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ABSTRACT

Within this treatise we establish conditions for the existence of solutions to two-
point, discrete, non-linear boundary value problems. We will be examining two dif-
ferent variations of the problem. First, we will be examining generalized discrete non-
linear systems of the form

x(t+ 1) = Ax(t) + f(x(t)), t ∈ {0, 1, ..., N − 1}

subject to
Bx(0) +Dx(N) = 0.

We demonstrate the existence of solutions to this type of problem when the associated
linear, homogeneous boundary value problem has only the trivial solution, and the
nonlinear element exhibits sublinear growth.

Next, we will consider scalar, two-point, nonlinear boundary value problems of the
form

y(t+ n) + an−1y(t+ n− 1) + · · ·+ a0y(t) = g(y(t)),

for t ∈ {0, 1, ..., N − 1}, subject to

n∑
j=1

bijy(j − 1) +
n∑
j=1

dijy(j +N − 1) = 0,

for i = 1, 2, ..., n.
In this case, we assume the associated linear homogeneous boundary value prob-

lem has a one-dimensional solution space and establish criteria that guarantee the exis-
tence of solutions by analyzing the relationship between the nonlinear element and the
solution space of the associated linear boundary value problem through a projection
scheme.
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1 Introduction

In this thesis, we attempt to establish conditions for the existence of solutions to non-
linear, discrete, two point boundary value problems of the form:

x(t+ 1) = Ax(t) + f(x(t)), t ∈ {0, 1, ..., N − 1} (1)

subject to
Bx(0) +Dx(N) = 0. (2)

For the purpose of this paper, we will make the following assumptions:
1. x(t) is a vector in Rn for each t ∈ {0, 1, ..., N}.
2. A is an invertible n× n matrix.
3. f : Rn → Rn is a continuous map.
4. B and D are constant n× n matrices.
5. N is some fixed integer larger than two.
While this problem may appear benign at first glance, the non-linearity of the equa-

tion poses quite a unique challenge. Standard solution techniques commonly utilized
for linear difference equations and boundary value problems do not yield conclusive
results. Thus, a different plan of attack is necessary for determining if solutions exist
to our boundary value problem, and for establishing sufficient conditions for such a
solution to exist.

Our approach to this problem relies heavily on both linear and non-linear operators
on Banach spaces. Thus, chapter 1 will focus on a variety of preliminary notions and
theorems that will be vital to the remainder of the work done in this manuscript. We
will state and prove a few theorems concerning the dimension of vector spaces, as well
as the continuity and boundedness of linear operators. We will then spend some time
introducing the concept of degree theory, and utilize it to prove the Brouwer fixed point
theorem, a powerful theorem that will prove to be a highly useful tool in solving our
problem. We will next reformulate the problem using operators. Using these tools
vastly simplifies the problem, and allows us to make use of their properties to further
analyze it. To be more specific, we will introduce the following spaces:

X = {φ : {0, 1, · · · , N} → Rn, Bφ(0) +Dφ(N) = 0}

and
Y = {γ : {0, 1, · · · , (N − 1)} → Rn}.

Then, we will rewrite the problem as follows:

Lx = Fx
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where L : X → Y is defined by

(Lx)(t) = x(t+ 1)−Ax(t),

and F : X → Y is defined by
(Fx)(t) = f(x(t)).

During the course of the chapter, we will demonstrate the equivalence of this new form
of the problem to the original. Following this convenient reformulation, we can exam-
ine the problem from two distinct perspectives:

1. If L is invertible.
2. If L is not invertible.

In Chapter 2, we will examine the case whereL is invertible. We will impose specific
restrictions on the nonlinear element that will allow us to demonstrate the existence of
solutions to (1)-(2). This restriction will be an extension of previous work found in my
senior research project [3], and is similar to results found in [2]. We will examine the
structure of the linear operator L and its relationship to the main problem. This will
lead to an important conclusion about the nature of the dimension of the kernel of L,
namely that dim{ker(L)} = dim{ker[B + DAN ]}. From here, we will see that the in-
vertibility of L is directly dependent on the invertibility of the matrix [B+DAN ]. Once
these criteria have been established, we will demonstrate the existence of solutions to
the problem given these conditions using both degree theory and the Brouwer fixed
point theorem.

In Chapter 3, we will consider a more specific family of problems. Namely, scalar,
discrete, nonlinear boundary value problems of the form

y(t+ n) + an−1y(t+ n− 1) + · · ·+ a0y(t) = g(y(t))

subject to
n∑
j=1

bijy(j − 1) +
n∑
j=1

dijy(j +N − 1) = 0,

for i = 1, 2, ..., n.
We will see that this version of the problem can also be written in the form (1)-

(2). However, for this problem we will no longer assume that L is invertible. More
specifically, we will impose the restriction that the dimension of the kernel of L be one.
Using a projection scheme, we will work towards a set of viable conditions that will
allow us to demonstrate the existence of solutions, again through the use of degree
theory and the Brouwer fixed point theorem. This treatment is similar to work found
in [2],[8].

Finally, we will present a concrete example. We will utilize all of the concepts and
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tools presented in this manuscript to demonstrate that this example does indeed have
a solution.

3



2 Preliminaries

2.1 Important Theorems

The plan of attack for our problem relies heavily on a variety of notions and theo-
rems from Linear Algebra and Analysis. This manuscript assumes that the reader has
some background in these areas. Concepts such as linear operators, vector spaces, Ba-
nach spaces, completeness, kernel, image, and theorems related to these concepts are
assumed to be a part of the reader’s knowledge base. In addition, basic knowledge
of solution processes for linear, homogeneous, discrete equations are considered prior
knowledge for this paper. For a concise exposition of any of these specific notions as
they related to this treatise, please see ([1], [4], [5], [6].).

There are, however, a few important theorems from functional analysis and analy-
sis of difference equations, crucial to our work, whose statement and proof are useful
exercises. We begin with a look at the solution process to linear, non-homogeneous
systems of difference equations.

Proposition 2.1. The solution to the non-homogeneous system x(t+ 1) = Ax(t) + y(t),
t ∈ 0, 1, ..., where x(t) , y(t) are vectors in Rn, and A is an invertible n × n constant
matrix, is

x(t) = Atx(0) +At
t−1∑
i=0

A−(i+1)y(i). (2.1)

Proof. Clearly, the solution satisfies the initial condition. Now, using 2.1,

x(t+ 1) = At+1x(0) +At+1
t∑
i=0

A−(i+1)y(i).

We can then remove the last element of the summation, when i = t, to obtain

x(t+ 1) = At+1x(0) +At+1
t−1∑
i=0

A−(i+1)y(i) + y(t).

Factoring out A, we have

x(t+ 1) = A

(
Atx(0) +At

t−1∑
i=0

A−(i+1)y(i)

)
+ y(t) = Ax(t) + y(t).

Next, we examine a few important properties of linear operators. We begin with a
definition and lemma concerning norms on finite dimensional vector spaces.

Definition 2.1. Let X be a vector space, and ‖ · ‖α , ‖ · ‖β be two norms on X . ‖ · ‖α, and
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‖ · ‖β are said to be equivalent if ∃m,M > 0 such that

m‖x‖α ≤ ‖x‖β ≤M‖x‖α

∀x ∈ X .

Lemma 2.1. In a finite dimensional vector space, any two norms are equivalent.

Proof. Let X be a finite dimensional vector space. Let ‖ · ‖α , ‖ · ‖β be two norms on X .
Let B = {b1, ..., bn} be a basis for X . So, for any x ∈ X , we can write

x = c1b1 + · · ·+ cnbn

for scalars c1, .., cn. For x ∈ X , define

‖x‖∞ = max{|cj |; 1 ≤ j ≤ n}.

So, if we can find m,M > 0 such that

m‖x‖∞ ≤ ‖x‖α ≤M‖x‖∞,

and similarly for ‖x‖β , then we will have our result.
Now,

‖x‖α ≤
n∑
i=1

‖cibi‖α

=
n∑
i=1

|ci|‖bi‖α

≤

(
n∑
i=1

‖bi‖α

)
‖x‖∞

Thus, ‖x‖α ≤M‖x‖∞ , for M =
n∑
i=1
‖bi‖α.

