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ABSTRACT

In the study of group theory, it is common to break up a complex group

into simpler subgroups in order to arrive at a structure that is easier to

analyze and understand. It is also sometimes possible to reconstruct the

original group from these subgroups. Although this is not always possible,

we can apply this process to finite solvable groups and derive some

theorems regarding these groups. Sylow’s Theorem and Hall’s Theorem are

among the most famous results. Hall’s Theorem, which is regarded as

an extension of Sylow’s Theorem, states that if a group G is solvable and is

of some order mn, where m is prime to n, then G has a subgroup of

order m and all subgroups of this order are conjugate. When p = π,

a Hall π-subgroup is simply a Sylow p-subgroup. While Sylow’s Theorem

is valid for any finite group, Hall subgroups need not exist in nonsolvable

groups. For example, A5 has order 60 = 3 · 20, but it has no subgroups

of order 20. This is demonstrated within the paper. Hall’s Theorem has

been the starting point for the theory of finite solvable groups developed

over the past seventy years, although those results are not given here.
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1 Introduction

We begin with French mathematician Augustin Cauchy, born in August 1789.
He worked directly with Lagrange and Laplace, which led to his very famous
theorem which states:

If G is a finite group and p is a prime number dividing the order of G,
then G contains an element of order p.

That is,

If G is a finite group and p is a prime number dividing the order of G,
then there exists x ∈ G such that xp = 1.

This result was published sometime between 1844 and 1846, in one of the
over 800 publications that Cauchy produced. Cauchy died in May 1857.

During this time, another noted mathematician contributed greatly to the
field of group theory. He was Peter Sylow, born in Norway in December
1832. Sylow had encountered Cauchy’s work during his studies abroad, and
in 1862 asked whether Cauchy’s Theorem could be further generalized. He
did so in 1872, proving Sylow’s Theorem, which states:

If pn is the largest power of the prime p to divide the order of the group
G, then:

(1) G has subgroups of order pn.

(2) G has 1 + kp such subgroups.

(3) Any two of such subgroups are conjugate, and the number of such
groups is 1 (mod p).

(4) The number of such subgroups divides the order of G.
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Sylow spent most of his later years teaching and editing the work of his peers,
and died in 1918.

One other renowned mathematician continued to study Sylow’s work, namely
Philip Hall. Hall was born in England in April 1904, and made huge advances
in the field of group theory, further generalizing Sylow’s results in 1927 and
formally publishing his findings in 1932. Hall’s Theorem states:

If a group G is solvable and is of some order mn, where m is prime to
n, then G has a subgroup of order m and all subgroups of this order are
conjugate.

Hall received many honors and awards for his work in group theory, and
died in December 1982.

2 Preliminaries

Definition: A nonempty set G equipped with the operation * is said to form
a group under that operation if the operation obeys the following laws, called
group axioms:

(1) Closure: For any a, b ∈ G, we have a ∗ b ∈ G.

(2) Associativity: For any a, b, c ∈ G, we have a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(3) Identity: There exists an element e ∈ G such that for all a ∈ G we
have a∗e = e∗a = a. Such an element e ∈ G is called the identity in G.

(4) Inverse: For each a ∈ G there exists an element a−1 ∈ G such that
a ∗ a−1 = a−1 ∗ a = e. Such an element a−1 ∈ G is called an inverse of
a in G.
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Definition: A nonempty subset H of a group G is a subgroup of G if H is
a group under the same operation as G. In this case we write H ≤ G.

We now will suppress the notation and write a ∗ b as ab and the identity
e as 1. We also will assume that G is a finite group.

Theorem 2.1 A nonempty subset H of a group G is a subgroup of G if and
only if the following condition holds:

For every a, b ∈ H, ab−1 ∈ H.

Definition: Let G be a group. Then the center of G, denoted Z(G), con-
sists of the elements of G that commute with every element of G. In other
words:

Z(G) = {a ∈ G | ga = ag for all g ∈ G}.

We note that 1g = g = g1 for all g ∈ G, so 1 ∈ Z(G), and the center is
a nonempty subset of G. In addition, Z(G) ≤ G.

Definition: Let G be a group and a ∈ G. Then the centralizer of a
in G, denoted CG(a), is the set of all elements of G that commute with a. In
other words,

CG(a) = {g ∈ G | ag = ga}.

We also note here that CG(a) ≤ G.

We now consider maps between groups.
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Definition: A map φ : G → G′ from a group G to a group G′ is called a
homomorphism if

φ(ab) = φ(a)φ(b) for all a, b ∈ G.

Definition: Let φ : G → G′ be a homomorphism. Then the kernel of
φ is the set {g ∈ G | φ(g) = 1}, denoted Ker(φ).

Definition: A homomorphism φ : G → G′ that is one-to-one and onto
is called an isomorphism. Two groups G and G′ are isomorphic, written
G ∼= G′, if there exists some isomorphism φ : G→ G′.

Definition: Let G be a group and H ≤ G. Then if ghg−1 ∈ H for all
g ∈ G and for all h ∈ H, we say H is a normal subgroup of G, denoted
H �G.

Theorem 2.2 Let φ : G→ G′ be a homomorphism. Then

Kerφ�G.

Example: Z(G) � G, since the elements of Z(G) commute with every ele-
ment of G.

Definition: Let H be a subgroup of a group G. Then

NG(H) = {g ∈ G | gHg−1 = H}

is called the normalizer of H in G, and NG(H) ≤ G.

As we explore the construction of groups, we need to understand the relation
between homomorphisms and their images. When considering a normal sub-
group K of a group G, we find that K is the kernel of some homomorphism
φ from G → G′. The construction of G′ and the homomorphism φ leads us
to quotient groups.
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Definition: Let G be a group, H ≤ G, and a ∈ G. Then the set
aH = {ah | h ∈ H} is called a left coset of H in G, and the set
Ha = {ha | h ∈ H} is called a right coset of H in G.

Definition: Let G be a group and H � G. Then the group consisting
of the cosets of H in G under the operation (aH)(bH) = (ab)H is called the
quotient group of G by H, written G/H.

Theorem 2.3 Let G be a group, N � G, H ≤ N , and φ : G → G
N by

φ(g) = gN for all g ∈ G. Then

(1) φ(H) = HN
N .

(2) φ−1(HNN ) = HN .

