by

Teri M. Thomas

Submitted in Partial Fulfillment of the Requirements

for the Degree of
Master of Science
in the
Mathematics

Program

August, 2009

ETD

A GENERALIZATION OF SYLOW'S THEOREM

Teri M. Thomas

I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research.

Signature:

Approvals:
\square

Abstract

In the study of group theory, it is common to break up a complex group into simpler subgroups in order to arrive at a structure that is easier to analyze and understand. It is also sometimes possible to reconstruct the original group from these subgroups. Although this is not always possible, we can apply this process to finite solvable groups and derive some theorems regarding these groups. Sylow's Theorem and Hall's Theorem are among the most famous results. Hall's Theorem, which is regarded as an extension of Sylow's Theorem, states that if a group G is solvable and is of some order $m n$, where m is prime to n, then G has a subgroup of order m and all subgroups of this order are conjugate. When $p=\pi$, a Hall π-subgroup is simply a Sylow p-subgroup. While Sylow's Theorem is valid for any finite group, Hall subgroups need not exist in nonsolvable groups. For example, A_{5} has order $60=3 \cdot 20$, but it has no subgroups of order 20. This is demonstrated within the paper. Hall's Theorem has been the starting point for the theory of finite solvable groups developed over the past seventy years, although those results are not given here.

ACKNOWLEDGEMENTS

I would like to offer my sincere gratitude to Dr. Neil Flowers for his wealth of knowledge and unending patience through this venture. Without his support, I would not have been successful in the completion of this thesis nor the acquisition of knowledge of group theory. I also thank him for his confidence in my ability to use LaTeX, even when I had my doubts.

I want to thank Drs. Eric Wingler and Tom Wakefield for their time and contributions to this thesis. Their input and suggestions have been extremely helpful, and I appreciate their willingness to review my work despite their many other commitments.

I would also like to thank Dr. Frank Ingram for his patience and compassion, and for introducing me to the world of abstract algebra. In considering various mathematical topics, I found abstract algebra and group theory to be the most interesting and exciting, and I credit him for that association.

I offer my thanks to the faculty and staff of the Mathematics Department. Everyone has been more than generous and accommodating, and extraordinarily patient with me as I have strived to complete this degree. Drs. Nathan Ritchey and Jamal Tartir have always given me good advice, which has been greatly appreciated, and has assisted me in achieving my goals.

I want to thank Andy, Jacob, Rabekah, Dylan, and Derek for all their support and sacrifice during this quest. I love you guys, and thank you for believing in me even when I didn't believe in myself.

Finally, I want to thank Dr. Charles Singler. Words cannot express how much you have done for me, and continue to do. I only hope that I can follow in your example and inspiration and continue to be successful in the field of education.

Contents

1 Introduction 2
2 Preliminaries 3
3 Groups Acting on Sets 7
4 Sylow's Theorem 15
5 Solvable Groups 21
6 Hall's Theorem 29

1 Introduction

We begin with French mathematician Augustin Cauchy, born in August 1789. He worked directly with Lagrange and Laplace, which led to his very famous theorem which states:

If G is a finite group and p is a prime number dividing the order of G, then G contains an element of order p.

That is,
If G is a finite group and p is a prime number dividing the order of G, then there exists $x \in G$ such that $x^{p}=1$.

This result was published sometime between 1844 and 1846, in one of the over 800 publications that Cauchy produced. Cauchy died in May 1857.

During this time, another noted mathematician contributed greatly to the field of group theory. He was Peter Sylow, born in Norway in December 1832. Sylow had encountered Cauchy's work during his studies abroad, and in 1862 asked whether Cauchy's Theorem could be further generalized. He did so in 1872, proving Sylow's Theorem, which states:

If p^{n} is the largest power of the prime p to divide the order of the group G, then:
(1) G has subgroups of order p^{n}.
(2) G has $1+k p$ such subgroups.
(3) Any two of such subgroups are conjugate, and the number of such groups is $1(\bmod p)$.
(4) The number of such subgroups divides the order of G.

Sylow spent most of his later years teaching and editing the work of his peers, and died in 1918.

One other renowned mathematician continued to study Sylow's work, namely Philip Hall. Hall was born in England in April 1904, and made huge advances in the field of group theory, further generalizing Sylow's results in 1927 and formally publishing his findings in 1932. Hall's Theorem states:

If a group G is solvable and is of some order $m n$, where m is prime to n, then G has a subgroup of order m and all subgroups of this order are conjugate.

Hall received many honors and awards for his work in group theory, and died in December 1982.

2 Preliminaries

Definition: A nonempty set G equipped with the operation * is said to form a group under that operation if the operation obeys the following laws, called group axioms:
(1) Closure: For any $a, b \in G$, we have $a * b \in G$.
(2) Associativity: For any $a, b, c \in G$, we have $a *(b * c)=(a * b) * c$.
(3) Identity: There exists an element $e \in G$ such that for all $a \in G$ we have $a * e=e * a=a$. Such an element $e \in G$ is called the identity in G.
(4) Inverse: For each $a \in G$ there exists an element $a^{-1} \in G$ such that $a * a^{-1}=a^{-1} * a=e$. Such an element $a^{-1} \in G$ is called an inverse of a in G.

Definition: A nonempty subset H of a group G is a subgroup of G if H is a group under the same operation as G. In this case we write $H \leq G$.

We now will suppress the notation and write $a * b$ as $a b$ and the identity e as 1 . We also will assume that G is a finite group.

Theorem 2.1 A nonempty subset H of a group G is a subgroup of G if and only if the following condition holds:

For every $a, b \in H, a b^{-1} \in H$.
Definition: Let G be a group. Then the center of G, denoted $Z(G)$, consists of the elements of G that commute with every element of G. In other words:

$$
Z(G)=\{a \in G \mid g a=a g \text { for all } g \in G\} .
$$

We note that $1 g=g=g 1$ for all $g \in G$, so $1 \in Z(G)$, and the center is a nonempty subset of G. In addition, $Z(G) \leq G$.

Definition: Let G be a group and $a \in G$. Then the centralizer of a in G, denoted $C_{G}(a)$, is the set of all elements of G that commute with a. In other words,

$$
C_{G}(a)=\{g \in G \mid a g=g a\} .
$$

We also note here that $C_{G}(a) \leq G$.
We now consider maps between groups.

Definition: A map $\phi: G \rightarrow G^{\prime}$ from a group G to a group G^{\prime} is called a homomorphism if

$$
\phi(a b)=\phi(a) \phi(b) \text { for all } a, b \in G .
$$

Definition: Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism. Then the kernel of ϕ is the set $\{g \in G \mid \phi(g)=1\}$, denoted $\operatorname{Ker}(\phi)$.

Definition: A homomorphism $\phi: G \rightarrow G^{\prime}$ that is one-to-one and onto is called an isomorphism. Two groups G and G^{\prime} are isomorphic, written $G \cong G^{\prime}$, if there exists some isomorphism $\phi: G \rightarrow G^{\prime}$.

Definition: Let G be a group and $H \leq G$. Then if $g h g^{-1} \in H$ for all $g \in G$ and for all $h \in H$, we say H is a normal subgroup of G, denoted $H \unlhd G$.

Theorem 2.2 Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism. Then

$$
\operatorname{Ker} \phi \unlhd G .
$$

Example: $Z(G) \unlhd G$, since the elements of $Z(G)$ commute with every element of G.

Definition: Let H be a subgroup of a group G. Then

$$
N_{G}(H)=\left\{g \in G \mid g H g^{-1}=H\right\}
$$

is called the normalizer of H in G, and $N_{G}(H) \leq G$.

As we explore the construction of groups, we need to understand the relation between homomorphisms and their images. When considering a normal subgroup K of a group G, we find that K is the kernel of some homomorphism ϕ from $G \rightarrow G^{\prime}$. The construction of G^{\prime} and the homomorphism ϕ leads us to quotient groups.

Definition: Let G be a group, $H \leq G$, and $a \in G$. Then the set $a H=\{a h \mid h \in H\}$ is called a left coset of H in G, and the set $H a=\{h a \mid h \in H\}$ is called a right coset of H in G.

Definition: Let G be a group and $H \unlhd G$. Then the group consisting of the cosets of H in G under the operation $(a H)(b H)=(a b) H$ is called the quotient group of G by H, written G / H.

Theorem 2.3 Let G be a group, $N \unlhd G, H \leq N$, and $\phi: G \rightarrow \frac{G}{N}$ by $\phi(g)=g N$ for all $g \in G$. Then
(1) $\phi(H)=\frac{H N}{N}$.
(2) $\phi^{-1}\left(\frac{H N}{N}\right)=H N$.
(3) $L \leq \frac{G}{N}$. Then there exists $N \leq K \leq G$ such that $L=\frac{K}{N}$.

Theorem 2.4 (Lagrange's Theorem). Let G be a group and $H \leq G$. Then
(1) $|H|$ divides $|G|$.
(2) $|G| /|H|$ is equal to the number of distinct cosets of H.

Theorem 2.5 (Fundamental Theorem of Finite Abelian Groups).

Let G be an abelian group of finite order. Then
(1) $G \cong \mathbf{Z}_{p_{1}^{a_{1}}} \times \mathbf{Z}_{p_{2}^{a_{2}}} \times \cdots \times \mathbf{Z}_{p_{s}^{a_{s}}}$
where the primes p_{i} are not necessarily unique.
(2) The direct product is unique except for the order of factors.

