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ABSTRACT

Continuity is one of the most important concepts in Mathematics. A. Cauchy was
one of the first to define the continuity of a function. Here is Cauchy’s condition of
the continuity of a function:

“ . . . We also say that the function f(x) is a continuous function of x in the
neighborhood of a particular value assigned to the variable x as long as it (the
function) is continuous between those two limits of x, no matter how close
together, which enclose the value in question . . . ”(see [31]).

This concept was refined by K. Weierstrass, which is the definition of continuity
that we use today. For a historical account on how the notation of continuity has
evolved see [31].

The study of continuity usually begins in calculus, where we study continuous
functions. Questions on how a set of points of continuity of a given real-valued func-
tion of real variable look are very important. I will discuss these sets for real-valued
functions of real variable in chapter 1. In chapter 2, I will continue to look at real-
valued functions and examine their points of continuity. This time, the functions will
be defined on metric spaces. Furthermore, I will examine the set of points of conti-
nuity of real-valued functions defined on topological spaces in chapter 4. In chapter
3, important topological concepts are introduced that will be used from chapters 4
through 6.

The analysis of the existing proofs on the Volterra theorem, which I will begin to
discuss in chapter 1, led to the class of spaces known as Volterra spaces. In chapter 5,
I will explain the concept of a Volterra space and explain various properties of these
spaces. Finally, in chapter 6, I will list original and recent research results from vari-
ous articles to illustrate the progress on Volterra spaces since their introduction in [15].

Throughout my thesis, I will illustrate various concepts with the help of diagrams
and examples, some of I created. In addition, I will further explain topics from
classical sources in detail to make the material easy to follow and more understandable
to the reader.
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Chapter 1

Continuity

Continuity plays an important role in the study of topology and analysis. A. Cauchy
was the first to give the modern definition and to focus attention on the subject.
This concept will be used throughout my thesis since it is closely related to Volterra
spaces. I will begin by examining continuous functions from R to R.

1.1 Continuity on the Real Line

Definition 1.1.1. Given a function f : R→ R, f is continuous at x0 provided that
for every ε > 0, there is a δ > 0 for all x ∈ R such that

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

We say that f is continuous if it is continuous at every point in its domain.

The above condition is know as Cauchy’s condition or the “ε− δ” condition.

Let us now look at the sequential or Heine’s condition of continuity. If we are
given a function f : R → R, then f is continuous at x0 provided that for every
{xn} ⊂ R,

lim
n→∞

xn = x0 ⇒ lim
n→∞

f(xn) = f(x0).

We will now show that f satisfies the Cauchy condition at a point x0 if and only
if it satisfies the Heine condition at this point.

Proof. (Cauchy ⇒ Heine)

Suppose f satisfies the Cauchy condition and lim
n→∞

xn = x0. Then, there is a k such

that if n > k, then
|xn − x0| < δ.
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Hence, by the Cauchy condition

|f(xn)− f(x0)| < ε.

This in turn implies lim
n→∞

f(xn) = f(x0).

(Heine ⇒ Cauchy)

In order to show that Heine implies Cauchy we will prove by contradiction. Suppose
to the contrary that Cauchy’s condition does not hold, that is, there exists an ε > 0
such that for every δ > 0, there exists an x ∈ R where

|x− x0| < δ and |f(x)− f(x0)| ≥ ε.

In particular, assume δ = 1
n
. By the Axiom of Choice, we can select a sequence

x1, x2, x3, . . . of points, such that:

|xn − x0| <
1

n
and |f(xn)− f(x0)| ≥ ε.

However, |xn−x0| < 1
n

implies lim
n→∞

xn = x0. Hence, by Heine’s condition of continuity

at x0, we get lim
n→∞

f(xn) = f(x0). The latter equality contradicts the inequality:

|f(xn)− f(x0)| ≥ ε.

Hence, the assumption that Cauchy’s condition does not hold here led us to a con-
tradiction. Thus, Heine implies Cauchy. �

The following examples illustrate how a function is continuous or not continuous
at a point using Cauchy’s condition and Heine’s condition.

Example 1.1.1. Consider the function f : R→ R defined by

f(x) = x2.

We will show that f(x) is continuous at x0 = 1 using the Cauchy condition.

Proof. Let ε > 0. Notice that

|f(x)− f(1)| = |x2 − 1| = |x+ 1||x− 1|.

If we insist that |x − 1| < 1, then 0 < x < 2 ⇒ |x + 1| < 3. Thus, if we choose
δ = min{ ε

3
, 1}, then for all x such that |x− 1| < δ,

|f(x)− f(1)| = |x2 − 1|,
= |x+ 1||x− 1|,
< 3|x− 1|,
≤ 3δ,

= ε.

Therefore, f(x) is continuous at x0 = 1. �
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To use the Heine condition to show that f(x) is continuous at x0 = 1 we have to show
that for every sequence {xn} → 1, lim

n→∞
f(xn) = f(1) = 1.

Proof. Let {xn} be a sequence and suppose that lim
n→∞

xn = 1.

Notice that

lim
n→∞

f(xn) = lim
n→∞

x2
n,

= lim
n→∞

xn · lim
n→∞

xn,

= 1 · 1,
= 12,

= f(1).

Therefore, f(x) is continuous at x0 = 1. �

Example 1.1.2. Consider the function f : R→ R defined by

f(x) =

{
x if x ≤ 1

x+ 1 if x > 1.

We will first show that f(x) is discontinuous at x0 = 1 using Cauchy’s condition.

Proof. By negating the definition of the Cauchy condition of continuity, f(x) is not
continuous at x0 if there exists an ε > 0 such that for every δ > 0, there exists an
x ∈ R such that

|x− x0| < δ and |f(x)− f(x0)| ≥ ε.

Thus, f(x) is discontinuous at x0 = 1 if there exists an ε > 0 such that for every
δ > 0, there exists an x ∈ R such that

|x− 1| < δ and |f(x)− 1| ≥ ε.

3



Now, let ε = 1
2

and x be any point from (1, 1 + δ) for δ > 0. Then, we have
|x− 1| < |(1 + δ)− 1| = δ, and

|f(x)− 1| > |2− 1| = |1| ≥ 1

2
= ε.

Therefore, f(x) is discontinuous at x0 = 1. �

Now, we will show that f(x) is discontinuous at x0 = 1 by using the Heine condi-
tion. By negating Heine’s condition, f(x) is discontinuous at x0 if there is a sequence
{xn} ⊂ R such that lim

n→∞
xn = x0 and it is not true that lim

n→∞
f(xn) = f(x0).

Proof. Let x0 = 1. Notice that there exists a sequence {xn} = {1 + 1
n
}∞n=1 such that

lim
n→∞

xn = x0 = 1.

However, it is not true that lim
n→∞

f(xn) = f(x0). Clearly,

lim
n→∞

f(xn) = lim
n→∞

[(
1 +

1

n

)
+ 1

]
,

= lim
n→∞

(
2 +

1

n

)
,

= 2,

6= 1,

= f(1).

Therefore, f(x) is discontinuous at x0 = 1. �

1.2 Open and Closed Subsets on the Real Line

To further explore the investigations of the continuity of functions on the real line,
we can look at what is called the oscillation of a function. The following definitions
will play an important role in the next section.

Definition 1.2.1. The set A ⊂ R is dense in R if for each open interval (a, b) ⊂ R,
the set A ∩ (a, b) 6= ∅.

Example 1.2.1. Clearly, Q, the set of rational numbers, is dense in R. Furthermore,
R \Q, the set of irrational numbers, is also dense in R.
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Definition 1.2.2. The set A ⊂ R is co-dense in R if the complement of A is dense
in R.

Definition 1.2.3. Let E ⊂ R. Any point x that belongs to E is said to be an
interior point of E provided that there exists a δ > 0 such that

(x− δ, x+ δ) ⊂ E.

Definition 1.2.4. Let E ⊂ R. Then E is said to be open if every point of E is also
an interior point of E.

Definition 1.2.5. Let E ⊂ R. Any point x (not necessarily in E) is said to be an
accumulation point of E provided that for every δ > 0, the intersection

(x− δ, x+ δ) ∩ E

contains infinitely many points.

Definition 1.2.6. Let E ⊂ R. Then E is said to be closed provided that every
accumulation point of E belongs to the set E.

Definition 1.2.7. Let E ⊂ R. A point x ∈ E is said to be an isolated point of E
provided that for some interval (x− δ, x+ δ) with δ > 0,

(x− δ, x+ δ) ∩ E = {x}.

Definition 1.2.8. The subset A ⊂ R is said to be a Gδ-set if it can be expressed as
a countable intersection of open sets, that is, if there exist open sets G1, G2, . . . such
that

A =
∞⋂
k=1

Gk.

Definition 1.2.9. The subset A ⊂ R is said to be an Fσ-set if it can be expressed as
a countable union of closed sets, that is, if there exist closed sets F1, F2, . . . such that

A =
∞⋃
k=1

Fk.

Using DeMorgan’s laws, it is easy to see that the complement of any Gδ-set is an
Fσ-set and vice versa.
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1.3 The Oscillation of a Function

Having the required terminology (see section 1.2), we are now ready to begin looking
at the oscillation of a function.

Definition 1.3.1. ([28], p. 31) Let f be a real-valued function on R. For any interval
I, the quantity

ω(I) = sup
x∈I

f(x)− inf
x∈I

f(x)

is called the oscillation of f on I.

We have the following diagram to illustrate the oscillation of f on I.

Example 1.3.1. ([34], p. 1) Consider

f(x) =

{
x sin( 1

x
) if x 6= 0

0 if x = 0,

and assume x0 = 0.

6



Notice that if you shrink δ, the oscillation ω((−δ, δ)) decreases.

Definition 1.3.2. ([28], p. 31) Given a function f , let x belong to the domain of f .
Then, the function ω defined by

ω(x) = lim
δ→0

ω((x− δ, x+ δ)),

is called the oscillation of f at x (see Definition 1.3.1).

Evidently, ω(x0) = 0 if and only if f is continuous at x0. If ω(x0) 6= 0, then ω(x0)
is a measure of the size of discontinuity of f at x0.

Example 1.3.2. Consider the graph of the following function of f(x).

Notice that ω(x0) = 0 for all x0 6= 1. However, since the function has a jump
discontinuity at 1, ω(1) 6= 0. This is true because for every open interval I around 1,
sup
x∈I

f(x) = 1 and inf
x∈I

f(x) = 0, which implies that ω(1) = 1− 0 = 1.

7



Example 1.3.3. ([34], p. 2) Consider

g(x) =

{
sin( 1

x
) if x > 0

0 if x ≤ 0.

Notice that for any x0 > 0, ω(x0) = 0. However, at x0 = 0, the oscillation of g(x)
is 2. This is true because for every open interval I around 0, sup

x∈I
g(x) = 1 and

inf
x∈I

g(x) = −1, which implies that ω(0) = 1− (−1) = 2. Hence, g(x) is not continuous

at x0 = 0.

While studying the properties of oscillations, we will be working with the extended
set of reals, R, i.e., including −∞ and +∞. In fact, we have the following example.

Example 1.3.4. ([34], p. 3) Consider the function

h(x) =
1

x
sin

(
1

x

)
.

8



At x = 0, ω(0) =∞. Notice that h(x) is undefined at zero.

If ω(x0) < ε, then ω(x) < ε for all x in a neighborhood of x0. Hence, the set

{x : ω(x) < ε}

is open. Notice that the set D(f) of all points at which f is discontinuous can be
represented in the form

D(f) =
∞⋃
n=1

{
x : ω(x) ≥ 1

n

}
.

Thus, D(f) is an Fσ-set. This leads us to the our next theorem.

Theorem 1.3.1. ([28], p. 31) If f is a real-valued function on R, then the set of
points of discontinuity is an Fσ-set.

Actually, we can obtain the converse of Theorem 1.3.1. This will be proved in
Section 2.3.

Given a function f , the set of points of continuity will be denoted by C(f). Since
C(f) is the complement of D(f), we obtain the following corollary by using DeMor-
gan’s laws.

Corollary 1.3.1. If f is a real-valued function on R, then the set of continuity points
is a Gδ-set.

This corollary can be strengthened to the following: A is a Gδ-subset of R if and
only if there exists a real-valued function f that has A as its set of points of continuity,
i.e., there exists a function f : R→ R such that A = C(f) (see section 2.3).

Even though the set of all continuity points is a Gδ-set, it can also be empty. Keep
in mind that the empty set ∅ is a Gδ-set: ∅ ∩∅ ∩ . . .. We will now give an example
of when C(f) is empty.

Example 1.3.5. Let A and B be any two dense, co-dense subsets of R. Then, define
f : R→ R by

f(x) = χA(x) =

{
1 if x ∈ A
0 if x 6∈ A.

This function is called the characteristic function of A. We claim the set C(f) is
empty. We will now prove this claim.

9



Proof. Let x0 be any real number. Without loss of generality, assume x0 ∈ A. Then
f(x0) = 1. However, since the set B is dense in R, there is a sequence of points
b1, b2, . . . in B that converges to x0.