(3) L ≤ G
N . Then there exists N ≤ K ≤ G such that L = K

N .

Theorem 2.4 (Lagrange’s Theorem). Let G be a group and H ≤ G.
Then

(1) |H| divides |G|.

(2) |G|/|H| is equal to the number of distinct cosets of H.

Theorem 2.5 (Fundamental Theorem of Finite Abelian Groups).
Let G be an abelian group of finite order. Then

(1) G ∼= Zp
a1
1
× Zp

a2
2
× · · · × Zpas

s

where the primes pi are not necessarily unique.

(2) The direct product is unique except for the order of factors.
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At this point, we need to look at three isomorphism theorems, which pro-
vide us with information on subgroups of an original group G, and subgroups
of the quotient group created from the homomorphic image of a group G and
a normal subgroup of G, the kernel of the homomorphism. These theorems
allow us to determine the solvability of a group, which is necessary for our
main result.

Theorem 2.6 (First Isomorphism Theorem). Let φ : G→ G′ be a ho-
momorphism, with kernel K. Then

G/K ∼= φ(G).

Theorem 2.7 (Second Isomorphism Theorem). Let G be a group, K
a normal subgroup of G, and H any subgroup of G. Then

HK/K ∼= H/(H ∩K).

Theorem 2.8 (Third Isomorphism Theorem). Let G be a group, H�G,
and K �G such that K ≤ H. Then

G/H ∼=
(G/K)

(H/K)
.

We are now ready to consider group actions.

3 Groups Acting on Sets

We will start with some basic definitions and examples.
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Definition: Let S be a set, and
Sym(S) = {φ : S → S | φ is one-to-one and onto }. Then (Sym(S), ◦) is a
group.

Example: Sym({1, 2, 3}) = S3, which is a group.

Definition: A group G acts on a set S if there exists a homomorphism
φ : G→ Sym(S).

Definition: Let G be a group, and S be a set, such that G acts on S
via φ. Then G acts faithfully on S if Kerφ = {1}.

We will also suppress the notation here, from φ(g)(a) to ga.

Definition: Let G be a group acting on a set S, and a ∈ S. The orbit
of G on S containing a is

Ga = {ga | g ∈ G} ⊆ S.

Definition: Let G be a group acting on a set S. The action of G on S
is transitive if there is only one orbit, or, given any a, b ∈ S, there exists a
g ∈ G such that a = gb.

Example: Let G be a group, and g ∈ G. Then G acts on itself via φ,
defined by φ(g)(x) = gx for all g, x ∈ G (left multiplication). To show this is
an action, we must verify that φ is one-to-one, onto, and a homomorphism.
We start with one-to-one. Let x, y ∈ G such that φ(g)(x) = φ(g)(y). Then
by definition,

gx = gy

g−1gx = g−1gy

x = y.

Thus φ(g) is one-to-one.
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Now we consider onto. For all y ∈ G, we must show there exists x ∈ G such
that φ(g)(x) = y. Let x = g−1y. Then,

φ(g)(x) = φ(g)(g−1y)

= gg−1y

= y.

Thus φ(g) is onto. To show φ is a homomorphism, we let g1, g2 ∈ G. Then

φ(g1g2)(x) = g1g2x

= g1(φ(g2)(x))

= φ(g1)(φ(g2)(x))

= (φ(g1)φ(g2))(x).

Thus φ(g) is a homomorphism.

We can now consider if this action is transitive and/or faithful.
For transitivity, let x, y ∈ G. We want to show that there exists g ∈ G such
that gx = y. Choose g = yx−1. Then

φ(g)(x) = (yx−1)x

= y(x−1x)

= y.

Therefore, G acts transitively on G in this way.
To show faithful, we want Kerφ = {x | φ(x) = 1} = {1}. Choose x ∈ Kerφ.
Then φ(x) = 1. Now let y ∈ G. Then

φ(x)(y) = y

xy = y

xyy−1 = yy−1

x = 1.

Therefore, G acts faithfully on G.
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Theorem 3.1 Let a group G act on a set S. Then

S =
⋃
a∈S

Ga

and the union can be chosen to be disjoint.

Proof. Since Ga = {ga | g ∈ G} ⊆ S for all a ∈ S, clearly

⋃
a∈S

Ga ⊆ S.

Now let b ∈ S. Then b = 1b ∈ Gb. Then

S ⊆
⋃
a∈S

Ga.

Therefore,

S =
⋃
a∈S

Ga.

Now we claim if there are two elements a, b ∈ S such that Ga∩Gb 6= ∅, then
Ga = Gb.

Let g1, g2 ∈ G such that g1a = g2b. Then

g−1
1 (g1a) = g−1

1 (g2b)

(g−1
1 g1)a = (g−1

1 g2)b

1a = (g−1
1 g2)b

a = g−1
1 g2b.

Now

Ga = {ga | g ∈ G}
= {g(g−1

1 g2b) | g ∈ G}
= {gb | g ∈ G}
= Gb.

Hence, the claim holds, and the union can be chosen to be disjoint.
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Definition: Let a group G act on a set S, and a ∈ S. Then the stabilizer
in G of a is

Ga = {g ∈ G | ga = a}.

Theorem 3.2 Let a group G act on a set S, and a ∈ S. Then

Ga ≤ G.

Theorem 3.3 Let a group G act on a set S, and a ∈ S. Then

|Ga| = |G|
|Ga|

.

Proof. Let T = {gGa | g ∈ G}. Define θ : Ga→ T by θ(ga) = gGa.
First we need to show that θ is well defined.
Let g1a, g2a ∈ Ga, and suppose g1a = g2a. Show θ(g1a) = θ(g2a).
Since g1a = g2a, g−1

2 g1a = a. Therefore, g−1
2 g1a ∈ Ga. Then

g1Ga = g2Ga

θ(g1a) = θ(g2a).

Therefore, θ is well defined.

Now we must show θ is one-to-one and onto.

Suppose there exists g1a, g2a ∈ Ga such that θ(g1a) = θ(g2a).
Show g1a = g2a.

θ(g1a) = θ(g2a)

g1Ga = g2Ga

g−1
2 g1 ∈ Ga

g−1
2 g1a = a

g1a = g2a.

Therefore, θ is one-to-one.
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Now let x ∈ G, and xGa ∈ T . Then θ(xa) = xGa, and xa ∈ Ga.
Therefore, θ is onto.