At this point, we need to look at three isomorphism theorems, which provide us with information on subgroups of an original group G, and subgroups of the quotient group created from the homomorphic image of a group G and a normal subgroup of G, the kernel of the homomorphism. These theorems allow us to determine the solvability of a group, which is necessary for our main result.

Theorem 2.6 (First Isomorphism Theorem). Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism, with kernel K. Then

$$
G / K \cong \phi(G) .
$$

Theorem 2.7 (Second Isomorphism Theorem). Let G be a group, K a normal subgroup of G, and H any subgroup of G. Then

$$
H K / K \cong H /(H \cap K)
$$

Theorem 2.8 (Third Isomorphism Theorem). Let G be a group, $H \unlhd G$, and $K \unlhd G$ such that $K \leq H$. Then

$$
G / H \cong \frac{(G / K)}{(H / K)} .
$$

We are now ready to consider group actions.

3 Groups Acting on Sets

We will start with some basic definitions and examples.

Definition: Let S be a set, and
$\operatorname{Sym}(S)=\{\phi: S \rightarrow S \mid \phi$ is one-to-one and onto $\}$. Then $(\operatorname{Sym}(S), \circ$) is a group.

Example: $\operatorname{Sym}(\{1,2,3\})=S_{3}$, which is a group.
Definition: A group G acts on a set S if there exists a homomorphism $\phi: G \rightarrow \operatorname{Sym}(S)$.

Definition: Let G be a group, and S be a set, such that G acts on S via ϕ. Then G acts faithfully on S if $\operatorname{Ker} \phi=\{1\}$.

We will also suppress the notation here, from $\phi(g)(a)$ to $g a$.
Definition: Let G be a group acting on a set S, and $a \in S$. The orbit of G on S containing a is

$$
G a=\{g a \mid g \in G\} \subseteq S
$$

Definition: Let G be a group acting on a set S. The action of G on S is transitive if there is only one orbit, or, given any $a, b \in S$, there exists a $g \in G$ such that $a=g b$.

Example: Let G be a group, and $g \in G$. Then G acts on itself via ϕ, defined by $\phi(g)(x)=g x$ for all $g, x \in G$ (left multiplication). To show this is an action, we must verify that ϕ is one-to-one, onto, and a homomorphism. We start with one-to-one. Let $x, y \in G$ such that $\phi(g)(x)=\phi(g)(y)$. Then by definition,

$$
\begin{aligned}
g x & =g y \\
g^{-1} g x & =g^{-1} g y \\
x & =y .
\end{aligned}
$$

Thus $\phi(g)$ is one-to-one.

Now we consider onto. For all $y \in G$, we must show there exists $x \in G$ such that $\phi(g)(x)=y$. Let $x=g^{-1} y$. Then,

$$
\begin{aligned}
\phi(g)(x) & =\phi(g)\left(g^{-1} y\right) \\
& =g g^{-1} y \\
& =y .
\end{aligned}
$$

Thus $\phi(g)$ is onto. To show ϕ is a homomorphism, we let $g_{1}, g_{2} \in G$. Then

$$
\begin{aligned}
\phi\left(g_{1} g_{2}\right)(x) & =g_{1} g_{2} x \\
& =g_{1}\left(\phi\left(g_{2}\right)(x)\right) \\
& =\phi\left(g_{1}\right)\left(\phi\left(g_{2}\right)(x)\right) \\
& =\left(\phi\left(g_{1}\right) \phi\left(g_{2}\right)\right)(x) .
\end{aligned}
$$

Thus $\phi(g)$ is a homomorphism.
We can now consider if this action is transitive and/or faithful.
For transitivity, let $x, y \in G$. We want to show that there exists $g \in G$ such that $g x=y$. Choose $g=y x^{-1}$. Then

$$
\begin{aligned}
\phi(g)(x) & =\left(y x^{-1}\right) x \\
& =y\left(x^{-1} x\right) \\
& =y .
\end{aligned}
$$

Therefore, G acts transitively on G in this way.
To show faithful, we want $\operatorname{Ker} \phi=\{x \mid \phi(x)=1\}=\{1\}$. Choose $x \in \operatorname{Ker} \phi$. Then $\phi(x)=1$. Now let $y \in G$. Then

$$
\begin{aligned}
\phi(x)(y) & =y \\
x y & =y \\
x y y^{-1} & =y y^{-1} \\
x & =1 .
\end{aligned}
$$

Therefore, G acts faithfully on G.

Theorem 3.1 Let a group G act on a set S. Then

$$
S=\bigcup_{a \in S} G a
$$

and the union can be chosen to be disjoint.
Proof. Since $G a=\{g a \mid g \in G\} \subseteq S$ for all $a \in S$, clearly

$$
\bigcup_{a \in S} G a \subseteq S
$$

Now let $b \in S$. Then $b=1 b \in G b$. Then

$$
S \subseteq \bigcup_{a \in S} G a
$$

Therefore,

$$
S=\bigcup_{a \in S} G a .
$$

Now we claim if there are two elements $a, b \in S$ such that $G a \cap G b \neq \emptyset$, then $G a=G b$.

Let $g_{1}, g_{2} \in G$ such that $g_{1} a=g_{2} b$. Then

$$
\begin{aligned}
g_{1}^{-1}\left(g_{1} a\right) & =g_{1}^{-1}\left(g_{2} b\right) \\
\left(g_{1}^{-1} g_{1}\right) a & =\left(g_{1}^{-1} g_{2}\right) b \\
1 a & =\left(g_{1}^{-1} g_{2}\right) b \\
a & =g_{1}^{-1} g_{2} b .
\end{aligned}
$$

Now

$$
\begin{aligned}
G a & =\{g a \mid g \in G\} \\
& =\left\{g\left(g_{1}^{-1} g_{2} b\right) \mid g \in G\right\} \\
& =\{g b \mid g \in G\} \\
& =G b .
\end{aligned}
$$

Hence, the claim holds, and the union can be chosen to be disjoint.

Definition: Let a group G act on a set S, and $a \in S$. Then the stabilizer in G of a is

$$
G_{a}=\{g \in G \mid g a=a\} .
$$

Theorem 3.2 Let a group G act on a set S, and $a \in S$. Then

$$
G_{a} \leq G
$$

Theorem 3.3 Let a group G act on a set S, and $a \in S$. Then

$$
|G a|=\frac{|G|}{\left|G_{a}\right|}
$$

Proof. Let $T=\left\{g G_{a} \mid g \in G\right\}$. Define $\theta: G a \rightarrow T$ by $\theta(g a)=g G_{a}$.
First we need to show that θ is well defined.
Let $g_{1} a, g_{2} a \in G a$, and suppose $g_{1} a=g_{2} a$. Show $\theta\left(g_{1} a\right)=\theta\left(g_{2} a\right)$.
Since $g_{1} a=g_{2} a, g_{2}^{-1} g_{1} a=a$. Therefore, $g_{2}^{-1} g_{1} a \in G_{a}$. Then

$$
\begin{aligned}
g_{1} G_{a} & =g_{2} G_{a} \\
\theta\left(g_{1} a\right) & =\theta\left(g_{2} a\right) .
\end{aligned}
$$

Therefore, θ is well defined.
Now we must show θ is one-to-one and onto.
Suppose there exists $g_{1} a, g_{2} a \in G a$ such that $\theta\left(g_{1} a\right)=\theta\left(g_{2} a\right)$.
Show $g_{1} a=g_{2} a$.

$$
\begin{aligned}
\theta\left(g_{1} a\right) & =\theta\left(g_{2} a\right) \\
g_{1} G_{a} & =g_{2} G_{a} \\
g_{2}^{-1} g_{1} & \in G_{a} \\
g_{2}^{-1} g_{1} a & =a \\
g_{1} a & =g_{2} a .
\end{aligned}
$$

Therefore, θ is one-to-one.

Now let $x \in G$, and $x G_{a} \in T$. Then $\theta(x a)=x G_{a}$, and $x a \in G a$. Therefore, θ is onto.

Thus, $|G a|=|T|$, where $|T|$ is the number of left cosets of G_{a}.
And so, by Theorem 2.4,

$$
|G a|=\frac{|G|}{\left|G_{a}\right|} .
$$

Definition: Let G be a finite group, and let p be a prime. Then G is a p-group if there exists $n \in \mathbf{Z}^{+} \cup\{0\}$ such that $|G|=p^{n}$.

Example: $\left|D_{4}\right|=8=2^{3}$, so D_{4} is a 2 -group.
Example: $\left|\mathbf{Z}_{5} \times \mathbf{Z}_{5}\right|=25=5^{2}$, so $\mathbf{Z}_{5} \times \mathbf{Z}_{5}$ is a 5 -group.
Example: $\left|S_{3}\right|=6=2 \cdot 3$, which is not a power of a prime, so S_{3} is not a p-group.

Theorem 3.4 (Fixed Point Theorem). Let G be a p-group, and S be a set such that G acts on S. If p does not divide $|S|$, then there exists $a \in S$ such that $G=G_{a}$.