Now, consider the unit sphere S = {x ∈ X : ‖x‖∞ = 1} in (X, ‖ · ‖∞). Let d =
inf{‖x‖α : x ∈ S}. Now, since S is compact, we know there is a sequence {yk}∞k=1 of
unit vectors in S such that ‖yk‖α → d. We know each yk can be written as

yk = c1kb1 + · · · cnkbn.

Now, since yk is in S, we know |cjk | ≤ 1 for all cjk , 1 ≤ j ≤ n. Since j is finite, and
{cjk} ∈ [−1, 1], we may find a subsequence k1, k2, · · · such that {cjkm} converges as m
approaches infinity.

So, let cj = lim
m→∞

{cjkm}.
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We know ‖ykm‖α → d. Let y0 =
n∑
i=1

cjbj .

We next seek to show that ykm → y0 in ‖ · ‖∞.
Consider

‖ykm − y0‖∞ =

∥∥∥∥∥∥
∞∑
j=1

cjkm bj −
∞∑
j=1

cjbj

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞∑
j=1

(
cjkm − cj

)
bj

∥∥∥∥∥∥
= max{|cjkm − cj | : 1 ≤ j ≤ n}.

But cj = lim
m→∞

{cjkm}. So ‖ykm − y0‖∞ → 0, which shows that ykm → y0 in ‖ · ‖∞.
Thus, since each yk is in S, we have ‖y0‖∞ = 1. Therefore, y0 6= 0.
We know ‖ykm − y0‖α ≤ M‖ykm − y0‖∞ → 0. Thus, ‖y0‖α = lim

m→∞
‖ykm‖α = d. Thus,

d 6= 0.
Now, for x ∈ X , x 6= 0,

x

‖x‖∞
∈ S. So,

‖y0‖α ≤
∥∥∥∥ x

‖x‖∞

∥∥∥∥
α

.

So we have
‖x‖∞‖y0‖α ≤ ‖x‖α

⇒ d‖x‖∞ ≤ ‖x‖α

Thus, we have for m = d,

m‖x‖∞ ≤ ‖x‖α ≤M‖x‖∞.

Next, we introduce an important property concerning linear operators on finite-
dimensional vector spaces.

Proposition 2.2. Every linear map from a finite-dimensional normed vector space into
a normed vector space is bounded.

Proof. Let T : X → Y be a linear operator, with X being a finite-dimensional normed
vector space, and Y being a normed vector space. Let B = {b1, ..., bn} be a basis for
X . As in the proof for the previous proposition, let ‖ · ‖∞ be a second norm on X .
We know the map T is bounded with respect to the original norm if and only if it is
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bounded with respect to the equivalent norm ‖ · ‖∞. Consider for x in X

‖Tx‖ =

∥∥∥∥∥T
(

n∑
i=1

cjbj

)∥∥∥∥∥
Y

≤
n∑
i=1

|cj |‖Tbj‖Y

≤
(

max
1≤j≤n

|cj |
)( n∑

i=1

‖Tbj‖Y

)

=

(
n∑
i=1

‖Tbj‖Y

)
‖x‖∞

Thus, we have established the boundedness of T .

Finally, we state a crucial theorem regarding the relationship between continuity
and boundedness of linear operators.

Proposition 2.3. If T : X → Y is a linear map from a normed vector space X into a
normed vector space Y , then the following are equivalent.
a) T is continuous at a point x0 in X .
b) T is continuous.
c) T is bounded.

Proof. a⇒ b. Suppose T is continuous at some point x0 in X . So, given ε > 0, there
exists a δ > 0 such that

‖Tx− Tx0‖ < ε, whenever ‖x− x0‖ < δ.

Now, let y, z be in X , with ‖y − z‖ < δ. This means that

‖x0 − (x0 + z − y)‖ < δ.

This implies that

‖Ty − Tz‖ = ‖T (y − z)‖ = ‖T [x0 − (x0 + z − y)]‖ = ‖Tx0 − T (x0 + z − y)‖ < ε,

which tells us that T is continuous on all of X .

b⇒ c. Let ε = 1. Now, since T is continuous, we know there exists a δ > 0 such that

‖Tx− T0‖ = ‖Tx‖ ≤ ε = 1, whenever ‖x− 0‖ < δ, ∀x ∈ X

Now, suppose x0 is in X , with ‖x0‖ = 1. This means that ‖δx0‖ = δ‖x0‖ = δ. This gives
us that

‖T (δx0)‖ = δ‖Tx0‖ ≤ 1.
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This, in turn, gives us

‖Tx0‖ =
‖Tx0‖
‖x0‖

≤ 1
δ
.

Thus, ‖T‖ ≤M , for M = 1
δ .

c⇒ a. For x0 in X , and ε > 0, if

‖x− x0‖ < δ, where δ =
ε

1 + ‖T‖
,

then
‖Tx− Tx0‖ ≤ ‖T‖‖x− x0‖ < ε.

Now that we have established these crucial properties, we can move into another
realm of analysis that will prove vital to our problem’s solution process.
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2.2 Introduction to Degree Theory

We now introduce perhaps the most important piece of the puzzle necessary to solve
the problem at hand. We will devote the next section of this treatise to the develop-
ment of degree theory. Degree theory is a powerful tool within analysis that allows
us to ascertain various properties of functions. Furthermore, degree theory can be uti-
lized to prove a variety of important and useful results within mathematics, such as
the Brouwer fixed point theorem. More importantly, it will serve as the key that will
guarantee the existence of a solution to our problem.

Prior to officially defining the degree of a map, we need to establish some prelim-
inary assumptions and concepts. Following [9], let D be an open, bounded subset of
Rn. Next, define a map f : D → Rn. We assume this map is C1, which implies that
it is continuously differentiable. In addition, we assume f(~x) 6= 0 for all ~x ∈ ∂D,
where ∂D represents the boundary of the set D. We now define two important sets
Af = {~x ∈ D : f(~x) = ~0}, and Bf = {~x ∈ D : Jf(~x) = 0}. For our purposes, Jf(~x), which
represents the Jacobian of the function f evaluated at some vector ~x, will be defined as
the determinant of the matrix containing all of the first-order partial derivatives of our
function. We note that if Af is non-empty, then it is compact. Finally, we assume that
Af ∩ Bf = ∅. This simply means that when f(~x) = 0, Jf(~x) 6= 0. When this condition
holds, we say that the function f is non-degenerate. With these hypotheses in place, it
can be shown that Af is a finite set. For more information on these preliminaries, and
a more in-depth examination into degree theory, see [9].

Now that these preliminary notions have been established, we can officially define
the degree of a map.

Definition 2.2. The topological degree of a map f , with respect to D and~0, denoted by
d[f,D,~0] is given by:

d[f,D,~0] =
∑
~x∈Af

signJf(~x).

At this point, clarification of what we mean by signJf(~x) may be helpful. Recall that
we have defined the Jacobian to be the determinant of the matrix of first-order partial
derivatives of a function evaluated at a point. Certainly, this determinant will have a
sign, be it positive or negative. We assign to each sign a particular value. If the sign
of the determinant is positive, we assign it a value of 1. If the sign of the determinant
is negative, we assign it a value of −1. From this definition we can extrapolate an
extremely important result that will be useful throughout the remainder of this treatise.

Proposition 2.4. If d[f,D,~0] 6= 0, Af 6= ∅.

Proof. This follows directly from the definition. We simply consider the contrapositive.
That is, if Af = ∅, then clearly we have no elements to sum, and thus the degree of our
map is 0. Therefore, if d[f,D,~0] 6= 0, Af 6= ∅.
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Before presenting the main result of our exploration into degree theory, we need to
introduce one final notion, which will prove crucial to our main problem.

Definition 2.3 (Homotopy). If X and Y are subsets of Rn, and g and h are continuous
maps from X to Y , then g is homotopic to h if there is a continuous map Φ : X ×
[0, 1] → Y such that Φ(x, 0) = g(x) and Φ(x, 1) = h(x),∀x ∈ X . Such a map is called a
homotopy.

