Acidity −3.070 .456 89.816 .000

Sulphate 2.784 1.75 66.194 .000
Total Sulfur Dioxide −.012 1.974 31.203 .000

Chloride −5.778 .097 21.126 .000
pH −1.312 1.256 12.952 .000

Free Sulfur Dioxide .017 .975 6.846 .009

Table 3: Parameter Estimates for Red Wine

Therefore,

P (Y = Quality 5|X) =
exp3.981+.884A−3.070V+2.784S−.012T−5.778C−1.312P+.017F

1 + exp3.981+.884A−3.070V+2.784S−.012T−5.778C−1.312P+.017F
.

The sixth quality has the model

P (Y = Quality 6|X) =
expg(X)

1 + expg(X)

where

g(X) = 6.830 + .884A− 3.070V + 2.784S − .012T − 5.778C − 1.312P + .017F.

Hence,

P (Y = Quality 6|X) =
exp6.830+.884A−3.070V+2.784S−.012T−5.778C−1.312P+.017F

1 + exp6.830+.884A−3.070V+2.784S−.012T−5.778C−1.312P+.017F
.

The seventh quality has the same model but with a di�erent intercept.

As an interpretation of the coe�cients in the model, for every increase of q grams of

potassium sulphate per cubic decimeter of sulphate content of red wine, the log of odds

(chance) of being in the �fth quality level increases by 2.784q. The log odds change is qβ

and the associated odds ratio is exp (qβ), where β is the estimated coe�cient for the predictor

variable sulphate.
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Chi-square Sig
Pearson 7287.238 .000
Deviance 3080.848 1.000

Table 4: Goodness-of-Fit for Red Wine

4.1.6 Goodness-of-Fit Statistics for Red Wine

Using the observed and expected frequencies, we computed the Pearson and Deviance

goodness-of-�t measures. The Pearson goodness-of-�t statistic is

X2
HL =

g∑
i=1

(Oi −NiΠi)
2

NiΠi(1− Πi)

where Ni is the total frequency of subjects in the ith group, Oi is the observed number of

cases in the ith group, and Πi is the average estimated probability of an event outcome for the

ith group. Large values of X2
HL show a lack of �t of the model. It is a chi-square distribution

with (n−g) degrees of freedom, where n is the sample size and g is the number of categories.

The deviance goodness-of-�t statistic is

D = 2
n∑

i=1

n∑
j=1

Oij ln

(
Oij

Eij

)

where Oij is the observed value for the various categories and Eij is the expected value.

These two goodness-of-�t statistics are used only for models that have relatively large

expected values in each cell. Since we had many continuous independent variables, we had

many cells with small expected values.

Table 4 shows that the observed signi�cant level for Pearson is .000 and Deviance is 1.000

which is more than .05, hence the model �ts the data well.

4.1.7 Independence Test for Red Wine

To check if there was little or no autocorrelation in the data, the independence test was

used. Autocorrelation occurs when the residuals are not independent from each other. The

Durbin-Watson test was employed to check this assumption.

From the SPSS output, the Durbin Watson statistic for red wine is 1.750. As the Durbin-

Watson statistic approaches 2, it is more likely that the residuals are independent of each

other, at least successively. Therefore, there is not su�cient evidence to reject the null

hypothesis H0 at α = 0.05. Hence the error terms are independently distributed.
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Model 2-log likelihood Chi-square Sig
Intercept Only 3788.451

Final 3080.848 707.602 .000

Table 5: Model-Fitting Information for Red Wine

Model 2-log likelihood Chi-square Sig
Null 3080.848

General 2961.298 119.550 .000

Table 6: Parallel Line Test for Red Wine

4.1.8 Model-Fitting Information for Red Wine

Model-�tting information was employed to check whether there is a relationship between the

model without independent variables and the model with independent variables.

From Table 5, the entry labeled �Model� indicates the parameters of the model for which

the model �t is evaluated. �Intercept Only� shows a model that does not control for any

predictor variables and simply �ts an intercept to predict the outcome variable. The entry

labeled �Final� describes a model that involves the speci�ed predictor variables. This was

obtained through a process which maximized the log likelihood of the outcome variables. The

�nal model shows an improvement over the �Intercept Only� model. The entry labeled �Chi-

square� is the di�erence between the two −2 log-likelihood values. The observed signi�cance

level is .000 which is less than α = .05. Hence we reject the null hypothesis that the model

without predictors is as good as the model with the predictors.