Hence, lim
n→∞

f(bn) = 0 6= 1 = f(x0). Thus, f(x) does not satisfy the Heine condition

of continuity at x0. Similar arguments can be provided for a point x0 ∈ B.

Therefore, C(f) is empty. �

Remark 1.3.1. If A = Q, the function defined in Example 1.3.5 will be called the
“salt and pepper” function.

1.4 Volterra Theorem for Real-Valued Functions

of a Real Variable

First Approach

Let A ⊂ R. We are going to investigate if there exist two functions f, g : R→ R

such that

A = C(f) = D(g) and R \ A = D(f) = C(g). (1.1)

Example 1.4.1. ([36], p. 1) If A is the empty set, then (1.1) holds. Let g(x) be
any continuous function on R and let f(x) be the “salt and pepper function”, i.e.,

f(x) =

{
1 if x ∈ Q
0 if x ∈ R \Q.

10



Example 1.4.2. ([36], p. 1) If A is a singleton, (1.1) holds. Let g(x) be a function
with a jump discontinuity at x = 0 and

f(x) =

{
x if x ∈ Q
−x if x ∈ R \Q.

Example 1.4.3. ([36], p. 2) If A is a countably infinite discrete set, (1.1) holds.
Let g(x) = bxc and

f(x) =

{
sin(πx) if sin(πx) ∈ Q
− sin(πx) if − sin(πx) ∈ R \Q.

Furthermore, (1.1) holds if A is dense and R\A is a finite set. See Example 1.4.2.

But what happens if A and R \ A are dense?

Can we find a function f : R → R such that C(f) is the set of irrationals and
D(f) is the set of rationals? We actually have such a function. It is known as the
“small” Riemann function. It is also known as the Dirichlet function in [6] and the
Thomae function in [4]. The function is defined on [0, 1] by:

11



f(x) =

{
0 if x ∈ R \Q
1
q

if x = p
q
, where gcd(p, q) = 1, q > 0.

We will prove that f is continuous at every irrational number and discontinuous
at every rational number. We will assume that x ∈ (0, 1).

Proof. First, observe that the number of points x in (0, 1) for which f(x) > 1
q

is

finite. We will show that for every x0 ∈ (0, 1) we have

lim
x→x0

f(x) = 0.

Let ε > 0. If q is a rational number such that 1
q
< ε, then there is a δ > 0 such that

there are no points x for which f(x) ≥ 1
q
, where x ∈ (x0 − δ, x0 + δ), except possibly

the point x0 itself.

Now,
f(x) < 1

q
< ε

for all x in (x0 − δ, x0 + δ) \ {x0}. This shows that

lim
x→x0

f(x) = 0.

�

Remark 1.4.1. ([4], p. 531) It can be shown that the “small” Riemann function is
not differentiable on the irrationals.

12



We will now illustrate how this was shown in [4]. This derives from the following
fact: for all a ∈ R \ Q, and for each n ∈ N, there exists a bn ∈ Z such that
|bn/n− a| ≤ 1

n
. By definition, f( bn

n
) ≥ 1

n
. Thus, it follows that

|f(bn/n)− f(a)|
|bn/n− a|

=
f(bn/n)

|bn/n− a|
≥ 1 for all n.

Since bn
n
→ a as n → ∞, this rational approximation of a yields that the derivative

cannot be zero. However, the irrational approximation must be zero.

This proof relies on the fact that f sends m
n

to 1
n
, making the approximation of

bn
n

to a sufficiently close. If, for example, m
n

is sent to 1
n2 , the approximation of bn

n
to

a is no longer close enough to ensure that the function is not differentiable at a.

Second Approach

A curious student might ask the following question:

“Since there is a function f : R → R which is continuous on the irrationals and
discontinuous on the rationals, is there a function f : R→ R which is continuous on
the rationals and discontinuous on the irrationals?”

Actually, the answer is no. This comes from a result by Vito Volterra in 1881. He
showed that there are no pointwise discontinuous functions f : R→ R and g : R→ R

such that C(f) = D(g) and D(f) = C(g). Volterra was not even 20 years old when
he proved this result.

We need the following definition and property in order to prove Volterra’s result.

Definition 1.4.1. ([25], p. 105) A function is pointwise discontinuous if its set of
points of discontinuity is of first category (see section 3.6).

It will be shown in Theorem 4.1.1(2) and in Theorem 4.2.1 that every real-
valued pointwise discontinuous function of real variable has a dense set C(f) for its
continuity points.

Proposition 1.4.1. (Nested Interval Property of R)
If

[a1, b1] ⊃ [a2, b2] ⊃ [a3, b3] ⊃ · · ·
is a sequence of nested closed intervals in R such that diam([an, bn])→ 0 as n→∞,
then there is a unique point p such that

∞⋂
n=1

[an, bn] = {p}.

13



We will now state and prove Volterra’s theorem. The following proof is due to W.
Dunham in [10].

Theorem 1.4.1. ([10], p. 235) There do not exist pointwise discontinuous functions
f and g defined on an interval (a, b) for which the continuity points of one are the
discontinuity points of the other, and vice versa.

Proof. Suppose there exist two such functions f and g. Thus, C(f) and C(g) parti-
tion (a, b) into disjoint subsets. Let x0 be any point in C(f) and let ε = 1.

By the definition of continuity, there exists a δ > 0 such that (x0 − δ, x0 + δ) ⊂ (a, b)
and |f(x)− f(x0)| < 1

2
for all x ∈ (x0 − δ, x0 + δ).

Now, we can choose a1 < b1 such that [a1, b1] is a closed subinterval of (x0− δ, x0 + δ).
Then, for any x and y in [a1, b1],

|f(x)− f(y)| ≤ |f(x)− f(x0)|+ |f(x0)− f(y)|
< 1

2
+ 1

2

= ε.

Pointwise discontinuity now yields a continuity point of g in the open interval (a1, b1),
and by the preceding argument, there exists a

′
1 < b

′
1 with [a

′
1, b

′
1] ⊂ (a1, b1) and with

|g(x)− g(y)| < 1 for all x and y in [a
′

1, b
′

1].

To summarize, then, for all x and y in [a
′
1, b

′
1] ⊂ (a, b),

|f(x)− f(y)| < 1 and |g(x)− g(y)| < 1,

as well.

Now, repeat this argument by starting with the open interval (a
′
1, b

′
1) and the oscilla-

tion ε = 1
2
, then ε = 1

4
, and, generally, ε = 1

2n
. This generates a strictly descending

sequence of closed intervals

(a, b) ⊃ [a
′

1, b
′

1] ⊃ (a
′

1, b
′

1) ⊃ · · · ⊃ [a
′

n, b
′

n] ⊃ (a
′

n, b
′

n) ⊃ · · ·

such that for all x and y in [a
′
n, b

′
n], we have

|f(x)− f(y)| < 1
2n

and |g(x)− g(y)| < 1
2n
.

By pointwise discontinuity, there are infinitely many points of continuity in every open
subinterval. However, by the Nested Interval Property, there is exactly one point p
contained in all the closed subintervals above. Thus, both f and g are continuous at p.

This implies that, C(f) ∩ C(g) 6= ∅, which is a contradiction.

Therefore, No such functions f and g exist. �
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1.5 Around J. Fabrykowski’s Problem

In [11], J. Fabrykowski formulated the problem of finding a sequence of functions
continuous on [0, 1] whose pointwise limit is finite on the rationals and infinite on
the irrationals. To analyze a proposed solution to the problem, he required several
facts from continued fractions. However, it turned out that such a function is closely
related to the “small” Riemann function.

The following solution is due to Gelbaum and Olmstead in [16]. They give a
sequence of continuous functions converging pointwise to the “small” Riemann func-
tion;

f(x) =

{
0 if x ∈ R \Q
1
q

if x = p
q
, where gcd(p, q) = 1, q > 0.

Taking reciprocals yields a sequence of continuous functions solving Fabrykowski’s
problem. However, the construction in [16] makes no use of continued fractions or
other number-theoretical devices.

For each arbitrary positive integer n, define fn(x) as follows: According to each

point

(
p

q
,
1

q

)
, where 1 ≤ q < n, 0 ≤ p ≤ q, in each interval of the form

(
p

q
− 1

2n2
,
p

q

)
define

fn(x) = max

(
1

n
,
1

q
+ 2n2

(
x− p

q

))
;

in each interval of the form

(
p

q
,
p

q
+

1

2n2

)
define

fn(x) = max

(
1

n
,
1

q
− 2n2

(
x− p

q

))
;

and at every point x of [0, 1] at which fn(x) has not already been defined, let
fn(x) = 1

n
.

Note, the above fn(x) can be combined. For each x such that |x− p
q
| < 1

2n2 , we can

let fn(x) = max( 1
n
, 1
q
− 2n2|x− p

q
|).
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The graph of fn(x) consists of an infinite polygonal arc made up of segments that
either lie along the horizontal line y = 1

n
or rise with a slope of ±2n2 to the isolated

points of the graph of f .

As n increases, these “spikes” sharpen and the base approaches the x-axis. Thus,
for each x ∈ R and n = 1, 2, . . . ,

fn(x) ≥ fn+1(x), and lim
n→∞

fn(x) = f(x).

Each function fn is everywhere continuous, but the limit function f is discontin-
uous on Q.
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Remark 1.5.1. A function f is said to be of the first class of Baire if it can be
represented as the limit of an everywhere convergent sequence of continuous functions
(see [28], p. 32). This construction shows that the “small” Riemann function is of
first class of Baire.

Remark 1.5.2. Another construction of a sequence of continuous functions that is
a solution to Fabrykowski’s problem is due to G. Myerson in [27].

Myerson’s construction is similar, and arguably even a bit simpler, to the above
construction. The construction goes as follows: Enumerate the rationals in (0, 1) as
r1, r2, . . ., and let fn be the piecewise linear function whose graph passes through the
points (0, 0), (r1, 1), . . . , (rn, n), and (1, 0).

If x is rational, then x is 0, 1 or rk for some k, and lim
n→∞

fn(x) is 0, 0 or k, respec-

tively. In any event, lim
n→∞

fn(x) is finite.

If x is irrational, then for n sufficiently large, the set {r1, r2, . . . , rn} contains ele-
ments less than x and elements greater than x since the rationals are dense in [0, 1].

So, let rl(n) be the greatest of the elements less than x and rg(n) be the least of
the elements greater than x. Then f(x) > min{l(n), g(n)}. Now, l(n) and g(n) both
go to infinity as n goes to infinity since the rationals are dense in [0, 1]. Therefore
lim
n→∞

fn(x) =∞.

17



Chapter 2

Extensions of the Volterra
Theorem

Volterra proved that if two functions from R to R are continuous on dense subsets
of R, then the set of common points of continuity is dense in R. D. Gauld and V.
Rădulescu gave a generalization of this result in [12] and [38], respectively. More
precisely, Rădulescu proved that if (X, d1) is a complete metric space and (Y, d2) is
a metric space and f, g : X → Y are continuous on dense subsets of X, then the set
of their common points of continuity is dense in X. Gauld provided a routine proof
for real-valued functions of real variables, but he indicated that it can be generalized
to compact metric spaces for the domain space. Furthermore, both proved that the
intersection of the two dense sets of points of continuity is uncountable.

I will begin by introducing metric spaces, complete metric spaces and compact
metric spaces. Then, I will provide proofs of Gauld and Rădulescu’s generalizations.

2.1 Introduction to Metric Spaces

Definition 2.1.1. Let X be a nonempty set. A function d : X ×X → R is called a
metric, or a distance function on X if for any x, y, z ∈ X,

(M1) d(x, y) = 0⇔ x = y,

(M2) d(x, y) = d(y, x),

(M3) d(x, y) ≤ d(x, z) + d(z, y).

If d is a metric on a set X, then the ordered pair (X, d) is called a metric space.
Furthermore, if x, y ∈ X, then d(x, y) is the distance from x to y.

(M3) is called the triangle inequality due to the fact that the length of one side
of a triangle is less than or equal to the sum of the lengths of the other two sides.
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Example 2.1.1. Let X be a nonempty set and define d : X×X → R, where x, y ∈ X,
as follows:

D(x, y) =

{
0 if x = y

1 if x 6= y.

Then, D is a metric on X, and is called the discrete metric.

Example 2.1.2. The function d : R×R→ R defined by d(x, y) = |x− y| is a metric
and is called the usual metric on R. Furthermore, the function d : R2 × R2 → R

defined by
d(x, y) =

√
(x1 − y1)2 + (x2 − y2)2,

where x = (x1, x2) and y = (y1, y2), is a metric and is called the usual metric on R2.

Example 2.1.3. Let n ∈ N and define a function E : Rn → R by

E(x, y) =

√√√√ n∑
i=1

(xi − yi)2,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), is a metric on Rn. It is called the
Euclidean metric on Rn.

2.2 Open and Closed Subsets in a Metric Space

We shall first consider open balls in order to define open and closed sets.

Definition 2.2.1. Let (X, d) be a metric space, let xo be an arbitrary point of X
and let r be an arbitrary nonnegative number. An open ball centered at xo having
radius r is the following set

B(x0, r) = {x ∈ X|d(x, x0) < r}.

