A Self-Contained Review of Thompson's Fixed-Point-Free Automorphism Theorem

by

Mario F. Sracic

Submitted in Partial Fulfillment of the Requirements
for the Degree of

Master of Science
in the

Mathematics

Program

YOUNGSTOWN STATE UNIVERSITY

May, 2014

A Self-Contained Review of Thompson's Fixed-Point-Free Automorphism Theorem

Abstract

Mario F. Sracic

I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research.

Signature:

Mario F. Sracic, Student
Date

Approvals:

Dr. Neil Flowers, Thesis Advisor
Date

Dr. Thomas Wakefield, Committee Member
Date

Dr. Eric Wingler, Committee Member
Date

Dr. Sal Sanders, Associate Dean of Graduate Studies
Date
(c)

Mario F. Sracic
2014

Abstract

In the early 1900s, Frobenius conjectured if a group G admits a fixed-point-free automorphism ϕ, then G must be solvable. During the next half-century, mathematicians would struggle to find a completely group theoretic proof of Frobenius' Conjecture. Between 1960 and 1980, progress was made on the Conjecture only by assuming conditions on the order of ϕ.

In 1959, Thompson proved, for his dissertation, the case assuming the automorphism had prime order and resulted in a stronger condition than solvable [Tho59]; Hernstein and Gorenstein proved the conjecture with an automorphism of order 4 [DG61]; and in 1972, Ralston proved a group admitting a fixed-point-free automorphism with order $p q$ is solvable, where p and q are primes. [Ral72] It was not until the 1980s, with the power of the Classification of Finite Simple Groups, was Frobenius' Conjecture finally proven; however, the proof involved character theory.

In this paper, we consider John Thompson's case of the Frobenius Conjecture:

Theorem ([Tho59]). Let G be a group admitting a fixed-point-free automorphism of prime order. Then G is nilpotent.

Our goal is to lay a complete framework of the necessary concepts and theorems leading up to, and including, the proof of Thompson's theorem.

Acknowledgments

First and foremost, I would like to thank Dr. Neil Flowers; for his countless hours of instruction and patience, without which this paper would not be possible; for sparking my initial interest in group theory; and for inspiring me to become a professor.

My gratitude goes to Dr. Tom Wakefield and Dr. Eric Wingler, for serving on my graduate committee and their assistance in the improvement of this work.

A special thank you to the Mathematics Department at Youngstown State University; for opening my mind to the wonder and joy of mathematics; for cultivating my mathematical skills; and providing an environment suitable for the enrichment of mathematics.

Finally, I am indebted to the late Dr. J. Douglas Faires, who was a phenomenal instructor, mentor, and friend. I would not be the mathematician I am today without his guidance and support.

Contents

1 Preliminaries 1
1.1 Elementary Group Theory 1
1.2 Group Actions and Sylow's Theorems 4
1.3 Characteristic Subgroups 8
1.4 Nilpotent Groups 11
1.5 Solvable Groups 18
1.6 Semidirect Products 22
2 Representation Theory 24
2.1 Maschke's Theorem 27
2.2 Clifford's Theorem 30
3 The Transfer Homomorphism 43
4 Normal p-Complement Theorems 48
4.1 Burnside's Normal p-Complement Theorem 49
4.2 The Focal Subgroup 59
4.3 Frobenius' Normal p-Complement Theorem 65
5 The Journey to Replacement Theorems 69
5.1 The Thompson Subgroup 69
5.2 Properties of Commutators 70
5.3 Thompson Replacement Theorem 75
5.4 Glauberman Replacement Theorem 77
6 -Separability and p-Solvability 82
$6.1 \quad p$-Constrained and p-Stability 88
6.2 Some Groups of Matrices 95
7 Fixed-Point-Free Automorphisms 102
7.1 Some Examples 104
8 The Proof of Thompson's Theorem 106

1 Preliminaries

In this paper, we follow Gorenstein's notation indicating group actions and function images by suppressed left exponential notation: using x^{g} to denote $\phi(g)(x)$ and G^{ϕ} to denote $\phi(G)$. [Gor07]

Let G be a finite group, H be a subgroup of G, and $a, b \in G$. We will use 1 to represent the identity element of a group. If a is conjugated by b, we shall write $a^{b}=b^{-1} a b$. If $x, y \in H$ are conjugate in G, we shall say x and y are fused in G and write $x \sim_{G} y$. The set of all primes dividing the order of G will be given by $\pi(G)$. If $b \in G$ has order p^{n} for some $n \in \mathbb{N} \cup\{0\}$, where p is a prime, we call b a p-element and any element with order complementary to p is called a p^{\prime}-element. If π is a set of primes and $\pi(G) \subseteq \pi$, then G is called a π-group. On the other hand, if $\pi(G) \nsubseteq \pi$, then G is a π^{\prime}-group, where π^{\prime} represents all primes not in π. We will denote $\mathbb{N} \cup\{0\}$ by \mathbb{N}_{0}.

All groups are finite. We assume the reader is familiar with the content of a first year course in abstract algebra, but we will include some relevant results. In the following section, we provide elementary definitions and theorems used repeatedly throughout the paper.

1.1 Elementary Group Theory

Theorem 1.1 (The First Isomorphism Theorem for Groups). Let G_{1} and G_{2} be groups, and suppose $\phi: G_{1} \rightarrow G_{2}$ is a homomorphism. Then

$$
\frac{G_{1}}{\operatorname{Ker} \phi} \cong G_{1}^{\phi} .
$$

Theorem 1.2 (The Second Isomorphism Theorem for Groups). Let G be a group, $H \leqslant G$, and $N \unlhd G$. Then

$$
\frac{H N}{N} \cong \frac{H}{H \cap N}
$$

Theorem 1.3 (The Third Isomorphism Theorem for Groups). Let G be a group, $N \unlhd G$, and $N \leqslant H \unlhd G$. Then

$$
\frac{G / N}{H / N} \cong \frac{G}{H}
$$

Theorem 1.4 (Preimage and Image Theorem). Let G be a group, $N \unlhd G, H \leqslant G$, and $\phi: G \rightarrow G / N$ be defined by

$$
g^{\phi}=g H
$$

for all $g \in G$. Then
(i) $H^{\phi}=H N / N$.
(ii) $(H N / N)^{\phi^{-1}}=H N$.
(iii) If $L \leqslant G / N$, then $L=K / N$, where $N \leqslant K \leqslant G$.

Lemma 1.1. Let G be a group, $L \leqslant H \leqslant G$, and $K \leqslant G$. Then $(H \cap K) L=H \cap K L$.

Lemma 1.2. Let G be a group, $N \unlhd G, A \leqslant G$, and $B \leqslant G$. Then

$$
\frac{A N}{N} \cap \frac{B N}{N}=\frac{A N \cap B}{N}=\frac{A \cap B N}{N}
$$

Theorem (Lagrange). Let G be a group and $H \leqslant G$. Then $|H|$ divides $|G|$ and

$$
[G: H]=\frac{|G|}{|H|}
$$

gives the number of left (or right) cosets of H in G.

Theorem 1.5 (Cauchy). Let G be a group and $p \in \pi(G)$. If G is abelian, then there exists a nontrivial $x \in G$ such that $x^{p}=1$.

Definition 1.1. Let G be a group and $a, b \in G$. The commutator of a and b is

$$
[a, b]=a^{-1} a^{b}=\left(b^{-1}\right)^{a} b
$$

The commutator subgroup of G is

$$
G^{\prime}=[G, G]=\langle[a, b]: a, b \in G\rangle .
$$

Definition 1.2. Let G be a group and $H \leqslant G$. The commutator of H and G is

$$
[G, H]=\langle[g, h]: g \in G \text { and } h \in H\rangle
$$

Lemma 1.3. Let G be a group, $H \leqslant G, K \leqslant G$, and $N \unlhd G$. Then

$$
\frac{[H, K] H}{H}=\left[\frac{H N}{N}, \frac{K N}{N}\right] .
$$

Lemma 1.4. Let G be a group, $H \leqslant G$, and $N \unlhd G$. Then $H N / N \leqslant \mathcal{Z}(G / N)$ if and only if $[G, H] \leqslant N$.

Lemma 1.5. Let A and B be groups. Then $\mathcal{Z}(A \times B)=\mathcal{Z}(A) \times \mathcal{Z}(B)$.

Lemma 1.6. Let A and C be groups such that $B \unlhd A$ and $D \unlhd C$. Then

$$
B \times D \unlhd A \times C,
$$

and

$$
\frac{A \times C}{B \times D} \cong \frac{A}{B} \times \frac{C}{D}
$$

Theorem (Fundamental Theorem of Finite Abelian Groups). Let G be a finite abelian group. Then, for some $n \in \mathbb{N}$,

$$
G \cong \mathbb{Z}_{p_{1}^{r_{1}}} \times \mathbb{Z}_{p_{2}^{r_{2}}} \times \cdots \times \mathbb{Z}_{p_{n}^{r_{n}}}
$$

where p_{i} is a prime and $r_{i} \in \mathbb{N}_{0}$ for $1 \leq i \leq n$.

Lemma 1.7. Let G be a group and $\left\{H_{i}\right\}_{i=1}^{n}$ be a collection of subgroups of G. If
(i) $G=\prod_{i=1}^{n} H_{i}$.
(ii) $H_{i} \cap \prod_{j \neq i} H_{j}=1$ for all $1 \leq i \leq n$.
(iii) $H_{i} \unlhd G$ for all $1 \leq i \leq n$.

Then $G \cong \bigotimes_{i=1}^{n} H_{i}$.

1.2 Group Actions and Sylow's Theorems

Definition 1.3. Let G be a group and S be a non-empty set. We say G acts on S if there exists a homomorphism $\phi: G \rightarrow \operatorname{Sym}(S)$, where

$$
\operatorname{Sym}(S)=\{\phi: S \rightarrow S: \phi \text { is a bijection }\}
$$

is the group of all permutations of S under composition.

Definition 1.4. Let G be a group, S be a set, $a \in S$, and suppose that G acts on S. The stabilizer in G of a is

$$
G_{a}=\left\{g \in G: a^{g}=a\right\},
$$

and $G_{a} \leqslant G$.

Definition 1.5. Let G be a group, S be a set, and $a \in S$. The orbit of G on S containing a is

$$
a G=\left\{a^{g}: g \in G\right\},
$$

and $a G \subseteq S$.

Theorem 1.6 (Orbit-Stabilizer Relation). Let G be a group, S be a set, and $a \in S$. If G acts on S, then

$$
|a G|=\frac{|G|}{\left|G_{a}\right|}=\left[G: G_{a}\right] .
$$

Proof.
Let $T=\left\{G_{a} g: g \in G\right\}$ and define $\phi: a G \rightarrow T$ by $\left(a^{g}\right)^{\phi}=G_{a} g$ for all $a^{g} \in a G$. To show that ϕ is well-defined, let $a^{g_{1}}, a^{g_{2}} \in a G$ such that $a^{g_{1}}=a^{g_{2}}$. Then $a^{g_{1} g_{2}^{-1}}=a$ and so $g_{1} g_{2}^{-1} \in G_{a}$. It follows that $G_{a} g_{1}=G_{a} g_{2}$, so $\left(a^{g_{1}}\right)^{\phi}=\left(a^{g_{2}}\right)^{\phi}$ and ϕ is well-defined. If $\left(a^{g_{1}}\right)^{\phi}=\left(a^{g_{2}}\right)^{\phi}$, then $G_{a} g_{1}=G_{a} g_{2}$, which implies $g_{1} g_{2}^{-1} \in G_{a}$. Thus $a^{g_{1} g_{2}^{-1}}=a$, or equivalently, $a^{g_{1}}=a^{g_{2}}$. Hence ϕ is injective. To show ϕ is surjective, let $G_{a} x \in T$. Since $x \in G$, we have $a^{x} \in a G$ and $\left(a^{x}\right)^{\phi}=G_{a} x$. Therefore, ϕ is a bijection and $|a G|=\left|(a G)^{\phi}\right|=|T|=\left[G: G_{a}\right]$.

Definition 1.6. A group G acts transitively on a set S if there exists a unique orbit such that $S=a G$ for all $a \in S$. That is, for all $c, d \in S$, there exists $g \in G$ such that $c^{g}=d$.

Theorem 1.7. Let G be a group, S be a set such that G acts on S, and suppose $H \leqslant G$. If H acts transitively on S, then

$$
G=G_{a} H
$$

for all $a \in S$.
Proof.
Let $a \in S$. By hypothesis, $S=a H$ and $G_{a} H \subseteq G$. Let $g \in G$. Since H acts transitively on S, there exists $h \in H$ such that $a^{g}=a^{h}$, hence $a^{g h^{-1}}=a$. It follows that $g h^{-1} \in G_{a}$ and $g \in G_{a} H$. Therefore, $G=G_{a} H$ for all $a \in S$.

Theorem 1.8 (Class Equation). Let G be a group. Then

$$
|G|=\sum_{a \notin \mathcal{Z}(G)}\left[G: C_{G}(a)\right]+|\mathcal{Z}(G)|
$$

and the above is called the class equation of G.

Definition 1.7. Let G be a group, p be a prime, and $n \in \mathbb{N}_{0}$ be maximal such that p^{n} divides $|G|$. Then
(i) The $p^{\text {th }}$-part of G is $|G|_{p}=p^{n}$.
(ii) A subgroup H of G is called a Sylow p-subgroup of G if $|H|=|G|_{p}$.
(iii) The set of all Sylow p-subgroups of G is given by $\operatorname{Syl}_{p}(G)\left(\right.$ or $\left.S_{p}^{G}\right)$.

Theorem 1.9 (Sylow). Let G be a group, p be a prime, and H be a p-subgroup of G. Then
(i) $\operatorname{Syl}_{p}(G) \neq \emptyset$.
(ii) There exists $P \in \operatorname{Syl}_{p}(G)$ such that $H \leqslant P$.
(iii) G acts transitively on $\operatorname{Syl}_{p}(G)$ by conjugation.
(iv) Let $n_{p}(G)=\left|S y l_{p}(G)\right|$. Then $n_{p}(G)$ divides $|G|$ and $n_{p}(G) \equiv 1(\bmod p)$.

Theorem 1.10 (Fixed Point Theorem for Groups). Let G be a p-group and S be a set such that $p \nmid|S|$. If G acts on S, then there exists $a \in S$ such that $G_{a}=G$.

Theorem 1.11 (Frattini Argument). Let G be a group, $H \unlhd G$, and $P \in \operatorname{Syl}_{p}(H)$. Then $G=N_{G}(P) H$.

Proof.
Let $g \in G$. Since $P \leqslant H$, we have $P^{g} \leqslant H^{g}=H$ and in addition, $\left|P^{g}\right|=|P|=|H|_{p}$. Hence $P^{g} \in \operatorname{Syl}_{p}(H)$. By Sylow, there exists $h \in H$ such that $P=P^{g h}$. Consequently, $g h \in N_{G}(P)$, so $g \in N_{G}(P) H$. Thus $G \leqslant N_{G}(P) H$ and it follows that $G=N_{G}(P) H$.

Lemma 1.8. Let G be a group, $P \in \operatorname{Syl}_{p}(G)$, and $N \unlhd G$. Then
(i) $P N / N \in \operatorname{Syl}_{p}(G / N)$.
(ii) $P \cap N \in \operatorname{Syl}_{p}(N)$.

Proof.
For (i), by Lagrange

$$
\left|\frac{P N}{N}\right|=\frac{|P N|}{|N|}=\frac{|P||N|}{|P \cap N||N|}=\frac{|P|}{|P \cap N|}
$$

and so $P N / N$ is a p-group because $P \in \operatorname{Syl}_{p}(G)$. Furthermore,

$$
\frac{|G / N|}{|P N / N|}=\frac{|G|}{|P N|}=\frac{|G|}{|P|} \cdot \frac{|P|}{|P N|}=\frac{|G / P|}{|P N / P|}
$$

and so $[G / N: P N / N]$ is a p^{\prime}-number. Thus $|P N / N|=|G / N|_{p}$ and by Sylow, $P N / N \in \operatorname{Syl}_{p}(G / N)$.

Clearly, $P \cap N$ is a p-group. Now

$$
\frac{|N|}{|P \cap N|}=\frac{|P N|}{|P|},
$$

which implies $[N: P \cap N]$ is a p^{\prime}-number. Therefore, $P \cap N \in \operatorname{Syl}_{p}(N)$.

Theorem 1.12 (General Frattini). Let G be a group, $P \in \operatorname{Syl}_{p}(G)$, and $N \unlhd G$. Then $G=N_{G}(P \cap N) N$.

Proof.
By Lemma 1.8, we have $P \cap N \in \operatorname{Syl}_{p}(N)$. The result then follows from the Frattini Argument.

Lemma 1.9. Let G be a nontrivial p-group. Then $\mathcal{Z}(G) \neq 1$.

Proof.
Suppose $\mathcal{Z}(G)=1$. Now the class equation of G becomes

$$
|G|=\sum_{a \notin \mathcal{Z}(G)}\left[G: C_{G}(a)\right]+1 .
$$

If p divides $\left[G: C_{G}(a)\right]$ for each $a \notin \mathcal{Z}(G)$, then p divides $\sum_{a \notin \mathcal{Z}(G)}\left[G: C_{G}(a)\right]$. Since G is a p-group, we have p divides $|G|-\sum_{a \notin \mathcal{Z}(G)}\left[G: C_{G}(a)\right]=1$. This is a contradiction, so there exists $a^{*} \notin \mathcal{Z}(G)$ such that $p \nmid\left[G: C_{G}\left(a^{*}\right)\right]$. But $\left[G: C_{G}\left(a^{*}\right)\right]$ must be a p-number. Consequently, $\left[G: C_{G}\left(a^{*}\right)\right]=p^{0}=1$. Thus $G=C_{G}\left(a^{*}\right)$ and $a^{*} \in \mathcal{Z}(G)$, which is a contradiction. Therefore, $\mathcal{Z}(G) \neq 1$.

Definition 1.8. Let G be a group and $\phi: G \rightarrow G$. If ϕ is a bijective homomorphism, then ϕ is called an automorphism of G. The set of automorphisms of G is $\operatorname{Aut}(G)$ and $\operatorname{Aut}(G)$ is a group under the operation of composition.

Definition 1.9. Let G and H be groups. Then G acts on H if there exists a homomorphism $\phi: G \rightarrow \operatorname{Aut}(H)$. Also, the commutator of h and g is given by

$$
[h, g]=h^{-1} h^{g} .
$$

The commutator of G and H is given by

$$
[H, G]=\langle[h, g]: h \in H \text { and } g \in G\rangle,
$$

and $[H, G] \leqslant H$.

Definition 1.10. Let G and H be groups such that G acts on H. The centralizer of G on H is

$$
C_{H}(G)=\left\{h \in H: h^{g}=h \text { for all } g \in G\right\},
$$

and $C_{H}(G) \leqslant H$.

Lemma 1.10. Let G and H be p-groups. If G acts on H, then $C_{H}(G) \neq 1$.

Proof.
Since G acts on H, we have G acts on $S=H \backslash\{1\} \subset H$. Now G is a p-group and $p \nmid|S|$. By the Fixed Point Theorem for Groups (1.10), there exists a nontrivial $a \in S$ such that $G_{a}=G$. Therefore, $a \in C_{H}(G)$ and $C_{H}(G) \neq 1$.

1.3 Characteristic Subgroups

Definition 1.11. Let G be a group and $H \leqslant G$. Then H is a characteristic subgroup of G if $H^{\phi} \leqslant H$ for all $\phi \in \operatorname{Aut}(G)$, and we write H char G.

Lemma 1.11. Let G be a group. Then
(i) $\mathcal{Z}(G)$ char G.
(ii) G^{\prime} char G.

Proof.
Let $\phi \in \operatorname{Aut}(G)$. For (i), let $g \in G$ and $z \in \mathcal{Z}(G)$. Since ϕ is surjective, there exists $g_{1} \in G$ such that $g_{1}^{\phi}=g$. Now we have

$$
g z^{\phi}=g_{1}^{\phi} z^{\phi}=\left(g_{1} z\right)^{\phi}=\left(z g_{1}\right)^{\phi}=z^{\phi} g_{1}^{\phi}=z^{\phi} g
$$

so $z^{\phi} \in \mathcal{Z}(G)$. Therefore, $\mathcal{Z}(G)$ char G. For (ii), let $\prod_{i=1}^{n}\left[a_{i}, b_{i}\right] \in G^{\prime}$. We then have

$$
\left(\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]\right)^{\phi}=\prod_{i=1}^{n}\left[a_{i}^{\phi}, b_{i}^{\phi}\right],
$$

where $a_{i}^{\phi}, b_{i}^{\phi} \in G$. Therefore, G^{\prime} char G.

Lemma 1.12. Let G be a group.
(i) If H char G, then $H^{\phi}=H$ for all $\phi \in \operatorname{Aut}(G)$.
(ii) If H char G, then $H \unlhd G$.
(iii) If K char $H \unlhd G$, then $K \unlhd G$.
(iv) If $P \in \operatorname{Syl}_{p}(G)$ and $P \unlhd G$, then P char G.

Proof.
For (i), let $\phi \in \operatorname{Aut}(G)$. By hypothesis, $H^{\phi} \leqslant H$, but since ϕ is a bijection, $\left|H^{\phi}\right|=|H|$. It follows that $H^{\phi}=H$. For (ii), let $g \in G$ and $\phi_{g} \in \operatorname{Aut}(G)$ denote the conjugation automorphism. Since H char G, we have $H^{\phi_{g}}=H$, but $H^{\phi_{g}}=H^{g}$. Therefore, $H \unlhd G$. For (iii), let $g \in G$. Since $H \unlhd G$, we have $H^{\phi_{g}}=H$, so $\phi_{g} \in \operatorname{Aut}(H)$. Now $K^{\phi_{g}}=K$ since K char H, hence $K \unlhd G$. For (iv), ϕ is a bijection and so $\left|P^{\phi}\right|=|P|$. Thus $P^{\phi} \in \operatorname{Syl}_{p}(G)$. By Sylow, there exists $g \in G$ such that $P^{g}=P^{\phi}$, but $P \unlhd G$. Therefore, $P=P^{\phi}$ and P char G.

Definition 1.12. A group G is characteristically simple if $\{1\}$ and G are its only characteristic subgroups.

Theorem 1.13. Let G be a characteristically simple group. Then $G \cong \bigotimes_{i=1}^{n} G_{i}$, where the G_{i} 's are simple isomorphic groups.

Proof.
Let G_{1} be a non-trivial normal subgroup of G such that $\left|G_{1}\right|$ is minimal, and $H=\prod_{i=1}^{s} G_{i}$, where $G_{i} \unlhd G, G_{i} \cong G_{1}$, and $G_{i} \cap \prod_{j \neq i} G_{j}=1$ for $1 \leq i \leq s$ with s chosen maximal. We claim H char G. Toward a proof, suppose H is not a characteristic subgroup of G. Now there exists $\phi \in A u t(G)$ and an $1 \leq i \leq s$ such that $G_{i}^{\phi} \nless H$. It follows from $H \unlhd G$ and $G_{i}^{\phi} \unlhd G$ that $H \cap G_{i}^{\phi} \unlhd G$. Moreover, $H \cap G_{i}^{\phi}<G_{i}^{\phi}$. Thus $\left|H \cap G_{i}^{\phi}\right|<\left|G_{i}^{\phi}\right|=\left|G_{i}\right|=\left|G_{1}\right|$. By the minimality of $\left|G_{1}\right|$, we have $H \cap G_{i}^{\phi}=1$, so $H<G_{i}^{\phi} \prod_{j=1}^{s} G_{j}$. However, this contradicts the maximality of s. Therefore, H char G.

