Geomorphic Characterization of Restored Streams

By

Santosh Raj Pant

## Submitted in Partial Fulfillment of the Requirements

For the Degree of

**Master of Science** 

in the

**Civil and Environmental Engineering** 

Program

## YOUNGSTOWN STATE UNIVERSITY

August, 2010

## **Geomorphic Characterization of Restored Streams**

## Santosh Raj Pant

I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research.

Signature:

Santosh R. Pant, Student

Approvals:

Dr. Scott C. Martin, Thesis Advisor

Dr. Hans M. Tritico, Committee Member

Dr. Felicia P. Armstrong, Committee Member

Dr. Peter J. Kasvinsky, Dean of School of Graduate Studies and Research

Date

Date

Date

Date

Date

#### ABSTRACT

Research was performed on two stream restoration projects: a) Austintown Township Park in Austintown, OH; and b) Pine Hollow Run Tributary (Indian Run) in Hermitage, PA. The main goals of the research were to:

- 1. Determine the physical condition of two restored streams including longitudinal profile, crosssection, sinuosity, and substrate, through field surveys;
- 2. Perform Level II Stream classification based on Rosgen (1996); and
- Evaluate the success of the stream restoration projects in meeting the objectives and goals of the client and designer.

Field surveys were done on both projects to determine longitudinal profile, cross-section and channel materials. Rosgen (1996) Level I and Level II assessments were used to classify the streams. The essential morphological parameters that were determined from the field survey were bankfull width, mean bankfull depth, maximum bankfull depth, width of flood prone area, width/depth ratio, entrenchment ratio, channel materials and sinuosity. From those parameters the Rosgen Level II classification was performed. The Rosgen classification showed both the unnamed tributary (UNT) to Meander Creek running through Austintown Township Park and Indian Run to be "B4c" type streams.

Bankfull velocity and discharge of Austintown Township Park UNT were estimated as 1.52 ft/s and 7.29 cfs, respectively. Similarly, bankfull velocity and discharge of Indian Run were estimated as 1.40 ft/s and 9.80 cfs, respectively.

## **DEDICATION**

This research is dedicated to my parents, Mr. Shambhu R. Pant and Mrs. Sabitri Pant who are always a great source of strength to me. I am very thankful to my parents for their love and support.

#### ACKNOWLEDGEMENTS

I would like to take this opportunity to express my deepest gratitude to my advisor, Scott C. Martin, Ph.D., P.E., for his immense support, supervision, guidance and advice from the very early stage of this research. This thesis would not have been possible without his persistent help and supervision. It has been pleasure to work with a knowledgeable and helpful advisor like Dr. Martin.

I would like to thank my committee members, Dr. Hans M. Tritico and Dr. Felicia P. Armstrong, for giving their valuable time in evaluating my thesis work and giving necessary comments. I gratefully acknowledge Wallace and Pancher Inc. for providing all the necessary documents, reports, and technical information on the study sites. I would also like to thank Artman Elementary School, Hermitage, PA and Austintown Township Park, Austintown, OH for giving permission to perform fieldwork.

I am very grateful to my friend and roommate Mr. Rajesh Poudel who helped me in performing fieldwork and doing calculations. I am thankful to all who helped me directly or indirectly in completing this thesis. Finally, I would like to express my regards and blessing to all who supported me in any respect during the completion of this thesis.

## TABLE OF CONTENTS

## PAGE

| ABSTRACT                                                             | iii |
|----------------------------------------------------------------------|-----|
| DEDICATION                                                           | iv  |
| ACKNLOWEDGEMENTS                                                     | v   |
| LIST OF FIGURES                                                      | ix  |
| LIST OF TABLES                                                       | xi  |
| CHAPTERS                                                             |     |
| 1. INTRODUCTION                                                      | 1   |
| 1.1 Background                                                       | 1   |
| 1.2 Goals/Objectives of the Project                                  | 2   |
| 2. LITERATURE REVIEW                                                 | 4   |
| 2.1 Overview of Streams                                              | 4   |
| 2.2 Functions of Healthy Streams                                     | 4   |
| 2.3 Features of Stream                                               | 6   |
| 2.4 Classification of Streams                                        | 8   |
| 2.4.1 Objectives of Stream Classification                            | 8   |
| 2.4.2 Level I: Geomorphic Characterization                           | 8   |
| 2.4.3 Level II: The Morphological Description                        | 11  |
| 2.4.4 Geomorphic Parameters used in Rosgen Classification of Streams | 14  |
| 2.4.5 Level III: Stream "State" or Condition                         | 23  |
| 2.4.6 Level IV: Validation Level                                     | 23  |
| 2.5 Stream Restoration Methods                                       | 23  |

| 2.6 Weakness of Rosgen Stream Classification               | 27 |
|------------------------------------------------------------|----|
| 2.7 Background on Project Sites                            | 28 |
| 2.7.1 Austintown Township Park                             | 28 |
| 2.7.2 Pine Hollow Run Tributary Stream Restoration Project | 29 |
| 3. METHODS AND PROCEDURES                                  | 33 |
| 3.1 Longitudinal Profile Survey                            | 33 |
| 3.1.1 Overview                                             | 33 |
| 3.1.2 Field Procedures                                     | 33 |
| 3.1.3 Data Analysis                                        | 34 |
| 3.2 Cross Sectional Survey                                 | 35 |
| 3.2.1 Overview                                             | 35 |
| 3.2.2 Field Procedures                                     | 35 |
| 3.2.3 Data Analysis                                        | 36 |
| 3.3 Pebble Count Method                                    | 37 |
| 3.3.1 Overview                                             | 37 |
| 3.3.2 Field Procedures                                     | 37 |
| 3.3.3 Data Analysis                                        | 39 |
| 3.4 Stream Classification                                  | 41 |
| 3.5 Estimation of Bankfull Discharge                       | 41 |
| 3.5.1 Method 1- Friction factor/Relative Roughness         | 41 |
| 3.5.2 Method 2- Use of Manning's Equation                  | 42 |

| 4. | <b>RESULTS AND DISCUSSION</b>                                                                                           | 46 |
|----|-------------------------------------------------------------------------------------------------------------------------|----|
|    | 4.1 Longitudinal Profile                                                                                                | 46 |
|    | 4.1.1 Austintown Township Park UNT                                                                                      | 46 |
|    | 4.1.2 Indian Run Stream Restoration Project                                                                             | 46 |
|    | 4.2 Cross-sections                                                                                                      | 49 |
|    | 4.2.1 Austintown Township Park                                                                                          | 49 |
|    | 4.2.2 Indian Run Stream Restoration Project                                                                             | 49 |
|    | 4.3 Pebble Count                                                                                                        | 58 |
|    | 4.4 Classification of Streams                                                                                           | 63 |
|    | 4.4.1 Austintown Township Park UNT                                                                                      | 63 |
|    | 4.4.2 Indian Run Stream Restoration Project                                                                             | 66 |
|    | 4.5 Bankfull Velocity/ Discharge Estimation                                                                             | 68 |
|    | 4.6 Departure from Natural Conditions                                                                                   | 71 |
|    | 4.6.1 Comparison of Mean Depth, Width and Cross-sectional<br>Area of Streams from Regional Curves and Actual Field Data | 72 |
| 5. | CONCLUSIONS AND RECOMMENDATIONS                                                                                         | 74 |
|    | 5.1 Conclusions                                                                                                         | 74 |
|    | 5.2 Recommendations                                                                                                     | 75 |
| RI | EFERENCES                                                                                                               | 76 |
| AI | PPENDIX                                                                                                                 | 78 |

## LIST OF FIGURES

| FIGURE       |                                                                                                                                         | PAGE |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 2-1.  | Meander and points bars in a stream                                                                                                     | 7    |
| Figure 2-2.  | Level I stream classification delineation showing longitudinal cross-sectional and plan views of major stream types                     | 9    |
| Figure 2-3.  | Flow chart showing delineative criteria used for the morphological description                                                          | 12   |
| Figure 2-4.  | Level II classification key for natural rivers                                                                                          | 13   |
| Figure 2-5.  | Typical stream cross-section, showing bankfull stage, width<br>of flood-prone area, hydrologic floodplain and topographic<br>floodplain | 14   |
| Figure 2-6.  | Sample plot of pebble-count data                                                                                                        | 19   |
| Figure 2-7.  | Cross-section, profile and plan view of a cross-vane                                                                                    | 25   |
| Figure 2-8.  | Plan profile and section view of the J-hook vane                                                                                        | 26   |
| Figure 2-9.  | Topographic map of Austintown Township Park                                                                                             | 29   |
| Figure 2-10. | Project location map                                                                                                                    | 31   |
| Figure 2-11. | Right bank erosion in Indain Run                                                                                                        | 32   |
| Figure 3-1.  | Determining the entrenchment ratio                                                                                                      | 37   |
| Figure 3-2.  | Intermediate axis of the particle                                                                                                       | 38   |
| Figure 3-3.  | Relative roughness (R/D <sub>84</sub> ) vs. friction factor $(u/u^*)$                                                                   | 43   |
| Figure 3-4.  | Friction factor (u/u <sup>*</sup> ) vs. Manning's roughness coefficient 'n'                                                             | 44   |
| Figure 3-5.  | Manning's 'n' by stream type                                                                                                            | 45   |
| Figure 4-1.  | Longitudinal profile of Austintown Township Park project UNT                                                                            | 47   |
| Figure 4-2.  | Longitudinal profile of restored section of Indian Run                                                                                  | 48   |
| Figure 4-3.  | Channel cross-section at station 0+50 on unnamed stream in Austintown Township Park                                                     | 50   |

| FIGURE       |                                                                                                         | PAGE |
|--------------|---------------------------------------------------------------------------------------------------------|------|
| Figure 4-4.  | Channel cross-section at station 1+00 on unnamed stream in Austintown Township Park                     | 51   |
| Figure 4-5.  | Channel cross-section at station 1+50 on unnamed stream in Austintown Township Park                     | 52   |
| Figure 4-6.  | Channel cross-section at station 2+00 on unnamed stream in Austintown Township Park                     | 53   |
| Figure 4-7.  | Channel cross-section at station 0+15 on Indian Run                                                     | 54   |
| Figure 4-8.  | Channel cross-section at station 6+25 on Indian Run                                                     | 55   |
| Figure 4-9.  | Channel cross-section at station 6+80 on Indian Run                                                     | 56   |
| Figure 4-10. | Channel cross-section at station 7+75 on Indian Run                                                     | 57   |
| Figure 4-11. | Pebble count for Austintown Township Park UNT                                                           | 61   |
| Figure 4-12. | Pebble count for restored section of Indian Run                                                         | 62   |
| Figure 4-13. | Regional curves showing bankfull dimensions vs drainage areas for various hydro-physiographic provinces | 71   |

## LIST OF TABLES

| TABLE              |                                                                                                           | PAGE |
|--------------------|-----------------------------------------------------------------------------------------------------------|------|
| Table 2-1.         | Stream types defined by Rosgen (1996)                                                                     | 10   |
| Table 2-2.         | Channel material classification                                                                           | 18   |
| Table 2-3.         | Field form for Level II stream classification                                                             | 21   |
| Table 2-4.         | Worksheet for comparison of bankfull velocity and discharge using various methods                         | 22   |
| Table 3-1.         | Field form for documentation and analysis of pebble count data                                            | 40   |
| Table 4-1.         | Pebble count for Austintown Township Park UNT                                                             | 59   |
| Table 4-2.         | Pebble count for Indian Run                                                                               | 60   |
| Table 4-3.         | Cross-sectional area calculation at 0+50 on Austintown<br>Township Park UNT                               | 63   |
| Table 4-4.         | Average morphological parameters for the classification of Austintown Township Park UNT                   | 64   |
| Table 4-5.         | Level II classification of Austintown Township Park UNT                                                   | 65   |
| Table 4-6.         | Major morphological parameters for the classification of Indian Run                                       | 66   |
| Table 4-7.         | Level II classification of Indian Run                                                                     | 67   |
| Table 4-8.         | Computation of velocity and discharge of unnamed stream in Austintown Township Park using various methods | 69   |
| Table 4-9.         | Computation of velocity and discharge of Indian Run using various methods                                 | 70   |
| <b>Table 4-10.</b> | Comparision of values obtained from regional curve and actual field data                                  | 72   |
| Table A-1.         | Longitudinal data for Austintown UNT                                                                      | 78   |
| Table A-2.         | Longitudinal data for Indian Run                                                                          | 79   |
| Table B-1.         | Cross-sectional data for Austintown UNT                                                                   | 83   |

xi

| TABLE      |                                                           | PAGE |
|------------|-----------------------------------------------------------|------|
| Table B-2. | Cross-sectional data for Indian Run                       | 86   |
| Table C-1. | Cross-sectional area calculation at 1+00 (Austintown UNT) | 88   |
| Table C-2. | Cross-sectional area calculation at 1+50 (Austintown UNT) | 89   |
| Table C-3. | Cross-sectional area calculation at 2+00 (Austintown UNT) | 90   |
| Table D-1. | Cross-sectional area calculation at 0+15 (Indian Run)     | 91   |
| Table D-2. | Cross-sectional area calculation at 6+25 (Indian Run)     | 92   |
| Table D-3. | Cross-sectional area calculation at 6+80 (Indian Run)     | 93   |
| Table D-4. | Cross-sectional area calculation at 7+75 (Indian Run)     | 94   |

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Background

Stream and rivers have been very important to human development from the early days of civilization. Rivers and streams are used for various purposes like drinking, washing, fishing, irrigation, transportation and waste disposal. The United States has more than 3.5 million miles of rivers and streams that comprise great economic, social, cultural and environmental value (American Rivers, 2009). Stream corridors are not only good habitat for various aquatic and terrestrial plants and animals but they also perform a number of ecological function such as modulating stream flow, storing water and removing harmful materials from water. They also serve as conduits for the movement of animals and transportation of sediments. Naturally flowing streams are stable and ecologically sound. However, due to rapid population growth and urbanization in much of the world, many streams are impaired in their stability and function.

Development and urbanization are major problems causing disturbances in stream ecosystems and flow patterns. Increased use of water for various purposes like industrial and domestic water supply, irrigation, transportation, hydropower, mining, recreation and aesthetics are often fulfilled by manipulating the natural stream. Development increases surface water runoff and wastewater discharge, which not only increases the flow in streams but also decreases the quality of water. Streams are sometimes channelized to increase their hydraulic capacity and gain access to adjacent land for development. In addition, vegetation is often removed from the riparian corridor. These changes cause the stream to lose some of its natural functions and can lead to stream bank erosion. To reverse the negative impacts of development on streams, many streams restoration projects have been implemented in recent years. Restoration is a complex endeavor that begins by recognizing the disturbances that are damaging the structure and functions of the ecosystem or preventing its recovery to a sustainable condition (Pacific Rivers Council, 1996). Potential goals of stream restoration are to improve water quality, in-stream and riparian habitat, and geomorphology such that the biotic integrity and stability of the stream are improved, approaching the original undisturbed condition. Stream restoration approaches vary depending upon the degree of impairment and the objectives of restoration.

Restoration of the stream is done to achieve specific goals which can vary from project to project. Some stream restorations are designed to reduce bank erosion and control flow in the streams while others may be done for the improvement of water quality and aquatic life. So, the goals of restoration vary from project to project. It is very important to conduct post-project evaluation to determine if the goals of the stream restoration project have been met. Without conducting such evaluation and widely disseminating the results, lessons will not be learned from successes and failures, and the field of river restoration cannot advance. (Kondolf *et al.*, 1995)

#### **1.2 Goals/Objectives of the Project**

The goals of this project were to:

- 1. Determine the physical condition of two restored streams including longitudinal profile, cross-section, sinuosity, and substrate, through field surveys;
- 2. Perform Level II Stream classification based on Rosgen (1996); and

3. Evaluate the success of the stream restoration projects in meeting the objectives and goals of the client and designer.

#### **CHAPTER 2**

#### LITERATURE REVIEW

#### 2.1 Overview of Streams

A stream is a natural body of running water with a current, confined within a bed and stream banks. Streams have been very important to human beings from ancient times. Healthy streams are those that have stable dimensions, pattern and profile with a wide and densely vegetated riparian corridor and good aquatic habitat.

#### **2.2 Functions of Healthy Streams**

The main goal of stream restoration, in general, is to reestablish the ecosystem and natural functions of a stream. The six main functions of healthy streams are habitat, conduit, filter, barrier, source and sink.

**Habitat:** Habitat refers to the places where plants and animals live, grow, feed, and reproduce for any portion of their lifecycle. The well-restored stream should be an ideal place for many species to live, find food and water, reproduce, and establish viable populations (FISRWG, 1998).

**Conduit:** Streams serve as flow pathways for energy, materials and organisms. The stream corridor can function as a conduit both laterally or longitudinally for the movement of organism and materials. Generally, materials such as organic debris and nutrients move from higher to lower floodplains. Animals can move in any direction within the stream corridor. Streams are also conduits for the movement of energy, which occurs in many forms. The gravity driven energy of flowing water can modify the

landscape. Another important conduit function is the transport of sediment both as bed load and suspended load (FISRWG, 1998).

Filter and Barrier: Streams can function as barriers that prevent movement or filters that allow selective penetration of energy, materials and organisms. Various attributes such as native plant communities, riparian corridor and sometimes the stream itself, or instream bars or islands, can act as barriers. Barriers in a stream corridor reduce water pollution, minimize sediment transport and often provide a natural boundary to land uses, plant communities, and some less mobile wildlife species. Structural attributes of stream corridors also help to filter material, energy and organisms that move into and through them. Attributes such as the structure of native plant communities can physically affect the amount of runoff entering a stream system through uptake, absorption, and interruption. Vegetation in the corridor can filter out much of the overland flow of nutrients, sediments, and water (FISRWG, 1998).

**Source and Sink:** A source can be defined as a location where the output of water materials, energy, and/or organisms exceeds input. A sink is a location where the input exceeds output. Stream corridors or features within them can act as a source or sink of environmental materials. Some stream corridors act as both, depending on the time of year or location in the corridor. For example, a stream bank can act as both source and sink of sediment. Stream banks most often act as a source, transferring sediment to the stream. However, they can also function as a sink when flow decreases after a storm and sediment deposits at the stream banks (FISRWG, 1998).

5

#### 2.3 Features of a Stream

Some major features of streams are riffles, runs, pools, glides, meanders, bars, floodplains, and thawleg. These are described below (Rosgen, 1996).

**Riffle:** A shallow stretch of a river or stream, where the current is above the average stream velocity and where the water forms small rippled waves as a result. Most often they have a rocky bed of gravel or small stones.

**Run:** A smooth flowing area of decreasing velocity, typically in the transition from riffle to pool.

**Pool:** A stretch of creek or stream in which water depth is above average and the stream velocity is quite low. Stream pools may be bedded in sediment or armored with gravels; in some cases the pools may have been formed as basins in bedrock materials. Pools are very important to fish habitats, especially in summer when many stream reaches experience high temperatures and low flow characteristics.

**Glide:** A smooth, flowing area where velocity increases, typically in the transition from pool to riffle.

**Meander:** A bend in the stream. A meander is formed when the moving water in the stream erodes the outer banks and widens its valley. A stream of any discharge may assume a meandering course, eroding sediments from the outside of a bend and depositing them on the inside. The result is a snaking pattern as the stream traverses back and forth across its valley. Meandering is a natural mechanism to dissipate the energy of flowing water.

**Bar:** A feature formed by sediment deposition in the stream channel. Point bars form at the inside of a meander (Figure 2-1). Transverse bars run across a stream channel.

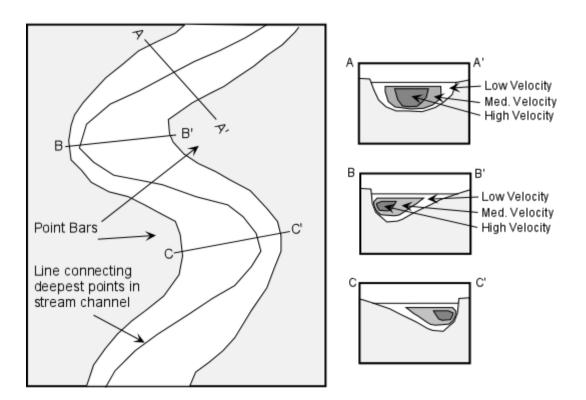



Figure 2-1. Meanders and point bars in a stream (Nelson, 2003).

**Floodplain:** Flat or nearly flat land adjacent to a stream or river that experiences occasional or periodic flooding.

**Thawleg:** A line drawn to join the lowest points along the entire length of a streambed or valley in its downward slope, defining its deepest channel. It commonly marks the natural direction of a watercourse. The thalweg is almost always the line of fastest flow in any river.

#### **2.4 Classification of Streams**

Stream classification has been performed by various researchers in the past. Currently, the most commonly used stream classification system is the one developed by Rosgen (1996). The Rosgen system was used in this research and is described in detail here.

#### 2.4.1 Objectives of Stream Classification

- Predict a river's behavior from its appearance;
- Develop specific hydraulic and sediment relationships for a given stream type and its state;
- Provide a mechanism to extrapolate site-specific data to stream reaches having similar characteristics; and
- Provide a consistent frame of reference for communicating stream morphology and condition among a variety of disciplines

## 2.4.2 Level I: Geomorphic Characterization

Rosgen's Level I classification and delineation process provides a general characterization of valley types and landforms, and identifies the corresponding major stream types, A through G. Table 2-1 and Figure 2-2 summarize the stream types A through G.