Proof. Since G acts on S, we know $S=\bigcup_{a \in S} G a$ by Theorem 3.1. Therefore,

$$
\begin{aligned}
|S| & =\left|\bigcup_{a \in S} G a\right| \\
& =\sum_{a \in S}|G a| \\
& =\sum_{a \in S} \frac{|G|}{\left|G_{a}\right|} .
\end{aligned}
$$

Now if p divides $\frac{|G|}{\left|G_{a}\right|}$ for all $a \in S$, then p divides $\sum_{a \in S} \frac{|G|}{\left|G_{a}\right|}=|S|$, which is a contradiction. Therefore, there exists $a \in S$ such that p does not divide $\frac{|G|}{\left|G_{a}\right|}$. But since G is a p-group, we know $\frac{|G|}{\left|G_{a}\right|}$ is a power of p. This implies $\frac{|G|}{\left|G_{a}\right|}=p^{0}=1$. Thus $\frac{|G|}{\left|G_{a}\right|}=1$, or $|G|=\left|G_{a}\right|$. Consequently,

$$
G=G_{a} .
$$

Now as we approach Sylow's Theorem, we need to address Cauchy's Theorem and the class equation.

Theorem 3.5 (Cauchy's Theorem). Let G be a group, p be a prime such that p divides $|G|$. Then there exists

$$
1 \neq x \in G \text { such that } x^{p}=1 .
$$

Proof. Let

$$
S=\left\{\left(x_{1}, x_{2}, \ldots, x_{p}\right) \mid x_{i} \in G \text { for all } 1 \leq i \leq p, \prod_{i=1}^{p} x_{i}=1 \text { and } x_{i} \text { not all } 1\right\}
$$

To show $S \neq \emptyset$, let $1 \neq x \in G$. Then $\left(x, x^{-1}, 1,1, \ldots, 1\right) \in S$. Now $|S|=|G|^{p-1} \cdot 1-1$. Since p divides $|G|, p$ divides $|G|^{p-1} \cdot 1$. If p divides $|S|$, then p divides $|G|^{p-1} \cdot 1-|S|=1$, which is a contradiction. Therefore, p does not divide $|S|$.

Now let $\mathbf{Z}_{\mathbf{p}}=\{0,1,2, \ldots, p-1\}=\langle 1\rangle$ act on S by
$1\left(\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right)=\left(x_{p}, x_{1}, \ldots, x_{p-1}\right)$ for all $\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in S$. Since $\mathbf{Z}_{\mathbf{p}}$ is a p-group and p does not divide $|S|$, by Theorem 3.4, there exists $\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in S$ such that $\left(\mathbf{Z}_{\mathbf{p}}\right)_{\left(x_{1}, x_{2}, \ldots, x_{p}\right)}=\mathbf{Z}_{\mathbf{p}}$.

Hence,

$$
\begin{aligned}
&\left(x_{1}, x_{2}, \ldots, x_{p-1}, x_{p}\right)=1\left(x_{1}, x_{2}, \ldots x_{p-1}, x_{p}\right)=\left(x_{p}, x_{1}, x_{2}, \ldots, x_{p-1}\right) \\
&\left(x_{1}, x_{2}, \ldots, x_{p-1}, x_{p}\right)=2\left(x_{1}, x_{2}, \ldots x_{p-1}, x_{p}\right)=\left(x_{p-1}, x_{p}, x_{1}, \ldots, x_{p-2}\right) \\
& \vdots \\
&\left(x_{1}, x_{2}, \ldots, x_{p-1}, x_{p}\right)=(p-1)\left(x_{1}, x_{2}, \ldots x_{p-1}, x_{p}\right)=\left(x_{2}, x_{3}, \ldots, x_{p-1}, x_{p}, x_{1}\right) . \\
& \text { Thus } x_{1}=x_{2}=x_{3}=\cdots=x_{p-1}=x_{p}=x . \quad \text { But then } x \neq 1 \text { and } \\
& x^{p}=\prod_{i=1}^{p} x_{i}=1 .
\end{aligned}
$$

Theorem 3.6 (The Class Equation). Let G be a group. Then

$$
|G|=\sum_{a \notin Z(G)} \frac{|G|}{\left|C_{G}(a)\right|}+|Z(G)| .
$$

Proof. Let G act on itself by conjugation. Then by Theorem 3.1

$$
\begin{aligned}
G & =\bigcup_{a \in G} G a . \\
\text { Hence, }|G| & =\left|\bigcup_{a \in G} G a\right| \\
& =\sum_{a \in G}|G a| \\
& =\sum_{a \in G} \frac{|G|}{\left|G_{a}\right|} \\
& =\sum_{a \in G} \frac{|G|}{\left|C_{G}(a)\right|} \\
& =\sum_{a \notin Z(G)} \frac{|G|}{\left|C_{G}(a)\right|}+|Z(G)| .
\end{aligned}
$$

We are ready to consider Sylow's Theorem.

4 Sylow's Theorem

We will again start with a definition and some examples.
Definition: Let G be a group, p be a prime, and $n \in \mathbf{Z}^{+} \cup\{0\}$ such that p^{n} divides $|G|$, but p^{n+1} does not divide $|G|$. Then
(1) $|G|_{p}=p^{n}$, called the pth part of G.
(2) A subgroup $P \leq G$ is called a Sylow p-subgroup if $|P|=|G|_{p}$.
(3) $\operatorname{Syl}_{p}(G)$ is the set of all Sylow p-subgroups of G.

Example: $S_{3}=\{1,(123),(132),(12),(13),(23)\},\left|S_{3}\right|=3!=6=2 \cdot 3$. Then $\left|S_{3}\right|_{2}=2^{1}$ and $\left|S_{3}\right|_{3}=3^{1}$, where $\langle(12)\rangle=\{1,(12)\} \in \operatorname{Syl}_{2}\left(S_{3}\right)$, $\langle(13)\rangle=\{1,(13)\} \in \operatorname{Syl}_{2}\left(S_{3}\right),\langle(23)\rangle=\{1,(23)\} \in \operatorname{Syl}_{2}\left(S_{3}\right)$ and $\langle(123)\rangle=\{1,(123),(132)\} \in \operatorname{Syl}_{3}\left(S_{3}\right)$.

Example:

$A_{4}=\{1,(123),(132),(124),(142),(134),(143),(234),(243),(12)(34),(13)(24),(14)(23)\}$,
$\left|A_{4}\right|=\frac{4!}{2}=12=2^{2} \cdot 3$. Then $\left|A_{4}\right|_{2}=2^{2}$ and $\left|A_{4}\right|_{3}=3^{1}$, where
$\langle(12)(34)\rangle=\langle(13)(24)\rangle=\langle(14)(23)\rangle=$
$\{1,(12)(34),(13)(24),(14)(23)\} \in \operatorname{Syl}_{2}\left(A_{4}\right)$, and
$\langle(123)\rangle=\{1,(123),(132)\} \in \operatorname{Syl}_{3}\left(A_{4}\right)$,
$\langle(124)\rangle=\{1,(124),(142)\} \in \operatorname{Syl}_{3}\left(A_{4}\right)$,
$\langle(134)\rangle=\{1,(134),(143)\} \in \operatorname{Syl}_{3}\left(A_{4}\right)$,
$\langle(234)\rangle=\{1,(234),(243)\} \in \operatorname{Syl}_{3}\left(A_{4}\right)$.

Theorem 4.1 (Sylow's Theorem). Let G be a group, and p be a prime. Then
(1) $\operatorname{Syl}_{p}(G) \neq \emptyset$.
(2) If $H \leq G$ is a p-subgroup, then there exists $P \in \operatorname{Syl}_{p}(G)$ such that $H \leq P$.
(3) G acts transitively on $\operatorname{Syl}_{p}(G)$ by conjugation.
(4) $\left|\operatorname{Syl}_{p}(G)\right| \equiv 1(\bmod p)$.
(5) $\left|\operatorname{Syl}_{p}(G)\right|$ divides $|G|$ and $\left|S y l_{p}(G)\right|=\frac{|G|}{\left|N_{G}(P)\right|}$ for all $P \in \operatorname{Syl}_{p}(G)$.

Proof. (1). We will use induction to complete this proof.
If $|G|=1$ or p does not divide $|G|$, then $|G|_{p}=p^{0}$, and so $\{1\} \in \operatorname{Syl}_{p}(G)$. Without loss of generality, $|G|>1, p$ divides $|G|$, and $S y l_{p}(G) \neq \emptyset$ holds for all groups of order less than $|G|$. We now want to show this is true for all groups of order $|G|$.

Suppose p does not divide $|Z(G)|$. By the class equation,

$$
|G|=\sum_{a \notin Z(G)} \frac{|G|}{\left|C_{G}(a)\right|}+|Z(G)| .
$$

If p divides $\frac{|G|}{\left|C_{G}(a)\right|}$ for all $a \notin Z(G)$, then

$$
p \text { divides } \sum_{a \notin Z(G)} \frac{|G|}{\left|C_{G}(a)\right|} \text {. }
$$

But then, since p divides $|G|$, we get

$$
p \text { divides }|G|-\sum_{a \notin Z(G)} \frac{|G|}{\left|C_{G}(a)\right|}=|Z(G)| \text {, }
$$

which is a contradiction. So, there exists at least one of the summands which p does not divide. Hence, there exists $a \notin Z(G)$ such that p does not divide $\frac{|G|}{\left|C_{G}(a)\right|}$. Thus $|G|_{p}=\left|C_{G}(a)\right|_{p}$.
Also, $C_{G}(a)<G$, since $a \notin Z(G)$. Thus $\left|C_{G}(a)\right|<|G|$, and so by induction, there exists $P \in \operatorname{Syl}_{p}\left(C_{G}(a)\right)$. But since $|G|_{p}=\left|C_{G}(a)\right|_{p}$, we get $P \in \operatorname{Syl}_{p}(G)$.