Thus, |Ga| = |T |, where |T | is the number of left cosets of Ga.
And so, by Theorem 2.4,

|Ga| = |G|
|Ga|

.

Definition: Let G be a finite group, and let p be a prime. Then G is a
p-group if there exists n ∈ Z+⋃{0} such that |G| = pn.

Example: |D4| = 8 = 23, so D4 is a 2-group.

Example: |Z5 × Z5| = 25 = 52, so Z5 × Z5 is a 5-group.

Example: |S3| = 6 = 2 · 3, which is not a power of a prime, so S3 is
not a p-group.

Theorem 3.4 (Fixed Point Theorem). Let G be a p-group, and S be a
set such that G acts on S. If p does not divide |S|, then there exists a ∈ S
such that G = Ga.

Proof. Since G acts on S, we know S =
·⋃

a∈S
Ga by Theorem 3.1. Therefore,

|S| = |
·⋃

a∈S
Ga|

=
∑
a∈S
|Ga|

=
∑
a∈S

|G|
|Ga|

.
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Now if p divides
|G|
|Ga|

for all a ∈ S, then p divides
∑
a∈S

|G|
|Ga|

= |S|, which is

a contradiction. Therefore, there exists a ∈ S such that p does not divide
|G|
|Ga|

. But since G is a p-group, we know
|G|
|Ga|

is a power of p. This implies

|G|
|Ga|

= p0 = 1. Thus
|G|
|Ga|

= 1, or |G| = |Ga|. Consequently,

G = Ga.

Now as we approach Sylow’s Theorem, we need to address Cauchy’s The-
orem and the class equation.

Theorem 3.5 (Cauchy’s Theorem). Let G be a group, p be a prime such
that p divides |G|. Then there exists

1 6= x ∈ G such that xp = 1.

Proof. Let

S = {(x1, x2, ..., xp) | xi ∈ G for all 1 ≤ i ≤ p,
p∏
i=1

xi = 1 and xi not all 1}.

To show S 6= ∅, let 1 6= x ∈ G. Then (x, x−1, 1, 1, ..., 1) ∈ S. Now
| S |=| G |p−1 ·1 − 1. Since p divides |G|, p divides |G|p−1 · 1. If p divides
|S|, then p divides |G|p−1 · 1 − |S| = 1, which is a contradiction. Therefore,
p does not divide |S|.

Now let Zp = {0, 1, 2, ..., p− 1} = 〈1〉 act on S by
1((x1, x2, ..., xp)) = (xp, x1, ..., xp−1) for all (x1, x2, ..., xp) ∈ S. Since Zp is a
p-group and p does not divide |S|, by Theorem 3.4, there exists
(x1, x2, ..., xp) ∈ S such that (Zp)(x1,x2,...,xp) = Zp.
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Hence,

(x1, x2, ..., xp−1, xp) = 1(x1, x2, ...xp−1, xp) = (xp, x1, x2, ..., xp−1)

(x1, x2, ..., xp−1, xp) = 2(x1, x2, ...xp−1, xp) = (xp−1, xp, x1, ..., xp−2)
...

(x1, x2, ..., xp−1, xp) = (p− 1)(x1, x2, ...xp−1, xp) = (x2, x3, ..., xp−1, xp, x1).

Thus x1 = x2 = x3 = · · · = xp−1 = xp = x. But then x 6= 1 and

xp =
p∏
i=1

xi = 1.

Theorem 3.6 (The Class Equation). Let G be a group. Then

|G| =
∑

a6∈Z(G)

|G|
|CG(a)|

+ |Z(G)|.

Proof. Let G act on itself by conjugation. Then by Theorem 3.1

G =
·⋃

a∈G
Ga.

Hence, |G| = |
·⋃

a∈G
Ga|

=
∑
a∈G
|Ga|

=
∑
a∈G

|G|
|Ga|

=
∑
a∈G

|G|
|CG(a)|

=
∑

a6∈Z(G)

|G|
|CG(a)|

+ |Z(G)|.

We are ready to consider Sylow’s Theorem.
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4 Sylow’s Theorem

We will again start with a definition and some examples.

Definition: Let G be a group, p be a prime, and n ∈ Z+ ∪{0} such that pn

divides |G|, but pn+1 does not divide |G|. Then

(1) |G|p = pn, called the pth part of G.

(2) A subgroup P ≤ G is called a Sylow p-subgroup if |P | = |G|p.

(3) Sylp(G) is the set of all Sylow p-subgroups of G.

Example: S3 = {1, (123), (132), (12), (13), (23)}, |S3| = 3! = 6 = 2 · 3.
Then |S3|2 = 21 and |S3|3 = 31, where 〈(12)〉 = {1, (12)} ∈ Syl2(S3),
〈(13)〉 = {1, (13)} ∈ Syl2(S3), 〈(23)〉 = {1, (23)} ∈ Syl2(S3) and
〈(123)〉 = {1, (123), (132)} ∈ Syl3(S3).

Example:
A4 = {1, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)},
|A4| = 4!

2 = 12 = 22 · 3. Then |A4|2 = 22 and |A4|3 = 31, where
〈(12)(34)〉 = 〈(13)(24)〉 = 〈(14)(23)〉 =
{1, (12)(34), (13)(24), (14)(23)} ∈ Syl2(A4),and
〈(123)〉 = {1, (123), (132)} ∈ Syl3(A4),
〈(124)〉 = {1, (124), (142)} ∈ Syl3(A4),
〈(134)〉 = {1, (134), (143)} ∈ Syl3(A4),
〈(234)〉 = {1, (234), (243)} ∈ Syl3(A4).

15



Theorem 4.1 (Sylow’s Theorem). Let G be a group, and p be a prime.
Then

(1) Sylp(G) 6= ∅.

(2) If H ≤ G is a p-subgroup, then there exists P ∈ Sylp(G) such that
H ≤ P .

(3) G acts transitively on Sylp(G) by conjugation.

(4) |Sylp(G)| ≡ 1(mod p).

(5) |Sylp(G)| divides |G| and |Sylp(G)| = |G|
|NG(P )|

for all P ∈ Sylp(G).

Proof. (1). We will use induction to complete this proof.

If |G| = 1 or p does not divide |G|, then |G|p = p0, and so {1} ∈ Sylp(G).
Without loss of generality, |G| > 1, p divides |G|, and Sylp(G) 6= ∅ holds for
all groups of order less than |G|. We now want to show this is true for all
groups of order|G|.

