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Abstract. The primary topic of this paper is distance (or “metric”) preserving
functions. In particular, the paper will focus on the least integer function - a step
function, also referred to as the ceiling function. Herein, the author will provide
information about the ceiling function, as well as a proof that it is indeed metric
preserving, supported by Wilson’s Theorem and the Borsik-Doboš Theorem. In
addition, the paper will show that the amenable condition and triangle triplet
condition guarantee that a function is distance preserving.
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Symbols

∀ = for all
∃ = there exists
⇒ = implies
⇔ = one side implies the other
d · e = the least integer function
d(x, y) = the distance from x to y, or the |x− y|
(a, b, c) = the point with coordinates a, b, and c
BO(x, r) = the open ball centered at x with radius r
BC(x, r) = the closed ball centered at x with radius 0
(X, d) = metric space

3



In the textbook “Metric Spaces” (Sierpinski, 9), Sierpinski considers
the following problem:

“Does there exist an infinite subset of the plane such
that the distance between any two different points is a
natural number, and this set is not colinear
(i.e., contained in a common straight line)?”

It was shown that such a set does not exist. (Sierpinski, 59-60) However,
for every natural number n, there is a set of n noncollinear points in the
plane such that all of its distances are natural numbers. All these
considerations were done assuming the usual metric on the plane.

One can “reverse” the question and ask:

“Does there exist a metric on <k such that the
distance between any two different points is a
natural number?”

The obvious examples of such metrics are discrete metrics and their
combinations. Sierpinski considered non-trivial cases - namely,
functions which are composed of the values of the original metrics, quantifying
the “old metric”.

Example 1: You are in New York City, and just got a cab - you get in. The meter
shows $1.50. This is a flat rate as the driver says. Now every 1

8 of a mile
will cost you $0.25. The graph is shown below: (Doboš and Piotrowski, 513)
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Example 2: Have you called your friend in Paris from New York? The current
AT&T rate is $1.71 for the first minute, and $1.08 for every
additional minute. The graph is illustrated below: (Doboš and Piotrowski, 513)

By replacing the distance (in miles) on the x-axis, and the cost (in $)
on the y-axis, then the function f :X → Y is a step function.

One may notice a common theme with these two examples: that the variables
distance and time, respectively, may be stated in terms of cost. Moreover,
each function presented is a step function (i.e., f only assumes
discrete values). Without loss of generality, one may assume that the values
of f are natural numbers.

Definition 1: Let X be a nonempty set. We say that the function
d : X ×X → R+ ∪ {0} is a distance function, or a metric, if the
following axioms are met for any x, y, and z in X:

Axiom 1 : d (x, y) = 0 if and only if x = y,
Axiom 2 : d (x, y) = d (y, x),
Axiom 3 : d (x, y) ≤ d (x, z) + d (z, y) (the triangle inequality).

The pair (X, d) is called a metric space.
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Given a distance d, we shall refer to d as “the old metric”, or
“the old distance”. We will consider these functions f : [0,+∞)→ [0,+∞)
such that the composition e is defined by:

e (x, y) = f (d (x, y)),

which is the “new distance”.

So, we will quantify the values of the old metrics by “shuffling” the
in-between numbers to nearby integer numbers. This, in turn, makes f
a step function.

In terms of our previous two examples, the distance (Example 1) and
time (Example 2) would be our “old metric”, d, such that when the
appropriate function, f , composed with d, the “new metric”, e - in terms
of cost - results.

Lemma 1. Let f : [0,+∞)→ [0,+∞) be defined by f (u) = due,
where d · e denotes the least integer function. Then f preserves
distances.

Proof:
Axiom 1: e (x, y) = 0⇔ x = y.

e (x, y) = dd (x, y)e = 0⇔ d (x, y) = 0.
Since d is a metric, then d (x, y) = 0⇔ x = y.
Thus, e (x, y) = 0⇔ x = y.

Axiom 2: e (x, y) = e (y, x).
Since d is a metric, then
d (x, y) = d (y, x)⇔ dd (x, y)e = dd (y, x)e.
Clearly,
e (x, y) = dd (x, y)e = dd (y, x)e = e (y, x).
Thus, e (x, y) = e (y, x).