If p divides $|Z(G)|$, then by Theorem 3.5, there exists $1 \neq z \in Z(G)$ such that $z^{p}=1$. Then $\langle z\rangle \unlhd G$ and so $\frac{G}{\langle z\rangle}$ is a group. Also,

$$
\left|\frac{G}{\langle z\rangle}\right|=\frac{|G|}{|\langle z\rangle|}<|G| .
$$

Hence by induction, there exists $P \in S y l_{p}\left(\frac{G}{\langle z\rangle}\right)$.
Now let $\phi: G \rightarrow \frac{G}{\langle z\rangle}$ be defined by $\phi(G)=g\langle z\rangle$ for all $g \in G$. Then ϕ is a homomorphism, and $\operatorname{Ker} \phi=\langle z\rangle$. Then $\langle z\rangle \leq \phi^{-1}(P) \leq G$. Since $\langle z\rangle \unlhd G$, then $\langle z\rangle \unlhd \phi^{-1}(P)$ and so $\frac{\phi^{-1}(P)}{\langle z\rangle}$ is a group. Now

$$
\begin{aligned}
\frac{\phi^{-1}(P)}{\langle z\rangle} & =\left\{g\langle z\rangle \mid g \in \phi^{-1}(P)\right\} \\
& =\{g\langle z\rangle \mid \phi(g) \in P\} \\
& =\{g\langle z\rangle \mid g\langle z\rangle \in P\} \\
& =P .
\end{aligned}
$$

Now

$$
\begin{aligned}
\left|\phi^{-1}(P)\right| & =\frac{\left|\phi^{-1}(P)\right|}{|\langle z\rangle|} \cdot|\langle z\rangle| \\
& =|P| \cdot|\langle z\rangle| \\
& =\left|\frac{G}{\langle z\rangle}\right|_{p} \cdot|\langle z\rangle| \\
& =\frac{|G|_{p}}{|\langle z\rangle|_{p}} \cdot|\langle z\rangle| \\
& =\frac{|G|_{p}}{p} \cdot p \\
& =|G|_{p} .
\end{aligned}
$$

Thus $\phi^{-1}(P) \in \operatorname{Syl}_{p}(G)$, and $\operatorname{Syl}_{p}(G) \neq \emptyset$.
(2). Let $H \leq G$ be a p-subgroup. By part (1), there exists $P \in \operatorname{Syl}_{p}(G)$. Let G act on $S=\{g P \mid g \in G\}$ by left multiplication. Then H acts on S in the same way. Now by Theorem 2.4, $|S|=\frac{|G|}{|P|}$. But then p does not divide $\frac{|G|}{|P|}=|S|$ since $P \in S y l_{p}(G)$. Now by Theorem 3.4, since the p-group H acts on S and p does not divide S, there exists $g P \in S$ such that $H_{g P}=H$. Now $H=H_{g P} \leq G_{g P}=g P g^{-1}$. But $g P g^{-1} \leq G$ and $\left|g P g^{-1}\right|=|P|=|G|_{p}$. Hence, $H \leq g P g^{-1}$ and $g P g^{-1} \in \operatorname{Syl}_{p}(G)$.
(3). Let $P, Q \in \operatorname{Syl}_{p}(G)$, and let G act on $\operatorname{Syl}_{p}(G)$ by conjugation. Since P is a p-subgroup and Q is a Sylow p-subgroup, by the same argument used in part (2), there exists $g \in G$ such that $P \leq g Q g^{-1}$. Then

$$
|G|_{p}=|P| \leq\left|g Q g^{-1}\right|=|Q|=|G|_{p} .
$$

Hence $|P|=\left|g Q g^{-1}\right|$, and so $P=g Q g^{-1}$. Therefore, since all the subgroups are conjugate to each other, G acts transitively on $S y l_{p}(G)$ by conjugation.
(4). Let $P \in \operatorname{Syl}_{p}(G)$. Then P acts on $\operatorname{Syl}_{p}(G)$ by conjugation, and. let $\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$ be all conjugates of P. Since G acts on $S_{y l}(G)$ by conjugation, P acts on $\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$ by conjugation. Renumber the elements of $\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$ so that the first n elements of $\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$ are representive of the P-orbits and $P \neq P_{i}$ for any i. Then there exists $n \in \mathbf{Z}^{+}$and $P_{i} \in \operatorname{Syl}_{p}(G)$ such that

$$
\begin{aligned}
\operatorname{Syl}_{p}(G) & =P P \cup \bigcup_{i=1}^{n} P P_{i} \\
\text { and so }\left|\operatorname{Syl}_{p}(G)\right| & =\left|P P \cup \bigcup_{i=1}^{n} P P_{i}\right| \\
& =|P P|+\sum_{i=1}^{n}\left|P P_{i}\right| \\
& =|\{P\}|+\sum_{i=1}^{n}\left|P P_{i}\right| \\
& =1+\sum_{i=1}^{n} \frac{|P|}{\left|P_{P_{i}}\right|} \\
& =1+\sum_{i=1}^{n} \frac{|P|}{\left|N_{P}\left(P_{i}\right)\right|} .
\end{aligned}
$$

If there exists $1 \leq i \leq n$ such that $\frac{|P|}{\left|N_{P}\left(P_{i}\right)\right|}=1$, then $P=N_{P}\left(P_{i}\right) \leq N_{G}\left(P_{i}\right)$. Since $P \in \operatorname{Syl}_{p}(G)$, we get $P \in \operatorname{Syl}_{p}\left(N_{G}\left(P_{i}\right)\right)$. Also, $P_{i} \leq N_{G}\left(P_{i}\right)$ and so $P_{i} \in \operatorname{Syl}_{p}\left(N_{G}\left(P_{i}\right)\right)$. Hence, by part (3), there exists $n \in N_{G}\left(P_{i}\right)$ such that $P=n P_{i} n^{-1}=P_{i}$. Hence, $P=P_{i} \in P P \cap P P_{i}=\emptyset$. But this is a contradiction. Therefore, p divides $\frac{|P|}{\left|N_{P}\left(P_{i}\right)\right|}$ for all $1 \leq i \leq n$, and so

$$
p \text { divides } \sum_{i=1}^{n} \frac{|P|}{\left|N_{P}\left(p_{i}\right)\right|}=\left|\operatorname{Syl}_{p}(G)\right|-1 .
$$

Therefore, $\left|\operatorname{Syl}_{p}(G)\right| \equiv 1(\bmod p)$.
(5). By part (3), G acts transitively on $S y l_{p}(G)$ by conjugation. Thus, $\operatorname{Syl}_{p}(G)=G P$, where $P \in \operatorname{Syl}_{p}(G)$. Then

$$
\begin{aligned}
\left|\operatorname{Syl}_{p}(G)\right| & =|G P| \\
& =\frac{|G|}{\left|G_{p}\right|} \\
& =\frac{|G|}{\left|N_{G}(P)\right|} .
\end{aligned}
$$

Therefore, $\left|\operatorname{Syl}_{p}(G)\right|$ divides $|G|$.

Theorem 4.2 Let G be a group, $P \in \operatorname{Syl}_{p}(G)$, and $N \unlhd G$. Then

$$
P \cap N \in \operatorname{Syl}_{p}(N) .
$$

Proof. We know $P \cap N \leq N$ is a p-subgroup since P is a p-group. By Theorem 4.1, there exists $P_{0} \in \operatorname{Syl}_{p}(N)$ such that $P \cap N \leq P_{0}$. Also by Theorem 4.1, there exists $g \in G$ such that $P_{0} \leq g P g^{-1}$. Then

$$
\begin{aligned}
P \cap N & \leq P_{0} \\
& \leq g P g^{-1} \cap N \\
& =g P g^{-1} \cap g N g^{-1} \\
& =g(P \cap N) g^{-1} .
\end{aligned}
$$

But $|P \cap N|=\left|g(P \cap N) g^{-1}\right|$, and so $P \cap N=P_{0} \in \operatorname{Syl}_{p}(N)$.

Theorem 4.3 (Frattini Argument) Let G be a group, $N \unlhd G$, and $P \in \operatorname{Syl}_{p}(N)$. Then

$$
G=N_{G}(P) N .
$$

Proof. Clearly, $G \supseteq N_{G}(P) N$, since G is a group. Now let $g \in G$. Then $g^{-1} \in G$. Then $P \leq N$ implies $g^{-1} P\left(g^{-1}\right)^{-1} \leq g^{-1} N\left(g^{-1}\right)^{-1}$. But since $N \unlhd G, g^{-1} N\left(g^{-1}\right)^{-1}=N$ and so $g^{-1} P\left(g^{-1}\right)^{-1} \leq N$. Now $\left|g^{-1} P\left(g^{-1}\right)^{-1}\right|=|P|=|G|_{p}$, and so $g^{-1} P g \in S y l_{p}(N)$. By Theorem 4.1, there exists $n \in N$ such that $n g^{-1} P g n^{-1}=P$. Hence, $n g^{-1} \in N_{G}(P)$. Thus there exists $x \in N_{G}(P)$ such that $n g^{-1}=x$, or $g=x^{-1} n \in N_{G}(P) N$. Therefore, $G \subseteq N_{G}(P) N$, and consequently, $G=N_{G}(P) N$.