Suppose p does not divide |Z(G)|. By the class equation,

|G| =
∑

a6∈Z(G)

|G|
|CG(a)|

+ |Z(G)|.

If p divides
|G|
|CG(a)| for all a 6∈ Z(G), then

p divides
∑

a6∈Z(G)

|G|
|CG(a)|

.
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But then, since p divides |G|, we get

p divides |G| −
∑

a6∈Z(G)

|G|
|CG(a)|

= |Z(G)|,

which is a contradiction. So, there exists at least one of the summands which
p does not divide. Hence, there exists a 6∈ Z(G) such that p does not divide
|G|
|CG(a)| . Thus |G|p = |CG(a)|p.
Also, CG(a) < G, since a 6∈ Z(G). Thus |CG(a)| < |G|, and so by in-
duction, there exists P ∈ Sylp(CG(a)). But since |G|p = |CG(a)|p, we get
P ∈ Sylp(G).

If p divides |Z(G)|, then by Theorem 3.5, there exists 1 6= z ∈ Z(G) such

that zp = 1. Then 〈z〉�G and so G
〈z〉 is a group. Also,∣∣∣∣∣ G〈z〉

∣∣∣∣∣ =
|G|
|〈z〉|

< |G|.

Hence by induction, there exists P ∈ Sylp
(
G
〈z〉

)
.

Now let φ : G → G
〈z〉 be defined by φ(G) = g〈z〉 for all g ∈ G. Then φ is a

homomorphism, and Kerφ = 〈z〉. Then 〈z〉 ≤ φ−1(P ) ≤ G. Since 〈z〉 � G,

then 〈z〉� φ−1(P ) and so
φ−1(P )
〈z〉 is a group. Now

φ−1(P )

〈z〉
= {g〈z〉 | g ∈ φ−1(P )}

= {g〈z〉 | φ(g) ∈ P}
= {g〈z〉 | g〈z〉 ∈ P}
= P.
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Now

|φ−1(P )| =
|φ−1(P )|
|〈z〉|

· |〈z〉|

= |P | · |〈z〉|

=

∣∣∣∣∣ G〈z〉
∣∣∣∣∣
p

· |〈z〉|

=
|G|p
|〈z〉|p

· |〈z〉|

=
|G|p
p
· p

= |G|p.

Thus φ−1(P ) ∈ Sylp(G), and Sylp(G) 6= ∅.

(2). Let H ≤ G be a p-subgroup. By part (1), there exists P ∈ Sylp(G).
Let G act on S = {gP | g ∈ G} by left multiplication. Then H acts on S in

the same way. Now by Theorem 2.4, |S| = |G||P | . But then p does not divide

|G|
|P | = |S| since P ∈ Sylp(G). Now by Theorem 3.4, since the p-group H

acts on S and p does not divide S, there exists gP ∈ S such that HgP = H.
Now H = HgP ≤ GgP = gPg−1. But gPg−1 ≤ G and |gPg−1| = |P | = |G|p.
Hence, H ≤ gPg−1 and gPg−1 ∈ Sylp(G).

(3). Let P,Q ∈ Sylp(G), and let G act on Sylp(G) by conjugation. Since P
is a p-subgroup and Q is a Sylow p-subgroup, by the same argument used in
part (2), there exists g ∈ G such that P ≤ gQg−1. Then

|G|p = |P | ≤ |gQg−1| = |Q| = |G|p.

Hence |P | = |gQg−1|, and so P = gQg−1. Therefore, since all the subgroups
are conjugate to each other, G acts transitively on Sylp(G) by conjugation.
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(4). Let P ∈ Sylp(G). Then P acts on Sylp(G) by conjugation, and. let
{P1, P2, . . . , Pr} be all conjugates of P . Since G acts on Sylp(G) by conju-
gation, P acts on {P1, P2, . . . , Pr} by conjugation. Renumber the elements
of {P1, P2, . . . , Pr} so that the first n elements of {P1, P2, . . . , Pr} are repre-
sentive of the P -orbits and P 6= Pi for any i. Then there exists n ∈ Z+ and
Pi ∈ Sylp(G) such that

Sylp(G) = PP ∪
n⋃
i=1

PPi

and so |Sylp(G)| = |PP ∪
n⋃
i=1

PPi|

= |PP |+
n∑
i=1

|PPi|

= |{P}|+
n∑
i=1

|PPi|

= 1 +
n∑
i=1

|P |
|PPi
|

= 1 +
n∑
i=1

|P |
|NP (Pi)|

.

If there exists 1 ≤ i ≤ n such that
|P |

|NP (Pi)|
= 1, then

P = NP (Pi) ≤ NG(Pi). Since P ∈ Sylp(G), we get P ∈ Sylp(NG(Pi)). Also,
Pi ≤ NG(Pi) and so Pi ∈ Sylp(NG(Pi)). Hence, by part (3), there exists
n ∈ NG(Pi) such that P = nPin

−1 = Pi. Hence, P = Pi ∈ PP ∩ PPi = ∅.
But this is a contradiction. Therefore, p divides

|P |
|NP (Pi)|

for all 1 ≤ i ≤ n,

and so

p divides
n∑
i=1

|P |
|NP (pi)|

= |Sylp(G)| − 1.

Therefore, |Sylp(G)| ≡ 1(mod p).
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(5). By part (3), G acts transitively on Sylp(G) by conjugation. Thus,
Sylp(G) = GP , where P ∈ Sylp(G). Then

|Sylp(G)| = |GP |

=
|G|
|Gp|

=
|G|

|NG(P )|
.

Therefore, |Sylp(G)| divides |G|.

Theorem 4.2 Let G be a group, P ∈ Sylp(G), and N �G. Then

P ∩N ∈ Sylp(N).

Proof. We know P ∩N ≤ N is a p-subgroup since P is a p-group. By Theo-
rem 4.1, there exists P0 ∈ Sylp(N) such that P ∩N ≤ P0. Also by Theorem
4.1, there exists g ∈ G such that P0 ≤ gPg−1. Then

P ∩N ≤ P0

≤ gPg−1 ∩N
= gPg−1 ∩ gNg−1

= g(P ∩N)g−1.

But |P ∩N | = |g(P ∩N)g−1|, and so P ∩N = P0 ∈ Sylp(N).