Armed with this definition, we can state the following theorem:

Theorem 2.1 (Theorem of Invariance with Respect to Homotopy). Let F : D× [0, 1]→
Rn be a continuous function, with F (~x, λ) 6= 0, ∀(~x, λ) ∈ ∂D× [0, 1]. Define fλ : D→ Rn

by fλ(~x) = F (~x, λ). Then d[fλ,D,~0] is independent of λ.

For a proof of this theorem, see [10]. In essence, this theorem allows us to establish
to the existence of a zero for a function we know little about by relating it to another
function that we know has a zero.
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2.3 The Brouwer Fixed Point Theorem

With these important preliminaries taken care of, we can set our sights on stating and
proving the Brouwer fixed point theorem.

Theorem 2.2 (The Brouwer Fixed Point Theorem). Let B1 = {~x ∈ Rn : ‖~x‖ < 1}. If
f : B1 → B1 is a continuous map, then f has at least one fixed point in B1.

Proof. Let B1 = {~x ∈ Rn : ‖~x‖ < 1}. Let f : B1 → B1 be a continuous function. We
will show that ∃x̂ ∈ B1 such that f(x̂) = x̂.

Our plan of attack will center around the Theorem of Invariance with Respect to
Homotopy. So, we begin by constructing a homotopy.

First, let T : B1 → Rn be defined by T (~x) = ~x − f(~x). Note that T is continuous,
and that if T (~x) = ~0, then f(~x) = ~x. Therefore, the remainder of this proof will focus
on finding a zero for this new map T . Next, we let g : B1 → Rn be the identity map.
That is, g(~x) = ~x. The identity map presents a few useful properties. For instance, note
that:

i) ~0 ∈ B1;
ii) g(~0) = ~0;
iii) ~0 is the unique zero for g;
iv) Jg(~0) = 1.

From these properties, we know d[g,B1,~0] = 1.
Equipped with these maps, we set about to construct a homotopy to relate g and T .

We let F : B1×[0, 1]→ Rn be defined by F (~x, λ) = ~x−λf(~x). Clearly, F is a continuous
map. In addition, we note that F (~x, 0) = ~x = g(~x) and F (~x, 1) = ~x− f(~x) = T (~x).

Our goal here is to show

d[T,B1,~0] = d[g,B1,~0].

In order to demonstrate this, we must show F (~x, λ) 6= ~0,∀(~x, λ) ∈ ∂B1 × [0, 1]. To do
this, we consider two cases:
Case I: λ = 1.
Let ~x ∈ ∂B1. So we have

F (~x, 1) = ~x− f(~x).

Thus, if F (~x, 1) = ~0, then f(~x) = ~x, and we have our fixed point. In this case, no homo-
topy argument is required.

Case II: λ ∈ [0, 1), F (~x, 1) 6= ~0.
Once again, we let ~x ∈ ∂B1. So we have

F (~x, λ) = ~x− λf(~x).
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Since f(~x) ∈ B1, ‖f(~x)‖ ≤ 1. And certainly, since λ ∈ [0, 1), λ‖f(~x)‖ < 1.
Next, we let fλ(~x) = F (~x, λ). So we have:

‖fλ(~x)‖ = ‖~x− λf(~x)‖

≥ ‖~x‖ − λ‖f(~x)‖

= 1− λ‖f(~x)‖

> 0.

Since ‖fλ(~x)‖ > 0, we know F (~x, λ) 6= ~0, when ~x ∈ ∂B1,∀λ ∈ [0, 1]. Therefore, we
can use our theorem on the invariance of degree with respect to homotopy. This means
that d[fλ, B1,~0] is independent of λ. So we have

d[T,B1,~0] = d[f1, B1,~0] = d[f0, B1,~0] = d[g,B1,~0] = 1.

Therefore, there exists an x̂ ∈ B1 such that f(x̂) = x̂.

2.4 Extension of Brouwer

For the purposes of our problem, this basic incarnation of the Brouwer fixed point theo-
rem will be insufficient. While the theorem is quite useful within its original context, it
does not provide ample conditions for use in our situation. Thus, we need to establish
an extension of the theorem to other sets. We begin with a definition:

Definition 2.4. Let A and B be subsets of Rn. If φ : A→ B is continuous, bijective, and
φ−1 is also continuous, then we say φ is a homeomorphism, and A is homeomorphic
to B.

With this definition, we present an important proposition:

Proposition 2.5. A compact, convex subset of Rn with nonempty interior is homeo-
morphic to the unit ball.

For a proof of this proposition, see [3].
Armed with these tools, we can now present an official extension to the Brouwer

fixed point theorem:

Theorem 2.3. Let K be a compact, convex subset of Rn with nonempty interior. If
f : K → K is continuous, then f has a fixed point in K.

Proof. Since K is a compact, convex subset of Rn with nonempty interior, there exists
a homeomorphism φ : B1 → K. Let g = φ−1fφ, then g is continuous and g : B1 → B1.
By the Brouwer fixed point theorem, g has a fixed point, denoted by x̂. From here we
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see that

g(x̂) = x̂

⇒ φ−1fφ(x̂) = x̂

⇒ fφ(x̂) = φ(x̂).

This means that φ(x̂) is our fixed point for f .
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3 Discrete, Nonlinear, Two-Point Boundary Value Problems

3.1 Introduction

We devote this chapter to demonstrating the existence of solutions to two-point, dis-
crete, nonlinear boundary value systems of the form

x(t+ 1) = Ax(t) + f(x(t)), t ∈ {0, 1, ..., N − 1} (3.1)

subject to
Bx(0) +Dx(N) = 0. (3.2)

We remind the reader of the basic assumptions of this problem, namely:
1. x(t) is a vector in Rn for each t ∈ {0, 1, ..., N}.
2. A is an invertible n× n matrix.
3. f : Rn → Rn is a continuous map.
4. B and D are constant n× n matrices.
5. N is some fixed integer larger than two.

Utilizing the results from the previous sections, we will first rewrite the problem in
terms of operators L and F on finite-dimensional function spaces X and Y . From
here, we will discuss the relationship between the linear homogeneous boundary value
problem and the operator L.

Using these criteria, we will prove the existence of solutions to (3.1) and (3.2) with
the following conditions:

i) L is invertible;
ii) F is a sublinear map.

More specifically, we will present two distinct proofs. One will utilize a degree theory
argument. The other will center on the Brouwer fixed point theorem.

3.2 Rewriting the Problem Using Operators

We can rewrite (3.1) and (3.2) using operators on finite dimensional function spaces. To
this end, we introduce the following spaces. Let

X = {φ : {0, 1, ..., N} → Rn, Bφ(0) +Dφ(N) = 0}

and
Y = {γ : {0, 1, ..., (N − 1)} → Rn}.

We define norms on these spaces as follows:
For x ∈ X :

‖x‖ = sup
t∈0,1,...,N

|x(t)|.
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For y ∈ Y :
‖y‖ = sup

t∈0,1,...,(N−1)
|y(t)|,

where | · | denotes the any norm on Rn. These spaces are clearly finite-dimensional
Banach spaces.

With these definitions in hand, we can now define our maps. First, we define L :
X → Y by

(Lx)(t) = x(t+ 1)−Ax(t).

Comparing L to the linear homogeneous boundary value problem

x(t+ 1) = Ax(t),

subject to
Bx(0) +Dx(N) = 0,

we can see that ker(L) and the solution space to the linear homogeneous problem have
the same dimension.

Claim. The solution space to the linear homogeneous boundary value problem and
ker([B +DAN ]) have the same dimension.

Proof. We know the solution space to the linear homogeneous problem has the same
dimension as ker(L). Observe that x ∈ ker(L) if and only if

x(t+ 1) = Ax(t), t ∈ 0, 1, ..., (N − 1)

and
Bx(0) +Dx(N) = 0.

This occurs if and only if there is some vector c ∈ Rn such that

x(t) = Atc,

and
Bc+DANc = 0.

And this occurs if and only if
x(t) = Atc,

and
c ∈ ker([B +DAN ])

Therefore, the solution space of the linear homogeneous boundary value problem,
ker(L), and ker([B +DAN ]) all have the same dimension.
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Next, we can define F : X → Y by

(Fx)(t) = f(x(t)).

Observe that x is a solution to (3.1)- (3.2) if and only if x is a solution to

Lx = Fx.