Since $H \leqslant G$ is nontrivial and G is characteristically simple, we have $G=H=\prod_{i=1}^{s} G_{i}$. By Lemma 1.7, $G \cong \bigotimes_{i=1}^{s} G_{i}$ and the G_{i} 's are isomorphic by construction. Suppose there exist $1 \leq i<j \leq s$ such that $x \in G_{i}$ and $y \in G_{j}$. Then

$$
[x, y] \in G_{i} \cap G_{j} \leqslant G_{i} \cap \prod_{j \neq i} G_{j}=1
$$

and $x y=y x$. Thus $G_{i} \leqslant C_{G}\left(G_{j}\right)$ for all $i \neq j$. Let $1 \leq i \leq s$ and suppose $N \unlhd G_{i}$. It follows from the above that $N \unlhd G$ and $|N|<\left|G_{i}\right|=\left|G_{1}\right|$. By the minimality of $\left|G_{1}\right|$, either $N=1$ or $N=G_{i}$, hence G_{i} is simple. Therefore, $G \cong \bigotimes_{i=1}^{s} G_{i}$, where the G_{i} 's are simple isomorphic groups.

Definition 1.13. Let p be a prime. A group G is an elementary abelian p-group if

$$
G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}
$$

Definition 1.14. Let G be a group and $H \unlhd G$. If $H \neq 1$ and whenever there exists $K \unlhd G$ such that $K \leqslant H$, either $K=1$ or $K=H$, then H is a minimal normal subgroup of G.

Theorem 1.14. Let G be a group and H be a minimal normal subgroup of G. Then either there exist simple non-abelian isomorphic subgroups $\left\{H_{i}\right\}_{i=1}^{n}$ such that $H \cong \bigotimes_{i=1}^{n} H_{i}$, or there exists a prime p such that H is an elementary abelian p-group.

Proof.
Suppose K char H. By Lemma $1.12(i i i), K \unlhd G$, so $K=1$ or $K=H$ by the minimality of H. Thus H is characteristically simple and by Theorem 1.13, $H \cong \bigotimes_{i=1}^{n} H_{i}$, where the H_{i} 's are simple isomorphic groups. If the H_{i} 's are nonabelian, then we are done. Without loss of generality, assume the H_{i} 's are abelian. Now the only subgroups of H_{i} are $\{1\}$ and H_{i}. By Cauchy's Theorem, there exists a prime p such that H_{i} is a p-group and $H_{i} \cong \mathbb{Z}_{p}$. Therefore, $H \cong \mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}$.

1.4 Nilpotent Groups

Definition 1.15. Let G be a group. Define

$$
Z_{0}(G)=1, \quad Z_{1}(G)=\mathcal{Z}(G), \quad \frac{Z_{2}(G)}{Z_{1}(G)}=\mathcal{Z}\left(\frac{G}{Z_{1}(G)}\right), \ldots
$$

and inductively,

$$
\frac{Z_{n}(G)}{Z_{n-1}(G)}=\mathcal{Z}\left(\frac{G}{Z_{n-1}(G)}\right)
$$

where $Z_{i}(G)$ represents the preimage of $\mathcal{Z}\left(G / Z_{i-1}(G)\right)$. The upper central series of G is

$$
1=Z_{0}(G) \unlhd Z_{1}(G) \unlhd Z_{2}(G) \unlhd \cdots,
$$

where $Z_{i}(G) \unlhd G$ for all $i \in \mathbb{N}_{0}$.

Definition 1.16. A group G is nilpotent if there exists $n \in \mathbb{N}_{0}$ such that $Z_{n}(G)=G$.

Lemma 1.13. Let G be an abelian group. Then G is nilpotent.

Proof.
Since G is abelian, $G=\mathcal{Z}(G)=Z_{1}(G)$. Therefore, G is nilpotent.

Lemma 1.14. Let G be a nilpotent group, $H \leqslant G$, and $N \unlhd G$. Then
(i) H is nilpotent.
(ii) G / N is nilpotent.

Proof.
For (i), we claim $Z_{i}(G) \cap H \leqslant Z_{i}(H)$ for all $i \in \mathbb{N}_{0}$ and proceed by induction on i. Assume $Z_{i}(G) \cap H \leqslant Z_{i}(H)$ and show $Z_{i+1}(G) \cap H \leqslant Z_{i+1}(H)$. Toward this result, let $\bar{G}=G / Z_{i}(G)$ and $\overline{Z_{i+1}(G) \cap H}$ denote the image of $Z_{i+1}(G) \cap H$ in \bar{G}. Now $Z_{i+1}(G) \cap H \leqslant Z_{i+1}(G)$, so $\overline{Z_{i+1}(G) \cap H} \leqslant \mathcal{Z}(\bar{G})$. It follows that $\left[\bar{H}, \overline{Z_{i+1}(G) \cap H}\right]=1$, which implies $\left[H Z_{i}(G),\left(Z_{i+1}(G) \cap H\right) Z_{i}(G)\right] \leqslant Z_{i}(G)$. Since

$$
\left[H Z_{i}(G),\left(Z_{i+1}(G) \cap H\right) Z_{i}(G)\right]=\left[H, Z_{i+1}(G) \cap H\right] Z_{i}(G)
$$

we have $\left[H, Z_{i+1}(G) \cap H\right] \leqslant Z_{i}(G)$. Hence

$$
\left[H, Z_{i+1}(G) \cap H\right]=\left[H, Z_{i+1}(G) \cap H\right] \cap H \leqslant Z_{i}(G) \cap H \leqslant Z_{i}(H)
$$

and

$$
1=\frac{\left[H, Z_{i+1}(G) \cap H\right] Z_{i}(H)}{Z_{i}(H)}=\left[\frac{H}{Z_{i}(H)}, \frac{\left(Z_{i+1}(G) \cap H\right) Z_{i}(H)}{Z_{i}(H)}\right] .
$$

This implies $\left(Z_{i+1}(G) \cap H\right) Z_{i}(H) / Z_{i}(H) \leqslant \mathcal{Z}\left(H / Z_{i}(H)\right)=Z_{i+1}(H) / Z_{i}(H)$, so $Z_{i+1}(G) \cap H \leqslant Z_{i+1}(H)$. Thus the claim holds by induction.

Since G is nilpotent, there exists $n \in \mathbb{N}$ such that $Z_{n}(G)=G$. By the claim, $Z_{n}(H) \geqslant H \cap Z_{n}(G)=H \cap G=H$ and so $Z_{n}(H)=H$. Therefore, H is nilpotent.

For (ii), let $\bar{G}=G / N$ and $\overline{Z_{i}(G)}$ denote the image of $Z_{i}(G)$ in \bar{G}. Again using induction, we show $\overline{Z_{i}(G)} \leqslant Z_{i}(\bar{G})$ for all $i \in \mathbb{N}_{0}$. Assume $\overline{Z_{i}(G)} \leqslant Z_{i}(\bar{G})$. Since $\left[G, Z_{i+1}(G)\right] \leqslant Z_{i}(G)$, we have $\left[\bar{G}, \overline{Z_{i+1}(G)}\right]=\overline{\left[G, Z_{i+1}(G)\right]} \leqslant \overline{Z_{i}(G)} \leqslant Z_{i}(\bar{G})$. Thus

$$
1=\frac{\left[\bar{G}, \overline{Z_{i+1}(G)}\right] Z_{i}(\bar{G})}{Z_{i}(\bar{G})}=\left[\frac{\bar{G}}{Z_{i}(\bar{G})}, \frac{\overline{Z_{i+1}(G)} Z_{i}(\bar{G})}{Z_{i}(\bar{G})}\right],
$$

which implies

$$
\frac{\overline{Z_{i+1}(G)} Z_{i}(\bar{G})}{Z_{i}(\bar{G})} \leqslant \mathcal{Z}\left(\frac{\bar{G}}{Z_{i}(\bar{G})}\right)=\frac{Z_{i+1}(\bar{G})}{Z_{i}(\bar{G})} .
$$

Therefore, $\overline{Z_{i+1}(G)} \leqslant Z_{i+1}(\bar{G})$ and the claim holds by induction.
Since G is nilpotent, there exists $n \in \mathbb{N}$ such that $Z_{n}(G)=G$. By the claim, $\overline{Z_{n}(G)} \leqslant Z_{n}(\bar{G})$, but then $\bar{G} \leqslant Z_{n}(\bar{G})$. Therefore, $Z_{n}(\bar{G})=\bar{G}$ and \bar{G} is nilpotent.

Lemma 1.15. Let G be a nilpotent group. Then $\mathcal{Z}(G) \neq 1$.

Proof.

Suppose $\mathcal{Z}(G)=1$. By hypothesis, there exists $n \in \mathbb{N}_{0}$ such that $Z_{n}(G)=G$. We claim $Z_{i}(G)=1$ for all $i \in \mathbb{N}_{0}$ and proceed by induction. Assume $Z_{i}(G)=1$. Now

$$
Z_{i+1}(G) \cong \frac{Z_{i+1}(G)}{Z_{i}(G)}=\mathcal{Z}\left(\frac{G}{Z_{i}(G)}\right) \cong \mathcal{Z}(G)=1
$$

and the claim holds by induction. But this implies $Z_{n}(G)=1$, which is a contradiction. Therefore, $\mathcal{Z}(G) \neq 1$.

Lemma 1.16. Let G be a nilpotent group and $H<G$. Then $H<N_{G}(H)$.

Proof.
Since G is nilpotent, there exists $n \in \mathbb{N}_{0}$ such that $Z_{n}(G)=G$. Now $H<G$ implies there exists a maximal $1 \leq i<n$ such that $Z_{i}(G) \leqslant H$ but $Z_{i+1}(G) \notin H$. By Lemma 1.4, $\left[G, Z_{i+1}(G)\right] \leqslant Z_{i}(G) \leqslant H$, so $\left[H, Z_{i+1}(G)\right] \leqslant H$. Thus $Z_{i+1}(G) \leqslant N_{G}(H)$, but $Z_{i+1}(G) \nless H$. Therefore, $H<N_{G}(H)$.

Theorem 1.15. If G is a p-group, then G is nilpotent.

Proof.
Toward a contradiction, suppose G is not nilpotent. By hypothesis, $\mathcal{Z}(G) \neq 1$. Now we claim $Z_{i}(G)<Z_{i+1}(G)$ for all $i \in \mathbb{N}_{0}$. Proceeding by induction, assume $Z_{i}(G)<Z_{i+1}(G)$. Since G is not nilpotent, $Z_{i+1}(G)<G$. Let $\bar{G}=G / Z_{i+1}(G)$. Then \bar{G} is a p-group and $1 \neq \mathcal{Z}(\bar{G})=\overline{Z_{i+2}(G)}$. It follows that $Z_{i+1}(G)<Z_{i+2}(G)$ and the claim holds by induction.

From the claim, we have the series $1=Z_{0}(G)<Z_{1}(G)<Z_{2}(G)<\cdots$, which contradicts the finite order of G. Therefore, G is nilpotent.

Lemma 1.17. Let G be a group and P be a p-subgroup of G. If $P \in \operatorname{Syl}_{p}\left(N_{G}(P)\right)$, then $P \in \operatorname{Syl}_{p}(G)$.

Proof.
To the contrary, suppose $P \in \operatorname{Syl}_{p}\left(N_{G}(P)\right)$, but $P \notin \operatorname{Syl}_{p}(G)$. By Sylow, there exists $Q \in \operatorname{Syl}_{p}(G)$ such that $P<Q$. Since Q is a p-group, we have Q is nilpotent by Theorem 1.15. Moreover, $P<N_{Q}(P)$ by Lemma 1.16. Now $P<N_{Q}(P) \leqslant N_{G}(P)$, so $P \in \operatorname{Syl}_{p}\left(N_{Q}(P)\right)$. But $N_{Q}(P) \leqslant Q$ is a p-subgroup, hence $P=N_{Q}(P)$, which is a contradiction. Therefore, $P \in \operatorname{Syl}_{p}(G)$.

Lemma 1.18. Let G be a nilpotent group and H be a nontrivial normal subgroup of G. Then $H \cap \mathcal{Z}(G) \neq 1$.

Proof.
Since G is nilpotent, there exists $n \in \mathbb{N}_{0}$ such that $Z_{n}(G)=G$. Define the series $H_{0}=H, H_{1}=\left[H_{0}, G\right], H_{2}=\left[H_{1}, G\right], \ldots$, and inductively, $H_{n}=\left[H_{n-1}, G\right]$. We claim $H_{i} \leqslant Z_{n-i}(G)$ for all $i \in \mathbb{N}_{0}$. Using induction on i, assume $H_{i} \leqslant Z_{n-i}(G)$ and show $H_{i+1} \leqslant Z_{n-i-1}(G)$. Now $H_{i+1}=\left[H_{i}, G\right] \leqslant\left[Z_{n-i}(G), G\right] \leqslant Z_{n-i-1}(G)$, and so the claim holds by induction.

It follows from the claim that $H_{n} \leqslant Z_{n-n}(G)=Z_{0}(G)=1$. Let $m \in \mathbb{N}_{0}$ be minimal with respect to $H_{m}=1$. Then $1=H_{m}=\left[H_{m-1}, G\right]$ and $H_{m-1} \leqslant \mathcal{Z}(G)$. Since $H \unlhd G$, we know $H_{m-1} \leqslant H$ and by the minimality of $m, H_{m-1} \neq 1$. Therefore, $1 \neq H_{m-1} \leqslant H \cap \mathcal{Z}(G)$.

Lemma 1.19. Let G be a group and $H \unlhd G$ such that $H \leqslant Z_{i}(G)$ for all $i \in \mathbb{N}$. Then $Z_{i}(G) / H=Z_{i}(G / H)$ for all $i \in \mathbb{N}_{0}$.

Proof.
Let $\bar{G}=G / H$ and use induction on i to show $\overline{Z_{i}(G)} \leqslant Z_{i}(\bar{G})$. Assume $\overline{Z_{i}(G)} \leqslant Z_{i}(\bar{G})$. By Lemma 1.4, we have $\left[G, Z_{i+1}(G)\right] \leqslant Z_{i}(G)$ and consequently, $\left[\bar{G}, \overline{Z_{i+1}(G)}\right]=\overline{\left[G, Z_{i+1}(G)\right]} \leqslant \overline{Z_{i}(G)} \leqslant Z_{i}(\bar{G})$. By the same reasoning, $\overline{Z_{i+1}(G)} / Z_{i}(\bar{G}) \leqslant \mathcal{Z}\left(\bar{G} / Z_{i}(\bar{G})\right)=Z_{i+1}(\bar{G}) / Z_{i}(\bar{G})$, so $\overline{Z_{i+1}(G)} \leqslant Z_{i+1}(\bar{G})$. Thus the claim holds by induction.

Again proceeding by induction, we show $Z_{i}(\bar{G}) \leqslant \overline{Z_{i}(G)}$ for all $i \in \mathbb{N}_{0}$. Assume $Z_{i}(\bar{G}) \leqslant \overline{Z_{i}(G)}$, it follows, $\left[\bar{G}, Z_{i+1}(\bar{G})\right] \leqslant Z_{i}(\bar{G}) \leqslant \overline{Z_{i}(G)}$. By Lemma 1.4 and the Third Isomorphism Theorem,

$$
\frac{Z_{i+1}(\bar{G}) \overline{Z_{i}(G)}}{\overline{Z_{i}(G)}} \leqslant \mathcal{Z}\left(\frac{\bar{G}}{\overline{Z_{i}(G)}}\right) \cong \mathcal{Z}\left(\frac{G}{Z_{i}(G)}\right)=\frac{Z_{i+1}(G)}{Z_{i}(G)} \cong \frac{\overline{Z_{i+1}(G)}}{\overline{Z_{i}(G)}}
$$

Thus $Z_{i+1}(\bar{G}) \leqslant Z_{i+1}(\bar{G}) \overline{Z_{i}(G)} \leqslant \overline{Z_{i+1}(G)}$ and the claim holds by induction. Therefore, $\overline{Z_{i}(G)}=Z_{i}(\bar{G})$ for all $i \in \mathbb{N}_{0}$.

Lemma 1.20. Let G be a group, $H \unlhd G, K \unlhd G$, and suppose H and K are nilpotent. Then $H K$ is nilpotent.

Proof.
Use induction on $|G|$. By hypothesis, $H K$ is a group and $H K \unlhd G$. If $H K<G$, then $H \unlhd H K$ and $K \unlhd H K$. Moreover, H and K are still nilpotent. By induction, $H K$ is nilpotent. Without loss of generality, assume $G=H K$. Since K is nilpotent, we have $\mathcal{Z}(K) \neq 1$ by Lemma 1.15. Let $N=[H, \mathcal{Z}(K)]$.

If $N=1$, then $\mathcal{Z}(K) \leqslant C_{G}(H K)=C_{G}(G)=\mathcal{Z}(G) \unlhd G$. Thus $\mathcal{Z}(G) \neq 1$ and $[G: \mathcal{Z}(G)]<|G|$. Let $\bar{G}=G / \mathcal{Z}(G)$. Now $\bar{H} \unlhd \bar{G}$ and $\bar{K} \unlhd \bar{G}$. By the Second Isomorphism Theorem and Lemma 1.14, we have $\bar{H} \cong H / H \cap \mathcal{Z}(G)$ is nilpotent and $\bar{K} \cong K / K \cap \mathcal{Z}(G)$ is nilpotent. Thus by induction, $\bar{H} \bar{K}=\overline{H K}=\bar{G}$ is nilpotent. Then there exists $n \in \mathbb{N}$ such that $Z_{n}(\bar{G})=\bar{G}$. By Lemma 1.19, $Z_{n}(\bar{G})=\overline{Z_{n}(G)}$, so $H K=G=Z_{n}(G)=Z_{n}(H K)$. Therefore, $H K$ is nilpotent.

Suppose $N \neq 1$. Since $\mathcal{Z}(K)$ char $K \unlhd G$, we have $\mathcal{Z}(K) \unlhd G$ by Lemma 1.12(iii). Also, $\mathcal{Z}(K) \leqslant G=N_{G}(H)$ because $H \unlhd G$. Hence $1 \neq N=[H, \mathcal{Z}(K)] \unlhd H$. By Lemma 1.18,

$$
1 \neq N \cap \mathcal{Z}(H) \leqslant \mathcal{Z}(K) \cap \mathcal{Z}(H) \leqslant C_{G}(H K)=C_{G}(G)=\mathcal{Z}(G)
$$

thus $\mathcal{Z}(G) \neq 1$. Following the same argument as in the previous case, we have $H K$ is nilpotent.

Lemma 1.21. Let G_{1} and G_{2} be nilpotent groups. Then $G_{1} \times G_{2}$ is nilpotent.

Proof.

Since G_{1} and G_{2} are nilpotent, there exist $k, l \in \mathbb{N}_{0}$ such that $Z_{k}\left(G_{1}\right)=G_{1}$ and $Z_{l}\left(G_{2}\right)=G_{2}$. Let $n=\max \{k, l\}$. Then $Z_{n}\left(G_{1}\right)=G_{1}$ and $Z_{n}\left(G_{2}\right)=G_{2}$.

Claim: $Z_{i}\left(G_{1} \times G_{2}\right)=Z_{i}\left(G_{1}\right) \times Z_{i}\left(G_{2}\right)$ for all $i \in \mathbb{N}_{0}$.

Use induction on i. If $i=0$, then $Z_{0}\left(G_{1} \times G_{2}\right)=(1,1)=\{1\} \times\{1\}=Z_{0}\left(G_{1}\right) \times Z_{0}\left(G_{2}\right)$.

Assume $Z_{i}\left(G_{1} \times G_{2}\right)=Z_{i}\left(G_{1}\right) \times Z_{i}\left(G_{2}\right)$. Now by Lemma 1.5 and Lemma 1.6,

$$
\begin{aligned}
\frac{Z_{i+1}\left(G_{1} \times G_{2}\right)}{Z_{i}\left(G_{1} \times G_{2}\right)} & =\mathcal{Z}\left(\frac{G_{1} \times G_{2}}{Z_{i}\left(G_{1} \times G_{2}\right)}\right)=\mathcal{Z}\left(\frac{G_{1} \times G_{2}}{Z_{i}\left(G_{1}\right) \times Z_{i}\left(G_{2}\right)}\right) \\
& \cong \mathcal{Z}\left(\frac{G_{1}}{Z_{i}\left(G_{1}\right)} \times \frac{G_{2}}{Z_{i}\left(G_{2}\right)}\right)=\mathcal{Z}\left(\frac{G_{1}}{Z_{i}\left(G_{1}\right)}\right) \times \mathcal{Z}\left(\frac{G_{2}}{Z_{i}\left(G_{2}\right)}\right) \\
& =\frac{Z_{i+1}\left(G_{1}\right)}{Z_{i}\left(G_{1}\right)} \times \frac{Z_{i+1}\left(G_{2}\right)}{Z_{i}\left(G_{2}\right)} \cong \frac{Z_{i+1}\left(G_{1}\right) \times Z_{i+1}\left(G_{2}\right)}{Z_{i}\left(G_{1}\right) \times Z_{i}\left(G_{2}\right)}
\end{aligned}
$$

Thus $Z_{i+1}\left(G_{1} \times G_{2}\right)=Z_{i+1}\left(G_{1}\right) \times Z_{i+1}\left(G_{2}\right)$ and the claim holds by induction.
From the claim, $Z_{n}\left(G_{1} \times G_{2}\right)=Z_{n}\left(G_{1}\right) \times Z_{n}\left(G_{2}\right)=G_{1} \times G_{2}$. Therefore, $G_{1} \times G_{2}$ is nilpotent.

Definition 1.17. Let G be a group and $H \leqslant G$. If $H<G$ and whenever there exists $K \leqslant G$ such that $H \leqslant K$, either $K=H$ or $K=G$, then H is a maximal subgroup of G.

Theorem 1.16. Let G be a nilpotent group and H be a maximal subgroup of G. Then $H \unlhd G$.

Proof.
By hypothesis, $H<G$. It follows from Lemma 1.16 that $H<N_{G}(H) \leqslant G$. Thus $G=N_{G}(H)$ by the maximality of H. Therefore, $H \unlhd G$.

Theorem 1.17. Let G be a nilpotent group. Then $G \cong \bigotimes_{P \in S_{p}^{G}} P$ with $p \in \pi(G)$.
Proof.
Let $P \in \operatorname{Syl}_{p}(G)$. If $P \nexists G$, then $N_{G}(P)<G$, which implies there exists a maximal subgroup M of G such that $N_{G}(P) \leqslant M$. By Theorem 1.16, $M \unlhd G$ and since $P<M$, we have $P \in \operatorname{Syl}_{p}(M)$. Now $G=N_{G}(P) M=M$ by the Frattini Argument, but this contradicts M as a maximal subgroup of G. Thus $P \unlhd G$ and $\prod_{P \in S_{p}^{G}} P \leqslant G$, where $p \in \pi(G)$. Moreover, for all $Q \in \operatorname{Syl}_{q}(G)$ with $q \neq p$, we have $P \cap Q=1$, which implies

$$
\left|\prod_{P \in S_{p}^{G}} P\right|=\prod_{P \in S_{p}^{G}}|P|=|G| .
$$

Hence $G=\prod_{P \in S_{p}^{G}} P$. In addition,

$$
P \cap \prod_{Q \in S_{q}^{G}} Q=1
$$

for all $q \in \pi(G)$ with $p \neq q$. By Lemma 1.7, $G \cong \bigotimes_{P \in S_{p}^{G}} P$, where $p \in \pi(G)$.
Definition 1.18. Let G be a group. Define $K_{1}(G)=G, K_{2}(G)=\left[K_{1}(G), G\right]=G^{\prime}$, $K_{3}(G)=\left[K_{2}(G), G\right], \ldots$, and inductively, $K_{n}(G)=\left[K_{n-1}(G), G\right]$. The lower central series of G is

$$
G=K_{1}(G) \geqslant K_{2}(G) \geqslant K_{3}(G) \geqslant \cdots
$$

Theorem 1.18. Let G be a group. Then G is nilpotent if and only if there exists $n \in \mathbb{N}$ such that $K_{n}(G)=1$.