4.1.9 Parallel Line Test for Red Wine

This test was carried out to check if the regression coe�cients are the same for all the various

categories. This is a very strong assumption for the ordinal logistic regression technique since

the relationship between the independent variables and the logits must be the same. Thus,

they must have the same slope.

From Table 6, the row labeled �Null� contains −2 log-likelihood value for the constrained

model, the model that assumes the lines are parallel. The row labeled �General� is for the

model with separate lines or planes. The entry labeled �Chi-square� is the di�erence between

the two −2 log-likelihood values. The p-value is .000 which is less than α, so we reject the

null hypothesis and conclude that there is signi�cant di�erence in the coe�cients between

the models. This is a violation of the parallel line assumption since the relationship between

the independent variables and the logits are not the same for all the logits. We then used the
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Figure 4: Normal P-P Plot of Expected Cumulative Probability vs. Observed Cumulative
Probability for White Wine

multinomial logistic regression technique since the parallel line test assumption for ordinal

logistic regression was violated.

4.2 Specifying the Analysis for Ordinal Regression for White Wine

We once again used graphs and displays to check the assumptions of ordinal regression for

white wine.

4.2.1 Non-Normal Standardized Residual for White Wine

The normal P − P plot was used to check how the error terms were distributed. Figure 4

shows no departures from the straight line which indicates normality in the error terms.

Hence, the error terms are normally distributed and so this assumption was not met.

4.2.2 Non-Normal Error Terms for White Wine

A histogram was used to check if the residuals were not following a normal distribution. The

histogram in Figure 5 shows a bell-shape in the various observations which con�rms from
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Figure 5: Histogram of Frequency vs. Regression Standardized Residual for White Wine

the normal P-P plot and the goodness-of-�t test that the non-normality assumption has not

been met.

4.2.3 Non-Equal Variance of Regression Standardized Residual for White Wine

To check if the variance of the error terms is constant, we used the scatterplot of the regression

standardized residual. The variance of the error terms is not constant in Figure 6 since they

are not nicely scattered. Hence, the non-constant variance assumption is met.

4.2.4 Stepwise Regression for White Wine

To test the signi�cance of variables after new variables have been added, the stepwise regres-

sion technique was used. We realized only eight of the independent variables were signi�cant

for the white wine sample. Citric acid, chloride and total sulfur dioxide were not signi�cant.

The results are displayed in Table 7. �VIF� represents the variance in�ation factor. If the

variance in�ation factor for a particular predictor variable is more than 10, that predictor

variable is omitted from our model since it is not signi�cant. Tolerance is the reciprocal of

the variance in�ation factor.
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Figure 6: Scatterplot of Regression Standardized Residual for White Wine vs. Regression
Standardized Predicted Value

Model Tolerance VIF
Quality
Alcohol .131 7.623

Volatile Acidity .946 1.057
Citric Acid .085 11.828

Residual Sugar .129 7.612
Chloride .079 12.579

Free Sulfur Dioxide .870 1.149
Density .238 8.123
pH .473 2.114

Sulphates .885 1.130
Fixed Acidity .338 2.580

Total Sulfur Dioxide .038 26.123

Table 7: Stepwise Regression for White Wine
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Estimate Standard Error Wald Sig
Threshold quality= 3 −467.769 73.625 .000

quality= 4 −465.407 72.895 .000
quality= 5 −462.367 71.959 .000
quality= 6 −459.780 71.169 .000
quality= 7 −457.527 70.477 .000
quality= 8 −453.847 69.344 .000

Location Alcohol .422 1.100 34.699 .000
Volatile Acidity −5.073 .024 300.520 .000
Residual Sugar .236 .110 126.080 .000

Free Sulfur Dioxide .011 .007 38.298 .000
Density −478.478 .001 75.105 .000
pH 2.095 1.344 56.253 .000

Sulphates 1.816 .103 49.395 .000
Fixed Acidity .244 .100 18.537 .000

Table 8: Parameter Estimates for White Wine

4.2.5 Parameter Estimates for White Wine

We used the estimated coe�cients to �t the various models for white wine. We checked

multicollinearity in the model by examining the standard errors for the estimated coe�cients.