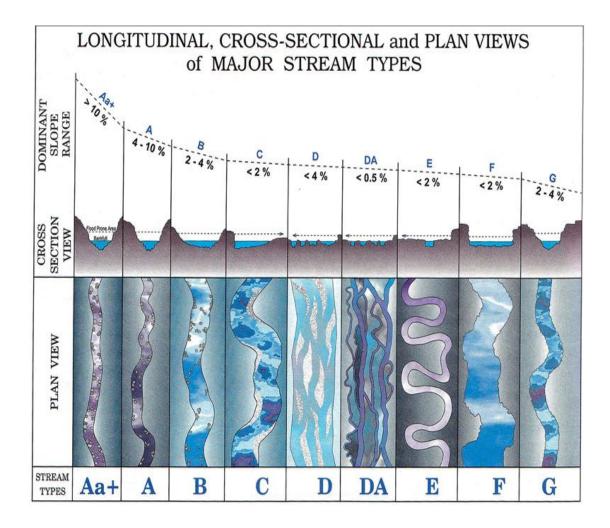



Figure 2-2. Level I stream classification delineation showing longitudinal, crosssectional and plan views of major stream types (Rosgen, 1994).

| Stre-<br>am<br>Type | General Description                                                                                                                                                                                                                                 | Entre-<br>nchm-<br>ent<br>Ratio | W/D<br>Ratio            | Sinuo-<br>sity          | Slope              | Landform/Soils/Features                                                                                                                                                                                                                                                                         |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|-------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aa+                 | Very steep, deeply<br>entrenched, debris<br>transport, torrent streams                                                                                                                                                                              | <1.4                            | <12                     | 1.0<br>to<br>1.1        | >.10               | Very high relief, Erosional, bedrock or<br>depositional features, debris flow potential.<br>Deeply entrenched streams. Vertical steps<br>with deep scour pools, waterfalls                                                                                                                      |
| А                   | Steep, entrenched,<br>cascading, step/pool<br>streams. High energy/debris<br>transport associated with<br>depositional soil. Very<br>stable if bedrock or boulder<br>dominated channel                                                              | <1.4                            | <12                     | 1.0<br>to<br>1.2        | .04<br>to<br>.10   | High relief. Erosional or depositional and<br>bedrock forms. Entrenched and confined<br>streams with cascading reaches. Frequently<br>spaced, deep pools in associated step/pool<br>bed morphology.                                                                                             |
| В                   | Moderately entrenched,<br>moderate gradient, riffle<br>dominated channel, with<br>infrequently spaced pools.<br>Very stable plan and profile<br>Stable banks.                                                                                       | 1.4<br>to<br>2.2                | >12                     | >1.2                    | .02<br>to<br>.039  | Moderate relief, colluvial deposition and /or<br>structural. Moderate entrenchment and W/D<br>ratio. Narrow, gently sloping valleys.<br>Rapids predominate w/scour pools.                                                                                                                       |
| С                   | Low gradient, meandering,<br>point-bar, riffle/pool,<br>alluvial channels with<br>broad, well defined<br>floodplains.                                                                                                                               | >2.2                            | >12                     | >1.2                    | <.02               | Broad valleys w/terraces, in association<br>with floodplains, alluvial soils. Slightly<br>Entrenched with well defined meandering<br>channels. Riffle/pool bed morphology.                                                                                                                      |
| D                   | Braided channel with<br>longitudinal and transverse<br>bars. Very wide channel<br>with eroding banks.                                                                                                                                               | n/a                             | >40                     | n/a                     | <.04               | Broad valleys with alluvium, steeper fans.<br>Glacial debris and depositional features.<br>Active lateral adjustment, w/abundance of<br>sediment supply. Convergence/divergence<br>bed features, aggradational processes, high<br>bedload and bank erosion.                                     |
| DA                  | Anastomosing (multiple<br>channels) narrow and deep<br>with extensive, well<br>vegetated flood plains and<br>associated wetlands. Very<br>gentle relief with highly<br>variable sinuosities and<br>width/depth ratios. Very<br>stable stream banks. | >2.2                            | Highly<br>Varia-<br>ble | Highly<br>Varia-<br>ble | <.00<br>5          | Broad, low-gradient valleys with fine<br>alluvium and/or lacustrine soils.<br>Anastomosed (multiple channel) geologic<br>control creating fine deposition w/well-<br>vegetated bars that are laterally stable with<br>broad wetland flood plains. Very low<br>bedload, high wash load sediment. |
| Е                   | Low gradient, meandering<br>riffle/pool stream with low<br>width/depth ratio and little<br>deposition. Very efficient<br>and stable. High meander<br>width ratio.                                                                                   | >2.2                            | <12                     | >1.5                    | <.02               | Broad valley/meadows. Alluvial materials<br>with flood plains. Highly sinuous with<br>stable, well-vegetated banks. Riffle/pool<br>morphology with very low width/depth<br>ratios.                                                                                                              |
| F                   | Entrenched meandering<br>riffle/pool channel on low<br>gradients with high<br>width/depth raito                                                                                                                                                     | <1.4                            | >12                     | >1.2                    | <0.2               | Entrenched in highly weathered material.<br>Gentle gradients, with a high width/depth<br>ratio. Meandering, laterally unstable with<br>high bank erosion rates. Riffle/ pool<br>morphology.                                                                                                     |
| G                   | Entrenched "gully"<br>step/pool and low<br>width/depth ratio on<br>moderate gradients                                                                                                                                                               | <1.4                            | <12                     | >1.2                    | 0.02<br>to<br>.039 | Gullies, step/pool morphology w/ moderate<br>slopes and low width/depth ratio. Narrow<br>valleys, or deeply incised in alluvial or<br>colluvial materials, i.e., fans or deltas,<br>Unstable, with grade control problems and<br>high bank erosion rates.                                       |

## Table 2-1. Stream types defined by Rosgen (1996).

#### 2.4.3 Level II: The Morphological Description

While Level I stream types are distinguished primarily on the basis of the valley landforms and channel dimensions observable on aerial photos and maps, Level II stream types are determined with field measurements from specific channel reaches and fluvial features within the stream's valley. Figure 2-3 illustrates how the representative channel cross-sectional configurations, channel materials, and primary morphologic criteria are combined for the full (detailed) stream classification. In Level II classification, the nine Level I, or major stream types are refined by the additional six categories of channel materials (bed rock through silt and clay), and by quantitative criteria for entrenchment, sinuosity, width/depth ratio, and water surface slope. The classification of streams based on all these factors is shown in Figure 2-4.

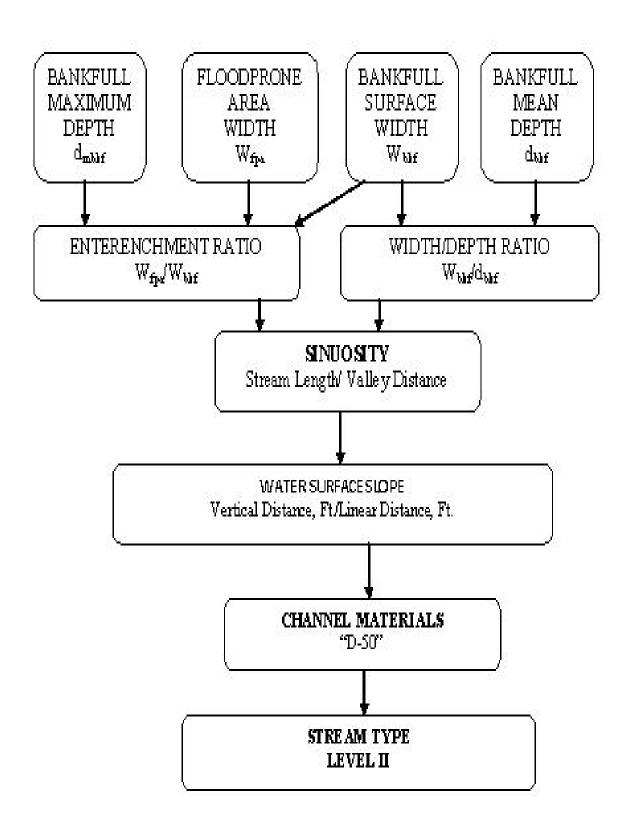
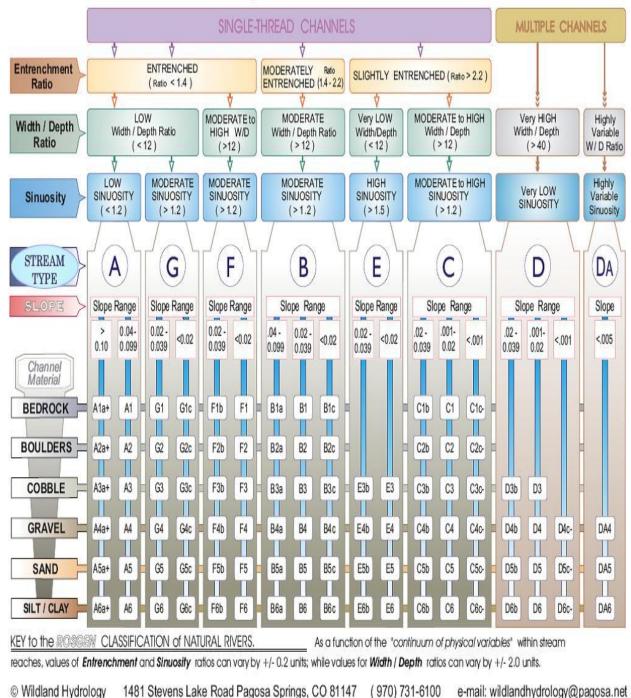
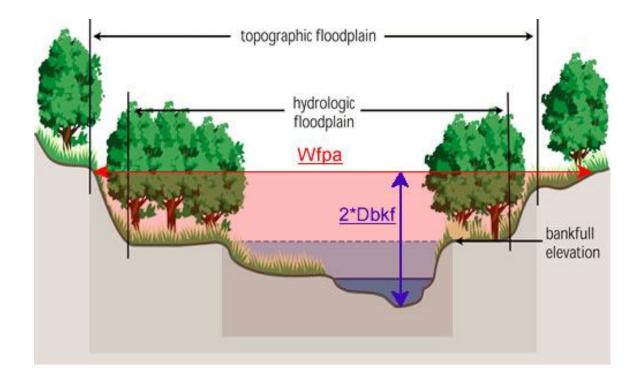




Figure 2-3. Flow chart showing delineative criteria used for the Morphological Description (Level II) (Rosgen, 1996).




## The Key to the Rosgen Classification of Natural Rivers

Figure 2-4. Level II Classification key for natural rivers (Rosgen, 1996).

#### 2.4.4 Geomorphic Parameters Used in Rosgen Classification of Streams

Geomorphic parameters that are used during the stream classification by Rosgen are shown in Figure 2-5 and described below. (Rosgen,1996). Determination of these parameters requires a detailed cross-sectional survey of the stream channel.



## Figure 2-5. Typical stream cross-section, showing bankfull stage, width of floodprone area, hydrologic floodplain and topographic flood plain (Rosgen, 1996).

Bankfull stage, or bankfull discharge, is one of the most important parameters used in Level II classifications. The bankfull stage represents the incipient point of flooding, where flow moves out of the main channel and onto the flood plain. It is often related to the elevation associated with a shift in hydraulic geometry of the channel and associated with a return period of 1-2 years, with an average of 1.5 years. Bankfull discharge is considered to be the most effective stream flow for moving sediment and shaping the morphology of the channel (Rosgen, 1996). Correctly identifying the elevation of bankfull stage is the most important task when classifying the stream. Since site visits are not often made during the bankfull discharge event, physical indicators like floodplains, depositional features, breaks in slope, and change in vegetation must be relied on to estimate the water surface of the stream at the bankfull discharge. All bankfull indicators are not available for all stream types in all climates, so locating bankfull stage is a skill that is developed over time by field observation of many different stream types in a variety of climates. Bankfull indicators that are used to locate the bankfull stage are described below.

**Floodplains:** Bankfull elevation is the point at which the stream begins to spread out onto the floodplain. Some of stream types like C, D, DA and E have the well-developed floodplains and this indicator can be applied to those streams (Wildland Hydrology, 2008).

**Highest active depositional feature:** The bankfull stage is the elevation on top of the highest depositional feature (point bar or central bar) within the active channel. These depositional features are especially good bankfull stage indicators for confined channels.

**Slope breaks or change in particle size distribution:** Breaks in slope of the banks or change of the particle size distribution from coarse to fine are indicators of bankfull stage.

**Stained rocks:** Bankfull stage can also be determined if rocks in the stream and/or its banks are stained. The stain mark on the rock is the elevation of bankfull stage.

**Certain riparian vegetation:** Some common riparian species can be used as indicators of bankfull stage, such as certain species of birch, dogwood, cottonwood and alder, which

can colonize from seed and become established at levels close to bankfull stage (Wildland Hydrology, 2008).

The parameters that are based on bankfull stage are described below.

**Bankfull Width** ( $W_{bkf}$ ): This refers to the width of a stream channel (in feet) at bankfull stage elevation, in a riffle section.

**Mean Bankfull Depth** ( $d_{bkf}$ ): This is the mean depth of a stream channel cross-section, in feet, at bankfull stage elevation, in a riffle section as calculated by Equation 2-1.

$$d_{bkf} = \frac{A}{W_{bkf}} \tag{2-1}$$

Where A=bankfull cross-sectional area, ft<sup>2</sup>

Maximum Bankfull Depth ( $d_{mbkf}$ ): This is the maximum depth of the bankfull crosssection, or distance between the bankfull stage and thawleg elevations, in a riffle section.

Width of Flood-Prone Area ( $W_{fpa}$ ): Width of flood-prone area is the width of the stream channel at an elevation of two times the maximum bankfull depth above the thawleg (Figure 2-5).

**Width/Depth Ratio:** This is the ratio of bankfull channel width to the mean bankfull depth in a riffle section in units of ft/ft. The width/depth ratio is related to the distribution of energy within a channel, and the ability of various discharges occurring within the channel to move sediment. As width/depth ratio increases, the channel grows wider and shallower, the hydraulic stress against banks increases, and bank erosion is accelerated.

**Entrenchment Ratio (ER):** Entrenchment is defined as the vertical containment of a river and the degree to which it is incised in the valley floor. (Kellerhalls *et al.*, 1972). Entrenchment Ratio (ER) is the ratio of flood-prone area width divided by bankfull channel width (Eq. 2-2) at a riffle section.

$$ER = \frac{W_{fpa}}{W_{bkf}} \tag{2-2}$$

**Channel Materials:** Channel materials are essential for Level II classification. Channel bed materials and bank materials not only influence the cross-sectional form, plan view and longitudinal profile of rivers, but also determine the extent of sediment transport and provide a means of resistance to hydraulic stress. The Wolman (1954) pebble count method, as modified by Rosgen (1996), is used for sampling the bed materials. At least 100 representative channel bed particles (or "pebbles") are selected from a channel reach of 20-30 bankfull widths. Channel materials are classified according to its size (Table 2-2). To obtain median particle diameter or D<sub>-50</sub>, the pebble count data are plotted on a semi-log (Figure 2-6) graph as a cumulative percent (y-axis) finer than corresponding particle size (x-axis). Median diameter D<sub>-50</sub> is used for the classification of channel material.

| Particle    | Millimeters | Туре      | Particle         | Millimeters | Туре    |
|-------------|-------------|-----------|------------------|-------------|---------|
| Silt/Clay   | <.062       | Slit/Clay | Small            | 64-128      | Cobble  |
| Very Fine   | .062125     |           | Large            | 128-256     |         |
| Fine        | .12525      |           | Small            | 256-512     |         |
| Medium      | .2550       | Sand      | Medium           | 512-1024    | Boulder |
| Coarse      | .5010       |           | Large-Very large | 1024-2048   |         |
| Very Coarse | 1.0-2       |           | Bedrock          |             | Bedrock |
| Very Fine   | 2-4         |           |                  |             |         |
| Fine        | 4-8         |           |                  |             |         |
| Medium      | 8-16        | Gravel    |                  |             |         |
| Coarse      | 16-32       |           |                  |             |         |
| Very Coarse | 32-64       |           |                  |             |         |

 Table 2-2. Channel material classifications (Rosgen, 1996)

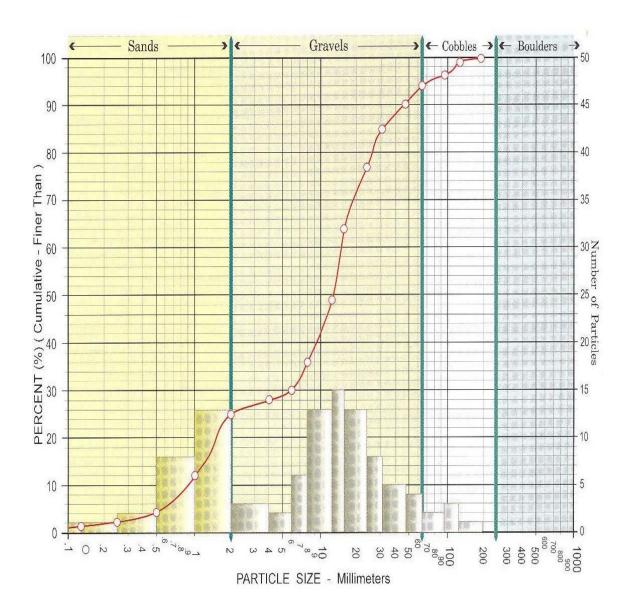



Figure 2-6. Sample plot of pebble-count data (Rosgen, 1996).

**Sinuosity (k):** This is the ratio of stream length (SL) to valley length (VL), as shown in Equation 2-3. It can also be defined as the ratio of valley slope to channel slope. Sinuosity can be best measured using aerial photography.

$$k = \frac{SL}{VL} \tag{2-3}$$

**Slope:** Channel slope (S) is the elevation drop per unit length, of the bankfull stage for a reach approximately 20-30 bankfull channel widths in length, with the riffle to riffle water surface slope representing the gradient at bankfull stage. Units are ft/ft. Rosgen (1996) has developed a worksheet to summarize all the parameters required for Level II characterization, and the resulting stream classification. This worksheet is shown in Table 2-3. He has also developed a worksheet (Table 2-4) to estimate bankfull velocity by three methods, and the corresponding bankfull discharge.

## Table 2-3. Field form for Level II stream classification (Wildland Hydrology, 2008).

| Basin:    | Drainage Area: acres                                                                                                                                                                                                                                        | mi <sup>2</sup> |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| _ocation: |                                                                                                                                                                                                                                                             |                 |
| Twp.&Rg   | e: Sec.&Qtr.:                                                                                                                                                                                                                                               |                 |
|           | ction Monuments (Lat./Long.):                                                                                                                                                                                                                               | Date:           |
| Observer  |                                                                                                                                                                                                                                                             | Type:           |
|           |                                                                                                                                                                                                                                                             | 1               |
|           | Bankfull WIDTH (W <sub>bkf</sub> )<br>WIDTH of the stream channel at bankfull stage elevation, in a riffle section.                                                                                                                                         | ft              |
|           |                                                                                                                                                                                                                                                             |                 |
|           | Bankfull DEPTH ( $d_{bkf}$ )<br>Mean DEPTH of the stream channel cross-section, at bankfull stage elevation, in<br>a riffle section ( $d_{bkf}$ = A /W <sub>bkf</sub> ).                                                                                    | ft              |
|           | Bankfull X-Section AREA (Abkf)                                                                                                                                                                                                                              |                 |
|           | AREA of the stream channel cross-section, at bankfull stage elevation, in a riffle section.                                                                                                                                                                 | ft²             |
|           | Width/Depth Ratio (W <sub>bkf</sub> / d <sub>bkf</sub> )<br>Bankfull WIDTH divided by bankfull mean DEPTH, in a riffle section.                                                                                                                             | ft/ft           |
|           | Maximum DEPTH (d <sub>mbkf</sub> )<br>Maximum depth of the bankfull channel cross-section, or distance between the<br>bankfull stage and Thalweg elevations, in a riffle section.                                                                           | ft              |
|           | WIDTH of Flood-Prone Area ( $W_{fpa}$ )<br>Twice maximum DEPTH, or (2 x d <sub>mbk</sub> ) = the stage/elevation at which flood-prone<br>area WIDTH is determined in a riffle section.                                                                      | ft              |
|           | Entrenchment Ratio (ER)<br>The ratio of flood-prone area WIDTH divided by bankfull channel WIDTH (W <sub>ba</sub> /<br>W <sub>bk</sub> ) (riffle section).                                                                                                  | ft/ft           |
|           | <b>Channel Materials (Particle Size Index )</b> D <sub>50</sub><br>The D <sub>50</sub> particle size index represents the mean diameter of channel materials,<br>as sampled from the channel surface, between the bankfull stage and Thalweg<br>elevations. | mm              |
|           | Water Surface SLOPE (S)                                                                                                                                                                                                                                     |                 |
|           | Channel slope = "rise over run" for a reach approximately 20–30 bankfull<br>channel widths in length, with the "riffle-to-riffle" water surface slope<br>representing the gradient at bankfull stage.                                                       | ft/ft           |
|           | Channel SINUOSITY (k)<br>Sinuosity is an index of channel pattern, determined from a ratio of stream<br>length divided by valley length (SL / VL); or estimated from a ratio of valley slope<br>divided by channel slope (VS / S).                          |                 |

# Table 2-4. Worksheet for computations of bankfull velocity and discharge using<br/>various methods (Wildland Hydrology, 2008).

|                                | Ban                                                                                        | kfull VEL                                                | OCITY                                  | DISCHAR                                     | RGI                          | EE            | sti         | ma                                  | ites                     | i.             |              |                 |                          |
|--------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|---------------------------------------------|------------------------------|---------------|-------------|-------------------------------------|--------------------------|----------------|--------------|-----------------|--------------------------|
| Site                           |                                                                                            |                                                          |                                        | Location                                    |                              |               |             |                                     |                          |                |              |                 |                          |
| Date                           | Stre                                                                                       | am Type                                                  |                                        | Valley Ty                                   | /pe                          |               |             |                                     |                          |                |              |                 |                          |
| Observers                      |                                                                                            |                                                          |                                        | HUC                                         |                              |               |             |                                     |                          |                |              |                 |                          |
|                                | INPUT VARIAB                                                                               | LES                                                      |                                        |                                             | OL                           | JT            | PU          | Т                                   | VA                       | RIA            | BL           | ES              |                          |
| Bankfull                       | Cross-sectional                                                                            |                                                          | A <sub>bkf</sub><br>(ft <sup>2</sup> ) | Bankfu                                      | IIM                          | ear           | D           | ΞP                                  | ГН                       |                |              |                 | D <sub>bkf</sub><br>(ft) |
| Bank                           | full WIDTH                                                                                 |                                                          | W <sub>bkf</sub>                       | Wetter<br>~ 2*                              |                              |               |             | TE                                  | R                        |                |              |                 | $W_{p}(ft)$              |
| D <sub>84</sub>                | @ Riffle                                                                                   |                                                          | Dia.<br>(mm)                           | D <sub>84</sub> r                           | nm                           | / 3(          | 04.8        | 3 =                                 |                          |                |              |                 | D <sub>84</sub><br>(ft)  |
| Bank                           | full SLOPE                                                                                 |                                                          | S <sub>bkf</sub><br>(ft/ft)            | Hydra<br>/                                  | aulic<br>Авкг /              | R/<br>₩p      | ADI         | US                                  | ;                        |                |              |                 | R<br>(ft)                |
| Gravitatio                     | nal Acceleration                                                                           | 32.2                                                     | g<br>(ft/sec²)                         | Relati<br>R                                 | veF<br>(ft)                  |               |             | nes                                 | s                        |                |              |                 |                          |
| Drain                          | age AREA                                                                                   |                                                          | DA<br>(mi <sup>2</sup> )               |                                             | ear<br>* = 7                 |               |             | ty                                  |                          |                |              |                 | u*<br>(ft/sec)           |
|                                | ESTIMATION                                                                                 | METHO                                                    | DS                                     |                                             |                              |               | ani<br>LO   |                                     |                          |                |              |                 | nkfull<br>CHARGE         |
| 1. Friction<br>Factor          | Relative u = [ 2.8<br>Roughness                                                            | 3 <b>+</b> 5.66Lo                                        | 9g{ R / D <sub>84</sub>                | }]u*                                        |                              |               |             | ft                                  | / se                     | c              |              |                 | cfs                      |
| 2. Roughness<br>roughness (Fig | Coefficient: a) Manr<br>gs. 2-18, 19) u = 1.4865*                                          | ning's 'n' fror<br>R <sup>2/3*</sup> S <sup>1/2</sup> /n |                                        | ctor/relative                               |                              |               |             | ft                                  | / se                     | c              |              |                 | cfs                      |
| Note: This equa                | 'n' from Jarrett (USGS)<br>tion is for applications involvin<br>oble- and boulder-dominate | : n = 0.39S <sup>38</sup><br>ng steep, step-             | pool, high bou                         | =                                           |                              |               |             | ft                                  | / se                     | c              |              |                 | cfs                      |
| 2. Roughness<br>c) Manning     | s Coefficient:<br>s 'n' from Stream Typ                                                    |                                                          | u = 1.4865*                            | R <sup>2/3*</sup> S <sup>1/2</sup> /n       |                              |               |             | ft                                  | / se                     | c              |              |                 | cfs                      |
| 3. Other Metho                 | ods (Hey, Darcy-Weisba                                                                     | ch, Chezy C,                                             | etc.)                                  |                                             |                              |               |             | ft                                  | / se                     | c              |              |                 | cfs                      |
| 3. Other Metho                 | ods (Hey, Darcy-Weisba                                                                     | ch, Chezy C,                                             | etc.)                                  |                                             |                              |               |             | ft                                  | / se                     | c              |              |                 | cfs                      |
| 4. Continuity<br>Return        | Equations: a) Re<br>Period for Bankfull Disc                                               | egional Curv<br>charge                                   | Q =                                    | =Q/A<br>Yr.                                 |                              |               |             | ft                                  | / se                     | c              |              |                 | cfs                      |
| 4. Continuity                  | Equations: b) U                                                                            | SGS Gage D                                               | )ata u                                 | = Q/A                                       |                              |               |             | ft                                  | / se                     | c              |              |                 | cfs                      |
| Option 1. For<br>elev          | or using the D <sub>84</sub> term<br>sand-bed channels: M<br>vations. Substitute an a      | leasure the '<br>verage sand                             | protrusion<br>dune protr               | height" (h <sub>sd.</sub><br>usion height ( | ) of s<br>h <sub>sd</sub> ii | sano<br>n ft) | d du<br>for | nes<br>the                          | abo<br>D <sub>84</sub> t | ve ch<br>erm   | nan<br>in e  | nel be<br>st. m | ethod 1.                 |
| Option 2. For<br>bed           | boulder-dominated cl<br>elevations. Substitute                                             | nannels: Mea<br>an ave, boul                             | asure sever<br>der protrusi            | al "protrusio<br>on height (h <sub>bo</sub> | n he<br>in ft                | ight) fo      | ts"<br>rthe | (h <sub>bo</sub><br>D <sub>84</sub> | of b                     | oulo<br>n in ( | ders<br>est. | meth            | e channel<br>od 1.       |
| sepa                           | bedrock-dominated cl<br>arations/steps/joints/up<br>rusion height (h <sub>br</sub> in fee  | olifted surface                                          | ces above ch                           | nannel bed el                               | evat                         | ions          |             |                                     |                          |                | iver         | age b           | edrock                   |

#### 2.4.5 Level III: Stream "State" or Condition

Level III describes the existing condition or "state" of the stream as it relates to its stability, response potential, and function. At this level, additional filed parameters are evaluated that influence the stream state (e.g. riparian vegetation, sediment supply, flow regime, debris occurrence, depositional features, channel stability, bank erodibility, and direct channel disturbances). Level III analysis are both reach and feature specific and are especially useful as a basis for integrating companion studies (Rosgen, 1996).