Definition 2.2.2. Let (X, d) be a metric space, let xo be an arbitrary point of X
and let r be an arbitrary nonnegative number. The closed ball centered at xo having
radius r is the following set

B(x0, r) = {x ∈ X|d(x, x0) ≤ r}.
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Definition 2.2.3. A point x0 in a metric space (X, d) is called an interior point of a
set A ⊂ X if there is an r > 0 such that B(x0, r) ⊂ A.

Furthermore, the set of all the interior points of A ⊂ X is called the interior of A and
is denoted int(A).

Definition 2.2.4. A subset G of a metric space (X, d) is called an open set if all of
its points are interior points.

It follows from Definition 2.2.4 that a set A in (X, d) is open if and only if
int(A) = A.

Example 2.2.1. The interval (0, 1) is open in (R, E). We will prove why this is true.

Proof. Let x0 be an arbitrary point in (0, 1) and consider the following distances on
R:

d1 = |x0 − 0| = x0 and d2 = |1− x0| = 1− x0.

Now, let r = min{d1, d2} > 0. Then B(x0, r) ⊂ (0, 1) for every x0 ∈ (0, 1).

Therefore, (0, 1) is open in (R, E). �

Now, we will look into closed subsets of metric spaces.

Definition 2.2.5. A subset A of a metric space (X, d) is closed if its complement is
open.

Definition 2.2.6. Let A be a subset of a metric space (X, d). A point x0 is an
accumulation point of A if for every r > 0,

(B(x0, r) ∩ A) \ {x0} 6= ∅,

in other words, if every open ball about x0 contains a point p 6= x0 such that p ∈ A.

Furthermore, the set of all accumulation points of A is called the derived set of A. It
is denoted by A′.
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Definition 2.2.7. Let (X, d) be a metric space, and A ⊂ X. The closure of A is

A = A′ ∪ A.

Example 2.2.2. Consider the interval (0, 1) in (R, E). Notice that A′ = [0, 1] since
every open ball about every number in [0, 1] contains another point in (0, 1). Also
(0, 1) = [0, 1] ∪ (0, 1) = [0, 1].

Furthermore, it can be shown that:

Theorem 2.2.1. A subset A of a metric space (X, d) is closed if and only if A = A.

We can also use the closure operator to define dense subsets in metric spaces.

Definition 2.2.8. A subset A of a metric space (X, d) is dense (in X) if A = X.

Note that (R, E) is a metric space and dense subsets of R using Definition 1.2.1
are the same as those using Definition 2.2.8.

Example 2.2.3. In (R, E), the rationals Q are dense since Q = R.

Definition 2.2.9. A subset A of a metric space (X, d) is dense-in-itself if it has no
isolated points.

Example 2.2.4. The subset of irrationals in the (R, E) is dense-in-itself because every
neighborhood of an irrational number contains at least one other irrational number.

2.3 Resolvable Spaces

Definition 2.3.1. A space X is resolvable if X = A∪B, where A and B are disjoint,
dense subsets of X.

A space with isolated points cannot be resolvable.

Example 2.3.1. The set of real numbers R is resolvable since R = Q∪ (R \Q), and
the set of rationals and irrationals are dense and disjoint in R.
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In fact, every dense-in-itself metric space is a resolvable space. The following proof
is based on a result by S. Kim in [23], but it is a classical result.

Theorem 2.3.1. ([23], p. 258) If (X, d) is a nonempty metric space without isolated
points, then X has a dense subset A whose complement is also dense in X.

Proof. Let S ⊂ X. S is called an ε-net if

(1) d(x, y) ≥ ε for any two distinct points x, y in S, and

(2) S is maximal with respect to (1).

Kuratowski-Zorn’s Lemma (see Appendix A) yields that this ε-net exists for every
ε > 0.

Now, suppose we have disjoint sets S1, S2, . . . Sk where each Si, i = 1, 2, . . . k, is an
(1
i
)−net. Then, the complement of S1∪S2∪· · ·∪Sk is nonempty, and has no isolated

points. Therefore, there is an Sk+1, disjoint from S1 ∪ S2 ∪ · · · ∪ Sk, which is an
( 1
k+1

)−net.

Then, A =
⋃∞
n=1 S2n and B =

⋃∞
n=1 S2n−1 are disjoint, and both are dense in X. �

Many Ph.D students have done research on resolvable spaces and topological
groups under W. W. Comfort at Wesleyan University.

In [20], E. Hewitt studied resolvability for more abstract spaces.

Definition 2.3.2. We say X is a k-space if a set A is closed in X if and only if A∩K
is closed for every compact K ⊂ X (see section 3.8).

N.V. Velichko proved that dense-in-themselves k-spaces are resolvable in [40].

We will now prove the converse of Theorem 1.3.1 using the fact that dense-in-
themselves metric spaces are resolvable. W. Sierpiński was the first to publish this
construction in [39]. We will now provide the proof given by S. Kim and S. Plewik in
[24].

Theorem 2.3.2. ([24], p. 7) Let X be a resolvable space. Then, for any Fσ-set
E, there exists a bounded, real-valued function f having E for its set of points of
discontinuity.

Proof. Let X = A ∪B be a resolvable space, where A and B are dense and disjoint
subsets of X. Let f be a function such that f : X → Y , where Y = {0} ∪ { 1

n
: n =

1, 2, . . .} ∪ {− 1
n

: n = 1, 2, . . .}.

Now, suppose C =
⋂∞
n=1Gn is the intersection of a decreasing sequence of open sets

Gn ⊂ X with G1 = X. Then define f as follows:
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1. if x ∈ C, let f(x) = 0,

2. if x ∈ A ∩ (Gn \Gn+1), let f(x) = 1
n
,

3. if x ∈ B ∩ (Gn \Gn+1), let f(x) = − 1
n
.

Since the oscillation of f on C (and nowhere else) is 0, the set C is the set of points of
continuity of f . Thus, X \ C is the set of points of discontinuity of f . Furthermore,
since C is a Gδ-set, X \ C is an Fσ-set.

Therefore, X \ C is an Fσ-set and there is a bounded function f in which X \ C is
the set of discontinuity points for f . Notice, if we started with any Fσ-set E, then C
can be taken to be X \ E. �

In section 4.1 , we will prove that a second countable (see section 3.4), dense-in-
itself Baire space is resolvable.

2.4 Complete and Compact Metric Spaces

In order to define a complete metric space, we first have to define what it means for
a sequence to be Cauchy.

Definition 2.4.1. A sequence {xn} of points of a metric space is a Cauchy sequence
if for every ε > 0, there exists an N ∈ N such that for every n,m ≥ N ,

d(xn, xm) < ε.
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Example 2.4.1. Consider the sequence {xn}, where xn = 1
n
, n ∈ N defined in

(R+, E), the Euclidean metric on the positive real line. To show this is a Cauchy
sequence, let ε > 0. We are to find an index N depending on ε.

We claim that N = [1
ε
] + 1 is such an index.

If m > n ≥ N , then ∣∣∣∣ 1n − 1

m

∣∣∣∣ <
1

n

≤ 1

N

=
1

[1
ε
] + 1

< 1/(1/ε)

= ε.

This shows that {xn} is Cauchy.

Observe that {xn} is not convergent in (R+, E) since

lim
n→∞

xn = lim
n→∞

1
n

= 0 6∈ R+.

Example 2.4.2. Consider the sequence {an}, where

a1 = 1.4, a2 = 1.41, a3 = 1.414, a4 = 1.4142, a5 = 1.41421, . . .

of finite decimals converging to
√

2. The sequence {an} is a Cauchy sequence. Al-
though it does not converge in Q, it is convergent to

√
2 in R.

To establish a relationship between Cauchy sequences and convergent sequences,
we can use the following theorem.

Theorem 2.4.1. Every convergent sequence is a Cauchy sequence.

Proof. Let {an} be a convergent sequence. That is, let an → p. Furthermore, let
ε > 0. Then, there exists an N ∈ N such that for every k ≥ N

d(ak, p) <
1

2
ε.

Hence, by the triangle inequality,

n,m ≥ N ⇒ d(an, am) ≤ d(an, p) + d(am, p)

< 1
2
ε + 1

2
ε

= ε.

Therefore, {an} is a Cauchy sequence. �
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We now have the terminology to define a complete metric space.

Definition 2.4.2. A metric space (X, d) is called complete if every Cauchy sequence
x1, x2, . . . of points in X is convergent in (X, d).

Example 2.4.3. (Q, E), the set of rationals in the Euclidean metric, is not a complete
metric space since the Cauchy sequence of rational numbers {an} in Example 2.4.2
does not converge in Q.

Example 2.4.4. (R, E) is a complete metric space since every Cauchy sequence of
real numbers converges to a real number.

The following theorem, which is known as Cantor’s theorem, can also be used to
determine whether or not a metric space is complete.

Theorem 2.4.2. ([35], p. 2) A metric space (X, d) is complete if and only if every
sequence of nonempty subsets {Fn} of X satisfying:

1. F1 ⊃ F2 ⊃ . . . Fn ⊃ . . . .,

2. Fi = Fi for all i = 1, 2, . . ., and

3. lim
n→∞

diam(Fn) = 0,

has a nonempty intersection. More precisely, there exists the unique point p ∈ X
such that

⋂∞
n=1 Fn = {p}.
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Proof. Assume that (X, d) is complete and let pn be any point from Fn. First, we
will show that a such constructed sequence {pn} is Cauchy.

By (3), for every ε > 0 there is an N such that for n ≥ N , diam(Fn) < ε. By (1), if
n ≥ k, then pn ∈ Fn ⊂ Fk. Hence, for n ≥ k we get pn, pk ∈ Fk, which in turn gives

d(pn, pk) ≤ diam(Fk) < ε

if k ≥ N . Hence, {pn} is Cauchy.

Since (X, d) is complete, {pn} is convergent. So, let p = lim
n→∞

pn.

Now, for every n, the terms p1, p2, . . . of {pn}, belong to Fn, except for at most the
first n - 1 terms. However, Fn is closed, so it contains the limits of all sequences of
its elements; in particular, p ∈ Fn, n = 1,2, . . . .

Hence, p ∈
⋂∞
n=1 Fn. This part of the proof shows that

⋂∞
n=1 Fn 6= ∅ since p is in there.

Now, we will prove the uniqueness part of the proof, that is, p is the only point
of
⋂∞
n=1 Fn. So, suppose there is another point q in the intersection. Since p 6= q,

d(p, q) = α > 0.

Note that if q ∈
⋂∞
n=1 Fn, then both p and q are in Fk for all k. So,

α = d(p, q) ≤ diam(Fk)

for all k. This implies that α = 0, which leads to a contradiction since we defined
α to be greater than 0. This proves that there cannot be another point q in the
intersection. This proof takes care of one of the implications in Cantor’s theorem.

Conversely, assume (X, d) is a metric space in which every decreasing sequence of
nonempty closed sets satisfying condition (2) has a nonempty intersection and let
{xn} be a Cauchy sequence in (X, d).

Let us form a monotonically decreasing sequence of closed sets

Fn = {xn, xn+1, . . . .}, n = 1, 2, . . .

having a nonempty intersection (see (1) and (2)). Let x0 ∈
⋂∞
n=1 Fn. Then,

d(xn, x0) ≤ diam(Fn)→ 0.

Hence, the sequence {xn} converges to x0, which proves the completeness of (X, d).
�

We will now define compact metric spaces.
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Definition 2.4.3. A metric space (X, d) is compact if every sequence {xn} of points
of X contains a subsequence which converges to an element of X.

Example 2.4.5. (R, E) is not a compact metric space. In fact, take xn = n. Note
that {xn} is divergent (as is any of its subsequences).

Example 2.4.6. ((0, 1), E) is not a compact metric space. For instance, let x1 =
1
2
, x2 = 1

3
, x3 = 1

4
, . . . xn = 1

n+1
. Then lim

k→∞
xnk

= 0 6∈ (0, 1) for all subsequences {xnk
}

of {xn}

Example 2.4.7. It can be shown ([29], p. 132, example 1d) that ([0, 1], E) is a
compact metric space.

Remark 2.4.1. It can be shown that every compact metric space is a complete metric
space.

2.5 Volterra’s Theorem for Complete Metric Spaces

The concept of a continuous mapping in a metric space will be useful in the proof of
Volterra’s result for complete metric spaces.

Definition 2.5.1. Let (X, d1) and (Y, d2) be metric spaces. A mapping f : X → Y
is continuous if for every x ∈ X and ε > 0, there exists a δ > 0 such that

d1(x, y) < δ ⇒ d2(f(x), f(y)) < ε.

We will now state and prove Volterra’s result for complete metric spaces.

Theorem 2.5.1. ([38], p. 9) Let (X, d1) be a complete metric space such that X
is uncountable and (Y, d2) be a metric space. Consider two maps f, g : X → Y and
denote by C(f), C(g) the sets of their points of continuity. If C(f) and C(g) are
dense subsets of X, then C(f) ∩ C(g) is an uncountable dense subset of X.