Theorem 4.3 (Frattini Argument) Let G be a group, N �G, and
P ∈ Sylp(N). Then

G = NG(P )N.
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Proof. Clearly, G ⊇ NG(P )N , since G is a group. Now let g ∈ G. Then
g−1 ∈ G. Then P ≤ N implies g−1P (g−1)−1 ≤ g−1N(g−1)−1. But since
N �G, g−1N(g−1)−1 = N and so g−1P (g−1)−1 ≤ N . Now
|g−1P (g−1)−1| = |P | = |G|p, and so g−1Pg ∈ Sylp(N). By Theorem 4.1,
there exists n ∈ N such that ng−1Pgn−1 = P . Hence, ng−1 ∈ NG(P ). Thus
there exists x ∈ NG(P ) such that ng−1 = x, or g = x−1n ∈ NG(P )N . There-
fore, G ⊆ NG(P )N , and consequently, G = NG(P )N .

We now need to look at some additional conditions necessary for our main
result, beginning with solvable groups.

5 Solvable Groups

Definition: A group G is solvable if there exists a normal series

G = G0 �G1 �G2 � · · ·�Gn = {1}

such that Gi
Gi+1

is abelian for all 0 ≤ i ≤ n− 1.

Example: S3 is solvable since S3 � A3 � 1 and∣∣∣∣S3
A3

∣∣∣∣ =
|S3|
|A3|

= 6
3 = 2 where S3

A3

∼= Z2 is abelian and A3

{1}
∼= Z3 is abelian.

Example: Let G be an abelian group. Then G is solvable since G � 1

and G
{1} is abelian.

Example: A4 is solvable sinceA4�H�{1} whereH = {1, (12)(34), (14)(23), (13)(24)}
and

∣∣∣∣A4
H

∣∣∣∣ =
|A4|
|H| = 12

4 = 3. Thus A4
H
∼= Z3 is abelian and H

{1}
∼= H is

abelian.

Example: A5 is not solvable, since A5 is simple and nonabelian.
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Theorem 5.1 Let G be a solvable group, and H ≤ G. Then H is solvable.

Proof. Since G is solvable, there exists G = G0 �G1 � · · ·�Gn = {1} such

that Gi
Gi+1

is abelian for all 0 ≤ i ≤ n− 1. Then

H = H ∩G0 �H ∩G1 � · · ·�H ∩Gn = 1. Now we take an arbitrary factor

and show that it is abelian. Choose H ∩Gi
H ∩Gi+1

for some i. Then

H ∩Gi

H ∩Gi+1

=
H ∩Gi

H ∩Gi ∩Gi+1

since Gi ⊇ Gi+1

∼=
(H ∩Gi)(Gi+1)

Gi+1

by Theorem 2.7

≤ Gi

Gi+1

.

But Gi
Gi+1

is abelian. So
(H ∩Gi)(Gi+1)

Gi+1
is abelian. Hence, H ∩Gi

H ∩Gi+1
is

abelian since it is isomorphic to abelian group. Therefore, H is solvable.

Theorem 5.2 Let G be a solvable group and N �G. Then G
N is solvable.

Proof. Since G is solvable, there exists G = G0 �G1 � · · ·�Gn = {1} such

that Gi
Gi+1

is abelian for all 0 ≤ i ≤ n− 1. Then

G

N
=
G0

N
�
G1N

N
�
G2N

N
� · · ·� GnN

N
= N.

Now we will choose an arbitrary factor and show it is abelian to establish

the solvability of GN .

GiN

N

/
Gi+1N

N
∼=

GiN

Gi+1N
by Theorem 2.8

=
GiGi+1N

Gi+1N
since Gi ⊇ Gi+1

∼=
Gi

Gi ∩Gi+1N
by Theorem 2.7

∼=
Gi

Gi+1

/
Gi ∩Gi+1N

Gi+1

by Theorem 2.8.
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Since the quotient of an abelian group is also abelian, and Gi
Gi+1

is abelian

for all 0 ≤ i ≤ n− 1, GiN
N

/
Gi+1N
N is abelian. Therefore, GN is solvable.

We now need to expand the concept of a normal subgroup to further ap-
ply these previous theorems.

Definition: Let G be a group and N ≤ G. Then N is a minimal normal
subgroup if:

(1) 1 6= N �G.

(2) If H ≤ N such that H �G, then H = {1} or H = N .

Example: A3 is a minimal normal subgroup of S3. To see this, {1} 6= A3�S3

and suppose H ≤ A3 such that H � S3. Then since |A3| = 3, |H| = 1 or
|H| = 3. Therefore, H = {1} or H = A3, which makes A3 a minimal normal
subgroup of S3.

Example: Consider H ≤ D4, where H = {1, (12)(34), (13)(24), (14)(23)}.
Then {1} 6= H�D4. Now Z(D4) = {1, (13)(24)} ≤ H, and Z(D4)�D4. But
Z(D4) 6= {1} and Z(D4) 6= H. Therefore, H is not a minimal subgroup of D4.

Definition: Let G be a group. Then φ : G → G is an automorphism
if φ is one-to-one, onto, and a homomorphism.

Definition: Let Aut(G) denote the group of all automorphisms on G under
compostition, ie

Aut(G) = {φ : G→ G | φ is automorphism}.

Example: Let G = 2Z, and define φ : 2Z→ 2Z by φ(x) = 2x for all x ∈ 2Z.
For φ to be an automorphism, we need to show that φ is a homomorphism,
one-to-one, and onto.
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To show φ is a homomorphism, let x, y ∈ G. Then

φ(x+ y) = 2(x+ y)

= 2x+ 2y

= φ(x) + φ(y).

Therefore, φ is a homomorphism. For φ to be one-to-one, consider

φ(x) = φ(y)

2x = 2y

x = y.

Therefore, φ is one-to-one.
Now we look at onto. We need for all y ∈ G, there exists x ∈ G such that
φ(x) = y. If there exists x ∈ 2Z such that φ(x) = 2, then we get 2x = 2, or
x = 1, a contradiction. Therefore, φ is not onto.
Therefore, φ is not an automorphism.

Example: Let G be a group and g ∈ G. Define φ : G→ G by φ(x) = gxg−1

for all x ∈ G. We want to show that φ is an automorphism.
To show φ is a homomorphism, let x, y ∈ G. Then

φ(xy) = gxyg−1

= gxg−1gyg−1

= φ(x)φ(y).