#### 2.4.6 Level IV: Validation Level

Level IV is the level at which measurements are taken to verify process relationships inferred from preceding analyses. The objective is to establish empirical relationship for use in prediction. The developed empirical relationships are specific to individual stream type for a given state, and enable extrapolation to other similar reaches for which Level IV data is not available. Using relationships developed at level IV, existing data from gage stations and research sites can be analyzed and extrapolated to similar stream types. (Rosgen, 1996)

#### 2.5 Stream Restoration Methods

Stream restoration methods depend upon the goal of the restoration project. The main goal of the stream restoration on both projects studied in this research was stream bank stabilization. Some of the methods and structures used for stream bank stabilization are described below.

**Channel Morphometry and Flood Plain Connectivity:** Stream bed stability is necessary in order to achieve bank stability (FISRWG, 1998). The restoration designer must determine the proper width, depth, slope, sinuosity, entrenchment ratio, etc., to carry the required flow and sediment load without aggradation or degradation of the stream bed. Entrenched streams may need to be reconnected to existing flood plains, or new flood plains constructed. Where land use limits the ability to modify the stream channel, grade control structures such as cross-vanes or J-hook vanes can be used.

**Cross-Vane:** The cross-vane is a grade control structure that decreases near-bank shear stress, velocity and stream power, but increases the energy in the center of the channel. The structure will establish grade control, reduce bank erosion, create a stable width/depth ratio, and maintain channel capacity, while maintaining sediment transport capacity (Rosgen, 2001). A typical cross-section, profile and plan view of cross-vane is shown in Figure 2-7.

**J-Hook Vane:** The J-hook vane is an upstream-directed, gently sloping structure composed of natural materials. The structure can include a combination of boulders, logs and root wads and is located on the outside of stream bends where strong downwelling and upwelling currents, high boundary stress, and high velocity gradients generate high stress in the near-bank region. The structure is designed to reduce bank erosion by reducing near-bank slope, velocity, velocity gradient, stream power and shear stress. (Rosgen, 2001). A typical cross-section, profile and plan view of J-hook vane is shown in Figure 2-8.

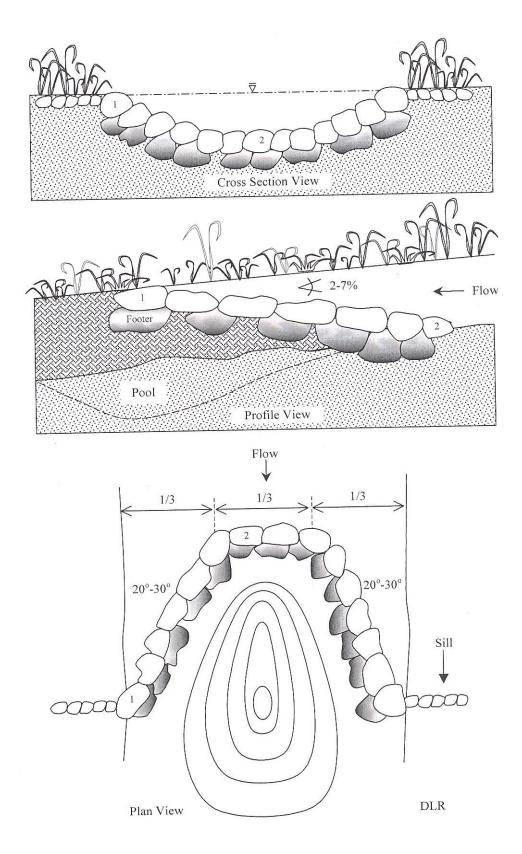
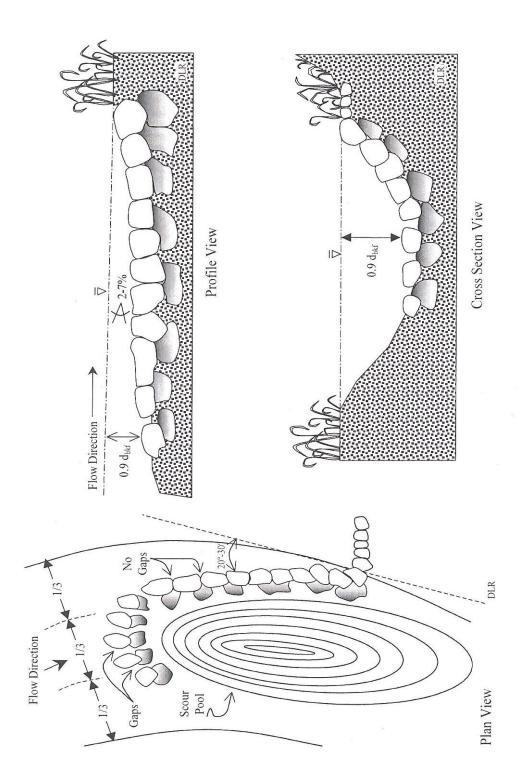




Figure 2-7. Cross section, profile and plan view of a cross-vane (Rosgen, 2001).





**Riparian Vegetation**: This is a very cost-effective method for stabilizing the stream bank. The riparian zone is the interface between land and stream. Riparian vegetation is crucial to the health of a stream. It provides bank stability, habitat for diverse communities of plants and animals and a source of organic materials to the stream. Establishment of dense grass and/or shrubs on the stream bank, flood plains, and adjacent land provides excellent protection against bank erosion.

# 2.6 Weakness of Rosgen Stream Classification

Application of the Rosgen methodology associated with classification of streams can lead to some inconsistencies in classification. One problem that can be encountered with the Rosgen method is confusion in identifying bankufull stage. One of the primary reasons for the confusion in identifying the bankfull stage is that, bankfull discharge and dimension, represented by hydraulic geometry relationship refer to stable channels. This is a critical issue in that "natural channel design" often aims to restore highly modified or disturbed channels. The term "natural" does not mean "stable" because it implies a balance between transport capacity and load. The bankfull level in unstable streams can be exceedingly difficult to identify particularly in erosional channels because of lack of depositional features and because channel dimensions, including water surface elevations are changing with time (Simon *et al.*, 2007).

Many in the scientific community feel that classification systems such as Rosgen's are not needed for restoration design, and may give misleading information about geomorphic processes (Simon *et al.*, 2007).

27

### 2.7 Background on Poject Sites

### 2.7.1 Austintown Township Park

The project area is located along Kirk Road at the entrance of Austintown Township Park, in Mahoning County, OH (Figure 2-9). The stream, an unnamed tributary (UNT) to Meander Creek, flows from east-to-west across the project site, running roughly parallel to Kirk Road. The site upon which the Austintown Park stream was restored slopes gradually downward to the west at a valley slope of approximately 0.0182, estimated from the USGS topographic map. The stream turns to the southwest and crosses under Kirk Road through twin 48 in diameter corrugated metal pipe culverts anchored by a concrete headwall. The entrance road to the park crosses over the UNT to Meander Creek via a precast concrete bridge structure. The bridge was the upstream limit of the project area and the culvert headwall was the downstream limit of the project area. The length of restored stream between these structures was 230 ft.

According to park officials (Gottron, personal communication, 2008), before the stream restoration the condition of the banks of the streams was unstable. There was significant scouring on the east end of the culvert headwall. This also caused significant erosion of the southern stream bank immediately adjacent to the headwall. As there was significant bank erosion, the sediment load carried by the stream increased beyond the stream's capacity. Small sand bars and point bars were formed in the areas of slower moving water.

Restoration of the UNT to Meander Creek was performed on September, 2007 and consisted of reducing the slope of the stream banks, increasing sinuosity, increasing the width of vegetation in the riparian corridor, and installing five stone cross-vane structures were installed during the restoration. Cross-vanes were designed to focus the flow of water back toward the center of the channel, and prevent scouring, undercutting and erosion of the stream banks.

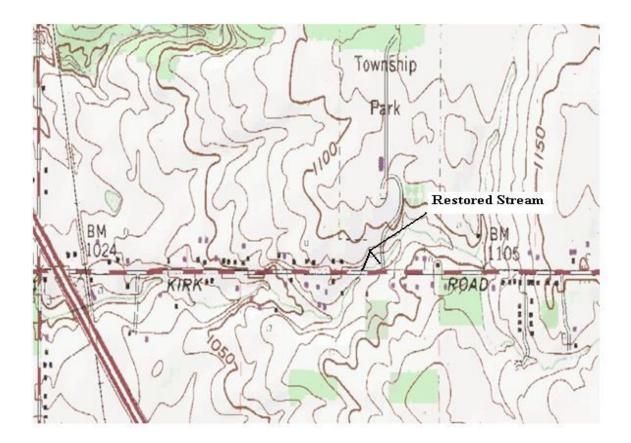



Figure 2-9. Topographic map of Austintown Township Park (MyTopo, 2009).

# 2.7.2 Pine Hollow Run Tributary Stream Restoration Project

The Pine Hollow Run Tributary Stream Restoration Project area is approximately 1900 linear feet section of unnamed tributary to Pine Hollow Run. The project area is located within the city of Hermitage, PA, just southwest of the intersection of State Route 18 and Highland Road and directly behind (west of) the Artman Elementary School (Figure 2-10). The project area includes an open field, a stream running along the length of the field, and wooded area along the west side of the stream and in the north west corner of the site. The restored stream is known locally as Indian Run, and will be referred to by this name throughout this thesis.

Before restoration, the stream was trying to regain its meander pattern; the banks (mostly the right bank looking downstream) were severely eroded (Figure 2-11). The stream banks were approximately4-7 ft in height and vertically eroded with little vegetation at the top of banks. The erosion rate was approximately 0.5-1.0 ft per year, based on observations by school personnel. It was estimated that about 6000 ft<sup>3</sup> per year of sediment entered the stream from the right (east) bank only. Erosion of the left (west) bank was less severe (reference Wallace and Pancher report).

The main purpose of the stream restoration was to stop the erosion of stream banks and the loss of property within the project stream reach. The goal of the project was to eliminate approximately  $6000 \text{ ft}^3$  pr year of sediment loading and a significant non-point source of pollution to Pine Hollow Run and Shenango River.

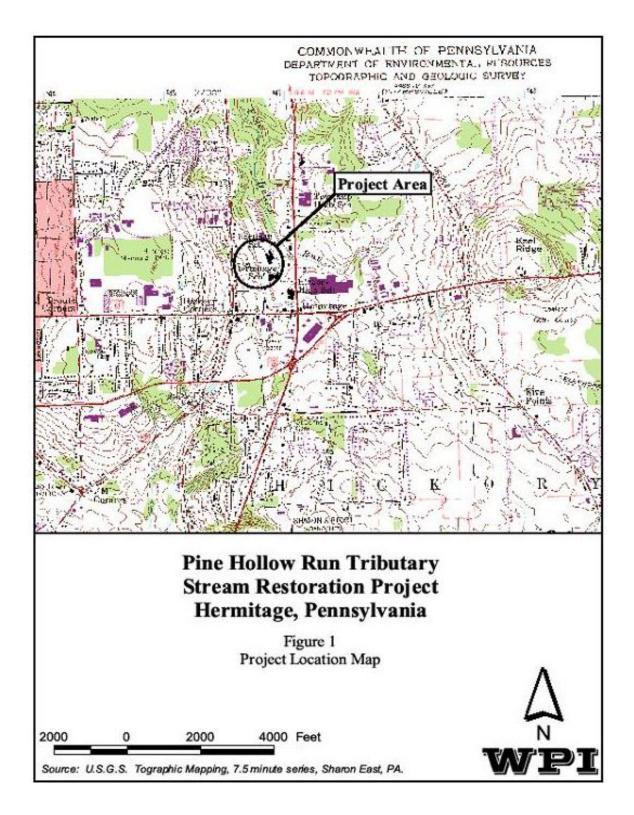



Figure 2-10. Project location map (WPI, 2010).



Figure 2-11. Right bank erosion in Indian Run (WPI, 2010).

### **CHAPTER 3**

# METHODS AND PROCEDURES

### **3.1 Longitudinal Profile Survey**

### 3.1.1 Overview

The longitudinal profile characterizes average stream slopes and depths of riffles, pools, runs, glides, rapids and step/pools. Longitudinal profile surveys help to determine bankfull stage, and water slopes of individual bed features which are important parameters for the classification of streams.

# 3.1.2 Field Procedures

Field measurements of the parameters used in stream classification were performed as described by Rosgen (1996).

**Benchmark selection:** A benchmark was selected in each stream channel. The benchmarks were permanent or stable features. The upstream invert of a corrugated metal culvert under Kirk Road was used for the Austintown Township Park site, and assigned an elevation of 1106.90 ft. The top of a large rock was selected for the Indian Run site and assigned an arbitrary elevation of 1100.00 ft.

**Level setup:** The level (Carl Zeiss Ni2) was set up on a tripod and leveled, with a clear line of sight to the selected benchmark. The approximate number and location of setups needed is based on line of sight limitations. The instrument was placed at an elevation higher than the highest feature required for the survey.

**Laying tape:** A 300 ft tape was laid along the centerline of the channel, with the zero mark at the upstream end of the restored section. This was possible since flow was low at the time of the field surveys.

**Surveying procedures:** A backsight (BS) was taken to the benchmark (BM) of known or (assumed) elevation. Height of instrument was determined using Equation 3-1.

Height of instrument (HI) = BM elevation + BS rod reading 
$$(3-1)$$

Starting from the upstream end of the reach, foresight (FS) readings were taken on the fiberglass leveling rod at many locations along the reach. At each location, water surface, bankfull, thawleg and lowest bank height (if greater than bankfull stage) measurements were recorded. The measurements were taken wherever the stream changed its features. The longitudinal profile surveys covered totals of 230 ft and 1150 ft in Austintown dsTownship Park and Indian Run, respectively. Elevations were calculated by Equation 3-2.

$$Elevation = HI-FS$$
(3-2)

### 3.1.3 Data Analysis

All the data obtained from surveying were entered into a Microsoft Excel 2007 spreadsheet, and the longitudinal profile was plotted as elevation (ft) versus distance along the stream (ft). In the longitudinal profile graph, elevations of channel bed (thalweg), water surface, and bankfull level were all plotted. Water surface slope was calculated from the longitudinal profile graph. It was calculated by "rise over run" for the entire stream reach surveyed, using Equation 3-3.

$$Slope(S) = \frac{Elevation Drop(ft)}{Length of Stream Reach(ft)}$$
(3-3)

### **3.2 Cross-Sectional Survey**

### 3.2.1 Overview

The cross-section data provides the majority of the morphological parameters required for stream classifications. Bankfull cross-sectional area, bankfull width, mean bankfull depth, maximum bankfull depth, width/depth ratio and entrenchment ratio are all determined from cross-sectional surveys.

## **3.2.2 Field Procedures**

The locations of cross-sections were selected to represent the range of channel and bank characteristics within each stream reach. For Indian Run, where riparian vegetation was very dense, accessibility was also a consideration. Four cross-sectional surveys were performed at each of the two sites. The level was set up in a location where the entire cross-section could be viewed, if possible. However, surveying to the width of the flood-prone area required multiple setups due to dense foliage at some of the Indian Run locations. Wooden stakes were driven into the ground to establish the location of each cross-section. The 300 ft tape was stretched across the channel (zero on left bank) making sure that the tape was perpendicular to the direction of flow. A backsight (BS) reading was taken on the benchmark. After that, foresight (FS) rod reading were taken at major breaks in bed elevation and key features such as left bankfull (LBF), left edge of water (LEW), thawleg (THL), right edge of water (REW) and right bankfull (RBF). This process is shown graphically in Figure 3-1. The distance on tape, corresponding FS reading, and feature notes were recorded on cross-section data forms. The width of flood prone area was also measured and recorded.

### **3.2.3 Data Analysis**

Field data were entered into a Microsoft Excel 2007 spreadsheet, and elevations were calculated on each cross-section using Equations 3-1 and 3-2. The graph of horizontal distance versus elevation was plotted. To determine the cross-sectional area at bankfull stage, the cross-section was approximated as a series of trapezoids and the area of each trapezoid was computed by Equation 3-4.

$$Area = \frac{1}{2} (Depth_1 + Depth_2) (Width)$$
(3-4)

Total cross-sectional area was determined by adding the areas of all the individual trapezoids. Bankfull width  $(W_{bkf})$  was measured at the bankfull stage elevation. Width of flood-prone area  $(W_{fpa})$  and the entrenchment ratio were determined as described in Figure 3-1.

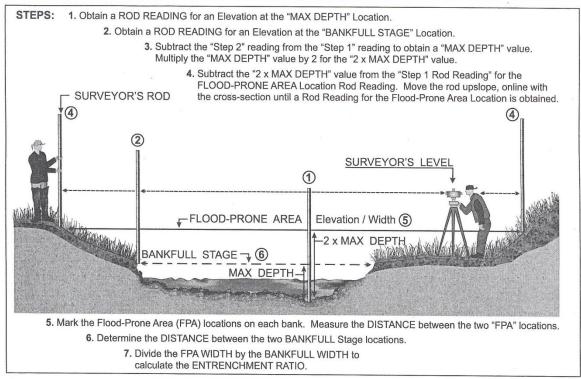
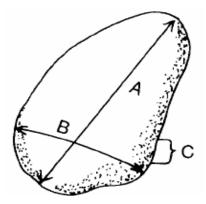



Figure 3-1. Determining the entrenchment ratio (Wildland Hydrology, 2008).

# 3.3 Pebble Count Method


## 3.3.1 Overview

The pebble count characterizes the channel bed material present through a given study reach. A representative pebble count is used to determine the stream type. The main goal of the pebble count is to determine median particle size  $(D_{50})$  of channel materials, as sampled from the channel surface, between the bankfull stage and thawleg elevations.

# **3.3.2 Field Procedures**

A modification of Wolman's (1954) "Pebble Count" method described in Rosgen (1996) was used for the field determination of the particle size distribution of channel materials. A systematic sampling method was performed based on frequency of riffle/pools occurring within a channel reach approximately 20-30 bankfull channel widths in length (or two meander wavelengths). The total sample size of 100 was taken from both streams (Indian Run and Austintown Township Park). The samples were taken from both riffles and pools depending upon the frequency of these features. For example, if 70 percent of channel reach length is composed of riffles and 30 percent composed of pools, then 70 "pebbles", or bottom particles, are taken from riffles and 30 from pools.

Sample particles were selected randomly using the "first blind touch" method. Without looking at the stream, an index finger was placed on the stream bottom, and the particle touched was removed. The intermediate axis of the particle (Figure 3-2) was measured and recorded in mm.



A=Longest axis (length) B=Intermediate axis (width) C=Short axis (thickness)

Figure 3-2. Intermediate axis of the particle (West Virginia Department of Environmental Protection, 2009).