Proof. Let C = {c1, c2, . . .} be an arbitrary countable subset of X and

B(a, r) = {x ∈ X : d1(x, a) < r},
B(a, r) = {x ∈ X : d1(x, a) ≤ r},
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where a ∈ X and r > 0 are arbitrarily chosen. It is enough to prove that

B(a, r) ∩ C(f) ∩ C(g)− C 6= ∅ (2.1)

to deduce our conclusion. If B(a, r) ∩ C(f) ∩ C(g) 6= ∅, it follows that C(f) ∩ C(g)
is a dense subset of X. Furthermore, (2.1) implies that C(f) ∩ C(g) is uncount-
able because if it were not, then we would take C = C(f) ∩ C(g), which contradicts
B(a, r) ∩ C(f) ∩ C(g)− C 6= ∅.

We define, by induction, two sequences {an}n≥0 ⊂ X and {rn}n≥0 ⊂ R+, the positive
reals, with the following properties:

(i) a0 = a, r0 = r and B(an, rn) ⊃ B(an+1, rn+1), for every n ≥ 0,

(ii) cn 6∈ B(an, rn), for every n ≥ 1,

(iii) if n is odd, then d2(f(x), f(y)) < 1
n

for each x, y ∈ B(an, rn),

(iv) if n is even then d2(g(x), g(y)) < 1
n

for each x, y ∈ B(an, rn).

Notice that our induction process has already been started at 0. So, suppose we have
defined ak and rk for each k < n. If n is odd, we choose an ∈ B(an−1, rn−1) ∩ C(f).
Such an element exists because C(f) is dense in X.

Since f is continuous at an, there is a δ > 0 such that

d2(f(x), f(an)) <
1

2n

if d1(x, an) < δ.

Now, choose rn > 0 so that

rn < min
{
δ,
r

n
, rn−1 − d1(an, an−1)

}
.

It follows that if x, y ∈ B(an, rn) we have

d2(f(x), f(y)) ≤ d2(f(x), f(an)) + d2(f(an), f(y)),

< 1
n
.

Furthermore, B(an, rn) ⊂ B(an−1, rn−1). Moreover, if d1(x, an) ≤ rn, then

d1(x, an−1) ≤ d1(x, an) + d1(an, an−1),

≤ rn + d1(an, an−1),

< rn−1.

If n is even, we construct an and rn similarly, replacing f by g and C(f) by C(g).

28



Since X is complete and {rn} is a sequence converging to 0, by the Cantor theorem,
there exists a point b such that

b ∈
⋂
n≥0

B(an, rn).

Since B(an+1, rn+1) ⊂ B(an, rn), it follows that b ∈ B(an, rn) for each n ≥ 0.

We will now show that b ∈ C(f) ∩ C(g), that is, f and g are continuous at b. If
ε > 0, we choose an odd integer n0 such that 1

n0
< ε. By (iii), it follows that if

δ < rn0 − d1(b, an0), then

d2(f(x), f(b)) <
1

n0

< ε

if d1(x, b) < δ. Similarly, b ∈ C(g).

Since b ∈ B(an, rn) and cn 6∈ B(an, rn) for each n ≥ 1, it follows that b 6∈ C.

Therefore, B(a, r) ∩ C(f) ∩ C(g) 6= ∅. �

2.6 Volterra’s Theorem for Compact Metric Spaces

We will now provide yet another proof of Volterra’s theorem. Although the state-
ment of Theorem 2.6.1 pertains to real-valued functions of real variables, it can be
appropriately generalized to compact metric spaces for the domain space.

Theorem 2.6.1. ([12], p. 246) If f, g : R→ R are two functions and C(f) and C(g)
are dense in R, then C(f) ∩ C(g) is an uncountable dense subset of R.

Proof. Let (a0, b0) be an interval in R and let C = {cn : n = 1, 2, . . .} be a countable
subset of R. It will be shown that

(a0, b0) ∩ C(f) ∩ C(g)− C 6= ∅,

from which the conclusion will then be deduced.

Use induction to define two sequences {an} and {bn} with {an} strictly increasing
and {bn} strictly decreasing so that for all n,

(i) an < bn,

(ii) cn 6∈ (an, bn),

(iii) if n is odd, then |f(x)− f(y)| < 1
n

for each x, y ∈ (an, bn),

(iv) if n is even, then |g(x)− g(y)| < 1
n

for each x, y ∈ (an, bn).
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Induction has already been started at 0. So, suppose there is an m such that an and
bn have been defined for each n < m.

If m is odd, then since C(f) is dense in R, there is a number am ∈ (am−1, bm−1)∩C(f).
We can assume that if cm < bm−1, then am > cm. Since f is continuous at am, there
is a δ > 0 so that if |x− am| < δ then |f(x)− f(am)| < 1

2m
.

Now, choose bm so that am < bm < bm−1 and bm < am + δ. Then for each x, y ∈
(am, bm), we have

|f(x)− f(y)| ≤ |f(x)− f(am)|+ |f(am)− f(y)|,
< 1

2m
+ 1

2m
,

= 1
m
.

If m is even, then construct am and bm similarly, replacing C(f) by C(g) and f by g.

Notice that the intervals [an, bn], n = 0, 1, . . ., are closed, nested intervals. Thus, by
the Nested Interval Property, there is an a ∈ R such that a ∈ [an, bn] for each n.
Since an < an+1 ≤ a ≤ bn+1 < bn, it follows that an < a < bn for all n; in particular
a ∈ (a0, b0).

Furthermore, the point a is in C(f); i.e., f is continuous at a. To show this is true,
let ε > 0 and let n be an odd integer with n ≥ 1

ε
. Then, let δ be the smaller of a− an

and bn − a. By (iii), if |x − a| < δ, then |f(x) − f(a)| < 1
n
≤ ε. Since ε > 0 is

arbitrary, it follows that f is continuous at a. Thus, a ∈ C(f). Similarly, a ∈ C(g).

Finally, a 6= cn for each n since a ∈ (an, bn) but cn 6∈ (an, bn) by (ii). Thus,

(a0, b0) ∩ C(f) ∩ C(g)− C 6= ∅.

Since (a0, b0)∩C(f)∩C(g) 6= ∅, it follows that C(f)∩C(g) is dense inR. Furthermore,
C(f)∩C(g) cannot be countable because if it was, then we could take C = C(f)∩C(g)
and obtain a contradiction since it has been shown that C(f) ∩ C(g)− C 6= ∅. �

30



Chapter 3

Topological Preliminaries

Throughout my thesis, I will need many important topological concepts. In this
chapter, these concepts will be reviewed.

3.1 Topological Spaces

Definition 3.1.1. Let X be a nonempty set. A collection T of subsets of X is a
topology on X if it satisfies the following properties:

1. ∅ ∈ T and X ∈ T;

2. If U ∈ T and V ∈ T, then U ∩ V ∈ T;

3. If Uα ∈ T for each α in an indexing set Γ, then
⋃
α∈Γ

Uα ∈ T.

The members of T are called open sets, and X together with T, i.e., the pair (X,T),
is called a topological space.

Example 3.1.1. Let X be a nonempty set, and let T = {∅, X}. Then T is a topology
on X, and it is called the trivial topology on X.

Example 3.1.2. Let E denote the set of all open sets of real numbers (as defined pre-
viously in section 2.1). Then E is a topology onR, called the Euclidean topology on R.
We will denote this topological space as (R, E). Similarly, the class E of all open sets
in the R2 plane is a topology called the Euclidean topology on R2. We will denote
this topological space as (R2, E).

Example 3.1.3. Let D denote the set of all subsets of X. This is a topology on X
called the discrete topology. X together with its discrete topology, (X,D), is called
a discrete topological space.
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Example 3.1.4. Let C denote the set of all subsets of X whose complements are
finite together with the empty set ∅. Then, this class C is a topology on X, called
the cofinite topology.

3.2 The Separation Axioms

We will only define up to T2-spaces and regular spaces.

Definition 3.2.1. A topological space (X,T) is a T0-space if for a, b ∈ X there is an
open set U ∈ T such that either a ∈ U and b 6∈ U or b ∈ U and a 6∈ U .

Definition 3.2.2. A topological space (X,T) is a T1-space if for a, b ∈ X there are
open sets Ua, Ub ∈ T containing a and b respectively such that b 6∈ Ua and a 6∈ Ub.

Definition 3.2.3. A topological space (X,T) is a T2-space or a Hausdorff space if
there are disjoint open sets Ua and Ub containing a and b respectively.
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Example 3.2.1. If we equip the reals R (or any infinite set) with the cofinite topology
C, it can be shown that (R, C) is not Hausdorff. It is actually T1. To show why this
is true, let a and b be two different arbitrary points of R. Any open set U containing
a is of the form R \A, where A ⊂ R is finite. Similarly, any open set V containing b
is of the form R \B, where B ⊂ R is finite. Thus,

U ∩ V = (R \ A) ∩ (R \B) = R \ (A ∪B) 6= ∅,

since there are infinitely many points in R.

Example 3.2.2. Every metric space is Hausdorff. If x and y are distinct points in
a metric space (X, d), then d(x, y) > 0. Let r = 1

2
d(x, y). Then, B(x, r) and B(y, r)

are two disjoint open sets containing x and y respectively.

Definition 3.2.4. A topological space (X,T) is a regular space if given a closed set
A and a point b 6∈ A, there are disjoint open sets UA and Ub containing A and b
respectively.
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3.3 Kuratowski’s Closure Operator

Recall that if “U is an open set such that x ∈ U” then we say “U is an open neigh-
borhood of x.”

Also, let A be a subset of a topological space (X,T) and x ∈ X. Then x ∈ A,
the closure of A, if and only if every neighborhood of X has a nonempty intersection
with A.

We will list important properties pertaining to the closure operator.

Theorem 3.3.1. Let A and B be subsets of a topological space (X,T). Then,

1. ∅ = ∅,

2. A = A,

3. A ⊂ B whenever A ⊂ B,

4. A ∪B = A ∪B

5. A ∩B ⊂ A ∩B.

A subset A of (X,T) is closed if A = A. Also recall that the interior of A, denoted
int(A), is as follows:

int(A) = X \X \ A.

Furthermore, it can be shown that A is an open set in a topological space if and only
if A = int(A).

3.4 Bases

Definition 3.4.1. Let (X,T) be a topological space. A base B for the topology T
is a subcollection of T with the property that if U ∈ T, then U = ∅ or there is a
subcollection B

′
of B such that

U =
⋃
{B : B ⊂ B

′}.

Furthermore, we can use the following theorem to find a base for a topological
space.
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Theorem 3.4.1. A collection B of subsets of X is a base for some topology T on X
if and only if

1. X =
⋃
{B : B ⊂ B},

2. if B1, B2 ⊂ B and x ∈ B1 ∩B2, then there exists a B ∈ B such that x ∈ B and
B ⊂ B1 ∩B2.

Example 3.4.1. In (R2, E), the subcollection of all open balls having rational coor-
dinates for their centers and rational radii is a base for (R2, E).

Definition 3.4.2. Given a topological space (X,T), and a point a ∈ X, a subcollec-
tion Ba of T is a local base at a provided that

1. if B ∈ Ba, then a ∈ B,

2. if U ∈ T and a ∈ U , then there exists a B ∈ Ba such that a ∈ B ⊂ U .

Example 3.4.2. In (R, E) let a ∈ R. Then, the subcollection

Ba =

{(
a− 1

n
, a+

1

n

)
: n ∈ N

}
is a local base at a.

Definition 3.4.3. A topological space (X,T) is called first countable or satisfies the
first axiom of countability if there is a countable local base at each point of X.

In fact, every metric space is first countable. In a metric space (X, d), let x ∈ X
and consider the subcollection Bx =

{
B
(
x, 1

n

)
: n ∈ N

}
.
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Definition 3.4.4. We say that (X,T) is second countable or satisfies the second
axiom of countability provided there is a countable base for T.

Theorem 3.4.2. Every second countable space is first countable.

Proof. Let B be a countable base for T and let p ∈ X.

Then the subcollection B
′

of B consisting of those members of B which contain p is
a countable local base at p. �

However, the converse does not hold.

Example 3.4.3. Consider the reals with the discrete topology (R,D) and consider
the subcollection Bx = {{x} : x ∈ R}. This is an example of a first countable space
which is not second countable.

This is true because we cannot obtain the reals as a countable union of the elements
from Bx since the reals have uncountably many points.

3.5 Denseness

Definition 3.5.1. Given a topological spaceX, a subsetD ofX is called everywhere dense,
or simply dense, if it intersects every nonempty open subset U of X, i.e.,

∀Uopen,6=∅ ⊂ X, D ∩ U 6= ∅.

Using the closure operator, D is dense if and only if

D = X.

Example 3.5.1. In (R2, E), the set D, where

D = {(x, y) : x, y ∈ Q}

is dense.
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Example 3.5.2. In (R, E), the set Q of the rational numbers is dense. Furthermore,
so are the irrational numbers, R\Q.

Definition 3.5.2. ([19], p. 6) A subset D of X is called somewhere dense if there is
an open, nonempty subset U of X in which D is dense, i.e.,

∃Uopen, 6=∅ such that ∀Vopen, 6=∅ ⊂ U, D ∩ V 6= ∅.

Using the closure operator, D is somewhere dense if and only if

int(D) 6= ∅.