Proof.
Suppose G is nilpotent. Then there exists $n \in \mathbb{N}_{0}$ such that $Z_{n}(G)=G$.

Claim: $K_{i}(G) \leqslant Z_{n-i+1}(G)$ for all $1 \leq i \leq n+1$.

Use induction on i. If $i=1$, then $K_{1}(G)=G \leqslant G=Z_{n}(G)=Z_{n-1+1}(G)$. Assume $K_{i}(G) \leqslant Z_{n-i+1}(G)$ and show $K_{i+1}(G) \leqslant Z_{n-i}(G)$. By Lemma 1.4,

$$
K_{i+1}(G)=\left[K_{i}(G), G\right] \leqslant\left[Z_{n-i+1}(G), G\right] \leqslant Z_{n-i}(G),
$$

and the claim holds by induction. Therefore, $K_{n+1}(G) \leqslant Z_{n-(n+1)+1}(G)=Z_{0}(G)=1$ and $K_{n+1}(G)=1$.

Conversely, suppose there exists $n \in \mathbb{N}$ such that $K_{n}(G)=1$.

Claim: $K_{n-i}(G) \leqslant Z_{i}(G)$ for all $0 \leq i \leq n-1$.

Use induction on i. If $i=0$, then $K_{n-0}(G)=K_{n}(G)=\{1\} \leqslant\{1\}=Z_{0}(G)$. Assume $K_{n-i}(G) \leqslant Z_{i}(G)$. Since $Z_{i}(G) \unlhd G$, we have

$$
\left[K_{n-i-1}(G) Z_{i}(G), G\right]=\left[K_{n-i-1}(G), G\right] Z_{i}(G) \leqslant K_{n-i}(G) Z_{i}(G) \leqslant Z_{i}(G)
$$

By Lemma 1.4,

$$
\frac{K_{n-i-1}(G) Z_{i}(G)}{Z_{i}(G)} \leqslant \mathcal{Z}\left(\frac{G}{Z_{i}(G)}\right)=\frac{Z_{i+1}(G)}{Z_{i}(G)}
$$

and so $K_{n-i-1}(G) \leqslant K_{n-i-1}(G) Z_{i}(G) \leqslant Z_{i+1}(G)$. Thus the claim holds by induction. Now $Z_{n-1}(G) \geqslant K_{n-(n-1)}(G)=K_{1}(G)=G$, but $Z_{n-1}(G) \leqslant G$. Therefore, $Z_{n-1}(G)=G$ and G is nilpotent.

1.5 Solvable Groups

Definition 1.19. A group G is solvable if there exists a subnormal series

$$
G=G_{0} \unrhd G_{1} \unrhd \cdots \unrhd G_{n}=1
$$

such that G_{i} / G_{i+1} is abelian for $0 \leq i \leq n-1$. The quotient groups G_{i} / G_{i+1} are called factors of G.

Definition 1.20. Let G be a group. Define $G^{(0)}=G, G^{(1)}=\left(G^{(0)}\right)^{\prime}=G^{\prime}$, $G^{(2)}=\left(G^{(1)}\right)^{\prime}, \ldots$, and inductively, $G^{(n)}=\left(G^{(n-1)}\right)^{\prime}$. The derived series of G is

$$
G=G^{(0)} \unrhd G^{(1)} \unrhd G^{(2)} \unrhd \cdots
$$

Lemma 1.22. Let G be a group. Then $G^{(i)} \unlhd G$ for all $i \in \mathbb{N}_{0}$.

Proof.
We proceed by induction on i. If $i=0$, then $G^{(0)}=G \unlhd G$. Assume $G^{(i)} \unlhd G$. Now $G^{(i+1)}=\left(G^{(i)}\right)^{\prime}$ char $G^{(i)} \unlhd G$ and $G^{(i+1)} \unlhd G$ by Lemma 1.12(iii). Therefore the result holds by induction.

Theorem 1.19. Let G be a group and $H \unlhd G$. Then
(i) $G^{\prime} \unlhd G$.
(ii) G / G^{\prime} is abelian.
(iii) If G / H is abelian, then $G^{\prime} \leqslant H$.

Proof.
For (i), the result follows because G^{\prime} char G. For (ii), let $\bar{G}=G / G^{\prime}$ and $\bar{a}, \bar{b} \in \bar{G}$. Now

$$
\bar{a} \bar{b}=\overline{a b}=\overline{b a a^{-1} b^{-1} a b}=\overline{b a[a, b]}=\overline{b a}=\bar{b} \bar{a},
$$

and it follows that \bar{G} is abelian. For (iii), suppose $\bar{G}=G / H$ is abelian and let $a, b \in G$. Then $\overline{[a, b]} \in \bar{G}$ and

$$
\overline{[a, b]}=\overline{a^{-1} b^{-1} a b}=\overline{a^{-1}} \overline{b^{-1}} \bar{a} \bar{b}=\overline{a^{-1}} \bar{a} \overline{b^{-1}} \bar{b}=1 .
$$

Thus $[a, b] \in H$ and so $G^{\prime} \leqslant H$.

Lemma 1.23. Let G be a solvable group. Then $G^{(i)} \leqslant G_{i}$ for all $i \in \mathbb{N}_{0}$.

Proof.
Use induction on i. If $i=0$, then $G^{(0)}=G \leqslant G=G_{0}$. Assume $G^{(i)} \leqslant G_{i}$. Now $G^{(i+1)}=\left(G^{(i)}\right)^{\prime} \leqslant\left(G_{i}\right)^{\prime}$, but G_{i} / G_{i+1} is abelian. By Theorem 1.19, we have $G^{(i+1)} \leqslant\left(G_{i}\right)^{\prime} \leqslant G_{i+1}$. Therefore the result holds by induction.

Theorem 1.20. Let G be a group. Then G is solvable if and only if there exists $n \in \mathbb{N}$ such that $G^{(n)}=1$.

Proof.
Suppose there exists $n \in \mathbb{N}$ such that $G^{(n)}=1$ and consider the derived series

$$
G=G^{(0)} \unrhd G^{(1)} \unrhd \cdots \unrhd G^{(n)}=1
$$

By Theorem 1.19, $G^{(i)} / G^{(i+1)}=G^{(i)} /\left(G^{(i)}\right)^{\prime}$ is abelian for $0 \leq i \leq n-1$. Thus G is solvable. Conversely, suppose G is solvable. Then there exists a subnormal series

$$
G=G_{0} \unrhd G_{1} \unrhd \cdots \unrhd G_{n}=1
$$

such that G_{i} / G_{i+1} is abelian for $0 \leq i \leq n-1$. By Lemma 1.23, $G^{(n)} \leq G_{n}=1$.

Lemma 1.24. Let G be a group, $H \leqslant G$, and $N \unlhd G$. Then $(H N / N)^{\prime}=H^{\prime} N / N$.
Proof.
Let $\bar{G}=G / N$ and $\left[\overline{h_{1} n_{1}}, \overline{h_{2} n_{2}}\right] \in \bar{H}^{\prime}=(H N / N)^{\prime}$. Since $N \unlhd G, N^{h}=N$ for all $h \in H$ and

$$
\begin{aligned}
{\left[\overline{h_{1} n_{1}}, \overline{h_{2} n_{2}}\right] } & ={\overline{h_{1} n_{1}}}^{-1} \overline{h_{2} n_{2}}-1 \overline{h_{1} n_{1}} \overline{h_{2} n_{2}}=\overline{\left(h_{1} n_{1}\right)^{-1}} \overline{\left(h_{2} n_{2}\right)^{-1}} \overline{h_{1} n_{1}} \overline{h_{2} n_{2}} \\
& =\overline{n_{1}^{-1} h_{1}^{-1} n_{2}^{-1} h_{2}^{-1} h_{1} n_{1} h_{2} n_{2}}=\overline{h_{1}^{-1} n_{3} n_{2}^{-1} h_{2}^{-1} h_{1} h_{2} n_{4} n_{2}} \\
& =\overline{h_{1}^{-1} h_{2}^{-1} h_{1} h_{2} n_{6}}=\overline{\left[h_{1}, h_{2}\right] n_{6}} .
\end{aligned}
$$

Thus $\left[\overline{h_{1} n_{1}}, \overline{h_{2} n_{2}}\right] \in \overline{H^{\prime}}=H^{\prime} N / N$ and so $\bar{H}^{\prime} \leqslant \overline{H^{\prime}}$. Conversely, let $\overline{\left[h_{1}, h_{2}\right] n} \in \overline{H^{\prime}}$. Then

$$
\overline{\left[h_{1}, h_{2}\right] n}=\overline{h_{1}^{-1} h_{2}^{-1} h_{1} h_{2} n}=\overline{h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}} \bar{n}=\overline{h_{1}^{-1} h_{2}^{-1} h_{1} h_{2}}={\overline{h_{1}}}^{-1}{\overline{h_{2}}}^{-1} \overline{h_{1}} \overline{h_{2}}=\left[\overline{h_{1}}, \overline{h_{2}}\right],
$$

and so $\overline{\left[h_{1}, h_{2}\right] n} \in \bar{H}^{\prime}$. Therefore, $(H N / N)^{\prime}=H^{\prime} N / N$.
Lemma 1.25. Let G be a solvable group, $H \leqslant G$, and $N \unlhd G$. Then H and G / N are solvable.

Proof.

By hypothesis, there exists $n \in \mathbb{N}$ such that $G^{(n)}=1$. We claim $H^{(i)} \leqslant G^{(i)}$ for all $i \in \mathbb{N}_{0}$ and proceed by induction on i. Assume $H^{(i)} \leqslant G^{(i)}$. Now by the induction hypothesis, $H^{(i+1)}=\left(H^{(i)}\right)^{\prime} \leqslant\left(G^{(i)}\right)^{\prime}=G^{(i+1)}$. Thus $H^{(i)} \leqslant G^{(i)}$ for all $i \in \mathbb{N}_{0}$. Therefore, $H^{(n)} \leqslant G^{(n)}=1$ and H is solvable by Theorem 1.20.

Next, we claim $(G / N)^{(i)}=G^{(i)} N / N$ for all $i \in \mathbb{N}_{0}$. Using induction on i, if $i=0$ then $(G / N)^{(0)}=G^{(0)} N / N$. Assume $(G / N)^{(i)}=G^{(i)} N / N$. By Lemma 1.24, we have

$$
\left(\frac{G}{N}\right)^{(i+1)}=\left(\left(\frac{G}{N}\right)^{(i)}\right)^{\prime}=\left(\frac{G^{(i)} N}{N}\right)^{\prime}=\frac{\left(G^{(i)}\right)^{\prime} N}{N}=\frac{G^{(i+1)} N}{N}
$$

Thus $(G / N)^{(i)}=G^{(i)} N / N$ for all $i \in N_{0}$. It follows that

$$
(G / N)^{(n)}=G^{(n)} N / N=\{1\} N / N=N / N=1 .
$$

Therefore, G / N is solvable.

Lemma 1.26. Let G be a group and $H \unlhd G$. If H and G / H are solvable, then G is solvable.

Proof.
By hypothesis, there exist $m, n \in \mathbb{N}$ such that $H^{(m)}=1$ and $(G / H)^{(n)}=1$. By the claim in Lemma $1.25, G^{(n)} H / H=(G / H)^{(n)}=1$, so $G^{(n)} \leqslant H$. Consequently, $G^{(n+m)}=\left(G^{(n)}\right)^{(m)} \leqslant H^{(m)}=1$. Therefore, G is solvable.

Theorem 1.21. Let G be a group. If G is nilpotent, then G is solvable.

Proof.
Since G is nilpotent, there exists $n \in \mathbb{N}$ such that

$$
1=Z_{0}(G) \unlhd Z_{1}(G) \unlhd \cdots \unlhd Z_{n}(G)=G
$$

is a normal series. Moreover, for $1 \leq i \leq n$,

$$
\frac{Z_{i}(G)}{Z_{i-1}(G)}=\mathcal{Z}\left(\frac{G}{Z_{i-1}(G)}\right)
$$

is abelian. Therefore, G is solvable.

Theorem 1.22. Let G be a solvable group and H be a minimal normal subgroup of G. Then H is an elementary abelian p-group for some prime p.

Proof.
By Theorem 1.14, H is an elementary abelian p-group for some prime p or $H \cong \bigotimes_{i=1}^{n} H_{i}$, where the H_{i} 's are simple non-abelian isomorphic groups. If $H \cong \bigotimes_{i=1}^{n} H_{i}$, then each H_{i} is solvable by Lemma 1.25. Now $H_{i}^{(1)}=H_{i}^{\prime} \unlhd H_{i}$, but H_{i} is simple and non-abelian, which implies $H_{i}^{(1)}=H_{i}$. By an inductive argument, $H_{i}^{(k)}=\left(H_{i}^{(k-1)}\right)^{\prime}=\left(H_{i}\right)^{\prime} \unlhd H_{i}$ and $H_{i}^{(k)}=H_{i}$ because H_{i} is simple. Thus H_{i} is not solvable and this is a contradiction. Therefore, H is an elementary abelian p-group for some prime p.

1.6 Semidirect Products

Theorem 1.23. Let H and K be groups, and suppose that K acts on H via $\phi: K \rightarrow A u t(H) . S e t$

$$
G=\{(k, h): k \in K \text { and } h \in H\},
$$

and define the product operation • by

$$
\left(k_{1}, h_{1}\right) \cdot\left(k_{2}, h_{2}\right)=\left(k_{1} k_{2}, h_{1}^{k_{2}^{\phi}} h_{2}\right) .
$$

Then
(i) (G, \cdot) is a group.
(iv) $G=H^{*} K^{*}$.
(ii) $H^{*}=\{(1, h): h \in H\} \cong H$.
(v) $H^{*} \unlhd G$.
(iii) $K^{*}=\{(k, 1): k \in K\} \cong K$.
(vi) $H^{*} \cap K^{*}=1$.

Proof.
For $(i), G$ is closed since $k_{2}^{\phi} \in \operatorname{Aut}(H)$. Let $\left(k_{i}, h_{i}\right) \in G$ for $1 \leq i \leq 3$. Then

$$
\begin{aligned}
\left(\left(k_{1}, h_{1}\right)\left(k_{2}, h_{2}\right)\right)\left(k_{3}, h_{3}\right) & =\left(k_{1} k_{2}, h_{1}^{k_{2}^{\phi}} h_{2}\right)\left(k_{3}, h_{3}\right)=\left(k_{1} k_{2} k_{3}, h_{1}^{\left(k_{2} k_{3}\right)^{\phi}} h_{2}^{k_{3}^{\phi}} h_{3}\right) \\
& =\left(k_{1}, h_{1}\right)\left(k_{2} k_{3}, h_{2}^{k_{3}^{\phi}} h_{3}\right)=\left(k_{1}, h_{1}\right)\left(\left(k_{2}, h_{2}\right)\left(k_{3}, h_{3}\right)\right),
\end{aligned}
$$

so G is associative. Set $(1,1)=\left(1_{K}, 1_{H}\right)$, where the coordinates are the respective identities of K and H. It follows that $(1,1) \in G$ and $(1,1)$ is the identity of G since $1^{\phi} \equiv 1 \in \operatorname{Aut}(H)$. Furthermore, uniqueness is inherited from K and H. Let $(k, h) \in G$ and consider the element $\left(k^{-1},\left(h^{-1}\right)^{\left(k^{-1}\right) \phi}\right) \in G$. Now

$$
(k, h)\left(k^{-1},\left(h^{-1}\right)^{\left(k^{-1}\right)^{\phi}}\right)=\left(k k^{-1}, h^{\left(k^{-1}\right)^{\phi}}\left(h^{-1}\right)^{\left(k^{-1}\right)^{\phi}}\right)=\left(k k^{-1},\left(h h^{-1}\right)^{\left(k^{-1}\right)^{\phi}}\right)=(1,1),
$$

and

$$
\left(k^{-1},\left(h^{-1}\right)^{\left(k^{-1}\right)^{\phi}}\right)(k, h)=\left(k^{-1} k,\left(h^{-1}\right)^{\left(k^{-1} k\right)^{\phi}} h\right)=\left(k^{-1} k,\left(h^{-1}\right)^{1^{\phi}} h\right)=(1,1) .
$$

Thus $(k, h)^{-1}=\left(k^{-1},\left(h^{-1}\right)^{\left(k^{-1}\right) \phi}\right)$, where uniqueness is inherited. Therefore, G is a group.

For $(i i)-(v i)$: the canonical mapping gives $H^{*} \cong H$ and $K^{*} \cong K$. By the definition of G, we have $G=H^{*} K^{*}$. Let $(k, 1) \in K^{*}$ and $(1, h) \in H^{*}$. Now

$$
(1, h)^{(k, 1)}=(k, 1)^{-1}(1, h)(k, 1)=\left(k^{-1}, 1\right)(1, h)(k, 1)=\left(k^{-1}, h\right)(k, 1)=\left(1, h^{k^{\phi}}\right) \in H^{*},
$$

and so $K^{*} \leqslant N_{G}\left(H^{*}\right)$. Moreover, $H^{*} \leqslant N_{G}\left(H^{*}\right)$, so $G=H^{*} K^{*} \leqslant N_{G}\left(H^{*}\right)$. Consequently, $G=N_{G}\left(H^{*}\right)$ and $H^{*} \unlhd G$. Suppose $(h, k) \in H^{*} \cap K^{*}$. By the definition of H^{*} and K^{*}, we have $h=1$ and $k=1$. Thus $H^{*} \cap K^{*}=1$ and $|G|=\left|H^{*}\right|\left|K^{*}\right|=|H||K|$.

Definition 1.21. Let H and K be groups, and suppose that K acts on H via ϕ. The group described in Theorem 1.23 is called the semidirect product of H by K with respect to ϕ and is denoted $H \rtimes_{\phi} K$.

2 Representation Theory

In this section, we briefly outline basic concepts from Linear Algebra necessary to understand groups acting over vector spaces. A thorough review of Linear Algebra can be found in [Cur74].

Definition 2.1. Let F be a field. A vector space V over F is a nonempty set of vectors together with two operations: vector addition, which assigns for each $u, v \in V$, the new vector $v+u \in V$, and scalar multiplication, which assigns for each $\lambda \in F$ and $v \in V$, the new vector $\lambda v \in V$. These operations satisfy the following axioms for all $v, u \in V$ and for all $\alpha, \beta \in F$:
(i) $(V,+)$ is an abelian group.
(iv) $(\alpha \beta) u=\alpha(\beta u)$.
(ii) $\alpha(u+v)=\alpha u+\alpha v$.
(v) $1 u=u$.
(iii) $(\alpha+\beta) v=\alpha v+\beta v$.

Definition 2.2. Let V and W be vector spaces over a field F. A linear transformation of V into W is a function $T: V \rightarrow W$ defined by $v T \in W$ for all $v \in V$, such that
(i) $\left(v_{1}+v_{2}\right) T=v_{1} T+v_{2} T$ for all $v_{1}, v_{2} \in V$.
(ii) $(\alpha v) T=\alpha(v T)$ for all $\alpha \in F$ and for all $v \in V$.

Theorem 2.1. Let V and W be vector spaces over a field F, and let $L(V, W)$ denote the set of all linear transformations from V into W. If addition and scalar multiplication are defined as follows, for all $v \in V$:
(i) $v(S+T)=v S+v T$ for all $S, T \in L(V, W)$.
(ii) $v(\alpha T)=\alpha(v T)$ for all $T \in L(V, W)$ and for all $\alpha \in F$.

Then $L(V, W)$ is a vector space over F.

Definition 2.3. Let G be a group and V be a vector space over a field F. Then
(i) $\operatorname{Aut}(V, F)=\{T \in L(V, V): T$ is nonsingular $\}$ is a group under composition.
(ii) $\operatorname{Aut}(V, F) \cong G L_{n}(F)=\left\{A \in M_{n}(F): \operatorname{det}(A) \neq 0\right\}$, where $M_{n}(F)$ is the set of $n \times n$ matrices over F.
(iii) G acts on V over F if there exists a homomorphism $\phi: G \rightarrow A u t(V, F)$ called a representation of G on the vector space V over F.
(iv) G acts faithfully on V over F via ϕ if $\operatorname{Ker} \phi=1$.

Definition 2.4. Let G be a group acting on a vector space V over a field F. Then V is called a FG-module, or a G-module when F is clear from the context.

We will use the same notation for the action of a group G on a vector space V over a field F as we use for the action of G on a set:

$$
(\alpha u+\beta w)^{g}=\alpha\left(u^{g}\right)+\beta\left(w^{g}\right)
$$

for all $\alpha, \beta \in F$, for all $u, w \in V$, and for all $g \in G$.

Definition 2.5. Let V be a vector space over a field F and $S \subseteq V$ such that $S \neq \emptyset$.
Then S is a subspace of V if
(i) $a+b \in S$ for all $a, b \in S$.
(ii) $\lambda a \in S$ for all $a \in S$ and for all $\lambda \in F$.

For the sake of efficiency, we will invoke the following Lemma in proving a subset of a vector space is a subspace. The proof follows trivially from the definition of a subspace. [Cur74]

Lemma 2.1. Let V be a vector space over a field F and $S \subseteq V$ be nonempty. Then S is a subspace of V if and only if $\alpha u+\beta w \in S$ for all $\alpha, \beta \in F$ and for all $u, w \in S$.

Definition 2.6. Let V be a $F G$-module and W be a subspace of V. If $w^{g} \in W$ for all $w \in W$ and for all $g \in G$, then W is a $F G$-submodule of V. In addition, we may call W a G^{ϕ}-invariant, or a G-invariant subspace of V.

Theorem 2.2. Let G be a group acting on a vector space V over a field F. The centralizer of G on V is

$$
C_{V}(G)=\left\{v \in V: v^{g}=v \text { for all } g \in G\right\},
$$

and $C_{V}(G)$ is a subspace of V.

Proof.
Let $g \in G$. Since V is a vector space, $0 \in V$ and $0^{g}=0$. Thus $0 \in C_{V}(G)$ and $C_{V}(G) \neq \emptyset$. Let $u, w \in C_{V}(G)$ and $\alpha, \beta \in F$. Now

$$
(\alpha u+\beta w)^{g}=\alpha\left(u^{g}\right)+\beta\left(w^{g}\right)=\alpha u+\beta w,
$$

so $\alpha u+\beta w \in C_{V}(G)$. Therefore, $C_{V}(G)$ is a subspace of V.

Theorem 2.3. Let G be a group acting on a vector space V over a field F and suppose $H \unlhd G$. Then $C_{V}(H)$ is a G-invariant subspace of V.

Proof.
By Theorem 2.2, $C_{V}(H)$ is a subspace of V, so $C_{V}(H) \neq \emptyset$. Let $v \in C_{V}(H)$, $g \in G$, and $h \in H$. Since $H \unlhd G$, we have $h^{g^{-1}} \in H$. It follows that $v^{h^{g^{-1}}}=v$, or, equivalently, $v^{g h}=v^{g}$. Thus $v^{g} \in C_{V}(H)$ and $C_{V}(H)$ is G-invariant.

Definition 2.7. Let R be a ring. The least positive integer n satisfying na $=0$ for all $a \in R$ is called the characteristic of R and we write char $R=n$. If no such n exists, we say char $R=0$.

Theorem 2.4 (Fixed Point Theorem for Vector Spaces). Let G be a p-group and suppose that G acts on a vector space V over a field F with char $F=p$. Then $C_{V}(G) \neq 0$.