# 3.3.3 Data Analysis

Depending upon their intermediate axis dimension, stream bed materials fall into five different major size categories, including bedrock, boulders, cobbles, gravel, sand, and silt/clay. To facilitate stream classification, the field data were transferred to the form shown in Table 3-1. The graph of particle size (x axis) versus cumulative % finer than(y axis) was also plotted (see Figure 2-6). From the table and plotted graph,  $D_{50}$  and  $D_{84}$ were determined; these parameters are very helpful for classification of the stream and estimation of bankfull discharge, respectively.

| Site:      |              |             |        | Date:          | Date: |        |        |       | DATE:  |        |       | DATE:  |          |  |
|------------|--------------|-------------|--------|----------------|-------|--------|--------|-------|--------|--------|-------|--------|----------|--|
| Party:     |              |             | Reach: | Reach:         |       |        | REACH: |       |        | REACH: |       |        |          |  |
| INCHES     | PARTICLE     | MILLIMETER  |        | Particle Count | TOT # | ITEM % | % CUM  | TOT # | ITEM % | % CUM  | TOT # | ITEM % | % CUM    |  |
|            | Silt/Clay    | < .062      | \$/C   |                |       |        |        |       |        |        |       |        | <u> </u> |  |
|            | Very Fine    | .062125     | S      |                |       |        |        |       | -      |        |       |        | ]        |  |
|            | Fine         | .12525      | A      |                |       |        |        |       |        |        | 5     |        |          |  |
|            | Medium       | .2550       | N      |                |       |        |        |       | -      |        |       |        |          |  |
|            | Coarse       | .50 - 1.0   | p      |                |       |        | -      |       |        |        |       |        | -        |  |
| .0408      | Very Coarse  | 1.0 - 2     | \$     |                |       |        |        |       |        | }      |       |        |          |  |
| .0816      | Very Fine    | 2 - 4       |        |                |       | 1      | -      |       |        | -      |       |        |          |  |
| .1624      | Fine         | 4 - 6       | G      |                |       |        |        |       |        | 1      |       |        |          |  |
| .2431      | Fine         | 6 - 8       | R      |                |       |        | 1      |       |        |        |       |        |          |  |
| .3147      | Medium       | 8 - 12      | A      |                |       |        |        |       |        |        |       |        | -        |  |
| .4763      | Medium       | 12 -16      | V.     |                |       |        | -      |       |        |        |       |        | -        |  |
| .6394      | Coarse       | 16 - 24     | E      | - Deres a      |       |        | 1      |       |        |        |       |        | -        |  |
| .94 - 1.26 | Coarse       | 24 - 32     | bio [  |                |       |        | 1      |       |        |        |       |        |          |  |
| 1.26 - 1.9 | Very Coarse  | 32 - 48     | S      |                |       | -      |        |       |        | [      |       |        |          |  |
| 1.9 - 2.5  | Very Coarse  | 48 - 64     |        |                |       |        |        |       |        |        |       |        |          |  |
| 2.5 - 3.8  | Small        | 64 - 96     | C      |                |       |        |        |       |        | -      |       |        | -        |  |
| 3.8 - 5.0  | Small        | 96 - 128    | 0      |                |       | 1      |        |       |        |        |       |        |          |  |
| 5.0 - 7.6  | Large        | 128 - 192   | В      |                |       | -      |        |       |        |        |       |        |          |  |
| 7.6 - 10   | Large        | 192 - 256   |        |                |       |        |        |       |        |        |       |        |          |  |
| 10 - 15    | Small        | 256 - 384   | B      |                |       |        | -      |       |        |        |       |        |          |  |
| 15 - 20    | Small        | 384 - 512   |        |                |       |        | :      |       |        |        |       |        |          |  |
| 20 - 40    | Medium       | 512 - 1024  | D      | <i>h</i>       |       |        |        |       |        |        |       |        |          |  |
| 40 - 160   | Lrg-Very Lrg | 1024 - 4096 | R      |                |       |        |        |       |        |        |       |        |          |  |
|            | BEDROCK      |             | BDRK   |                |       | 1      | į      |       |        |        |       |        |          |  |

# Table 3-1. Field form for documentation and analysis of pebble count data (Rosgen, 1996).

# 3.4 Stream Classificaton

The various parameters like entrenchment ratio, width/depth ratio, sinuosity and channel materials were used in combination with Figure 2-4 (from Rosgen, 1996) to classify the stream. Depending upon those parameters Figure 2-4 was used to classify the stream. First, the channel type, entrenchment ratio and width: depth ratio were used to determine the major stream type. Then this was combined with the channel material and slope to obtain the full stream classification.

### 3.5 Estimation of Bankfull Discharge

Table 2-4 was used for the computation of bankfull discharge. To compute the bankfull discharge, the bankfull cross-sectional area, bankfull width,  $D_{84}$  at riffles, bankfull slope and gravitational acceleration are used as input variables. Two different methods are used for the calculation of bankfull discharge.

## 3.5.1 Method 1 - Friction Factor/Relative Roughness

First, mean stream velocity is calculated by:

$$u = 2.88 + 5.66 \log\left(\frac{R}{D_{84}}\right) u^*$$
(3-5)

Where, Shear velocity (ft/s)  $u^* = \sqrt{gRS}$ , R = Hydraulic Radius (ft) =  $\frac{A_{bkf}}{W_p}$ ; A<sub>bkf</sub> = Bankfull cross sectional area (ft<sup>2</sup>), W<sub>p</sub> = wetted perimeter (ft), S= Bankfull slope (ft/ft).

Bankfull discharge (
$$Q_{bkf}$$
) = u x  $A_{bkf}$  (3-6)

# 3.5.2 Method 2- Use of Manning's Equation

Manning's equation for U.S. Customary unit is :

$$u = 1.4865 \times R^{\frac{2}{3}}S^{\frac{1}{2}}$$

Where n = Manning's roughness coefficient (3-7)

Two applicable approaches are given in Table 2-4 for finding Manning's n, resulting in two different estimates of bankfull velocity and discharge by Manning's equation.

# a. Calculating 'n' from friction factor and relative roughness

Manning's n can be calculated from friction factor and relative roughness. With the help of relative roughness ( $R/D_{84}$ ) and Figure 3-3, the corresponding resistance factor ( $u/u^*$ ) is found. Then, using Figure 3-4 and  $u/u^*$ , Manning's roughness coefficient n is found.

# b. Manning's n from stream type

Manning's n can also be estimated depending upon the type of stream classified by the Rosgen method using Figure 3-5.

In all, completion of Table 2-4 yields three estimates of bankfull velocity and discharge for a given stream.

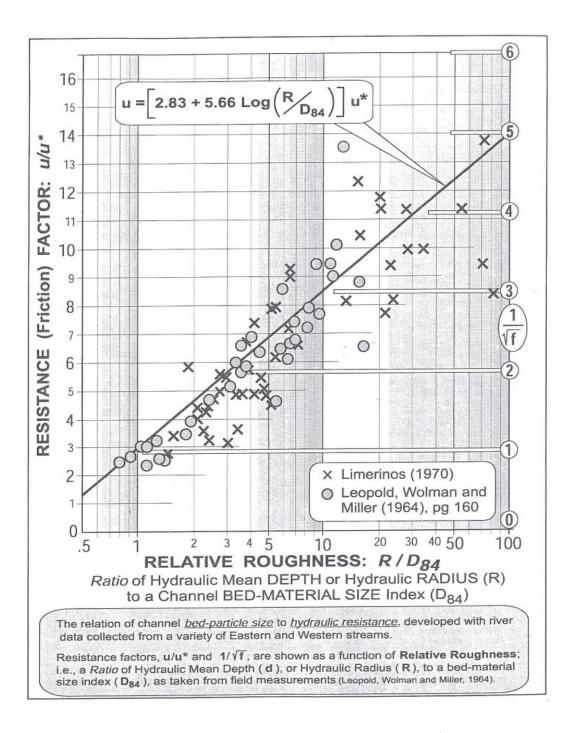
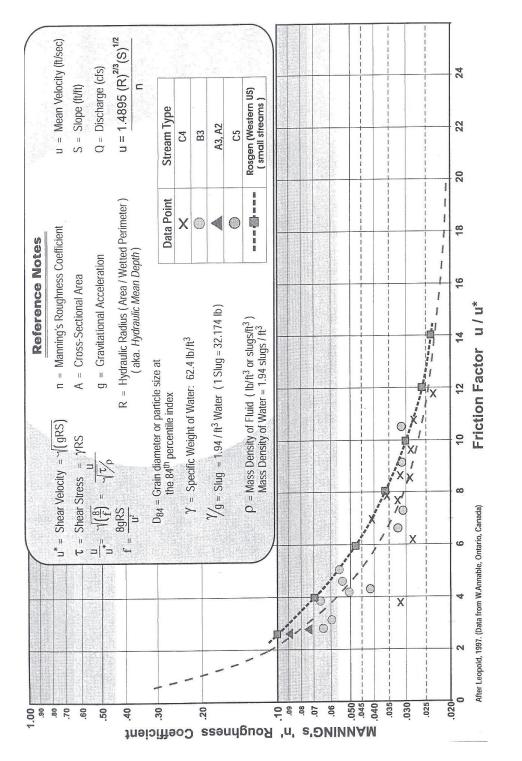
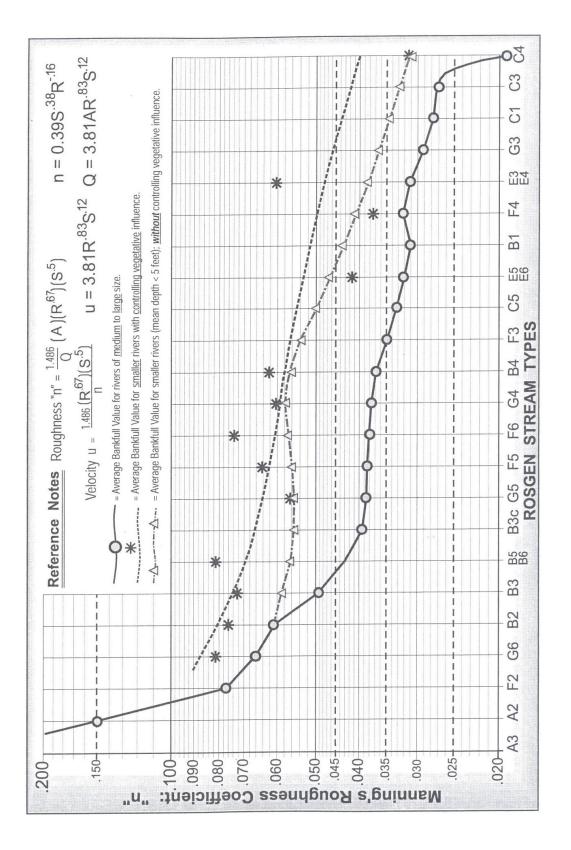





Figure 3-3. Relative roughness (R/D<sub>84</sub>) vs. friction factor (u/u<sup>\*</sup>). (Rosgen and Silvey, 2007)









## **CHAPTER 4**

# **RESULTS AND DISCUSSION**

### **4.1 Longitudinal Profile**

### **4.1.1 Austintown Township Park UNT**

The surveying data for the longitudinal profile of Austintown Township Park UNT are summarized in Appendix A, Table A-1. A plot of longitudinal profile for the unnamed tributary to Meander Creek is shown in Figure 4-1. The slope calculation for the study reach of stream is shown below.

$$\text{Slope} = \frac{1109.88 - 1106.75}{230} = 0.014$$

This slope is typical of C type streams, which normally fall in the slope range of 0.001 to 0.02 (Table 2-4).

# 4.1.2 Indian Run Stream Restoration Project

The surveying data for the longitudinal profile of Indian Run Stream Restoration Project are summarized in Appendix A, Table A-2. A plot of longitudinal profile for the restored section of Indian Run is shown in Figure 4-2. The calculated slope of the section is

$$\text{Slope} = \frac{1098.54 - 1089.43}{1150} = 0.0079$$

This slope is also typical of C type streams, which normally fall in the slope range of 0.001 to 0.02 (Table 2-4).

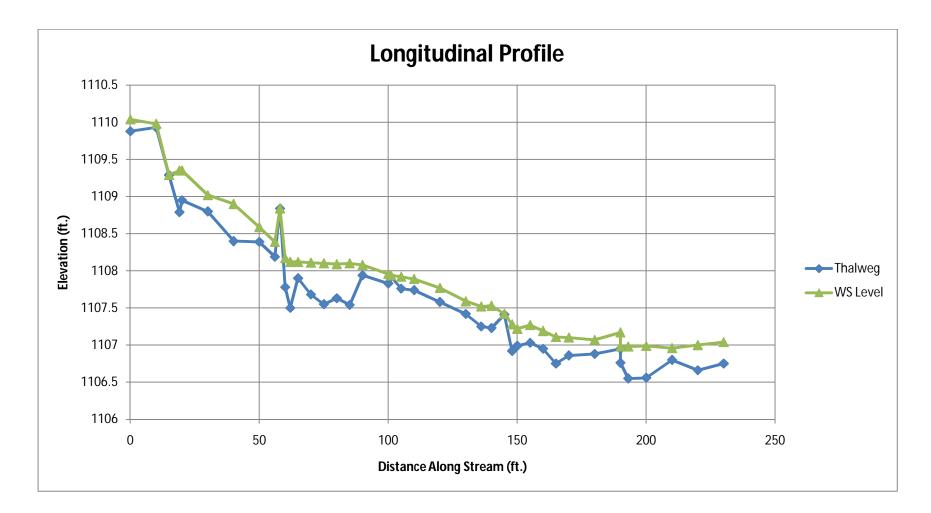



Figure 4-1. Longitudinal profile of Austintown Township Park project UNT.

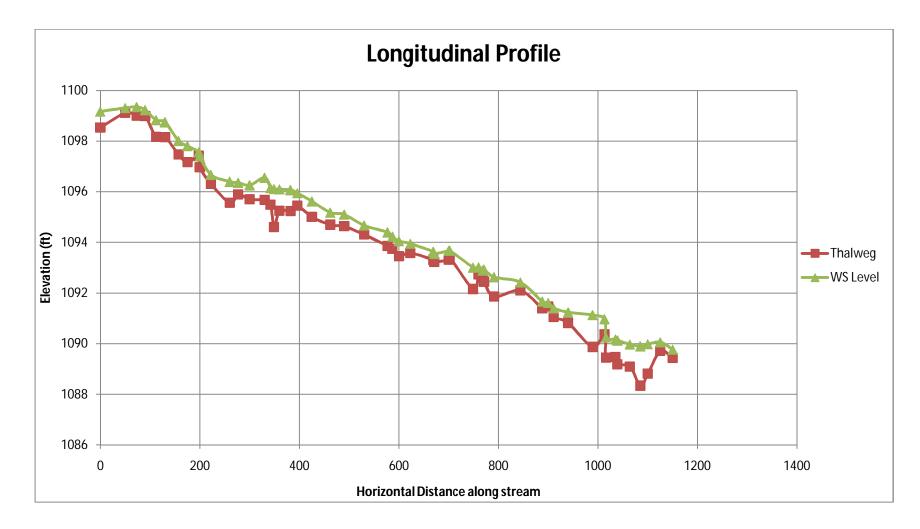



Figure 4-2. Longitudinal profile of restored section of Indian Run.

# 4.2 Cross-Sections

# **4.2.1 Austintown Township Park**

At the Austintown UNT site, a total of four cross-sections were surveyed. The cross-sections were taken at stations 0+50, 1+00, 1+50 and 2+00. The cross-sectional profiles are shown in Figures 4-3, 4-4, 4-5, and 4-6 respectively. The surveying data are shown in Appendix B, Table B-1.

### 4.2.2 Indian Run Stream Restoration Project

At the Indian Run restoration project site, a total of four cross-sections were surveyed. The cross-sections were taken at stations 0+15, 6+25, 6+80 and 7+75. The cross-sectional profiles are shown in Figure 4-7, 4-8, 4-9 and 4-10 respectively. The surveying data for the cross-sections are shown in Appendix B, Table B-2.

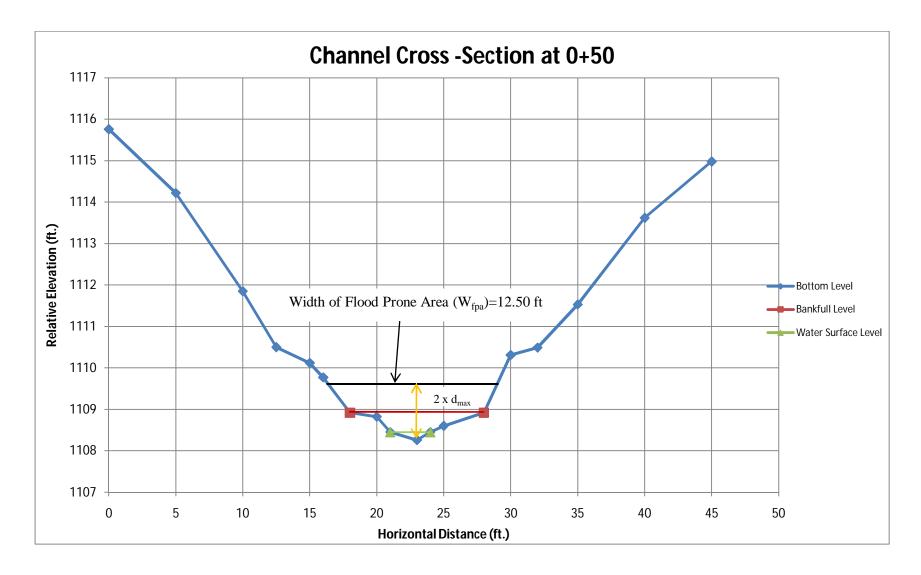



Figure 4-3. Channel cross-section at station 0+50 on unnamed stream in Austintown Township Park.

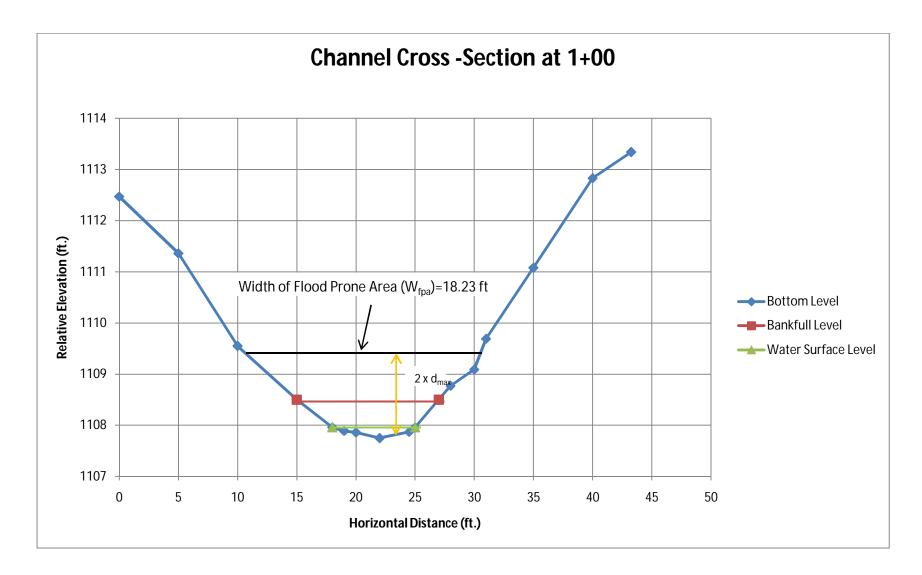



Figure 4-4. Channel cross-section at station 1+00 on unnamed stream in Austintown Township Park.

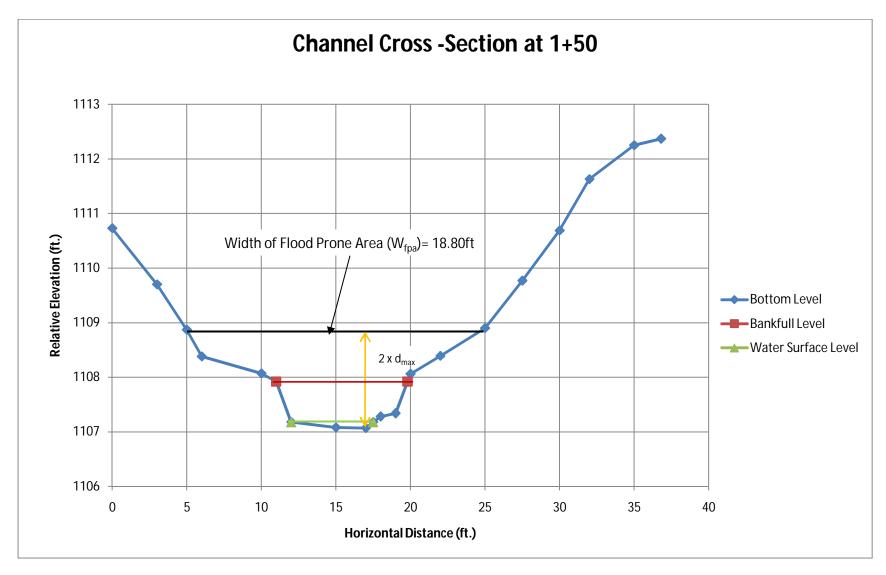



Figure 4-5. Channel cross-section at station 1+50 on unnamed stream in Austintown Township Park.

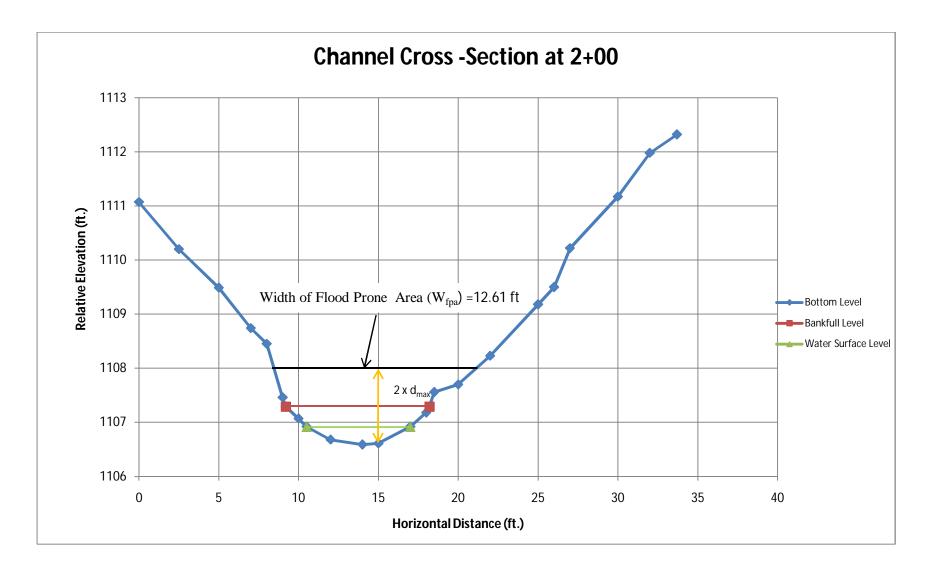



Figure 4-6. Channel cross-section at station 2+00 on unnamed stream in Austintown Township Park.

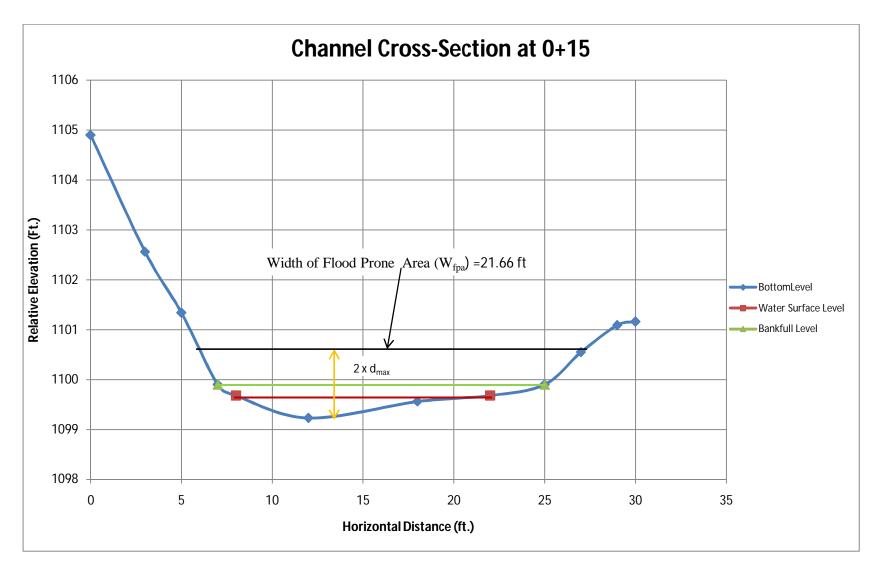



Figure 4-7. Channel cross-section at station 0+15 on Indian Run.