Example 3.5.3. The union of the set of all rational numbers in (0, 1) together with
a finite set in R \ (0, 1) is somewhere dense.

Definition 3.5.3. A subset N of X is called nowhere dense if there is no open,
nonempty set U in which N is dense, i.e.,

∀Uopen, 6=∅ ⊂ X ∃Vopen, 6=∅ ⊂ U such that N ∩ V = ∅.

Using the closure operator, N is nowhere dense if and only if

int(D) = ∅.

Example 3.5.4. The set of all integers Z in the reals R with the Euclidean topology
E is nowhere dense.
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Definition 3.5.4. ([25], p. 66) A subset B of a topological space X is boundary if
the complement of B is dense in X. These sets are also known as co-dense sets.

Using the closure operator, B is boundary if and only if

X \B = X.

The proof of the following lemma is a part of topological folklore.

Lemma 3.5.1. Every closed and boundary set A in X is nowhere dense.

Proof. Since A is closed and boundary in X, its complement X \ A is open and
dense in X. This shows that A contains no nonempty open set. Otherwise, it would
intersect X \ A, which is dense in X.

Thus, if G is an arbitrary open, nonempty set, then

G \ A = G \ A

is an open, nonempty set which is disjoint from A.

Therefore, A is nowhere dense. �

3.6 First and Second Category

Definition 3.6.1. A set is of first category if it is the countable union of nowhere
dense sets.

Example 3.6.1. In (R, E), the subset Q of all rational numbers is of first category.
In fact

Q =
∞⋃
i=1

{qi},

where each {qi} is nowhere dense.

38



We have the following important lemma pertaining to sets of first category. This
lemma will be used later in the thesis.

Lemma 3.6.1. The countable union of sets of first category is also of first category.

Definition 3.6.2. A set is of second category if it is not of first category.

Example 3.6.2. The set of irrational numbers is of second category.

3.7 Fσ and Gδ Sets

In section 1.2, we defined Gδ and Fσ-sets. We will now look at properties of these
types of sets on topological spaces.

Example 3.7.1. Every closed set is an Fσ-set and every open set is a Gδ-set.

Example 3.7.2. The set Q of rationals is an Fσ-set of the reals R. We can express
Q as

Q =
⋃
qi∈Q

{qi},

where each {qi} is a closed set, since singletons are closed in R.

Example 3.7.3. The set R \Q of irrationals is a Gδ-set of R. We can express R \Q
as

R \Q =
⋂
qi∈Q

R \ {qi},

where each R \ {qi} is an open set since the complement of the closed set of the
singleton {qi} is an open set.

It can be show that the set of irrational numbers is not Fσ by using the Baire
Category theorem for complete metric spaces (see section 4.2).

Proposition 3.7.1. ([33], p. 1) The set of irrationals is not an Fσ-set.
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Proof. Suppose

R \Q =
∞⋃
i=1

Fi,

where Fi = Fi.

Then, we have two cases.

For our first case, suppose there is an i such that Fi is dense in some interval. By
being dense, it would contain this interval, i.e., the rational numbers would belong.
This would be impossible since Fi ⊂ R \Q. So, we have the other case.

Suppose there is no i for which Fi is dense in an interval. This means that each Fi is
nowhere dense, i.e., R \Q =

⋃∞
i=1Ni where each Ni is nowhere dense.

However, Q, the set of all rationals, is of first category. This set is a countable union
of singletons {qi}, where qi ∈ Q.

This would mean that the set R of all real numbers would be the union of two sets
of first category, hence of first category by Lemma 3.6.1. This is a contradiction
since (R, E) is a complete metric space and of second category by the Baire Category
theorem.

Therefore, R \Q is not an Fσ-set. �

Lemma 3.7.1. ([32], p. 11) Every boundary Fσ-set is of first category.

Proof. If
⋃∞
n=1 Fn is a boundary set, then each Fn is boundary.

Since each Fn is closed, they are nowhere dense by Lemma 3.5.1.

Therefore,
⋃∞
n=1 Fn is of first category. �

3.8 Topological Compactness

Definition 3.8.1. A collection Γ of subsets of a topological space (X,T) is called a
cover, or covering of a set B ⊂ X if

B ⊂
⋃
A∈Γ

A.

We say that Γ is an open covering if each member of Γ is open.
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Definition 3.8.2. A subset A of a topological space (X,T) is compact if every open
cover has a finite subcover.

The concept of compactness is a generalization of the Heine-Borel theorem.

Heine-Borel Theorem. If a and b are real numbers with a < b and O is a collection
of open intervals such that [a, b] ⊂

⋃
{O : O ∈ O}, then there is a finite subset

{O1, O2, . . . ON} of O such that [a, b] ∈
⋃N
n=1 On.

In the Euclidean space Rn, it can be shown that compact subspaces, in the sense
of the sequential definition (Definition 2.4.3), coincide with compact subspaces in
the sense of the above covering definition (Definition 3.8.2).

Example 3.8.1. In (X,T), if X is finite, it is a compact space.

Example 3.8.2. The set of real numbers R is not compact. In fact, you cannot find
a finite subcover from the countable open covers {Gn : n ∈ Z}, where

Gn =

(
n− 4

3
, n+

1

3

)
.

For each finite collection {Gni
: i = 1, 2, . . . , k}, there is a largest element nj of

{n1, n2, . . . , nk}. If x > nj + 1, then x 6∈
⋃k
i=1Gni

. Hence, R is not a compact space.

Example 3.8.3. The closed interval [0, 1] with the Euclidean topology is compact.
Let U be an open cover of [0, 1]. For each x ∈ [0, 1], let Ux ∈ U such that x ∈ Ux.
Then, there is an open interval Ix such that x ∈ Ix ⊂ Ux. By the Heine-Borel
theorem, there is a finite subcollection {Ix1 , Ix2 , . . . , Ixn} of {Ix : x ∈ [0, 1]} such that
[0, 1] ⊂

⋃n
i=1 Ixi . The collection {Ux1 , Ux2 , . . . , Uxn} of members of U that corresponds

to Ix1 , Ix2 , . . . , Ixn is a finite subcollection of U that covers [0, 1]. Therefore, [0, 1] is
compact.

Example 3.8.4. (R, C), the cofinite topology on R, is a compact space. If we have a
collection of open sets covering the real line R, any one of the sets will cover all but
a finite number of points of R, say n points of R. We can choose n other sets of the
collection, one for each point, and together, these n + 1 open sets will constitute a
finite subcover of R.
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3.9 Local Compactness

Definition 3.9.1. A topological space (X,T) is called locally compact at a point p
if there is an open set U and there is a compact subspace K of X such that p ∈ U
and U ⊂ K.

Definition 3.9.2. A topological space (X,T) is locally compact if it is locally com-
pact at each of its points.

We can also determine local compactness from the following theorem.

Theorem 3.9.1. Assuming (X,T) is Hausdorff, a space (X,T) is locally compact if
and only if for each point p ∈ X and for each open neighborhood V of p there is a
neighborhood U of p such that U is compact and U ⊂ V .

Example 3.9.1. (R, E) is locally compact.
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Chapter 4

Generalized Volterra Theorem

To prove the generalized Volterra theorem, I need to consider Baire spaces. I will
define what Baire spaces are and state equivalent conditions for Baireness. Then,
I will show that complete metric spaces are Baire spaces using the Baire Category
theorem. After that, I will show that every locally compact Hausdorff space is a Baire
space by using another version of the Baire Category theorem.

4.1 Baire Spaces

Definition 4.1.1. A Baire space is a topological space such that every nonempty
open subset is of second category.

In the next theorem, several equivalent conditions for being a Baire space are
explained.

Theorem 4.1.1. ([19], p. 11) The following are equivalent for a space X:

1. X is a Baire space.

2. The intersection of any (monotone decreasing) sequence of dense open sets is
dense in X.

3. The complement of any set of first category in X is dense in X.

4. Every countable union of closed sets with no interior points in X has no interior
point in X.

Proof. (1) implies (2): Suppose that {Di} is a sequence of dense open sets and that
U is an open subset of X that does not intersect

⋂∞
i=1 Di. That is,

⋂∞
i=1Di is not

dense in X.

Then,

U = U −
∞⋂
i=1

Di =
∞⋃
i=1

(U −Di)

43



and U −Di is nowhere dense in X.

Therefore, U is of first category.

(2) implies (3): For each i, let Ni be a closed, nowhere dense subset of X and let U
be a nonempty open set that does not intersect

X −
∞⋃
i=1

Ni =
∞⋂
i=1

(X −Ni).

Thus, the complement of the set
⋃∞
i=1Ni, which is of first category, is not dense in

X.

For each n, define

Vn =
n⋂
i=1

(X −Ni).

Therefore, {Vn} is a sequence of dense open sets whose intersection is not dense in
X.

(3) implies (4): Let A be the countable union of closed sets with no interior points in
X.

Suppose A contains an interior point in X, then X − A would not be dense in X.
This would result in a contradiction.

(4) implies (1): Suppose that for each i, Ni is nowhere dense in X and
⋃
Ni is open,

and hence, not a Baire space.

Then, each Ni has no interior points, but
⋃∞
i=1 Ni does have an interior point. �

We will need the following known proposition, which can be found in [5].

Proposition 4.1.1. ([5], p. 432) In a T1 dense-in-itself Baire space, the intersection
of a dense Gδ-set A and a dense, open set B is uncountable.

Now, we will prove the following theorem, which deals with Baire and resolvable
spaces. It is a part of topological folklore.

Theorem 4.1.2. Let X be a T1, second countable, dense-in-itself Baire space. Then
X is resolvable.
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Proof. Let B1, B2, . . . Bn be a countable base for X. Since X is a second countable,
dense-in-itself Baire space, each Bi, i = 1, 2, . . ., is uncountable by Proposition 4.1.1

Now, we are only taking one point from every Bi. From each Bi, pick a point bi. Let
D =

⋃∞
i=1{bi}. Clearly D is dense. Furthermore, X \D is also dense. �

4.2 Baire Category Theorem for Complete Metric

Spaces

We showed that X being a Baire space is equivalent to the intersection of any sequence
of dense open sets being dense in X. In the Baire Category theorem, this equivalent
statement is used to show that every complete metric space is a Baire space.

Theorem 4.2.1. Let X be a complete metric space and {On} be a countable collec-

tion of dense open subsets of X. Then,
∞⋂
n=1

On is dense.

Proof. Given an open set U , let x1 be a point of O1∩U and S1 an open ball of radius
r1 centered at x1 and contained in O1 ∩ U .

Since O2 is dense, there exists a point x2 ∈ O2 ∩ S1.
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Since O2 is open, there exists an open ball S2(x2, r2) centered at x2 and contained
in O2, and we may take the radius r2 of S2 to be smaller than 1

2
r and smaller than

r1 − d(x1, x2).

Then, S2 ⊂ S1.

Proceeding inductively, we obtain a sequence {Sn} of open balls such that Sn ⊂ Sn−1,
and Sn ⊂ On, whose radii {rn} tend to zero.

Let {xn} be the sequence of centers of these open balls. Then, for n,m ≥ N we have
xn ∈ SN and xm ∈ SN . Therefore, d(xn, xm) ≤ 2rN , and {xn} is a Cauchy sequence
since rn → 0.

By the completeness of X, there exists a point x such that xn → x.

Now, since xn ∈ SN+1 for n > N , we have

x ∈ SN+1 ⊂ SN ⊂ ON .

Thus, x ∈
⋂∞
n=1On and x ∈ U .

Therefore, Since U was an arbitrary open set,
⋂
On is dense in X. �

Thus, we have shown that every complete metric space is a Baire space. Consider
the following examples.

Example 4.2.1. (R, E) is a Baire space since we showed in Example 2.4.4 that
(R, E) is a complete metric space.

Example 4.2.2. (Q, E) is a not Baire space since we showed in Example 2.4.3 that
(Q, E) is not a complete metric space.

Notice, there are Baire space that are not metric spaces. However,

∞⋂
i=1

(Q \ {qi}) 6= ∅.

So, Q is not Baire since it does not satisfy the second condition of Theorem 4.1.1.
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4.3 Baire Category Theorem for Locally Compact

Hausdorff Spaces

Along with complete metric spaces, locally compact Hausdorff spaces are Baire. Yet,
for these spaces, many of the results of the Baire Category theorem follow directly
from local compactness.

Theorem 4.3.1. Let X be a locally compact Hausdorff space and {Dn} a countable
collection of dense open subsets of X. Then,

⋂
{Dn} is dense.

Proof. Let D1, D2, . . . be open dense sets. We must show that

U ∩
∞⋂
i=1

Di 6= ∅

for each open U ⊂ X.

Since U ∩D1 6= ∅ (because D1 is dense), by the definition of local compactness, there
is a nonempty compact open B1 such that B1 ⊂ U ∩D1.

With B1 and D2, we find, for the same reason, that there is a nonempty compact
open B2 such that B2 ⊂ B1 ∩D2.

Proceeding by induction, we obtain a sequence {Bn} of nonempty open sets such that

Bn ⊂ Bn−1 ∩Dn for all n.

Then, the sets Bn are closed in the compact B1 and we have the finite intersection
property. So,

∞⋂
n=1

Bn 6= ∅.