A standard error bigger than 2.0 indicates numerical problems.

Table 8 contains the estimated coe�cients, the standard errors for the coe�cients, the

Wald test and associated p-values for the model. The estimates labeled �Threshold� are the

αj. The estimates labeled �Location� are the coe�cients for the predictor variables. At 95%

con�dence interval, we realized all the independent variables are statistically signi�cant since

all the p-values are less than α = .05. Furthermore, none of the standard errors exceeded

2.0, Hence, none of the independent variables depended on each other.

Again, let A=Alcohol, V=Volatile Acidity, R=Residual Sugar, F=Free Sulfur Dioxide,

D=Density, P=pH, S=Sulphate and FA=Fixed Acidity.

All the quality levels are signi�cant and so the model for the third quality is then written

as

P (Y = Quality 3|X) =
expg(X)

1 + expg(X)

where

g(X) = −467.769+.422A−5.073V +.236R+.011F−478.478D+2.095P+1.8165S+.244FA.
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Chi-square Sig
Pearson 56848.357 .000
Deviance 10902.106 1.000

Table 9: Goodness-of-Fit for White Wine

Hence,

P (Y = Quality 3|X) =
exp−467.769+.422A−5.073V+.236R+.011F−478.478D+2.095P+1.8165S+.244FA

1 + exp−467.769+.422A−5.073V+.236R+.011F−478.478D+2.095P+1.8165S+.244FA
.

The model for the fourth quality is

P (Y = Quality 4|X) =
expg(X)

1 + expg(X)

where

g(X) = −465.407+.422A−5.073V +.236R+.011F−478.478D+2.095P+1.8165S+.244FA.

Therefore,

P (Y = Quality 4|X) =
exp−465.407+.422A−5.073V+.236R+.011F−478.478D+2.095P+1.8165S+.244FA

1 + exp−465.407+.422A−5.073V+.236R+.011F−478.478D+2.095P+1.8165S+.244FA
.

The model for the other quality levels follow the same equation with di�erent intercepts,

although the coe�cients across these equations do not vary.

The coe�cients in the model are interpreted as, for each increase of c grams per cubic

decimeter of residual sugar content of white wine, the log of odds (chance) of being in the

third quality level increases by .236c. Then the log odds change is cβ and the associate odds

ratio is exp (cβ), where β is the estimated coe�cient for residual sugar.

4.2.6 Goodness-of-Fit Statistics for White Wine

The goodness-of-�t test was used to check how well the model actually re�ected the data.

It veri�es how close the observed values match the expected under the �tted model.

Table 9 shows the column labeled �Deviance� which is the di�erence between the observed

values and the expected values. Thus, it can be thought of as a chi-square value. Its observed

signi�cance level is 1.000. The Pearson's observed signi�cance level is .000 which is less than

.05, hence the model �ts the data well.
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Model 2-log likelihood Chi-square Sig
Intercept Only 12641.174

Final 10902.106 1739.069 .000

Table 10: Model-Fitting Information for White Wine

Model 2-log likelihood Chi-square Sig
Null 10902.106

General 10614.963 287.42 .000

Table 11: Parallel Line Test for White Wine

4.2.7 Independence Test for White Wine

The independence test was used to verify if there was little or no autocorrelation in the

data. Autocorrelation occurs when the residuals are not independent from each other. We

employed the Durbin-Watson test to check this assumption.

The Durbin Watson statistic for white wine is 1.621. As this statistic approaches 2, it is

more likely that the residuals are independent of each other. Hence, there is not su�cient

evidence to reject the null hypothesis, H0, at α = 0.05. Thus, they are independently

distributed.

4.2.8 Model-Fitting Information for White Wine

We then check if the current model for white wine �ts better than a model with just an

intercept.

Table 10 shows an observed signi�cance level of .000 which is less than α = .05. Hence

we reject the null hypothesis and conclude that the model without predictors is not as good

as the model with the predictors.