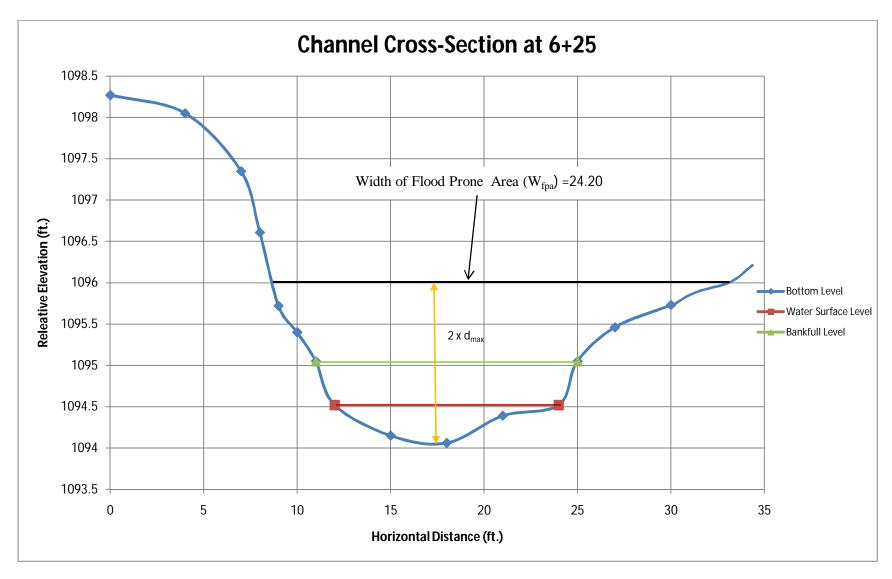



Figure 4-8. Channel cross-section at station 6+25 on Indian Run.

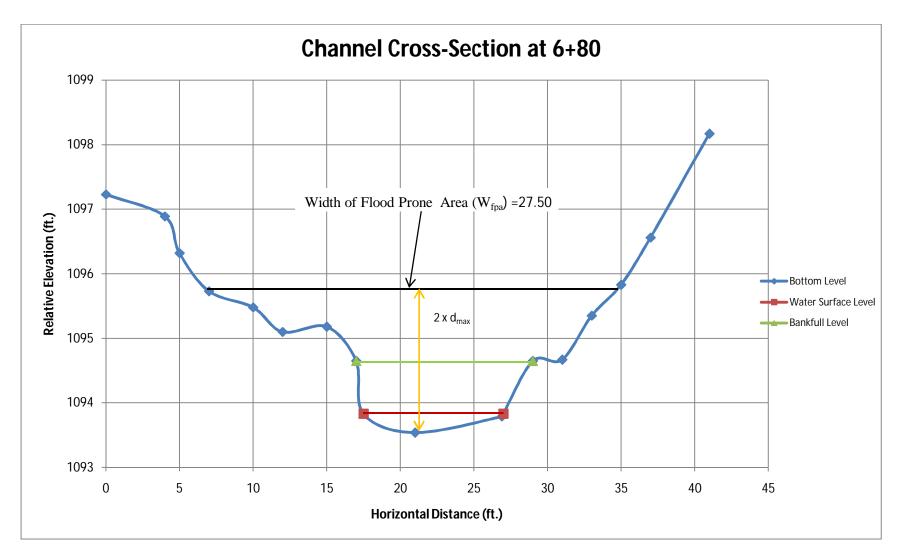



Figure 4-9. Channel cross-section at station 6+80 on Indian Run.

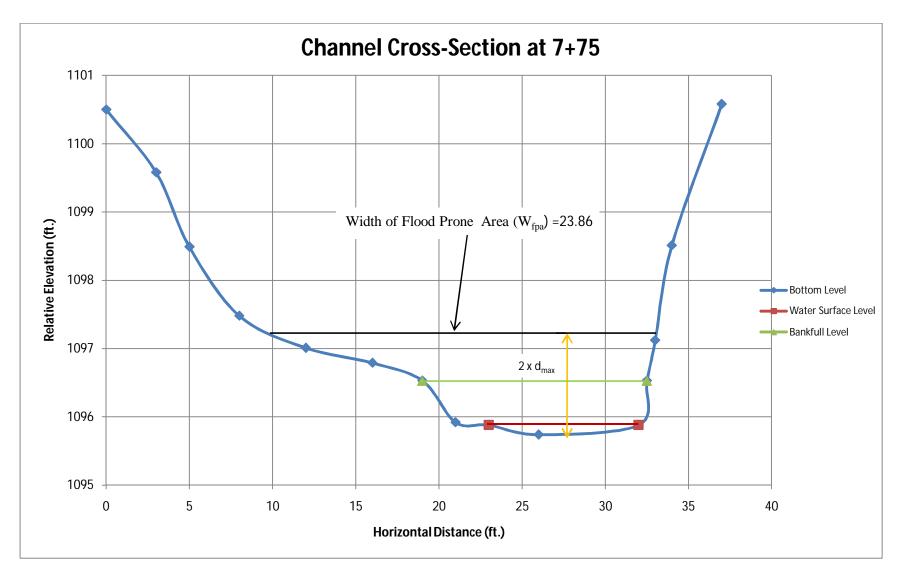



Figure 4-10. Channel cross-section at station 7+75 on Indian Run.

# 4.3 Pebble Count

One hundred representative samples of bed material ("pebbles") were taken from the stream bottom along each study reach (Austintown Township Park UNT and Indian Run). Channel materials were classified according to the size of intermediate axis and plotted to determine  $D_{50}$  and  $D_{84}$ .  $D_{50}$  values for the Austintown Township Park and Indian Run were 38 mm and 22 mm, respectively, which shows that channel materials on both sites are classified as gravel.  $D_{84}$  values for the Austintown UNT and Indian Run were 100 mm and 77 mm, respectively, which are used for bankfull discharge calculations. Tables 4-1 and 4-2 show the channel material distribution and classification for Austintown Township Park UNT and Indian Run, respectively. Figures 4-11 and 4-12 show graphs of the size distributions for Austintown Township Park UNT and Indian Run, respectively.

| Inches      | Particle Type      | Milimeters      |         | Composite | Item % | % Cum |
|-------------|--------------------|-----------------|---------|-----------|--------|-------|
|             | Silt / Clay        | < 0.062         | S/C     |           |        |       |
|             | Very Fine          | 0.062 - 0.125   |         |           |        |       |
|             | Fine               | 0.125 - 0.25    | S       |           |        |       |
|             | Medium             | 0.25 - 0.50     | SAND    |           |        |       |
|             | Coarse             | 0.50 - 1.0      |         |           |        |       |
| 0.04 - 0.08 | Very Coarse        | 1.0 - 2.0       |         | 1         | 1      | 1     |
| 0.08 - 0.16 | Very Flne          | 2.0 - 4.0       | 6       | 0         | 0      | 1     |
| 0.16 - 0.22 | Fine               | 4.0 - 5.7       |         | 3         | 3      | 4     |
| 0.22 - 0.31 | Fine               | 5.7 - 8.0       |         | 3         | 3      | 7     |
| 0.31 - 0.44 | Medium             | 8.0 - 11.3      |         | 4         | 4      | 11    |
| 0.44 - 0.63 | Medium             | 11.3 - 16.0     | GRAVEL  | 5         | 5      | 16    |
| 0.63 - 0.89 | Coarse             | 16.0 - 22.6     | EL      | 16        | 16     | 32    |
| 0.89 - 1.3  | Coarse             | 22.6 - 32.0     |         | 9         | 9      | 41    |
| 1.3 - 1.8   | Very Coarse        | 32.0 - 45.0     |         | 15        | 15     | 56    |
| 1.8 - 2.5   | Very Coarse        | 45.0 - 64.0     |         | 15        | 15     | 71    |
| 2.5 - 3.5   | Small              | 64.0 - 90.0     | COBBLE  | 8         | 8      | 79    |
| 3.5 - 5.0   | Small              | 90.0 - 128.0    |         | 16        | 16     | 95    |
| 5.0 - 7.1   | Large              | 128.0 - 180.0   |         | 5         | 5      | 100   |
| 7.1 - 10.1  | Large              | 180.0 - 256.0   |         |           |        |       |
| 10.1 - 14.3 | Small              | 256.0 - 362.0   | B       |           |        |       |
| 14.3 - 20.0 | Small              | 362.0 - 512.0   | BOULDER |           |        |       |
| 20.0 - 40.0 | Medium             | 512.0 - 1024.0  | _DE     |           |        |       |
| 40.0 - 80.0 | Large - Very Large | 1024.0 - 2048.0 | R       |           |        |       |
|             | Bedrock            |                 |         |           |        |       |

Table 4-1. Pebble count for Austintown Township Park UNT.

| Inches      | Particle Type      | Milimeters      |         | Composite | Item % | % Cum |
|-------------|--------------------|-----------------|---------|-----------|--------|-------|
|             | Silt / Clay        | < 0.062         | S/C     |           |        |       |
|             | Very Fine          | 0.062 - 0.125   |         |           |        |       |
|             | Fine               | 0.125 - 0.25    | ر<br>د  |           |        |       |
|             | Medium             | 0.25 - 0.50     | SAND    |           |        |       |
|             | Coarse             | 0.50 - 1.0      |         | 10        | 10     | 10    |
| 0.04 - 0.08 | Very Coarse        | 1.0 - 2.0       |         |           |        |       |
| 0.08 - 0.16 | Very Flne          | 2.0 - 4.0       |         | 3         | 3      | 13    |
| 0.16 - 0.22 | Fine               | 4.0 - 5.7       |         | 5         | 5      | 18    |
| 0.22 - 0.31 | Fine               | 5.7 - 8.0       |         | 4         | 4      | 22    |
| 0.31 - 0.44 | Medium             | 8.0 - 11.3      | G       | 9         | 9      | 31    |
| 0.44 - 0.63 | Medium             | 11.3 - 16.0     | GRAVEL  | 6         | 6      | 37    |
| 0.63 - 0.89 | Coarse             | 16.0 - 22.6     | Ē       | 7         | 8      | 45    |
| 0.89 - 1.3  | Coarse             | 22.6 - 32.0     |         | 5         | 5      | 50    |
| 1.3 - 1.8   | Very Coarse        | 32.0 - 45.0     |         | 11        | 11     | 61    |
| 1.8 - 2.5   | Very Coarse        | 45.0 - 64.0     |         | 10        | 10     | 71    |
| 2.5 - 3.5   | Small              | 64.0 - 90.0     |         | 10        | 10     | 81    |
| 3.5 - 5.0   | Small              | 90.0 - 128.0    | COBBLE  | 12        | 12     | 93    |
| 5.0 - 7.1   | Large              | 128.0 - 180.0   | BLE     | 4         | 4      | 97    |
| 7.1 - 10.1  | Large              | 180.0 - 256.0   |         |           |        |       |
| 10.1 - 14.3 | Small              | 256.0 - 362.0   | œ       | 3         | 3      | 100   |
| 14.3 - 20.0 | Small              | 362.0 - 512.0   |         |           |        |       |
| 20.0 - 40.0 | Medium             | 512.0 - 1024.0  | BOULDER |           |        |       |
| 40.0 - 80.0 | Large - Very Large | 1024.0 - 2048.0 | R       |           |        |       |
|             | Bedrock            |                 |         |           |        |       |

 Table 4-2. Pebble count for Indian Run.

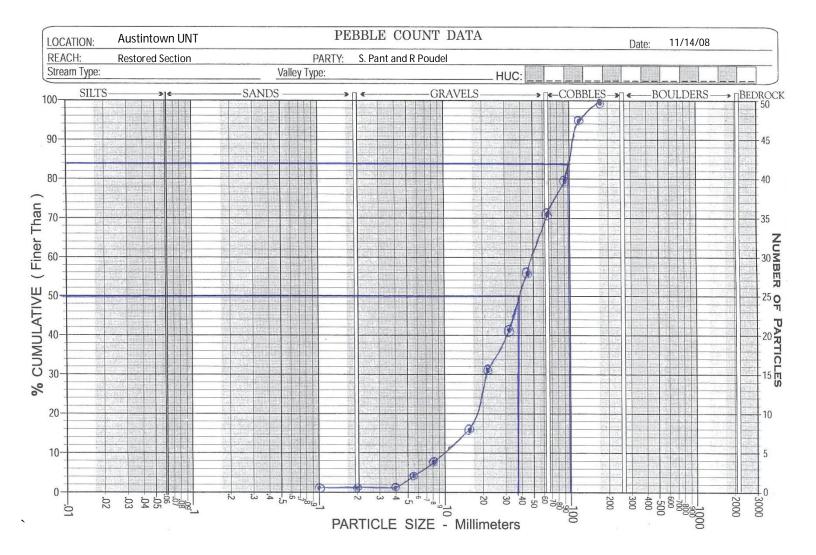



Figure 4-11. Pebble count plot for Austintown Township Park UNT.

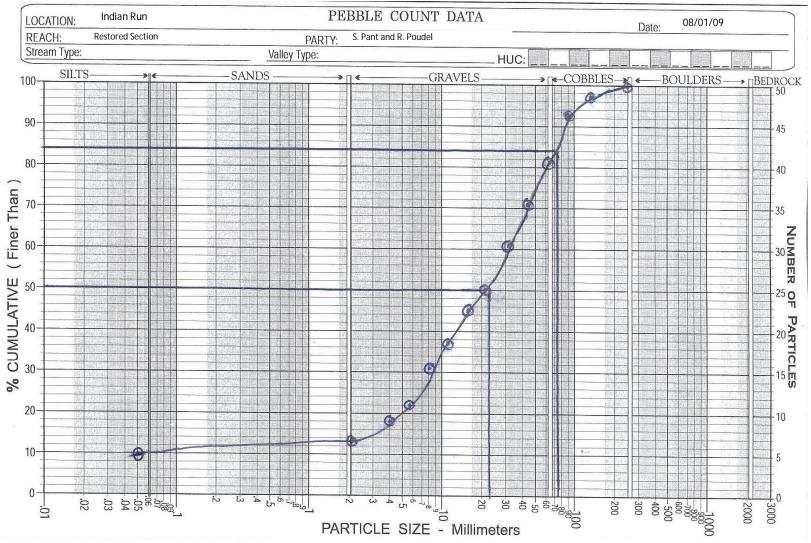



Figure 4-12. Pebble count plot for restored section of Indian Run.

#### 4.4 Classification of Streams

## 4.4.1 Austintown Township Park UNT

**Sample Calculations:** Table 4-3 shows the bankfull area calculation, bankfull width, width-depth ratio, width of flood prone area and entrenchment ratio for the cross-section at 0+50. Tables for the remaining cross-sections are shown in Appendix C.

| Station<br>(ft) | Bottom Thalweg<br>Elev (ft) | BKF (ft) | Depth (ft) | Horizontal<br>Distance<br>(ft) | Area (ft <sup>2</sup> ) | Total<br>Area (ft²) |
|-----------------|-----------------------------|----------|------------|--------------------------------|-------------------------|---------------------|
| 0               | 1115.76                     |          |            |                                |                         |                     |
| 5               | 1114.22                     |          |            |                                |                         |                     |
| 10              | 1111.85                     |          |            |                                |                         |                     |
| 12.5            | 1110.5                      |          |            |                                |                         |                     |
| 15              | 1110.12                     |          |            |                                |                         |                     |
| 16              | 1109.77                     |          |            |                                |                         |                     |
| 18              | 1108.92                     | 1108.92  | 0          | 0                              | 0                       |                     |
| 20              | 1108.82                     |          | 0.1        | 2                              | 0.1                     |                     |
| 21              | 1108.45                     |          | 0.47       | 1                              | 0.29                    |                     |
| 23              | 1108.26                     |          | 0.66       | 2                              | 1.13                    | 2.96                |
| 24              | 1108.45                     |          | 0.47       | 1                              | 0.57                    |                     |
| 25              | 1108.6                      |          | 0.32       | 1                              | 0.40                    |                     |
| 28              | 1108.92                     | 1108.92  | 0          | 3                              | 0.48                    |                     |
| 30              | 1110.31                     |          |            |                                |                         |                     |
| 32              | 1110.49                     |          |            |                                |                         |                     |
| 35              | 1111.53                     |          |            |                                |                         |                     |
| 40              | 1113.62                     |          |            |                                |                         |                     |
| 45              | 1114.98                     |          |            |                                |                         |                     |

Table 4-3. Cross sectional area calculation at 0+50 on Austintown Township Park UNT

| Bank-<br>full<br>Area<br>(ft <sup>2</sup> ) | Bank-full Width<br>(ft) | Mean BKF<br>Depth (ft) | Width:<br>Depth<br>Ratio | Width of<br>Flood<br>Prone Area<br>(ft) | Entrench<br>ment<br>Ratio | Max.<br>Depth<br>(ft) |
|---------------------------------------------|-------------------------|------------------------|--------------------------|-----------------------------------------|---------------------------|-----------------------|
| 2.96                                        | 10                      | 0.30                   | 33.84                    | 12.5                                    | 1.25                      | 0.66                  |

#### **Interpretation of data**

Area sample calculation =  $\frac{0.1+0.47}{2}$  ft x 1 ft = 0.29 ft<sup>2</sup> (between stations 20 and 21 ft)

Bankfull cross-sectional area =  $0 + 0.1 + 0.29 + 1.13 + 0.57 + 0.40 + 0.48 = 2.96 \text{ ft}^2$ 

Mean bankfull depth =  $\frac{2.96 ft}{10 ft}$  = 0.296 = 0.3ft

Width/depth ratio =  $\frac{10 ft}{0.296 ft}$  = 33.84

Entrenchment ratio  $= \frac{W_{fpa}}{W_{bkf}} = \frac{12.5 ft}{10 ft} = 1.25$ 

All the parameters for all cross-sections were calculated and averages of those data were taken to classify the stream (Table 4-4).

 Table 4-4. Average morphological parameters for the classification of Austintown

 Township Park UNT.

| Parameter                        | С     | Average |       |       |         |
|----------------------------------|-------|---------|-------|-------|---------|
| Falanetei                        | 0+50  | 1+00    | 1+50  | 2+00  | Average |
| Entrenchment Ratio (ER)          | 1.25  | 1.52    | 2.14  | 1.40  | 1.58    |
| Width/Depth Ratio                | 33.84 | 24.17   | 12.88 | 18.96 | 22.46   |
| Sinuosity                        |       |         |       |       | 1.02    |
| Slope                            |       |         |       |       | 0.014   |
| Channel Material D <sub>50</sub> |       |         |       |       | 38 mm   |

The standard form shown in Table 4-5 and classification key shown in Figure 2-4 were used for Level II classification of the stream. The Austintown Township Park UNT is classified as a B4c type stream. The entrenchment and width/depth ratios are typical of B type streams, but the slope is more typical of C type streams. Sinuosity is very low due to man-made constraints, including bridges at both ends of the study reach.

## Table 4-5. Level II classification of Austintown Township Park UNT.

| Basin:                    | Drainage Area: acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | mi <sup>2</sup> |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|
| _ocation:                 | Austintown Township Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                 |
| wp.&Rge                   | A REPORT OF A REPO |              |                 |
| and have the              | ction Monuments (Lat./Long.):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date         | e:              |
| Contractor and the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alley Type   | e:              |
|                           | Bankfull WIDTH (W <sub>bkt</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 546 - C-9638 | 12              |
|                           | WIDTH of the stream channel at bankfull stage elevation, in a riffle section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.95         | ft              |
|                           | Bankfull DEDTH (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | - 65500         |
|                           | $\begin{array}{l} \textbf{Bankfull DEPTH (d_{bkf})} \\ \textbf{Mean DEPTH of the stream channel cross-section, at bankfull stage elevation, in a riffle section (d_{bkr} = A / W_{bk}). \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.49         | ft              |
|                           | Bankfull X-Section AREA (A <sub>bkf</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | 12              |
|                           | AREA of the stream channel cross-section, at bankfull stage elevation, in a riffle section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.79         | ft²             |
|                           | Width/Depth Ratio (W <sub>bkf</sub> / d <sub>bkf</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                 |
|                           | Bankfull WDTH divided by bankfull mean DEPTH, in a riffle section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.46        | ft/ft           |
|                           | Maximum DEPTH (d <sub>mbki</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                 |
|                           | Maximum depth of the bankfull channel cross-section, or distance between the<br>bankfull stage and Thalweg elevations, in a riffle section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.74         | ft              |
|                           | WIDTH of Flood-Prone Area (W <sub>fpa</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                 |
|                           | Twice maximum DEPTH, or $(2 \times d_{mbk})$ = the stage/elevation at which flood-prone area WIDTH is determined in a riffle section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.53        | ft              |
|                           | Entrenchment Ratio (ER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                 |
|                           | The ratio of flood-prone area WIDTH divided by bankfull channel WIDTH (W <sub>the</sub> /<br>W <sub>thk</sub> ) (riffle section).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.58         | ft/ft           |
|                           | Channel Materials (Particle Size Index ) D <sub>50</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 1 <sup>2</sup>  |
|                           | The D <sub>so</sub> particle size index represents the mean diameter of channel materials,<br>as sampled from the channel surface, between the bankfull stage and Thalweg<br>elevations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38           |                 |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50           | _mm             |
|                           | Water Surface SLOPE (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                 |
|                           | Channel slope = "rise over run" for a reach approximately 20–30 bankfull<br>channel widths in length, with the "riffle-to-riffle" water surface slope<br>representing the gradient at bankfull stage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.014        | ft/ft           |
|                           | Channel SINUOSITY (k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                 |
|                           | Sinuosity is an index of channel pattern, determined from a ratio of stream<br>length divided by valley length (SL / VL); or estimated from a ratio of valley slope<br>divided by channel slope (VS / S).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.02         |                 |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.02         |                 |

#### 4.4.2 Indian Run Stream Restoration Project

The major parameters determined from field surveys and used during the classification of Indian Run are shown in Table 4-6. The stream classification worksheet is shown in Table 4-7. Tables showing cross-sectional area calculations and other parameters for Indian Run are presented in Appendix D.

| Parameter                        | (     | Average |       |       |         |
|----------------------------------|-------|---------|-------|-------|---------|
| i di diffetei                    | 0+15  | 6+25    | 6+80  | 7+75  | Average |
| Entrenchment Ratio (ER)          | 1.2   | 2.02    | 2.29  | 1.77  | 1.82    |
| Width/Depth Ratio                | 50.86 | 50      | 13.98 | 21.41 | 34.06   |
| Sinuosity                        |       |         |       |       | 1.06    |
| Slope                            |       |         |       |       | 0.0079  |
| Channel Material D <sub>50</sub> |       |         |       |       | 22 mm   |

Table 4-6. Major morphological parameters for the classification of Indian Run.

Indian Run is classified as a B4c type stream. The entrenchment and width/depth ratios are typical of B type streams, but the slope is more typical of C type streams. Sinuosity is lower than expected due to the steep bank on the east side of the stream. It appears that the slope of the bank was increased by placement of fill during construction of the nearby school building.