3.3 The Invertibility of L

This convenient reformulation presents a variety of useful results that allow us to
present conditions for the existence of a solution to (3.1)-(3.2). Perhaps the most sig-
nificant result that follows from this reformulation deals with the invertibility of our
linear operator L.

Recall that we are examining this problem under the constraint that L is invertible.
Thus, we must ascertain the conditions under which this will occur. To illustrate this,
we present the following proposition:

Proposition 3.1. L is invertible if and only if the matrix
(
B +DAN

)
is invertible.

Proof. Let y ∈ Y . Based on how we have created our linear operator L, we know that
Lx = y if and only if

x(t+ 1) = Ax(t) + y(t), t ∈ 0, 1, ..., (N − 1),

and
Bx(0) +Dx(N) = 0.

From here, we can utilize the Variation of Constants formula we examined earlier to
determine that Lx = y if and only if

x(t) = Atx(0) +At
t−1∑
i=0

A−(i+1)y(i), (3.3)

for some x ∈ X , and
Bx(0) +Dx(N) = 0.

Combining these two equations yields Lx = y if and only if

Bx(0) +D

(
ANx(0) +AN

N−1∑
i=0

A−(i+1)y(i)

)
= 0.
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With a little rearranging we find that

Bx(0) +DANx(0) = −

(
DAN

N−1∑
i=0

A−(i+1)y(i)

)
.

Finally, we have

(
B +DAN

)
x(0) = −

(
DAN

N−1∑
i=0

A−(i+1)y(i)

)
. (3.4)

Herein lies the proof of our claim. We note that Lx = y if and only if there exists an
x(0) ∈ Rn that satisfies (3.4). If such an x(0) exists, we can thus explicitly express an
x(t) for equation (3.3), and we will have Lx = y. Using the fundamental theorem of
invertible matrices, we know that if

(
B +DAN

)
is invertible, then there is a unique

x(0) that will solve (3.4). This implies that there is one and only one x that will solve
Lx = y. Therefore, L will be invertible.

Conversely, if L is invertible, then there is one and only one x that will solve Lx =
y. This will lead to a unique x(0) that will solve (4). Hence,

(
B +DAN

)
must be

invertible.

3.4 Main Theorem

Now that we have rewritten our original problem in terms of operators defined on
finite-dimensional operators, and have established conditions for which our linear op-
erator L will be invertible, we are now ready for the coup de grâce. We will prove that
(3.1)-(3.2) has a solution using two methods. First, we will show existence using a de-
gree theory argument. Then, we will demonstrate our solution via the Brouwer fixed
point theorem.

Theorem 3.1. Let [B + DAN ] be invertible. If there exist M1,M2 ≥ 0, and α ∈ R, with
0 ≤ α < 1, such that|f(x)| ≤ M1 + M2|x|α for all x ∈ R, then there is at least one
solution to (1)-(2).

Proof (Method 1). Assume [B + DAN ] is invertible. This implies that L is invertible.
This tells us that

Lx = F (x)

if and only if
x = L−1F (x).

We seek to establish existence by utilizing a homotopy argument. More specifically, we
will attempt to use the theorem of invariance of degree with respect to homotopy. To
this end, we begin by defining T : X → X by T (x) = x − L−1F (x). Notice that since
L is a linear map on a finite-dimensional space, it is continuous. Hence, L−1 is also
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continuous. Thus, by the properties of continuous functions, we know that T is also
continuous. Also note that if T (x) = 0, then L−1F (x) = x, and we will have shown that
(1)-(2) has a solution. Thus, we will devote the remainder of this proof to establishing
the existence of an x such that T (x) = 0.

Next, we note that if f meets the stated criteria, ‖F (x)‖ = sup
t∈0,1,...,(N−1)

|f(x(t))|, and

for each t ∈ {0, 1, ..., N − 1}:

|f(x(t))| ≤M1 +M2|x(t)|α ≤M1 +M2‖x‖α,

for some M1,M2 ∈ R.
With this in mind, and prior to defining our homotopy map, we define the set

B = {x ∈ X : ‖x‖ < M,M ∈ R}.

This set will play a crucial role in the development of this proof.
We now define g : B → B by g(x) = x. As was the case in our proof of the Brouwer

fixed point theorem, we utilize this map, because we know that d[g,B,~0] = 1.
Next, we construct our homotopy. We letH : B×[0, 1]→ X be defined byH(x, λ) =

x − λL−1F (x). Clearly, H is a continuous map. As before, we note that H(x, 0) = x =
g(x), and H(x, 1) = x− L−1F (x) = T (x). We seek to demonstrate that

d[T,B,~0] = d[g,B,~0].

To accomplish this, we need to show thatH(x, λ) 6= ~0,∀(x, λ) ∈ ∂B× [0, 1]. Once again,
we examine two cases:
Case I: λ = 1.
We let x ∈ ∂B. So we have

H(x, 1) = x− L−1F (x).

We see that if H(x, 1) = ~0, then L−1F (x) = x, and we will have shown the existence of
our solution.
Case II: λ ∈ [0, 1), H(x, 1) 6= 0.
As before, we let x ∈ ∂B. So once again we have

H(x, λ) = x− λL−1F (x).

Now, we know that x ∈ ∂B. Thus we know ‖x‖ = M , for someM ∈ R. Also, λ ∈ [0, 1).
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So we have

‖Hλ(x)‖ = ‖x− λL−1F (x)‖

≥ ‖x‖ − ‖λL−1F (x)‖

≥ ‖x‖ − λ‖L−1F (x)‖

> ‖x‖ − ‖L−1‖(M1 +M2‖x‖α)

= M − ‖L−1‖(M1 +M2‖M‖α).

This tells us that
‖Hλ(x)‖
M

> 1− ‖L−1‖
(
M1

M
+

M2

M1−α

)
.

Thus, for M sufficiently large, ‖Hλ‖M > 0. Hence, for M sufficiently large, ‖Hλ(x)‖ > 0.
With this, we have shown that H(x, λ) 6= ~0, ∀(x, λ) ∈ ∂B × [0, 1], and for all x ∈ ∂B. As
a result, we can see that

d[T,B,~0] = d[H1, B,~0] = d[H0, B,~0] = d[g,B,~0] = 1.

Therefore, there exists an x ∈ B such that Tx = 0, and thus there exists an x ∈ X such
that L−1F (x) = x.

We next prove our main theorem using a more concise method. This method relies
on the Brouwer fixed point theorem we proved earlier:

Proof (Method 2). As before, we assume [B + DAN ] be invertible. This again implies
that L will be invertible, and thus we have

x = L−1F (x).

For this proof we introduce the map Φ : X → X , defined by Φ(x) = L−1F (x). By how
we define composition of functions, Φ is a continuous map. We seek to demonstrate
that there exists an x ∈ X such that Φ(x) = x.

Recall that F (x) is a bounded function. As such, we can see that

‖Φ(x)‖ = ‖L−1F (x)‖ ≤ ‖L−1‖(M1 +M2‖x‖α)

for some non-negative real numbers M1,M2. Thus, note that if we let x reside in our
set B, which was defined earlier in Version I of the proof, then certainly

‖Φ(x)‖ ≤ ‖L−1‖(M1 +M2M
α).

Thus,
‖Φ(x)‖
M

≤ ‖L−1‖
(
M1

M
+

M2

M1−α

)
.
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So, forM sufficiently large, ‖Φ(x)‖
M ≤ 1. So, there exists anM > 0 such that for all x ∈ X ,

if ‖x‖ ≤ M , ‖Φ(x)‖ ≤ M . With this, we see that Φ maps B = {x ∈ X : ‖x‖ < M} onto
itself. In addition, we know that B is a compact, convex subset of Rn with non-empty
interior. Thus, we know that Φ has a fixed point in B.
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4 Scalar, Nonlinear, Two-Point Boundary Value Problems

4.1 Introduction

We now consider a more specific type of nonlinear, discrete boundary value problem.
These scalar problems are of the form

y(t+ n) + an−1y(t+ n− 1) + · · ·+ a0y(t) = g(y(t)) (4.1)

for t ∈ {0, 1, ...N − 1}, subject to

n∑
j=1

bijy(j − 1) +
n∑
j=1

dijy(j +N − 1) = 0, (4.2)

for i = 1, 2, ..., n. In similar fashion to the previous section, we will assume g is a
continuous, real-valued function, and N is some integer larger than two. In addition,
the constants bij , dij , and a0, ..., an−1 are all real-valued, with a0 6= 0.