Therefore, φ is a homomorphism.
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To show φ is one-to-one, consider

φ(x) = φ(y)

gxg−1 = gyg−1

x = y.

Therefore, φ is one-to-one.
Now we look at onto. Let x ∈ G. Then g−1xg ∈ G. So

φ(g−1xg) = g(g−1xg)g−1

= x.

Therefore, φ is onto.
Combining these results, we have that φ is an automorphism.

Definition: Let G be a group, and H ≤ G. Then H is a character-
istic subgroup of G if φ(H) ≤ H for all automorphisms φ of G, and is
denoted H char ≤ G.

Example: Let G = Z10. Then 〈2〉 ≤ Z10. We want to show that 〈2〉 is
a characteristic subgroup of Z10. If φ : Z10 → Z10 is an automorphism, then
|2| = 5 and

5φ(2) = φ(2) + φ(2) + φ(2) + φ(2) + φ(2)

= φ(2 + 2 + 2 + 2 + 2)

= φ(0)

= 0.

So |φ(2)| divides 5. Hence, |φ(2)| = 1 or |φ(2)| = 5. If |φ(2)| = 1, then
φ(2) = 0. But φ(0) = 0, so then φ(2) = φ(0), which contradicts the one-to-
oneness of the automorphism φ. Therefore, |φ(2)| = 5 = |2|.
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Hence,

|φ(〈2〉)| = |〈φ(2)〉|
= |φ(2)|
= |2|
= 5

and since Z10 has one subgroup of order 5, namely 〈2〉, we get φ(〈2〉) = 〈2〉,
and |φ(2)| = 5 = |2|. So |〈φ(2)〉| = |φ(2)| = |2| = |〈2〉|. Since Z10 is cyclic it
has only one subgroup of order 5. Hence 〈φ(2)〉 = 〈2〉. But then, since φ is
a homomorphism, φ(〈2〉) = 〈φ(2)〉 = 〈2〉. Therefore, 〈2〉 char ≤ Z10.

Definition: A group G is characteristically simple if {1} and G are
its only characteristic subgroups.

Example: Zp is characteristically simple since {1} and Zp are its only
subgroups (by Theorem 2.4).

We can generalize this definition more by stating that if a group is sim-
ple, then it is characteristically simple. We will use A5 as an example.

Example: A5 is characteristically simple. We can show this by contra-
diction. Suppose H char ≤ A5, and let g ∈ A5. Define φ : A5 → A5

by φ(x) = gxg−1 for all x ∈ A5. Then φ is an automorphism. Since H
char ≤ A5, φ(H) ≤ H. Hence, gHg−1 ≤ H, which means H �A5. But A5 is
simple, and therefore has no nontrivial proper normal subgroups. Therefore,
H = {1} or H = A5, which means that A5 is characteristically simple.

Theorem 5.3 Let G be a characteristically simple group. Then

G ∼= G1 ×G2 × · · · ×Gs such that Gi are isomorphic simple groups.
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Proof. Let G be a characteristically simple group and let {1} 6= G1 �G such

that |G1| is minimal. Also, let H =
s∏
i=1

Gi such that

(1) Gi
∼= G1 for all 1 ≤ i ≤ s

(2) Gi �G for all 1 ≤ i ≤ s

(3) Gi ∩
∏
j 6=i

Gj = {1} for all 1 ≤ i ≤ s

(4) s is maximal.

Then since Gi � G for all 1 ≤ i ≤ s, we get H � G as the product of
normal subgroups is normal. If H is not a characteristic subgroup of G,
then there exists 1 ≤ i ≤ s and φ ∈ Aut(G) such that φ(Gi) 6≤ H. Then
φ(Gi) ∩ H < φ(Gi). Moreover, since Gi � G, we know φ(Gi) � G. Hence,
since H �G, we get φ(Gi) ∩H �G. But

|φ(Gi) ∩H| < |φ(Gi)|
= |Gi|
= |G1|.

Hence, φ(Gi) ∩H = {1} by the minimality of |G1|. Also,

φ(Gi) ∩
s∏
i=1

Gi = φ(Gi) ∩H = {1}. Moreover, from condition (1),

φ(Gi) ∼= Gi
∼= G1. But then

s∏
i=1

Gi < φ(Gi) ×
s∏
i=1

Gi, contradicting the

maximality of s. Therefore, H char ≤ G and since H 6= {1} and G is char-

acteristically simple, we get G = H =
s∏
i=1

Gi.

Now we need to show that these are isomorphic simple groups. We know
that they are isomorphic from condition (1). So now let 1 ≤ i ≤ s and
N ≤ Gi such that N �Gi. We need to show N = {1} or N = Gi to show Gi

is simple.
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If x ∈ Gj for some j 6= i and n ∈ N (which implies n ∈ Gi since N � Gi),
then xnx−1n−1 ∈ Gi. Also, xnx−1n−1 ∈ Gj. So,
xnx−1n−1 ∈ Gi ∩ Gj ≤ Gi ∩

∏
j 6=i

Gj = {1} from condition (3). This implies

xnx−1n−1 = 1. Hence xn = nx and so Gj ≤ CG(N) for all j 6= i. But then

N �
s∏
i=1

Gi = G. Now |N | ≤ |Gi| = |G1|. Hence by the minimality of |G1|,
|N | = 1 or |N | = |G1|. Therefore, N = {1} or N = Gi, and so Gi is simple.

We can now determine what minimal normal subgroups of solvable groups
look like.

Theorem 5.4 Let G be a solvable group, and N be a minimal normal sub-
group of G. Then

N ∼= Zp × Zp × · · · × Zp for some prime p.

Proof. If L char ≤ N and g ∈ G, define φ : N → N by φ(n) = gng−1

for all n ∈ N . Since N � G, we get φ ∈ Aut(N). But since L char ≤ N ,
we know φ(L) ≤ L. Hence, gLg−1 ≤ L and L � G. Since N is a minimal
normal subgroup of G, L = {1} or L = N . Thus N is characteristically
simple, which means it has no other characteristic subgroups. By Theorem

5.3, N ∼=
s∏
i=1

Ni where the Ni are isomorphic simple groups. We consider N1.

