
AN EMPIRICAL STUDY ASSESSING THE IMPACT OF SeeIT 3D ON

COMPREHENSION

by

Grace Havila Jetty

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Computing and Information Systems

in the

Computer Science and Information Systems

Program

YOUNGSTOWN STATE UNIVERSITY

May, 2013

AN EMPIRICAL STUDY ASSESSING THE IMPACT OF SeeIT 3D ON

COMPREHENSION

Grace Havila Jetty

I hereby release this thesis to the public. I understand that this thesis will be made
available from the OhioLINK ETD Center and the Maag Library Circulation Desk for
public access. I also authorize the University or other individuals to make copies of this
thesis as needed for scholarly research.

Signature:

Grace H Jetty, Student Date

Approvals:

Bonita Sharif, Thesis Advisor Date

John Sullins, Committee Member Date

Alina Lazar, Committee Member Date

 Bryan DePoy, Dean of School of Graduate Studies and Research Date

iii

Abstract

Software visualizations are meant to help developers comprehend software systems.

They are especially useful for large software systems with tens of thousands of classes.

There have been many visualizations been proposed in the literature with relatively little

empirical evidence showing their usefulness to developers. In this thesis, we conduct an

empirical study to assess the impact a software visualization tool namely, SeeIT 3D (an

Eclipse plug-in) has on performance of certain software tasks. Six different tasks in three

different task categories, developed in the context of understanding an open-source

system, GanttProject, written in Java. Ninety-seven subjects were recruited from three

different universities and split into two groups; one group used the SeeIT 3D plug-in

while the other did not use the plug-in. The main goal was to determine the impact and

added benefit of SeeIT 3D while performing typical software tasks within the Eclipse

IDE. Results indicate SeeIT 3D performs significantly better in one task category namely

overview tasks. There is also a significant difference in the way experts and novices

solve tasks. These results indicate when software visualization tools are useful for

developers. They might not be useful for all tasks but are worthwhile for others.

iv

Acknowledgements

Firstly, I would like to thank God for being with me all the time. I thank my

family members for showering their endless love and care, without their love I would not

have come to this stage.

 I thank Dr. Bonita Sharif, my thesis advisor, who was the reason to step into this

research work in my Master’s; she has being my support throught out my thesis

accomplishment. I was really amazed by her patience and encouragement through out my

research work.

I thank all my friends for their support, encouragement and help to complete my

thesis study by spending their valuable time. I thank committee members Dr. John Sullins

and Dr. Alina Lazar.

Once again, I thank my parents and my sister for their prayers and

encouragement. I thank all the members who directly or indirectly helped me to complete

my research work.

v

TABLE OF CONTENTS

LIST OF FIGURES ... VIII

LIST OF TABLES ... X

CHAPTER 1 INTRODUCTION... 1

1.1 Motivation ... 2

1.2 Contributions... 3

1.3 Research Questions ... 3

1.4 Organization .. 3

CHAPTER 2 BACKGROUND AND RELATED WORK 5

2.1 Software Visualization and Metaphors ... 5

2.2 Examples of Software Visualization Tools ... 6

2.3 Empirical Studies on Software Visualization Tools ... 8

2.3.1 SeeIT 3D Observational Study by Gadapa (Gadapa 2012) 8

2.3.2 sv3D .. 9

2.3.3 Extravis ... 9

2.3.4 Code City .. 10

2.3.5 Code Bubbles .. 11

2.3.6 MetricViewEvolution ... 11

2.4 An Overview of Eye Tracking .. 12

2.5 Eye-tracking Studies in Software Engineering ... 13

vi

CHAPTER 3 OVERVIEW OF SEEIT 3D ... 15

3.1 Metaphor ... 15

3.2 Metrics and Mappings... 16

3.3 Representing Relationships between Containers .. 18

3.4 User interactions ... 19

3.5 Visualizing GanttProject in SeeIT 3D .. 21

CHAPTER 4 THE EMPIRICAL STUDY ... 23

4.1 Experiment Design.. 23

4.2 Hypotheses .. 24

4.3 Tasks ... 25

4.4 Participants .. 26

4.5 Data collection .. 28

4.6 Eye-Tracking Apparatus ... 29

4.7 Subject System .. 29

4.8 Conducting the Study .. 30

CHAPTER 5 RESULTS AND ANALYSES .. 33

5.1 SeeIT 3D Tutorial Results .. 33

5.2 Accuracy ... 33

5.3 Time .. 36

5.4 Visual Effort.. 40

5.5 Secondary Interactions on Accuracy and Time .. 43

vii

5.6 Post Questionnaire Results ... 45

5.7 Subject Comments .. 46

5.8 Threats to Validity .. 47

CHAPTER 6 CONCLUSIONS AND FUTURE WORK .. 48

APPENDIX STUDY MATERIAL .. 49

A.1. Background Questionnaire .. 49

A.2. Main Study Questionnaire .. 51

A.3. Post Questionnaire .. 59

A.3.1. Group using SeeIT 3D ... 59

A.3.2. Group not using SeeIT 3D ... 60

A.4. SeeIT 3D Tutorial Used in the Study .. 62

REFERENCES .. 81

viii

LIST OF FIGURES

Figure 1. Code city visualization. .. 8

Figure 2. SeeIT 3D visualization of a package in Ganttproject system 16

Figure 3. Metric mapping: Mc Cabe’s complexity with Color and LOC with Height 17

Figure 4. Metric mapping change: Mc Cabe’s complexity with Height and LOC with

Color ... 18

Figure 5. Visual relationship type arcs. .. 19

Figure 6. General Layout Pattern of SeeIT 3D ... 20

Figure 7. Visualization of GanttProject with granularity level as Package 21

Figure 8. Visualization of GanttProject with granularity level as class. 22

Figure 9. Visualization of GanttProject with granularity level as Method 22

Figure 10. Descriptive statistics on background questionnaire .. 27

Figure 11. Work space of a person participating in the study. The screen on the left is for

the experimentor, the right screen is used by the subject. The eye tracker Tobii X60

is seen at the base of the right screen. ... 31

Figure 12. Descriptive statistics for the tutorial score ... 33

Figure 13. Descriptive statistics for Accuracy across groups and task categories. ... 34

Figure 14. Average scores for each task category between the groups. 36

Figure 15. Descriptive statistics for Time across groups and task categories. 38

Figure 16. Average time for each task category between the groups. 40

Figure 17. Heatmap of an Expert with No SeeIT 3D ... 41

ix

Figure 18. Heatmap of an Expert with SeeIT 3D ... 42

Figure 19. Heatmap of a Novice with SeeIT 3D ... 43

Figure 20. Secondary Interactions on Accuracy .. 44

Figure 21. Secondary Interactions on Time ... 45

Figure 22. Post Questionnaire Descriptive statistics .. 46

x

LIST OF TABLES

Table 1. Experiment overview ... 24

Table 2. Overview of tasks and used in the study. ... 26

Table 3. Groups Used in the Experiment. .. 28

Table 4. p-values for Accuracy split by task category ... 34

Table 5. Model for accuracy (score) of the three task categories 35

Table 6. p-values for Time split by task category .. 37

Table 7. Model for accuracy (score) of the three task categories including total 39

1

CHAPTER 1

INTRODUCTION

Visualization is the process of viewing abstract things. Software Visualization

(Petre and Quincey 2006) (Price, Baecker et al. 1993) (Zhang 2003) is a type of visual

representation of the software information in the form of measures such as metrics and

granularity levels. It is claimed that software visualization tools improve the interaction

between the user and the system, by providing better comprehension about the system to

the user. While using software visualization tools, integration of the visualization tools

within an Integrated Development Environment (IDE) is important. There have been

many software visualization tools proposed in the literature (Bassil and Keller 2001,

Teyseyre and Campo 2009). Most of these tools do not provide an empirical validation

on the usefulness of the tool to the developer.

In this work we present a controlled experiment that gathers data via two different

modes: online questionnaires and an eye tracker. Online questionnaires are traditional

methods to collect data. Eye tracking is the process of measuring the movement of eye

while a subject is solving certain software tasks. An eye tracker is used to measure the

postion of the eye with respect to the movement. Eye tracking depends on the mental

state of mind, thinking and cognitive process (Just and Carpenter 1980). Applications of

eye tracking - used to characterize the comprehension of software programs (Bednarik

and Tukiainen 2006) by using different measures, used to track the visual attention in pair

programming (Pietinen, Bednarik et al. 2008), used in gaming, clinics, etc. In this thesis,

2

we focus on comprehension tasks such as bug fixes, feature additions and general

overview tasks. An eye tracker is used to gather data from subjects while they solve the

tasks. The results will be provided as feedback to the tool developers, who may use it in

further improving the tool. Kagdi et al. (Kagdi, Yusuf et al. 2007) state how eye tracking

can help in validating and assessing software visualizations.

1.1 Motivation

In previous work (Gadapa 2012), an attempt was made to understand to usability

of one such software visualization tool namely, SeeIT 3D (Ramírez 2010). This work

was an observational study whose goal was to determine if SeeIT 3D was useful to

developers while they performed the task. The results and observations got from (Gadapa

2012) was used by the SeeIT 3D tool developers to improve the SeeIT 3D plug-in. This

study led us to prepare another experiment that tried to determine the impact SeeIT 3D

has on performance of tasks.

This project extends previous work (Gadapa 2012) that tried to bridge the gap

between the tools and empirical validations. Gadapa’s study was an observational study

that looked at the usability of SeeIT 3D on general comprehension tasks (mainly

overview tasks on a large system, JFreeChart). The study presented in this thesis assesses

the effectiveness of the SeeIT 3D plug-in with respect to bug finding tasks, new feature

tasks, as well as overview tasks. The main motivation is to find whether the SeeIT 3D

tool is helpful in debugging: finding the bugs and fixing them, find feature tasks to be

implemented and in solving overview tasks. In order to do this two groups were formed,

3

one that used SeeIT 3D to solve the tasks and the other that used only Eclipse with SeeIT

not available to them.