Proof.
Use induction on $|G|$ and let M be a maximal subgroup of G. By Theorem 1.16, $M \unlhd G$, so $[G: M]=p$. Let $y \in G \backslash M$. Now $y^{p} M=(y M)^{p}=(y M)^{[G: M]}=1 M$ and
so $y^{p} \in M$. Furthermore, $|M|<|G|, M$ is a p-group, and M acts on V over F. By the induction hypothesis, $C_{V}(M) \neq 0$.

Since $y^{p} \in M$, we have y^{p} acts trivially on $C_{V}(M)$. Thus y satisfies $x^{p}-1$ on $C_{V}(M)$, but $x^{p}-1=(x-1)^{p}$ since char $F=p$. It follows that 1 is an eigenvalue of y on $C_{V}(M)$, so there exists a nonzero $w \in C_{V}(M)$ satisfying $w^{y}=1 w=w$. Now $M<\langle M, y\rangle \leqslant G$ and $G=\langle M, y\rangle$ by the maximality of M. Thus $w \in C_{V}(\langle M, y\rangle)=C_{V}(G)$ and $C_{V}(G) \neq 0$.

2.1 Maschke's Theorem

Definition 2.8. Let G be a group and p be a prime. Define the unique maximal normal p-subgroup of G by

$$
\mathcal{O}_{p}(G)=\prod_{P \unlhd G} P
$$

where P is a p-subgroup. Similarly, the unique maximal normal p^{\prime}-subgroup of G is

$$
\mathcal{O}_{p^{\prime}}(G)=\prod_{P \unlhd G} P
$$

where P is a p^{\prime}-subgroup.

Definition 2.9. Let G be a group acting on a vector space V over a field F via ϕ. If $\{0\}$ and V are the only G^{ϕ}-invariant subspaces ($F G$-submodules) of V, then G acts irreducibly on V over F via ϕ. We call V an irreducible $F G$-module.

Theorem 2.5. Let G be a group acting faithfully and irreducibly on a vector space V over a field F, and suppose char $F=p$. Then $\mathcal{O}_{p}(G)=1$.

Proof.
Since $\mathcal{O}_{p}(G)$ is a p-group acting on V, we have $C_{V}\left(\mathcal{O}_{p}(G)\right) \neq 0$ by the Fixed Point Theorem (2.4). By Theorem 2.3, $C_{V}\left(\mathcal{O}_{p}(G)\right)$ is a G-invariant subspace of V; however, G acts irreducibly on V. Hence $V=C_{V}\left(\mathcal{O}_{p}(G)\right)$ and $\mathcal{O}_{p}(G)$ acts trivially on V. It follows from the faithful action of G on V that $\mathcal{O}_{p}(G)=1$.

Definition 2.10. Let V be a vector space over a field F and $\left\{U_{i}\right\}_{i=1}^{n}$ be subspaces of V. Then V is the direct sum of the U_{i} 's if
(i) $V=U_{1}+U_{2}+\cdots+U_{n}$.
(ii) $U_{i} \cap \sum_{j \neq i} U_{j}=0$ for all $1 \leq i \leq n$.

We denote V as a direct sum of the U_{i} 's by $V=\bigoplus_{i=1}^{n} U_{i}$.
Definition 2.11. A group G acts completely reducibly on a vector space V over a field F if there exist G-invariant subspaces $\left\{U_{i}\right\}_{i=1}^{n}$ of V such that $V=\bigoplus_{i=1}^{n} U_{i}$ and G acts irreducibly on U_{i} for $1 \leq i \leq n$.

Lemma 2.2. Let D be an integral domain. Then there exists a subdomain D^{\prime} such that
(i) If char $D=0$, then $\mathbb{Z} \cong D^{\prime} \subseteq D$.
(ii) If char $D=p$ for some prime p, then $\mathbb{Z}_{p} \cong D^{\prime} \subseteq D$.

Proof.

Let $D^{\prime}=\{m \cdot 1: m \in \mathbb{Z}\}$, where 1 is unity in D, and $\phi: \mathbb{Z} \rightarrow D^{\prime}$ be defined by $m^{\phi}=m \cdot 1$. Clearly, ϕ is a surjective ring homomorphism, thus $\mathbb{Z}^{\phi}=D^{\prime}$.

For (i), if char $D=0$, then $m^{\phi} \neq 0$ for all $m \in \mathbb{Z}^{*}$. Thus $\operatorname{Ker} \phi=0$ and ϕ is injective. By the First Isomorphism Theorem, $\mathbb{Z} \cong \mathbb{Z} / \operatorname{Ker} \phi \cong \mathbb{Z}^{\phi}=D^{\prime} \subseteq D$.

For (ii), if char $D=p$, then $|1|=p$ and $\operatorname{Ker} \phi=p \mathbb{Z}$. By the First Isomorphism Theorem, $\mathbb{Z} / p \mathbb{Z} \cong \mathbb{Z}^{\phi}=D^{\prime} \subseteq D$, but $\mathbb{Z} / p \mathbb{Z} \cong \mathbb{Z}_{p}$. Therefore, $\mathbb{Z}_{p} \cong D^{\prime}$.

Lemma 2.3. Let F be a field. Then there exists a subfield F^{\prime} such that
(i) If char $F=0$, then $\mathbb{Q} \cong F^{\prime} \subseteq F$.
(ii) If char $F=p$ for some prime p, then $\mathbb{Z}_{p} \cong F^{\prime} \subseteq F$.

Proof.
For (i), since F is an integral domain and char $F=0$, we have $\mathbb{Z} \cong D^{\prime} \subseteq F$ by Lemma 2.2. Thus D^{\prime} is an integral domain in the field F, so F contains a field of quotients $F^{\prime} \cong \mathbb{Q}$. For (ii), the result follows from Lemma 2.2.

Theorem 2.6 (Maschke). Let G be a group acting on a vector space V over a field F and suppose char $F=0$ or char F is relatively prime to $|G|$. Then G acts completely reducibly on V.

Proof.

Use induction on $\operatorname{dim}_{F}(V)$. Let $n=|G|$ and char $F=p$. If $p=0$, then $\mathbb{Q} \subseteq F$ by Lemma 2.3 and so $\frac{1}{n} \in F$. If $p \neq 0$, then $\mathbb{Z}_{p} \subseteq F$ and it follows from the $\operatorname{gcd}(p, n)=1$ that $\frac{1}{n} \in F$ is well defined. Thus $n\left(\frac{1}{n} v\right)=\frac{1}{n}(n v)=v$ for all $v \in V$.

Let $0 \neq V_{1} \subseteq V$ be a minimal G-invariant subspace. If $V=V_{1}$, then G acts completely reducibly on V and we are done. Assume $V_{1} \subset V$ and let $\mathcal{B}=\left\{u_{i}\right\}_{i=1}^{r} \subseteq V_{1}$ be a basis for V_{1}. We may extend \mathcal{B} to a basis for V (Theorem 7.4 in [Cur74]), given by $\left\{u_{i}\right\}_{i=1}^{m}$, and let $W=\operatorname{Span}_{F}\left(\left\{u_{i}\right\}_{i=r+1}^{m}\right)$. Clearly, $V=V_{1} \oplus W$. Let $\theta: V \rightarrow W$ be the projection of V onto W defined by $\left(v_{1}+w\right)^{\theta}=w$. Now θ is linear, for if $v_{1}+w_{1}, v_{2}+w_{2} \in V_{1}$ then
$\left(v_{1}+w_{1}+v_{2}+w_{2}\right)^{\theta}=\left(\left(v_{1}+v_{2}\right)+\left(w_{1}+w_{2}\right)\right)^{\theta}=w_{1}+w_{2}=\left(v_{1}+w_{1}\right)^{\theta}+\left(v_{2}+w_{2}\right)^{\theta}$.
Moreover, we claim θ is idempotent-that is, $\theta^{2}=\theta$. Let $v_{1}+w \in V=V_{1} \oplus W$. Then $\left(v_{1}+w\right)^{\theta^{2}}=w^{\theta}=w=\left(v_{1}+w\right)^{\theta}$ and $\theta^{2}=\theta$.

Let $\psi=\frac{1}{n} \sum_{x \in G} x \theta x^{-1}$. Now ψ is linear since θ is linear and V is a G-module. Let $V_{2}=V^{\psi}$. Then V_{2} is a subspace of V since ψ is a linear transformation [Cur74]. Let $y \in G, v \in V$, and for each $x \in G$, set $z_{x}=y^{-1} x$. As x runs over G, so does z_{x}, thus

$$
v^{\psi y}=\frac{1}{n} \sum_{x \in G} v^{x \theta x^{-1} y}=\frac{1}{n} \sum_{x \in G} v^{y z_{x} \theta z_{x}^{-1}}=\frac{1}{n} \sum_{x \in G} v^{y x \theta x^{-1}}=v^{y \psi} .
$$

But $\left(v^{y}\right)^{\psi} \in V_{2}$ since V is a G-module, hence $V_{2}=V^{\psi}$ is G-invariant.
Let $v_{1} \in V_{1}$ and $x \in G$. Now $v_{1}^{x} \in V_{1}$ since V_{1} is G-invariant, so $v_{1}^{x \theta}=0$. Thus

$$
v_{1}^{\psi}=\frac{1}{n} \sum_{x \in G} v_{1}^{x \theta x^{-1}}=\frac{1}{n} \sum_{x \in G} 0^{x^{-1}}=\frac{1}{n} \sum_{x \in G} 0=0
$$

and $V_{1}^{\psi}=0$. Let $v \in V$. Since $(V,+)$ is abelian, we have

$$
v-v^{\psi}=\frac{1}{n}(n v)-\frac{1}{n} \sum_{x \in G} v^{x \theta x^{-1}}=\frac{1}{n} \sum_{x \in G}\left(v-v^{x \theta x^{-1}}\right)=\frac{1}{n} \sum_{x \in G}\left(v^{x}-v^{x \theta}\right)^{x^{-1}} .
$$

Furthermore, $v^{x}-v^{x \theta} \in V_{1}$ since θ is the projection of V onto $W ;\left(v^{x}-v^{x \theta}\right)^{x^{-1}} \in V_{1}$ since V_{1} is G-invariant; and $\frac{1}{n} \sum_{x \in G}\left(v^{x}-v^{x \theta}\right)^{x^{-1}} \in V_{1}$ since V_{1} is a vector space over F with $\frac{1}{n} \in F$. Hence $v-v^{\psi} \in V_{1}$. Because $V_{1}^{\psi}=0$, we have $\left(v-v^{\psi}\right)^{\psi}=0$, but this is equivalent to $v^{\psi}=v^{\psi^{2}}$. Thus $\psi=\psi^{2}$ and ψ is idempotent.

We claim $V=V_{1} \oplus V_{2}$. Let $v \in V$. Now $v=\left(v-v^{\psi}\right)+v^{\psi} \in V_{1}+V_{2}$ and so $V=V_{1}+V_{2}$. Suppose $u \in V_{1} \cap V_{2}$. Then $u^{\psi}=0$ since $V_{1}^{\psi}=0$, but $u \in V_{2}=V^{\psi}$. It follows that there exists $v_{0} \in V$ such that $u=v_{0}^{\psi}$. This implies $0=u^{\psi}=v_{0}^{\psi^{2}}=v_{0}^{\psi}=u$, so $V_{1} \cap V_{2}=0$. Therefore, $V=V_{1} \oplus V_{2}$.

If $V=V_{2}$, then $V_{1}=V_{1} \cap V=V_{1} \cap V_{2}=0$, which is a contradiction since V_{1} is a minimal G-invariant subspace. Hence $V_{2} \subset V$ and $\operatorname{dim}_{F}\left(V_{2}\right)<\operatorname{dim}_{F}(V)$. By induction, G acts completely reducibly on V_{2}, so $V_{2}=\bigoplus_{i=1}^{s} V_{2 i}$, where each $V_{2 i}$ is an irreducible G-submodule. Now $V=V_{1} \oplus V_{2}=V_{1} \bigoplus_{i=1}^{s} V_{2 i}$, where V_{1} is an irreducible G-submodule. Therefore, G acts completely reducibly on V.

Definition 2.12. Let G be a group acting on the vector spaces V and W over the field F. Then V and W are isomorphic as G-modules if there exists an isomorphism $\phi: V \rightarrow W$ such that $v^{g \phi}=v^{\phi g}$ for all $v \in V$ and for all $g \in G$.

2.2 Clifford's Theorem

Lemma 2.4. Let V be a vector space over a field F and S be a subspace of V. The subspace of V generated by S is

$$
\langle S\rangle=\left\{\sum_{i=1}^{l} m_{i} s_{i}: s_{i} \in S, m_{i} \in F, 1 \leq i \leq l \text { for some } l \in \mathbb{N}\right\}
$$

Proof.
Clearly, $\langle S\rangle \subseteq V$ and $\langle S\rangle \neq \emptyset$. Let $\sum_{i=1}^{l} m_{i} s_{i}, \sum_{j=1}^{k} r_{j} t_{i} \in\langle S\rangle$ and $\alpha, \beta \in F$. Set
$m_{i}^{\prime}=\alpha m_{i}$ for $1 \leq i \leq l$ and $r_{j}^{\prime}=\beta r_{j}$ for $1 \leq j \leq k$. Now

$$
\alpha \sum_{i=1}^{l} m_{i} s_{i}+\beta \sum_{j=1}^{k} r_{j} t_{i}=\sum_{i=1}^{l} \alpha m_{i} s_{i}+\sum_{j=1}^{k} \beta r_{j} t_{i}=\sum_{i=1}^{l} m_{i}^{\prime} s_{i}+\sum_{j=1}^{k} r_{j}^{\prime} t_{i} \in\langle S\rangle .
$$

Therefore, $\langle S\rangle$ is a subspace of V.

Lemma 2.5. Let G be a group acting on a vector space V over a field $F, H \unlhd G$, $U \subseteq V$ be an H-submodule, and $W \subseteq V$ be an irreducible H-submodule. Then U / W is an H-submodule.

Proof.
Let $u+W \in U / W$ and $h \in H$. It follows from U and W being H-submodules, W being irreducible, and $W \neq 0$ that $(u+W)^{h}=u^{h}+W^{h}=u^{h}+W \in U / W$. Therefore, U / W is an H-submodule.

Lemma 2.6. Let G be a group acting on a vector space V over a field $F, H \unlhd G$, and suppose $W \subseteq V$ is an H-submodule. Then W is an irreducible H-submodule if and only if W^{g} is an irreducible H-submodule for all $g \in G$.

Proof.
Suppose W is an irreducible H-submodule, and let $g \in G$ and $h \in H$. Now $g h=h^{g^{-1}} g$, where $h^{g^{-1}} \in H$ and for all $w \in W$, we have $w^{g h}=w^{h^{g^{-1}} g}=w_{0}^{g}$ for some $w_{0} \in W$. Thus W^{g} is an H-invariant subspace of V. Suppose there exists an H-invariant subspace T of W^{g}. Now $T^{g^{-1}}$ is an H-invariant subspace of W by the same argument as above, but W is irreducible. Thus $T^{g^{-1}}=0$ or $T^{g^{-1}}=W$, so $T=0$ or $T=W^{g}$. Therefore, W^{g} is an irreducible H-submodule.

Suppose W^{g} is an irreducible H-submodule for all $g \in G$. By hypothesis, W is H-invariant. If T is an H-invariant subspace of W, then T^{g} is an H-invariant subspace of W^{g} for all $g \in G$. Hence $T^{g}=0$ or $T^{g}=W^{g}$, but then $T=0$ or $T=W$. Therefore, W is an irreducible H-submodule.

Theorem 2.7 (Clifford). Let G be a group acting irreducibly on a vector space V over a field F and suppose $H \unlhd G$. Then
(i) $V=\bigoplus_{i=1}^{n} V_{i}$ such that each V_{i} is H-invariant, $V_{i}=\bigoplus_{j=1}^{t_{i}} X_{i j}$ such that each $X_{i j}$ is an irreducible H-module, and $X_{i j} \cong X_{i^{\prime} j^{\prime}}$ (as H-modules) if and only if $i=i^{\prime}$.
(ii) Let U be an H-invariant subspace of V. Then $U=\bigoplus_{i=1}^{n} U_{i}$, where $U_{i}=U \cap V_{i}$.
(iii) t_{i} is independent of i.
(iv) G acts transitively on $\left\{V_{i}\right\}_{i=1}^{n}$.

Proof.
For (i), let $W=\bigoplus_{i=1}^{s} W_{i}$, where $W_{i} \subset V$ is an irreducible H-module for all $1 \leq i \leq s$ and s is chosen maximal. If W is not G-invariant, there exists an $1 \leq i \leq s$ and $g \in G$ such that $W_{i}^{g} \nsubseteq W$, thus $W_{i}^{g} \cap W \subset W_{i}^{g}$. By Lemma 2.6, W_{i}^{g} is an irreducible H-submodule, but $W_{i}^{g} \cap W$ is H-invariant, so $W_{i}^{g} \cap W=0$. Hence $W_{i}^{g}+W=W_{i}^{g} \oplus W=W_{i}^{g} \bigoplus_{i=1}^{s} W_{i}$, which contradicts the maximality of s. Therefore, W is G-invariant and since V is an irreducible G-module, we have $V=W=\bigoplus_{i=1}^{s} W_{i}$. Now relabel the W_{i} 's as $X_{i j}$'s such that $X_{i j} \cong X_{i^{\prime} j^{\prime}}$ if and only if $i=i^{\prime}$, and set $V_{i}=\bigoplus_{j=1}^{t_{i}} X_{i j}$ for $1 \leq i \leq n$. Then $V=\bigoplus_{i=1}^{n} V_{i}$, where each V_{i} is H-invariant and the direct product of irreducible H-modules.

For (ii), let U be an H-invariant subspace of V. If $U=V$, then we are done by (i). Without loss of generality, assume $U \subset V$. If $W_{j} \nsubseteq U$, it follows that $U \cap W_{j} \subset W_{j}$, but $U \cap W_{j}$ is H-invariant and W_{j} is an irreducible H-submodule. Thus $U \cap W_{j}=0$ and $U+W_{j}=U \oplus W_{j}$. Find all such W_{j} 's and set

$$
\begin{equation*}
V^{*}=U \oplus W_{j_{1}} \oplus W_{j_{2}} \oplus \cdots \oplus W_{j_{e}} \tag{1}
\end{equation*}
$$

By the construction of V^{*}, we have $W_{j} \subseteq V^{*}$ for all $1 \leq j \leq s$, but $V=\bigoplus_{j=1}^{s} W_{j}$. Consequently, $V=V^{*}$.

Let $V^{\prime}=\bigoplus_{k=1}^{e} W_{j_{k}}$ and $V^{\prime \prime}$ be the direct sum of the remaining W_{j} 's. Now $V=V^{\prime} \oplus V^{\prime \prime}$ and by (1), $V=U \oplus V^{\prime}$. By the Second Isomorphism Theorem,

$$
U \cong \frac{U}{\{0\}}=\frac{U}{U \cap V^{\prime}} \cong \frac{U+V^{\prime}}{V^{\prime}}=\frac{V}{V^{\prime}}=\frac{V^{\prime}+V^{\prime \prime}}{V^{\prime}} \cong \frac{V^{\prime \prime}}{V^{\prime} \cap V^{\prime \prime}}=\frac{V^{\prime \prime}}{\{0\}} \cong V^{\prime \prime}
$$

Hence $U \cong V^{\prime \prime}$ and U is the direct sum of irreducible H-modules. Without loss of generality, assume U is an irreducible H-module. Then it is enough to show there exists an $1 \leq i \leq n$ such that $U \subseteq V_{i}$.

Suppose $U \nsubseteq V_{i}$ for all $1 \leq i \leq n$. Now $U \nsubseteq W_{j}$ for all $1 \leq j \leq s$. Let $W_{m}^{\prime}=\bigoplus_{i=1}^{m} W_{i}$, where $U \nsubseteq W_{m}^{\prime}$ and m is chosen maximal. It follows that $U \subseteq W_{m+1}^{\prime}$. Moreover, $U \cap W_{m}^{\prime} \subset U$ and $U \cap W_{m}^{\prime}$ is H-invariant. By our assumption, U is an irreducible H-module, so $U \cap W_{m}^{\prime}=0$. Let $\overline{W_{m+1}^{\prime}}=W_{m+1}^{\prime} / W_{m}^{\prime}$. By the Second Isomorphism Theorem,

$$
\bar{U}=\frac{U+W_{m}^{\prime}}{W_{m}^{\prime}} \cong \frac{U}{U \cap W_{m}^{\prime}}=\frac{U}{\{0\}} \cong U .
$$

Since U is H-invariant, it follows that \bar{U} is H-invariant. However,

$$
\overline{W_{m+1}^{\prime}}=\frac{W_{m+1}^{\prime}}{W_{m}^{\prime}}=\frac{W_{m}^{\prime}+W_{m+1}}{W_{m}^{\prime}} \cong \frac{W_{m+1}}{W_{m}^{\prime} \cap W_{m+1}}=\frac{W_{m+1}}{\{0\}} \cong W_{m+1}
$$

and W_{m+1} is an irreducible H-module. Consequently, $\overline{W_{m+1}^{\prime}}$ is an irreducible H-module and $\bar{U} \subseteq \overline{W_{m+1}^{\prime}}$ is H-invariant. Thus $U \cong \bar{U}=\overline{W_{m+1}^{\prime}} \cong W_{m+1}$.

Suppose $W_{m+1} \subseteq V_{i}$ for some $1 \leq i \leq n$ and let $\widetilde{V}=V / V_{i}$. Now $\widetilde{V}=\bigoplus_{j=1}^{r} \widetilde{W}_{j}$, where

$$
\widetilde{W}_{j}=\frac{W_{j}+V_{i}}{V_{i}} \cong \frac{W_{j}}{W_{j} \cap V_{i}}=\frac{W_{j}}{\{0\}} \cong W_{j},
$$

and \widetilde{W}_{j} is not isomorphic to $W_{m+1} \cong \bar{U} \cong U$. Since $U \nsubseteq V_{i}$, we have $U \cap V_{i} \subset U$ and $U \cap V_{i}$ is H-invariant. Thus $U \cap V_{i}=0$ since U is an irreducible H-module and

$$
U \cong \frac{U}{\{0\}}=\frac{U}{U \cap V_{i}} \cong \frac{U+V_{i}}{V_{i}}=\widetilde{U} .
$$

If $\widetilde{U} \subseteq \widetilde{W}_{j}$ for some $1 \leq j \leq r$, then $\widetilde{U}=0$ or $\widetilde{U}=\widetilde{W}_{j}$ since \widetilde{U} is H-invariant and $\widetilde{W}_{j} \cong W_{j}$ is an irreducible H-module. If $\widetilde{U}=0$, then $U \subseteq V_{i}$, which is a contradiction.

If $\widetilde{U}=\widetilde{W}_{j}$, then $\widetilde{W}_{j}=\widetilde{U} \cong U$, which is also a contradiction. Thus $\widetilde{U} \nsubseteq \widetilde{W}_{j}$ for all such j. Since $U \nsubseteq V_{i}$, we have $\widetilde{U} \neq 0$. Repeat the above argument with V and U replaced by \widetilde{V} and \widetilde{U} to result in $\widetilde{U} \cong \widetilde{W_{j^{*}}}$, where $\widetilde{W_{j^{*}}} \nexists U$. However, $\widetilde{U} \cong U \cong \widetilde{W_{j^{*}}}$, which is a contradiction. Hence there exists $1 \leq i \leq n$ such that $U \subseteq V_{i}$.