We now need to look at some additional conditions necessary for our main result, beginning with solvable groups.

5 Solvable Groups

Definition: A group G is solvable if there exists a normal series

$$
G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{n}=\{1\}
$$

such that $\frac{G_{i}}{G_{i+1}}$ is abelian for all $0 \leq i \leq n-1$.
Example: S_{3} is solvable since $S_{3} \unrhd A_{3} \unrhd 1$ and $\left|\frac{S_{3}}{A_{3}}\right|=\frac{\left|S_{3}\right|}{\left|A_{3}\right|}=\frac{6}{3}=2$ where $\frac{S_{3}}{A_{3}} \cong \mathbf{Z}_{2}$ is abelian and $\frac{A_{3}}{\{1\}} \cong \mathbf{Z}_{3}$ is abelian.

Example: Let G be an abelian group. Then G is solvable since $G \unrhd 1$ and $\frac{G}{\{1\}}$ is abelian.

Example: A_{4} is solvable since $A_{4} \unrhd H \unrhd\{1\}$ where $H=\{1,(12)(34),(14)(23),(13)(24)\}$ and $\left|\frac{A_{4}}{H}\right|=\frac{\left|A_{4}\right|}{|H|}=\frac{12}{4}=3$. Thus $\frac{A_{4}}{H} \cong \mathbf{Z}_{3}$ is abelian and $\frac{H}{\{1\}} \cong H$ is abelian.

Example: A_{5} is not solvable, since A_{5} is simple and nonabelian.

Theorem 5.1 Let G be a solvable group, and $H \leq G$. Then H is solvable. Proof. Since G is solvable, there exists $G=G_{0} \unrhd G_{1} \unrhd \cdots \unrhd G_{n}=\{1\}$ such that $\frac{G_{i}}{G_{i+1}}$ is abelian for all $0 \leq i \leq n-1$. Then $H=H \cap G_{0} \unrhd H \cap G_{1} \unrhd \cdots \unrhd H \cap G_{n}=1$. Now we take an arbitrary factor and show that it is abelian. Choose $\frac{H \cap G_{i}}{H \cap G_{i+1}}$ for some i. Then

$$
\begin{aligned}
\frac{H \cap G_{i}}{H \cap G_{i+1}} & =\frac{H \cap G_{i}}{H \cap G_{i} \cap G_{i+1}} \text { since } G_{i} \supseteq G_{i+1} \\
& \cong \frac{\left(H \cap G_{i}\right)\left(G_{i+1}\right)}{G_{i+1}} \text { by Theorem } 2.7 \\
& \leq \frac{G_{i}}{G_{i+1}}
\end{aligned}
$$

But $\frac{G_{i}}{G_{i+1}}$ is abelian. So $\frac{\left(H \cap G_{i}\right)\left(G_{i+1}\right)}{G_{i+1}}$ is abelian. Hence, $\frac{H \cap G_{i}}{H \cap G_{i+1}}$ is abelian since it is isomorphic to abelian group. Therefore, H is solvable.

Theorem 5.2 Let G be a solvable group and $N \unlhd G$. Then $\frac{G}{N}$ is solvable. Proof. Since G is solvable, there exists $G=G_{0} \unrhd G_{1} \unrhd \cdots \unrhd G_{n}=\{1\}$ such that $\frac{G_{i}}{G_{i+1}}$ is abelian for all $0 \leq i \leq n-1$. Then

$$
\frac{G}{N}=\frac{G_{0}}{N} \unrhd \frac{G_{1} N}{N} \unrhd \frac{G_{2} N}{N} \unrhd \cdots \unrhd \frac{G_{n} N}{N}=N .
$$

Now we will choose an arbitrary factor and show it is abelian to establish the solvability of $\frac{G}{N}$.

$$
\begin{aligned}
\frac{G_{i} N}{N} / \frac{G_{i+1} N}{N} & \cong \frac{G_{i} N}{G_{i+1} N} \text { by Theorem } 2.8 \\
& =\frac{G_{i} G_{i+1} N}{G_{i+1} N} \text { since } G_{i} \supseteq G_{i+1} \\
& \cong \frac{G_{i}}{G_{i} \cap G_{i+1} N} \text { by Theorem } 2.7 \\
& \cong \frac{G_{i}}{G_{i+1}} / \frac{G_{i} \cap G_{i+1} N}{G_{i+1}} \text { by Theorem } 2.8
\end{aligned}
$$

Since the quotient of an abelian group is also abelian, and $\frac{G_{i}}{G_{i+1}}$ is abelian for all $0 \leq i \leq n-1, \frac{G_{i} N}{N} / \frac{G_{i+1} N}{N}$ is abelian. Therefore, $\frac{G}{N}$ is solvable.

We now need to expand the concept of a normal subgroup to further apply these previous theorems.

Definition: Let G be a group and $N \leq G$. Then N is a minimal normal subgroup if:
(1) $1 \neq N \unlhd G$.
(2) If $H \leq N$ such that $H \unlhd G$, then $H=\{1\}$ or $H=N$.

Example: A_{3} is a minimal normal subgroup of S_{3}. To see this, $\{1\} \neq A_{3} \unlhd S_{3}$ and suppose $H \leq A_{3}$ such that $H \unlhd S_{3}$. Then since $\left|A_{3}\right|=3,|H|=1$ or $|H|=3$. Therefore, $H=\{1\}$ or $H=A_{3}$, which makes A_{3} a minimal normal subgroup of S_{3}.

Example: Consider $H \leq D_{4}$, where $H=\{1,(12)(34),(13)(24),(14)(23)\}$. Then $\{1\} \neq H \unlhd D_{4}$. Now $Z\left(D_{4}\right)=\{1,(13)(24)\} \leq H$, and $Z\left(D_{4}\right) \unlhd D_{4}$. But $Z\left(D_{4}\right) \neq\{1\}$ and $Z\left(D_{4}\right) \neq H$. Therefore, H is not a minimal subgroup of D_{4}.

Definition: Let G be a group. Then $\phi: G \rightarrow G$ is an automorphism if ϕ is one-to-one, onto, and a homomorphism.

Definition: Let $\operatorname{Aut}(\mathbf{G})$ denote the group of all automorphisms on G under compostition, ie

$$
\operatorname{Aut}(G)=\{\phi: G \rightarrow G \mid \phi \text { is automorphism }\} .
$$

Example: Let $G=2 \mathbf{Z}$, and define $\phi: 2 \mathbf{Z} \rightarrow 2 \mathbf{Z}$ by $\phi(x)=2 x$ for all $x \in 2 \mathbf{Z}$. For ϕ to be an automorphism, we need to show that ϕ is a homomorphism, one-to-one, and onto.

To show ϕ is a homomorphism, let $x, y \in G$. Then

$$
\begin{aligned}
\phi(x+y) & =2(x+y) \\
& =2 x+2 y \\
& =\phi(x)+\phi(y) .
\end{aligned}
$$

Therefore, ϕ is a homomorphism. For ϕ to be one-to-one, consider

$$
\begin{aligned}
\phi(x) & =\phi(y) \\
2 x & =2 y \\
x & =y .
\end{aligned}
$$

Therefore, ϕ is one-to-one.
Now we look at onto. We need for all $y \in G$, there exists $x \in G$ such that $\phi(x)=y$. If there exists $x \in 2 \mathbf{Z}$ such that $\phi(x)=2$, then we get $2 x=2$, or $x=1$, a contradiction. Therefore, ϕ is not onto.
Therefore, ϕ is not an automorphism.
Example: Let G be a group and $g \in G$. Define $\phi: G \rightarrow G$ by $\phi(x)=g x g^{-1}$ for all $x \in G$. We want to show that ϕ is an automorphism. To show ϕ is a homomorphism, let $x, y \in G$. Then

$$
\begin{aligned}
\phi(x y) & =g x y g^{-1} \\
& =g x g^{-1} g y g^{-1} \\
& =\phi(x) \phi(y) .
\end{aligned}
$$

Therefore, ϕ is a homomorphism.

To show ϕ is one-to-one, consider

$$
\begin{aligned}
\phi(x) & =\phi(y) \\
g x g^{-1} & =g y g^{-1} \\
x & =y .
\end{aligned}
$$

Therefore, ϕ is one-to-one.
Now we look at onto. Let $x \in G$. Then $g^{-1} x g \in G$. So

$$
\begin{aligned}
\phi\left(g^{-1} x g\right) & =g\left(g^{-1} x g\right) g^{-1} \\
& =x .
\end{aligned}
$$

Therefore, ϕ is onto.
Combining these results, we have that ϕ is an automorphism.
Definition: Let G be a group, and $H \leq G$. Then H is a characteristic subgroup of G if $\phi(H) \leq H$ for all automorphisms ϕ of G, and is denoted H char $\leq G$.