1.2 Contributions

The main contribution of this thesis is an empirical study and in particular a

controlled experiment that assessess the added benefit of one 3D software visualization

tool, SeeIT 3D (Ramírez 2010) in the context of an open-source system namely,

GanttProject. This is a direct extension of Gadapa’s work (Gadapa 2012). Two methods

of data collection were used and the study was conducted at three universities with a

ninety-seven subjects.

Another contribution is to determine how experts differ from novices while they

solve the tasks with and without the SeeIT 3D plug-in.

1.3 Research Questions

The following are our research questions that we seek to answer.

RQ1: Does the SeeIT 3D visualization tool help a developer in software

comprehension tasks?

RQ2: Is there a difference between experts and novices with respect to the SeeIT

3D visualization tool?

1.4 Organization

This thesis is organized as follows. The next chapter gives a brief introduction to

software visualization including the most popular software visualization tools and

empirical studies done in software visualization tools. Chapter 3 gives an overview of

4

SeeIT 3D. Chapter 4 discusses details of our study setup and design. Chapter 5 presents

observations and results. Chapter 6 concludes the thesis and presents future work.

5

CHAPTER 2

BACKGROUND AND RELATED WORK

 This chapter talks about an overview of software visualization and empirical studies

conducted on software visualization tools including any eye tracking studies done in the

software engineering domain.

2.1 Software Visualization and Metaphors

Software visualization is the process of graphical representation of the information,

algorithms and program code; it reduces the complexity in understanding the software

systems; software maintenance; reverse engineering and software evolution analysis.

Software visualization can be used in animations, program executions, visualization of

object-oriented programs, debugging, process analysis, requirement analysis etc.

Properties are identified by the set of taxanomies of software visualization (Price, Small et

al. 1992). Roman and Price (Roman and Cox 1993) explained the attributes of the software

visualizations briefly, they are listed below

Scope and Content: What program aspect is being visualized?

Abstraction: What information is conveyed through visualization?

From and Technique: How is the graphical data conveyed?

Method: How is the specification of visualization done?

Interaction: How can the user interact with the visualization?

The different dimensions of software visualzations (Maletic, Marcus et al. 2002) are listed

below.

6

Tasks: Why is the visualization needed?

Audience: Who will use the visualization?

Target: What aspects of the software are to be represented?

Representation: How will it be represented?

Medium: Where will it be represented?

 Metaphors are the graphical representations that show the affect of the software

visualization. They are can be geometrical shapes like we see in SeeIT 3D or can be real

world entities. Things to taken into considerations are characteristics of the metaphors for

the SV are effectiveness which means the medium used for visualization and

expressiveness which means how efficient the visualization for the comprehension of the

software system, which can be examined by considering scope of the visualization,

medium, consistency of the metaphors, semantics, ease of navigation.

2.2 Examples of Software Visualization Tools

SHrimP (Simple Hierarchical Multi-Perspective) (Storey, Best et al. 2001) is a

visualization technique to enhace how people understand complex software. It supports

multiple views (graphical and textual) in the form of a nested graph.

Another fairly recent visualization to help developers with working space is Code

Bubbles (A. Bragdon 2010). Collection of light weight editable code fragments are

called “Bubbles”. Grouping up of these bubbles form the working set. The front end is

implemented using Microsoft Windows Presentation and its back end is an Eclipse plug-

in. Bubbles differ from Visual Studio or Eclipse. It uses reflow and elision which are

applied only to the view. Bubbles are not overlapped, they use recursive algorithm to

7

move away the overlapped bubbles. To refer a variable in the package it uses ‘Bubble

Stack’, this is used to compare the fragments side-by-side. Program instances which are

debugged are stored in channels that can be used for the comparisons.

CodeCrawler (Lanza 2003, Lanza and Ducasse 2005) is a language independent

visualization tool that supports various types of software visualization views such as a

complexity view, a class blueprint view, hotspot view and an evolution matrix view among

others.

Code city (Wettel and Lanza 2008) is an integrated language independent 3D

visualization tool written in Small talk, which is used for analysis of large object-oriented

software system. City metaphor depicts software system as city, classes as buildings and

packages as districts, which is shown in the figure below. To represent classes as

buildings, polymetric view is used which help to understand the structure and detect

problems of a software system in the initial phases of a reverse engineering process.

Class methods are represented by the height of the buildings. Attributes are represented

with both the height and width of the buildings. The visualization is interactive and

navigable using the keyboard, i.e., it is easy to zoom in on details of the city or to focus

on one specific district by spawning separate windows.

8

Figure 1. Code city visualization.

2.3 Empirical Studies on Software Visualization Tools

A brief description of empirical studies on software visualization tools is given

below.

2.3.1 SeeIT 3D Observational Study by Gadapa (Gadapa 2012)

Gadapa conducted an observational study assessing the usefulness of SeeIT 3D, a

software visualization tool on an open source Java system, Jfreechart (504 classes, 37

packages, ~ 73 LOC). Observations and results recorded were used by the authors of

SeeIT 3D for tool improvement. The goal was to determine the usability of SeeIT 3D.

Ten subjects participated in the study. There were 16 comprehension questions and 19

preference questions to rate the tool with respect to some criteria. They measured

accuracy, time, difficulty and confidence levels for each question. The data was collected

via paper based questionnaires and video recordings.

The subjects thought that the visualization response time was extremely slow

while they did the study. 50% of participants thought it needed improvement.

9

Participants immediately noticed a bug in the drawing of arcs between related containers.

They saw how it is useful for large projects and 57% said they would use it in the future.

Based on the results of this study, the empirical study that forms this thesis emerged. The

details of our study is presented next.

2.3.2 sv3D

Marcus et al. (Marcus, Comorski et al. 2005) conducted a usability study to

evaluate sv3D, an earlier version of SeeIT 3D. sv3D is not part of an IDE like SeeIT 3D.

The participants were divided into two groups for the purpose of comparing the

performances obtained by using sv3D to the ones obtained by using tabular data with

metrics values and the source code in an IDE. The questions are of two types: one type

allowed the authors to obtain objective measures of the accuracy and completion time of

the participants, while the other type provided subjective information about some of the

sv3D features. The results showed that sv3D users requires more time to answers

questions than the participants using tabular data and the IDE. Likewise, the average

number of correct answers per user will not differ significantly between the two groups.

2.3.3 Extravis

In (Cornelissen, Zaidman et al. 2011) Cornelissen et al. reports on a controlled

experiment for the quantitative evaluation of Extravis, a tool for the visualization of large

traces. The authors defined a series of comprehension tasks that were addressed by two

groups of participants that included graduate students, postdocs, professors, and subjects

from industry. One group used the Eclipse IDE while the the other one had access to both

10

Extravis and Eclipse. The time needed and the correctness of the solutions given by the

participants were measured. In this case, the results were statistically significant in both

regards, showing a decrease in time requirements and an increase in correctness for the

group using trace visualization.

2.3.4 Code City

Richard Wettel, Michele Lanza and Romain Robbes (Wettel, Lanza et al. 2011)

conducted an experiment on CodeCity which shows significant statistical increase in

terms of the correctness of tasks and reduce the task completion time, in which subjects

are from both industrial and academia. Correctness and time were the main dependent

variables in the study. Two subjects systems were used one to find the bugs and other for

client sharing the information. Based on the background they grouped subjects as

industry and academia; based on experience level they grouped beginners and advanced,

they have assigned source code for control group and system model for the experimental

group. From the data analysis of the study one of the task task4 was solved by most of the

control group rather than experimental group the reason is this task requires deep

knowledge in comprehension the task as this was programmed using the SmallTalk

language. Overall Code city increased the correctness of the solutions of the program

comprehension, and the completion time is reduced when compared with ECL + Exl

users.

11

2.3.5 Code Bubbles

Code Bubbles has some analysis done to determine the usefulness of the metaphor

(Bragdon 2010). The results show that by using Code Bubbles one can see functions

side-by-side. Qualitative Evaluation is performed by taking feedback from professional

developers. Participants are asked to perform 6 tasks- code comparison, understanding,

interruptions, debugging, sharing, debugging session comparison. Ratings from the

developers for system convience-5.0, learning system – 3.0, reading and editing (side-by-

side)- 5.0, The overall rating of Code Bubbles is 4.0. Developers liked most of the

features of code bubbles – vertical elision, continuous nature of workspace, labeling the

areas of the workspace bar, debugging, open data structures values in bubbles, debug

sessions able to compare information, saved debug sessions, channel interface, adding

notes/flags to debug session, offloading information from their limited memory, multi-

tasking, Etc. Most of the developers suggested for the integrating instant messaging,

enabling workspace as real-time collaboration and coordination.

2.3.6 MetricViewEvolution

Lange et al. (Lange and Chaudron 2007, Lange, Wijns et al. 2007) conduct an

experiment to validate different views for UML class diagrams: MetaView, ContextView,

MetricView, and UMLCityView. This is a true experiment that is similar to the study

conducted in this thesis. Unified Modeling language (UML) is the modeling language for

the object-oriented systems. UML has some elements that represent the software program

and the relations between them. Framework has tasks, views and properties. Tasks

represent a unit of work to be done by the software engineer to accomplish a purpose.