4.2.9 Parallel Line Test for White Wine

From Table 11, we rejected the null hypothesis since the p-value is .000 which was less

than α = .05 and conclude that there is signi�cant di�erence in the coe�cients between

the models. This assumption was violated since the relationship between the independent

variables and the logits are not the same for all the logits. Thus, the regression coe�cients

are not the same for all the various categories. This then called for multinomial logistic

regression which estimates separate coe�cients for each category.
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Coe�cients
Quality
Alcohol
Sulphate

Volatile Acidity
Chloride

Total Sulfur Dioxide
Free Sulfur Dioxide

pH

Table 12: Stepwise Regression For Red Wine

4.3 Specifying the Analysis for Multinomial Logistic Regression for

Red Wine

We then proceeded to analyze the data by treating it as nominal. This was required as

the parallel line test for the ordinal logistic regression technique failed. Multinomial logistic

regression requires a minimum ratio of valid cases to independent variables to be at least 10

to 1 (preferably 20 to 1). This requirement was satis�ed by our data.

4.3.1 Table for the Stepwise Regression for Red Wine

A forward selection algorithm was used to test the contribution of all the variables after new

variables have been added. As shown in Table 12, seven of the independent variables were

signi�cant.

4.3.2 Parameter Estimates for Red Wine

SPSS was used to generate the various equations. The insigni�cant variables were omitted

from the equations. The parameter estimates have �ve parts, labeled with the categories of

the outcome variable of quality. We checked multicollinearity in the model by examining the

standard errors for the estimated coe�cients. A standard error greater than 2.0 indicates

numerical problems. We compared the ratio of the probability of choosing a particular

outcome category over the probability of choosing the reference category.

From Tables 13 and 14, there are implausible odds caused by too few cases in some

categories or complete separation of two groups. SPSS treats the eighth quality as the

reference group and therefore estimated a model for the third quality relative to the eighth

quality, fourth quality relative to the eighth quality, and so on. The entry labeled �B�

depicts the estimated multinomial logistic regression coe�cients for the models. �Std. Error�
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Quality B Std. Error Sig Exp(B)
3 Intercept .220 1.984 .988

Alcohol −3.233 .755 .000 .039
Sulphate −6.907 1.333 .038 .001

Volatile Acidity 9.071 1.756 .001 8.698E3
Chloride 50.505 17.469 .004 8.593E21

Total Sulfur Dioxide −.045 .045 .315 .956
Free Sulfur Dioxide .084 .084 .317 1.087

pH 8.585 1.681 .020 5.352E3
4 Intercept −2.877 1.441 .699

Alcohol −1.848 .311 .000 .158
Sulphate −6.897 1.972 .000 .001

Volatile Acidity 4.898 1.087 .019 133.999
Chloride 41.941 16.845 .013 1.640E18

Total Sulfur Dioxide .026 .018 .145 1.026
Free Sulfur Dioxide −.051 .046 .264 .950

pH 6.965 1.140 .001 1.059E3
5 Intercept 9.892 1.723 .141

Alcohol −2.185 .262 .000 .112
Sulphate −6.683 1.520 .000 .001

Volatile Acidity 2.125 1.947 .275 8.372
Chloride 39.505 16.531 .017 1.435E17

Total Sulfur Dioxide .040 .016 .013 1.041
Free Sulfur Dioxide −.033 .039 .396 .967

pH 5.200 1.896 .006 181.254

Table 13: Parameter Estimates for Red Wine
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Quality B Std. Error Sig Exp(B)
6 Intercept 3.210 1.616 .628