For (iv), let $x \in G, 1 \leq i \leq n$, and $1 \leq j \leq t_{i}$. By hypothesis, $X_{i j}$ is an irreducible H-module and by Lemma 2.6, $X_{i j}^{x}$ is an irreducible H-module. From (ii), there exists $1 \leq i^{\prime} \leq n$ such that $X_{i j}^{x} \subseteq V_{i^{\prime}}$. However, $V_{i^{\prime}}=\bigoplus_{j=1}^{t_{i^{\prime}}} X_{i^{\prime} j}$, so there exists $1 \leq j^{\prime} \leq t_{i^{\prime}}$ such that $X_{i j}^{x} \cong X_{i^{\prime} j^{\prime}}$. For $1 \leq k \leq t_{i}$, we have $X_{i j} \cong X_{i k}$ and $X_{i j}^{x} \cong X_{i k}^{x}$, but from (i), there exists $1 \leq j^{\prime \prime} \leq t_{i^{\prime}}$ such that $X_{i k}^{x} \cong X_{i^{\prime} j^{\prime \prime}}$. Hence $V_{i}^{x} \subseteq V_{i^{\prime}}$ and $\operatorname{dim}_{F}\left(V_{i}^{x}\right) \leq \operatorname{dim}_{F}\left(V_{i^{\prime}}\right)$. Consider $\left\langle V_{k}^{g}: g \in G\right\rangle \subseteq V$ for $1 \leq k \leq n$. By Lemma 2.4, $\left\langle V_{k}^{g}: g \in G\right\rangle$ is a subspace of V and clearly, $\left\langle V_{k}^{g}: g \in G\right\rangle$ is G-invariant. Since $\left\langle V_{k}^{g}: g \in G\right\rangle \neq 0$ and G acts irreducibly on V, we have $V=\left\langle V_{k}^{g}: g \in G\right\rangle$.

By a similar argument in the preceding paragraph, for all $1 \leq l \leq n$, there exists $g \in G$ such that $V_{l} \subseteq V_{k}^{g}$ and $\operatorname{dim}_{F}\left(V_{l}\right) \leq \operatorname{dim}_{F}\left(V_{k}^{g}\right)=\operatorname{dim}_{F}\left(V_{k}\right)$. By reversing the roles of k and l above, we have $\operatorname{dim}_{F}\left(V_{k}\right)=\operatorname{dim}_{F}\left(V_{l}\right)$. Hence $\operatorname{dim}_{F}\left(V_{i}\right)=\operatorname{dim}_{F}\left(V_{i}^{x}\right) \leq$ $\operatorname{dim}_{F}\left(V_{i^{\prime}}\right)=\operatorname{dim}_{F}\left(V_{i}\right)$, so $\operatorname{dim}_{F}\left(V_{i}^{x}\right)=\operatorname{dim}_{F}\left(V_{i^{\prime}}\right)$. But $V_{i}^{x} \subseteq V_{i^{\prime}}$ implies $V_{i}^{x}=V_{i^{\prime}}$, thus G acts on V_{i} for all $1 \leq i \leq n$. Moreover, $V_{l} \subseteq V_{k}^{g_{1}}$ and $V_{k} \subseteq V_{l}^{g_{2}}$ for some $g_{1}, g_{2} \in G$. It follows that $V_{l}^{g_{1}^{-1} g_{2}^{-1}} \subseteq V_{k}^{g_{2}^{-1}} \subseteq V_{l}$, but $g_{1}^{-1} g_{2}^{-1}$ is a linear transformation. Hence $\operatorname{dim}_{F}\left(V_{l}^{g_{1}^{-1} g_{2}^{-1}}\right)=\operatorname{dim}_{F}\left(V_{l}\right)$, which implies $V_{l}^{g_{1}^{-1} g_{2}^{-1}}=V_{k}^{g_{2}^{-1}}$, or equivalently, $V_{l}^{g_{1}^{-1}}=V_{k}$. Therefore, G acts transitively on $\left\{V_{i}\right\}_{i=1}^{n}$.

For (iii), it follows from $X_{i j}^{x} \cong X_{i^{\prime} j^{\prime}}, \operatorname{dim}_{F}\left(V_{i}\right)=\operatorname{dim}_{F}\left(V_{i^{\prime}}\right), V_{i}^{x}=V_{i^{\prime}}$, $V_{i}^{x}=\bigoplus_{j=1}^{t_{i}} X_{i j}^{x}$, and $V_{i^{\prime}}=\bigoplus_{j^{\prime}=1}^{t_{i^{\prime}}} X_{i^{\prime} j^{\prime}}$ that $t_{i}=t_{i^{\prime}}$, thus t_{i} is independent of i.

Definition 2.13. The V_{i} 's described in Clifford's Theorem are called Wedderburn components of V with respect to H and are denoted by $W e d d_{V}(H)=\left\{V_{i}\right\}_{i=1}^{n}$.

Theorem 2.8. Let G be a group acting irreducibly on a vector space V over a field F and suppose $z \in \mathcal{Z}(G)$ has an eigenvalue $\lambda \in F$. Then $v^{z}=\lambda v$ for all $v \in V$. Moreover, if G acts faithfully on V over F, either $z=1$ or $\lambda \neq 1$.

Proof.
Let $W=\left\{v \in V: v^{z}=\lambda v\right\}$. Clearly, $W \subseteq V$ is a subspace of V since λ has an associated eigenvector. Let $g \in G$ and $w \in W$. Now $w^{g z}=w^{z g}=(\lambda w)^{g}=\lambda w^{g}$, so $w^{g} \in W$. Thus W is a G-submodule of V. Since G acts irreducibly on V, we have $V=W$.

Suppose G acts faithfully on V over F. If $z \neq 1$ and $\lambda=1$, then $v^{z}=\lambda v=v$ for all $v \in V$. Thus z acts trivially on V; however, G acts faithfully on V. Then $z=1$ and we have a contradiction. Therefore, $z=1$ or $\lambda \neq 1$.

Definition 2.14. Let $n \in \mathbb{N}$. The zeros of $x^{n}-1=0$ are called the $n^{\text {th }}$ roots of unity and they are

$$
\left\{1, \delta_{n}, \delta_{n}^{2}, \ldots, \delta_{n}^{n-1}\right\}
$$

where $\delta_{n}=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$. We call δ_{n}^{i} a primitive $n^{\text {th }}$ root of unity if

$$
\left\langle\delta_{n}^{i}\right\rangle=\left\{1, \delta_{n}, \delta_{n}^{2}, \ldots, \delta_{n}^{n-1}\right\}
$$

Definition 2.15. Let G be a group acting on a vector space V over a field F and $F \subseteq E$ be a field extension. The tensor product of V and E over F is given by

$$
V \otimes_{F} E=\left\{\sum_{i=1}^{n} \alpha_{i}\left(v_{i} \otimes e_{i}\right): \alpha_{i}, e_{i} \in E \text { and } v_{i} \in V\right\}
$$

under the following identifications for all $v, v_{1}, v_{2} \in V$, and for all $\alpha, e, e_{1}, e_{2} \in E$:
(i) $v \otimes\left(e_{1}+e_{2}\right)=v \otimes e_{1}+v \otimes e_{2}$.
(ii) $\left(v_{1}+v_{2}\right) \otimes e=v_{1} \otimes e+v_{2} \otimes e$.
(iii) $\alpha(v \otimes e)=\alpha v \otimes e=v \otimes \alpha e$.

Moreover, $V \otimes_{F} E$ is a vector space over E and G acts on $V \otimes_{F} E$ over E by

$$
(v \otimes e)^{g}=v^{g} \otimes e
$$

for all $v \in V$, for all $g \in G$, and for all $e \in E$.

Lemma 2.7. $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{s}} \cong \mathbb{Z}_{n_{1} n_{2} \cdots n_{s}}$ if and only if $\operatorname{gcd}\left(n_{1}, \ldots, n_{s}\right)=1$. Proof.

Let $Z=\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{s}}$ and suppose $Z \cong \mathbb{Z}_{n_{1} n_{2} \cdots n_{s}}$. Now Z is cyclic, hence $(1,1, \ldots, 1)$ is a generator of Z and $|(1,1, \ldots, 1)|=\prod_{i=1}^{s} n_{i}$. Since $\mathbb{Z}_{n_{1} n_{2} \cdots n_{s}}$ is a finite cyclic group, we have

$$
\prod_{i=1}^{s} n_{i}=|(1,1, \ldots, 1)|=\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{s}\right)=\frac{\prod_{i=1}^{s} n_{i}}{\operatorname{gcd}\left(n_{1}, n_{2}, \ldots, n_{s}\right)}
$$

Thus $\operatorname{gcd}\left(n_{1}, n_{2}, \ldots, n_{s}\right)=1$. Conversely, $\operatorname{suppose} \operatorname{gcd}\left(n_{1}, n_{2}, \ldots, n_{s}\right)=1$ and consider $\langle(1,1, \ldots, 1)\rangle$. Now

$$
|\langle(1,1, \ldots, 1)\rangle|=|(1,1, \ldots, 1)|=\frac{\prod_{i=1}^{s} n_{i}}{\operatorname{gcd}\left(n_{1}, n_{2}, \ldots, n_{s}\right)}=\prod_{i=1}^{s} n_{i}=|Z|
$$

thus Z is cyclic. Therefore, Z is isomorphic to $\mathbb{Z}_{n_{1} n_{2} \cdots n_{s}}$.
Lemma 2.8. Let F be a finite field. Then $F^{*}=F \backslash\{0\}$ is a cyclic group under multiplication.

Proof.

Since F is a field, F^{*} an abelian group. By the Fundamental Theorem of Finite Abelian Groups, $F^{*} \cong \mathbb{Z}_{p_{1}^{r_{1}}} \times \mathbb{Z}_{p_{2}^{r_{2}}} \times \cdots \times \mathbb{Z}_{p_{k}^{r_{k}}}$, where the p_{i} 's are prime and $r_{i} \in \mathbb{N}$ for $1 \leq i \leq k$. By Lemma 2.7, it is enough to show $p_{i} \neq p_{j}$ for all $i \neq j$. But this would imply $\operatorname{gcd}\left(p_{1}, p_{2}, \ldots, p_{k}\right)=1$ and it would be enough to show $\operatorname{lcm}\left(p_{1}^{r_{1}}, p_{2}^{r_{2}}, \ldots, p_{k}^{r_{k}}\right)=\prod_{i=1}^{k} p_{i}^{r_{i}}$.

Let $l=l c m\left(p_{1}^{r_{1}}, p_{2}^{r_{2}}, \ldots, p_{k}^{r_{k}}\right)$ and $\Delta=\prod_{i=1}^{k} p_{i}^{r_{i}}$. Since $p_{i}^{r_{i}} \mid \Delta$ for all $1 \leq i \leq k$, we have $l \leq \Delta$. Now there exists $t_{i} \in \mathbb{Z}$ such that $l=p_{i}^{r_{i}} t_{i}$ for each $1 \leq i \leq k$. Set $A_{i}=\left\{\left(1, \ldots, a_{i}, \ldots, 1\right): a_{i} \in \mathbb{Z}_{p_{i}^{r_{i}}}\right\}$ for each $1 \leq i \leq k$. Now $\bigotimes_{i=1}^{k} \mathbb{Z}_{p_{i}^{r_{i}}}=\prod_{i=1}^{k} A_{i}$. Moreover,

$$
\left(1, \ldots, a_{i}, \ldots, 1\right)^{p_{i}^{r_{i}}}=\left(1, \ldots, a_{i}^{p_{i}^{r_{i}}}, \ldots, 1\right)=(1, \ldots, 1, \ldots, 1)
$$

for each $1 \leq i \leq k$. Thus $F^{*} \cong \bigotimes_{i=1}^{k} \mathbb{Z}_{p_{i}^{r_{i}}}=\prod_{i=1}^{k} A_{i}$, where $a_{i} \in A_{i}$ and $a_{i}^{p_{i}^{r_{i}}}=1$ for all $1 \leq i \leq k$.

Let $f_{1} f_{2} \cdots f_{k} \in F^{*}$, where $f_{i} \in A_{i}$ for each $1 \leq i \leq k$, and consider the polynomial $x^{l}-1 \in F[x]$. Since $l=p_{i}^{r_{i}} t_{i}$ for $1 \leq i \leq k$, we have

$$
\left(f_{1} \cdots f_{k}\right)^{l}-1=f_{1}^{l} \cdots f_{k}^{l}-1=f_{1}^{p_{1}^{r_{1}} t_{1}} \cdots f_{k}^{p_{k}^{r_{k}} t_{k}}-1=1 \cdots 1-1=1-1=0
$$

so $f_{1} f_{2} \cdots f_{k}$ is a zero of $x^{l}-1$. Thus $\left|F^{*}\right| \leq l$, but $\left|F^{*}\right|=\left|\bigotimes_{i=1}^{k} \mathbb{Z}_{p_{i}^{r_{i}}}\right|=\Delta$. Therefore, $l=\operatorname{lcm}\left(p_{1}^{r_{1}}, p_{2}^{r_{2}}, \ldots, p_{k}^{r_{k}}\right)=\Delta=\prod_{i=1}^{k} p_{i}^{r_{i}}$ and so F^{*} is isomorphic to the cyclic group $\mathbb{Z}_{p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{k}^{r_{k}}}$.

Theorem 2.9. Let G be a group acting faithfully and irreducibly on a vector space V over a field F. Then $\mathcal{Z}(G)$ is cyclic.

Proof.

Case 1: Suppose F contains a primitive $|G|^{\text {th }}$ root of unity.
Let $g \in G$. Now g satisfies $x^{|G|}-1$, so the characteristic polynomial of g divides $x^{|G|}-1$. Since F contains a primitive $|G|^{\text {th }}$ root of unity, it follows that F contains all the eigenvalues of all $g \in G$. Let $z \in \mathcal{Z}(G)$ and $\lambda_{z} \in F$ be a corresponding eigenvalue of z. Define $\theta: \mathcal{Z}(G) \rightarrow F^{*}$ by $z^{\theta}=\lambda_{z}$ for all $z \in \mathcal{Z}(G)$. By Theorem 2.8, $v^{z}=\lambda_{z} v$ for all $v \in V$, so θ is well-defined. Let $z_{1}, z_{2} \in \mathcal{Z}(G)$ and $\lambda_{z_{1} z_{2}}$ be an eigenvalue of $z_{1} z_{2}$. Now for all $v \in V$,

$$
\lambda_{z_{1} z_{2}} v=v^{z_{1} z_{2}}=\left(v^{z_{1}}\right)^{z_{2}}=\left(\lambda_{z_{1}} v\right)^{z_{2}}=\lambda_{z_{1}}\left(v^{z_{2}}\right)=\lambda_{z_{1}} \lambda_{z_{2}} v
$$

hence $\left(z_{1} z_{2}\right)^{\theta}=z_{1}^{\theta} z_{2}^{\theta}$ and θ is a homomorphism. To show injectivity, suppose $z_{1}^{\theta}=z_{2}^{\theta}$. Then $v^{z_{1}}=v^{z_{2}}$ for all $v \in V$, so $v^{z_{1} z_{2}^{-1}}=v$ for all $v \in V$. Thus $z_{1} z_{2}^{-1}$ acts trivially on V; however, G acts faithfully on V and it follows that $z_{1}=z_{2}$. By the First Isomorphism Theorem, $\mathcal{Z}(G) \cong \mathcal{Z}(G)^{\theta} \leqslant F^{*}$. Since $\mathcal{Z}(G)^{\theta}$ is finite, Lemma 2.8 on F implies $\mathcal{Z}(G)^{\theta}$ is cyclic. Therefore, $\mathcal{Z}(G)$ is cyclic.

Case 2: Suppose F does not contain a primitive $|G|^{\text {th }}$ root of unity.

Let ω be a primitive $|G|^{\text {th }}$ root of unity, $L=F(\omega)$, and $V_{L}=V \otimes_{F} L$. By Definition 2.15, V_{L} is a vector space over L and G acts on V_{L} over L by $(v \otimes l)^{g}=v^{g} \otimes l$.

Furthermore, L contains a primitive $|G|^{\mid t h}$ root of unity. Let $0 \neq W \subseteq V_{L}$ be a minimal G-invariant subspace, K be the kernel of the action of G on W, and $\bar{G}=G / K$. Now \bar{G} acts irreducibly and faithfully on W over L by the induced map. Since L contains a primitive $|G|^{\text {th }}$ root of unity, we have $y^{|G|}=1$, where y is a primitive root. But $|G|=|\bar{G}| \cdot|K|$ and it follows that $y^{|\bar{G}|}=1$. Thus L contains a primitive $|\bar{G}|^{\text {th }}$ of unity. By Case $1, \mathcal{Z}(\bar{G})$ is cyclic, so $\overline{\mathcal{Z}(G)}$ is cyclic. Now the Second Isomorphism Theorem implies

$$
\overline{\mathcal{Z}(G)}=\frac{\mathcal{Z}(G) K}{K} \cong \frac{\mathcal{Z}(G)}{\mathcal{Z}(G) \cap K}
$$

so it is enough to show $\mathcal{Z}(G) \cap K=1$ to prove $\mathcal{Z}(G)$ is cyclic.
Let $z \in \mathcal{Z}(G) \cap K$. Now z has 1 as an eigenvalue on W and it follows from Theorem 2.8 that z has 1 as an eigenvalue on V_{L}. However, the characteristic polynomial of z on V_{L} is the same as the characteristic polynomial of z on V since $(v \otimes l)^{g}=v^{g} \otimes l$, hence z has 1 as an eigenvalue on V. By Theorem 2.8, $v^{z}=1 v=v$ for all $v \in V$, so z acts trivially on V. Thus $z=1$ since G acts faithfully on V and so $\mathcal{Z}(G) \cap K=1$. But then $\overline{\mathcal{Z}(G)} \cong \mathcal{Z}(G)$, where $\overline{\mathcal{Z}(G)}$ is cyclic. Therefore, $\mathcal{Z}(G)$ is cyclic.

Lemma 2.9. Let G be a group acting irreducibly on a vector space V over a field F and K be the kernel of G on V. If G is abelian, then G / K is cyclic.

Proof.
Let $\bar{G}=G / K$. Now \bar{G} acts irreducibly and faithfully on V. By Theorem 2.9, $\mathcal{Z}(\bar{G})$ is cyclic. Since G is abelian, we have \bar{G} is abelian, so $\bar{G}=\mathcal{Z}(\bar{G})$ is cyclic.

Theorem 2.10. Let G be an abelian group and suppose G acts irreducibly on a vector space V over a field F. If F contains an $|G|^{\text {th }}$ root of unity, then $\operatorname{dim}_{F}(V)=1$.

Proof.
Let K be the kernel of G on V and $\bar{G}=G / K$. By Lemma 2.9, \bar{G} is cyclic, so $\bar{G}=\langle\bar{x}\rangle$ for some $\bar{x} \in \bar{G}$. Let $g \in G$. Now $\bar{g} \in \bar{G}=\langle\bar{x}\rangle$ and so there exists
$n \in \mathbb{N}_{0},(0 \leq n \leq|\bar{G}|-1)$ such that $\bar{g}=\bar{x}^{n}=\overline{x^{n}}$. It follows that $g=x^{n} k \in\langle x\rangle K$ for some $k \in K$, which implies $G=\langle x\rangle K$.

Let $v_{1} \in V$ be a nonzero eigenvector of x and $W=\operatorname{Span}_{F}\left(v_{1}\right)$. Clearly, $0 \neq W \subseteq V$ and W is a subspace of V. Let $g \in G, \alpha \in F$, and λ_{1} be the corresponding eigenvalue of v_{1}. Now $\left(\alpha v_{1}\right)^{g}=\left(\alpha v_{1}\right)^{x^{n} k}=\alpha\left(v_{1}^{x^{n}}\right)^{k}=\alpha \lambda_{1}^{n} v_{1} \in W$ and so W is G-invariant. However, G acts irreducibly on V, which implies $V=W=\operatorname{Span}\left(v_{1}\right)$. Therefore, $\left\{v_{1}\right\}$ is a basis for V and $\operatorname{dim}_{F}(V)=1$.

Theorem 2.11 (Frobenius, 1901). Let G be a group and suppose H is a nontrivial subgroup of G such that $H \cap H^{g}=1$ for all $g \in G \backslash H$. Then $G=K \rtimes H$, where

$$
K=\left(G \backslash \bigcup_{g \in G} H^{g}\right) \cup\{1\}
$$

$K \unlhd G$, and $C_{K}(h)=1$ for all $h \in H \backslash\{1\}$.

Definition 2.16. Groups satisfying Frobenius' Theorem are called Frobenius groups with Frobenius complement H and Frobenius kernel K.

The only known proof of Frobenius' Theorem involves Character theory and is beyond the scope of this paper. An immediate consequence of Frobenius' Theorem is the following:

Theorem 2.12. Let G be a Frobenius group with complement H and kernel K. Then
(i) $G=H K$ with $H \cap K=1$.
(ii) $|H|||K|-1$.
(iii) Every element of H^{*} induces by conjugation an automorphism of K which fixes only the identity of K.
(iv) $C_{G}(k) \leqslant K$ for all $k \in K \backslash\{1\}$.

Proof.
See Theorem 7.6, pg. 38 in [Gor07].

Theorem 2.13. Let $G=H A$ be a Frobenius group with kernel H and complement A, H be an elementary abelian q-group, and A be cyclic. Suppose that G acts irreducibly and faithfully on a vector space V over a field F containing a primitive $q^{t h}$ root of unity. Then $\left|\operatorname{Wedd}_{V}(H)\right|=|A|$.

Proof.
Let $W e d d_{V}(H)=\left\{V_{i}\right\}_{i=1}^{m}$. By Clifford's Theorem (2.7), G acts transitively on $\left\{V_{i}\right\}_{i=1}^{m}$. Since the V_{i} 's are H-invariant and $G=H A$, we have A acts transitively on $\left\{V_{i}\right\}_{i=1}^{m}$. Let $V_{1} \subseteq\left\{V_{i}\right\}_{i=1}^{m}$. By Theorem 1.6, $m=\left|W e d d_{V}(H)\right|=\left[A: A_{V_{1}}\right] \leq|A|$.