Since
∞⋂
n=1

Bn ⊂ U ∩
∞⋂
n=1

Dn

because B1 ⊂ U ∩D1 and Bn ⊂ Dn for all n, the proof is complete. �

The following diagram illustrates the results of the Baire Category theorems.
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The condition that a locally compact space X be Hausdorff is essential in de-
termining that X is a Baire space. Consider the following example where X is not
Hausdorff.

Example 4.3.1. Consider the cofinite topology on the rationals Q. Notice that this
topology is both compact and T1 (see Examples 3.2.1 and 3.8.4). Now, enumerate
Q as

Q = {q1, q2, . . . , }.

Then, observe that Q \ {qi} is open and dense. Also,⋂
q1∈Q

Q \ {qi} = ∅.

Thus, (Q, C) is not a Baire space.

4.4 The Generalized Volterra Theorem

To prove a stronger version of Volterra’s result using Baire spaces, we need the fol-
lowing lemma.

Lemma 4.4.1. ([32], p. 11) Let X be a Baire space. If G1, G2, . . . are dense Gδ-sets,
then so is the set G1 ∩G2 ∩ . . ..

Proof. Each of the sets X\Gn is a boundary, Fσ-set. Hence, they are of first category
by Lemma 3.7.1.

The union
(X \G1) ∪ (X \G2) ∪ (X \G3) ∪ . . .

is also of first category by Lemma 3.6.1.

Since X is a Baire space, the complement G1 ∩G2 ∩ . . . is dense. �
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The assumption that G1, G2, . . . are dense Gδ-sets is necessary. To illustrate,
consider G1 = Q and G2 = R \Q. G2 is a Gδ-set, but G1 is an Fσ-set, not a Gδ-set.
Notice that their intersection is empty and not a dense Gδ-set.

Now we can prove the generalization of Volterra’s result with Baire spaces.

Theorem 4.4.1. ([37], p. 23) Let X be a nonempty Baire space and let f : X → R be
a function for which C(f) and D(f) are dense. Then there is no function g : X → R

such that
C(f) = D(g) and D(f) = C(g).

Proof. Suppose that f : X → R and g : X → R are two functions and that C(f)
and D(f) are dense.

Then:

(1) C(f) ∪D(f) = X and C(f) ∩D(f) = ∅,

(2) C(g) ∪D(g) = X and C(g) ∩D(g) = ∅.

If a function g were to exist and satisfy

C(f) = D(g) and D(f) = C(g),

then in view of (1) and (2), this implies:

C(f) ∩ C(g) = ∅. (3)

We shall prove that (3) cannot happen. In fact, since C(f) and C(g) are both sets
of continuity points of f and g, we know that they are dense by our assumption and
Gδ by Corollary 1.3.1.

Furthermore, since X is Baire, C(f) and C(g) have to intersect on a dense Gδ-subset
by Lemma 4.4.1.

Now, for this dense Gδ-subset

C(f) ∩ C(g) 6= ∅.

This contradicts condition (3). �

The assumption that X is a Baire space in Theorem 4.4.1 cannot be dropped.
To illustrate, consider the following example.
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Example 4.4.1. ([15], p. 212) Let Q denote the set of rational numbers and let

A =

{
p

q
: q is odd

}
and B =

{
p

q
: q is even

}
where gcd(p, q) = 1.

Notice that A and B are disjoint dense Gδ-subsets of Q. Thus, Q is not a Baire space
(see Lemma 4.4.1). Now, enumerate the elements of A and B respectively, i.e.,
A = {a1, a2, a3, . . .} and B = {b1, b2, b3, . . .}. Then, define the functions f : Q → R

and g : Q→ R as follows:

f(x) =

{
1
i

if x = ai, ai ∈ A
0 if x ∈ B,

g(x) =

{
1
i

if x = bi, bi ∈ B
0 if x ∈ A.

Clearly, D(f) = C(g) and C(f) = D(g).
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Chapter 5

Volterra and Weakly Volterra
Spaces

The idea and generalizations of Volterra’s theorem led to the idea of Volterra and
weakly Volterra spaces. The class of Volterra spaces was first introduced in [15] by
Z. Piotrowski and D. Gauld. First, I will look at developable spaces as range spaces
of functions. Finally, I will explore some of the behaviors of these spaces.

5.1 Developable Spaces

In [15], Piotrowski and Gauld generalized the classical Volterra theorem to certain
“nice” topological spaces. Such an example of these types of spaces are developable
spaces. They defined the notion of generalized oscillation for these spaces. The covers
of developable spaces will constitute “the smallness” of the images under a function.

Definition 5.1.1. If A ⊂ X and U is a collection of subsets of X, then st(A,U) =
∪{U ∈ U : U ∩ A 6= ∅}. st(A,U) is called the star of A.

Definition 5.1.2. A sequence {Gn} of open covers of X is called a development of X
if for every x ∈ X, the set {st(x,Gn) : n ∈ N} is a base at x.

51



A space which has a development is called a developable space.

Remark 5.1.1. All metric spaces have developments.

In fact, let f : X → Y be a function and C be an open cover for Y . Then, define

Ω(f,C) = {x ∈ X : ∃ open U containing x and ∃V ∈ C with f(U) ⊂ V }.

The sets Ω(f,C) are clearly open, as they are the union of open sets. Further-
more, notice that C(f) ⊂ Ω(f,C). Now, let {Cn} be a sequence of covers of Y . Define
Ω(f, {Cn}) =

⋂∞
n=1 Ω(f,Cn). Clearly, Ω(f, {Cn}) is a Gδ-set.

This leads us to the following proposition.

Proposition 5.1.1. ([15], p. 210) Let f : X → Y be a function, where Y is a
developable space with a development {Gn}. Then C(f) =

⋂∞
n=1 Ω(f,Gn).

Definition 5.1.3. A regular developable space is called a Moore space.

In [15], the above generalized oscillation (see Remark 5.1.1 and Proposition
5.1.1) has been extended even further to weakly developable spaces. Weakly devel-
opable spaces were introduced by J. Calbrix and B. Alleche in [3]. It was proved in [2]
that a completely regular space is weakly developable if and only if it is a p-space with
a Gδ-diagonal. L. Holá and Z. Piotrowski showed in [21] that to have a Gδ-diagonal
is not sufficient to guarantee that the set C(f) of continuity points of every function
into such a space is a Gδ set.

Example 5.1.1. ([21], p. 153, example 3.6) Let Y be the Michael line (the real
line with the isolated irrationals and the rationals having their usual neighborhoods)
and X = R. Let f : X → Y be the identity mapping. Then, C(f) = Q, the set
of rational numbers, i.e., C(f) is not a Gδ-set. The Michael line is a submetrizable
non-developable space ([17], p. 428-430).

5.2 Introduction to Volterra and Weakly Volterra

Spaces

Definition 5.2.1. ([14], p. 169) A topological space X is called Volterra if for each
pair f, g : X → R of functions such that C(f) and C(g) are both dense in X, the set
C(f) ∩ C(g) is dense in X. If the latter condition is changed to

C(f) ∩ C(g) 6= ∅,

then such a space is called weakly Volterra.
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Proposition 5.2.1. ([14], p. 170) For any topological space X, the following are
equivalent:

1. X is Volterra;

2. for each pair A,B of dense Gδ-subsets of X, the set A ∩B is dense;

3. for each pair C,D ⊂ X of boundary Fσ-subsets of X, the set C∪D is boundary;

4. for each pair Y , Z of developable spaces and each pair f : X → Y and g : X → Z
of functions for which C(f) and C(g) are dense in X, the set C(f) ∩ C(g) is
dense.

Recall that a topological space is Baire if the intersection of countably many dense
open sets is a dense set. Thus, every Baire space is Volterra.

Example 5.2.1. Any Baire space, i.e., any complete metric space or locally compact
Hausdorff space, is a Volterra space. For instance,

R,Rn and [0, 1]

are all Volterra spaces.

Proposition 5.2.2. ([14], p. 170) For any nonempty topological space X, the fol-
lowing are equivalent:

1. X is weakly Volterra;

2. for each pair A,B of dense Gδ-subsets of X, the set A ∩B 6= ∅;

3. for each pair C,D ⊂ X of Fσ-subsets such that C ∪ D = X, either int(C) or
int(D) is nonempty;

4. for each pair Y , Z of developable spaces and each pair f : X → Y and g : X → Z
of functions for which C(f) and C(g) are dense in X, the set C(f) ∩ C(g) is
nonempty.

Example 5.2.2. Let X = (−∞, 0) ∪ (Q ∩ [0, 1]) ∪ (1,∞).
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Let f and g be any pointwise discontinuous functions defined on (−∞, 0) ∪ (1,∞).
This is the Volterra subspace of X. Now, decompose K, the rationals in [0, 1], into
two sets A and B by using the method from Example 4.4.1 for f and g, respectively.

Over K, the intersection C(f) with C(g) is empty. Notice that the intersection of
C(f) with C(g) is dense outside of K. Thus, X is weakly Volterra, but not Volterra.

We have the following diagram relating Volterra, weakly Volterra, Baire and sec-
ond category spaces.

It is important to realize that Volterra spaces are not always Baire. We will look
into the class of spaces in which Volterra spaces are Baire in chapter 6.

5.3 Properties

I will present a number of examples and propositions which illustrate some of the
behaviors of Volterra and weakly Volterra spaces. The following two examples show
that the converse implications of the diagram in the previous section do not hold.

Example 5.3.1. ([14], p. 172, example 3.5) A space which is not of second category,
hence not Baire, but is Volterra.

Let X = [0,∞) with a topology whose base consists of sets of the form:

{[a,∞)− F : a ∈ X and F is a finite subset of X}.

X is not second category because it is the union of countably many closed, nowhere
dense sets {[0, n) : n ∈ N}. However, each dense Gδ-set is of the form [a,∞) − C,
where a ∈ X and C ⊂ X is a countable subset. Furthermore, the intersection of any
pair of such sets is also dense. Hence, X is Volterra. Thus, Volterra 6⇒ Baire.
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Example 5.3.2. ([14], p. 172, example 3.6) A space which is not Volterra, hence not
Baire, but is of second category, hence weakly Volterra.

Let X = R− ∪Q+ with the topology inherited from the reals, where R− denotes the
non-positive reals and Q+ denotes the non-negative rationals.

X is not Volterra. To show this, let Q+
o =

{
p
q

: q is odd
}

and Q+
e =

{
p
q

: q is even,
}

,

where gcd(p, q) = 1. Then, R− ∪Q+
o and R− ∪Q+

e are dense Gδ-subsets of X whose
intersection is not dense. Therefore, X is not Volterra. On the other hand, X is
weakly Volterra because if f, g : X → R exist such that C(f) and C(g) are dense
in X, then C(f |R−) and C(g|R−) are dense in the weakly Volterra space R−. Hence
their intersection is nonempty. Thus, weakly Volterra 6⇒ Volterra.

We will now give examples of Volterra and weakly Volterra spaces.

Example 5.3.3. ([14], p. 171, example 3.1) The discrete and indiscrete spaces are
Baire spaces. Hence, they are both Volterra.

Example 5.3.4. ([14], p. 171, example 3.2) A space which is not weakly Volterra.

Let Q denote the set of rational numbers and let

Qo =

{
p

q
: q is odd

}
and Qe =

{
p

q
: q is even,

}
where gcd(p, q) = 1.

Notice that Qo and Qe are disjoint dense Gδ-subsets of Q. Thus, the space Q is not
weakly Volterra.

These next three examples illustrate the dynamics of Volterra and weakly Volterra
spaces.

Example 5.3.5. ([14], p. 171, example 3.3) A space which is not weakly Volterra
but has disjoint dense Gδ-subspaces which are Volterra.

LetX = N and let O denote the odd positive integers and E the even positive integers.

For each pair (m,n) of positive integers, let

Um,n = {x ∈ X : either x ≥ 2m− 1 and x ∈ O or x ≥ 2n and x ∈ E}.

Then {∅} ∪ {Um,n : m,n ∈ N} is a topology on X. Furthermore, O and E are dense
Gδ-subsets. Thus, as subspaces, they are Volterra. However, since O ∩ E = ∅, X is
not weakly Volterra.
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Example 5.3.6. ([14], p. 173, example 3.8) A Volterra space whose subspace is not
weakly Volterra.

Consider the countable cloud space. Assume p, q ∈ Z, where gcd(p, q) = 1 and q 6= 0.
The countable cloud space X is the subspace of the plane given by X = Y ∪Z, where

Y = {(x, 0) : x ∈ Q} and Z =

{(
p

q
,
1

q

)
:
p

q
∈ Q

}
.

Since it contains a dense Gδ set of isolated points, the countable cloud space is a
Baire space, hence it is Volterra. Notice that it contains a closed subspace which is
not weakly Volterra, that is, the rationals in the x-axis.

Example 5.3.7. Using the same notation from Example 5.3.6, consider the projec-
tion from X onto Y . Note that X is Volterra since it is a metric Baire space. However,
Y is not Volterra, hence not Baire. Furthermore, this projection is continuous, closed
and perfect. See [9] for any undefined terms.