Example: Let $G=\mathbf{Z}_{\mathbf{1 0}}$. Then $\langle 2\rangle \leq \mathbf{Z}_{\mathbf{1 0}}$. We want to show that $\langle 2\rangle$ is a characteristic subgroup of $\mathbf{Z}_{\mathbf{1 0}}$. If $\phi: \mathbf{Z}_{\mathbf{1 0}} \rightarrow \mathbf{Z}_{\mathbf{1 0}}$ is an automorphism, then $|2|=5$ and

$$
\begin{aligned}
5 \phi(2) & =\phi(2)+\phi(2)+\phi(2)+\phi(2)+\phi(2) \\
& =\phi(2+2+2+2+2) \\
& =\phi(0) \\
& =0
\end{aligned}
$$

So $|\phi(2)|$ divides 5. Hence, $|\phi(2)|=1$ or $|\phi(2)|=5$. If $|\phi(2)|=1$, then $\phi(2)=0$. But $\phi(0)=0$, so then $\phi(2)=\phi(0)$, which contradicts the one-tooneness of the automorphism ϕ. Therefore, $|\phi(2)|=5=|2|$.

Hence,

$$
\begin{aligned}
|\phi(\langle 2\rangle)| & =|\langle\phi(2)\rangle| \\
& =|\phi(2)| \\
& =|2| \\
& =5
\end{aligned}
$$

and since $\mathbf{Z}_{\mathbf{1 0}}$ has one subgroup of order 5, namely $\langle 2\rangle$, we get $\phi(\langle 2\rangle)=\langle 2\rangle$, and $|\phi(2)|=5=|2|$. So $|\langle\phi(2)\rangle|=|\phi(2)|=|2|=|\langle 2\rangle|$. Since $\mathbf{Z}_{\mathbf{1 0}}$ is cyclic it has only one subgroup of order 5. Hence $\langle\phi(2)\rangle=\langle 2\rangle$. But then, since ϕ is a homomorphism, $\phi(\langle 2\rangle)=\langle\phi(2)\rangle=\langle 2\rangle$. Therefore, $\langle 2\rangle$ char $\leq \mathbf{Z}_{\mathbf{1 0}}$.

Definition: A group G is characteristically simple if $\{1\}$ and G are its only characteristic subgroups.

Example: $\mathbf{Z}_{\mathbf{p}}$ is characteristically simple since $\{1\}$ and $\mathbf{Z}_{\mathbf{p}}$ are its only subgroups (by Theorem 2.4).

We can generalize this definition more by stating that if a group is simple, then it is characteristically simple. We will use A_{5} as an example.

Example: A_{5} is characteristically simple. We can show this by contradiction. Suppose H char $\leq A_{5}$, and let $g \in A_{5}$. Define $\phi: A_{5} \rightarrow A_{5}$ by $\phi(x)=g x g^{-1}$ for all $x \in A_{5}$. Then ϕ is an automorphism. Since H char $\leq A_{5}, \phi(H) \leq H$. Hence, $g H g^{-1} \leq H$, which means $H \unlhd A_{5}$. But A_{5} is simple, and therefore has no nontrivial proper normal subgroups. Therefore, $H=\{1\}$ or $H=A_{5}$, which means that A_{5} is characteristically simple.

Theorem 5.3 Let G be a characteristically simple group. Then $G \cong G_{1} \times G_{2} \times \cdots \times G_{s}$ such that G_{i} are isomorphic simple groups.

Proof. Let G be a characteristically simple group and let $\{1\} \neq G_{1} \unlhd G$ such that $\left|G_{1}\right|$ is minimal. Also, let $H=\prod_{i=1}^{s} G_{i}$ such that
(1) $G_{i} \cong G_{1}$ for all $1 \leq i \leq s$
(2) $G_{i} \unlhd G$ for all $1 \leq i \leq s$
(3) $G_{i} \cap \prod_{j \neq i} G_{j}=\{1\}$ for all $1 \leq i \leq s$
(4) s is maximal.

Then since $G_{i} \unlhd G$ for all $1 \leq i \leq s$, we get $H \unlhd G$ as the product of normal subgroups is normal. If H is not a characteristic subgroup of G, then there exists $1 \leq i \leq s$ and $\phi \in \operatorname{Aut}(G)$ such that $\phi\left(G_{i}\right) \not \leq H$. Then $\phi\left(G_{i}\right) \cap H<\phi\left(G_{i}\right)$. Moreover, since $G_{i} \unlhd G$, we know $\phi\left(G_{i}\right) \unlhd G$. Hence, since $H \unlhd G$, we get $\phi\left(G_{i}\right) \cap H \unlhd G$. But

$$
\begin{aligned}
\left|\phi\left(G_{i}\right) \cap H\right| & <\left|\phi\left(G_{i}\right)\right| \\
& =\left|G_{i}\right| \\
& =\left|G_{1}\right| .
\end{aligned}
$$

Hence, $\phi\left(G_{i}\right) \cap H=\{1\}$ by the minimality of $\left|G_{1}\right|$. Also, $\phi\left(G_{i}\right) \cap \prod_{i=1}^{s} G_{i}=\phi\left(G_{i}\right) \cap H=\{1\}$. Moreover, from condition (1), $\phi\left(G_{i}\right) \cong G_{i} \cong G_{1}$. But then $\prod_{i=1}^{s} G_{i}<\phi\left(G_{i}\right) \times \prod_{i=1}^{s} G_{i}$, contradicting the maximality of s. Therefore, H char $\leq G$ and since $H \neq\{1\}$ and G is characteristically simple, we get $G=H=\prod_{i=1}^{s} G_{i}$.

Now we need to show that these are isomorphic simple groups. We know that they are isomorphic from condition (1). So now let $1 \leq i \leq s$ and $N \leq G_{i}$ such that $N \triangleleft G_{i}$. We need to show $N=\{1\}$ or $N=G_{i}$ to show G_{i} is simple.

If $x \in G_{j}$ for some $j \neq i$ and $n \in N$ (which implies $n \in G_{i}$ since $N \triangleleft G_{i}$), then $x n x^{-1} n^{-1} \in G_{i}$. Also, $x n x^{-1} n^{-1} \in G_{j}$. So, $x n x^{-1} n^{-1} \in G_{i} \cap G_{j} \leq G_{i} \cap \prod_{j \neq i} G_{j}=\{1\}$ from condition (3). This implies $x n x^{-1} n^{-1}=1$. Hence $x n=n x$ and so $G_{j} \leq C_{G}(N)$ for all $j \neq i$. But then $N \unlhd \prod_{i=1}^{s} G_{i}=G$. Now $|N| \leq\left|G_{i}\right|=\left|G_{1}\right|$. Hence by the minimality of $\left|G_{1}\right|$, $|N|=1$ or $|N|=\left|G_{1}\right|$. Therefore, $N=\{1\}$ or $N=G_{i}$, and so G_{i} is simple.

We can now determine what minimal normal subgroups of solvable groups look like.

Theorem 5.4 Let G be a solvable group, and N be a minimal normal subgroup of G. Then

$$
N \cong \mathbf{Z}_{\mathbf{p}} \times \mathbf{Z}_{\mathbf{p}} \times \cdots \times \mathbf{Z}_{\mathbf{p}} \text { for some prime } p
$$

Proof. If L char $\leq N$ and $g \in G$, define $\phi: N \rightarrow N$ by $\phi(n)=g n g^{-1}$ for all $n \in N$. Since $N \unlhd G$, we get $\phi \in \operatorname{Aut}(N)$. But since L char $\leq N$, we know $\phi(L) \leq L$. Hence, $g L g^{-1} \leq L$ and $L \unlhd G$. Since N is a minimal normal subgroup of $G, L=\{1\}$ or $L=N$. Thus N is characteristically simple, which means it has no other characteristic subgroups. By Theorem $5.3, N \cong \prod_{i=1}^{s} N_{i}$ where the N_{i} are isomorphic simple groups. We consider N_{1}. If N_{1} is not abelian, then since N_{1} is simple, the only normal series in N_{1} is $N_{1} \unrhd\{1\}$. But $\frac{N_{1}}{\{1\}} \cong N_{1}$ which is not abelian, and so N_{1} is not solvable. But $N \leq G$, and G is solvable. This contradicts Theorem 5.1. So therefore, N_{i} has to be abelian for all $1 \leq i \leq s$. Now, since N_{i} is simple for all $1 \leq i \leq s$, we get $\{1\}$ and N_{i} are the only subgroups of N_{i} for all $1 \leq i \leq s$. But then by Theorem 3.5, N_{i} is a p-group for some prime p, and $N_{i} \cong \mathbf{Z}_{\mathbf{p}}$. Thus, $N \cong \mathbf{Z}_{\mathbf{p}} \times \mathbf{Z}_{\mathbf{p}} \times \cdots \times \mathbf{Z}_{\mathbf{p}}$ (s factors) .

We are now ready to introduce our main result.

6 Hall's Theorem

Definition: Let G be a group and π be a set of primes. Then:
(1) $\pi^{\prime}=\{p \mid p$ is prime and $p \notin \pi\}$.
(2) $\pi(G)=\{p \mid p$ is prime and p divides $|G|\}$.
(3) G is a π-group if $\pi(G) \subseteq \pi$.
(4) A subgroup $H \leq G$ is called a Hall π-subgroup if H is a π-group and $\pi\left(\frac{G}{H}\right) \subseteq \pi^{\prime}$.
(5) $\operatorname{Hall}_{\pi}(G)$ is the set of all Hall π-subgroups of G.

Example: $\left|D_{15}\right|=30=2 \cdot 3 \cdot 5$. Let $H=\langle(1,2,3, \ldots, 15)\rangle$. Then $|H|=15=3 \cdot 5$, so $H \in \operatorname{Hall}_{\{3,5\}}\left(D_{15}\right)$.