12

Properties means characteristics of a model element. View is the exposure of the

properties to perform the task. Types of Proposed views and what for they are designed

are listed below-

Content view: Designed for program comprehension tasks

Quality Tree view: Designed to know the quality of the tasks

Meta view: Program Comprehension, maintenance and task completeness

Clustering view: it’s a special instance of Meta view

Metric view: Quality evaluation and maturity/ completeness

UML-city view: its as combination of Meta and Metric view

Search and highlight: same as Meta view.

Evolution view: quality evaluation, prediction and monitoring

Implementation of these proposed views by MetricView Evolution tool. For the

study there were 13 subjects who are PhD and MSc students from the Technische

Universiteit Eindhoven. Most of the tasks were answered correctly, but 2 of the tasks

took much time for the completion. Reasons for this to happen were: a) large degree of

expertise needed. b) Usage of different versions of model. Overall correctness and

efficiency was estimated. Understandability of the system was easily done by Quality

tree view; context view has scored low. Scalability is the most common problem in visual

sections. Metric view and UML-city view involves in the scalability problem.

2.4 An Overview of Eye Tracking

Since we use an eye tracker to collect data for our study, a briefi description of

eye tracking and the apparatus used is given below.

13

An eye tracker is able to detect where a person is looking at on the screen. Visual

attention refers to the focus on a particular location on the screen. It is known that visual

attention triggers mental processes in order to comprehend and solve a given task (Just

and Carpenter 1980). Visual effort is directly linked to the cognitive effort (Just and

Carpenter 1980). A set of eye-tracking measures representing visual effort are derived

from the eye gaze data. Fixations and saccades are two main types of eye gaze data. A

fixation is the stabilization of the eyes on a particular location for a particular duration.

Saccades are quick movements between eye fixations. A scan path is a directed path

formed by saccades between fixations. According to eye tracking literature, processing

of visual information occurs during fixations whereas no such processing occurs during

saccades (Rayner 1998, Duchowski 2003).

2.5 Eye-tracking Studies in Software Engineering

Sharif et al. (Sharif and Maletic 2010, Binkley, Davis et al. 2013) study the

impact of identifier style (i.e., camel case or underscore) on code reading and

comprehension using an eye-tracker. They find camel case to be an overall better choice

for comprehension. Sharafi et al. (Sharafi, Soh et al. 2012) conduct an eye tracking study

to determine if gender impacts the effort, time, and ability to recall identifiers.

Guehénéuc (Guéhéneuc 2006) investigated the comprehension of UML class diagrams.

Jeanmart et al. (Jeanmart, Guéhéneuc et al. 2009) conducted a study on the effect of the

Visitor design pattern on comprehension using an eye tracker. Sharif et al. (Sharif and

Maletic 2010) also conducted an eye tracking study assessing the role layouts have in the

14

comprehension of design pattern roles. Yusuf et al. (Yusuf, Kagdi et al. 2007) used eye-

tracking equipment to assess how well a subject comprehends UML diagrams.

In this thesis, we use an eye tracker to determine the visual effort that a subject

experiences when using the SeeIT 3D tool. These are termed as white box measures

(Kagdi, Yusuf et al. 2007) because they are collected as the subject is performing the

tasks versus after the fact. In this case, fixations are the white box measures used to

determin visual effort in the evaluation of SeeIT 3D.

15

CHAPTER 3

Overview of SeeIT 3D

SeeIT 3D (Ramírez , Ramírez 2010) is an Eclipse plug-in. It analyzes source code,

generates certain metric information and visualizes the system in containers. A more

detailed description of SeeIT 3D is given in (Ramírez , Ramírez 2010). This chapter

provides an overview of the features of SeeIT 3D from a user’s perspective.

3.1 Metaphor

 Metaphors are able to handle high amount of data from different source of

information. It contains only the fixed number of visual properties. Polycylinders are the

metaphors in this tool. SeeIT 3D has flexible metaphors which provides different

visualization types. From the figure below, we can see the visualization of the

GanntProject system package. In this figure, packages are depicted in the form of

containers and classes in the form of polycylinders.

16

Figure 2. SeeIT 3D visualization of a package in Ganttproject system

3.2 Metrics and Mappings

Metrics are the measure of software properties. SeeIT 3D has 4 metric values:

Lines of Code, Lack of Cohesion, Mc Cabe’s complexity and control structures, which

are briefly discussed in (Gadapa 2012). A brief description is given below.

Lines of codes (LOC) is used to find out the size of the source code by counting

the number of lines in the code. In SeeIT 3D, LOC metric counts the lines of codes with

respect to polycylinders that were visualized in the visualization area.

Lack of Cohesion (LCOM) is the measure of the functionality of the module or

method in a class. In SeeIT 3D, LCOM measures the lack of cohesiveness at the class

level, this doesn’t appear in method or line level.

17

 Mc Cabe’s complexity metric measures the number of independent paths in the

source code and find the complexity. In SeeIT 3D, it provides the average of the linear

independent paths in the source code for methods and classes in a package.

Control Structure measures how many control structures (If, while, for, else,

none) are present in the code.

SeeIT 3D has 3 visual properties: color, height and cross section. Metric mapping

can be done by mapping the metric values with the visual properties. This can be done by

dragging the metric values into the visual property to get desired visualization in the

visualization area. Screen shots of metric mapping are clearly shown in the figure below.

In the figure below, Mc Cabe complexity is mapped with visual property color and LOC

metric is mapped to height.

Figure 3. Metric mapping: Mc Cabe’s complexity with Color and LOC with Height

18

After the drag and drop actions which cause a change in metric mapping is shown

in the figure below which shows the Mc Cabe Complexity is mapped to height and LOC

is mapped to color.

Figure 4. Metric mapping change: Mc Cabe’s complexity with Height and LOC
with Color

3.3 Representing Relationships between Containers

The visualization also shows the relationships between the containers that are

selected, these relationships are shown by using the visual relationship types. In SeeIT

3D there are four types of visual relationship types which are situated in the user

customizable area. Common base, lines, arcs and movements. Default value of the

visualization type is no visualization. These types are shown under the containers when

19

they are selected. The figure below shows packages connected via arcs. A package is

connected if there is an import to another package in the import clause of the program.

Figure 5. Visual relationship type arcs.

3.4 User interactions

The figure below shows the newer version of the SeeIT 3D layout after

incorporating changes following the observational study done by Gadapa in 2012

(Gadapa 2012).

20

Figure 6. General Layout Pattern of SeeIT 3D

The package explorer contains the project systems. Visualization of project files

are shown in the visualization area and for the polycylinders that were selected in the

visualization area, information is shown in the feedback area. The feedback area shows

the package/class/method that is selected as well as the number of package/class/method

artifacts in the visualization area including metric values. The action icons on the top

right allows changes to be made on the visualization like zooming, scaling, translating,

resetting the visualization, deleting the containers. Refer to Appendix A.4 for a detailed

description of the plug-in. It is a tutorial that was used by participants in our study to get

familiar with the tool.

21

3.5 Visualizing GanttProject in SeeIT 3D

GanttProject is used as the subject system in our empirical study. This section

shows some visualization on GanttProject using SeeIT 3D. The project can be visualized

at the package level, class level, method level and line level. At the package level the

entire system is visualized.

Figure 7. Visualization of GanttProject with granularity level as Package

From the figure above we can see the visualization of the subject system

GanttProject which shows all the packages in the project folder. By the changing the

granularity level to class level visualization we get the visualization shown in the figure

below.

22

Figure 8. Visualization of GanttProject with granularity level as class.

If we change the level to method we get the visualization below.

Figure 9. Visualization of GanttProject with granularity level as Method

23

CHAPTER 4

The Empirical Study

This chapter presents the details of the empirical study conducted as part of this

thesis. It gives details on the experiment design, hypotheses, data collection, tasks, and

participiants and how the study was instrumented.

4.1 Experiment Design

The goal definition template by Wohlin et al. (Wohlin, Runeson et al. 1999) is

used to describe the experiment. The experiment seeks to analyze a software

visualization tool (SeeIT 3D) for the purpose of evaluating it’s impact on solving

overview, new feature and bug fixing tasks with respect to effectiveness (accuracy),

efficiency (time), and visual effort from the point of view of the researcher in the context

of students at three different universities.

An overview of the experiment is shown below. The main factor being analyzed

is the usage of the used. A between-subjects design was used, where each subject was

tested on either SeeIT 3D or No SeeIT 3D but not both. There are three dependent

variables: accuracy, time, and visual effort. The data collection was done via online

quetsionnaires and for one of the university in particular Youngstown State University,

an eye tracker was used to track 20 participant’s eye movements while they did the tasks.

24

Table 1. Experiment overview

Goal Study the effect of the SeeIT 3D tool in the context of six
tasks: overview, new feature, and bug finding tasks

Main Factor Tool (SeeIT 3D, No SeeIT 3D)
Dependent
variables

Accuracy, time, visual effort

Secondary
factor

Expertise (novices and experts)

4.2 Hypotheses

Based on the research questions presented above in Section 1.3, four detailed null

hypotheses based on each of the three dependent variables are given below.

Ha: There is no significant difference in accuracy between SeeIT 3D and No

SeeIT 3D for overview, new feature, and bug finding tasks.

Ht: There is no significant difference in time between SeeIT 3D and No SeeIT 3D

for overview, new feature, and bug finding tasks.

Hve: There is no significant difference in visual effort between SeeIT 3D and No

SeeIT 3D for overview, new feature, and bug finding tasks.

He: There is no significant difference between novices and experts in terms of

accuracy, time, or visual effort, for SeeIT 3D and No SeeIT 3D users for overview, new

feature, and bug finding tasks.

Alternative Hypotheses: There is a significant difference in accuracy, time, and,

visual effort when SeeIT 3D is used for overview, new feature, and bug finding tasks.