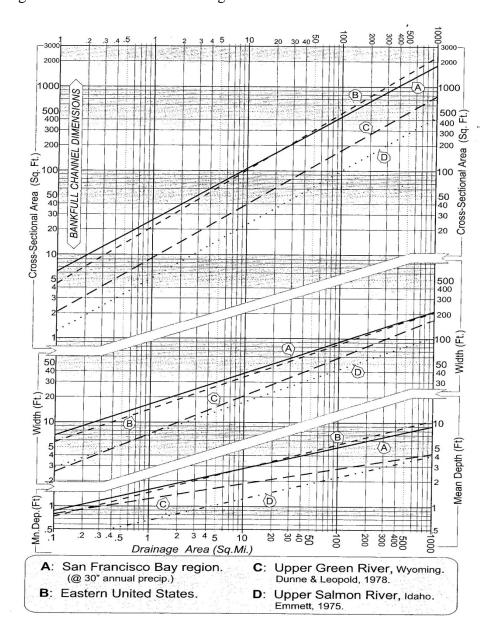
## Table 4-7. Level II classification of Indian Run.

| Basin:<br>Location: | Drainage Area: acres                                                                                                       |             |       |
|---------------------|----------------------------------------------------------------------------------------------------------------------------|-------------|-------|
| Location:           | In diam Dave advectory us advectory Dustriant                                                                              |             | mi²   |
| -                   | Indian Run stream restoraton Project                                                                                       |             |       |
| Twp.&Rge            |                                                                                                                            | 141-00-000  |       |
| Cross-Sec           | tion Monuments (Lat./Long.):                                                                                               | Date        | :     |
| Observers           | Santosh R Pant & Rajesh K Poudel 🛛 🛛 🗸                                                                                     | 'alley Type | :     |
|                     | Bankfull WIDTH (Wbkf)                                                                                                      |             | 1     |
|                     | WIDTH of the stream channel at bankfull stage elevation, in a riffle section.                                              | 13.88       | ft    |
|                     | Bankfull DEPTH (d <sub>bkf</sub> )                                                                                         |             | 1     |
|                     | Mean DEPTH of the stream channel cross-section, at bankfull stage elevation, in                                            |             |       |
|                     | a riffle section ( $d_{bt}$ = A /W <sub>bk</sub> ).                                                                        | 0.52        | ft    |
|                     |                                                                                                                            |             |       |
|                     | Bankfull X-Section AREA (Abld)<br>AREA of the stream channel cross-section, at bankfull stage elevation, in a riffle       |             |       |
|                     | section.                                                                                                                   | 7.02        | ft2   |
|                     |                                                                                                                            | 1.02        |       |
|                     | Width/Depth Ratio (W <sub>bkf</sub> / d <sub>bkf</sub> )                                                                   |             | 0.08  |
|                     | Bankfull WIDTH divided by bankfull mean DEPTH, in a riffle section.                                                        | 34.06       | ft/ft |
|                     | Maximum DEPTH (d <sub>mbkf</sub> )                                                                                         |             |       |
|                     | Maximum depth of the bankfull channel cross-section, or distance between the                                               |             |       |
|                     | bankfull stage and Thalweg elevations, in a riffle section.                                                                | 0.76        | ft    |
|                     | WIDTH of Flood-Prone Area (W <sub>tpa</sub> )                                                                              |             | 1     |
|                     | Twice maximum DEPTH, or $(2 \times d_{mark})$ = the stage/elevation at which flood-prone                                   |             |       |
|                     | area WIDTH is determined in a riffle section.                                                                              | 24.3        | ft    |
|                     | Entrenchment Ratio (ER)                                                                                                    |             | 1     |
|                     | The ratio of flood-prone area WIDTH divided by bankfull channel WIDTH (W_{\mathfrak{ps}}/                                  |             |       |
|                     | W <sub>bik</sub> ) (riffle section).                                                                                       | 1.82        | ft/ft |
|                     | Channel Materials (Particle Size Index ) D <sub>50</sub>                                                                   |             | 1     |
|                     | The D <sub>50</sub> particle size index represents the mean diameter of channel materials,                                 |             |       |
|                     | as sampled from the channel surface, between the bankfull stage and Thalweg                                                | 54555       |       |
|                     | elevations.                                                                                                                | 22          | mm    |
|                     | Water Surface SLOPE (S)                                                                                                    |             | 1     |
|                     | Channel slope = "rise over run" for a reach approximately 20–30 bankfull                                                   |             |       |
|                     | channel widths in length, with the "riffle-to-riffle" water surface slope                                                  |             |       |
|                     | representing the gradient at bankfull stage.                                                                               | 0.0079      | ft/ft |
|                     | Channel SINUOSITY (k)                                                                                                      |             |       |
|                     | Sinuosity is an index of channel pattern, determined from a ratio of stream                                                |             |       |
|                     | length divided by valley length (SL / VL); or estimated from a ratio of valley slope<br>divided by channel slope (VS / S). | 4.00        |       |
|                     |                                                                                                                            | 1.06        |       |
|                     | Stream B4c See Classificatio                                                                                               | n Kev       |       |
|                     | Type B4c See Classification                                                                                                |             |       |

#### 4.5 Bankfull Velocity/Discharge Estimation

Different calculation methods were used to estimate bankfull velocity and discharge. Table 4-8 and Table 4-9 show the bankfull velocity and discharge estimates for the Austintown Township Park UNT and Indian Run, respectively, at the stream restoration project site. From the various estimation methods, the bankfull velocity and bankfull discharge of Austintown Township Park UNT averaged were 1.52 ft/sec and 7.29 cfs, respectively. Similarly, average bankfull velocity and bankfull discharge estimates for Indian Run were 1.40 ft/sec and 9.80 cfs, respectively.

| Table 4-8. Computation of velocity and discharge of unnamed stream in Austintown |
|----------------------------------------------------------------------------------|
| Township Park using various methods.                                             |


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Austintown Town                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Austinto                                                                                                                                                                                                                                             | wn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |                                                                                                  |              |                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------|
| Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04/5/2010 Stream Type B4c Valley Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                  |              |                                                                        |
| Observer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Santosh R Pant,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rajesh Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HUC                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                  |              |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INPUT VARIAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OUTPU                                             | T VARIA                                                                                          | BLES         |                                                                        |
| Bankfu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ll Cross-sectional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A <sub>bkf</sub><br>(ft <sup>2</sup> )                                                                                                                                                                                                               | Bankfu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ull Mean D                                        | EPTH                                                                                             | 0.49         | D <sub>bkf</sub><br>(ft)                                               |
| Bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nkfull WIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W <sub>bkf</sub>                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d PERIME<br>* d <sub>ekt</sub> + W <sub>bkt</sub> | ETER                                                                                             | 10.93        | W <sub>p</sub> (ft                                                     |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84 @ Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dia.<br>(mm)                                                                                                                                                                                                                                         | D <sub>84</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mm / 304.                                         | 8 =                                                                                              | 0.328        | D <sub>84</sub><br>(ft)                                                |
| Ban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kfull SLOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S <sub>bkf</sub><br>(ft/ft)                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aulic RAD<br>Astr / Wp                            | IUS                                                                                              | 0.44         | R<br>(ft)                                                              |
| Gravitat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ional Acceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g<br>(ft/sec <sup>2</sup> )                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ive Rough<br>R(ft)/D <sub>14</sub> (ft)           |                                                                                                  | 1.34         |                                                                        |
| Dra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ainage AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DA<br>(mi²)                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shear Velocity<br>u* = √gRS                       |                                                                                                  |              | u"<br>(ft/sec                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ESTIMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | METHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DS                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ban<br>VELC                                       | kfull<br>CITY                                                                                    | Ban<br>DISCH |                                                                        |
| 1. Friction<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Relative u = [ 2.8<br>Roughness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 + 5.66Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g{ R / D <sub>8</sub>                                                                                                                                                                                                                                | 4 } ]u•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.52                                              | ft/ sec                                                                                          | 7.27         | cfs                                                                    |
| Roughner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contractor and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                  |              |                                                                        |
| oughness (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ss Coefficient: a) Mann<br>Figs. 2-18, 19) u = 1.4865*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ning's 'n' from<br>R <sup>23</sup> * S <sup>1/2</sup> /n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                      | ctor/relative<br>= 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.30                                              | ft/sec                                                                                           | 6.24         | cfs                                                                    |
| oughness (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ss Coefficient: a) Man<br>Figs. 2-18, 19) u = 1.4865*<br>ss Coefficient:<br>('s 'n' from Jarrett (USG S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R <sup>2/3</sup> * S <sup>1/2</sup> /n<br>u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n<br>= 1.4865* F                                                                                                                                                                                                                                     | = 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.30                                              | ft/sec<br>ft/sec                                                                                 | 6.24         | cfs<br>cfs                                                             |
| A Roughness (<br>A Roughne<br>b) Manning<br>Note: This eq<br>roughness, c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Figs. 2-18, 19) u = 1.4865*<br>ss Coefficient:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R <sup>25+</sup> S <sup>12</sup> /n<br>u<br>: n=0.39S <sup>22</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n<br>= 1.4865* F<br>R <sup>.14</sup> n                                                                                                                                                                                                               | = 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.30                                              |                                                                                                  | 6.24         |                                                                        |
| Note: This eq<br>roughness, c<br>A2, A3, B1, B2<br>Roughness, c<br>A2, A3, B1, B2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Figs. 2-18, 19) u = 1.4865"<br>ss Coefficient:<br>('s'n' from Jarrett (USGS)<br>uation is for applications involve<br>cobble - and boulder-dominate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R <sup>23*</sup> S <sup>12</sup> /n<br>U<br>I: n = 0.39 S <sup>22</sup><br>ng steep, step-p<br>d stream system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n<br>= 1.4865* F<br>R:** n<br>pool, high bo<br>nst i.e., for stn                                                                                                                                                                                     | = 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.30                                              |                                                                                                  | 8.36         |                                                                        |
| A Roughness (1<br>2. Roughne<br>b) Manning<br>Note: This eq<br>roughness. c<br>A2. A3. B1. B2<br>2. Roughne<br>c) Mannin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figs. 2-18, 19) u = 1.4865*<br>ss Coefficient:<br>('s 'n' from Jarrett (USGS)<br>uation is for applications involver<br>obble - and boulder - dominate<br>2. B3. C2 and E3.<br>ss Coefficient:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R <sup>23*</sup> S <sup>12</sup> /n<br>U<br>I: n = 0.39 S <sup>12</sup><br>ng steep, step-<br>d stream system<br>Me n =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n<br>= 1.4865* F<br>R- <sup>14</sup> n<br>pool, high bo<br>ns: Le. for stri<br>u = 1.4865*<br>0.056                                                                                                                                                  | eam types A1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   | ft/sec                                                                                           |              | cfs                                                                    |
| A coughness (I<br>coughnes)<br>b) Manning<br>Note: This eq<br>roughness, c<br>A2, A3, B1, B2<br>C, Roughne<br>c) Mannin<br>6, Other Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Figs. 2-18, 19) U = 1.4865*<br>ss Coefficient:<br>i's 'n' from Jarrett (USGS)<br>putton is for applications involvi<br>pobble- and boulder-dominate<br>2. B3. C2 and E3.<br>ss Coefficient:<br>ug's 'n' from Stream Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R <sup>23+</sup> S <sup>12</sup> /n<br>U<br>I: n = 0.39S <sup>22</sup><br>of stream system<br>of n =<br>ch, Chezy C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n<br>= 1.4865* F<br>R- <sup>M</sup> n<br>pool, high bo<br>ms, i.e., for strin<br>u = 1.4865*<br>0.056<br>etc.)                                                                                                                                       | eam types A1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   | ft/sec                                                                                           |              | cfs<br>cfs                                                             |
| A Continuid<br>A Con | Figs. 2-18, 19) U = 1.4865*<br>ss Coefficient:<br>('s'n' from Jarrett (USGS)<br>uation is for applications involve<br>cobble- and boulder dominate<br>2, 83, C2 and E3.<br>ss Coefficient:<br>ug's 'n' from Stream Typ<br>thods (Hey, Darcy-Weisba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R <sup>23+</sup> S <sup>12</sup> /n<br>u<br>i: n = 0.39 S <sup>22</sup><br>d stream system<br>d stream system<br>ne n =<br>ch, Chezy C,<br>ch, Chezy C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n<br>= 1.4865* F<br>R- <sup>14</sup> n<br>pool, high bo<br>ms, i.e., for sin<br>u = 1.4865*<br>0.056<br>etc.)<br>etc.)                                                                                                                               | eam types A1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   | ft/sec<br>ft/sec<br>ft/sec                                                                       |              | cfs<br>cfs<br>cfs                                                      |
| oughness (1<br>2. Roughne<br>b) Manning<br>Note: This eq<br>roughness, c<br>A2, A3, B1, B<br>2. Roughne<br>c) Mannin<br>3. Other Met<br>3. Other Met<br>4. Continuit<br>Retu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figs. 2-18, 19) u = 1.4865*<br>ss Coefficient:<br>('s'n' from Jarrett (USGS)<br>uation is for applications involve<br>tobble- and boulder-dominate<br>2, B3, C2 and E3,<br>ss Coefficient:<br>ug's 'n' from Stream Typ<br>thods (Hey, Darcy-Weisbar<br>thods (H     | R <sup>23+</sup> S <sup>12</sup> /n<br>u<br>i: n = 0.39 S <sup>22</sup><br>d stream system<br>d stream system<br>ne n =<br>ch, Chezy C,<br>ch, Chezy C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n<br>= 1.4865* F<br>R-M n<br>pool, high bo<br>ms, i.e., for stri<br>u = 1.4865*<br>0.056<br>etc.)<br>etc.)<br>etc.)                                                                                                                                  | = 0.075<br>R20* S1/n<br>=<br>undary<br>earn types A1.<br>* R20* S1/n<br>= Q / A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | ft/sec<br>ft/sec<br>ft/sec                                                                       |              | cfs<br>cfs<br>cfs<br>cfs                                               |
| oughness (1<br>2. Roughne<br>b) Manning<br>Note: This eq<br>roughness, c<br>A2, A3, 81<br>2. Roughne<br>c) Mannin<br>3. Other Met<br>3. Other Met<br>4. Continuit<br>Retu<br>4. Continuit<br>Retu<br>4. Continuit<br>Retu<br>5. Options 1, F<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Figs. 2-18, 19) u = 1.4865*<br>ss Coefficient:<br>('s'n' from Jarrett (USGS)<br>uation is for applications involve<br>cobble- and boulder-dominate<br>2, 83, C2 and E3.<br>ss Coefficient:<br>ng's 'n' from Stream Typ<br>thods (Hey, Darcy-Weisba<br>thods (Hey, Darcy-Weisba | R <sup>23+</sup> S <sup>12</sup> /n<br>u<br>tr = 0.39 S <sup>22</sup><br>d stream system<br>d stream system<br>ch, Chezy C,<br>ch, Chezy C,<br>ch, Chezy C,<br>ch, Chezy C,<br>sGS Gage D<br>in the relath<br>feasure the "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n<br>= 1.4865* F<br>R- <sup>14</sup> n<br>pool, high bo<br>ms, i.e., for sin<br>u = 1.4865*<br>0.056<br>etc.)<br>etc.)<br>etc.)<br>ves u<br>Q = [<br>ves u<br>Q = [<br>ves u<br>ves u<br>ves u<br>Q = [<br>ves u<br>ves u<br>ves u<br>ves u<br>ves u | = 0.075<br>R <sup>20*</sup> S <sup>1/2</sup> /n<br>=<br>undary<br>earn types A1.<br>R <sup>20*</sup> S <sup>1/2</sup> /n<br>= Q / A<br><br>Yr.<br>= Q / A<br><br>ss relation (<br>n height" (height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.75                                              | ft/sec<br>ft/sec<br>ft/sec<br>ft/sec<br>ft/sec<br>ft/sec<br>ft/sec<br>ft/sec                     | 8.36         | cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>thod 1. |
| oughness (1<br>2. Roughne<br>b) Manning<br>Note: This eq<br>roughness, c<br>A2, A3, B1,<br>2. Roughne<br>c) Mannin<br>3. Other Met<br>4. Continuit<br>Retu<br>4. Continuit<br>Retu<br>4. Continuit<br>Options<br>Option 1. F<br>e<br>Option 2. Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Figs. 2-18, 19) u = 1.4865*<br>ss Coefficient:<br>('s'n' from Jarrett (USGS)<br>waton is for applications involve<br>cobble- and boulder-dominate<br>2, 83, C2 and E3.<br>ss Coefficient:<br>ng's 'n' from Stream Typ<br>thods (Hey, Darcy-Weisba<br>thods (Hey, Darcy-Weisba  | R <sup>23+</sup> S <sup>12</sup> /n<br>u<br>tr n = 0.39 S <sup>22</sup><br>d stream system<br>d stream system<br>ch, Chezy C,<br>ch, Ch, Chezy C,<br>ch, Ch, Chezy C,<br>ch, Chezy C,<br>ch, Chezy C,<br>ch, Ch, | n<br>= 1.4865* F<br>R-M n<br>pool, high bo<br>ms, i.e., for stri<br>u = 1.4865*<br>0.056<br>etc.)<br>etc.)<br>etc.)<br>etc.)<br>etc.)<br>ves u<br>Q =<br>pata u<br>ve roughne<br>profrusion<br>f dune profr<br>asure sever<br>der profrusion         | = 0.075<br>R <sup>20*</sup> S <sup>1/2</sup> /n<br>=<br>undary<br>earn types A1.<br>R <sup>20*</sup> S <sup>1/2</sup> /n<br>= Q / A<br><br>= 0 / A<br>= 0 | 1.75                                              | ft/sec<br>ft/sec<br>ft/sec<br>ft/sec<br>ft/sec<br>ft/sec<br>ft/sec<br>ft/sec<br>ft/sec<br>ft/sec | 8.36         | cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs     |

| -                              | methods.                                                                  | Banl                | kfull VEL                                                 | OCITY                       | DISCHA                                     | RGE Est                                                  | imates                                                |                              |                          |
|--------------------------------|---------------------------------------------------------------------------|---------------------|-----------------------------------------------------------|-----------------------------|--------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------|--------------------------|
| Site                           | Indian Run                                                                |                     |                                                           |                             | Location                                   | Hermita                                                  | ge, PA                                                |                              |                          |
| Date 04/5/2010 Stream Type B4c |                                                                           |                     |                                                           | Valley T                    | ype                                        |                                                          |                                                       |                              |                          |
| Observers                      | Santosh R P                                                               | Rajesh Po           | HUC                                                       |                             |                                            |                                                          |                                                       |                              |                          |
|                                | INPUT VA                                                                  | RIAB                | LES                                                       |                             |                                            | OUTPU                                                    | T VARIA                                               | BLES                         |                          |
| Bankfull                       | Cross-section                                                             | al                  | 7.02                                                      | A <sub>bkf</sub>            | Bankfu                                     | ull Mean D                                               | EPTH                                                  | 0.52                         | D <sub>bkf</sub><br>(ft) |
| Ban                            | cfull WIDTH                                                               |                     | 13.88                                                     | W <sub>bkf</sub>            |                                            | d PERIME<br>* d <sub>bit</sub> + W <sub>bit</sub>        | TER                                                   | 14.92                        | W <sub>p</sub> (ft)      |
| D <sub>8</sub>                 | 4 @ Riffle                                                                |                     | 77.0                                                      | Dia.<br>(mm)                | D <sub>84</sub>                            | mm / 304.0                                               | 8 =                                                   | 0.25                         | D <sub>84</sub><br>(ft)  |
| Bank                           | full SLOPE                                                                |                     | 0.0079                                                    | S <sub>bkf</sub><br>(ft/ft) |                                            | aulic RAD<br>Ackr / Wp                                   | IUS                                                   | 0.47                         | R<br>(ft)                |
| Gravitatio                     | onal Acceleration                                                         | on                  | 32.2                                                      | g<br>(ft/sec <sup>2</sup> ) |                                            | ive Rough<br>(ft)/D <sub>34</sub> (ft)                   |                                                       | 1.88                         |                          |
| Drai                           | nage AREA                                                                 |                     | 1.6                                                       | DA<br>(mi²)                 |                                            | learVeloci<br>u* =√gRS                                   | ity                                                   | 0.35                         | u*<br>(ft/sec)           |
|                                | ESTIMAT                                                                   | ION                 | METHO                                                     | DS                          |                                            | Bankfull<br>VELOCITY                                     |                                                       | Bankfull<br>DISCHARGE        |                          |
| 1. Friction<br>Factor          | Relative u =<br>Roughness                                                 | [ 2.8               | 3 + 5.66Lo                                                | g{ R / D <sub>84</sub>      | , } ]u•                                    | 1.53                                                     | ft/sec                                                | 10.74                        | cfs                      |
| 2. Roughnes:<br>oughness (Fi   | s Coefficient: a<br>gs. 2-18, 19) u = 1.                                  | ) Manr<br>4865*     | ning's 'n' from<br>R <sup>2/3</sup> * S <sup>1/2</sup> /n |                             | ctor/relative<br>= 0.064                   | 1.23                                                     | ft/sec                                                | 8.63                         | cfs                      |
|                                | s Coefficient:<br>s'n' from Jarrett (1                                    | 166.51              |                                                           | = 1.4865* F                 | 2/3+ S1/2/n                                |                                                          | ft/sec                                                |                              | cfs                      |
| Note: This equ                 | ation is for applications<br>bble- and boulder-do                         | involvin            | g steep, step-p                                           | ool, high boo               | undary<br>sam types A1,                    |                                                          |                                                       |                              |                          |
|                                | s Coefficient:<br>'s 'n' from Strea                                       | m Typ               | - 1586 T                                                  | u = 1.4865*<br>0.056        | R <sup>2/3</sup> * S <sup>1/2</sup> /n     | 1.43                                                     | ft/sec                                                | 10.02                        | cfs                      |
| 3. Other Meth                  | ods (Hey, Darcy-W                                                         | Veisba              | ch, Chezy C,                                              | etc.)                       |                                            |                                                          | ft/sec                                                |                              | cfs                      |
| 3. Other Meth                  | ods (Hey, Darcy-V                                                         | Veisba              | ch, Chezy C,                                              | etc.)                       |                                            |                                                          | ft/sec                                                |                              | cfs                      |
|                                | r Equations:<br>Period for Bankfi                                         | 1.0 2.1 2.2 2.1 2.1 | egional Curv<br>charge                                    | Q =                         | =Q/A<br>Yr.                                |                                                          | ft/sec                                                |                              | cfs                      |
| 4. Continuity                  | Equations:                                                                | b) U                | SGS Gage D                                                | ata u                       | =Q/A                                       |                                                          | ft/sec                                                |                              | cfs                      |
| Option 1. Fo                   | for using the D <sub>se</sub><br>r sand-bed channe<br>evations. Substitut | nels: M<br>te an a  | leasure the "<br>verage sand                              | protrusion<br>dune protr    | height" (h <sub>e</sub><br>usion height    | <sub>3</sub> ) of sand du<br>(h <sub>8d</sub> in ft) for | ines above c<br>the D <sub>84</sub> term              | hannel bed<br>i in est. meth | od 1.                    |
| Option 2. For<br>be            | boulder-domina<br>delevations. Subs                                       | ted ch<br>stitute : | nannels: Mea<br>an ave, boul                              | asure sever<br>der protrusi | al "protrusic<br>on height (h <sub>o</sub> | on heights"<br>o in ft) for the                          | (h <sub>bo</sub> ) of boul<br>D <sub>54</sub> term in | ders above o<br>est. method  | hannel<br>1.             |
| sep                            | bedrock-domina<br>arations/steps/joi<br>trusion height (h <sub>ar</sub>   | ints/up             | olifted surfac                                            | es above ch                 | hannel bed e                               | levations. S                                             |                                                       |                              | lrock                    |

# Table 4-9.Computation of velocity and discharge of Indian Run using various methods.

#### 4.6 Departure from Natural Conditions

Regional curves (Rosgen and Silvey, 2007) were used to determine expected values of width, cross-sectional area and mean depth for each stream based on watershed area. The regional curves for eastern United States were used. Figure 4-13 shows the regional curves for the various regions.