Example: $\operatorname{Hall}_{\{2,5\}}\left(A_{5}\right)=\emptyset$. If $H \in \operatorname{Hall}_{\{2,5\}}\left(A_{5}\right)$, then $\left|A_{5}\right|=\frac{5!}{2}=2^{2} \cdot 3 \cdot 5$ and $|H|=2^{2} \cdot 5=20$. Let A act on $S=\left\{g H \mid g \in A_{5}\right\}$ by left multiplication via ϕ. Now $|S|=\frac{\left|A_{5}\right|}{|H|}=\frac{60}{20}=3$ by Theorem 2.4. Hence $\phi: A_{5} \rightarrow \operatorname{Sym}(S) \cong S_{3}$. Now $\operatorname{Ker} \phi \unlhd A_{5}$ and so $\operatorname{Ker} \phi=\{1\}$ or $\operatorname{Ker} \phi=A_{5}$ since A_{5} is simple.

Consider $\operatorname{Ker} \phi=A_{5}$. Then

$$
\begin{aligned}
A_{5} & =\operatorname{Ker} \phi \\
& =\bigcap_{x \in A_{5}} x H x^{-1} \\
& \leq H \\
& \leq A_{5}
\end{aligned}
$$

and so we get $A_{5}=H$ if $\operatorname{Ker} \phi=A_{5}$, which is a contradiction. Therefore, $\operatorname{Ker} \phi \neq A_{5}$, and $\operatorname{Ker} \phi=\{1\}$. Then

$$
A_{5}=\frac{A_{5}}{\{1\}}=\frac{A_{5}}{\operatorname{Ker} \phi} \cong \phi\left(A_{5}\right) \leq S_{3} .
$$

Hence, we get $60=\left|A_{5}\right|$ divides $\left|S_{3}\right|=6$, which is a contradiction. Therefore, $\operatorname{Ker} \phi \neq\{1\}$.

Therefore, $H \notin \operatorname{Hall}_{\{2,5\}}\left(A_{5}\right)$, and so $\operatorname{Hall}_{\{2,5\}}\left(A_{5}\right)=\emptyset$.
But consider $\left(A_{5}\right)_{1}$ in $\left|A_{5}\right|=2^{2} \cdot 3 \cdot 5$. Then $\left(A_{5}\right)_{1} \cong A_{4}$ and so $\left|\left(A_{5}\right)_{1}\right|=\left|A_{4}\right|=\frac{4!}{2}=12=2^{2} \cdot 3$. Thus $\left(A_{5}\right)_{1} \in \operatorname{Hall}_{\{2,3\}}\left(A_{5}\right)$.

Theorem 6.1 Let G be a group, π be a set of primes, $H \in \operatorname{Hall}_{\pi}(G)$, and $N \unlhd G$. Then

$$
\frac{H N}{N} \in \operatorname{Hall}_{\pi}\left(\frac{G}{N}\right)
$$

Proof. Now

$$
\begin{aligned}
\left|\frac{H N}{N}\right| & =\frac{|H N|}{|N|} \\
& =\frac{\frac{|H||N|}{|H \cap N|}}{|N|} \text { by Theorem } 2.7 \\
& =\frac{|H|}{|H \cap N|}
\end{aligned}
$$

But since $H \in \operatorname{Hall}_{\pi}(G), \pi(H) \subseteq \pi$, and so $\pi\left(\frac{H}{H \cap N}\right) \subseteq \pi$. Thus $\pi\left(\frac{H N}{N}\right) \subseteq \pi$, and $\frac{H N}{N}$ is a π-group.

Also,

$$
\begin{aligned}
\frac{\left|\frac{G}{N}\right|}{\left|\frac{H N}{N}\right|} & =\frac{\frac{|G|}{|N|}}{\frac{|H N|}{|N|}} \\
& =\frac{|G|}{|H N|}
\end{aligned}
$$

But $\frac{|G|}{|H|}=\frac{|G|}{|H N|} \cdot \frac{|H N|}{|N|}$ and so $\frac{|G|}{|H N|}$ divides $\frac{|G|}{|H|}$. But $\pi\left(\frac{G}{H}\right) \subseteq \pi^{\prime}$ since $H \in \operatorname{Hall}_{\pi}(G)$. Hence, since $\frac{|G|}{|H N|}$ divides $\frac{|G|}{|H|}$, we get $\pi\left(\frac{G}{H N}\right) \subseteq \pi^{\prime}$. Thus, $\frac{H N}{N} \in \operatorname{Hall}_{\pi}\left(\frac{G}{N}\right)$.

Theorem 6.2 (Hall's Theorem) Let G be a solvable group and π be a set of primes. Then:
(1) $\operatorname{Hall}_{\pi}(G) \neq \emptyset$.
(2) If $K \leq G$ is a π-subgroup and $M \in \operatorname{Hall}_{\pi}(G)$, then there exists $g \in G$ such that $K \leq g M g^{-1}$.

Proof. We will use induction to complete this proof.
We start with $|G|=1$. Then $\{1\} \in \operatorname{Hall}_{\pi}(G)$. Now we assume that the theorem holds for all solvable groups of order less than $|G|$. We want to show that the theorem holds for groups of order $|G|$.

Let N be a minimal normal subgroup of G. Since $N \unlhd G, \frac{G}{N}$ is a group, and since G is solvable, $N \cong \mathbf{Z}_{\mathbf{p}} \times \mathbf{Z}_{\mathbf{p}} \times \cdots \times \mathbf{Z}_{\mathbf{p}}$ for some prime p. Now, since G is solvable, by Theorem 5.2, $\frac{G}{N}$ is solvable. Moreover, $\left|\frac{G}{N}\right|=\frac{|G|}{|N|}<|G|$ since $N \neq\{1\}$ because N is minimal normal subgroup. By induction, there exists $\frac{H}{N} \in \operatorname{Hall}_{\pi}\left(\frac{G}{N}\right)$. Then $H \leq G$.

We first consider the case when $p \in \pi$.
Then $|H|=\frac{|H|}{|N|} \cdot|N|$. But $\pi\left(\frac{H}{N}\right) \subseteq \pi$ since $\frac{H}{N} \in \operatorname{Hall}_{\pi}\left(\frac{G}{N}\right)$ and $\pi(N) \subseteq \pi$ since $p \in \pi$. Thus $\pi(H) \subseteq \pi$, and so H is a π-group.
Also, $\frac{|G|}{|H|}=\frac{\frac{|G|}{|N|}}{\frac{|H|}{|N|}}$, and $\pi\left(\frac{\frac{G}{N}}{\frac{H}{N}}\right) \subseteq \pi^{\prime}$ since $\frac{H}{N} \in \operatorname{Hall}_{\pi}\left(\frac{G}{N}\right)$. Thus
$\pi\left(\frac{G}{H}\right) \subseteq \pi^{\prime}$, and so $H \in \operatorname{Hall}_{\pi}(G)$. Therefore, $\operatorname{Hall}_{\pi}(G) \neq \emptyset$.
Now if $K \leq G$ is a π-subgroup and $M \in \operatorname{Hall}_{\pi}(G)$, then $\frac{K N}{N} \leq \frac{G}{N}$ is a π-subgroup and $\frac{M N}{N} \in \operatorname{Hall}_{\pi}\left(\frac{G}{N}\right)$ by Theorem 6.1. Again, since $\frac{G}{N}$ is solvable and $\left|\frac{G}{N}\right|<|G|$, by induction there exists $g N \in \frac{G}{N}$ such that

$$
\begin{aligned}
\frac{K N}{N} & \leq(g N)\left(\frac{M N}{N}\right)(g N)^{-1} \\
& =\frac{g(M N) g^{-1}}{N}
\end{aligned}
$$

Taking preimages, we get $K \leq K N \leq g(M N) g^{-1}$. Then

$$
\begin{aligned}
\left|g M N g^{-1}\right| & =|M N| \\
& =\frac{|M||N|}{|M \cap N|} .
\end{aligned}
$$

Now since $M \in \operatorname{Hall}_{\pi}(G)$, we get $\pi\left(g M N g^{-1}\right) \subseteq \pi$, and so $g M N g^{-1}$ is a π-group. But $g M g^{-1}<g M N g^{-1}$ and $\left|g M g^{-1}\right|=|M|$, and so $g M g^{-1} \in \operatorname{Hall}_{\pi}(G)$ since $M \in \operatorname{Hall}_{\pi}(G)$. Hence, $g M g^{-1}=g M N g^{-1}$, giving us $K \leq g M N g^{-1}=g M g^{-1}$. Therefore, condition (2) is satisfied, and the theorem holds for $p \in \pi$.