25

4.3 Tasks

The experiment involves the comparison of using SeeIT 3D vs. not using SeeIT 3D

with respect to six software tasks. The tasks fell into one of three task categories:

overview, new feature and find bugs. The tasks were randomized when shown to the

subject to avoid any learning effects that might occur. It is important to note that the

tasks chosen were directly from the google code issue tracker for GanttProject. We chose

bugs that were already fixed in a newer version so we were able to accurately score these

tasks based on the patch files submitted for these tasks.

See Table 2 for an overview of the tasks used in the study. The complete set of study

questions including all background questions and post questionnaires can be found in

Appendix A.2.

This study has two bug finding tasks, one new feature task and three overview tasks.

The approximate time needed was 4, 3 and 12 minutes respectively. This was based a

trial run by one volunteer.

26

Table 2. Overview of tasks and used in the study.
ID Type Brief Description Approx. Time

(with plug-in)
Difficulty

B3 Bug Find
(issue 364)

Poor Print Quality 3 minutes Easy

B4 Bug Find
(issue 4)

Wrong update of dependencies
on subtask duration change

4 minutes Difficult

N6 New
Feature
(issue 27)

To be able to import data from
basically any source, we need to
have the ability of importing a
CSV file with some more details
than only tasks name.

2 minutes Average

O8 Overview Find the largest method in terms
of lines of code (LOC) in
package

3 minutes Easy

O9 Overview How many packages are
connected, Which of these
packages has the largest number
of classes?

3 minutes Difficult

O1
0

Overview Number of methods in the largest
class (in terms of LOC)

2 minutes Average

4.4 Participants

There were ninety-seven volunteers from three different universities that

participated in the study. Each participant was asked to fill out a background

questionnaire before they took the study. See the Appendix for the entire background

questionnaire used. Figure 10 shows demographics of participants. They were asked to

rate their analysis and design skills, coding skills, java skills, java experience, and

programming skills.

27

Analysis and Design Skills Coding Skills Java Skills Java Experience

below average = 1 below average = 1 I don’t know = 0 None = 0

average = 2 average = 2 Beginner = 1 Between 1 and 2 = 1

above average = 3 above average = 3 Intermediate = 2 Between 3 and 5 = 2

excellent = 4 excellent = 4 Advanced = 3 Between 6 and 10 = 3

 More than 10 = 4

Figure 10. Descriptive statistics on background questionnaire

Based on their rating, we classified them as experts or novices. The table below

shows the split of participants into groups. Participants were randomly placed into the

SeeIT 3D or No SeeIT 3D group. We did maintain a balance between the groups with

respect to expertise as much as possible. The subjects were not aware of the experiment’s

hypotheses. The subjects in the No SeeIT 3D group only used Eclipse’s Java code editor

and other Eclipse features (no plug-ins) to solve the tasks.

28

Table 3. Groups Used in the Experiment.
 Experts Novices Total
SeeIT 3D 25 23 48
No SeeIT 3D 26 23 49
Total 51 46 97

Twenty students (10 experts and 10 novices) participated from YSU. Sixty-six

students (34 experts and 32 novices) participated from University A and eleven students

(7 experts and 4 novices) participated from University B. Majority of the subjects were

in the Computer Science program. Some were in the Math and Electrical Engineering

program.

4.5 Data collection

All subjects answered the six tasks via an online questionnaire. We used

qualtrics.com to create the entire study online. We used the randomized blocks feature in

qualtrics to randomly shuffle the questions to avoid learning effects. Each question was

timed online. The subjects had to type the answer in the space provided in the online

forms after they finished each task.

In addition to the online questionnaires, we collected eye tracking data and

audio/video recordings of subjects that did the study at Youngstown State University

because we have access to an eye tracker at this location. Twenty subjects fell into this

category. The other two locations did not use this method of data collection. We did

obtain IRB approval and training before we began this study.

29

4.6 Eye-Tracking Apparatus

The Tobii X60 eye tracker (www.tobii.com) was used in this study at one location

primarily at YSU. It is a 60Hz video-based binocular remote eye tracker that does not

require the user to wear any head gear. It generates 60 samples of eye data per second.

The average accuracy for the Tobii eye tracker is 0.5 degrees which averages to about 15

pixels. The eye tracker compensates for head movement during the study. The study

was conducted on a 24 inch monitor with screen resolution set at 1920 * 1080. The study

was configured to use a dual monitor extended desktop setting. The first monitor was

used by the experimenter to setup and initiate the study. The eye tracker records eye-

gaze data and audio/video recordings of the entire study session on the second monitor.

The eye gaze data includes timestamps, gaze positions, fixations and their durations,

pupil sizes, and validity codes. In this study, only fixations and their durations are used

to measure visual effort. Tobii Studio was used.

4.7 Subject System

We used an open source system GanttProject version 2.5.4

(http://www.ganttproject.biz) as our subject system. Since this was a between subjects

experiment we were able to use one subject system for the both groups (SeeIT 3D and No

SeeIT 3D). GanttProject is a Java based project management software for project

scheduling that runs under Windows, Linux, and Mac OS X operating systems. Gantt

Project lets you easily break down a project into tasks, show dependencies, and manage

resources. It features most basic project management functions like a Gantt chart for

project scheduling of tasks, and doing resource management using resource load charts. It

30

does not have advanced features like cost accounting, message and document control. It

has a number of reporting options (MS Project, HTML, PDF, spreadsheets). GanttProject

has approximately 614 classes, 76 packages, 4889 methods and 60344 LOC.

4.8 Conducting the Study

The process started with the background questionnaire that all subjects were

required to fill out. Based on this, we split the participants into two groups balancing the

expertise level in each group. This was done at least a week prior to the actual study.

A couple of days before the study, the SeeIT 3D group was asked to do a tutorial

to familiarize themselves with the SeeIT 3D tool (see Appendix A.4. for the tutorial

used). They had to turn in the answers to three challenge questions at the end of the

tutorial. Both the groups were also asked to view a GanttProject video (15 minutes)

available on the GanttProject website (http://www.ganttproject.biz). The viewing of the

video was optional. Instead they could just read a one page description of GanttProject

prior to the study.

When the subject came in on the day of the actual study, they were first asked to

read and sign the informed consent form to give us persmission to record their eye

movements, audio, and video. See Figure 11 for the workspace used during the study at

Youngstown State University. They were then positioned in front of the right monitor at

an appropriate distance from the eye tracker. Their eyes were first calibration in a short

45 second calibration session. After that they began the study. During the study, subjects

had to context switch between qualtrics.com and eclipse to answer questions.

31

Throughout the study, voice, user’s face and eye movement were recorded. These

recordings act as evidence and references to evaluate the study results.

Subjects were not allowed to search the Internet for answers or to go back and fix

an answer. The back button was disabled. Eclipse Juno was used without any additional

plug-ins installed. The Classic SDK was installed.

At the end of the study, they filled out a short post-questionnaire (see Appendix

for questions). The post questionnaire for the SeeIT 3D group had additional questions

asking about their experience with the tool.

Figure 11. Work space of a person participating in the study. The screen on the left
is for the experimentor, the right screen is used by the subject. The eye tracker

Tobii X60 is seen at the base of the right screen.

32

Participants in the SeeIT group were not forced to use the plug-in, however they

were instructed to use the plug-in whenever they think it is useful for the task at hand.

The study set up includes Window 7 operating system with 64 GB hard disk, Tobii Eye-

tracker, Snow ball voice recorder, and Logitech webcam and speakers.

33

CHAPTER 5

Results and Analyses

This chapter presents the results from our controlled experiment. The linear

mixed models regression model is fit to the data to determine significance. Alpha is set

at 0.05 that determines significance with a 5% error.

5.1 SeeIT 3D Tutorial Results

We scored the SeeIT 3D tutorial and found that twenty two subjects got a perfect

score of 10. Eight people scored 9. The rest (13) of the scores were between 3 and 8.

The mean score was 8.6 for subjects that took the tutorial. Overall, everyone in the SeeIT

3D group had an idea of the features provided by SeeIT 3D and how to use it.

Figure 12. Descriptive statistics for the tutorial score

5.2 Accuracy

The results were scored based on patches and comments given in the google code

issue tracker for the bug and new feature tasks. The descriptive statistics for accuracy is

given in Figure 13. We generated several models for accuracy for each of the task

34

categories and present them below in Table 5. Table 4 summarizes the p-values

showing that we only found the overview tasks to score significantly higher in SeeIT 3D.

In this case, we can only reject the null hypothesis Ha for the overview tasks. No

significant difference was found for the new feature and bug finding tasks.

Table 4. p-values for Accuracy split by task category
Task Category p-value
Overview <0.0001 *
New Feature 0.939
Bug Fix 0.128
Total 0.007 *

Figure 13. Descriptive statistics for Accuracy across groups and task categories.

35

Table 5. Model for accuracy (score) of the three task categories
Model parameters (Variable Bug score):

Source Value Standard error t Pr > |t| Lower bound (95%) Upper bound (95%)

Intercept 0.418 0.044 9.558 < 0.0001 0.331 0.505

Group No SeeIT 3D 0.000

Group SeeIT 3D 0.095 0.062 1.534 0.128 0.219 0.028

Model parameters (Variable O score):

Source Value Standard error t Pr > |t| Lower bound (95%) Upper bound (95%)

Intercept 0.986 0.085 11.659 < 0.0001 0.818 1.154

Group No SeeIT 3D 0.000

Group SeeIT 3D 0.521 0.120 4.328 < 0.0001 0.282 0.759

Model parameters (Variable NewFeat Score):

Source Value Standard error t Pr > |t| Lower bound (95%) Upper bound (95%)

Intercept 0.531 0.102 5.219
<

0.0001 0.329 0.732

Group No SeeIT 3D 0.000

Group SeeIT 3D 0.011 0.145 0.076 0.939 0.276 0.298

We also observed that for accuracy, the average bug score was higher for the No

SeeIT 3D group. The average new feature score was higher for the SeeIT 3D group. As

mentioned above, the only significant difference was in the overview score that was

higher for the SeeIT 3D group. This means that SeeIT 3D gave more accurate answers

than the No SeeIT 3D group for overview tasks.