Suppose $m<|A|$. Let $G_{1}=H A_{V_{1}}, N_{1}$ be the kernel of G_{1} on V_{1}, and $a_{i} \in A$, where $V_{1}^{a_{i}}=V_{i}$ for every $1 \leq i \leq m$. Now $N_{1}^{a_{i}}$ is the kernel of $G_{1}^{a_{i}}$ on $V_{1}^{a_{i}}$ for every $1 \leq i \leq m$. Since $A_{V_{1}} \cap N_{1} \leqslant N_{1}$, we have $\left(A_{V_{1}} \cap N_{1}\right)^{a_{i}} \leqslant N_{1}^{a_{i}}$, but A is abelian, so $\left(A_{V_{1}} \cap N_{1}\right)^{a_{i}}=A_{V_{1}} \cap N_{1}$. Hence $A_{V_{1}} \cap N_{1} \leqslant N_{1}^{a_{i}}$ for all $1 \leq i \leq m$, which implies $A_{V_{1}} \cap N_{1} \leqslant \bigcap_{i=1}^{m} N_{1}^{a_{i}}=1$ since G acts faithfully on V. Thus $A_{V_{1}} \cap N_{1}=1$. Since $N_{1} \unlhd G_{1}$, we have $1=\left(A_{V_{1}} \cap N_{1}\right)^{g}=A_{V_{1}}^{g} \cap N_{1}$ for all $g \in G_{1}$, but then

$$
N_{1} \subseteq\left(G_{1} \backslash \bigcup_{g \in G_{1}} A_{V_{1}}^{g}\right) \cup\{1\} \subseteq\left(G \backslash \bigcup_{g \in G} A_{V_{1}}^{g}\right) \cup\{1\}=H
$$

Let $\overline{G_{1}}=G_{1} / N_{1}=\bar{H} \overline{A_{V_{1}}}$. Now $\overline{G_{1}}$ acts faithfully on V_{1}. By Clifford's Theorem, $V_{1}=\bigoplus_{j=1}^{t_{1}} X_{1 j}$, where the $X_{1 j}$'s are irreducible H-modules. By Lemma 2.9, \bar{H} is cyclic because H is abelian. Let $\bar{x} \in \bar{H}$ such that $\bar{H}=\langle\bar{x}\rangle$. Since F contains a primitive $q^{\text {th }}$ root of unity, we have $\operatorname{dim}_{F}\left(X_{1 j}\right)=1$ by Theorem 2.10 used on \bar{H}. Hence \bar{x} acts like a scalar on $X_{1 j}$ for each $1 \leq j \leq t_{1}$, so \bar{x} acts like a scalar on $V_{1}=\bigoplus_{j=1}^{t_{1}} X_{1 j}$. Since $A_{V_{1}}$ fixes V_{1}, we have $\left[\bar{x}, \overline{A_{V_{1}}}\right]$ acts trivially on V_{1}. For if $[\bar{x}, \bar{a}] \in\left[\bar{x}, \overline{A_{V_{1}}}\right]$ and $v_{1} \in V_{1}$, then $v_{1}^{[\bar{x}, \bar{a}]}=v_{1}^{\bar{x}^{-1} \bar{a}^{-1} \bar{x} \bar{a}}=\lambda^{-1} v_{1}^{\bar{a}^{-1} \bar{x} \bar{a}}=\lambda^{-1} v_{1}^{\bar{x}} \bar{a}=\lambda^{-1} \lambda v_{1}^{\bar{a}}=v_{1}$. However, $\overline{G_{1}}$ acts faithfully on V_{1}, so $\left[\bar{x}, \overline{A_{V_{1}}}\right]=1$. Since $\bar{H}=\langle\bar{x}\rangle$, we have $\left[\bar{H}, \overline{A_{V_{1}}}\right]=1$ and $\left[H, A_{V_{1}}\right] \leqslant N_{1}$. It follows from $H \unlhd G$ and A is abelian that $\left[H, A_{V_{1}}\right]^{a_{i}}=\left[H, A_{V_{1}}\right] \leqslant N_{1}^{a_{i}}$ for every $1 \leq i \leq m$. Thus $\left[H, A_{V_{1}}\right] \leqslant \bigcap_{i=1}^{m} N_{1}^{a_{i}}=1$ and $\left[H, A_{V_{1}}\right]=1$. Because $G=H A$ is a Frobenius group, we have $C_{H}(a)=1$ for all $a \in A \backslash\{1\}$ by Theorem 2.11, but
$\left[H, A_{V_{1}}\right]=1$. Thus $A_{V_{1}}=1$ and so $m=\left|\operatorname{Wedd}_{V}(H)\right|=\left[A: A_{V_{1}}\right]=|A|$, which is a contradiction. Therefore, $\left|W e d d_{V}(H)\right|=|A|$.

Theorem 2.14. Let $G=P Q$ be a group, Q be a minimal normal elementary abelian q-group, $C_{G}(Q)=Q$, and suppose $P \cong \mathbb{Z}_{p}$ for some prime p. If G acts faithfully on a vector space V over a field F with char $F \notin\{p, q\}$, then $C_{V}(P) \neq 0$.

Proof.

Case 1: Suppose F contains a primitive $q^{\text {th }}$ root of unity.
Let $P=\langle x\rangle$ and use induction on $\operatorname{dim}_{F}(V)$. Since char $F \notin\{p, q\}$, we know either char F is relatively prime with $|G|$ or char $F=0$. By Maschke's Theorem (2.6), G acts completely reducibly on V. Since G acts faithfully on V, it follows that Q acts faithfully on V. Thus there exists a nontrivial irreducible G-submodule U of V such that Q acts nontrivially on U. Let K be the kernel of G on U. Now $K \unlhd G$ and so $Q \cap K \unlhd G$. Moreover, $Q \cap K<Q$ since Q acts nontrivially on U. Thus $Q \cap K=1$ by the minimality of Q.

Suppose $k \in K$ is a q-element. By Sylow, there exists $g \in G$ such that $\langle k\rangle \leqslant Q^{g}$, but $Q^{g}=Q$. Hence $\langle k\rangle \leqslant Q \cap K=1$ and K is a p-group. Again by Sylow, there exists $g \in G$ such that $K \leqslant P^{g}$. But $K \unlhd G$ implies $K=K^{g^{-1}} \leqslant P$, hence $K=1$ or $K=P$. If $K=P$, then $P \unlhd G$ and $[P, Q] \leqslant P \cap Q=1$ by coprime orders. But then $P \leqslant C_{G}(Q)=Q$, which implies $P=1$. This is a contradiction since $P \cong \mathbb{Z}_{p}$. Therefore, $K=1$ and G acts faithfully on U.

If $U \neq V$, then $\operatorname{dim}_{F}(U)<\operatorname{dim}_{F}(V)$, so by the induction hypothesis, $0 \neq C_{U}(P) \leqslant C_{V}(P)$. Without loss of generality, assume $U=V$. Then G acts faithfully and irreducibly on $V=U$. Now it follows from $P \cap Q=1$ and $Q \unlhd G$ that $1=(P \cap Q)^{g}=P^{g} \cap Q$ for all $g \in G$. Hence

$$
Q \subseteq\left(G \backslash \bigcup_{g \in G} P^{g}\right) \cup\{1\}
$$

If $C_{Q}(x) \neq 1$, then $C_{Q}(x) \unlhd P Q=G$ since $P=\langle x\rangle$ and Q is abelian, but $C_{Q}(x) \leqslant Q$. By the minimality of Q, we have $C_{Q}(x)=Q$. Now $[Q, x]=1$ and by extension, $[Q, P]=1$. Thus $P \leqslant C_{G}(Q)=Q$ and $P=1$, which is a contradiction. Therefore, $C_{Q}(x)=1$.

Clearly, $P \leqslant N_{G}(P)$. If there exists $n \in N_{G}(P)$, where n is a q-element, then $[P, n] \leqslant P \cap[P, Q] \leqslant P \cap Q=1$. Hence $n \in C_{Q}(P)$, which implies $n \in C_{Q}(x)=1$ and $N_{G}(P)$ is a p-group. Thus $N_{G}(P) \leqslant P$ and we have $N_{G}(P)=P$. Let $g \in G \backslash P$. If $P \cap P^{g} \neq 1$, then $P \cap P^{g}=P$, so $P \leqslant P^{g}$. Hence $P=P^{g}$ and $g \in N_{G}(P)=P$, which is a contradiction. Thus $P \cap P^{g}=1$ and P is a trivial intersection (TI) subgroup. By Frobenius' Theorem (2.11), $\left(G \backslash \bigcup_{g \in G} P^{g}\right) \cup\{1\} \leqslant G$.

Let $x \in\left(G \backslash \bigcup_{g \in G} P^{g}\right) \cup\{1\}$ be a p-element. If $x \notin\{1\}$, then $x \in G \backslash \bigcup_{g \in G} P^{g}$. Now $\langle x\rangle$ is a p-group, so by Sylow, there exists $g \in G$ such that $\langle x\rangle \leqslant P^{g}$. Then $\langle x\rangle \leqslant \bigcup_{g \in G} P^{g}$, which is a contradiction. Thus $x=1$ and $\left(G \backslash \bigcup_{g \in G} P^{g}\right) \cup\{1\}$ is a q-group. Since $Q \in \operatorname{Syl}_{q}(G)$, we have $\left(G \backslash \bigcup_{g \in G} P^{g}\right) \cup\{1\} \leqslant Q$ and by Frobenius' Theorem, $\left(G \backslash \bigcup_{g \in G} P^{g}\right) \cup\{1\} \unlhd G$. It follows from the minimality of Q that

$$
Q=\left(G \backslash \bigcup_{g \in G} P^{g}\right) \cup\{1\}
$$

Thus G is a Frobenius group with kernel Q and complement P.
By Theorem 2.13, $\left|\operatorname{Wedd}_{V}(Q)\right|=|P|=p$. Let $W e d d_{V}(Q)=\left\{V_{i}\right\}_{i=1}^{p}$. Since the V_{i} 's are Q-invariant and $G=P Q$, we have $P=\langle x\rangle$ acts transitively on $\left\{V_{i}\right\}_{i=1}^{p}$. Let $V_{1}^{x^{i-1}}=V_{i}$ for $1 \leq i \leq p$ and $v_{1} \in V_{1}$ be nonzero. Since $V=\bigoplus_{i=1}^{p} V_{i}$, we have $\left\{v_{1}^{x^{i-1}}\right\}_{i=1}^{p}$ is linearly independent. Thus $v=\sum_{i=1}^{p} v_{1}^{x^{i-1}} \neq 0$ and $v^{x}=\sum_{i=1}^{p} v_{1}^{x^{i}}=v$, so $v \in C_{V}(P)$. Therefore, $C_{V}(P) \neq 0$.

Case 2: Suppose F does not contain a primitive $q^{\text {th }}$ root of unity.
Let ω be a primitive $q^{\text {th }}$ root of unity, $L=F(\omega)$, and $V_{L}=V \otimes_{F} L$. Now G acts faithfully on V_{L} and char $L \notin\{p, q\}$. By Case 1 on V_{L} over L, we have $C_{V_{L}}(P) \neq 0$. Therefore, $C_{V}(P) \neq 0$.

3 The Transfer Homomorphism

Definition 3.1. Let G be a group, $H \leqslant G,[G: H]=n,\left\{t_{i}\right\}_{i=1}^{n} \subseteq G$ such that $G=\bigcup_{i=1}^{n} H t_{i}$, and suppose $H t_{i}=H t_{j}$ if and only if $t_{i}=t_{j}$. The set $\left\{t_{i}\right\}_{i=1}^{n}$ is called a transversal of H in G. In addition, the set of all transversals of H in G is given by

$$
\mathscr{T}=\left\{T=\left\{t_{i}\right\}_{i=1}^{n} \subseteq G: T \text { is a transversal of } H \text { in } G\right\} .
$$

Lemma 3.1. Let G be a group, $H \leqslant G,[G: H]=n$, and \mathscr{T} be the set of transversals of H in G. Then G acts on \mathscr{T} by $T^{g}=\left\{t_{i} g\right\}_{i=1}^{n}$ for all $g \in G$ and H acts on \mathscr{T} by $T^{h}=\left\{h t_{i}\right\}_{i=1}^{n}$ for all $h \in H$.

Proof.
It is enough to show $\left\{t_{i} g\right\}_{i=1}^{n}$ and $\left\{h t_{i}\right\}_{i=1}^{n}$ are indeed transversals of H in G. Let $g \in G$ and $\left\{t_{i}\right\}_{i=1}^{n} \in \mathscr{T}$. If $H t_{i} g=H t_{j} g$, then $H t_{i}=H t_{j}$, but $\left\{t_{i}\right\}_{i=1}^{n}$ is a transversal of H in G. Thus $t_{i}=t_{j}$ and $T^{g}=\left\{t_{i} g\right\}_{i=1}^{n} \in \mathscr{T}$. Therefore, G acts on \mathscr{T} by right multiplication.

Let $h \in H$ and $\left\{t_{i}\right\}_{i=1}^{n} \in \mathscr{T}$. If $H h t_{i}=H h t_{j}$, then $H t_{i}=H t_{j}$, but $t_{i}=t_{j}$ since $\left\{t_{i}\right\}_{i=1}^{n}$ is a transversal of H in G. Therefore, $T^{h}=\left\{h t_{i}\right\}_{i=1}^{n} \in \mathscr{T}$ and H acts on \mathscr{T} by left multiplication.

Definition 3.2. Let G be a group, $J \unlhd H \leqslant G, H / J$ be abelian, \mathscr{T} be the set of transversals of H in G, and suppose $T, U \in \mathscr{T}$. Define the element $T / U \in H / J$ by

$$
T / U=\prod_{i=1}^{n} J t_{i} u_{i}^{-1}
$$

where $T=\left\{t_{i}\right\}_{i=1}^{n}, U=\left\{u_{i}\right\}_{i=1}^{n}$, and $t_{i} u_{i}^{-1} \in H$ for all $1 \leq i \leq n$.

In Definition 3.2, T / U does not represent a quotient group, but implies an operator on T and U that is denoted T / U.

Theorem 3.1. Let G be a group, $J \unlhd H \leqslant G, H / J$ be abelian, $[G: H]=n$, and \mathscr{T} be the set of transversals of H in G. Then
(i) $T / T=J$ for all $T \in \mathscr{T}$.
(ii) $T / U=(U / T)^{-1}$ for all $T, U \in \mathscr{T}$.
(iii) $T / U=T / V V / U$ for all $T, U, V \in \mathscr{T}$.

Proof.

For (i), let $T \in \mathscr{T}$. The result follows from the definition of T / T.
For (ii), let $T, U \in \mathscr{T}$. Since H / J is abelian, we have

$$
T / U=\prod_{i=1}^{n} J t_{i} u_{i}^{-1}=\prod_{i=1}^{n} J\left(u_{i} t_{i}^{-1}\right)^{-1}=\left(\prod_{i=1}^{n} J u_{i} t_{i}^{-1}\right)^{-1}=(U / T)^{-1}
$$

For (iii), let $T, U, V \in \mathscr{T}$. Since H / J is abelian,

$$
\begin{aligned}
T / U=\prod_{i=1}^{n} J t_{i} u_{i}^{-1} & =\prod_{i=1}^{n} J t_{i} v_{i}^{-1} v_{i} u_{i}^{-1}=\prod_{i=1}^{n} J t_{i} v_{i}^{-1} J v_{i} u_{i}^{-1} \\
& =\prod_{i=1}^{n} J t_{i} v_{i}^{-1} \prod_{i=1}^{n} J v_{i} u_{i}^{-1}=T / V V / U
\end{aligned}
$$

Therefore, $T / U=T / V V / U$.

Theorem 3.2. Let G be a group, $J \unlhd H \leqslant G, H / J$ be abelian, $[G: H]=n$, \mathscr{T} be the set of transversals of H in G, and suppose $T \in \mathscr{T}$. Define the transfer homomorphism, $\tau: G \rightarrow H / J$ by

$$
g^{\tau}=T^{g} / T
$$

for all $g \in G$. Then for all $g \in G$, for all $h \in H$, and for all $U \in \mathscr{T}$:
(i) $T^{g} / U^{g}=T / U$ and $T^{h} / U^{h}=T / U$.
(ii) τ is independent of T.
(iii) τ is a homomorphism.

Proof.
Let $U=\left\{u_{i}\right\}_{i=1}^{n} \in \mathscr{T}$ such that $t_{i} u_{i}^{-1} \in H$ for all $1 \leq i \leq n$. For (i), let $g \in G$
and $h \in H$. Now

$$
T^{g} / U^{g}=\prod_{i=1}^{n} J t_{i} g\left(u_{i} g\right)^{-1}=\prod_{i=1}^{n} J t_{i} g g^{-1} u_{i}^{-1}=\prod_{i=1}^{n} J t_{i} u_{i}^{-1}=T / U
$$

and since H / J is abelian,
$T^{h} / U^{h}=\prod_{i=1}^{n} J h t_{i}\left(h u_{i}\right)^{-1}=\prod_{i=1}^{n} J h t_{i} u_{i}^{-1} h^{-1}=\prod_{i=1}^{n} J h J t_{i} u_{i}^{-1} J h^{-1}=\prod_{i=1}^{n} J t_{i} u_{i}^{-1}=T / U$.
Therefore, $T^{g} / U^{g}=T / U$ and $T^{h} / U^{h}=T / U$.
For (ii), it follows from Theorem 3.1, part (i), and the abelian property of H / J that

$$
\begin{aligned}
T^{g} / T & =T^{g} / U^{g} U^{g} / U U / T=T / U U^{g} / U U / T=U^{g} / U T / U U / T \\
& =U^{g} / U T / T=U^{g} / U J \\
& =U^{g} / U
\end{aligned}
$$

Therefore, τ is independent of T.
For (iii), let $x, y \in G$. By Theorem 3.1 and part (i), we have

$$
(x y)^{\tau}=T^{x y} / T=T^{x y} / T^{y} T^{y} / T=T^{x} / T T^{y} / T=x^{\tau} y^{\tau} .
$$

Therefore, τ is a homomorphism.

Theorem 3.3. Let G be a group, $J \unlhd H \leqslant G, H / J$ be abelian, $[G: H]=n$, \mathscr{T} be the set of transversals of H in $G, T=\left\{t_{i}\right\}_{i=1}^{n} \in \mathscr{T}, \tau$ be the transfer of G into H / J, and suppose $\operatorname{gcd}([G: H],[H: J])=1$. Then $H \cap \mathcal{Z}(G) \cap G^{\prime} \leqslant J$.

Proof.
Let $h \in H \cap \mathcal{Z}(G) \cap G^{\prime}$. By the First Isomorphism Theorem, $G / \operatorname{Ker} \tau \cong G^{\tau} \leqslant H / J$, so $G / \operatorname{Ker} \tau$ is abelian. By Theorem 1.19, $G^{\prime} \leqslant \operatorname{Ker} \tau$ and so $h \in \operatorname{Ker} \tau$. Since $h \in \mathcal{Z}(G)$, we have $J=h^{\tau}=T^{h} / T=\prod_{i=1}^{n} J t_{i} h t_{i}^{-1}=\prod_{i=1}^{n} J h=J h^{n}$, hence $h^{n} \in J$. Next $(J h)^{n}=J h^{n}=J$, so by Lagrange, $|J h|$ divides $n=[G: H]$ and $|J h|$ divides $[H: J]$. However, $\operatorname{gcd}([G: H],[H: J])=1$, which implies $J h=J$ and $h \in J$. Therefore, $H \cap \mathcal{Z}(G) \cap G^{\prime} \leqslant J$.

Lemma 3.2. Let G be a group, $J \unlhd H \leqslant G, H / J$ be abelian, and \mathscr{T} be the set of transversals of H in G. Define an equivalence relation \sim on \mathscr{T} by $T \sim U$ if and only if $T / U=J$ for all $T, U \in \mathscr{T}$.

Proof.
Let $T, U \in \mathscr{T}$. Now $T / T=J$ by Theorem $3.1(i)$ and so \sim is reflexive. If $T \sim U$, then $T / U=J$. By Theorem 3.1 $(i i), U / T=(T / U)^{-1}=(J)^{-1}=J$, so $U \sim T$ and \sim is symmetric. Finally, if $V \in \mathscr{T}$ such that $T \sim U$ and $U \sim V$, then by Theorem 3.1(iii), $T / V=T / U U / V=J J=J$. Hence $T \sim V$ and \sim is transitive. Therefore, \sim is an equivalence relation on \mathscr{T}.

Lemma 3.3. Let G be a group, $J \unlhd H \leqslant G, H / J$ be abelian, and \mathscr{T} be the set of transversals of H in G. Define $\Omega=\{[T]: T \in \mathscr{T}\}$ to be the set of equivalence classes on \mathscr{T} under the relation described in Lemma 3.2. Then
(i) G acts on Ω by $[T]^{g}=\left[T^{g}\right]$ for all $g \in G$.
(ii) H acts on Ω by $[T]^{h}=\left[T^{h}\right]$ for all $h \in H$.

Proof.

Since G and H already act on \mathscr{T} in the prescribed manner by Lemma 3.1, it is enough to show the action is well-defined. Let $g \in G$ and suppose $[T],[U] \in \Omega$ such that $[T]^{g}=[U]^{g}$. This implies $T^{g} \sim U^{g}$ if and only if $T^{g} / U^{g}=J$, which is to say if and only if $T / U=J$. But this is equivalent to $T \sim U$ if and only if $[T]=[U]$. Thus the action of G on Ω is well-defined.

Similarly, let $h \in H$ and suppose $[T]^{h}=[U]^{h}$. By Theorem 3.2, $T^{h} \sim U^{h}$ is equivalent to $T^{h} / U^{h}=J$ if and only if $T / U=J$, which is to say if and only if $T \sim U$, or, equivalently, $[T]=[U]$. Therefore, the action of H on Ω is well-defined.

Theorem 3.4. Let G be a group, $J \unlhd H \leqslant G, H / J$ be abelian, $[G: H]=n$, \mathscr{T} be the set of transversals of H in G, and suppose $\operatorname{gcd}([G: H],[H: J])=1$. Then
(i) H acts transitively on Ω.
(ii) $H_{[T]}=J$ for all $T \in \mathscr{T}$.

Proof.
For (i), let $[T],[U] \in \Omega$. Suppose there exists $h \in H$ such that $[T]^{h}=[U]$. It would follow that $\left[T^{h}\right]=[U]$ if and only if $T^{h} \sim U$, or, equivalently, $T^{h} / U=J$. Thus it is enough to show $T^{h} / U=J$. In addition,

$$
T^{h} / U=T^{h} / T T / U=\prod_{i=1}^{n} J h t_{i} t_{i}^{-1} t_{i} u_{i}^{-1}=\prod_{i=1}^{n} J h t_{i} u_{i}^{-1}=\prod_{i=1}^{n} J h J t_{i} u_{i}^{-1}=J h^{n}(T / U) .
$$

Let $m=[H: J]$. Since $\operatorname{gcd}(n, m)=1$, there exist $r, s \in \mathbb{Z}$ such that $r n+s m=-1$. Let $h \in H$ such that $J h=(T / U)^{r}$. Then

$$
J h^{n}(T / U)=(T / U)^{r n}(T / U)=(T / U)^{r n+1}=(T / U)^{-s m}=J
$$

and H acts transitively on Ω.
For (ii), let $[T] \in \Omega$ and $j \in J$. Now

$$
T^{j} / T=\prod_{i=1}^{n} J j t_{i} t_{i}^{-1}=\prod_{i=1}^{n} J j=\prod_{i=1}^{n} J=J
$$

which implies $T^{j} \sim T$, but this is equivalent to $\left[T^{j}\right]=[T]$. Hence $[T]^{j}=[T]$ and $J \leqslant H_{[T]}$. Conversely, let $h \in H_{[T]}$. Now $[T]^{h}=[T]$ implies $T^{h} / T=J$, but

$$
J=T^{h} / T=\prod_{i=1}^{n} J h t_{i} t_{i}^{-1}=\prod_{i=1}^{n} J h=J h^{n}
$$

and so $h^{n} \in J$. Let $\bar{H}=H / J$. Then $1=\overline{h^{n}}=\bar{h}^{n}$, so $|\bar{h}|$ divides $n=[G: H]$. Also, $|\bar{h}|$ divides $[H: J]$, but $\operatorname{gcd}([G: H],[H: J])=1$. Thus $\bar{h}=1$ and $h \in J$. This implies $H_{[T]} \leqslant J$, so $H_{[T]}=J$.

4 Normal p-Complement Theorems

Definition 4.1. Let G be a group and $J \unlhd H \leqslant G$. Then
(i) G splits over H if there exists $K \leqslant G$ such that $G=H K$ and $H \cap K=1$.
(ii) G splits normally over H if there exists $K \unlhd G$ such that $G=H K$ and $H \cap K=1$.
(iii) G splits over H / J if there exists $K \leqslant G$ such that $G=H K$ and $H \cap K=J$.
(iv) G splits normally over H / J if there exists $K \unlhd G$ such that $G=H K$ and $H \cap K=J$.

In (i) and (ii), we call K a complement and a normal complement of H in G, respectively.

Definition 4.2. Let G be a group and $P \in \operatorname{Syl}_{p}(G)$. If there exists $K \unlhd G$ such that $G=P K$ and $P \cap K=1$, then we call K a normal p-complement.

Lemma 4.1. Let G be a group and $P \in \operatorname{Syl}_{p}(G)$. Then G has a normal p-complement if and only if $G=P \mathcal{O}_{p^{\prime}}(G)$.