Our exploration into the existence of solutions to (4.1)-(4.2) will involve a process
of transforming the scalar problem into a discrete, nonlinear system of the form

x(t+ 1) = Ax(t) + f(x(t)), t ∈ {0, 1, ...N − 1}

subject to
Bx(0) +Dx(N) = 0.

We will then rewrite the problem using linear and nonlinear operators, again trans-
forming the problem into the form

Lx = F (x).

In this section, we will consider the case where L is not invertible. More specifically,
we will examine the problem under the assumption that the dimension of the kernel of
L is 1. Then, using a projection scheme, we will establish conditions for the existence
of solutions to (4.1)-(4.2) that will rely on the end behavior of the function g, and on the
behavior of the linear component. The reader should note that much of the following
exposition follows closely with the work presented by Dr. Padraic Taylor, as well as
earlier work presented by Dr. Debra Etheridge and Dr. Jesus Rodriguez. For more
information on these works, see [8], and [2]
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4.2 Rewriting the Problem

Recall that we are considering the existence of solutions to

y(t+ n) + an−1y(t+ n− 1) + · · ·+ a0y(t) = g(y(t))

for t ∈ {0, 1, ...N − 1}, subject to

n∑
j=1

bijy(j − 1) +
n∑
j=1

dijy(j +N − 1) = 0,

for i = 1, 2, ..., n.
We now work to rewrite the problem as an n× n system of the form

x(t+ 1) = Ax(t) + f(x(t)), t ∈ {0, 1, ...N − 1} (4.3)

subject to
Bx(0) +Dx(N) = 0. (4.4)

First, we state the form of our n× n matrix A:

A =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1


.

Next, define the matrix B = (bij), and the matrix D = (dij), for i ∈ 1, 2, ..., n, and
j ∈ 1, 2, ..., n. Then we set the vector

x(t) =


x1(t)
x2(t)

...
xn(t)

 =


y(t)

y(t+ 1)
...

y(t+ n− 1)

 ,

and define the function f : Rn → Rn by

f



x1

x2

...
xn


 =


0
0
...

g(x1)

 .

With these definitions, (4.1)-(4.2) can be analyzed as (4.3)-(4.4).
As before, we wish to make use of linear and nonlinear operators to further study
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this problem. To this end, we remind the reader of the following spaces and maps:
Let

X = {φ : {0, 1, ..., N} → Rn, Bφ(0) +Dφ(N) = 0}

and
Y = {γ : {0, 1, ..., (N − 1)} → Rn}.

We define norms on these spaces as follows:
For x ∈ X :

‖x‖ = sup
t∈0,1,...,N

|x(t)|.

For y ∈ Y :
‖y‖ = sup

t∈0,1,...,(N−1)
|y(t)|,

where | · | denotes the standard Euclidean norm on Rn.
Define L : X → Y by

(Lx)(t) = x(t+ 1)−Ax(t).

Define F : X → Y by
(Fx)(t) = f(x(t)).

Recall that x is a solution to (4.1)- (4.2) if and only if x is a solution to

Lx = Fx.
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4.3 Analysis of the Linear Operator

We now examine the structure of the linear component of our problem. We first exam-
ine the linear homogeneous problem of the form

y(t+ n) + an−1y(t+ n− 1) + · · ·+ a0y(t) = 0 (4.5)

subject to
n∑
j=1

bijy(j − 1) +
n∑
j=1

dijy(j +N − 1) = 0, (4.6)

for i = 1, 2, ..., n. Recall that for x to be a solution to the linear homogeneous boundary
value problem, x(t) must be of the form Atx(0), and x(0) must be in ker[B + DAN ].
Additionally, we saw that that x ∈ ker(L) if and only if

x(t+ 1) = Ax(t), t ∈ 0, 1, ..., (N − 1)

and
Bx(0) +Dx(N) = 0.

Therefore, ker(L) is equivalent to the solution space of the linear homogeneous prob-
lem. In our problem, we are considering the case where the dimension of the kernel of
L is one. From here we define the following map S : {0, 1, ..., N} → Rn by

S(t) = Atd,

where d is a unit vector in ker(B +DAN ).
Clearly, we can see that x is in the kernel of L if and only if x(t) = S(t)c for some

c ∈ R.
We now begin constructing our projection scheme by introducing projections onto

the kernel and image of L.
Let d be a unit vector in ker(B +DAN ). Define P : X → X by

(Px)(t) = S(t)dTx(0).

Claim. P is a projection onto the kernel of L.

Proof. The linearity and boundedness of P are clear. Thus, we need to demonstrate
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that P 2 = P , and that Im(P ) = ker(L). we begin with showing that P 2 = P. Consider

(P (Px))(t) = P (S(·)dTx(0))(t)

= S(t)dTS(0)dTx(0)

= S(t)(dTd)dTx(0)

= S(t)dTx(0)

= (Px)(t).

Next, we need to show that Im(P ) = ker(L). First, let x ∈ X. So we have

(Px)(t) = S(t)dTx(0)

= S(t)α,

where α = dTx(0). Thus, Px ∈ ker(L). So, Im(P ) ⊆ ker(L.)
Now, let x ∈ ker(L). so x = S(t)β, for some β ∈ R. So we have

(Px)(t) = P (S(t)β)(t)

= β(P (S(t)))(t)

= βS(t)dTS(0)

= βS(t)dTd

= βS(t)

= x(t).

Thus, if x ∈ ker(L), x ∈ Im(P ).
So, ker(L) ⊆ Im(P ).
Thus, Im(P ) = ker(L).

Next, we begin constructing a projection onto the image of L. This turns out to be
quite an arduous process, and involves utilizing a few other important maps to lay a
framework. To this end, we introduce the following:
Let c be a vector in Rn, with ker([B+DAN ]T ) = span{c}. Define ψ : {0, 1, ..., N − 1} →
Rn by

ψ(t) = [DANA−(t+1)]T c.

With this definition, we state a crucial lemma:

Lemma 4.1. ψ is the zero map if and only if ker(BT )
⋂

ker(DT ) 6= 0.

Proof. Assume there is some nonzero vector v in ker(BT )
⋂

ker(DT ). This tells us that

BT v = 0,
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and
DT v = 0.

This tells us that

(AN )T (DT v) = 0

⇒ (DAN )T v = 0.

From here, we obtain

0 = 0 + 0

⇒ 0 = BT v + (DAN )T v

⇒ 0 = (B +DAN )T v

Thus, v is in ker([B+DAN ]T ). So, v = αc, where c ∈ ker([B+DAN ]T ), and α ∈ R, α 6= 0.
Therefore,

c =
1
α
v.

And so
ψ(t) = [DANA−(t+1)]T

1
α
v = 0, ∀t ∈ 0, 1, ..., N − 1.

Next, assume that ψ is the zero map for all t ∈ 0, 1, ..., N − 1. So we have

ψ(N − 1) = 0

⇒ [DANA−(N−1+1)]c = 0

⇒ DT c = 0.

Thus, c ∈ ker(DT ). But, we also know that c ∈ ker([B + DAN ]T ). So, c ∈ ker(BT ).
Therefore, c ∈ ker(BT )

⋂
ker(DT ).

Now, in order to properly create a projection onto the image of L, we need to get a
sense of what that space looks like. To that end, we introduce the following proposition:

Proposition 4.1. Let h ∈ Y. Then h ∈ Im(L) if and only if

N−1∑
i=0

ψT (i)h(i) = 0.

Proof. Let h ∈ Y.We know from Proposition (3.1) that h is in the image of L if and only
if

Bx(0) +DANx(0) = −

(
DAN

N−1∑
i=0

A−(i+1)y(i)

)
.
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This occurs if and only if

DAN
N−1∑
i=0

A−(i+1)h(i) ∈ Im([B +DAN ]).