36

Figure 14. Average scores for each task category between the groups.

 The above figure plots the means of each group showing the difference in means

in each group for each task category.

5.3 Time

Each question was timed via the online questionnaire. The descriptive statistics

for time is given in Figure 15. We generated several models for time for each of the task

categories and present them below. Table 6 summarizes the p-values showing that we

only found the overview tasks to take significantly less time in SeeIT 3D. In this case,

we can only reject the null hypothesis Ht for the overview tasks. No significant

37

difference was found for the new feature task. We found the opposite effect for the bug

fix tasks. The SeeIT 3D group took significantly longer for bug finding tasks (p-value =

0.036). This was an interesting results but not too surprising. We had expected the tool

to do well in overview tasks. We did not know how the tool would perform with the

other task categories so this was an interesting find.

Table 6. p-values for Time split by task category
Task Category p-value
Overview 0.00021 * (seeit3d is faster)
New Feature 0.438
Bug Fix 0.036 * (seeit3d is slower)
Total 0.624

38

Figure 15. Descriptive statistics for Time across groups and task categories.

Table 7 shows the model parameters after the linear mixed models regression was

run on the data.

39

Table 7. Model for accuracy (score) of the three task categories including total
Model parameters (Variable Bug Time):

Source Value Standard error t Pr > |t| Lower bound (95%) Upper bound (95%)

Intercept 401.489 39.578 10.144 < 0.0001 322.938 480.041

Group No SeeIT 3D 0.000

Group SeeIT 3D 119.590 56.263 2.126 0.036 7.924 231.256

Model parameters (Variable NewFeat Time):

Source Value Standard error t Pr > |t| Lower bound (95%) Upper bound (95%)

Intercept 465.150 50.514 9.208 < 0.0001 364.894 565.407

Group No SeeIT 3D 0.000

Group SeeIT 3D 55.935 71.809 0.779 0.438 86.586 198.456

Model parameters (Variable O Time):

Source Value Standard error t Pr > |t| Lower bound (95%) Upper bound (95%)

Intercept 458.984 24.216 18.954 < 0.0001 410.922 507.046

Group No SeeIT 3D 0.000

Group SeeIT 3D 132.512 34.424 3.849 0.00021 200.834 64.189

40

Figure 16. Average time for each task category between the groups.

The above charts plot the mean time for each group across each task category.

With respect to total time, The No SeeIT 3D group took longer. But as mentioned

earlier, we found that the SeeIT 3D group took significantly longer for bug finding tasks.

5.4 Visual Effort

Thte visual effort analysis was conducted on only twenty subjects that participated

at Youngstown State University. We present a qualitative analysis of the findings here.

We take a look at fixation counts and fixation durations to determine visual effort. There

41

is no significant difference with respect to fixation duration, fixation counts reported by

the linear mixed effects regression model. So we are unable to reject the Hve hypothesis.

In Figure 17 below, we see the heatmap of an expert without the SeeIT 3D tool.

This task asked to find the number of LOC of a particular method. The subject was

trying to find this feature in a menu option but couldn’t find it. In Figure 18 however the

expert subject is able to quickly find this information by clicking on the red poly cylinder

in the visualization.

Figure 17. Heatmap of an Expert with No SeeIT 3D

42

Figure 18. Heatmap of an Expert with SeeIT 3D

Figure 19 shows the heatmap of a novice subject in the SeeIT 3D group. Their

eye movements indicate the use of the action bar on the top right as well as the options

available at the bottom of the visualization.

43

Figure 19. Heatmap of a Novice with SeeIT 3D

5.5 Secondary Interactions on Accuracy and Time

This section presents plots of any effecs that expertise may have on the accuracy

variable. In general, we cannot reject the hypotheses He for all task categories.

In the No SeeIT 3D group, there was a significant difference in accuracy between

novices and experts for the new feature task.

There is a significant difference between experts and novices with respect to total

accuracy of tasks (p-value = 0.025). A significant difference in time was found between

the three universities (p-value< 0.001).

44

Figure 20. Secondary Interactions on Accuracy

45

Figure 21. Secondary Interactions on Time

5.6 Post Questionnaire Results

The results of the post questionnaire are given below. None of the subjects were

familiar with the design of Gantt Project. The questions were considered to be of average

to difficult in terms of difficulty. The “correct depiction” measure determined if SeeIT

3D correctly depicted the items in the visualization. The median stated that the tool was

somewhat useful.

46

Ease of Use: Very Easy = 1 Easy =2 I needed more time = 3 Somewhat Difficult = 4 Very Difficult = 5

Correct Depiction: Always = 3 Frequently = 2 Occasionally/Sometimes =1 Rarely = 0

Useful: Very useful =3 Somewhat useful =2 Somewhat not useful =1

Figure 22. Post Questionnaire Descriptive statistics

5.7 Subject Comments

Some of the quotes we received via comments are mentioned below.

• Overall great tool. I wish I had the ability to zoom in the screen and not just for a

specific package. There were a few times I had multiple packages and wanted to

zoom all, but they would collide and it was hard to read from it. (SeeIT 3D -

expert user)

• Had a difficult time finding where code was located without the use of diagrams

or documentation. (No SeeIT 3D - expert user)

• I think this tool is the best for determining where the most code is in a given

project and how different packages are related to each other. It allows you to

47

visualize a large project in a consistent manner that is easy to understand. I

would highly recommend this tool to software developers. (SeeIT 3D – expert

user, advanced java level)

5.8 Threats to Validity

Every experiment is subject to various threats to validity. They are outlined

below. We tried to avoid any learning effects by randomizing the tasks. Every user saw a

different order of tasks. With respect to external validity, we can compare our subject

pool to junior level developers for novices and mid-level developers for experts. The

research participants did not know about the hypotheses used in the research. They only

knew that they would participate in helping us understand how software visualization

tools work to understand systems. During the study, there was minimal contact between

the experimenter and the participants. The experimenter did not interact or direct the

participants to complete the questions in one way or another. Since we had unbalanced

groups we used the linear mixed effects regression model to determine significance.

48

CHAPTER 6

Conclusions and Future Work

A study was conducted to determine the usefulness and added benefit of SeeIT

3D, a software visualization tool realized as an Eclipse plug-in. There was a significant

difference in accuracy for overview tasks between the SeeIT 3D and Non SeeIT 3D

groups with the SeeIT 3D group performing better. The SeeIT 3D group took

significantly less time for overview tasks but not for the new feature task. Surprisingly,

we found that SeeIT 3D took significantly longer for bug finding tasks, a finding we did

not anticipate in the beginning. There was a significant difference in accuracy between

experts and novices with experts performing better. There were no significant

differences to report with respect to visual effort (fixations and durations) for the twenty

subjects in the eye-tracking subject pool. This could be due to the low sample size in the

eye-tracking data category.

In future work, we plan to compile a list of suggestions in order of priority

derived from comments we received from the post questionnaire and comments from

answering each question. These will be used to collaborate with the SeeIT 3D tool

developer to incorporate these suggestions into the tool to improve it thereby increasing

its acceptance into developers working environments.

49

APPENDIX

Study Material

A.1. Background Questionnaire

First and Last Name: _________________________

Name of University: __________________________

1. Rate your software analysis and design skills.
a. Poor
b. Below Average
c. Average
d. Above Average (Good)
e. Excellent

2. Rate your software coding skills.
a. Poor
b. Below Average
c. Average
d. Above Average (Good)
e. Excellent

3. Rate your Java programming skills.
a. I don’t know Java
b. Beginner
c. Intermediate
d. Advanced

4. Select years of experience in programming with Java.
a. None
b. Between 1 and 2
c. Between 3 and 5
d. Between 6 and 10
e. More than 10

5. Select years of experience in programming with ANY language.
a. None.
b. Between 1 and 2
c. Between 3 and 5
d. Between 6 and 10
e. Above 10

6. Which operating system do you work on for coding? (select all that apply)
a. Windows
b. Linux

50

c. Mac
d. Other, please specify.

7. Which IDE do you use for programming? (select all that apply)

a. I don’t use an IDE
b. Eclipse
c. Netbeans
d. Dr.Java
e. Dev C++
f. Other, please specify.

8. If your answer above is Eclipse, how often do you use Eclipse for programming?
a. Occasionally /Sometimes
b. Almost every time
c. Every time

9. Do you use any 2D or 3D visualization tools to visualize software Yes No
If Yes, please specify the tools:

__

10. List languages you are able to program in.

__

51

A.2. Main Study Questionnaire

Read the 1 page instructions given to you before you begin.
GanttProject Overview

In this study we will use the GanttProject system. You will be asked questions with
respect to this system.

GanttProject is a Java based, project management software for project scheduling that
runs under Windows, Linux, and Mac OS X operating systems. Ganttproject lets you
easily break down a project into tasks, show dependencies, and manage resources.

It features most basic project management functions like a Gantt chart for project
scheduling of tasks, and doing resource management using resource load charts. It does
not have advanced features like cost accounting, message and document control. It has a
number of reporting options (MS Project, HTML, PDF, spreadsheets).

The major features include:
Gantt chart

o Create work breakdown structure
o Draw dependencies
o Task hierarchy
o Define milestones

Resource load chart
o Assign human resources to work on tasks
o See their allocation on the resource load chart

Generation of PERT chart from Gantt chart
PDF, HTML, PNG reports
MS Project import/export
Exchange data with spreadsheet applications
WebDAV based groupwork – share projects with colleagues

A screen shot of Gantt project is shown below.