Proof.
Suppose G has a normal p-complement. Now there exists $K \unlhd G$ such that $G=P K$ and $P \cap K=1$. In addition,

$$
|K|=\frac{|K|}{1}=\frac{|K|}{|P \cap K|}=\frac{|P K|}{|P|}=\frac{|G|}{|P|},
$$

and so K is a p^{\prime}-group. Thus $K \leqslant \mathcal{O}_{p^{\prime}}(G)$ and $G=P K=P \mathcal{O}_{p^{\prime}}(G)$. Conversely, suppose $G=P \mathcal{O}_{p^{\prime}}(G)$. Then $\mathcal{O}_{p^{\prime}}(G) \unlhd G$ and $P \cap \mathcal{O}_{p^{\prime}}(G)=1$ by coprime orders. Therefore, G has a normal p-complement.

Lemma 4.2. Let G be a group, $P \in \operatorname{Syl}_{p}(G)$, and $P \leqslant H \leqslant G$. If G has a normal p-complement, then H has a normal p-complement.

Proof.
By hypothesis, $G=P \mathcal{O}_{p^{\prime}}(G)$ and $\mathcal{O}_{p^{\prime}}(G) \cap H \unlhd H$ is a p^{\prime}-subgroup. Thus $\mathcal{O}_{p^{\prime}}(G) \cap H \leqslant \mathcal{O}_{p^{\prime}}(H)$. Now

$$
H=H \cap G=H \cap P \mathcal{O}_{p^{\prime}}(G)=P\left(H \cap \mathcal{O}_{p^{\prime}}(G)\right) \leqslant P \mathcal{O}_{p^{\prime}}(H) \leqslant H
$$

Therefore, $H=P \mathcal{O}_{p^{\prime}}(H)$ and H has a normal p-complement.
Lemma 4.3. Let G be a group and $N \unlhd G$. If G has a normal p-complement, then G / N has a normal p-complement.

Proof.
Let $\bar{G}=G / N$ and $P \in \operatorname{Syl}_{p}(G)$. By hypothesis, $G=P \mathcal{O}_{p^{\prime}}(G)$. Furthermore, $\bar{P} \in \operatorname{Syl}_{p}(\bar{G})$ and $\bar{G}=\bar{P} \overline{\mathcal{O}_{p^{\prime}}(G)}$. Since $\overline{\mathcal{O}_{p^{\prime}}(G)}$ is a normal p^{\prime}-group, we have $\overline{\mathcal{O}_{p^{\prime}}(G)} \leqslant \mathcal{O}_{p^{\prime}}(\bar{G})$. Thus $\bar{G}=\bar{P} \mathcal{O}_{p^{\prime}}(\bar{G})$ and \bar{G} has a normal p-complement.

Lemma 4.4. Let G be a group and $N \unlhd G$ be a p^{\prime}-subgroup. If G / N has a normal p-complement, then G has a normal p-complement.

Proof.
Let $P \in \operatorname{Syl}_{p}(G)$ and $\bar{G}=G / N$. Now $\bar{P} \in \operatorname{Syl}_{p}(\bar{G})$ and $\bar{G}=\bar{P} \mathcal{O}_{p^{\prime}}(\bar{G})$. Since $\mathcal{O}_{p^{\prime}}(G) \unlhd G$ is a p^{\prime}-subgroup, we have $\overline{\mathcal{O}_{p^{\prime}}(G)} \unlhd \bar{G}$ is a p^{\prime}-subgroup. Thus $\overline{\mathcal{O}_{p^{\prime}}(G)} \leqslant \mathcal{O}_{p^{\prime}}(\bar{G})$. Let $\bar{U}=\mathcal{O}_{p^{\prime}}(\bar{G})$. We then have $U \unlhd G$ and

$$
|U|=\frac{|U|}{|N|} \cdot|N|=|\bar{U}||N|
$$

so U is a p^{\prime}-group. Hence $U \leqslant \mathcal{O}_{p^{\prime}}(G)$, which implies $\mathcal{O}_{p^{\prime}}(\bar{G})=\bar{U} \leqslant \overline{\mathcal{O}_{p^{\prime}}(G)}$. It follows that $\overline{\mathcal{O}_{p^{\prime}}(G)}=\mathcal{O}_{p^{\prime}}(\bar{G})$ and $\bar{G}=\bar{P} \overline{\mathcal{O}_{p^{\prime}}(G)}$. Consequently, $G=P \mathcal{O}_{p^{\prime}}(G) N=P \mathcal{O}_{p^{\prime}}(G)$ and G has a normal p-complement.

4.1 Burnside's Normal p-Complement Theorem

Since the transfer homomorphism is independent of the transversal chosen, we may choose $T \in \mathscr{T}$ in a special manner. Under the hypothesis of Theorem 3.2, we have
$\langle g\rangle$ acts on $S=\{H x: x \in G\}$ by right multiplication. Then $S=\bigcup_{i=1}^{s} O_{i}$, where $O_{i}=\left\{H x_{i}, H x_{i} g, H x_{i} g^{2}, \ldots, H x_{i} g^{n_{i}-1}\right\}, n_{i} \in \mathbb{N}$, and $x_{i} g^{n_{i}} x_{i}^{-1} \in H$ for each $1 \leq i \leq s$. If $T=\left\{x_{i} g^{r}: 1 \leq i \leq s, 0 \leq r \leq n_{i}-1\right\}$, then $T^{g}=\left\{x_{i} g^{r}: 1 \leq i \leq s, 1 \leq r \leq n_{i}\right\}$ and $g^{\tau}=T^{g} / T=\prod_{i=1}^{s} J x_{i} g^{n_{i}}\left(x_{i} g^{n_{i}-1}\right)^{-1}=\prod_{i=1}^{s} J x_{i} g x_{i}^{-1}$, where $x_{i} g^{n_{i}} x_{i}^{-1} \in H$ for $1 \leq i \leq s$ and $\sum_{i=1}^{s} n_{i}=n=[G: H]$.

Theorem 4.1. Let G be a group, $J \unlhd H \leqslant G, H / J$ be abelian, $[G: H]=n$, \mathscr{T} be the set of transversals of H in G, τ be the transfer of G into H / J, and suppose $\operatorname{gcd}([G: H],[H: J])=1$. Then the following are equivalent:
(i) G splits normally over H / J.
(ii) Whenever $h_{1}, h_{2} \in H$ are fused in G, it follows that $J h_{1}=J h_{2}$.
(iii) For all $h \in H, h^{\tau}=J h^{n}$.
(iv) If $T \in \mathscr{T}$, then H acting on T from the left is equivalent to H acting on T from the right.

Proof.

Suppose G splits normally over H / J. Now there exists $K \unlhd G$ such that $G=H K$ and $H \cap K=J$. Let $h \in H$ and $g \in G$ such that $h^{g} \in H$. Since $G=H K$, let $g=h_{1} k$. Then $h^{g}=h^{h_{1} k}=\left(h^{h_{1}}\right)^{k}=h_{2}^{k}$, where $h_{2}=h^{h_{1}}$. Now $\left[h_{2}^{-1}, k\right]=h_{2}\left(h_{2}^{k}\right)^{-1} \in H$, but simultaneously, $\left[h_{2}^{-1}, k\right]=\left(k^{-1}\right)^{h_{2}^{-1}} k \in K$. Thus $\left[h_{2}^{-1}, k\right] \in H \cap K=J$, which implies $J h_{2}=J h_{2}^{k}$. Therefore,

$$
J h^{g}=J h^{h_{1} k}=J h_{2}^{k}=J h_{2}=J h^{h_{1}}=(J h)^{J h_{1}}=J h,
$$

since H / J is abelian.
Suppose whenever $h_{1}, h_{2} \in H$ are fused in G, we have $J h_{1}=J h_{2}$. Let $h \in H$ and $s \in \mathbb{N}$ be the number of orbits of $\langle h\rangle$ on $\{h x: x \in G\}$. Thus

$$
h^{\tau}=\prod_{i=1}^{s} J x_{i} h^{n_{i}} x_{i}^{-1}=\prod_{i=1}^{s} J\left(h^{n_{i}}\right)^{x_{i}^{-1}}=\prod_{i=1}^{s} J h^{n_{i}}=J h^{\sum_{i=1}^{s} n_{i}}=J h^{n}
$$

since $\left(\left(h^{n_{i}}\right)^{x_{i}^{-1}}\right)^{x_{i}}=h^{n_{i}}$ for $1 \leq i \leq s$.

Suppose for all $h \in H$, we have $h^{\tau}=J h^{n}$. Let $h \in H$ and $T \in \mathscr{T}$. For the sake of clarity, we will briefly use the traditional notation of actions. From our assumption,

$$
\begin{aligned}
h T / T h & =h T / T T / T h=h T / T(T h / T)^{-1}=\prod_{i=1}^{n} J h t_{i} t_{i}^{-1}\left(h^{\tau}\right)^{-1} \\
& =\prod_{i=1}^{n} J h\left(J h^{n}\right)^{-1}=J h^{n}\left(J h^{n}\right)^{-1}=J
\end{aligned}
$$

Therefore, $h T \sim T h$.
Let $T \in \mathscr{T}$. By Theorem 3.4, H acts transitively on Ω from the left. Since $h T \sim T h$ for all $h \in H$, we have H acts transitively on Ω from the right. It follows from Theorem 1.7 that $G=G_{[T]} H$. Moreover, $H \cap G_{[T]}=H_{[T]}=J$ by Theorem 3.4, thus G splits over H / J. Now $g \in G_{[T]}$ if and only if $[T]^{g}=[T]$, which is to say if and only if $[T]^{g}=[T]$. This is equivalent to $T^{g} \sim T$, which is to say if and only if $J=T^{g} / T=g^{\tau}$, or, equivalently, $g \in \operatorname{Ker} \tau$. Hence $G_{[T]}=\operatorname{Ker} \tau \unlhd G$. Therefore, G splits normally over H / J.

Theorem 4.2 (Burnside). Let G be a group, $P \in \operatorname{Syl}_{p}(G)$, and suppose $x, y \in C_{G}(P)$ such that x and y are fused in G. Then x and y are fused in $N_{G}(P)$.

Proof.
By hypothesis, there exists $g \in G$ such that $x^{g}=y$. Since $x, y \in C_{G}(P)$, we have $P \leqslant C_{G}(x) \cap C_{G}(y)$ and $P^{g} \leqslant C_{G}(x)^{g}=C_{G}\left(x^{g}\right)=C_{G}(y)$. Thus $P \leqslant C_{G}(y)$ and $P^{g} \leqslant C_{G}(y)$. It follows that $P, P^{g} \in \operatorname{Syl}_{p}\left(C_{G}(y)\right)$. By Sylow, there exists $c \in C_{G}(y)$ such that $P^{g c}=P$. But then $g c \in N_{G}(P)$ and $x^{g c}=y^{c}=y$. Therefore, x and y are fused in $N_{G}(P)$.

Definition 4.3. Let G be a group and π be a set of primes. Define the following:
(i) The $\pi^{t h}$-part of G is $|G|_{\pi}=\prod_{p \in \pi}|G|_{p}$.
(ii) H is a Hall π-subgroup of G if $\pi(H) \subseteq \pi$ and $\pi(G / H) \subseteq \pi^{\prime}$.
(iii) $\operatorname{Hall}_{\pi}(G)=\{H \leqslant G: H$ is a Hall π-subgroup $\}$.

Lemma 4.5. Let G be a group, $H \in \operatorname{Hall}_{\pi}(G)$, and $N \unlhd G$. Then
(i) $H N / N \in \operatorname{Hall}_{\pi}(G / N)$.
(ii) $H \cap N \in \operatorname{Hall}_{\pi}(N)$.

Proof.
For (i), since $H \cap N \leqslant H \in \operatorname{Hall}_{\pi}(G)$, we have

$$
\left|\frac{H N}{N}\right|=\frac{|H N|}{|N|}=\frac{|H||N|}{|H \cap N||N|}=\frac{|H|}{|H \cap N|}
$$

Hence $H N / N$ is a π-group. Since $H \in \operatorname{Hall}_{\pi}(G)$, we have by Lagrange,

$$
\frac{|G / N|}{|H N / N|}=\frac{|G| /|N|}{|H N| /|N|}=\frac{|G|}{|H N|}=\frac{|G|}{|H|} \cdot \frac{|H|}{|H N|}=\frac{|G| /|H|}{|H N| /|H|}
$$

so $[G / N: H N / N]$ is a π^{\prime}-number. Therefore, $H N / N \in \operatorname{Hall}_{\pi}(G / N)$.
For (ii), $H \cap N$ is a π-group because $H \in \operatorname{Hall}_{\pi}(G)$. Moreover,

$$
\frac{|N|}{|H \cap N|}=\frac{|H N|}{|H|}
$$

and it follows that $[N: H \cap N]$ is a π^{\prime}-number. Therefore, $H \cap N \in \operatorname{Hall}_{\pi}(N)$.

Lemma 4.6. Let G be a group and $H \in \operatorname{Hall}_{\pi}(G)$. If $H \unlhd G$, then H char G.

Proof.
Let $x \in G$ be a π-element. Since $|H x|$ divides $|x|$, we have $H x$ is a π-element. Then $H x=1$ since G / H is a π^{\prime}-group, so $x \in H$. Thus H must contain all π-elements of G. Now let $h \in H$ and $\phi \in \operatorname{Aut}(G)$. Since h is a π-element, it follows that h^{ϕ} is a π-element. By the above, $h^{\phi} \in H$ and $H^{\phi} \leqslant H$. Therefore, H char G.

Theorem 4.3 (Hall). Let G be a solvable group and π be a set of primes. Then
(i) $\operatorname{Hall}_{\pi}(G) \neq \emptyset$.
(ii) If K is a π-subgroup of G and $M \in \operatorname{Hall}_{\pi}(G)$, there exists $g \in G$ such that $K \leqslant M^{g}$.

Proof.
Let G be a counterexample such that $|G|$ is minimal, N be a nontrivial minimal
normal subgroup of G, and $\bar{G}=G / N$. It follows from Theorem 1.22 that N is an elementary abelian p-group for some prime p.

Case 1: $p \in \pi$.
Since G is solvable, we have \bar{G} is solvable. By the minimality of $|G|$, there exists $\bar{H} \in \operatorname{Hall}_{\pi}(\bar{G})$. Now

$$
|H|=\frac{|H|}{|N|} \cdot|N|=|\bar{H}||N|
$$

so H is a π-group. In addition, $[G: H]=[\bar{G}: \bar{H}]$ and so $[G: H]$ is a π^{\prime}-number since $\bar{H} \in \operatorname{Hall}_{\pi}(\bar{G})$. Therefore, $H \in \operatorname{Hall}_{\pi}(G)$.

Let $K \leqslant G$ be a π-subgroup and $M \in \operatorname{Hall}_{\pi}(G)$. Clearly, $\bar{K} \leqslant \bar{G}$ is a π-subgroup and by Lemma 4.5, $\bar{M} \in \operatorname{Hall}_{\pi}(\bar{G})$. By the minimality of $|G|$, there exists $\bar{g} \in \bar{G}$ such that $\bar{K} \leqslant \bar{M}^{\bar{g}}=\overline{M^{g}}$, so $K \leqslant M^{g} N$. Since $M^{g} \leqslant M^{g} N \leqslant G$ and $\left|M^{g}\right|=|M|$, we have $M^{g} \in \operatorname{Hall}_{\pi}(G)$. By Lemma 4.5, $M^{g} \cap N \in \operatorname{Hall}_{\pi}(N)$ and

$$
\frac{\left|M^{g} N\right|}{\left|M^{g}\right|}=\frac{|N|}{\left|M^{g} \cap N\right|}
$$

However, N is a p-group, thus $\left[N: M^{g} \cap N\right]=1$ and $M^{g} N=M^{g}$. This implies $K \leqslant M^{g}$, which is a contradiction.

Case 2: $p \notin \pi$ and G has no minimal normal π-subgroups.
Let $\bar{H} \in \operatorname{Hall}_{\pi}(\bar{G})$. If $H<G$, then H is solvable by Lemma 1.25 , so by the minimality of $|G|$, there exists $H_{1} \in \operatorname{Hall}_{\pi}(H)$. Furthermore, H_{1} is a π-group and

$$
\frac{|G|}{\left|H_{1}\right|}=\frac{|G|}{|H|} \cdot \frac{|H|}{\left|H_{1}\right|}=\frac{|\bar{G}|}{|\bar{H}|} \cdot \frac{|H|}{\left|H_{1}\right|} .
$$

Thus $H_{1} \in \operatorname{Hall}_{\pi}(G)$.
Suppose $K \leqslant G$ is a π-subgroup and let $M \in \operatorname{Hall}_{\pi}(G)$. Now \bar{K} is a π-group and $\bar{M} \in \operatorname{Hall}_{\pi}(\bar{G})$ by Lemma 4.5. By the minimality of $|G|$, there exists $\bar{g} \in \bar{G}$ such that $\bar{K} \leqslant \bar{M}^{\bar{g}}=\overline{M^{g}}$ and $K \leqslant M^{g} N$. Now $\left|\bar{M}^{\bar{g}}\right|=|\bar{M}|=|\bar{H}|$ and so $\left|M^{g} N\right|=|H|<|G|$. Since $K \leqslant M^{g} N$ and $M^{g} \in \operatorname{Hall}_{\pi}\left(M^{g} N\right)$, we have from the minimality of $|G|$ that there exists $g_{1} \in M^{g} N$ such that $K \leqslant M^{g g_{1}}$. However, this is a contradiction.

If $G=H$, then $\bar{G}=\bar{H}$ and \bar{G} is a π-group. Let $1 \neq \bar{R}$ be a minimal normal subgroup of \bar{G}. By Theorem $1.22, \bar{R}$ is an elementary abelian q-group for some $q \in \pi$. Then $R \unlhd G$ and R is a $p q$-group. Let $Q \in \operatorname{Syl}_{q}(R)$. By Lemma 1.8, $\bar{Q} \in \operatorname{Syl}_{q}(\bar{R})$, but \bar{R} is a q-group. Thus $\bar{Q}=\bar{R}$ and $R=Q N$. By the Frattini Argument, $G=N_{G}(Q) R=N_{G}(Q) Q N=N_{G}(Q) N$. Since G has no normal π-subgroups, $N_{G}(Q)<G$. Now $N_{G}(Q)$ is solvable, so there exists $N_{1} \in \operatorname{Hall}_{\pi}\left(N_{G}(Q)\right)$ by the minimality of $|G|$. Also, N_{1} is a π-group and

$$
\frac{|G|}{\left|N_{1}\right|}=\frac{|G|}{\left|N_{G}(Q)\right|} \cdot \frac{\left|N_{G}(Q)\right|}{\left|N_{1}\right|}=\frac{\left|N_{G}(Q) N\right|}{\left|N_{G}(Q)\right|} \cdot \frac{\left|N_{G}(Q)\right|}{\left|N_{1}\right|}=\frac{|N|}{\left|N \cap N_{G}(Q)\right|} \cdot \frac{\left|N_{G}(Q)\right|}{\left|N_{1}\right|} .
$$

Thus $N_{1} \in \operatorname{Hall}_{\pi}(G)$ and $\operatorname{Hall}_{\pi}(G) \neq \emptyset$.
Let $K \leqslant G$ be a π-subgroup and $M \in \operatorname{Hall}_{\pi}(G)$. Now $\bar{M} \in \operatorname{Hall}_{\pi}(\bar{G})$, $|\bar{M}|=|\bar{H}|=|\bar{G}|$, and $G=M N$. Suppose $|K|=|M|$. Since $R \unlhd G$, we have $K \cap R, M \cap R \in \operatorname{Syl}_{q}(R)$ by Lemma 1.8. By Sylow, there exists $r \in R$ such that $K \cap R=(M \cap R)^{r}=M^{r} \cap R^{r}=M^{r} \cap R$. Also, $K \leqslant N_{G}(K \cap R)=N_{G}\left(M^{r} \cap R\right)=N_{2}$ and $M^{r} \leqslant N_{G}\left(M^{r} \cap R\right)=N_{2}$. Now $K \leqslant N_{2}$ is a π-subgroup, $M^{r} \in \operatorname{Hall}_{\pi}\left(N_{2}\right)$ since $\left|M^{r}\right|=|M|$, and $N_{2}<G$ since G has no normal π-subgroups. By the minimality of $|G|$, there exists $n \in N_{2}$ such that $K \leqslant M^{r n}$, which is a contradiction.

If $|K|<|M|$, then $K \cap N \leqslant M \cap N=1$ by coprime orders. This implies $|K N|<|M N|=|G|$. Furthermore, $K \leqslant K N$ is a π-subgroup and $K N$ is solvable. In addition, $M \cap K N \leq M$ is a π-subgroup and

$$
\frac{|K N|}{|M \cap K N|}=\frac{|K N M|}{|M|}=\frac{|K G|}{|M|}=\frac{|G|}{|M|},
$$

hence $M \cap K N \in \operatorname{Hall}_{\pi}(K N)$. By the minimality of $|G|$, there exists $g_{2} \in K N$ such that $K \leqslant(M \cap K N)^{g_{2}} \leqslant M^{g_{2}}$, which is a contradiction. Therefore, no such counterexample G exists.

Theorem 4.4. Let G be a group and $A \in \operatorname{Hall}_{\pi}(G)$ such that A is abelian. Then G splits normally over A if and only if whenever $a_{1}, a_{2} \in A$ such that a_{1} and a_{2} are fused in G, it follows that $a_{1}=a_{2}$.

Proof.

Now $\{1\} \unlhd A \leqslant G$ and $A /\{1\} \cong A$ is abelian. Since $A \in \operatorname{Hall}_{\pi}(G)$, we have $\operatorname{gcd}([G: A],[A:\{1\}])=1$. By Theorem 4.1, G splits normally over A if and only if G splits normally over $A /\{1\}$, which is to say, whenever $a_{1}, a_{2} \in A$ such that a_{1} and a_{2} are fused in G, it follows that $\{1\} a_{1}=\{1\} a_{2}$, or, equivalently, $a_{1}=a_{2}$.

Theorem 4.5 (Burnside's Normal p-Complement Theorem). Let G be a group and $P \in \operatorname{Syl}_{p}(G)$ such that $P \leqslant \mathcal{Z}\left(N_{G}(P)\right)$. Then G has a normal p-complement.

Proof.

Since $P \leqslant \mathcal{Z}\left(N_{G}(P)\right)$, we know P is abelian and $P \in \operatorname{Hall}_{\pi}(G)$, where $\pi=\{p\}$. By Theorem 4.4, it is enough to show whenever $a_{1}, a_{2} \in P$ such that $a_{1} \sim_{G} a_{2}$, it follows that $a_{1}=a_{2}$. Let $x, y \in P$ such that $x \sim_{G} y$. Now $x, y \in C_{G}(P)$, so by Burnside's Theorem (4.2), there exists $n \in N_{G}(P)$ such that $x=y^{n}$. But $y \in P \leqslant \mathcal{Z}\left(N_{G}(P)\right)$, so $x=y^{n}=y$. Therefore, G has a normal p-complement.

Theorem 4.6. Let G be a group, $A \in \operatorname{Hall}_{\pi}(G)$ such that A is abelian and $A \unlhd G$. Then G splits over A and G acts transitively on the complements of A in G.

Proof.
Now $\{1\} \unlhd A \leqslant G$ and $A /\{1\} \cong A$ is abelian. Since $A \in \operatorname{Hall}_{\pi}(G)$, we have $\operatorname{gcd}([G: A],[A:\{1\}])=1$. Also, G acts on Ω from the left since $A \unlhd G$. By Theorem 3.4, A acts transitively on $\Omega=\{[T]: T \in \mathscr{T}\}$, so $G=G_{[T]} A$ by Theorem 1.7. In addition, $A \cap G_{[T]}=A_{[T]}=1$ by Theorem 3.4. Thus G splits over A.