We note at this point that Im([B + DAN ]) is orthogonal to ker([B + DAN ]T ). So, we
have

[DAN
N−1∑
i=0

A−(i+1)h(i)]Tβ = 0

∀β ∈ ker([B +DAN ]T ).
With some rearranging, we see this is equivalent to

N−1∑
i=0

hT (i)[DANA−(i+1)]T c = 0,

where c spans ker([B +DAN ]).

Thus, h is in the image of L if and only if
N−1∑
i=0

hT (i)ψ(i) = 0, or equivalently

N−1∑
i=0

ψT (i)h(i) = 0.

Armed with this definition, we are ready to create our projection onto the image of
L. We define W : Y → Y by

(Wh)(t) = ψ(t)

(
N−1∑
i=0

|ψ(i)|2
)−1 N−1∑

i=0

ψT (i)h(i).

We can use this definition, in conjunction with the knowledge that if ker(BT )
⋂

ker(DT ) =
0, then ψ is not identically the zero map, to officially construct our projection onto the
image of L.

Proposition 4.2. Assume ker(BT )
⋂

ker(DT ) = 0. Then E = I −W is a projection onto
the image of L.

Proof. We must first demonstrate that W is a projection. We can clearly see that W is
linear. Thus, since W is a linear map defined on a finite-dimensional vector space, we
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know that W is bounded. It remains to be shown that W 2 = W. So, consider

(W (Wh))(t) = W

ψ(·)

(
N−1∑
i=0

|ψ(i)|2
)−1 N−1∑

i=0

ψT (i)h(i)


= ψ(t)

(
N−1∑
k=0

|ψ(k)|2
)−1 N−1∑

k=0

ψT (k)ψ(k)

(
N−1∑
i=0

|ψ(i)|2
)−1 N−1∑

i=0

ψT (i)h(i)

= ψ(t)

(
N−1∑
k=0

|ψ(k)|2
)−1 N−1∑

k=0

|ψ(k)|2
(
N−1∑
i=0

|ψ(i)|2
)−1 N−1∑

i=0

ψT (i)h(i)

= ψ(t)

(
N−1∑
i=0

|ψ(i)|2
)−1 N−1∑

i=0

ψT (i)h(i)

= (Wh)(t).

This shows that W is indeed a projection. Hence, E = I −W must also be a projection.
Next, we seek to show that Im(E) = Im(L). Recall that we previously demonstrated

that y ∈ Im(L) when
N−1∑
i=0

ψT (i)y(i) = 0. So, let h ∈ Y, and consider

N−1∑
i=0

ψT (i)(Eh)(i) =
N−1∑
i=0

ψT (i)(h(i)− (Wh)(i))

=
N−1∑
i=0

ψT (i)h(i)−
N−1∑
i=0

ψT (i)(Wh)(i)

=
N−1∑
i=0

ψT (i)h(i)−
N−1∑
i=0

ψT (i)

ψ(i)

(
N−1∑
k=1

|ψ(k)|2
)−1 N−1∑

k=1

ψT (k)h(k)


=

N−1∑
i=0

ψT (i)h(i)−
N−1∑
i=0

|ψ(i)|2
(
N−1∑
i=0

|ψ(i)|2
)−1 N−1∑

k=1

ψT (k)h(k)

=
N−1∑
i=0

ψT (i)h(i)−
N−1∑
i=0

ψT (k)h(k)

= 0

Thus, Im(E) ⊆ Im(L). Now, let h ∈ Im(L). Then

(Eh)(t) = h(t)− ψ(t)

(
N−1∑
i=0

|ψ(i)|2
)−1 N−1∑

i=0

ψT (k)h(k) = h(t).

Therefore, Eh = h, which tells us that Im(E) = Im(L).

We conclude our analysis of the linear component by noting some important prop-
erties of elements of our space X . Since P is a continuous projection, we know for
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x ∈ X,x = P (x) + (I − P )(x). Furthermore, if we denote XP = Im(P ) and XI−P =
Im(I − P ), we see that XP

⋂
XI−P = {0}. Thus, X = XP ⊕ XI−P . Since Im(P ) =

ker(L), we can see that L : XI−P → Im(L) is a bijection. This tells us that there exists a
bounded linear map M : Im(L)→ XI−P such that

a. LM(h) = h,∀h ∈ Im(L),

and
b. ML(x) = (I − P )(x), ∀x ∈ X.
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4.4 Main Theorem

We are now ready to tackle the main problem. With the tools we have constructed,
we can work towards establishing the necessary criteria that guarantee solutions to
(4.1)-(4.2). Recall that we have reformulated the problem using operators in the form

Lx = F (x).

From here, we take our first step towards establishing our conditions with a proposi-
tion:

Proposition 4.3. Let [x]k denote the kth component of the vector x. Lx = F (x) if

and only if there exists α ∈ R such that x = αS + MEFx, and
N−1∑
i=0

[ψ(i)]ng([αS(i) +

MEFx(i)]1) = 0.

Proof. Denote xP , xI−P by xP = P (x), and xI−P = (I − P )(x). Then, consider the
following:

Lx = F (x)⇔ E(Lx− F (x)) = 0 and (I − E)(Lx− F (x)) = 0

⇔ ELx− F (x) = 0 andLx− ELx− (I − E)F (x) = 0

⇔ Lx− EF (x) = 0 and (I − E)F (x) = 0

⇔ L(xP + xI−P )− EF (x) = 0 andF (x) ∈ Im(L)

⇔ L(xI−P )− EF (x) = 0 and
N−1∑
i=0

ψT (i)(F (x))(i) = 0

⇔MLxI−P = MEF (x) and
N−1∑
i=0

ψT (i)(F (x))(i) = 0

⇔ xI−P = MEF (x) and
N−1∑
i=0

ψT (i)(F (x))(i) = 0

⇔ x = xP +MEF (x) and
N−1∑
i=0

ψT (i)f(x(i)) = 0

⇔ x = αS +MEF (x) and
N−1∑
i=0

ψT (i)



0
0
0
...

g(x1(i))



T

= 0

for some α ∈ R. This occurs if and only if

x = αS +MEF (x) and
N−1∑
i=0

[ψ(i)]ng([αS(i) +MEFx(i)]1) = 0
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We are nearly ready to establish the final conditions that guarantee the existence of
solutions to our problem. Prior to this, we need to introduce a few important concepts.
We begin by letting lim

x→∞
g(x) = g(∞), and lim

x→−∞
g(x) = g(−∞). So, we introduce the

following sets: Let
U0 = {i ∈ {0, 1, ..., N − 1} : [S(i)]1 = 0},

U1 = {i ∈ {0, 1, ..., N − 1} : [S(i)]1 > 0},

U2 = {i ∈ {0, 1, ..., N − 1} : [S(i)]1 < 0}.

Next, define H1, and H2 by

H1 = g(∞)
∑
i∈U1

[ψ(i)]2 + g(−∞)
∑
i∈U2

[ψ(i)]2,

and
H2 = g(−∞)

∑
i∈U1

[ψ(i)]2 + g(∞)
∑
i∈U2

[ψ(i)]2.

Finally, define R+, and R− by

R+ =
N−1∑
i=0

[ψ(i)]ng([αS(i) +MEFx(i)]1),

and

R− =
N−1∑
i=0

[ψ(i)]ng([−αS(i) +MEFx(i)]1).

Armed with these definitions, we present the following corollary.

Proposition 4.4. Assume U0 = ∅, H1 6= 0, H2 6= 0.Also, assume g(∞), and g(−∞) exist.
Then, there exists α0 > 0 such that for α ≥ α0, H1 has the same sign as R+, and H2 has
the same sign as R−.

Proof. Let ε > 0.We show that for sufficiently large α, H1 has the same sign asR+. The
proof for H2, R− is similar.

Recall that each of the mapsP, S,M, andE are all linear operators on finite-dimensional
spaces, and are therefore bounded. Also, F is bounded by assumption. Thus, [S(i) +
MEFx(i)] is bounded for each i. Now, since U0 is empty, we can find α0 > 0 large
enough that

g(∞)− ε < g([αS(i) +MEFx(i)]1) < g(∞) + ε,

for i ∈ U1, and

g(−∞)− ε < g([αS(i) +MEFx(i)]1) < g(−∞) + ε
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for i ∈ U2, ∀α ≥ α0.