## Figure 4-13. Regional curves showing bankfull dimension vs. drainage areas for various hydro-physiographic provinces (Rosgen and Slivey, 2007).

#### 4.6.1 Comparison of Mean Depth, Width and Cross-sectional Area of Streams from Regional Curves and Actual Field Data,

Table 4-10 shows the values obtained from the regional curves and field data for

both Austintown Township Park UNT and Indian Run.

| Table 4-10. Comparison of the stream morphometry values obtained from reg | ional |
|---------------------------------------------------------------------------|-------|
| curve and actual field data.                                              |       |

| Sites                          | Re         | gional cu | irves            | Field data |          |                  |  |
|--------------------------------|------------|-----------|------------------|------------|----------|------------------|--|
| Sites                          | Mean Depth | width     | x-sectional area | Mean depth | Width    | x-sectional area |  |
| Austintown<br>Township<br>Park | 1.5 ft     | 17 ft     | 22 sq ft         | 0.49 ft    | 9.95 ft  | 4.79 sq ft       |  |
| Indian Run                     | 1.8 ft     | 16 ft     | 28 sq ft         | 0.52 ft    | 13.88 ft | 7.02 sq ft       |  |

The above comparison shows that there is significant difference between the values obtained from regional curves and field data. The streams we are considering are relatively small, and the predicted width and depth is much larger than the measured values. This may be due to various reasons. The most important reason is that we don't have regional curves for the local area where the streams are located. We are using the regional curves for eastern United States which will give the average values for all the streams that are in the region. Those curves were derived from data on streams with minimal human impact, while the streams studied in this project have considerable human impact.

Both streams were classified as B4c type streams. Based on slope, we would expect these streams to be C type streams in the absence of human impacts. Sinuosity for both streams was less than expected. Sinuosity less than 1.2 is usually only found in A type streams. However, entrenchment was more typical of B type stream. This observation was probably due to the stream channel being constrained by man-made features. All of these discrepancies suggest that the streams are not at their optimal natural condition.

Although there is still small amount of bank erosion on both Austintown UNT and Indian Run, the objectives of client and designer to reduce the bank erosion of both streams were mostly achieved. However, the full natural geomorphic and biological functions of the streams have most likely not been restored. Natural streams typically exist in a condition of dynamic equilibrium, where sediment is continuously eroded and deposited, and the channel changes location.

#### **CHAPTER 5**

#### **CONCLUSIONS AND RECOMMENDATIONS**

#### **5.1 Conclusions**

Based on the analysis of data collected in this study, the following conclusions were drawn:

- The restored sections of both streams Austintown Township Park UNT and Indian Run - were classified as "B4c" type streams.
- Bankfull velocity and discharge of Austintown Township Park UNT were estimated as 1.52 ft/sec and 7.29 cfs, respectively. Similarly, bankfull velocity and discharge of Indian Run were estimated as 1.40 ft/sec and 9.80 cfs, respectively.
- 3. There were significant differences in the mean depth, width and cross-sectional area obtained from regional curves and those measured in the field.
- 4. Based upon field visits, survey data and stream classification, the restored sections of both streams are not at their optimum natural condition.
- 5. While the slopes of both streams are typical of C type streams, the entrenchment ratios are typical of B type streams, most likely due to the effects of man-made features.
- The objectives of client and designer to reduce the bank erosion of both streams were mostly achieved. However, full natural geomorphic biological functions are not restored.

#### **5.2 Recommendations**

Based on the results obtained for the two restored stream sections, the following recommendations should be considered:

- The entrenchment ratio and sinuosity of both streams should be increased to ranges typical of "C" type streams in order to achieve more natural stream conditions.
- 2. Development of regional curves for Ohio or the upper Midwest region would be helpful as a guide to identify the natural morphometry of streams in this area.
- 3. Rosgen Level III and Level IV assessments should be performed for both the Austintown Park UNT and Indian Run.

#### REFERENCES

American Rivers, 2009. <u>http://www.americanrivers.org/assets/pdfs/about-us-docs/annualreport2004281e.pdf</u>

FISRWG (10/1998). Stream Corridor Restoration: Principles, Processes, and Practices. By the Federal Interagency Stream Restoration Working Group (FISRWG) (15 Federal agencies of the US gov't). GPO Item No. 0120-A; SubDocs No. A 57.6/2: EN3/PT.653. ISBN 0-934213-59-3.

Gottron, J., 2008. Personal communication, Austintown Township Park Supervisor.

Kellerhals, R., C.R. Neill and D.I. Bray, 1972. Hydraulic and geomorphic characteristics of rivers in Albera. Research Council of Alberta, River Engineering and Surface Hydrology Report 72-1: 52pp.

Kondolf G.M. and Micheli E.R., 2006. Evaluating stream restoration projects, ISSN 1432-1009. Journal of Environmental Management 19(1): 1-15, viewed November 2, 2009. <u>http://www.springerlink.com/content/f653627177k75j63/</u>

MyTopo, 2009. http://www.mytopo.com/

Pacific Rivers Council, 1996. A guide to the restoration of watersheds and native fish in the pacific northwest, Workbook II, Healing the Watershed series.

Prof. Stephen A. Nelson, Tulane University, Physical Hydrology (EENS 111) home page, viewed September 14, 2009. <u>http://www.tulane.edu/~sanelson/geol111/streams.htm</u>

Rosgen D., 1996. Applied River Morphology. Second Edition, ISBN 0-9653289-0-2

Rosgen, David L., 1994. A classification of natural rivers, Catena 22 (1994) 169-199, viewed October 28, 2009. http://www.alpine-eco.com/files/Rosgen\_ClassificationNaturalRivers.pdf

Rosgen, David L., 2001. The Cross-Vane, W-Weir and J-Hook Vane Structures. Their Description, Design and Application for Stream Stabilization and River Restoration, viewed November 7, 2009. http://www.wildlandhydrology.com/assets/cross-vane.pdf

Rosgen, D.L. and Silvey, H.L., 2007. The reference reach field book (3<sup>rd</sup> edition). Fort Collins, CO: Wildland Hydrology Books.

Simon A., Doyle M., Kondolf M., Shields F.D., Rhoads B. and Phillips M. Mc. 2007. Critical Evaluation of How the Rosgen Classification and Associated "Natural Channel Design" Methods Fail to Integrate and Quantify Fluvial Processes and Channel Response. Journal of the American Water Resources Association. Vol 43, No. 5 http://ddr.nal.usda.gov/bitstream/10113/7764/1/IND43976479.pdf

West Virginia Department of Environmental Protection, 2009. http://www.dep.wv.gov/WWE/getinvolved/sos/Pages/SOP1pebblecount.aspx

Wildland Hydrology, 2008. Applied Fullvial Geomorphology Field Exercise: Stream Classification.

WPI, 2010. DVD provided by Wallace and Pancher, Inc.

Wolman, M.G., 1954. A method of sampling coarse river-bed material. Transactions of American Geophysical Union 35: 951-956

## APPENDIX A

| STATION | BS (ft.)<br>[+] | HI (ft.) | FS (ft.)<br>[-] | BED LEVEL<br>ELEV. (ft.) | WATER<br>SURFACE<br>ELEV. (ft.) | REMARKS           |
|---------|-----------------|----------|-----------------|--------------------------|---------------------------------|-------------------|
|         | 6.19            | 1113.09  |                 | 1106.99                  |                                 | BM Culvert invert |
| 2+30    |                 |          | 6.34            | 1106.75                  | 1107.04                         |                   |
| 2+20    |                 |          | 6.43            | 1106.66                  | 1107                            |                   |
| 2+10    |                 |          | 6.29            | 1106.8                   | 1106.96                         | Small Riffle      |
| 2+00    |                 |          | 6.53            | 1106.56                  | 1106.99                         | Shallow Pool      |
| 1+93    |                 |          | 6.54            | 1106.55                  | 1106.98                         | Pool Below CV     |
| 1+90    |                 |          | 6.33            | 1106.76                  | 1106.98                         | Below CV          |
| 1+90    |                 |          | 6.14            | 1106.95                  | 1106.95                         | Top of CV         |
| 1+80    |                 |          | 6.21            | 1106.88                  | 1107.07                         | Riffle            |
| 1+70    |                 |          | 6.23            | 1106.86                  | 1107.1                          | Riffle            |
| 1+65    |                 |          | 6.34            | 1106.75                  | 1107.11                         | Pool              |
| 1+60    |                 |          | 6.14            | 1106.95                  | 1107.19                         | Riffle            |
| 1+55    |                 |          | 6.06            | 1107.03                  | 1107.27                         | Riffle            |
| 1+50    |                 |          | 6.1             | 1106.99                  | 1107.22                         | Riffle            |
| 1+48    |                 |          | 6.17            | 1106.92                  | 1107.28                         | Pool Below CV     |
| 1+45    |                 |          | 5.68            | 1107.41                  | 1107.42                         | Top of CV         |
| 1+40    |                 |          | 5.86            | 1107.23                  | 1107.53                         |                   |
|         |                 |          |                 |                          |                                 |                   |
| 1+36    |                 |          | 5.84            | 1107.25                  | 1107.52                         |                   |
| 1+30    |                 |          | 5.67            | 1107.42                  | 1107.59                         | Riffle            |
| 1+20    |                 |          | 5.51            | 1107.58                  | 1107.77                         |                   |
| 1+10    |                 |          | 5.35            | 1107.74                  | 1107.89                         |                   |
| 1+05    |                 |          | 5.33            | 1107.76                  | 1107.92                         | Below CV          |
| 1+01    |                 |          | 5.17            | 1107.92                  | 1107.94                         | Top of CV         |
| 1+00    |                 |          | 5.26            | 1107.83                  | 1107.96                         | Riffle            |
| 0+90    |                 |          | 5.15            | 1107.94                  | 1108.08                         |                   |
| 0+85    |                 |          | 5.55            | 1107.54                  | 1108.1                          | Pool              |
| 0+80    |                 |          | 5.46            | 1107.63                  | 1108.09                         | Pool              |
| 0+75    |                 |          | 5.54            | 1107.55                  | 1108.1                          | Pool              |
| 0+70    |                 |          | 5.41            | 1107.68                  | 1108.11                         | Pool              |
| 0+65    |                 |          | 5.19            | 1107.9                   | 1108.12                         | Riffle            |
| 0+62    |                 |          | 5.59            | 1107.5                   | 1108.12                         | Pool Below CV     |
| 0+60    |                 |          | 4.5.31          | 1107.78                  | 1108.17                         |                   |
| 0+58    |                 |          | 4.25            | 1108.84                  | 1108.84                         | Top of CV         |
| 0+50    |                 |          | 4.7             | 1108.39                  | 1108.59                         |                   |

## Table A-1. Longitudinal data for Austintown UNT.

| STATION | BS (ft.)<br>[+] | HI (ft.) | FS (ft.)<br>[-] | BED LEVEL<br>ELEV. (ft.) | WATER<br>SURFACE<br>ELEV. (ft.) | REMARKS         |
|---------|-----------------|----------|-----------------|--------------------------|---------------------------------|-----------------|
|         |                 |          |                 |                          |                                 |                 |
| 0+30    |                 |          | 4.29            | 1108.8                   | 1109.02                         | Riffle          |
| 0+20    |                 |          | 4.14            | 1108.95                  | 1109.35                         |                 |
| 0+19    |                 |          | 4.3             | 1108.79                  | 1109.35                         | Pool Below CV   |
| 0+15    |                 |          | 3.8             | 1109.29                  | 1109.29                         | Top of CV       |
| 0+10    |                 |          | 3.16            | 1109.93                  | 1109.98                         |                 |
| 0+00    |                 |          | 3.21            | 1109.88                  | 1110.04                         | Beginning Point |

| STATION | BS (ft.)<br>[+] | HI (ft.) | FS (ft.)<br>[-]<br>(Thalweg) | Edge of<br>water | BED LEVEL<br>ELEV. (ft.) | WATER SURFACE<br>ELEV. (ft.) | REMARKS                 |
|---------|-----------------|----------|------------------------------|------------------|--------------------------|------------------------------|-------------------------|
| BM1     | 3.97            | 1103.97  |                              |                  | 1100                     |                              | Top of downstream rock  |
| 0+00    |                 |          | 5.43                         | 4.8              | 1098.54                  | 1099.17                      |                         |
| 0+50    |                 |          | 4.85                         | 4.66             | 1099.12                  | 1099.31                      |                         |
| 0+73    |                 |          | 4.96                         | 4.62             | 1099.01                  | 1099.35                      | Log structure           |
| 0+90    |                 |          | 4.98                         | 4.74             | 1098.99                  | 1099.23                      |                         |
| 1+12    |                 |          | 5.8                          | 5.14             | 1098.17                  | 1098.83                      |                         |
| 1+30    |                 |          | 5.81                         | 5.22             | 1098.16                  | 1098.75                      |                         |
| 1+57    |                 |          | 6.49                         | 5.96             | 1097.48                  | 1098.01                      |                         |
| 1+75    |                 |          | 6.8                          | 6.16             | 1097.17                  | 1097.81                      |                         |
| 1+98    |                 |          | 6.55                         | 6.4              | 1097.42                  | 1097.57                      | Above the log structure |
| 2+00    |                 |          | 7                            | 6.57             | 1096.97                  | 1097.4                       | Below the log structure |
| 2+22    |                 |          | 7.65                         | 7.3              | 1096.32                  | 1096.67                      |                         |
| BM2     | 4.12            | 1101.54  |                              |                  | 1097.42                  |                              |                         |
| 2+60    |                 |          | 5.97                         | 5.14             | 1095.57                  | 1096.4                       |                         |
| 2+77    |                 |          | 5.64                         | 5.18             | 1095.9                   | 1096.36                      |                         |
| 3+00    |                 |          | 5.83                         | 5.28             | 1095.71                  | 1096.26                      |                         |
| BM 3    | 3.4             | 1099.98  | 4.96                         |                  | 1096.58                  |                              |                         |

Table A-2. Longitudinal data for Indian Run.

| STATION | BS (ft.)<br>[+] | HI (ft.) | FS (ft.)<br>[-]<br>(Thalweg) | Edge of<br>water | BED LEVEL<br>ELEV. (ft.) | WATER SURFACE<br>ELEV. (ft.) | REMARKS                 |
|---------|-----------------|----------|------------------------------|------------------|--------------------------|------------------------------|-------------------------|
| 3+30    |                 |          | 4.3                          | 3.42             | 1095.68                  | 1096.56                      |                         |
| 3+42    |                 |          | 4.49                         | 3.83             | 1095.49                  | 1096.15                      |                         |
| 3+49    |                 |          | 5.37                         | 3.87             | 1094.61                  | 1096.11                      |                         |
| 3+60    |                 |          | 4.73                         | 3.88             | 1095.25                  | 1096.1                       |                         |
| 3+82    |                 |          | 4.74                         | 3.91             | 1095.24                  | 1096.07                      |                         |
| 3+96    |                 |          | 4.53                         | 4.03             | 1095.45                  | 1095.95                      |                         |
| 4+25    |                 |          | 4.97                         | 4.36             | 1095.01                  | 1095.62                      |                         |
| 4+62    |                 |          | 5.28                         | 4.8              | 1094.7                   | 1095.18                      |                         |
| BM4     | 4.33            | 1099.53  | 4.78                         |                  | 1095.2                   |                              |                         |
| 4+90    |                 |          | 4.89                         | 4.43             | 1094.64                  | 1095.1                       |                         |
| 5+30    |                 |          | 5.22                         | 4.86             | 1094.31                  | 1094.67                      |                         |
| 5+77    |                 |          | 5.67                         | 5.13             | 1093.86                  | 1094.4                       |                         |
| 5+87    |                 |          | 5.78                         | 5.3              | 1093.75                  | 1094.23                      |                         |
| 6+00    |                 |          | 6.07                         | 5.48             | 1093.46                  | 1094.05                      |                         |
| BM5     | 3.32            | 1097.88  | 4.97                         |                  | 1094.56                  |                              |                         |
| 6+23    |                 |          | 4.3                          | 3.93             | 1093.58                  | 1093.95                      |                         |
| 6+69    |                 |          | 4.57                         | 4.25             | 1093.31                  | 1093.63                      | Above the log structure |
| 6+71    |                 |          | 4.65                         | 4.33             | 1093.23                  | 1093.55                      | Below the log structure |
| 7+00    |                 |          | 4.56                         | 4.21             | 1093.32                  | 1093.67                      | Above the log structure |
| 7+02    |                 |          | 4.47                         | 4.2              | 1093.41                  | 1093.68                      | Below the log structure |
| 7+49    |                 |          | 5.72                         | 4.87             | 1092.16                  | 1093.01                      |                         |
| 7+60    |                 |          | 5.14                         | 4.86             | 1092.74                  | 1093.02                      |                         |

| STATION | BS (ft.)<br>[+] | HI (ft.) | FS (ft.)<br>[-]<br>(Thalweg) | Edge of<br>water | BED LEVEL<br>ELEV. (ft.) | WATER SURFACE<br>ELEV. (ft.) | REMARKS                          |
|---------|-----------------|----------|------------------------------|------------------|--------------------------|------------------------------|----------------------------------|
| 7+68    |                 |          | 5.27                         | 4.99             | 1092.61                  | 1092.89                      | Above the log structure          |
| 7+71    |                 |          | 5.43                         | 4.95             | 1092.45                  | 1092.93                      | Below the log structure          |
| 7+91    |                 |          | 6.02                         | 5.25             | 1091.86                  | 1092.63                      |                                  |
| 8+44    |                 |          | 5.78                         | 5.46             | 1092.1                   | 1092.42                      |                                  |
| 8+88    |                 |          | 6.48                         | 6.22             | 1091.4                   | 1091.66                      |                                  |
| BM6     | 3.99            | 1095.67  | 6.2                          |                  | 1091.68                  |                              |                                  |
| 9+00    |                 |          | 4.2                          | 4.06             | 1091.47                  | 1091.61                      |                                  |
| 9+11    |                 |          | 4.62                         | 4.27             | 1091.05                  | 1091.4                       |                                  |
| 9+40    |                 |          | 4.85                         | 4.43             | 1090.82                  | 1091.24                      |                                  |
| 9+89    |                 |          | 5.8                          | 4.54             | 1089.87                  | 1091.13                      |                                  |
| 10+13   |                 |          | 5.3                          | 4.7              | 1090.37                  | 1090.97                      | Above log structure              |
| 10+16   |                 |          | 6.22                         | 5.42             | 1089.45                  | 1090.25                      | Below the log<br>structure(Pool) |
| 10+35   |                 |          | 6.2                          | 5.5              | 1089.47                  | 1090.17                      | Above the log structure          |
| 10+39   |                 |          | 6.49                         | 5.54             | 1089.18                  | 1090.13                      | Below the log structure          |
| 10+64   |                 |          | 6.58                         | 5.7              | 1089.09                  | 1089.97                      |                                  |
| BM7     | 3.62            | 1093.75  | 5.54                         |                  | 1090.13                  |                              |                                  |
| 10+85   |                 |          | 5.41                         | 3.85             | 1088.34                  | 1089.9                       |                                  |
| 11+00   |                 |          | 4.94                         | 3.77             | 1088.81                  | 1089.98                      | Above log structure              |
| 11+25   |                 |          | 4.04                         | 3.69             | 1089.71                  | 1090.06                      |                                  |
| 11+50   |                 |          | 4.32                         | 3.98             | 1089.43                  | 1089.77                      |                                  |

## **APPENDIX B**

| Cross-<br>section<br>at | STATION | BS<br>[+] | HI      | FS<br>[-] | ELEV.<br>[FEET] | REMARKS                   |
|-------------------------|---------|-----------|---------|-----------|-----------------|---------------------------|
|                         | BM      | 10.52     | 1117.42 |           | 1106.9          | Bench Mark Culvert Invert |
|                         | 0+00    |           |         | 1.66      | 1115.76         |                           |
|                         | 0+05    |           |         | 3.2       | 1114.22         |                           |
|                         | 0+10    |           |         | 5.57      | 1111.85         |                           |
|                         | 0+12.5  |           |         | 6.92      | 1110.5          |                           |
|                         | 0+15    |           |         | 7.3       | 1110.12         |                           |
|                         | 0+16    |           |         | 7.65      | 1109.77         | Top of Left Channel       |
|                         | 0+18    |           |         | 8.65      | 1108.77         |                           |
| 0+50                    | 0+20    |           |         | 8.6       | 1108.82         |                           |
| 0+50                    | 0+21    |           |         | 9.1       | 1108.32         |                           |
|                         | 0+23    |           |         | 9.16      | 1108.26         |                           |
|                         | 0+25    |           |         | 8.82      | 1108.6          |                           |
|                         | 0+28    |           |         | 8.57      | 1108.85         |                           |
|                         | 0+30    |           |         | 7.11      | 1110.31         | Top of Right Channel      |
|                         | 0+32    |           |         | 6.93      | 1110.49         |                           |
|                         | 0+35    |           |         | 5.89      | 1111.53         |                           |
|                         | 0+40    |           |         | 3.8       | 1113.62         |                           |
|                         | 0+45    |           |         | 2.44      | 1114.98         |                           |
|                         | 0+00    |           |         | 4.95      | 1112.47         |                           |
|                         | 0+05    |           |         | 6.06      | 1111.36         |                           |
|                         | 0+10    |           |         | 7.87      | 1109.55         |                           |
|                         | 0+15    |           |         | 8.84      | 1108.58         |                           |
|                         | 0+18    |           |         | 9.39      | 1108.03         |                           |
|                         | 0+19    |           |         | 9.53      | 1107.89         | Edge of Water             |
|                         | 0+20    |           |         | 9.56      | 1107.86         |                           |
| 1 00                    | 0+22    |           |         | 9.67      | 1107.75         |                           |
| 1+00                    | 0+24.5  |           |         | 9.55      | 1107.87         | Edge of Water             |
|                         | 0+25    |           |         | 9.43      | 1107.99         |                           |
|                         | 0+28    |           |         | 8.65      | 1108.77         |                           |
|                         | 0+30    |           |         | 8.33      | 1109.09         |                           |
|                         | 0+31    |           |         | 7.73      | 1109.69         |                           |
|                         | 0+35    |           |         | 6.34      | 1111.08         |                           |
|                         | 0+40    |           |         | 4.59      | 1112.83         |                           |
|                         | 0+43.25 |           |         | 4.08      | 1113.34         |                           |