Finally, I will look at the preservation of Volterra spaces under certain types of
functions. More results on these preservations can be found in [14].

I will begin by stating what it means for a function to be open.

Definition 5.3.1. A function f : X → Y is open if for any open set U ∈ X, the
image f(U) is open in Y .

Now, let X be a space which is not weakly Volterra. As noted in Example 5.3.3,
when X is re-topologized with either the discrete or indiscrete topology, X becomes
Volterra. Thus, the identity function from X with the discrete (respectively the in-
discrete) topology to X with the original topology is a continuous (relatively open)
function from a Volterra space to a space which is not weakly Volterra. Thus, it
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follows that the image of a Volterra space under either a continuous function or an
open function need not be Volterra.

In Example 5.3.7, we showed that continuous, closed and perfect functions do
not preserve Volterra spaces. In order to explain which functions preserve Volterra
spaces, we must consider the following definition.

Definition 5.3.2. ([14], p. 177) Let f : X → Y be a function from X onto Y . Then,
f is feebly open if for each nonempty, open set U ∈ X, int(f(U)) 6= ∅.

Theorem 5.3.1. ([14], p. 177) Suppose that f : X → Y is continuous and feebly
open. If X is Volterra and f is surjective, then Y is Volterra.

Proof. Let A and B be two dense Gδ-subsets of Y . Then, f−1(A) and f−1(B) are
Gδ-subsets of X.

Furthermore, if U ⊂ X is nonempty and open, then so is int(f(U)) ⊂ Y , so that
int(f(U)) ∩ A 6= ∅. Hence,

U ∩ f−1(A) 6= ∅.

Thus, f−1(A) is dense. Similarly, f−1(B) is dense. Now, since X is Volterra,
f−1(A) ∩ f−1(B) is dense in X, which is equivalent to f−1(A ∩ B) being dense in
X. It follows that f(f−1(A ∩ B)) = A ∩ B is dense in Y since continuous surjective
functions preserve dense sets.

Therefore, Y is Volterra. �

We have the following table illustrating our results.

Function Image Table
Continuous Open Continuous, Open Closed, Perfect

Weakly Volterra
No No Yes No

Ex 5.3.3 Ex 5.3.3 Thm 5.3.1 Ex 5.3.7

Volterra
No No Yes No

Ex 5.3.3 Ex 5.3.3 Thm 5.3.1 Ex 5.3.7
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Chapter 6

Current Research Results

In this chapter, I will explore recent results of Volterra spaces from various research
articles. Then, I will state unanswered questions pertaining to properties of Volterra
spaces.

6.1 Volterra Spaces: Current State of Investiga-

tions

When Volterra spaces were introduced in [15], it was easily shown that every Baire
space is a Volterra space. However, the converse does not necessarily hold. I will now
exhibit classes of spaces X such that X is Baire if and only if it is Volterra.

In fact, the first natural class would be the class of all metric spaces. This ques-
tion was first asked by Piotrowski. In 2000, G. Gruenhage and D. Lutzer positively
answered Piotrowski’s problem in [18], and they provided a larger class of spaces in
which Volterra spaces are Baire.

The following theorem gives Gruenhage and Lutzer’s results. Part b. of this
theorem includes all metric spaces, which answers Piotrowski’s problem.

Theorem 6.1.1. ([18], p. 3118) A Volterra space X is Baire if X belongs to any one
of the following classes:

a. X has a dense subspace Y that is a strongly collectionwise Hausdorff, sequential,
and has a relatively σ-closed discrete dense subset;

b. X has a dense metrizable subspace;

c. X is a Lasnev space, i.e., a closed continuous image of a metric space;

d. X is a metacompact sequential space that has a σ-closed discrete dense set;

e. X is a metacompact Moore space or, more generally, a metacompact semistrat-
ifiable sequential space;
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f. X is separable and sequential.

In addition to proving Theorem 6.1.1, Gruenhage and Lutzer provided the fol-
lowing examples:

Example 6.1.1. ([18], p. 3119, example 3.1) There is a countable regular space that
is Volterra but not Baire.

Example 6.1.2. ([18], p. 3119, example 3.2) There is a Lindelöf, hereditarily para-
compact, linearly ordered topological space that is Volterra but not Baire.

Example 6.1.3. ([18], p. 3119, example 3.3) There is a first countable, completely
regular, paracompact space that is a Volterra space and is not a Baire space.

Since every metric space is a Moore space, Gruenhage and Lutzer asked if it was
true that any Volterra Moore space must be a Baire space.

Definition 6.1.1. A regular space is stratifiable if one can assign a sequence of open
sets {G(n,H) : n ∈ N} to each closed set H ⊂ X such that

H =
⋂
n∈N

G(n,H) =
⋂
n∈N

G(n,H),

and H ⊂ K implies that G(n,H) ⊂ G(n,K).

In 2007, Cao and Junnila proved an even stronger result in [7] using stratifiable
spaces. Every Moore space is a stratifiable space (see [17], p. 459), and using this
result, Cao and Junnila proved that if X is a stratifiable space, then X is Volterra if
(and only if) X is Baire. In addition, they constructed a Hausdorff topological group
that is Volterra but not Baire.

There is also a connection between the Volterra theorem and the Banach Category
theorem (see Appendix B). In [8], J. Cao and S. Greenwood gave a strengthened
version of the Banach Category theorem, namely:

Theorem 6.1.2. ([8], p. 260) In any topological space (X,T), the union of any
family of open non-weakly Volterra subspaces is not weakly Volterra.

Recall that:

Definition 6.1.2. A topological space X is a P -space if every Gδ-set is open.

Definition 6.1.3. A topological space X is an almost P -space if every nonempty
Gδ-set has a nonempty interior.

Ph.D. student S. Spadaro, who is currently working on his Ph.D. thesis under G.
Gruenhage at Auburn University, proved that every almost P -space is Volterra.
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6.2 Outline of the Proofs of Gruenhage and Lutzer,

and Cao and Junnila1

The cited references within the outlined material can be found within the respected
articles and will not be formally listed in my reference page.

Outline of Gruenhage and Lutzer’s Method in [18]

Lemma 6.2.1. (E.G. Pytkeev, Trudy M.I.S (1983)) Every dense-in-itself subspace
of a sequential space is resolvable.

Lemma 6.2.2. Let M be a dense subset of a regular T1 space Y , such that every
point of M is Gδ in Y . Suppose that {p}∪M is homeomorphic to a subspace of a T3

sequential space S (p not necessarily belongs to Y ), and p ∈ clS(M). Then, there is
a countable subset C(p,M) of M with p ∈ clS(C(p,m)) and such that C(p,M) is Gδ

in Y .

Sketch of the Proof. For a subset A of S let seq(A) be the set of all limits in
the space S of convergent sequences {an : n ∈ ω} ⊂ A. Then, define A0 = A,
Aα+1 = seq(Aα) and Aβ =

⋃
{Aα : α < β} if β is a limit ordinal.

Recall that S being sequential means clS(A) =
⋃
{Aα : α < ω1}. Let α be the least

such that p ∈ Mα. Call α the “sequential order of p w.r.t M” and note that α is a
successor.

If α = 1, then there is a sequence J = {mk : k ∈ ω} of points in M converging to
p. Since J is relatively discrete in M , it follows that since Y is T3 there is a disjoint
collection and C(p,M)− J .

In the rest of the proof, the authors show C(p,M) is Gδ in Y . �

Pytkeev’s result is needed in view of the following property inherited by subspaces:

Any dense-in-itself subspace of a sequential space is resolvable.

If one replaces “sequential” with “k-space” in the above result, it is false since any
completely regular space is a subspace of a compact space, hence of a k-space.

Lemma 6.2.3. Suppose U is a point-finite collection of open subsets of a space X and
that for each U ∈ U we have a Gδ-subset G(U) ⊂ U . Then S =

⋃
{G(U) : U ∈ U} is

a Gδ-subset of X.
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Lemma 6.2.4. Suppose X is regular, points are Gδ, and X has a dense subspace
D =

⋃
{Dn : n ≥ 1} satisfying:

(a) D is homeomorphic to a subspace of a T2 sequential space, and

(b) for each n ≥ 1, there is a collection {V (d, n) : d ∈ Dn} of open subsets of X
that is point-finite in X and has {d} = V (d, n) ∩Dn.

If X is of the first category in itself, then D contains a subspace E that is dense in
X and is a Gδ-subset of X.

Theorem 6.2.1. Suppose X is regular and has a dense subspace D =
⋃
{Dn : n ≥ 1}

satisfying:

(a) D is homeomorphic to a subspace of a Hausdorff sequential space;

(b) for each n ≥ 1 there is a collection {V (d, n) : d ∈ Dn} of open subsets of X
that is point-finite in X and has V (d, n) ∩Dn = {d} for each d ∈ Dn.

Then X is a Baire space if and only if X is Volterra.

Proof. Any Baire space is Volterra, so it is enough to prove the converse. Suppose
X is Volterra and yet there is a sequence {Gn : n ≥ 1} of dense open subsets of X
such that Gn+1 ⊂ Gn and

⋂
{Gn : n ≥ 1} is not dense. Then, there is a nonempty

open subset Y ⊂ X such that Y ∩
⋂
{Gn : n ≥ 1} = ∅.

Observe that the set D ∩ Y is dense in Y and satisfies both (a) and (b) above. Re-
placing X by its subspace Y if necessary, we may assume that

⋂
{Gn : n ≥ 1} = ∅.

It follows that X has no isolated points. Hence, neither does the dense subspace D.

Apply Lemma 6.2.1 to D to find two disjoint, dense subspaces D1, D2 of D. Apply
Lemma 6.2.4 to each Di to find a subspace Ei ⊂ Di that is dense in X and is a
Gδ-subset of X. But then, we have two disjoint dense Gδ-subsets of X, and that is
impossible because X is Volterra. �

Corollary 6.2.1. A Volterra space X is Baire if X belongs to any one of the following
classes:

a. X has a dense subspace Y that is a strongly collectionwise Hausdorff, sequential,
and has a relatively σ-closed discrete dense subset;

b. X has a dense metrizable subspace;

c. X is a Lasnev space, i.e., a closed continuous image of a metric space;

d. X is a metacompact sequential space that has a σ-closed discrete dense set;
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e. X is a metacompact Moore space or, more generally, a metacompact semistrat-
ifiable sequential space;

f. X is separable and sequential.

Outline of Cao and Junnila’s Method in [7]

Notation: Md will denote the derived set of M . Recall that a subset M of X is called
simultaneously separated in X if each point x ∈M has an open neighborhood Ux in
X such that {Ux : x ∈M} is a pairwise disjoint family in X. Define λ(M) by:

λ(M) =
⋃
{Ad : A ⊂M and A is simultaneously separated in X}.

Lemma 6.2.5. (P.L. Sharma, S. Sharma (1988)) Let X be a dense-in-itself Hausdorff
space. If λ(X) = X, then X is resolvable.

A space X is said to be monotonically normal (G. Gruenhage (1984)) if there
exists a map

G : {x ∈ G(x, U) : x ∈ U ∈ T (X)} → T (X)

such that x ∈ G(x, U) and G(x, U)∩G(y, V ) 6= ∅ implies that either y ∈ U or x ∈ V .

It is well-known that every stratifiable space is monotonically normal.

Lemma 6.2.6. (Dow-Tkachenko-Tkachuk-Wilson (2002)) Let X be a dense-in-itself,
monotonically normal Hausdorff space. Then M = λ(M) for any M ⊂ X.

Corollary 6.2.2. Every dense-in-itself monotonically normal Hausdorff space is re-
solvable.

Lemma 6.2.7. (G. Gruenhage, D. Lutzer (2000)) Suppose U is a point-finite collec-
tion of open sets in X and that each U ∈ U contains a Gδ-set G(U) of X. Then:

S = {G(U) : U ∈ U}

is a Gδ-set in X.

Theorem 6.2.2. Every stratifiable Volterra space is Baire.
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Proof. Suppose X is not Baire. We will show that X is not Volterra. Let G be a
nonempty open set in X which is of first category. We are done if we can show that
G is not weakly Volterra, since a space is Volterra if and only if all of its nonempty
open subspaces are weakly Volterra.

Without loss of generality, let G = X. Then, let {Gn : n ∈ N} be a sequence of dense
open subsets of X such that

⋂
n∈NGn = ∅.

We may assume Gn+1 ⊂ Gn for all n ∈ N. This implies that X is dense-in-itself and
the family {Gn : n ∈ N} is point-finite in X.
Now, by the above corollary, it is resolvable. So, X has a resolution (D,E). In the
sequel, we shall construct two dense Gδ-subsets D′ and E ′ of X such that D′ ⊂ D
and E ′ ⊂ E. By the stratifiability of X, there is a σ-discrete network N .

Let N0 = {N ∈ N : N ∩D 6= ∅} and for each N ∈ N0 select a point xN ∈ N ∩D. It
can be checked that {xN : N ∈ N0} is a σ-discrete and dense subset of X. We may
also assume that D itself is σ-discrete, since D =

⋃
n∈NDn, where each Dn is discrete

in X.

For each n ∈ N and d ∈ Dn choose an open subset V (d, n) of X such that:

Dn ∩ V (d, n) = {d}.