Now, to simplify the problem, we introduce the following spaces:

τ0 = {i ∈ U1 : [ψ(i)]n = 0},

τ1 = {i ∈ U1 : [ψ(i)]n > 0},

τ2 = {i ∈ U1 : [ψ(i)]n < 0},

V0 = {i ∈ U2 : [ψ(i)]n = 0},

V1 = {i ∈ U2 : [ψ(i)]n > 0},

V2 = {i ∈ U2 : [ψ(i)]n < 0}.

So, for α ≥ α0, we have ∑
i∈U1

[ψ(i)]ng([αS(i) +MEFx(i)]1)

=
∑
i∈τ1

[ψ(i)]ng([αS(i) +MEFx(i)]1) +
∑
i∈τ2

[ψ(i)]ng([αS(i) +MEFx(i)]1).

So we have
(g(∞)− ε)

∑
i∈τ1

[ψ(i)]n + (g(∞) + ε)
∑
i∈τ2

[ψ(i)]n

<
∑
i∈U1

[ψ(i)]ng([αS(i) +MEFx(i)]1)

< (g(∞) + ε)
∑
i∈τ1

[ψ(i)]n + (g(∞)− ε)
∑
i∈τ2

[ψ(i)]n.

Similarly, we have for α ≥ α0,∑
i∈U2

[ψ(i)]ng([αS(i) +MEFx(i)]1)

=
∑
i∈V1

[ψ(i)]ng([αS(i) +MEFx(i)]1) +
∑
i∈V2

[ψ(i)]ng([αS(i) +MEFx(i)]1).

This yields
(g(−∞)− ε)

∑
i∈V1

[ψ(i)]n + (g(−∞) + ε)
∑
i∈V2

[ψ(i)]n

<
∑
i∈U2

[ψ(i)]ng([αS(i) +MEFx(i)]1)

< (g(−∞) + ε)
∑
i∈V1

[ψ(i)]n + (g(−∞)− ε)
∑
i∈V2

[ψ(i)]n.
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We can combine all of these inequalities to obtain

(g(∞)− ε)
∑
i∈τ1

[ψ(i)]n+(g(∞)+ ε)
∑
i∈τ2

[ψ(i)]n+(g(−∞)− ε)
∑
i∈V1

[ψ(i)]n+(g(−∞)+ ε)
∑
i∈V2

[ψ(i)]n

<
∑
i∈U1

[ψ(i)]ng([αS(i) +MEFx(i)]1) +
∑
i∈U2

[ψ(i)]ng([αS(i) +MEFx(i)]1)

< (g(∞)+ε)
∑
i∈τ1

[ψ(i)]n+(g(∞)−ε)
∑
i∈τ2

[ψ(i)]n+(g(−∞)+ε)
∑
i∈V1

[ψ(i)]n+(g(−∞)−ε)
∑
i∈V2

[ψ(i)]n

After some clever factoring and rearranging, we obtain

H1 − ε

(∑
i∈τ1

[ψ(i)]n −
∑
i∈τ2

[ψ(i)]n +
∑
i∈V1

[ψ(i)]n −
∑
i∈V2

[ψ(i)]n

)
< R+,

and

R+ < H1 + ε

(∑
i∈τ1

[ψ(i)]n −
∑
i∈τ2

[ψ(i)]n +
∑
i∈V1

[ψ(i)]n −
∑
i∈V2

[ψ(i)]n

)
.

This tells us that

R+ ∈

(
H1 − ε

(
N−1∑
i=0

|[ψ(i)]n|

)
, H1 + ε

(
N−1∑
i=0

|[ψ(i)]n|

))
.

Now, since H1 6= 0, we know there exists some i ∈ {0, 1, ..., N −1} such that [ψ(i)]n 6= 0. So, our
interval described above is non-empty. Since ε was chosen arbitrarily, then there is an α0 > 0
such that H1 and R+ have the same sign for all α ≥ α0. A similar argument demonstrates the
result for H2 and R−

We now state our main theorem, and as before, use two different arguments to
prove the result.

Theorem 4.1. Assume the kernel of (B+DAN ) is one-dimensional, and that ker(BT )
⋂

ker(DT ) =
{0}. If
a.) g is a continuous, bounded function;
b.) g(∞) and g(−∞) exist;
c.) U0 = ∅;
d.) and H1H2 < 0,
then there is at least one solution to (4.1)-(4.2).

Proof (Method 1). Without loss of generality, suppose H1 > H2. As from the last
proposition, let α0 be sufficiently large that for α > α0, H1 and R+ have the same sign,
and H2, R− have the same sign. Additionally, let α0 > mN‖ψ‖, where m = sup

t∈R
|g(t)|.

We seek to utilize the Brouwer fixed point theorem to demonstrate our result. To that
end, we introduce the following maps:
Let G1 : X × R→ X be defined by

G1(x, α) = αS +MEFx.
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Let G2 : X × R→ R be defined by

G2(x, α) = α−
N−1∑
i=0

[ψ(i)]ng([αS(i) +MEFx(i)]1),

and let G : X × R→ X × R be defined by

G(x, α) = (G1(x, α), G2(x, α)).

Our goal is to construct a nonempty, closed, convex setB ⊆ X×R such thatG(B) ⊆ B.
To that end, we construct the following set:

B = {(x, α) : ‖x‖ ≤ δ‖S‖+m‖ME‖, and |α| ≤ δ,where δ = α0 +mN‖ψ‖}.

Now, we know H1H2 < 0, and H1 > H2. So, for α ≥ α0 we know

R+ =
N−1∑
i=0

[ψ(i)]ng([αS(i) +MEFx(i)]1) > 0,

and

R− =
N−1∑
i=0

[ψ(i)]ng([−αS(i) +MEFx(i)]1) < 0.

So, if α0 ≤ α ≤ δ,

G2(x, α) = α−
N−1∑
i=0

[ψ(i)]ng([αS(i) +MEFx(i)]1) ≤ α,

and

G2(x,−α) = −α−
N−1∑
i=0

[ψ(i)]ng([−αS(i) +MEFx(i)]1) ≥ −α.

Now, we know

|
N−1∑
i=0

[ψ(i)]ng([αS(i) +MEFx(i)]1)| ≤ mN‖ψ‖.

So, since α ≥ α0 > mN‖ψ‖,

G2(x, α) = α−
N−1∑
i=0

[ψ(i)]ng([αS(i) +MEFx(i)]1) ≥ 0.

Similarly, G2(x,−α) ≤ 0. So, for any x, and any α ∈ [α0, δ], (or − α ∈ [−δ,−α0])
G2(x, α) ∈ [−δ, δ].
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Now, consider α ∈ [0, α0). So we have

|G2(x, α)| = |α−
N−1∑
i=0

[ψ(i)]ng([αS(i) +MEFx(i)]1)|

≤ |α|+mN‖ψ‖

< α0 +mN‖ψ‖

= δ.

Similarly, |G2(x,−α)| < δ. Thus, for any x, and any α ∈ [0, α0), (or − α ∈ (−α0, 0]),
G2(x, α) ∈ [−δ, δ]. So, for any (x, α) in B, G2(x, α) is in [−δ, δ].
Now, let (x, α) ∈ B. We have

‖G1(x, α)‖ = ‖αS +MEFx‖ ≤ δ‖S‖+m‖ME‖.

So, for (x, α) ∈ B, G1(x, α) ∈ B.
Therefore, for any (x, α) ∈ B, G(x, α) ∈ B. Now, since G is continuous, by the Brouwer
fixed point theorem, G has at least one fixed point in B. That is, if (x̂, α̂) is a fixed point
in B, G(x̂, α̂) = (x̂, α̂). This tells us that

x̂ = α̂S +MEFx̂,

and
N−1∑
i=0

[ψ(i)]ng([αS(i) +MEFx(i)]1) = 0.

So, by proposition 4.3, we know Lx̂ = F (x̂).
Thus, (4.1)-(4.2) has at least one solution.

Proof (Method 2). In this proof, we will utilize a homotopy argument to demonstrate
our main result. We begin with the same assumptions as those in method 1. And, as
before, we assume H1 > H2. We utilize a slightly modified set

B = {(x, α) : ‖x‖ ≤ δ‖S‖+m‖ME‖, and|α| ≤ δ,where δ = α0 +mN‖ψ‖},

and modify our function G in the following way:
Let G1 : X × R→ X be defined by

G1(x, α) = x− αS +MEFx.