Axiom 3: e (x, y) ≤ e (x, z) + e (z, y).
Clearly, *
d (x, z) ≤ dd (x, z)e and d (z, y) ≤ dd (z, y)e.
Adding both inequalities yields:
d (x, z) + d (z, y) ≤ dd (x, z)e+ dd (z, y)e.
Thus,
dd (x, z) + d (z, y)e ≤ ddd (x, z)e+ dd (z, y)ee,
which implies that
dd (x, z) + d (z, y) ≤ dd (x, z) + dd (z, y)e.
Now, since d is a metric, then
d (x, y) ≤ d (x, z) + d (z, y).
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Applying the least integer function gives us:

dd (x, y)e ≤ dd (x, z) + d (z, y)e
∗
≤ dd (x, z)e+ dd (z, y)e,

which implies:
dd (x, y)e ≤ dd (x, z)e+ dd (z, y)e.
Therefore, e (x, y) ≤ e (x, z) + e (z, y).
Hence, it follows that e is a metric.

It is easy to see that the metric e which quantifies the “old” distance
is a majorizing metric (i.e., if d the original metric for e, then for any
two points x, y ∈ <:

e (x, y) ≥ d (x, y). 2

It is also clear that (<, e) is not isometric to (<, ε), since e
takes only integer values, and the Euclidean metric takes non-negative
real values.

Open and Closed Balls
In (<, e), consider open balls BO (x, r) and closed balls BC (x, r).
In general,

card BO (x, r) 6= card BC (x, r)

because it is possible for card BC (x, r) = C, whereas card BO (x, r) = 1.

Completeness
(<, e) is a complete metric space, that is if a sequence {xn}
satisfies Cauchy’s condition, then {xn} is convergent.

Proof:
Claim: the only sequences {xn} satisfies Cauchy’s condition
are sequences that are eventually constant. In fact, assume that
{xn} satisfies the Cauchy condition. Choose ε > 0, such that
0 < ε < n. Then there exist K0 such that for any xl, xm

with l,m ≥ K0 we have e (x1, xm) < ε. But, if x1 6= xm

then infxm,x1∈< (e (x1, xm)) = n; hence, it follows from the
inequality n > ε that x1 = xn. Therefore, the sequence
{xk} is constant, for k ≥ k0. Thus, if a sequence satisfies Cauchy’s
conditions, then this sequence is eventually constant, hence convergent. 2

(Piotrowski, 6)
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Equivalent Metrics

Definition: Two metrics d1 and d2 on a set X are equivalent if the following conditions hold:

(1) ∀ x ∈ X and ∀ r1 > 0, ∃ r2 > 0 such that B2 (x, r2) ⊂ B1 (x, r1), and
(2) ∀ x ∈ X and ∀ r2 > 0, ∃ r1 > 0 such that B1 (x, r1) ⊂ B2 (x, r2) where Bi is

a ball in the space (X, di) i = 1, 2, . . . .

Problem: Let X = R2 and let d1, d2, and d3 respectively denote:

(1) d1 (x, y) = |y1 − x1|+ |y2 − x2|
(2) d2 (x, y) =max{|y1 − x1| , |y2 − x2|}
(3) The discrete metric.

Are d1, d2, d3 equivalent metrics?

Solution: d2 (x, y) = max{|y1 − x1| , |y2 − x2|} ≤ |y1 − x1|+ |y2 − x2| = d1 (x, y).

Clearly, B1 (x, r) ⊂ B2 (x, r)
B1 (0, r) ⊂ B2 (0, r)
x ∈ B1 (0, r) ⇒ d1 (x, 0) < r

⇒ d2 (x, 0) ≤ d1 (x, 0) < r
⇒ x ∈ B2 (0, r).

Next, d1 (x, y) = |y1 − x1|+ |y2 − x2| ≤ 2max{|y1 − x1| , |y2 − x2|} = 2d2 (x, y)
x ∈ B2 (0, r)⇒ d2 (x, 0) < r

⇒ d1 (x, 0) ≤ 2d2 (x, 0) < 2r
⇒ x ∈ B1 (0, 2r)

Thus, d1 and d2 are equivalent metrics.