If N1 is not abelian, then since N1 is simple, the only normal series in N1 is

N1 �{1}. But N1

{1}
∼= N1 which is not abelian, and so N1 is not solvable. But

N ≤ G, and G is solvable. This contradicts Theorem 5.1. So therefore, Ni

has to be abelian for all 1 ≤ i ≤ s. Now, since Ni is simple for all 1 ≤ i ≤ s,
we get {1} and Ni are the only subgroups of Ni for all 1 ≤ i ≤ s. But then
by Theorem 3.5, Ni is a p-group for some prime p, and Ni

∼= Zp. Thus,
N ∼= Zp × Zp × · · · × Zp (s factors).

We are now ready to introduce our main result.
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6 Hall’s Theorem

Definition: Let G be a group and π be a set of primes. Then:

(1) π
′
= {p | p is prime and p 6∈ π}.

(2) π(G) = {p | p is prime and p divides |G|}.

(3) G is a π-group if π(G) ⊆ π.

(4) A subgroup H ≤ G is called a Hall π-subgroup if H is a π-group and

π
(
G
H

)
⊆ π

′
.

(5) Hallπ(G) is the set of all Hall π-subgroups of G.

Example: |D15| = 30 = 2 · 3 · 5. Let H = 〈(1, 2, 3, ..., 15)〉. Then
|H| = 15 = 3 · 5, so H ∈ Hall{3,5}(D15).

Example: Hall{2,5}(A5) = ∅. If H ∈ Hall{2,5}(A5), then |A5| = 5!
2 = 22 ·3 ·5

and |H| = 22 · 5 = 20. Let A act on S = {gH | g ∈ A5} by left mul-

tiplication via φ. Now |S| =
|A5|
|H| = 60

20 = 3 by Theorem 2.4. Hence

φ : A5 → Sym(S) ∼= S3. Now Kerφ�A5 and so Kerφ = {1} or Kerφ = A5

since A5 is simple.

Consider Kerφ = A5. Then

A5 = Kerφ

=
⋂
x∈A5

xHx−1

≤ H

≤ A5
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and so we get A5 = H if Kerφ = A5, which is a contradiction. Therefore,
Kerφ 6= A5, and Kerφ = {1}. Then

A5 =
A5

{1}
=

A5

Kerφ
∼= φ(A5) ≤ S3.

Hence, we get 60 = |A5| divides |S3| = 6, which is a contradiction. Therefore,
Kerφ 6= {1}.

Therefore, H 6∈ Hall{2,5}(A5), and so Hall{2,5}(A5) = ∅.

But consider (A5)1 in |A5| = 22 · 3 · 5. Then (A5)1
∼= A4 and so

|(A5)1| = |A4| = 4!
2 = 12 = 22 · 3. Thus (A5)1 ∈ Hall{2,3}(A5).

Theorem 6.1 Let G be a group, π be a set of primes, H ∈ Hallπ(G), and
N �G. Then

HN

N
∈ Hallπ

(
G

N

)
.

Proof. Now

∣∣∣∣HNN
∣∣∣∣ =

|HN |
|N |

=

|H||N |
|H ∩N |
|N |

by Theorem 2.7

=
|H|
|H ∩N |

.

But since H ∈ Hallπ(G), π(H) ⊆ π, and so π
(

H
H ∩N

)
⊆ π. Thus

π
(
HN
N

)
⊆ π, and HN

N is a π-group.
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Also,

∣∣∣GN ∣∣∣∣∣∣HNN ∣∣∣ =

|G|
|N |
|HN |
|N |

=
|G|
|HN |

.

But
|G|
|H| =

|G|
|HN | ·

|HN |
|N | and so

|G|
|HN | divides

|G|
|H| . But π

(
G
H

)
⊆ π

′
since

H ∈ Hallπ(G). Hence, since
|G|
|HN | divides

|G|
|H| , we get π

(
G
HN

)
⊆ π

′
. Thus,

HN
N ∈ Hallπ

(
G
N

)
.

Theorem 6.2 (Hall’s Theorem) Let G be a solvable group and π be a set
of primes. Then:

(1) Hallπ(G) 6= ∅.

(2) If K ≤ G is a π-subgroup and M ∈ Hallπ(G), then there exists g ∈ G
such that K ≤ gMg−1.

Proof. We will use induction to complete this proof.

We start with |G| = 1. Then {1} ∈ Hallπ(G). Now we assume that the
theorem holds for all solvable groups of order less than |G|. We want to
show that the theorem holds for groups of order |G|.
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Let N be a minimal normal subgroup of G. Since N �G, GN is a group, and
since G is solvable, N ∼= Zp × Zp × · · · × Zp for some prime p. Now, since

G is solvable, by Theorem 5.2, GN is solvable. Moreover,
∣∣∣GN ∣∣∣ =

|G|
|N | < |G|

since N 6= {1} because N is minimal normal subgroup. By induction, there

exists HN ∈ Hallπ
(
G
N

)
. Then H ≤ G.

We first consider the case when p ∈ π.

Then |H| = |H||N | · |N |. But π
(
H
N

)
⊆ π since H

N ∈ Hallπ(GN ) and π(N) ⊆ π

since p ∈ π. Thus π(H) ⊆ π, and so H is a π-group.

Also,
|G|
|H| =

|G|
|N |
|H|
|N |

, and π

 G
N
H
N

 ⊆ π
′

since HN ∈ Hallπ
(
G
N

)
. Thus

π
(
G
H

)
⊆ π

′
, and so H ∈ Hallπ(G). Therefore, Hallπ(G) 6= ∅.

Now if K ≤ G is a π-subgroup and M ∈ Hallπ(G), then KN
N ≤ G

N is a

π-subgroup and MN
N ∈ Hallπ

(
G
N

)
by Theorem 6.1. Again, since G

N is solv-

able and
∣∣∣GN ∣∣∣ < |G|, by induction there exists gN ∈ G

N such that

KN

N
≤ (gN)

(
MN

N

)
(gN)−1

=
g(MN)g−1

N
.

Taking preimages, we get K ≤ KN ≤ g(MN)g−1. Then

|gMNg−1| = |MN |

=
|M ||N |
|M ∩N |

.