Let G2 : X × R→ R be defined by

G2(x, α) =
N−1∑
i=0

[ψ(i)]ng([αS(i) +MEFx(i)]1),
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and let G : X × R→ X × R be defined by

G(x, α) = (G1(x, α), G2(x, α)).

For a homotopy argument we need to find an (x, α) in B such that G(x, α) = (0, 0).
This would then show that

αS +MEFx = x,

and
N−1∑
i=0

[ψ(i)]ng([αS(i) +MEFx(i)]1 = 0).

From here, we define φ : B → B by

φ(x, α) = (x, α).

We note that the degree of this map is 1.
We now work towards creating our homotopy map. We first define TX : B×R×[0, 1]→
X by

TX(x, α, λ) = x− λ[αS +MEFx],

then define TR : B × R× [0, 1]→ R by

TR(x, α, λ) = (1− λ)α+ λ
N−1∑
i=0

[ψ(i)]ng([αS(i) +MEFx(i)]1),

and let T : B × R× [0, 1]→ B × R by

T (x, α, λ) = (T1(x, α, λ), T2(x, α, λ)).

We note that T (x, α, 0) = (x, α) = φ(x, α), and that T (x, α, 1) = G(x, α). As with previ-
ous homotopy arguments throughout this article, we introduce the following notation:
Let Tλ(x, α) = T (x, α, λ).

We seek to show that
d[φ,B,~0] = d[G,B,~0].

To accomplish this, we need to demonstrate that T (x, α, λ) 6= (0, 0) for all (x, α) in ∂B,
and for all λ in [0, 1]. As before, we examine two cases:
Case 1: λ = 1, (x, α) ∈ ∂B
If λ = 1, we know T (x, α, 1) = G(x, α). If T (x, α, 1) = (0, 0), then G(x, α) = (0, 0), and
we will have established the existence of our solution.
Case 2: λ ∈ [0, 1), (x, α) ∈ ∂B.
Now, we know that since (x, α) ∈ ∂B, ‖x‖ = δ‖S‖ + m‖ME‖, and |α| = δ = α0 +
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mN‖ψ‖. Additionally, we recall that ‖Fx‖ = sup
t∈{0,1,...,N−1}

|f(x(t))| ≤ m. So, consider

λ‖αS +MEFx‖ < ‖αS +MEFx‖

≤ ‖αS‖+ ‖MEFx‖

≤ δ‖S‖+m‖ME‖

= ‖x‖.

From here we see that

‖TX(x, α, λ)‖ = ‖x− λ[αS +MEFx]‖

≥ ‖x‖ − λ‖αS +MEFx‖

> 0.

Also, just as in method 1 of our proof, we know there exists an α0 > 0 such that for
α ≥ α0, R+ > 0, and R− < 0. We can then see that for λ ∈ [0, 1),

TR(x, δ, λ) = (1− λ)δ + λ
N−1∑
i=0

[ψ(i)]ng([δS(i) +MEFx(i)]1) > 0,

and

TR(x,−δ, λ) = (1− λ)(−δ) + λ
N−1∑
i=0

[ψ(i)]ng([−δS(i) +MEFx(i)]1) < 0.

We note that in the case where H1 < H2, we would need a slightly modified homo-
topy. In this instance, we would modify TR by letting

TR(x, α, λ) = (1− λ)α− λ
N−1∑
i=0

[ψ(i)]ng([αS(i) +MEFx(i)]1).

With this modification, the proof will be analogous to that found above.
Thus, Tλ(x, α) = T (x, α, λ) 6= (0, 0) for all (x, α) in ∂B, and for all λ in [0, 1]. This tells
us that

d[G,B,~0] = d[T1, B,~0] = d[T0, B,~0] = d[φ,B,~0].

Therefore, there exists an (x, α) ∈ B such that G(x, α) = (0, 0). Hence, we have
Lx = F (x), and, as in method 1 of the proof, we achieve the desired result.
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5 Example

We now introduce a concrete example to illustrate the utility of the tools we have con-
structed. Consider

y(t+ 2) + 2y(t+ 1) + y(t) = g(y(t)), (5.1)

for t ∈ {0, 1, ...N − 1}, subject to

y(0) + y(1) = 0, (5.2)

and

y(N) + y(N + 1) = 0, (5.3)

and where

g(x) =

{
2
π arctan(x) + 1 x ≥ 0
− 4
π arctan(x) + 1 x < 0.

For this problem, we assume that N is some odd integer greater than six.

First, we convert this scalar problem into a two-point, discrete system of the form

x(t+ 1) = Ax(t) + f(x(t)), t ∈ {0, 1, ...N − 1} (5.4)

subject to
Bx(0) +Dx(N) = 0, (5.5)

by letting

A =

[
0 1
−1 −2

]
,

and letting

B =

[
1 1
0 0

]
, and D =

[
0 0
−1 −1

]
.

Additionally, we have

x(t) =

[
x1(t)
x2(t)

]
=

[
y(t)

y(t+ 1)

]
,

and

f

([
x1

x2

])
=

[
0

g(x1)

]
.

With this reformulation, we begin checking all of the conditions that were discussed in
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section 4. First we consider

ker(BT ) = ker

([
1 0
1 0

])
= span

{[
0
1

]}
,

and

ker(DT ) = ker

([
0 −1
0 −1

])
= span

{[
1
0

]}
.

So, clearly kerBT
⋂

kerDT = {0}.
Next, we use Maple to see that

AN =

[
(−1)N − (−1)NN (−1)N+1N

(−1)NN (−1)N + (−1)NN

]
.

From here, we find that

(B +DAN ) =

[
1 1

(−1)N+1 (−1)N+1

]
,

so

ker
{

(B +DAN )
}

= span

{[
−1
1

]}
.

This also tells us that the kernel of (B +DAN ) is one-dimensional.
Next, we have

S(t) = At

[
−1
1

]
=

[
(−1)t+1

(−1)t

]
,

for all t ∈ {0, 1, ..., N}. This allows us to build the following important sets:

U0 = {i : [S(i)]1 = 0} = ∅;

U1 = {i : [S(i)]1 > 0} = {1, 3, ..., N − 2};

U2 = {i : [S(i)]1 < 0} = {0, 2, ..., N − 1}.

Next, we consider

(B +DAN )T =

[
1 (−1)N+1

1 (−1)N+1

]
,

which means

ker{(B +DAN )T } = span

{[
(−1)N

1

]}
.
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From here, we define

ψ(t) = (DAN−t−1)T
[

(−1)N

1

]
=

[
(−1)N−t

(−1)N−t

]
,

for all t ∈ {0, 1, ..., N − 1}. Now, we know

lim
x→∞

g(x) = g(∞) = 2,

and
lim

x→−∞
g(x) = g(−∞) = 3.

From here we use ψ and these limits to check that H1H2 < 0. So,

∑
i∈U1

[ψ(i)]2 =
N−2∑
i∈U1
i=1

(−1)N−i

= (−1)N−1 + (−1)N−3 + · · ·+ (−1)2

=
N − 1

2
.

Likewise,

∑
i∈U2

[ψ(i)]2 =
N−1∑
i∈U2
i=0

(−1)N−i

= (−1)N + (−1)N−2 + · · ·+ (−1)1

= −N + 1
2

.

So we have

H1 = g(∞)
∑
i∈U1

[ψ(i)]2 + g(−∞)
∑
i∈U2

[ψ(i)]2

= 2
(
N − 1

2

)
− 3

(
N + 1

2

)
=

2N − 2− 3N − 3
2

=
−N − 5

2
< 0,when N ≥ 3.
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Similarly,

H2 = g(−∞)
∑
i∈U1

[ψ(i)]2 + g(∞)
∑
i∈U2

[ψ(i)]2

= 3
(
N − 1

2

)
− 2

(
N + 1

2

)
=

3N − 3− 2N − 2
2

=
N − 5

2
> 0,when N ≥ 7.

Thus, H1H2 < 0. Therefore, we have met all of the necessary criteria to guarantee
the existence of a solution to (5.1)-(5.3).
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