Now consider the case when $p \notin \pi$.
We may assume G has no normal π-subgroups. Now by induction, there exists $\frac{H}{N} \in \operatorname{Hall}_{\pi}\left(\frac{G}{N}\right)$. Taking preimages, we get $H \leq G$. If $H \neq G$, we know $|H|<|G|$. Also, H is solvable since G is solvable by Theorem 5.1. So by induction, there exists $H_{1} \in \operatorname{Hall}_{\pi}(H)$. Now

$$
\begin{aligned}
\frac{|G|}{\left|H_{1}\right|} & =\frac{|G|}{|H|} \cdot \frac{|H|}{\left|H_{1}\right|} \\
& =\frac{\frac{|G|}{|N|}}{\frac{|H|}{|N|} \cdot \frac{|H|}{\left|H_{1}\right|}} .
\end{aligned}
$$

Thus $\pi\left(\frac{G}{H_{1}}\right) \subseteq \pi^{\prime}$ since $\frac{H}{N} \in \operatorname{Hall}_{\pi}\left(\frac{G}{N}\right)$ and $H_{1} \in \operatorname{Hall}_{\pi}(H)$. Hence, $H \in \operatorname{Hall}_{\pi}(G)$, yielding condition (1) of the theorem. Now let $K \leq G$ be a π-subgroup and $M \in \operatorname{Hall}_{\pi}(G)$. Then $\frac{M N}{N} \in \operatorname{Hall}_{\pi}\left(\frac{G}{N}\right)$, and $\frac{K \bar{N}}{N} \leq \frac{G}{N}$ is a π-subgroup. Since $\left|\frac{G}{N}\right|<|G|$ by induction, there exists $g N \in \frac{G}{N}$ such that $\frac{K N}{N} \leq(g N)\left(\frac{M N}{N}\right)(g N)^{-1}$. Taking preimages, we get $K \leq K N \leq g(M N) g^{-1}$ as before. Thus $K \leq K N \leq g M g^{-1} N$. Now

$$
\begin{aligned}
\left|\frac{H}{N}\right| & =\left|\frac{M N}{N}\right| \text { since both are in } \operatorname{Hall}_{\pi}\left(\frac{G}{N}\right) \\
\frac{|H|}{|N|} & =\frac{|M N|}{|N|} \\
|H| & =|M N| .
\end{aligned}
$$

But $|M N|=\left|g M N g^{-1}\right|=\left|g M g^{-1} N\right|$. Thus, $\left|g M g^{-1} N\right|=|H|$, and so $g M g^{-1} N \neq G$ since $H \neq G$. Thus, $\left|g M g^{-1} N\right|<|G|$, and $g M g^{-1} N$ is solvable by Theorem 5.1. Moreover, $K \leq g M g^{-1} N$ is a π-group and $g M g^{-1} \in \operatorname{Hall}_{\pi}\left(g M g^{-1} N\right)$. Thus by induction, there exists $g_{1} \in g M g^{-1} N$ such that $K \leq g_{1}\left(g M g^{-1}\right) g_{1}^{-1}=g_{1} g M\left(g_{1} g\right)^{-1}$, yielding condition (2) of the theorem.

Now if $H=G$, then $\frac{G}{N}=\frac{H}{N}$ is a π-group, since $\frac{H}{N} \in \operatorname{Hall}_{\pi}\left(\frac{G}{N}\right)$. Let $\frac{R}{N}$ be a minimal normal subgroup of $\frac{G}{N}$. Then since $\frac{G}{N}$ is solvable by Theorem 5.2, we know $\frac{R}{N}$ is an elementary q-group for some prime q, where $q \neq p$. Then $\frac{R}{N} \unlhd \frac{G}{N}$ implies $R \unlhd G$. Since $|R|=\frac{|R|}{|N|} \cdot|N|, R$ is a $p q$-group.
Now let $Q \in S y l_{q}(R)$. Hence, $\frac{Q N}{N} \in \operatorname{Syl}_{q}\left(\frac{R}{N}\right)$ and so $\frac{R}{N}=\frac{Q N}{N}$, or $R=Q N$. By Theorem 4.3,

$$
\begin{aligned}
G & =N_{G}(Q) R \\
& =N_{G}(Q) Q N \\
& =N_{G}(Q) N .
\end{aligned}
$$

If $N_{G}(Q)=G$, then Q is a normal π-subgroup of G since $q \in \pi$. But this is a contradiction. Therefore, $N_{G}(Q) \neq G$, and so $\left|N_{G}(Q)\right|<|G|$. Now since $N_{G}(Q)$ is solvable, there exists $H_{1} \in \operatorname{Hall}_{\pi}\left(N_{G}(Q)\right)$ by induction. Also

$$
\begin{aligned}
\left|\frac{G}{H_{1}}\right| & =\frac{|G|}{\left|N_{G}(Q)\right|} \cdot \frac{\left|N_{G}(Q)\right|}{\left|H_{1}\right|} \\
& =\frac{\left|N_{G}(Q) N\right|}{\left|N_{G}(Q)\right|} \cdot \frac{\left|N_{G}(Q)\right|}{\left|H_{1}\right|} \\
& =\frac{|N|}{\left|N \cap N_{G}(Q)\right|} \cdot \frac{\left|N_{G}(Q)\right|}{\left|H_{1}\right|}
\end{aligned}
$$

which is a π^{\prime}-number since $p \notin \pi, H_{1} \in \operatorname{Hall}_{\pi}\left(N_{G}(Q)\right)$. Thus, $H_{1} \in$ $\operatorname{Hall}_{\pi}(G)$, yielding condition (1) of the theorem.

Now let $K \leq G$ be a π-subgroup and $M \in \operatorname{Hall}_{\pi}(G)$. We can show K lies in a conjugate of M.
If $|K|=|M|$, then by Theorem 4.2, $K \cap R, M \cap R \in \operatorname{Syl}_{q}(R)$. So by Theorem 4.1, there exists $r \in R$ such that $r(M \cap R) r^{-1}=(K \cap R)$, or $r M r^{-1} \cap R=K \cap R$. Since $R \unlhd G$, we get $K \cap R \unlhd K$ and $r M r^{-1} \cap R \unlhd r M r^{-1}$. Hence, $K \leq N_{G}(K \cap R)=N_{G}\left(r M r^{-1} \cap R\right)$, and $r M r^{-1} \leq N_{G}\left(r M r^{-1} \cap R\right)=N_{G}(K \cap R)$.

Let $N_{1}=N_{G}(K \cap R)$. If $N_{1}=G$, then $N_{G}(K \cap R)=G$, and so $(K \cap R) \unlhd G$. But $K \cap R$ is a π-subgroup, which is a contradiction. Therefore, $N_{1} \neq G$ and $\left|N_{1}\right|<|G|$.
Now $K \leq N$ is a π-group, and since $r M r^{-1} \in \operatorname{Hall}_{\pi}(G)$, we know $r M r^{-1} \in \operatorname{Hall}_{\pi}\left(N_{1}\right)$. Since N_{1} is solvable, by induction there exists $n \in N_{1}$ such that $K \leq n r M r^{-1} n^{-1}=(n r) M(n r)^{-1}$, yielding condition (2) of the theorem.

Now if $|K|<|M|$, then $\frac{M N}{N} \in \operatorname{Hall}_{\pi}\left(\frac{G}{N}\right)$ by Theorem 6.1.
Since $\frac{H}{N} \in \operatorname{Hall}_{\pi}\left(\frac{G}{N}\right)$, we know

$$
\begin{aligned}
\left|\frac{M N}{N}\right| & =\left|\frac{H}{N}\right| \\
\frac{|M N|}{|N|} & =\frac{|H|}{|N|} \\
|M N| & =|H|=|G| .
\end{aligned}
$$

Hence, $G=H=M N$. Since $N \unlhd G, K N \leq G$. Also,

$$
\begin{aligned}
\left|\frac{K N}{N}\right| & =\frac{|K||N|}{|K \cap N|} \\
& =\frac{|K||N|}{1} \text { since } K \text { is a } \pi \text {-group and } N \text { is a } \pi^{\prime} \text {-group } \\
& =\frac{|K||N|}{|M \cap N|} \\
& <\frac{|M||N|}{|M \cap N|} \\
& =|M N| \\
& =|G| .
\end{aligned}
$$

Therefore, $|K N|<|G|$. Also, since $K N$ is solvable, the theorem holds for $K N$ by induction.

Now $K \leq K N$ is a π-subgroup and $M \cap K N \leq K N$ is a π-subgroup, so

$$
\begin{aligned}
\frac{|K N|}{|M \cap K N|} & =\frac{|K N M|}{|M|} \\
& =\frac{|K G|}{|M|} \\
& =\frac{|G|}{|M|}
\end{aligned}
$$

so $\pi\left(\frac{K N}{M \cap K N}\right) \subseteq \pi^{\prime}$. Therefore, $M \cap K N \in \operatorname{Hall}_{\pi}(K N)$. So by induction, there exists $x \in K N$ such that

$$
\begin{aligned}
K & \leq x(M \cap K N) x^{-1} \\
& =x M x^{-1} \cap x K N x^{-1} \\
& \leq x M x^{-1}
\end{aligned}
$$

which yields condition (2) of the theorem.
Consequently, the proof is complete, and Hall's Theorem holds for solvable groups.

References

[1] Dummit, David S. and Foote, Richard M., Abstract Algebra 3rd ed., John Wiley and Sons Inc., (2004).
[2] Fraleigh, John B., A First Course in Abstract Algebra 4th ed., AddisonWesley Publishing Co., (1988).
[3] Hall, Philip, "A Note on Soluble Groups", Journal of the London Mathematical Society, Volume 2, p 98-105, (1928).
[4] Papatonopoulou, Aigli, Algebra Pure and Applied, Prentice Hall, (2002).
[5] Robinson, Derek J. S., An Introduction to Abstract Algebra, Walter de Gruyter, (2003).