Now since M ∈ Hallπ(G), we get π(gMNg−1) ⊆ π, and so gMNg−1 is a
π-group. But gMg−1 < gMNg−1 and |gMg−1| = |M |, and so
gMg−1 ∈ Hallπ(G) since M ∈ Hallπ(G). Hence, gMg−1 = gMNg−1, giving
us K ≤ gMNg−1 = gMg−1. Therefore, condition (2) is satisfied, and the
theorem holds for p ∈ π.
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Now consider the case when p 6∈ π.
We may assume G has no normal π-subgroups. Now by induction, there

exists H
N ∈ Hallπ

(
G
N

)
. Taking preimages, we get H ≤ G. If H 6= G, we

know |H| < |G| . Also, H is solvable since G is solvable by Theorem 5.1. So
by induction, there exists H1 ∈ Hallπ(H). Now

|G|
|H1|

=
|G|
|H|
· |H|
|H1|

=

|G|
|N |
|H|
|N |

· |H|
|H1|

.

Thus π
(
G
H1

)
⊆ π

′
since H

N ∈ Hallπ
(
G
N

)
and H1 ∈ Hallπ(H). Hence,

H ∈ Hallπ(G), yielding condition (1) of the theorem. Now let K ≤ G be a

π-subgroup and M ∈ Hallπ(G). Then MN
N ∈ Hallπ

(
G
N

)
, and KN

N ≤ G
N is

a π-subgroup. Since
∣∣∣GN ∣∣∣ < |G| by induction, there exists gN ∈ G

N such that

KN
N ≤ (gN)

(
MN
N

)
(gN)−1. Taking preimages, we get

K ≤ KN ≤ g(MN)g−1 as before. Thus K ≤ KN ≤ gMg−1N . Now

∣∣∣∣HN
∣∣∣∣ =

∣∣∣∣MN

N

∣∣∣∣ since both are in Hallπ

(
G

N

)
|H|
|N |

=
|MN |
|N |

|H| = |MN |.

But |MN | = |gMNg−1| = |gMg−1N |. Thus, |gMg−1N | = |H|, and so
gMg−1N 6= G since H 6= G. Thus, |gMg−1N | < |G|, and gMg−1N
is solvable by Theorem 5.1. Moreover, K ≤ gMg−1N is a π-group and
gMg−1 ∈ Hallπ(gMg−1N). Thus by induction, there exists g1 ∈ gMg−1N
such that K ≤ g1(gMg−1)g−1

1 = g1gM(g1g)−1, yielding condition (2) of the
theorem.
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Now if H = G, then G
N = H

N is a π-group, since H
N ∈ Hallπ

(
G
N

)
. Let

R
N be a minimal normal subgroup of GN . Then since G

N is solvable by Theo-

rem 5.2, we know R
N is an elementary q-group for some prime q, where q 6= p.

Then R
N � G

N implies R�G. Since |R| = |R||N | · |N |, R is a pq-group.

Now let Q ∈ Sylq(R). Hence, QN
N ∈ Sylq

(
R
N

)
and so R

N = QN
N , or

R = QN . By Theorem 4.3,

G = NG(Q)R

= NG(Q)QN

= NG(Q)N.

If NG(Q) = G, then Q is a normal π-subgroup of G since q ∈ π. But this is
a contradiction. Therefore, NG(Q) 6= G, and so |NG(Q)| < |G|. Now since
NG(Q) is solvable, there exists H1 ∈ Hallπ(NG(Q)) by induction. Also

∣∣∣∣ GH1

∣∣∣∣ =
|G|

|NG(Q)|
· |NG(Q)|
|H1|

=
|NG(Q)N |
|NG(Q)|

· |NG(Q)|
|H1|

=
|N |

|N ∩NG(Q)|
· |NG(Q)|
|H1|

which is a π
′
-number since p 6∈ π, H1 ∈ Hallπ(NG(Q)). Thus, H1 ∈

Hallπ(G), yielding condition (1) of the theorem.

Now let K ≤ G be a π-subgroup and M ∈ Hallπ(G). We can show K
lies in a conjugate of M .
If |K| = |M |, then by Theorem 4.2, K ∩ R, M ∩ R ∈ Sylq(R). So by
Theorem 4.1, there exists r ∈ R such that r(M ∩ R)r−1 = (K ∩ R), or
rMr−1∩R = K∩R. Since R�G, we get K∩R�K and rMr−1∩R�rMr−1.
Hence, K ≤ NG(K ∩R) = NG(rMr−1 ∩R), and
rMr−1 ≤ NG(rMr−1 ∩R) = NG(K ∩R).
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Let N1 = NG(K ∩R). If N1 = G, then NG(K ∩R) = G, and so (K ∩R)�G.
But K ∩R is a π-subgroup, which is a contradiction. Therefore, N1 6= G and
|N1| < |G|.
Now K ≤ N is a π-group, and since rMr−1 ∈ Hallπ(G), we know
rMr−1 ∈ Hallπ(N1). Since N1 is solvable, by induction there exists n ∈ N1

such that K ≤ nrMr−1n−1 = (nr)M(nr)−1, yielding condition (2) of the
theorem.

Now if |K| < |M |, then MN
N ∈ Hallπ

(
G
N

)
by Theorem 6.1.

Since HN ∈ Hallπ
(
G
N

)
, we know

∣∣∣∣MN

N

∣∣∣∣ =
∣∣∣∣HN

∣∣∣∣
|MN |
|N |

=
|H|
|N |

|MN | = |H| = |G|.

Hence, G = H = MN . Since N �G, KN ≤ G. Also,

∣∣∣∣KNN
∣∣∣∣ =

|K||N |
|K ∩N |

=
|K||N |

1
since K is a π-group and N is a π

′
-group

=
|K||N |
|M ∩N |

<
|M ||N |
|M ∩N |

= |MN |
= |G|.

Therefore, |KN | < |G|. Also, since KN is solvable, the theorem holds for
KN by induction.
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Now K ≤ KN is a π-subgroup and M ∩KN ≤ KN is a π-subgroup, so

|KN |
|M ∩KN |

=
|KNM |
|M |

=
|KG|
|M |

=
|G|
|M |

so π
(

KN
M ∩KN

)
⊆ π

′
. Therefore, M ∩KN ∈ Hallπ(KN). So by induction,

there exists x ∈ KN such that

K ≤ x(M ∩KN)x−1

= xMx−1 ∩ xKNx−1

≤ xMx−1

which yields condition (2) of the theorem.

Consequently, the proof is complete, and Hall’s Theorem holds for solvable
groups.
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