Lemma 6.2.7 can be used to show that K(d, n) is Gδ.

Now, let Hn =
⋃
d∈DK(d, n). Then, D′ =

⋃
n∈NHn is a Gδ-set in X. Similarly, we

can construct a dense Gδ-set E ′ ⊂ E.

So, concluding, since X contains two disjoint dense Gδ-sets D′ and E ′, it is not a
weakly Volterra space. �

6.3 Problems I Wish I Could Solve

The following two questions were asked by Z. Piotrowski.

Problem 1. Let X be a Volterra space and let Y = [0, 1]. Must the cartesian product
X × Y be Volterra?

Problem 2. If the answer to the previous problems is “yes”, then let Y be a Volterra
space having a countable base. Must X × Y be Volterra?

This next question was asked by J. Tartir as a follow-up to the previous two
problems.
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Problem 3. Let X be a Volterra space and let Y = {y : y = 1
n
, n = 1, 2, . . .} ∪ {0}.

Must X × Y be Volterra?

The next two problems are due to Z. Piotrowski in view of Theorem 5.3.1.
However, before considering the fourth problem we need the following definition.

Definition 6.3.1. (see [22]) Let f : X → Y be a function from X onto Y . Then, f
is quasi-continuous if for every open subset V ⊂ Y , f−1(V ) ⊂ int(f−1(V )).

Problem 4. Are Volterra spaces preserved by quasi-continuous, feebly open surjec-
tions?

Just recently, the fourth problem was solved. See J. Dalbec and Z. Piotrowski
“Mappings of Generalized Baire and Volterra Spaces” (in preparation).

For any topological space X, it is known that for any two dense, open subsets U
and V of X, their intersection U ∩ V is dense. Furthermore, if X is a Volterra space,
then by definition we know that given any two dense Gδ-subsets U and V of X, their
intersection U ∩ V is dense. This led Z. Piotrowski to ask the following question.

Problem 5. What are the topological spaces X such that when given any two dense
Gδσ-subsets U and V of X, their intersection U ∩ V is dense?

Problems 6 and 7 were asked by G. Gruenhage and D. Lutzer in [18].

Problem 6. Is it true that a space X must be a Baire space provided X is Volterra
and has a dense subspace that is developable and metacompact?

Problem 7. Suppose X is a σ-space and first category in itself. Must every dense-
in-itself subset D of X contain a dense subset E which is Gδ in X?

Since every almost P -space is a Volterra space, S. Spadaro asked the following
question.

Problem 8. Does there exist an almost P -space with a dense non-Volterra subspace?

In view of the discussion proceeding Example 5.1.1, we have the following prob-
lem.

Problem 9. What is the natural class S of spaces having Gδ-diagonal, and containing
all weakly developable spaces such that for any topological space X, any space Y from
S and any function f : X → Y , the set C(f) of points of continuity of f is a Gδ-set?
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Appendix A

Kuratowski-Zorn Lemma

We will state and prove the Kuratowski-Zorn Lemma, which is used in the proofs
of many mathematical theorems. This theorem was first proved by K. Kuratowski
in 1922 and its importance in applications was first demonstrated by M. Zorn in
1936. The following terminology is required for the Kuratowski-Zorn Lemma. All the
theorems, definitions and lemmas were taken directly from [30].

Definition A.0.2. A relation R ⊂ X ×X is called an ordering relation on X if it is
reflexive, antisymmetric and transitive, i.e.,

1. for every x ∈ X, xRx,

2. for every x, y ∈ X, (xRy and yRx)⇒ x = y,

3. for every x, y, z ∈ X, (xRy and yRz)⇒ xRz.

Instead of xRy, we write x ≤ y which is read “x is contained in y” or “y contains
x.” We also say that R orders X, and the ordered pair (X,R) is called an ordered
set.

Definition A.0.3. Let ≤ be an order relation on X. Define the relation ≺ as follows:

x ≺ y if and only if x ≤ y and x 6= y, for every x, y ∈ X.

x ≺ y is read “x precedes y”.

Definition A.0.4. An ordering relation is called a linear ordering if it satisfies the
following connectivity condition, i.e., for every x, y ∈ X,

x ≤ y or y ≤ x.

If ≤ is a linear ordering on X, we say that ≤ linearly orders X. The ordered pair
(X,≤) is called a linearly ordered set (l.o.s.), or a chain.
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Definition A.0.5. Let A ⊂ X, and let (X,≤) be an ordered set. An element x0 ∈ X
is called an upper bound of the set A if for every x ∈ A, x ≤ x0.

Definition A.0.6. Let (X,≤) be an ordered set. An element x0 ∈ X is called
maximal if it does not precede any element. That is, there is no x ∈ X such that
x0 ≺ x.

Definition A.0.7. A binary relation ≤ on X which establishes a linear ordering
is called a well-ordering if for every nonempty set A ⊂ X, the linearly ordered set
(A,≤ |A) has a first element.

Then, we also say that ≤ well-orders X, and the ordered pair (X,≤) is called a
well-ordered set.

We will now state the theorem on transfinite induction. This process will be used
to prove the Kuratowski-Zorn lemma.

Theorem on Transfinite Induction. Let (X,≤) be any well-ordered set. If P (x)
is a propositional function which ranges over X and satisfies the following conditions:

1. the first element of X satisfies the propositional function P (x),

2. for every y ∈ X, if every z ∈ X, such that z ≤ y and z 6= y satisfies the
propositional function P (x), then y also satisfies P (x),

then every element of X satisfies the propositional function P (x).

Definition A.0.8. The order types of well-ordered sets are called ordinal numbers.

The ordinal types include the order type of the empty set, denoted by 0. The
concept of a well-ordered set and an ordinal number is due to G. Cantor (1883). The
ordinal number of a well-ordered set of n elements is denoted by n.

Definition A.0.9. We say that the sets X and Y are equipotent (or have the same
cardinality) if there is a bijective function from X onto Y .
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With every element of a collection of equipotent sets, we may associate an object,
called the cardinal number of X, denoted by card(X). We shall also say that X has
the cardinality card(X).

In the case of a finite set, its cardinal number is the number of its elements. Car-
dinal numbers of finite sets begin with 0, which is the cardinal number of the empty
set. The cardinal number of countable infinite sets is denoted by ℵ0.

We can now state and prove the Kuratowski-Zorn lemma.

The Kuratowski-Zorn Lemma. Let (X,≤) be an ordered set. If every chain
A ⊂ X has an upper bound in X, then X has a maximal element. More precisely,
for every x0 ∈ X, there is a maximal element x such that x0 ≤ x.

Proof. Let (X,≤) be an ordered set that satisfies the assumptions made. Assume
card(X) = m. Suppose, that for an element x0 in X, there is no maximal element
in X such that x0 ≤ x. It follows from this and from the definition of a maximal
element that for every element y of X such that x0 ≤ y, there is an element z ∈ X
such that y ≤ z and y 6= z.

Let us now use transfinite induction to define a sequence {zβ}β<α, where α is the
order type of the set Z(m) of all ordinal numbers of the power not greater than m.

The inductive definition goes as follows:

1. z0 = x0,

2. for every isolated ordinal number β = γ + 1, β ≤ α, the term zβ ∈ X is such
that zγ 6= zβ and zγ ≤ zβ,

3. for every limit ordinal number β < α, the term zβ ∈ X is an upper bound of
the set {zγ}γ<β if that upper bound exists, and zβ = x0 otherwise.

We will show that zγ ≺ zξ, i.e., zγ ≤ zξ, and zγ 6= zξ for γ < ξ < α. Let Z be the
set of all ordinal numbers β < α, such that γ < ξ ≤ β. Then, the above condition is
satisfied.

Obviously, 0 is in Z. Assume that Z(β) ⊂ Z. If β = δ + 1, then we infer from (2)
that zδ ≺ zβ.

Since δ < β, we have δ ∈ Z(β) and accordingly δ ∈ Z. It follows that if γ < ξ ≤ δ,
then zγ ≺ zξ. We infer from this and from zδ ≺ zξ that β ∈ Z.

If β is a limit ordinal number and Z(β) ⊂ Z, then for any ordinal numbers γ and ξ
such that γ < β and ξ < β, one of the following conditions is met:

γ < ξ, γ = ξ, ξ < γ,
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i.e., the set {zγ}γ<β is a chain.

In fact, since ξ, γ ∈ Z, one of the conditions zγ ≺ zξ, zγ = zξ, zξ ≺ zγ is satisfied.

It follows that zγ ≤ zξ or zξ ≤ zγ which proves that {zγ}γ<β is a chain.

Now, it follows from (3) and the assumption made in the theorem that zβ is an upper
bound of this chain, so that zγ 6= zβ for every γ < β. We infer from this and from
the fact that Z(β) ⊂ Z and β is a limit ordinal number that zγ ≺ zβ for every γ < β.

Since the condition γ < ξ < β implies zγ ≺ zξ, we infer that β ∈ Z. By the theorem
on transfinite induction, we infer that every ordinal number β < α is in Z. This proves
that zγ ≺ zξ for γ < ξ < α. Thus, (zβ)β<α is a one-to-one sequence. Hence, the set
(zβ)β<α is equipotent with the set Z(α).

Accordingly,

4. card((zβ)β<α) = card(Z(α)) = card(α).

Also, since (zβ)β<α ⊂ X, we have

5. card((zβ)β<α) ≤ card(X) = m.

We now infer from (4) and (5) that the assumption concerning the ordinal number α
and the formula ℵ(m) = card(Z(m)) that

ℵ(m) = card(z(m)) = card(α) ≤ card(X) = m,

so that ℵ(m) ≤ m. So, for every cardinal number m, the power of the set of all ordinals
α such that card(α) ≤ m is neither less than nor equal to the cardinal number m.
Thus, ℵ(m) > m. �
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Appendix B

The Banach Category Theorem

This proof of the Banach Category theorem is based on the proof of the Banach
Category theorem in [28].

Theorem B.0.1. In a topological space X, the union of any collection of open sets
of first category is of first category.

Proof. Let G∗ be the union of a collection G of nonempty open sets of first category.

Let F = {Uα : α ∈ A} be a maximal collection of disjoint nonempty open sets such
that each is contained in some member of G.

Observe that due to the maximality of F , the closed set G∗\
⋃
F = G∗\F∗ is nowhere

dense.
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As a subset of a respective member of G, every set Uα is of first category. Thus, Uα
can be represented as the countable union of nowhere dense sets, say Uα =

⋃∞
n=1Nα,n.

Now, let us define Nn =
⋃
α∈ANα,n.

Observe that
∞⋃
n=1

⋃
α∈A

Nα,n =
⋃
α∈A

Uα =
∞⋃
n=1

Nn.

Now, if an open, nonempty set U intersects Nn, then there is an index α such that:

U ∩Nα,n 6= ∅.
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However, since Nα,n is nowhere dense, there is an open nonempty set V such that

V ⊂ (U ∩ Uα) \Nα,n.

Hence, V ⊂ U \Nn and so, Nn is nowhere dense. Thus,

G∗ ⊂ (G∗ \ F∗) ∪
⋃
α∈A

Uα

= (G∗ \ F∗) ∪
∞⋃
n=1

Nn

is of first category. �
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Cauchy’s condition, 1
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compact topological space, 41
complete metric space, 25
continuous at a point, 1
continuous function, 1
continuous mapping, 27
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D(f), 9
dense, 4, 21, 36
dense-in-itself, 21
derived set, 20
developable space, 52

development, 51
distance, 18
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epsilon-net, 22
equipotent, 66

feebly open, 57
first category, 38
first class of Baire, 17
first countable, 35

Hausdorff space, 32
Heine’s condition, 1
Heine-Borel theorem, 41

interior, 34
interior point, 5
isolated point, 5

k-space, 22
Kuratowski-Zorn lemma, 67

l.o.s., see chain
linear ordering, 65
local base, 35
locally compact, 42
locally compact at a point, 42

maximal element, 66
metric, 18

discrete metric, 19
Euclidean metric, 19
usual metric on R, 19
usual metric on R2, 19

metric space, 18
Michael line, 52
Moore space, 52

nowhere dense, 37
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open ball, 19
open covering, 40
open function, 56
open neighborhood, 34
open set, 5, 31, 34
ordered set, 65
ordering relation, 65
ordinal number, 66
oscillation at a point, 7
oscillation on an interval, 6

P-space, 59
pointwise discontinuous, 13

quasi-continuous, 64

regular topological space, 33
resolvable space, 21

salt and pepper function, 10
second category, 39
second countable, 36
small Riemann function, 11
somewhere dense, 37
st(A,U), 51
star, 51
stratifiable space, 59

T0-space, 32
T1-space, 32
T2-space, 32
the ≺ relation, 65
topological space, 31
topology, 31

cofinite topology, 32
discrete topology, 31
Euclidean topology on R, 31
Euclidean topology on R2, 31
trivial topology, 31

transfinite induction, 66
triangle inequality, 18

upper bound, 66

Volterra space, 52
Volterra’s theorem, 14

Baire space, 49

compact metric, 29
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weakly Volterra space, 52
well-ordered set, 66
well-ordering relation, 66
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