Alcohol −1.393 .254 .000 .248
Sulphate −4.417 1.478 .003 .012

Volatile Acidity .095 1.923 .961 1.100
Chloride 35.788 16.492 .030 3.488E15

Total Sulfur Dioxide .022 .016 .166 1.023
Free Sulfur Dioxide −.008 .039 .839 .992

pH 4.873 1.865 .009 130.687
7 Intercept −1.168 1.649 .861

Alcohol −.649 .249 .009 .522
Sulphate −1.929 1.474 .191 .145

Volatile Acidity −2.612 1.951 .180 .073
Chloride 29.150 16.526 .078 4.569E12

Total Sulfur Dioxide .013 .016 .434 1.013
Free Sulfur Dioxide −.007 .039 .854 .993

pH 3.458 1.866 .064 31.747

Table 14: Parameter Estimates for Red Wine (Continued)

represents the standard errors for the coe�cients. We did not use chloride in any of our

analysis since the standard error for its coe�cient was greater than 2.0 throughout the

various levels of quality of wine. �Intercept� is the multinomial logit estimate for the various

categories of quality relative to the eighth quality when the predictor variables in the model

are evaluated at zero.

Considering the third quality relative to the eighth quality, all the independent variables

are signi�cant except free sulfur dioxide, total sulfur dioxide and the intercept according

to the p−value. Alcohol was signi�cant in all the quality levels and has a negative e�ect

throughout the various levels of quality. pH had a statistically signi�cant positive in�uence

in all the levels except the seventh.

Let A=Alcohol, V=Volatile Acidity, S=Sulphate, T=Total Sulfur Dioxide, F=Free Sul-

fur Dioxide, and P=pH. The model for this quality level is given by

log

(
P (Quality 3)

P (Quality 8)

)
= .220− 3.233A− 6.907S + 9.071V + 8.585P.

As interpretation of the coe�cients in the model, for each increase in one percentage of

volume in alcohol content of red wine, the odds of being in the third quality level decreased

by 96.1% (0.039− 1 = −0.961).
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Chi square Sig
Pearson 7216.183 .000
Deviance 2961.626 1.000

Table 15: Goodness-of-Fit for Red Wine Test

Model -2log likelihood Chi-Sq Sig
Intercept 3.788E3
Final 2.962E3 826.824 .000

Table 16: Model-Fitting Information for Red Wine

4.3.3 Goodness-of-Fit Statistics for Red Wine

The goodness-of-�t test was used to check if the sample came from the population with the

speci�ed distribution.

From Table 15 we see that the observed signi�cance level for Pearson is .000 and Deviance

is 1.000 which is more than .05, hence the model �ts the data well.

4.3.4 Model-Fitting Information for Red Wine

Checking if the model without predictors is as good as the model with the predictors, we

used the model-�tting information.

As shown in Table 16, the entry labeled �Model� shows the parameters of the model for

which the model �t is evaluated. �Intercept Only� indicates a model that does not control

for any predictor variables and simply �ts an intercept to predict the outcome variable. The

entry labeled �Final� describes a model that involves the speci�ed predictor variables. This

was obtained through a process which maximized the log likelihood of the outcome variables.

The �nal model shows an improvement of the intercept only model. The entry labeled �Chi-

square� is the di�erence between the two −2 log-likelihood values. The observed signi�cance

level of .000 is less than α = .05. Hence we reject the null hypothesis and conclude that the

model without predictors is not as good as the model with the predictors.

4.4 Specifying the Analysis for Multinomial Logistic Regression for

White Wine

4.4.1 Table for the Stepwise Regression for White Wine

We employed stepwise regression analysis to eliminate an already selected variable if that

variable was not signi�cant because of its relationship to the other variables. Table 17 gives
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Coe�cients
Quality
Alcohol

Volatile Acidity
Residual Sugar

Free Sulfur Dioxide
Density
pH

Sulphates
Fixed Acidity

Table 17: Stepwise Regression for White Wine

the eight signi�cant predictor variables for white wine.

4.4.2 Parameter Estimates for White Wine

Since we saw ordering in the data, SPSS nominated the ninth quality of the response cate-

gories as a baseline or reference cell. Multicollinearity in the model was examined using the

standard errors for the coe�cients. A standard error greater than 2.0 indicates numerical

problems. We calculated log-odds for all six categories relative to the baseline and then let

the log-odds be a linear function of the predictors.

Considering Tables 18 and 19, there are implausible odds as a results of complete separa-

tion of two groups or too few cases in some categories. The standard errors for the coe�cients

of density, chloride and sulphates were bigger than 2.0. Hence, there was a multicollinearity

problem so none of those independent variables were used in our analysis. The ninth quality

is the reference group, we therefore estimated a model for the third quality relative to the

ninth quality, fourth quality relative to the ninth quality, and so on.