52

Fig a) Gantt project with tasks and dependencies

Fig b) Gantt Project for Pert Chart

53

You may also optionally see the 15 minute "Introduction to GanttProject" video. It will
show you the various features available in GanttProject. The video is available at
http://www.youtube.com/watch?v=5rHCSa5ad34

Please state your answer.
I read the GanttProject overview Yes No
I saw the GanttProject You tube video Yes No

Bug Fix Task: B3
You are given the following bug description.

Bug Title: Poor Print Quality

Bug Description: When the project is printed in print preview function (no zoom
on target paper size A3) it is difficult to read the task list on the left side.

See the figure below for an example of poor print quality.

Question: Which class(es) would need to be changed/added in order to fix this bug?
Please enter the class(es) name(s) only (not the full qualified name).

Please give the rationale for your answer:

54

Difficulty Level: Very easy Easy Difficult Very difficult

Confidence: Very confident Confident Somewhat confident Not confident

Bug Fix Task: B4
You are given the following bug description.

Bug Title: Wrong update of dependencies on subtask duration change
Bug Description:

1. Create the following hierarchy of tasks:
task0
 task1
task2

2. Draw dependency task0->task2 (task2 depends on task0)
3. Open properties of task1 and increase its duration. Press OK.\

After doing the above, we get the following actual behavior when we should be
getting the expected behavior.
Expected behavior: task0 also becomes longer and task2 shifts.
Actual behavior: task2 stays in its place

 See the figure below for an example

Question: Which class(es) would need to be changed/added in order to fix this bug?
Please enter the class(es) name(s) only (not the full qualified name).

55

Please give the rationale for your answer:

Difficulty Level: Very easy Easy Difficult Very difficult

Confidence: Very confident Confident Somewhat confident Not confident

New Feature Task: N6

You are given the following feature request.

Feature Request

To be able to import data from basically any source, GanttProject needs to have
the ability to import a CSV file with some more details than only task name.

Could be something like:
 [task name],[start date],[end date],[coordinator],[priority]
where all fields but the task name would be optional.

That way, we can generate data from any other source to bring into GanttProject.
With the CVS file format defined, it's easy to create scripts to convert files from
any other format to the format understood by GanttProject.

56

Question: Which class(es) would need to be added or changed in order to add this
new feature? Please enter the class(es) name(s) only (not the full qualified name).

Please give the rationale for your answer:

Difficulty Level: Very easy Easy Difficult Very difficult

Confidence: Very confident Confident Somewhat confident Not confident

Overview Task: O8

Find the largest method in terms of lines of code (LOC) in following package

net.sourceforge.ganttproject.task.algorithm

Answer the three questions below.

State the name of the method (only enter the method name):

State the class name the method was found in (only enter the class name):

Lines of code (LOC) of method: ____________________________

Difficulty Level: Very easy Easy Difficult Very difficult

Confidence: Very confident Confident Somewhat confident Not confident

Comments (if any):

Overview Task: O9

57

Let’s assume that a package A is connected with another package B if at least one class in
package A has an import clause that imports something that is in package B.

Answer the questions below with respect to the following package

net.sourceforge.ganttproject.action.task

Number of packages that are connected with the above package (You do not need to
list them):

Which of the connected packages has the largest number of classes? Name the
package.

Comments (if any):

Difficulty Level: Very easy Easy Difficult Very difficult

Confidence: Very confident Confident Somewhat confident Not confident

Overview Task: O10

How many methods does the largest class (in terms of LOC) have in each of these
packages?

net.sourceforge.ganttproject.export

58

net.sourceforge.ganttproject.io

Comments (if any):

Difficulty Level: Very easy Easy Difficult Very difficult

Confidence: Very confident Confident Somewhat confident Not confident

End Time: ______________

Thank you for participating. Your input is greatly appreciated.

59

A.3. Post Questionnaire

A.3.1. Group using SeeIT 3D

1) Were you familiar with the design of the GanttProject system before being
introduced to it in this study?
a. Yes, I am familiar with the design.
b. No, I am not familiar with the design.

2) How frequently do you use GanttProject?
a. Never
b. Almost Never
c. Occasionally /Sometimes
d. Almost every time
e. Every time

3) What was your overall difficulty level in answering the questions?
a. Very easy
b. Easy
c. Average
d. Difficult
e. Very Difficult

4) Was the overview on GanttProject you did prior to the study useful?
a. Yes
b. No

5) Did you have sufficient time to complete the study?
a. Yes
b. No

6) Have you ever used the SeeIT 3D tool before this study?
a. Yes, I used the tool before.
b. No, I never used the tool before.

7) How easy is SeeIT 3D to use?
a. Very easy
b. Easy
c. I needed more time to understand all the features of SeeIT 3D to use it to it’s full

potential.
d. Somewhat difficult
e. Very difficult

8) Do the SeeIT 3D visualizations correctly depict what you expected for the tasks you
had to solve?
a. Never
b. Rarely
c. Occasionally/Sometimes
d. Frequently

60

e. Always
9) Was the SeeIT 3D tutorial and sample tasks you did prior to the study useful?

a. Yes
b. No

10) Please assess the usefulness (utility) of SeeIT 3D as a tool for supporting the
comprehension and visualization of large systems. Please answer this based on its
potential future benefit.
a. Very useful
b. Somewhat useful
c. Somewhat not useful
d. Not useful

11) Please give us your comments about SeeIT 3D. It will help make the tool better in
the future.

12) Please give us your comments about the study in general

A.3.2. Group not using SeeIT 3D

1) Were you familiar with the design of the GanttProject system before being
introduced to it in this study?
c. Yes, I am familiar with the design.
d. No, I am not familiar with the design.

2) How frequently do you use GanttProject?
a. Never
b. Almost Never
c. Occasionally /Sometimes
d. Almost every time
e. Every time

3) What was your overall difficulty level in answering the questions?
a. Very easy
b. Easy
c. Average
d. Difficult
e. Very Difficult

4) Was the overview on GanttProject you did prior to the study useful?
a. Yes
b. No

5) Did you have sufficient time to complete the study?
a. Yes
b. No

61

6) If you had the choice to use a visualization tool that visualizes a software system in
the form of diagrams, would you consider using it to help you answer the tasks in
this study?
a. Yes
b. No

7) Please give us your comments about the study in general

62

A.4. SeeIT 3D Tutorial Used in the Study

Name/ID: _____________________________________
SeeIT 3D Training Session
Abstract
This tutorial describes the usage of SeeIT 3D, a software visualization tool. It is a hands-
on training session that takes around 20 minutes and follows a step by step approach. The
main functionality of SeeIT 3D is demonstrated by visualizing the JFreeChart open
source software system.

Prerequisites

This tutorial assumes that the Eclipse IDE (Juno or Indi) and SeeIT 3D plug-in are
already installed in your machine. It is also assumed that the JFreeChart project (v.
1.0.14) has been imported within the IDE as a Java project.
You can download JFreeChart from
http://sourceforge.net/projects/jfreechart/files/1.%20JFreeChart/1.0.14/
To install the project in Eclipse, use the "new project" option, and then, the "Java Project
from Existing Ant Buildfile". Then choose the build file that is in the ant folder of the
project.

Overview

SeeIT 3D is a software visualization tool for the Eclipse IDE. It allows Java developers
to visualize and analyze information about a software project. The tool allows the user to
navigate, explore and change the mapping between software artifacts (e.g. packages,
classes, and methods) and visual properties that include the color, height and width of
3D objects. These 3D objects are poly cylinders: three dimensional bars with a polygonal
base. The poly cylinders are always grouped in containers. For instance, Figure 1 shows
a container, drawn with green lines, that represents a class of the JFreeChart system.
Each poly cylinder within this container represents a method of this class, and the color
and height of these poly cylinders represent the LOC and McCabe metrics, respectively.

63

Figure 1: A Container representing a class of the JFreeChart system

The rest of this tutorial explains how to use the various features of the SeeIT 3D plug-in.
Please follow the instructions step by step, using your computer.
Step 1: Opening the SeeIT 3D perspective
To open the perspective provided by the SeeIT 3D plug-in:
From the main menu bar select Window, and click on the Open Perspective option, and
then, select Other… from the drop-down menu.
Within the Open Perspective window select the perspective called SeeIT 3D, and press
OK.
After that, the SeeIT 3D view opens, as well as, the Package Explorer view. Inside the
former view, the information regarding the source code will be rendered. Figure 2 shows
how this perspective looks.

64

Figure 2: The SeeIT 3D perspective and its components

Figure 2 also shows the main areas of perspective: (i) the feedback area, where the tool
shows names and properties of the software artifacts being displayed in the visualization
area; (ii) The visualization area, where the containers and poly cylinders are shown; (iii)
The list of buttons that allow the user to perform several actions on visualization
elements such as the containers and poly cylinders displayed; and (iv) the user
customizable properties area at the bottom, where the user can modify the mapping
between the properties of the poly cylinders and the metrics of the software artifacts. In
Figure 2, the visualization and feedback areas are both empty since there are no artifacts
displayed.

Step 2: Visualizing a software project
In the Package Explorer view, shown by default in the Java and SeeIT 3D perspectives,
select the JFreeChart project, that is, right click on it and select the option Visualize In
SeeIT3D from the drop-down menu. Alternatively, you can use Ctrl + Alt + X. Figure 3
shows the resulting visualization.

65

Figure 3: The feedback and visualization areas after visualizing a project

Since you chose to visualize the entire project, each poly cylinder in Figure 3 represents a
package of the JFreeChart project.