For any r > 0, r
2 ∈ B1(0, r) and d3( r

2 , 0) = 1 > 1
2 . So r

2 /∈ B3

(
0, 1

2

)
.

Therefore, d1 and d3 are not equivalent metrics.

Theorem 1. Let f be a real-valued function defined for
non-negative numbers, and such that f is continuous, (the continuity of f
is needed only for the equivalence of d with e), non-decreasing, and
satisfying the following two conditions (Kelley, 131):

(1.) f (a) = 0⇔ a = 0
(2.) f(a+ b) ≤ f(a) + f(b) (subadditivity).

Let (Z, d) be a metric space and let e (x, y) = f(d (x, y)) for all x, y ∈ X.
Then (X, e) is a metric space and the metrics d and e are equivalent. (Kelley, 131)
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Theorem 2. Suppose f : [0,+∞)→ [0,+∞) is non-decreasing and
subadditive. Then f is metric preserving. (Doboš, 10)

Clearly, the function f : [0,+∞)→ [0,+∞) given by f (u) = due is
non-decreasing, and (1) and (2) also hold for f and any non-negative
numbers a and b.

Proof: Let (X, d) be a metric space; we show that f ◦ d is a metric.
Axioms 1 and 2 (of Definition 1) are easy to check. For Axiom 3,
let x, y, z ∈ X, and let

a = d(x, z), b = d(z, y), and c = d(x, y).
it suffices to show that f(a) + f(b) ≥ f(c). But

f(a) + f(b) ≥ f(a+ b) (subadditive)
≥ f(c) (nondecreasing) 2

Figure 1: f(x) = dxe, x ≥ 0

Examples of Theorem 2:

(1.) Let a be a number between any two integers x and x+ 1 on the positive x-axis
such that x < a < x+ 1. By the ceiling function f(x) = dxe < f(a) = dae = dx+ 1e = f(x+ 1).
Thus, f is non-decreasing. Also, from the graph above, we see that f(1) = 1 < f(1.5) = 2 = f(2).

(2.) Now, f(a+ b) = da+ be
∗
≤ dae+ dbe = f(a) + f(b).

Thus, f is subadditive.
Since f is both non-decreasing and subadditive, then it is metric preserving.
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A metric preserving function satisfies the following axioms:
(F1) f : [0,+∞)→ [0,+∞)
(F2) f is non-decreasing
(F3) f (a) = 0⇔ a = 0
(F4) f (a+ b) ≤ f (a) + f (b) (subadditivity) (Doboš, 10)

Theorem 3: If (X, d) is a metric space, and the function f satisfies
(F1)-(F4), and the function e satisfies the condition e (x, y) = f (d (x, y)) for
all x, y ∈ X, then (X, e) is a metric space.

Proof : We shall now check the conditions Axiom 1 - Axiom 3 for the
function e.

Axiom 1 . e (x, y) = 0
def.e⇐⇒ f (d (x, y)) = 0 F3⇐⇒ d (x, y) = 0 Axiom1⇐⇒ x = y.

Axiom 2 . ∀ x, y ∈ X, e (x, y) = f (d (x, y)) = f (d (y, x)) = e (y, x).

Axiom 3 . ∀ x, y ∈ X, e (x, y) + e (y, z) = f (d (x, y)) + f (d (y, z)) (by def. e)
≥ f (d (x, y) + d (y, z)) (by (F4)
≥ f (d (x, z)) (by (F2) & Axiom 3)
= e (x, z) (by def. e)

Based on the theorem above we shall prove that e is a metric. In order to do so,
we are to check that the function f such that f (a) = dae where a ∈ [0,+∞) satisfies
conditions (F1)-(F4).

Condition (F1) follows from the definition.

Condition (F2). Let a < b. Clearly, a < b ≤ dbe ⇒ dae ≤ dbe.

Condition (F3). Since f (a) = dae then f (a) = 0⇔ dae = 0.
Then dae = 0 = d0e ⇔ dae = d0e ⇔ a = 0.