Residual sugar, �xed acidity and pH were statistically signi�cant according to the p-

values of the fourth quality relative to the ninth quality. Moreover, pH was signi�cant and

had a very small e�ect on wine quality throughout the various quality levels of the white

wine.

Let A=Alcohol, V=Volatile Acidity, R=Residual Sugar, F=Free Sulfur Dioxide, P=pH,

and FA=Fixed Acidity.

The model for this quality level is given by

log

(
P (Quality4)

P (Quality 9)

)
= −.610R− 13.080P − 1.533FA.

Interpreting the coe�cients in this model, wine with one gram per cubic decimeter in-
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Quality B Std. Error Sig Exp(B)
3 Intercept −925.135 1.851 .193

Alcohol −.938 1.659 .380 .392
Volatile Acidity 8.288 10.315 .143 3.975E3
Residual Sugar −.493 .035 .118 .611

Free Sulfur Dioxide .019 7.692 .587 1.019
Density 982.330 714.285 .169
pH −10.373 1.235 .015 3.127E − 5

Sulphates −.966 .235 .854 .381
Fixed Acidity −.637 .409 .119 .529

4 Intercept −1.049E3 .410 .129
Alcohol −1.336 1.026 .193 .263

Volatile Acidity 9.750 5.443 .073 1.716E4
Residual Sugar −.610 .303 .044 .543

Free Sulfur Dioxide −.060 .035 .089 .942
Density 1.130E3 694.195 .103
pH −13.080 1.995 .001 2.087E − 6

Sulphates .550 4.774 .908 1.733
Fixed Acidity −1.533 .395 .000 .216

5 Intercept −881.509 1.563 .199
Alcohol −1.577 1.021 .122 .207

Volatile Acidity 6.123 5.417 .258 456.343
Residual Sugar −.475 .300 .114 .622

Free Sulfur Dioxide −0.19 .035 .591 .982
Density 967.449 690.205 .161
pH −13.315 .933 .001 1.649E − 6

Sulphates .776 4.711 .869 2.173
Fixed Acidity −1.699 .380 .000 .188

Table 18: Parameter Estimates for White Wine
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Quality B Std. Error Sig Exp(B)
6 Intercept −765.441 .283 .264

Alcohol −.820 1.019 .421 .441
Volatile Acidity .336 5.409 .951 1.399
Residual Sugar −.374 .300 .212 .688

Free Sulfur Dioxide −.013 .035 .698 .987
Density 842.352 688.906 .221
pH −12.861 .926 .001 2.598E − 6

Sulphates 2.081 7.702 .645 8.010
Fixed Acidity −1.711 .378 .000 .181

7 Intercept −109.598 .412 .873
Alcohol −.943 .299 .354 .389

Volatile Acidity −1.476 5.035 .785 .229
Residual Sugar −.100 .149 .738 .905

Free Sulfur Dioxide −.009 .920 .797 .991
Density 165.854 834.702 .810 1.070E72
pH −9.632 .374 .014 6.561E − 5

Sulphates 4.064 10.374 .387 58.221
Fixed Acidity −1.137 .284 .002 .321

8 Intercept 1.197 .584 .999
Alcohol −.786 1.038 .449 .456

Volatile Acidity −.903 12.407 .869 .405
Residual Sugar −.009 5.469 .976 .991

Free Sulfur Dioxide .004 .306 .906 1.004
Density 47.056 241.035 .947 2.730E20
pH −8.841 .527 .027 .000

Sulphates 3.346 3.991 .480 28.393
Fixed Acidity −1.082 .407 .008 .339

Table 19: Parameter Estimates for White Wine (Continued)
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Chi-square Sig
Pearson 36405.487 .000
Deviance 10637.549 1.000

Table 20: Goodness-of-Fit for White Wine Test

Model -2log likelihood Chi-sq Sig
Intercept 1.264E4
Final 1.064E4 2.00E4 .000

Table 21: Model-Fitting Information for White Wine

crease in residual sugar content for instance, was 45.7% (0.543 − 1 = −0.457) less likely to

be in the fourth quality level than the ninth.