Step 3: Selecting a poly cylinder
To select a poly cylinder just click on it. By default, the selected poly cylinder is green as
well as the lines of the container where it is.

Please select the leftmost poly cylinder of the entire JFreeChart visualization. Figure 4
shows the results.

66

Figure 4: Selecting a poly cylinder

Note that when you select a poly cylinder the name of the current selected container and
the properties of the artifact represented by this poly cylinder are shown in the Feedback
area. In Figure 4, the container is the entire JFreeChart project, which has 40 packages
(P=40) and the selected poly cylinder represents the package org.jfree.chart.renderer.xy.

When you select a poly cylinder, the customization area at the bottom of the figure
shows important information related to the granularity level, the current mapping and
the color scale. For instance, in Figure 4 this information is the following:
The granularity level is Package. It means that each poly cylinder in the container
represents a package.
The current mapping indicates that the Color and Height of the poly cylinders are
representing the LOC and McCabe metrics of the packages, respectively.
The color scale goes from cold to warm colors. This means that cold colored poly
cylinders represent packages with few lines of code.

Step 4: Clearing the visualization area
Now delete all the items in the visualization by clicking on the Delete All Containers in
View button (The icon is), which is on the top right corner of the visualization area.
Alternatively, you can use Shift + Delete.

Clearing the visualization area before beginning each task is a good working practice.

67

Step 5: Visualizing more than one container
In the Package Explorer view select the package “org.jfree.chart.editor” and press Ctrl +
Alt + X. Then, select the package “org.jfree.data.statistics” and press Ctrl + Alt + X.
Finally, select the polycylinder that represents the class SimpleHistogramBin (see Figure
5). The resulting scene includes the two containers, where the selected poly cylinder and
its container are in green.

Figure 5: Visualizing two containers

The feedback area reports that the selected container is the package
“org.jfree.data.statistics” that has 18 classes (poly cylinders). The second line in this area
indicates that the selected poly cylinder is the java class declared in
“SimpleHistogramBin.java”. Also, the metric values of this class are reported (Lack of
Cohesion: 0.6666666 | McCabe Complexity: 2.91 | LOC: 138.0 |).

The customization area at the bottom of the figure shows the granularity level, the current
mapping and the color scale.

Step 6: Expanding a poly cylinder
Verify that the selected poly cylinder is “SimpleHistogramBin.java” (see Figure 5), and
then, click on the Expand the selected Polycylinder as a Container button (the icon is

)or press Ctrl + E.As a result, a new container is added to the scene. Finally, select this
new container. Figure 6 shows the resulting scene.

68

Figure 6: Expanding the selected poly cylinder

The new small container is the result of expanding the selected polycylinder, i.e., the
class “SimpleHistogramBin”. The poly cylinders of this new container represent the
methods of the class “SimpleHistogramBin”. Also, notice that the feedback area reports
information about this class and the customization area indicates that the granularity level
is Method.

Step 7: Zooming in and out containers
Select the leftmost container in the visualization area which represents the
“org.jfree.chart.editor” package. Then, click on the the Scale Up Container button (the
icon is) several times to increase its size. The resulting scene should look like Figure
7.

69

Figure 7: Zooming in a container

Use the Scale Down Container button (its icon is) to perform the opposite action, i.e.,
zooming out the container. Use this button until the container recovers its original size, as
in Figure 6.

Alternatively you can use the mouse wheel to resize all the containers at the same time.
Although the process is slightly slower, there is finer control over the size of the
containers. Please use the wheel mouse to check this.

Step 8: Translating, rotating, and removing containers
To explain these operations we will assume that the visualization area is as shown in
Figure 6. That is, there are three containers that represent three artifacts: the package
org.jfree.chart.editor(P=12), the package org.jfree.data.statistics(P=18), and the class
org.jfree.data.statistics.SimpleHistogramBin.java(P=11)

To translate (move) the entire scene, simply right click on a place where no containers are
present and drag the mouse in the desired direction. Please, translate the visualization so
it is centered on the screen. The resulting scene should look like Figure 8.

70

Figure 8: Translating the entire scene

To rotate the entire scene, use left button of the mouse. Please, press the mouse left
button on any place of the visualization area where no containers are present and drag the
mouse to rotate the visualization so that it is horizontally aligned with the screen. The
resulting scene should look like Figure 9.

Figure 9: Rotating the entire scene

These two operations (rotation and translation) can be also performed on each of the
containers in the view. To do so, select a container (or multiple holding the Ctrl key) and
translate it using the right button or rotate it using the left button. So please translate,
scale and rotate the containers so they match the scene in Figure 10.

71

Figure 10: Manipulating individual containers

To remove an individual container, simply click on it, and then, use the Delete the
current container button (Its icon is). As a final operation on the current scene (Figure
10) select and remove the leftmost container, i.e., the one that represents the
org.jfree.chart.editor package. The resulting scene should look like Figure 11.

Figure 11: Removing an individual container

More importantly, after removing an individual container, the remaining containers back
to their original size and position. In this regard, SeeIT 3D offers the Reset Visualization
button that allows the user to reset the entire visualization, i.e., all the visualized
containers return to their original position and size.

72

Step 9: Changing the mapping and the granularity level
To start this part of the tutorial, remove all the containers using the Delete All Containers
button. Then, use the package explorer to find and visualize the CrosshairOverlay class.
This class is one of three classes of the package org.jfree.chart.panel. After zooming out
and selecting one of the poly cylinders, the scene should look like Figure 12.

Figure 12: Visualizing a class

As you can see at the bottom of Figure 12, the customization area indicates that the
granularity level is Method. It means that each poly cylinder represents a method of the
CrosshairOverlay class. Additionally, it shows the mapping: the Color is linked to LOC
while the Height denotes the McCabe Complexity.

Moreover, the first line of the feedback area indicates that the container represents the
CrosshairOverlay class which has 20 methods (P=20). The second line shows the metric
values for method paintOverlay which is represented by the selected poly cylinder (in
green).

The interaction options in the customization area (in the lower section of the SeeIT 3D
view) can be classified into various sections:

Metric Mapping: allows changing the mapping between software metrics (LOC,
McCabe, LCOM, etc…) and visual properties (Color, Height, or Cross Section). This
task is accomplished by dragging a certain metric to a specific visual property or to the
Available Metrics box to not map it to a visual property. The number you see for the
metrics are calculated based on some formula that you do not need to know at this time.

73

Use this dragging feature to swap the current mapping, that is, McCabe Complexity and
LOC are mapped to Color and LOC, respectively. After zooming out and selecting the
highest poly cylinders, the scene should looks like Figure 13.

Figure 13: Changing the mapping

Since the highest poly cylinder is selected, the feedback area shows that the longest
method is calculateLabelPoint and has 52 lines of code. Additionally, you can use the
Sort Polycylinders button (its icon is) to sort the poly cylinders of the selected
container. If you use this button and zoom out the resulting scene, the visualization area
should look like Figure 14.

74

Figure 14: Sorting poly cylinders

Granularity Level: allows choosing the granularity level of the polycylinders contained
in the current selection of containers. With the right arrow the granularity will be higher
while with the left arrow will be lower.

Press the right arrow to change the granularity to Line. After zooming out and selecting
one of the poly cylinders, the scene should looks like Figure 15.

Figure 15: Changing the granularity level

75

When the granularity level is Line, each poly cylinder is a line and SeeIT 3D reports
which of them are control structures. For instance, in Figure 15 the feedback area shows
that the selected poly cylinder represents the line 31 which is a while.

Relationship visual types: allows selecting the mechanism used to represent
relationships between containers; this selection applies to every container selected in the
visualization area. You can use the options of Common Base, Arcs, Lines, and Movement.
The next section of this tutorial explains how to use this feature of the plug-in.

Step 10: Visualizing relationships among packages
To start this part of the tutorial, remove all the containers using the Delete All Containers
button. Then, use the package explorer to find and visualize theorg.jfree.chart.plot
package. This package has 52 classes as it is shown in the feedback area. After zooming
out, translating, and selecting one of the poly cylinders, the scene should looks like
Figure 16.

Figure 16: Visualizing a package

Now select the container and use the Relationship visual type option (see the red oval in
Figure 16) to choose Arcs as the way to show the relationships between this package and
other packages of the JFreeChart project. The scene should looks like Figure 17.

76

Figure 17: Visualizing a package and related packages

The yellow arcs in Figure 17 connect the selected package (org.jfree.chart.plot) with the
packages it is related to.
In this context, a package A is connected (related) with another package B if at least one
class in package A has an import clause that imports something that is in package B.

NOTE: If the selected package has no relationship with any other package, changing the
relationship visual type will only reset the containers to the original layout, and set the
relationship visual type to No Visual Relation.

List of SeeIT 3D Commands
The table below sums up all of the commands that the user can use to analyze and
manipulate the graphical elements of the visualization

Icon Description Key binding

This option allows visualizing a container from the selected
polycylinder. For example, when a polycylinder represents a
package, if this action is performed SeeIT 3D will add the
corresponding container of the selected polycylinder where the

Ctrl+E

77

granularity level will be lower that then original container

This option allows drawing a rectangle in the visualization
area, in order to select multiple polycylinders and containers at
once

S

This button will delete the current selected container from the
visualization Del

This option will delete all containers in the visualization Shift+Del

This action will increase the apparent size of the selected
containers Alt++

This action will decrease the apparent size of the select
containers Alt+-

This button will toggle the link between visualization and
package explorer view. When activated the selection of a
polycylinder in the view will trigger the selection of the
corresponding artifact in the package explorer view. This way
is easy to know what artifact is selected in the SeeIT 3D view.