Condition (F4). f (a+ b) = da+ be ≤ dae+ dbe = f (a) + f (b).
Thus f (a+ b) ≤ f (a) + f (b). 2

Definition 2: Let a, b, and c be positive real numbers.
We call the triplet a triangle triplet iff

a ≤ b+ c, b ≤ a+ c, and c ≤ a+ b;
Equivalently,

|a+ b| ≤ c ≤ a+ b;
i.e.,

a+ b+ c ≥ 2max{a, b, c}.

Wilson’s Theorem

Let f : [0,+∞)→ [0,+∞) be such that a, b, c ≥ 0, and a ≤ b+ c
imply f (a) ≤ f (b) + f (c). Then f is metric preserving. (Doboš, 10)
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Example of Wilson’s Theorem:

Given f (x) = 2x − 1 does this function satisfiy the hypothesis of Wilson’s Theorem?

Solution: Let (a, b, c) = (2, 3, 4), and clearly 4 ≤ 2 + 3 = 5.
Knowing that f (2) = 3, f (3) = 7, and f (4) = 15,
we can check and see that:
f (4) = 15 > f (2) + f (3) = 3 + 7 = 10.
Also, let (a, b, c) = (3, 2, 1), then (f (a) , f (b) , f (c)) = (7, 3, 1).
Thus, f (a) = 7 > f (b) + f (c) = 3 + 1 = 4.
Evidently, 7 6≤ 4. Therefore, f (x) = 2x − 1 does not satisfy
the hypothesis of Wilson’s Theorem.

Borsik-Doboš Theorem Let f : [0,+∞)→ [0,+∞) Then the following are equivalent:

(1.) f is metric preserving
(2.) If (a, b, c) is a triangle triplet then so is (f(a), f(b), f(c))
(3.) If (a, b, c) is a triangle triplet then f(a) ≤ f(b) + f(c), and
(4.) ∀x, y ∈ [0,+∞) : max{f(z) : |x− y| ≤ z ≤ x+ y} ≤ f(x) + f(y). (Doboš, 11)

Example 3: Let f (x) = 2x − 1.

(1.) f is not metric preserving
(2.) (1, 2, 3) is a triangle triplet since 1 ≤ 2 + 3, 2 ≤ 3 + 1, 3 ≤ 2 + 1, but (f(1), f(2), f(3))

is not a triangle triplet since 7 > 3 + 1 = 4.
(3.) (1, 2, 3) is a triangle triplet, but f(3) = 7 > f(2) + f(1) = 3 + 1 = 4
(4.) Consider x = 4, y = 6; then max{f(z) : |4− 6| ≤ z ≤ 4 + 6} ≤ f(4) + f(6)

max{f(10) : 2 ≤ z ≤ 10} > f(4) + f(6).
So, f(10) = 1024 > f(4) + f(6) = 16 + 64 = 80

Theorem 4. Let f :[0,+∞)→ [0,+∞).
Then f is distance preserving if and only if:
(a) f vanishes exactly at the origin, and
(b) if (a, b, c) is a triangle triplet, then so is (f (a) , f (b) , f (c)).
(Doboš and Piotrowski, 517)

Example 4: Let the function h be given by:

h(x) =


0 if x = 0,
3 if 0 < x ≤ 1,
1 if x > 1.

h is not a distance-preserving. In fact, (1, 2, 3) is a triangle triplet,
while ((f(1), f(2), f(3)) is not:

3 = f(1) > f(2) + f(3) = 1 + 1 = 2.

11



References:

(1.) Sierpinski, W., “Metric Spaces”, Warsaw (1954).

(2.) Kelley, J., General Topology, Springer-Verlag, New York (1955).
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(4.) Doboš, J. and Piotrowski, Z., “When Distance Means Money”,
Internat. J. Math. Ed. Sci. Tech. 28 (1997) 513518.

(5.) Piotrowski, Z., O Metrykach Calkowito-Liczbowych” (1974).

12


		2009-09-19T15:02:06-0400
	ETD Program