## Table B-1. Cross-sectional data for Austintown UNT.

| Cross-<br>section<br>at | STATION | BS<br>[+] | HI | FS<br>[-] | ELEV.<br>[FEET] | REMARKS         |
|-------------------------|---------|-----------|----|-----------|-----------------|-----------------|
|                         |         |           |    |           |                 |                 |
|                         | 0+00    |           |    | 5.78      | 1110.73         |                 |
|                         | 0+03    |           |    | 6.81      | 1109.7          |                 |
|                         | 0+05    |           |    | 7.64      | 1108.87         |                 |
|                         | 0+06    |           |    | 8.13      | 1108.38         |                 |
|                         | 0+10    |           |    | 8.44      | 1108.07         |                 |
|                         | 0+11    |           |    | 8.55      | 1107.96         | Top of the Bank |
|                         | 0+12    |           |    | 9.32      | 1107.19         | LEW             |
|                         | 0+15    |           |    | 9.43      | 1107.08         |                 |
|                         | 0+17    |           |    | 9.44      | 1107.07         |                 |
|                         | 0+18    |           |    | 9.23      | 1107.28         | REW             |
|                         | 0+19    |           |    | 9.17      | 1107.34         |                 |
|                         | 0+20    |           |    | 8.45      | 1108.06         | Top of the Bank |
|                         | 0+22    |           |    | 8.12      | 1108.39         |                 |
|                         | 0+25    |           |    | 7.61      | 1108.9          |                 |
|                         | 0+27.5  |           |    | 6.74      | 1109.77         |                 |
|                         | 0+30    |           |    | 5.82      | 1110.69         |                 |
|                         | 0+32    |           |    | 4.88      | 1111.63         |                 |
|                         | 0+35    |           |    | 4.26      | 1112.25         |                 |
|                         | 0+36.8  |           |    | 4.14      | 1112.37         |                 |
|                         | 0+00    |           |    | 5.44      | 1111.07         |                 |
|                         | 0+2.5   |           |    | 6.31      | 1110.2          |                 |
|                         | 0+05    |           |    | 7.02      | 1109.49         |                 |
|                         | 0+07    |           |    | 7.77      | 1108.74         |                 |
|                         | 0+08    |           |    | 8.06      | 1108.45         |                 |
|                         | 0+09    |           |    | 9.05      | 1107.46         |                 |
|                         | 0+10    |           |    | 9.44      | 1107.07         |                 |
|                         | 0+10.5  |           |    | 9.59      | 1106.92         | LEW             |
| 2+00                    | 0+12    |           |    | 9.83      | 1106.68         |                 |
|                         | 0+14    |           |    | 9.92      | 1106.59         | C/L             |
|                         | 0+15    |           |    | 9.9       | 1106.61         |                 |
|                         | 0+17    |           |    | 9.58      | 1106.93         | REW             |
|                         | 0+18    |           |    | 9.33      | 1107.18         |                 |
|                         | 0+18.5  |           |    | 8.95      | 1107.56         |                 |
|                         | 0+20    |           |    | 8.81      | 1107.7          |                 |
|                         | 0+22    |           |    | 8.28      | 1108.23         |                 |
|                         | 0+25    |           |    | 7.33      | 1109.18         |                 |

| Cross-<br>section<br>at | STATION | BS<br>[+] | HI | FS<br>[-] | ELEV.<br>[FEET] | REMARKS |
|-------------------------|---------|-----------|----|-----------|-----------------|---------|
|                         | 0+26    |           |    | 7.01      | 1109.5          |         |
|                         | 0+27    |           |    | 6.29      | 1110.22         |         |
| 2+00                    | 0+30    |           |    | 5.34      | 1111.17         |         |
|                         | 0+32    |           |    | 4.53      | 1111.98         |         |
|                         | 0+33.7  |           |    | 4.19      | 1112.32         |         |

| Cross-<br>section<br>at | STATION | BS<br>[+] | HI      | FS<br>[-] | ELEV.<br>[FEET] | REMARKS          |
|-------------------------|---------|-----------|---------|-----------|-----------------|------------------|
|                         | BM1     | 9.19      | 1109.19 |           | 1100            | BM1              |
|                         | 0+00    |           |         | 4.29      | 1104.9          | Starting from Rt |
|                         | 0+03    |           |         | 6.63      | 1102.56         |                  |
|                         | 0+05    |           |         | 7.85      | 1101.34         |                  |
|                         | 0+07    |           |         | 9.29      | 1099.9          | BKF              |
|                         | 0+08    |           |         | 9.51      | 1099.68         | Edge of water Rt |
| 0+15                    | 0+12    |           |         | 9.96      | 1099.23         |                  |
|                         | 0+18    |           |         | 9.63      | 1099.56         |                  |
|                         | 0+22    |           |         | 9.51      | 1099.68         | Edge of water Lt |
|                         | 0+25    |           |         | 9.29      | 1099.9          | BKF              |
|                         | 0+27    |           |         | 8.64      | 1100.55         |                  |
|                         | 0+29    |           |         | 8.1       | 1101.09         |                  |
|                         | 0+30    |           |         | 8.03      | 1101.16         |                  |
|                         | BM4     | 7.66      | 1102.86 |           | 1095.2          | BM4              |
|                         | 0+00    |           |         | 4.59      | 1098.27         |                  |
|                         | 0+04    |           |         | 4.81      | 1098.05         |                  |
|                         | 0+07    |           |         | 5.51      | 1097.35         |                  |
|                         | 0+08    |           |         | 6.25      | 1096.61         |                  |
|                         | 0+09    |           |         | 7.14      | 1095.72         |                  |
|                         | 0+10    |           |         | 7.46      | 1095.4          |                  |
| 600+25                  | 0+11    |           |         | 7.81      | 1095.05         | BKF              |
| 000+25                  | 0+12    |           |         | 8.34      | 1094.52         | Edge of water Rt |
|                         | 0+15    |           |         | 8.71      | 1094.15         |                  |
|                         | 0+18    |           |         | 8.8       | 1094.06         |                  |
|                         | 0+21    |           |         | 8.47      | 1094.39         |                  |
|                         | 0+24    |           |         | 8.34      | 1094.52         | Edge of water Lt |
|                         | 0+25    |           |         | 7.81      | 1095.05         | BKF              |
|                         | 0+27    |           |         | 7.4       | 1095.46         |                  |
|                         | 0+30    |           |         | 7.13      | 1095.73         | ×                |
|                         | BM 4    | 6.69      | 1101.89 |           | 1095.2          | BM4              |
|                         | 0+00    |           |         | 4.66      | 1097.23         |                  |
| 6+80                    | 0+04    |           |         | 5         | 1096.89         |                  |
| 0+00                    | 0+05    |           |         | 5.57      | 1096.32         |                  |
|                         | 0+07    |           |         | 6.16      | 1095.73         |                  |
|                         | 0+10    |           |         | 6.41      | 1095.48         |                  |

Table B-2. Cross-sectional data for Indian Run.

| Cross-<br>section<br>at | STATION | BS<br>[+] | HI      | FS<br>[-] | ELEV.<br>[FEET] | REMARKS               |
|-------------------------|---------|-----------|---------|-----------|-----------------|-----------------------|
|                         |         |           |         |           |                 |                       |
|                         | 0+15    |           |         | 6.71      | 1095.18         |                       |
|                         | 0+17    |           |         | 7.24      | 1094.65         | BKF                   |
|                         | 0+17.5  |           |         | 8.06      | 1093.83         | Edge of water Rt      |
|                         | 0+21    |           |         | 8.35      | 1093.54         |                       |
| ( 00                    | 0+26.9  |           |         | 8.1       | 1093.79         | Top of wooden log str |
| 6+80                    | 0+27    |           |         | 8.06      | 1093.83         | Edge of water Lt      |
|                         | 0+29    |           |         | 7.24      | 1094.65         | BKF                   |
|                         | 0+31    |           |         | 7.22      | 1094.67         |                       |
|                         | 0+33    |           |         | 6.54      | 1095.35         |                       |
|                         | 0+35    |           |         | 6.06      | 1095.83         |                       |
|                         | 0+37    |           |         | 5.33      | 1096.56         |                       |
|                         | 0+41    |           |         | 3.72      | 1098.17         |                       |
|                         | New stn | 5.94      | 1101.89 |           | 1095.95         | New stn               |
|                         | 0+00    |           |         | 1.39      | 1100.5          |                       |
|                         | 0+03    |           |         | 2.31      | 1099.58         |                       |
|                         | 0+05    |           |         | 3.4       | 1098.49         |                       |
|                         | 0+08    |           |         | 4.41      | 1097.48         |                       |
|                         | 0+12    |           |         | 4.88      | 1097.01         |                       |
|                         | 0+16    |           |         | 5.1       | 1096.79         |                       |
|                         | 0+19    |           |         | 5.36      | 1096.53         | BKF                   |
| 7+75                    | 0+21    |           |         | 5.97      | 1095.92         |                       |
|                         | 0+23    |           |         | 6.01      | 1095.88         | Edge of water Rt      |
|                         | 0+26    |           |         | 6.15      | 1095.74         | Above log structure   |
|                         | 0+32    |           |         | 6.01      | 1095.88         | Edge of water         |
|                         | 0+32.5  |           |         | 5.36      | 1096.53         | BKF                   |
|                         | 0+33    |           |         | 4.77      | 1097.12         |                       |
|                         | 0+34    |           |         | 3.38      | 1098.51         |                       |
|                         | 0+37    |           |         | 1.31      | 1100.58         |                       |

## **APPENDIX C**

| Station<br>(ft) | Bottom<br>LevelElev<br>(ft) | BKF (ft) | Depth (ft) | H<br>Distanc<br>e (ft) | Area (ft) | Total Area<br>(ft²) |
|-----------------|-----------------------------|----------|------------|------------------------|-----------|---------------------|
| 0               | 1112.47                     |          |            |                        |           |                     |
| 5               | 1111.36                     |          |            |                        |           |                     |
| 10              | 1109.55                     |          |            |                        |           |                     |
| 15              | 1108.5                      | 1108.5   | 0          | 0                      | 0         |                     |
| 18              | 1107.96                     |          | 0.54       | 3                      | 0.81      |                     |
| 19              | 1107.89                     |          | 0.61       | 1                      | 0.575     |                     |
| 20              | 1107.86                     |          | 0.64       | 1                      | 0.625     | 5.9575              |
| 22              | 1107.75                     |          | 0.75       | 2                      | 1.39      | 5.9575              |
| 24.5            | 1107.87                     |          | 0.63       | 2.5                    | 1.725     |                     |
| 25              | 1107.96                     |          | 0.54       | 0.5                    | 0.2925    |                     |
| 27              | 1108.5                      | 1108.5   | 0          | 2                      | 0.54      |                     |
| 28              | 1108.77                     |          |            |                        |           |                     |
| 30              | 1109.09                     |          |            |                        |           |                     |
| 31              | 1109.69                     |          |            |                        |           |                     |
| 35              | 1111.08                     |          |            |                        |           |                     |
| 40              | 1112.83                     |          |            |                        |           |                     |
| 43.25           | 1113.34                     |          |            |                        |           |                     |

## Table C-1. Cross-sectional area calculation at 1+00 (Austintown UNT).

| Bank full<br>area (ft²) | Bank full<br>width (ft) | Mean bKF<br>depth (ft) | Width<br>Depth<br>ratio | Width<br>of<br>flood<br>prone<br>area<br>(ft) | Entrench<br>ment<br>Ratio | Maximum<br>depth (ft) |
|-------------------------|-------------------------|------------------------|-------------------------|-----------------------------------------------|---------------------------|-----------------------|
| 5.96                    | 12                      | 0.49                   | 24.17                   | 18.23                                         | 1.52                      | 0.75                  |

|              | Bottom Level |          | Depth | H<br>Distanc |           | Total Area |
|--------------|--------------|----------|-------|--------------|-----------|------------|
| Station (ft) | Elev (ft)    | BKF (ft) | (ft)  | e (ft)       | Area (ft) | $(ft^2)$   |
| 0            | 1110.73      |          |       |              |           |            |
| 3            | 1109.7       |          |       |              |           |            |
| 5            | 1108.87      |          |       |              |           |            |
| 6            | 1108.38      |          |       |              |           |            |
| 10           | 1108.07      |          |       |              |           |            |
| 11           | 1107.92      | 1107.92  | 0     | 0            | 0         |            |
| 12           | 1107.18      |          | 0.74  | 1            | 0.37      |            |
| 15           | 1107.08      |          | 0.84  | 3            | 2.37      |            |
| 17           | 1107.07      |          | 0.85  | 2            | 1.69      | 6.0145     |
| 17.5         | 1107.18      |          | 0.74  | 0.5          | 0.3975    | 0.0145     |
| 18           | 1107.28      |          | 0.64  | 0.5          | 0.345     |            |
| 19           | 1107.34      |          | 0.58  | 1            | 0.61      |            |
| 19.8         | 1107.92      | 1107.92  | 0     | 0.8          | 0.232     |            |
| 20           | 1108.06      |          |       |              |           |            |
| 22           | 1108.39      |          |       |              |           |            |
| 25           | 1108.9       |          |       |              |           |            |
| 27.5         | 1109.77      |          |       |              |           |            |
| 30           | 1110.69      |          |       |              |           |            |
| 32           | 1111.63      |          |       |              |           |            |
| 35           | 1112.25      |          |       |              |           |            |
| 36.8         | 1112.37      |          |       |              |           |            |

Table C-2. Cross-sectional area calculation at 1+50 (Austintown UNT).

| Bank full<br>area (ft²) | Bank full<br>width (ft) | Mean bKF<br>depth (ft) | Width<br>Depth<br>ratio | Width<br>of<br>flood<br>prone<br>area<br>(ft) | Entrench<br>ment<br>Ratio | Maximum<br>depth (ft) |
|-------------------------|-------------------------|------------------------|-------------------------|-----------------------------------------------|---------------------------|-----------------------|
| 6.01                    | 8.8                     | 0.68                   | 12.87                   | 18.8                                          | 2.14                      | 0.85                  |

|              | Bottom Level |          | Depth | H Distance |           | Total Area         |
|--------------|--------------|----------|-------|------------|-----------|--------------------|
| Station (ft) | Elev (ft)    | BKF (ft) | (ft)  | (ft)       | Area (ft) | (ft <sup>2</sup> ) |
| 0            | 1111.07      |          |       |            |           |                    |
| 2.5          | 1110.2       |          |       |            |           |                    |
| 5            | 1109.49      |          |       |            |           |                    |
| 7            | 1108.74      |          |       |            |           |                    |
| 8            | 1108.45      |          |       |            |           |                    |
| 9            | 1107.46      |          |       |            |           |                    |
| 9.2          | 1107.29      | 1107.29  | 0     | 0          | 0         |                    |
| 10           | 1107.07      |          | 0.22  | 0.8        | 0.088     |                    |
| 10.5         | 1106.92      |          | 0.37  | 0.5        | 0.1475    |                    |
| 12           | 1106.68      |          | 0.61  | 1.5        | 0.735     |                    |
| 14           | 1106.59      |          | 0.7   | 2          | 1.31      | 4.2715             |
| 15           | 1106.61      |          | 0.68  | 1          | 0.69      |                    |
| 17           | 1106.92      |          | 0.37  | 2          | 1.05      |                    |
| 18           | 1107.18      |          | 0.11  | 1          | 0.24      |                    |
| 18.2         | 1107.29      | 1107.29  | 0     | 0.2        | 0.011     |                    |
| 18.5         | 1107.56      |          |       |            |           |                    |
| 20           | 1107.7       |          |       |            |           |                    |
| 22           | 1108.23      |          |       |            |           |                    |
| 25           | 1109.18      |          |       |            |           |                    |
| 26           | 1109.5       |          |       |            |           |                    |
| 27           | 1110.22      |          |       |            |           |                    |
| 30           | 1111.17      |          |       |            |           |                    |
| 32           | 1111.98      |          |       |            |           |                    |
| 33.7         | 1112.32      |          |       |            |           |                    |

Table C-3. Cross-sectional area calculation at 2+00 (Austintown UNT).

| Bank full<br>area (ft²) | Bank full<br>width (ft) | Mean bKF<br>depth (ft) | Width<br>Depth<br>ratio | Width<br>of flood<br>prone<br>area (ft) | Entrench<br>ment<br>Ratio | Maximum<br>depth (ft) |
|-------------------------|-------------------------|------------------------|-------------------------|-----------------------------------------|---------------------------|-----------------------|
| 4.27                    | 9                       | 0.47                   | 18.96                   | 12.61                                   | 1.40                      | 0.7                   |

#### **APPENDIX D**

| Station | Bottom         |          | Depth | H Distance |           |                               |
|---------|----------------|----------|-------|------------|-----------|-------------------------------|
| (ft)    | LevelElev (ft) | BKF (ft) | (ft)  | (ft)       | Area (ft) | Total Area (ft <sup>2</sup> ) |
| 0       | 1104.9         |          |       |            |           |                               |
| 3       | 1102.56        |          |       |            |           |                               |
| 5       | 1101.34        |          |       |            |           |                               |
| 7       | 1099.9         | 1099.9   | 0     | 0          | 0         |                               |
| 8       | 1099.68        |          | 0.22  | 1          | 0.11      |                               |
| 12      | 1099.23        |          | 0.67  | 4          | 1.78      | 6.37                          |
| 18      | 1099.56        |          | 0.34  | 6          | 3.03      | 0.37                          |
| 22      | 1099.68        |          | 0.22  | 4          | 1.12      |                               |
| 25      | 1099.9         | 1099.9   | 0     | 3          | 0.33      |                               |
| 27      | 1100.55        |          |       |            |           |                               |
| 29      | 1101.09        |          |       |            |           |                               |
| 30      | 1101.16        |          |       |            |           |                               |

#### Table D-1. Cross-sectional area calculation at 0+15 (Indian Run).

| Bank full<br>area (ft²) | Bank full<br>width (ft) | Mean<br>bKF<br>depth<br>(ft) | Width<br>Depth<br>ratio | Width of<br>flood prone<br>area (ft) | Entrenc<br>hment<br>Ratio | Maximum<br>depth (ft) |
|-------------------------|-------------------------|------------------------------|-------------------------|--------------------------------------|---------------------------|-----------------------|
| 6.37                    | 18                      | 0.35                         | 50.86                   | 21.66                                | 1.20                      | 0.67                  |

| Station<br>(ft) | Bottom Level Elev<br>(ft) | BKF (ft) | Depth<br>(ft) | H Distance<br>(ft) | Area (ft) | Total Area<br>(ft²) |
|-----------------|---------------------------|----------|---------------|--------------------|-----------|---------------------|
| 0               | 1098.27                   |          | (11)          | (11)               |           |                     |
| 4               | 1098.05                   |          |               |                    |           |                     |
| 7               | 1097.35                   |          |               |                    |           |                     |
| 8               | 1096.61                   |          |               |                    |           |                     |
| 9               | 1095.72                   |          |               |                    |           |                     |
| 10              | 1095.4                    |          |               |                    |           |                     |
| 11              | 1095.05                   |          |               |                    |           |                     |
| 12              | 1094.52                   | 1094.52  | 0             | 0                  | 0         |                     |
| 15              | 1094.15                   |          | 0.37          | 3                  | 0.555     |                     |
| 18              | 1094.06                   |          | 0.46          | 3                  | 1.245     | 2.88                |
| 21              | 1094.39                   |          | 0.13          | 3                  | 0.885     |                     |
| 24              | 1094.52                   | 1094.52  | 0             | 3                  | 0.195     |                     |
| 25              | 1095.05                   |          |               |                    |           |                     |
| 27              | 1095.46                   |          |               |                    |           |                     |
| 30              | 1095.73                   |          |               |                    |           |                     |

Table D-2. Cross-sectional area calculation at 6+25 (Indian Run).

| Bank full<br>area (ft²) | Bank full width<br>(ft) | Mean bKF<br>depth (ft) | Width<br>Depth<br>ratio | Width of<br>flood prone<br>area (ft) | Entrenc<br>hment<br>Ratio | Maximum<br>depth (ft) |
|-------------------------|-------------------------|------------------------|-------------------------|--------------------------------------|---------------------------|-----------------------|
| 2.88                    | 12                      | 0.24                   | 50                      | 24.2                                 | 2.02                      | 0.46                  |

| Station<br>(ft) | Bottom LevelElev<br>(ft) | BKF (ft) | Depth (ft) | H Distance<br>(ft) | Area (ft) | Total Area<br>(ft²) |
|-----------------|--------------------------|----------|------------|--------------------|-----------|---------------------|
| 0               | 1097.23                  |          | •          |                    |           |                     |
| 4               | 1096.89                  |          |            |                    |           |                     |
| 5               | 1096.32                  |          |            |                    |           |                     |
| 7               | 1095.73                  |          |            |                    |           |                     |
| 10              | 1095.48                  |          |            |                    |           |                     |
| 12              | 1095.1                   |          |            |                    |           |                     |
| 15              | 1095.18                  |          |            |                    |           |                     |
| 17              | 1094.65                  | 1094.65  | 0          | 0                  | 0         |                     |
| 17.5            | 1093.83                  |          | 0.82       | 0.5                | 0.205     |                     |
| 21              | 1093.54                  |          | 1.11       | 3.5                | 3.3775    | 10.298              |
| 26.9            | 1093.79                  |          | 0.86       | 5.9                | 5.8115    | 10.270              |
| 27              | 1093.83                  |          | 0.82       | 0.1                | 0.084     |                     |
| 29              | 1094.65                  | 1094.65  | 0          | 2                  | 0.82      |                     |
| 31              | 1094.67                  |          |            |                    |           |                     |
| 33              | 1095.35                  |          |            |                    |           |                     |
| 35              | 1095.83                  |          |            |                    |           |                     |
| 37              | 1096.56                  |          |            |                    |           |                     |
| 41              | 1098.17                  |          |            |                    |           |                     |

Table D-3. Cross-sectional area calculation at 6+80 (Indian Run).

| Bank full<br>area (ft²) | Bank full<br>width (ft) | Mean bKF<br>depth (ft) | Width<br>Depth ratio | Width of<br>flood<br>prone area<br>(ft) | Entrench<br>ment<br>Ratio | Maximum<br>depth (ft) |
|-------------------------|-------------------------|------------------------|----------------------|-----------------------------------------|---------------------------|-----------------------|
| 10.298                  | 12                      | 0.858167               | 13.983298            | 27.5                                    | 2.291667                  | 1.11                  |

| Station<br>(ft) | Bottom LevelElev<br>(ft) | BKF (ft) | Depth<br>(ft) | H Distance<br>(ft) | Area<br>(ft) | Total Area<br>(ft²) |
|-----------------|--------------------------|----------|---------------|--------------------|--------------|---------------------|
| 0               | 1100.5                   |          |               |                    |              |                     |
| 3               | 1099.58                  |          |               |                    |              |                     |
| 5               | 1098.49                  |          |               |                    |              |                     |
| 8               | 1097.48                  |          |               |                    |              |                     |
| 12              | 1097.01                  |          |               |                    |              |                     |
| 16              | 1096.79                  |          |               |                    |              |                     |
| 19              | 1096.53                  | 1096.53  | 0             | 0                  | 0            |                     |
| 21              | 1095.92                  |          | 0.61          | 2                  | 0.61         |                     |
| 23              | 1095.88                  |          | 0.65          | 2                  | 1.26         | 8.5125              |
| 26              | 1095.74                  |          | 0.79          | 3                  | 2.16         | 0.0120              |
| 32              | 1095.88                  |          | 0.65          | 6                  | 4.32         |                     |
| 32.5            | 1096.53                  | 1096.53  | 0             | 0.5                | 0.1625       |                     |
| 33              | 1097.12                  |          |               |                    |              |                     |
| 34              | 1098.51                  |          |               |                    |              |                     |
| 37              | 1100.58                  |          |               |                    |              |                     |

Table D-4. Cross-sectional area calculation at 7+75 (Indian Run).

| Bank full<br>area (ft²) | Bank full<br>width (ft) | Mean bKF<br>depth (ft) | Width<br>Depth ratio | Width of<br>flood prone<br>area (ft) | Entrenc<br>hment<br>Ratio | Maximum<br>depth (ft) |
|-------------------------|-------------------------|------------------------|----------------------|--------------------------------------|---------------------------|-----------------------|
| 8.51                    | 13.5                    | 0.63                   | 21.41                | 23.86                                | 1.77                      | 0.79                  |