4.4.3 Goodness-of-Fit Statistics for White Wine

To determine if the observed values were signi�cantly di�erent from the expected values, the

goodness-of-�t test was used.

From Table 20 we see that the model �ts well since the observed signi�cance level for

Pearson is .000 and Deviance is 1.000 which is more than .05.

4.4.4 Model-Fitting Information for White Wine

Model-�tting information was used to check if the current model �ts better than a model

with just an intercept.

By looking at the results presented in Table 21, we realized the entry labeled �Sig�

has observed signi�cant level of .000 which is less than α = .05. Hence we reject the

null hypothesis and conclude that the current model �ts better than a model with just an

intercept.

4.5 Comparing Accuracy Rates for Red Wine

To distinguish our red wine model as useful, we compared the overall percentage accuracy

rate (using the case processing summary table) to the proportional by chance accuracy (using

the classi�cation accuracy table). A useful model generally has a 25% or higher classi�cation

accuracy rate than the proportional by chance accuracy rate.
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N Marginal Percentage
Quality 3 10 .6%

4 53 3.3%
5 681 42.6%
6 638 39.9%
7 199 12.4%
8 18 1.1%

Valid 1599 100%
Missing 0
Total 1599

Table 22: Case Processing Summary Table for Red Wine

4.5.1 Case Processing Summary Table for Red Wine

Table 22 summarizes the red wine data. All 1599 observations in our data set were used in the

analysis. The table shows the number and percentage of cases in each level of our response

variable. The column labeled �N� presents the number of observations �tting the description

in the �rst column. For instance, the �rst eight values give the number of observations

for which the subject's preferred quality of wine is the third quality through to eighth one.

�Valid� shows the number of observations in the data set where the outcome variable and all

predictor variables are non-missing. The marginal percentage gives the proportion of valid

observations found in each of the outcome variable's groups. It was calculated by dividing

the N for each group by the N for �Valid�. Of the 1599 subjects with valid data, 10 subjects

preferred the third quality to all the other quality levels. Hence, the marginal percentage for

this group is (10/1599)× 100 = .6%.

In this regression, the outcome variable is quality which contains a numeric code for the

subject's preferred quality of wine. The data includes nine levels of quality representing nine

di�erent preferred quality levels of wine. �Missing� represents the number of observations

in the dataset where data are missing from the response variable or any of the predictor

variables. �Total� shows the total number of observations in the dataset.

Based on the �Case Processing Summary� in Table 22, we computed the proportional

by chance accuracy rate using the fraction of cases for every group found on the number of

cases in every group. The result was achieved by squaring and summing the proportion of

cases in each group as

(0.0062 + 0.0332 + 0.4262 + 0.3992 + 0.1242 + 0.0112) = 0.357299.

We then multiplied our results by 1.25 since the classi�cation accuracy rate must be 25%
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Predicted
Observed 3 4 5 6 7 8 Percentage Correct

3 1 1 7 1 0 0 10.0%
4 1 1 34 17 0 0 1.9%
5 0 2 518 157 4 0 76.1%
6 0 0 209 386 43 0 60.5%
7 0 0 12 129 58 0 29.1%
8 0 0 0 10 8 0 .0%

Overall Percentage .1% .3% 48.8% 43.8% 7.1% .0% 60.3%

Table 23: Classi�cation Accuracy Table for Red Wine

larger than the proportional by chance accuracy rate. Hence proportion of chance criteria is

44.7% (0.357299× 1.25 = .447 = 44.7%). That is, we hoped to see a classi�cation accuracy

of 44.7% or higher.

4.5.2 Classi�cation Accuracy Table for Red Wine

The classi�cation accuracy table is a table of predicted group membership against actual

group membership. Generally, the classi�cation accuracy rate must be 25% higher than the

proportional by chance accuracy rate. From Table 23, the classi�cation accuracy rate was

60.3%.

The classi�cation accuracy rate for red wine was 60.3% which was greater than the

proportion of chance criteria of 44.7%. Therefore, the classi�cation accuracy criteria is

satis�ed.