This button will sort the polycylinders of the selected
containers in the view. It will take into consideration the visual
property selected for sorting i.e. Height or Color

Ctrl+Alt+S

This action will reset the visualization. This means SeeIT 3D
will place the containers at the origin of the visualization as
well as updating the values of the preferences selected by the
user

Ctrl+R

SeeIT 3D allows to save a visualization. Choosing this option
will ask for a place to save the current visualization for later
loading

Ctrl+S

78

This option will load a previously saved visualization Ctrl+O

- Make more or less transparent a set of select poly cylinders Alt+. or Alt+,

List of available metrics
The table below explains all of the metrics that the user can use to analyze software
artifacts represented by the graphical elements of the visualization

Metric Description Granularity levels
where it applies

LOC
Software metric used to measure the size of
a computer program by counting the
number of lines in a source code artifact.

Package, Class,
Method

Lack of cohesion

Cohesion metrics measure how well the
methods of a class are related to each other.
A cohesive class performs one function. A
non-cohesive class performs two or more
unrelated functions.

Class

McCabe
Complexity

The cyclomatic complexity of a section of
source code is the count of the number of
linearly independent paths through
the source code.

Package, Class,
Method

Control
Structures

This metric only counts how many control
structures (if, while, for, do) there are ina
specified code artifact. Thus, SeeIT 3D
only indicates if the line at hand is a control
structure or not.

Line

Accessible places in the IDE
The visualization can be triggered from several places in the IDE. Specifically, SeeIT 3D
defines three views where the visualization can be triggered:

The Package explorer view, using the Cltr+Alt+X key combination or by right
clicking the element and selecting the option Visualize in SeeIT 3D
The Search Results view, using the same mechanism as explained above
The Java Editor, where right clicking the editor will pop up a menu that allows
to visualize the current Java File, the Parent Package or the Parent Project of the
corresponding file. Figure 18 shows these three options.

79

Figure 18: The views where the SeeIT 3D visualization can be triggered

Challenge: Perform three overview tasks

As a final activity, use the plug-in to solve the following overview task related to the
JFreeChart project.

Find and name the largest method (in terms of LOC) in each one of the following
packages:
Answer:
org.jfree.chart.imagemap ______________________________
org.jfree.data.gantt ______________________________
org.jfree.data.time ____________________________________

Find and name all the packages related with the package org.jfree.data.contour.
Hint: Step 10.
Answer:

80

Find the 3 classes with the lowest lack of cohesion value (Higher than 0.0) in the
“org.jfree.data” package.
Answer:

org.jfree.data

(3 classes with lowest Lack of cohesion value higher than 0.0)

81

References

A. Bragdon, S. P. R., R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman, F.

Adeputra, and J. J. LaViola,Jr. (2010). Code bubbles: rethinking the user interface

paradigm of integrated development environments. 32nd ACM/IEEE

International Conference on Software Engineering, New York, NY, USA.

Bassil, S. and R. K. Keller (2001). Software Visualization Tools: Survey and Analysis.

International Workshop on Program Comprehension, Toronto, Ont., Canada.

Bednarik, R. and M. Tukiainen (2006). An Eye-tracking Methodology for Characterizing

Program Comprehension Processes. Symposium on Eye tracking research &

Applications (ETRA), San Diego, California, ACM Press.

Binkley, D., M. Davis, D. Lawrie, J. I. Maletic, C. Morrell and B. Sharif (2013). "The

Impact of Identifier Style on Effort and Comprehension." Empirical Software

Engineering Journal (invited submission) 18(2): 219-276.

Bragdon, A. (2010). Developing and evaluating the code bubbles metaphor 32nd

International Conference on Software Engineering, Cape Town, South Africa.

Cornelissen, B., A. Zaidman and A. van Deursen (2011). "A Controlled Experiment for

Program Comprehension through Trace Visualization." IEEE Transactions on

Software Engineering 37(3): 341-355.

Duchowski, A. T. (2003). Eye Tracking Methodology: Theory and Practice. London,

Springer-Verlag.

82

Gadapa, S. (2012). Assessing SeeIT3D, A Software Visualization Tool.

Guéhéneuc, Y.-G. (2006). TAUPE: towards understanding program comprehension. 16th

IBM Centers for Advanced Studies on Collaborative research (CASCON),

Canada, ACM Press.

Jeanmart, S., Y.-G. Guéhéneuc, H. Sahraoui and N. Habra (2009). Impact of the Visitor

Pattern on Program Comprehension and Maintenance. 3rd International

Symposium on Empirical Software Engineering and Measurement, Lake Buena

Vista, Florida.

Just, M. and P. Carpenter (1980). "A Theory of Reading: From Eye Fixations to

Comprehension." Psychological Review 87: 329-354.

Kagdi, H., S. Yusuf and J. I. Maletic (2007). On Using Eye Tracking in Empirical

Assessment of Software Visualizations. ACM Workshop on Empirical

Assessment of Software Engineering Languages and Technologies, Atlanta, GA.

Kagdi, H., S. Yusuf and J. I. Maletic (2007). On Using Eye Tracking in Empirical

Assessment of Software Visualizations. Workshop on Empirical Assessment of

Software Engineering Languages and Technologies, WEASELTech'07. Atlanta

Georgia, USA: 21-22.

Lange, C. F. J. and M. R. V. Chaudron (2007). "Interactive Views to Improve the

Comprehension of UML Models - An Experimental Validation." International

Conference on Program Comprehension (ICPC'07): 221-230.

83

Lange, C. F. J., M. A. M. Wijns and M. R. V. Chaudron (2007). MetricViewEvolution:

UML-based Views for Monitoring Model Evolution and Quality. 11th European

Conference on Software Maintenance and Reengineering (CSMR).

Lanza, M. (2003). Codecrawler – a lightweight software visualization tool. 2nd

International Workshop on Visualizing Software for Understanding and Analysis

(VISSOFT), IEEE CS Press.

Lanza, M. L. and S. Ducasse (2005). CodeCrawler – An Extensible and Language

Independent 2D and 3D Software Visualization Tool. Tools for Software

Maintenance and Reengineering.

Maletic, J. I., A. Marcus and M. L. Collard (2002). A Task Oriented View of Software

Visualization. IEEE Workshop on Visualizing Software for Understanding and

Analysis (VISSOFT'02), Paris, France.

Marcus, A., D. Comorski and A. Sergeyev (2005). Supporting the evolution of a software

visualization tool through usability studies. 13th International Workshop on

Program Comprehension, IWPC 2005.

Petre, M. and E. Quincey (2006). "A Gentle Overview of Software Visualization."

Psychology of Programming Interest Group (PPIG) Newsletter.

Pietinen, S., R. Bednarik, T. Glotova, V. Tenhunen and M. Tukiainen (2008). A method

to study visual attention aspects of collaboration: eye-tracking pair programmers

simultaneously. 2008 symposium on Eye tracking research & applications, New

York, NY, USA.

84

Price, B. A., R. M. Baecker and I. S. Small (1993). "A Principled Taxonomy of Software

Visualization." Journal of Visual Languages and Computing(4): 3.

Price, B. A., I. S. Small and R. M. Baecker (1992). A taxonomy of software visualization.

Twenty-Fifth Hawaii International Conference on System Sciences. 2: 597–606.

Ramírez, D. M. "SeeIT 3D." from https://github.com/davidmr/seeit3d

Ramírez, D. M. (2010). Development of a 3D tool for visualization of different software

artifacts and their relationships, Universidad Nacional de Colombia.

Rayner, K. (1998). "Eye Movements in Reading and Information Processing: 20 Years of

Research." Psychological Bulletin 124(3): 372-422.

Roman, G. and K. C. Cox (1993). "A taxonomy of program visualization systems."

Computer 26(12): 11-24.

Sharafi, Z., Z. Soh, Y.-G. Gueheneuc and G. Antoniol (2012). Women and Men -

Different but Equal: On the Impact of Identifier Style on Source Code Reading.

International Conference on Program Comprehension (ICPC 2012), Passau,

Germany, IEEE.

Sharif, B. and J. I. Maletic (2010). An Eye tracking Study on camelCase and

Under_score Identifier Styles. 18th IEEE International Conference on Program

Comprehension (ICPC'10), Braga, Portugal.

Sharif, B. and J. I. Maletic (2010). An Eye tracking Study on the Effects of Layout in

Understanding the Role of Design Patterns. 26th IEEE International Conference

on Software Maintenance (ICSM'10), Timisoara, Romania.

85

Storey, M.-A., C. Best and J. Michaud (2001). SHriMP Views: An Interactive

Environment for Exploring Java Programs. 9th International Workshop on

Program Comprehension (IWPC'01).

Teyseyre, A. and M. R. Campo (2009). "An Overveiw of 3D Software Visualization."

IEEE Transactions on Visualization and Computer Graphics 15(1): 87-105.

Wettel, R., M. Lanza and R. Robbes (2011). Software systems as cities: a controlled

experiment. Software Engineering (ICSE), 2011 33rd International Conference

on.

Wettel, R. and M. L. Lanza (2008). CodeCity: 3D Visualization of Large-Scale Software.

International Conference on Software Engineering (ICSE), Leipzig, Germany.

Wohlin, C., P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell and A. Wesslén (1999).

Experimentation in Software Engineering - An Introduction, Kluwer Academic

Press.

Yusuf, S., H. Kagdi and J. I. Maletic (2007). Assessing the Comprehension of UML

Class Diagrams via Eye Tracking. Proceedings of the 15th IEEE International

Conference on Program Comprehension, IEEE Computer Society: 113-122.

Zhang, K., Ed. (2003). Software Visualization: From Theory to Practice, Kluwer

Academic Publishers.

		2014-01-15T14:14:00-0500
	ETD Program