4.6 Comparing Accuracy Rates for White Wine

To characterize our white wine model as useful, we compared the overall percentage accuracy

rate to the proportional by chance rate.

4.6.1 Case Processing Summary Table for White Wine

We see from Table 24 that all 4898 white wine observations in our data set were used in the

analysis. By looking at N , the �rst seven values give the number of observations for which

the subject's preferred quality of wine is the third quality through ninth one. Considering

the marginal percentages, of the 4898 subjects with valid data, 20 samples were rated at a

quality level of 3. Hence, the marginal percentage for this group is (20/4898)× 100 = .4%.

Using Table 24, we then calculated the proportional by chance accuracy rate using the

38



N Marginal Percentage
Quality 3 20 .4%

4 163 3.3%
5 1457 29.7%
6 2198 44.9%
7 880 18.0%
8 175 3.6%
9 5 .1%

Valid 4898 100%
Missing 0
Total 4898

Table 24: Case Processing Summary Table for White Wine

percentage of cases for each group found on the number of cases in each group. We arrived

at the results by squaring and adding the percentage of cases in each group as

(0.0042 + 0.0332 + 0.2972 + 0.4492 + 0.182 + 0.0362 + 0.0012) = 0.324612.

Since the classi�cation accuracy rate must be 25% higher than the proportional by chance

accuracy rate we proceeded to multiply this result by 1.25. Therefore, the criteria for propor-

tion of chance is 40.6% (.324612 × 1.25 = .4058 = 40.6%). Hence, a classi�cation accuracy

of 40.6% or higher is expected.

4.6.2 Classi�cation Accuracy Table for White Wine

The classi�cation accuracy table has each case predicted to be a member of the group to

which it has the highest probability of belonging. Table 25 shows that the classi�cation

accuracy rate for white wine was 53.8%.

In conclusion, the classi�cation accuracy rate for white wine was 53.8% which was greater

than the proportion of chance criteria of 40.6%. Therefore, the classi�cation accuracy criteria

was satis�ed.

4.7 Comparison with Previous Model

We then compared our model to the results of Cortez et al [9]. Their accuracy rates for

support vector machines (SVM) were 89.0% for red wine and 86.8% for white wine which

were relatively higher than ours. However, our model is much simpler.
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Predicted
Observed 3 4 5 6 7 8 9 Percentage Correct

3 2 0 8 8 2 0 0 10.0%
4 0 8 94 60 1 0 0 4.9%
5 0 2 780 664 11 0 0 53.5%
6 0 2 410 1639 146 0 1 74.6%
7 0 0 39 636 205 0 0 23.3%
8 0 0 11 117 47 0 0 .0%
9 0 0 0 1 4 0 0 .0%

Overall Percentage .0% .2% 27.4% 63.8% 8.5% .0% .0% 53.8%

Table 25: Classi�cation Accuracy Table for White Wine

5 Conclusion

The estimated parameters for the SPSS output contain six (from 3 to 8) classes of quality

level for red wine and seven (from 3 to 9) classes for white wine. We used ordinal logistic

regression and the multinomial logit model to estimate the preference of wine based on its

physicochemical properties. Although the ordinal logistic regression model minimized the

sum of squared errors, it failed the parallel line test so the multinomial logistic regression

technique was used. The multinomial logistic regression model was less sensitive to outliers.

5.1 Results for Red Wine

The accuracy rate for red wine was 60.3% which satis�ed the classi�cation accuracy criteria.

Alcohol was statistically signi�cant and had a negative e�ect throughout the various levels

of red wine. As we moved from a lower quality level to a higher quality level, sulphate and

pH went from being statistically signi�cant to not signi�cant statistically.

5.2 Results for White Wine

Our model has an accuracy rate of 53.8% for white wine which met the classi�cation accuracy

criteria. The relative importance of the inputs brought interesting insights regarding the

impact of the components on the quality of white wine. We realized from our model that pH

was statistically signi�cant and had a negative e�ect throughout the various levels of white

wine. Moreover, �xed acidity and residual sugar also had negative impact on the predicted

levels of white wine quality.

Since the result of this work is an important tool for the global wine market, such a model

could be used to enhance the training of enology students and improve the quality of wine.
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