Suppose there exists $K \leqslant G$ such that $G=A K$ and $A \cap K=1$. We want to show K is conjugate to $G_{[T]}$. By the Second Isomorphism Theorem, we have

$$
\begin{equation*}
|K|=\frac{|K|}{1}=\frac{|K|}{|A \cap K|}=\frac{|A K|}{|A|}=\frac{|G|}{|A|} \tag{2}
\end{equation*}
$$

If there exist $k_{1}, k_{2} \in K$ such that $A k_{1}=A k_{2}$, then $k_{1} k_{2}^{-1} \in A \cap K=1$ and $k_{1}=k_{2}$. Thus $K \in \mathscr{T}$ and $[K] \in \Omega$. Since A acts transitively on Ω, there exists $a \in A$ such
that $[T]^{a}=[K]$. It follows from $K \leqslant G_{[K]}$ that $K^{a^{-1}} \leqslant G_{[K]}^{a^{-1}}=G_{[K]^{a-1}}=G_{[T]}$, and by (2),

$$
|K|=\left|K^{a^{-1}}\right| \leq\left|G_{[T]}\right|=\frac{\left|G_{[T]}\right|}{\left|A \cap G_{[T]}\right|}=\frac{\left|A G_{[T]}\right|}{|A|}=\frac{|G|}{|A|}=|K| .
$$

Thus $\left|K^{a^{-1}}\right|=\left|G_{[T]}\right|$, so $K^{a^{-1}}=G_{[T]}$. Therefore, K and $G_{[T]}$ are conjugate.

Theorem 4.7 (Schur-Zassenhaus Part 1). Let G be a group and $H \in \operatorname{Hall}_{\pi}(G)$. If $H \unlhd G$, then G splits over H.

Proof.

Use induction on $|G|$ and let $P \in \operatorname{Syl}_{p}(H)$. By the Frattini Argument, $G=N_{G}(P) H$. Let $N=N_{G}(P)$ and suppose $N<G$. It then follows $H \cap N \unlhd N$, $H \cap N$ is a π-group, and

$$
\frac{|N|}{|H \cap N|}=\frac{|N H|}{|H|}=\frac{|G|}{|H|}
$$

Thus $H \cap N \in \operatorname{Hall}_{\pi}(N)$. By the induction hypothesis, N splits over $H \cap N$, so there exists $K \leqslant N$ such that $N=K(H \cap N)$ and $K \cap(H \cap N)=1$. Moreover, $G=N H=K(H \cap N) H=K H$ and $K \cap H \leqslant K \cap H \cap N=1$. Therefore, G splits over H.

If $N=N_{G}(P)=G$, then $P \unlhd G$. Now $\mathcal{Z}(P)$ char $P \unlhd G$, so $\mathcal{Z}(P) \unlhd G$ by Lemma 1.12. Since P is a p-group, we have $\mathcal{Z}(P) \neq 1$ by Lemma 1.9. Let $\bar{G}=G / \mathcal{Z}(P)$. Now $\bar{H} \in \operatorname{Hall}_{\pi}(\bar{G})$ by Lemma 4.5, and $\bar{H} \unlhd \bar{G}$. Since $|\bar{G}|<|G|$, we have \bar{G} splits over \bar{H} by induction. Then there exists $\bar{K} \leqslant \bar{G}$ such that $\bar{G}=\bar{K} \bar{H}$ and $\bar{K} \cap \bar{H}=1$. Consequently, $G=K H \mathcal{Z}(P)=K \mathcal{Z}(P) H=K H$ and $K \cap H \leqslant \mathcal{Z}(P)$. Now by the Second Isomorphism Theorem,

$$
|\bar{K}|=\frac{|\bar{K}|}{|\bar{H} \cap \bar{K}|}=\frac{|\bar{H} \bar{K}|}{|\bar{H}|}=\frac{|\bar{G}|}{|\bar{H}|}
$$

so \bar{K} is a π^{\prime}-group; however, $\mathcal{Z}(P)$ is a π-group. Hence $\mathcal{Z}(P) \in \operatorname{Hall}_{\pi}(K)$ and $\mathcal{Z}(P) \leqslant P \leqslant H$. Moreover, $\mathcal{Z}(P) \unlhd K$ and $\mathcal{Z}(P)$ is abelian. By Theorem 4.6, K splits over $\mathcal{Z}(P)$, which implies there exists $K_{0} \leqslant K$ such that $K=K_{0} \mathcal{Z}(P)$ and
$K_{0} \cap \mathcal{Z}(P)=1$. Thus $G=H K=H K_{0} \mathcal{Z}(P)=H K_{0}$ and

$$
H \cap K_{0} \leqslant K \cap H \cap K_{0} \leqslant \mathcal{Z}(P) \cap K_{0}=1
$$

Therefore, G splits over H.

Theorem 4.8 (Schur-Zassenhaus Part 2). Let G be a group, $H \in \operatorname{Hall}_{\pi}(G), H \unlhd G$, and suppose either H is solvable or G / H is solvable. Then G splits over H and G acts transitively on the complements of H in G.

Proof.
Use induction on $|G|$. By Schur-Zassenhaus Part 1, G splits over H. Suppose $K_{1} \leqslant G$ and $K_{2} \leqslant G$, where $G=H K_{i}$ and $H \cap K_{i}=1$ for $1 \leq i \leq 2$.

Case 1: Suppose H is solvable.

Since H^{\prime} char $H \unlhd G$, it follows from Lemma 1.12 that $H^{\prime} \unlhd G$. If $H^{\prime}=1$, then H is abelian and the result follows from Theorem 4.6. Without loss of generality, assume $H^{\prime} \neq 1$ and let $\bar{G}=G / H^{\prime}$. Now $\bar{G}=\bar{H} \overline{K_{i}}, \bar{H} \cap \overline{K_{i}}=1$ for $1 \leq i \leq 2, \bar{H} \unlhd \bar{G}$, and by Lemma 4.5, $\bar{H} \in \operatorname{Hall}_{\pi}(\bar{G})$.

By the induction hypothesis, there exists $\bar{g} \in \bar{G}$ such that $\overline{K_{2}}=\overline{K_{1}}{ }^{\bar{g}}=\overline{K_{1}^{g}}$, so $K_{1}^{g} H^{\prime}=K_{2} H^{\prime}$. Since H is solvable, we have $H^{\prime}<H$ and so $K_{2} H^{\prime}<K_{2} H=G$. Furthermore, $K_{2} \cap H^{\prime} \leqslant K_{2} \cap H=1$ and

$$
K_{1}^{g} \cap H^{\prime}=K_{1}^{g} \cap H^{\prime g}=\left(K_{1} \cap H^{\prime}\right)^{g} \leqslant\left(K_{1} \cap H\right)^{g}=1
$$

Now $H^{\prime} \unlhd K_{2} H^{\prime}$ and H^{\prime} is a π-group. Moreover, since $H \in \operatorname{Hall}_{\pi}(G)$ and

$$
\frac{\left|K_{2} H^{\prime}\right|}{\left|H^{\prime}\right|}=\frac{\left|K_{2}\right|}{\left|K_{2} \cap H^{\prime}\right|}=\left|K_{2}\right|=\frac{\left|K_{2}\right|}{\left|H \cap K_{2}\right|}=\frac{\left|K_{2} H\right|}{|H|}=\frac{|G|}{|H|},
$$

we have $H^{\prime} \in \operatorname{Hall}_{\pi}\left(K_{2} H^{\prime}\right)$. By induction, there exists $g_{1} \in K_{2} H^{\prime}$ such that $K_{1}^{g g_{1}}=K_{2}$. Therefore, G acts transitively on the complements of H.

Case 2: Suppose G / H is solvable.

Let R / H be a minimal normal subgroup of G / H. Since G / H is solvable, we have R / H is an elementary abelian p-group by Theorem 1.22 . Now

$$
|R|=\frac{|R|}{|H|} \cdot|H|,
$$

so R is a $p \pi$-group. Since $H \in \operatorname{Hall}_{\pi}(G)$, we have G / H is a π^{\prime}-group, which implies $p \notin \pi$. In addition, for $1 \leq i \leq 2$,

$$
\left|K_{i}\right|=\frac{\left|K_{i}\right|}{\left|H \cap K_{i}\right|}=\frac{\left|H K_{i}\right|}{|H|}=\frac{|G|}{|H|}
$$

and so K_{1} and K_{2} are π^{\prime}-groups. By Lemma 1.8, $K_{1} \cap R, K_{2} \cap R \in \operatorname{Syl}_{p}(R)$ and from Sylow, there exists $r \in R$ such that $K_{2} \cap R=\left(K_{1} \cap R\right)^{r}=K_{1}^{r} \cap R$. Since $R \unlhd G$, it follows that $K_{1}^{r} \cap R \unlhd K_{1}^{r}$ and $K_{2} \cap R \unlhd K_{2}$. Thus $K_{1}^{r} \leqslant N_{G}\left(K_{1}^{r} \cap R\right)=N_{G}\left(K_{2} \cap R\right)$ and $K_{2} \leqslant N_{G}\left(K_{2} \cap R\right)$.

Let $N=N_{G}\left(K_{2} \cap R\right)$ and $\bar{N}=N / K_{2} \cap R$. By Lemma 1.2,

$$
\bar{N}=\overline{N \cap G}=\overline{N \cap H K_{2}}=\overline{N\left(K_{2} \cap R\right) \cap H K_{2}}=\bar{N} \cap \bar{H} \overline{K_{2}}=(\bar{N} \cap \bar{H}) \overline{K_{2}},
$$

and similarly, $\bar{N}=\overline{N \cap G}=\overline{N \cap H K_{1}^{r}}=\bar{N} \cap \bar{H} \overline{K_{1}^{r}}=(\bar{N} \cap \bar{H}) \overline{K_{1}^{r}}$. Also,

$$
(\bar{N} \cap \bar{H}) \cap \overline{K_{2}}=\bar{N} \cap \bar{H} \cap \overline{K_{2}}=\overline{N \cap H \cap K_{2}} \leqslant \overline{H \cap K_{2}}=1,
$$

and similarly, $\bar{N} \cap \bar{H} \cap \overline{K_{1}^{r}}=1$. Since $H \unlhd G$, we have $H \cap N \unlhd N$ and by Lemma 1.2, $\overline{H \cap N}=\bar{H} \cap \bar{N} \unlhd \bar{N}$. By the Third Isomorphism Theorem,

$$
\frac{\bar{N}}{\bar{H} \cap \bar{N}}=\frac{\bar{N}}{\overline{H \cap N}} \cong \frac{N}{(H \cap N)\left(K_{2} \cap R\right)} \cong \frac{\frac{N}{H \cap N}}{\frac{(H \cap N)\left(K_{2} \cap R\right)}{H \cap N}},
$$

however, $N / H \cap N \cong N H / H \leqslant G / H$ and G / H is a solvable π^{\prime}-group. Thus $\bar{N} / \bar{H} \cap \bar{N}$ is a solvable π^{\prime}-group and $\bar{H} \cap \bar{N} \in \operatorname{Hall}_{\pi}(\bar{N})$. By induction, there exists $\bar{n} \in \bar{N}$ such that $\overline{K_{2}}=\overline{K_{1}^{r}} \overline{\bar{n}}=\overline{K_{1}^{r n}}$ and $K_{2}=K_{2}\left(K_{2} \cap R\right)=K_{1}^{r n}\left(K_{2} \cap R\right)$. Now $n \in N_{G}\left(K_{2} \cap R\right)$ and $K_{2} \cap R=K_{1}^{r} \cap R \leqslant K_{1}^{r}$, which implies $K_{2} \cap R=\left(K_{2} \cap R\right)^{n} \leqslant K_{1}^{r n}$. Therefore, $K_{1}^{r n}=K_{2}$ and G acts transitively on the complements of H in G.

Theorem 4.9. Let G be a π-group and $A \leqslant A u t(G)$ be a π^{\prime}-subgroup such that either G or A is solvable. Then for each $p \in \pi(G)$, there exists $P \in \operatorname{Syl}_{p}(G)$ such that P is A-invariant.

Proof.
Let $G^{*}=G \rtimes_{i d} A$ and $P \in \operatorname{Syl}_{p}(G)$. Now $G \unlhd G^{*}$, so by the Frattini Argument, $G^{*}=N_{G^{*}}(P) G$. Let $N=N_{G^{*}}(P)$. By Theorem 1.23, $G^{*} / G=A G / G \cong A / A \cap G \cong A$, so G^{*} / G is a π^{\prime}-group. Hence $G \in \operatorname{Hall}_{\pi}\left(G^{*}\right)$. Now $G \cap N \unlhd N$ and $N / N \cap G \cong N G / G \leqslant G^{*} / G \cong A$, which implies $G \cap N \in \operatorname{Hall}_{\pi}(N)$. Since G or A is solvable, $N \cap G$ or $N / N \cap G$ is solvable, respectively. By Schur-Zassenhaus Part $1, N$ splits over $N \cap G$. Hence there exists $B \leqslant N$ such that $N=B(N \cap G)$ and $B \cap(N \cap G)=1$. Again, since G or A is solvable, G or G^{*} / G is solvable, respectively. By Schur-Zassenhaus Part 2, G^{*} splits over G and G^{*} acts transitively on the complements of G in G^{*}. By Theorem 1.23, $G^{*}=A G, A \cap G=1$, and A is a complement of G. Furthermore, $G^{*}=N G=B(N \cap G) G=B G$ and $B \cap G=B \cap N \cap G=1$. Thus B is a complement of G. Since $G^{*}=A G$, there exists $g \in G$ such that $A=B^{g} \leqslant N^{g}=N_{G^{*}}(P)^{g}=N_{G^{*}}\left(P^{g}\right)$. Therefore, $P^{g} \in \operatorname{Syl}_{p}(G)$ and P^{g} is A-invariant.

4.2 The Focal Subgroup

Definition 4.4. Let G be a group and $H \leqslant G$. The Focal Subgroup of H in G is

$$
\operatorname{Foc}_{G}(H)=\langle[h, g]: h \in H, g \in G,[h, g] \in H\rangle .
$$

Equivalently, we may write

$$
\operatorname{Foc}_{G}(H)=\left\langle h_{1}^{-1} h_{2}: h_{1}, h_{2} \in H, h_{1} \sim_{G} h_{2}\right\rangle=\left\langle h_{1} h_{2}^{-1}: h_{1}, h_{2} \in H, h_{1} \sim_{G} h_{2}\right\rangle
$$

Moreover, $H^{\prime} \leqslant \operatorname{Foc}_{G}(H) \unlhd H$.

If there is no fusion in G of H, then $\operatorname{Foc}_{G}(H)=H^{\prime}$, so $\left[F o c_{G}(H): H^{\prime}\right]$ measures the amount of fusion of H in G.

Theorem 4.10. Let G be a group and $H \leqslant G$ such that $\operatorname{gcd}\left([G: H],\left[H: H^{\prime}\right]\right)=1$. Then $\operatorname{Foc}_{G}(H)=G^{\prime} \cap H$ and G splits normally over

$$
\frac{H}{G^{\prime} \cap H}=\frac{H}{F_{o c_{G}}(H)} .
$$

Proof.
Let $J=\operatorname{Foc}_{G}(H)$. Then $H^{\prime} \leqslant J \unlhd H$ and so H / J is abelian by Theorem 1.19. Now $[H: J] \cdot\left[J: H^{\prime}\right]=\left[H: H^{\prime}\right]$, so $[H: J]$ divides $\left[H: H^{\prime}\right]$, which implies $\operatorname{gcd}([G: H],[H: J])=1$. Let $h_{1}, h_{2} \in H$ such that $h_{1} \sim_{G} h_{2}$. Now $h_{1} h_{2}^{-1} \in F o c_{G}(H)=J$ and so $J h_{1}=J h_{2}$. By Theorem 4.1, G splits normally over H / J. Hence there exists $K \unlhd G$ such that $G=H K$ and $H \cap K=J$. Also,

$$
\frac{G}{K}=\frac{H K}{K} \cong \frac{H}{H \cap K}=\frac{H}{J}
$$

and G / K is abelian, which implies $G^{\prime} \leqslant K$ by Theorem 1.19. Then $J \leqslant G^{\prime} \cap H \leqslant K \cap H=J$ and we have $\operatorname{Foc}_{G}(H)=J=G^{\prime} \cap H$. Therefore, G splits normally over $H / \operatorname{Foc}_{G}(H)=H / G^{\prime} \cap H$.

Theorem 4.11 (The Focal Subgroup Theorem). Let G be a group and $P \in \operatorname{Syl}_{p}(G)$. Then $\operatorname{Foc}_{G}(P)=G^{\prime} \cap P$.

Proof.
Since $P \in \operatorname{Syl}_{p}(G)$, we have $\operatorname{gcd}\left([G: P],\left[P: P^{\prime}\right]\right)=1$. By Theorem 4.10, $\operatorname{Foc}_{G}(P)=G^{\prime} \cap P$.

Definition 4.5. Let G be a group and $p \in \pi(G)$. Define the subgroup generated by all Sylow p^{\prime}-subgroups of G by

$$
\mathcal{O}^{p}(G)=\left\langle Q \in \operatorname{Syl}_{q}(G): q \neq p\right\rangle .
$$

Lemma 4.7. Let G be a group and $P \in \operatorname{Syl}_{p}(G)$. Then
(i) $\mathcal{O}^{p}(G) \unlhd G$.
(ii) $G=\mathcal{O}^{p}(G) P$.
(iii) $G / \mathcal{O}^{p}(G)$ is a p-group.
(iv) If G is abelian, then $\mathcal{O}^{p}(G)$ is a p^{\prime}-group.
(v) If $N \unlhd G$ and $\bar{G}=G / N$, then $\mathcal{O}^{p}(\bar{G})=\overline{\mathcal{O}^{p}(G)}$.

Proof.
For (i), let $Q \in \operatorname{Syl}_{q}(G)$ such that $q \neq p$ and $g \in G$. Now $\left|Q^{g}\right|=|Q|=|G|_{q}$ and so $Q^{g} \in \operatorname{Syl}_{q}(G)$. Therefore, $Q^{g} \leqslant \mathcal{O}^{p}(G)$ and $\mathcal{O}^{p}(G) \unlhd G$.

For (ii), let $q \in \pi(G)$ and suppose $|G|_{q}=q^{n}$ for some $n \in \mathbb{N}$. If $q=p$, then $p^{n}=|P|$ divides $\left|\mathcal{O}^{p}(G) P\right|$. If $q \neq p$, let $Q \in \operatorname{Syl}_{q}(G)$. Then $q^{n}=|G|_{q}=|Q|$, but $Q \leqslant \mathcal{O}^{p}(G) P$. Thus $q^{n}=|Q|$ divides $\left|\mathcal{O}^{p}(G) P\right|$, but then $|G|$ divides $\left|\mathcal{O}^{p}(G) P\right|$. Therefore, $G=\mathcal{O}^{p}(G) P$.

For (iii), let $\bar{G}=G / \mathcal{O}^{p}(G)$ and $Q \in \operatorname{Syl}_{q}(G)$, where $q \neq p$. Then $\bar{Q} \in \operatorname{Syl}_{q}(\bar{G})$, but $Q \leqslant \mathcal{O}^{p}(G)$, hence $\bar{Q}=1$. Therefore, $q \notin \pi(\bar{G})$ and \bar{G} is a p-group.

For ($i v$), since G is abelian, we have $H \unlhd G$ for all $H \leqslant G$. Thus $\mathcal{O}^{p}(G)=\prod_{Q \in S_{q}^{G}} Q$, where $q \neq p$ and $\left|\mathcal{O}^{p}(G)\right|=\prod_{Q \in S_{q}^{G}}|Q|$, where $q \neq p$. Therefore, $\mathcal{O}^{p}(G)$ is a p^{\prime}-group.

For (v), let $Q \in \operatorname{Syl}_{q}(G)$ such that $q \neq p$. Then $\bar{Q} \in \operatorname{Syl}_{q}(\bar{G})$ and $\bar{Q} \leqslant \mathcal{O}^{p}(\bar{G})$. Thus $\overline{\mathcal{O}^{p}(G)} \leqslant \mathcal{O}^{p}(\bar{G})$. Conversely, let $\bar{Q} \in \operatorname{Syl}_{q}(\bar{G})$. Now $Q \leqslant G$, but Q is not necessarily a q-group. Let $Q_{0} \in \operatorname{Syl}_{q}(Q)$. Then $\overline{Q_{0}} \in \operatorname{Syl}_{q}(\bar{Q})$ and $\overline{Q_{0}}=\bar{Q}$, or, equivalently, $Q=Q_{0} N$. By Sylow, we have $Q_{0} \leqslant \mathcal{O}^{p}(G)$. Thus $\bar{Q}=\overline{Q_{0}} \leqslant \overline{\mathcal{O}^{p}(G)}$ and $\mathcal{O}^{p}(\bar{G}) \leqslant \overline{\mathcal{O}^{p}(G)}$. Therefore, $\mathcal{O}^{p}(\bar{G})=\overline{\mathcal{O}^{p}(G)}$.

Definition 4.6. Let G be a group and $p \in \pi(G)$. Then $G / G^{\prime} \mathcal{O}^{p}(G)$ is an abelian p-group. We call this quotient the p-residual of G.

Theorem 4.12. Let G be a group and $P \in \operatorname{Syl}_{p}(G)$. Then

$$
\frac{G}{G^{\prime} \mathcal{O}^{p}(G)} \cong \frac{P}{P \cap G^{\prime}}
$$

Proof.
Let $\bar{G}=G / G^{\prime}$ and $R=G^{\prime} \mathcal{O}^{p}(G)$. By Lemma 4.7(ii), $G=P \mathcal{O}^{p}(G)=P G^{\prime} \mathcal{O}^{p}(G)$ and so $\bar{G}=\bar{P} \bar{R}$. Now $\bar{P} \cap \bar{R}=\bar{P} \cap \overline{G^{\prime} \mathcal{O}^{p}(G)}=\bar{P} \cap \overline{\mathcal{O}^{p}(G)}=\bar{P} \cap \mathcal{O}^{p}(\bar{G})$ and \bar{G} is abelian. It follows from Lemma $4.7(i v)$ that $\mathcal{O}^{p}(\bar{G})$ is a p^{\prime}-group, so $\bar{P} \cap \mathcal{O}^{p}(\bar{G})=1$. Therefore, by the Second and Third Isomorphism Theorems,

$$
\frac{G}{G^{\prime} \mathcal{O}^{p}(G)}=\frac{G}{R} \cong \frac{\bar{G}}{\bar{R}}=\frac{\bar{P} \bar{R}}{\bar{R}} \cong \frac{\bar{P}}{\bar{P} \cap \bar{R}}=\frac{\bar{P}}{\{1\}} \cong \bar{P}=\frac{P G^{\prime}}{G^{\prime}} \cong \frac{P}{P \cap G^{\prime}}
$$

Theorem 4.13. Let G be a group and $P \in \operatorname{Syl}_{p}(G)$ such that P is abelian. Then

$$
\frac{G}{\mathcal{O}^{p}(G)} \cong \frac{N_{G}(P)}{\mathcal{O}^{p}\left(N_{G}(P)\right)}
$$

Proof.
Let $H=N_{G}(P)$. By Lemma 4.7(ii), $G=\mathcal{O}^{p}(G) P$, so by the Second Isomorphism Theorem,

$$
\frac{G}{\mathcal{O}^{p}(G)}=\frac{\mathcal{O}^{p}(G) P}{\mathcal{O}^{p}(G)} \cong \frac{P}{P \cap \mathcal{O}^{p}(G)}
$$

Since P is abelian, $P / P \cap \mathcal{O}^{p}(G)$ is abelian and by the above, $G / \mathcal{O}^{p}(G)$ is abelian. Hence $G^{\prime} \leqslant \mathcal{O}^{p}(G)$ and $G / \mathcal{O}^{p}(G)$ is the p-residual of G. By a similar argument, since $P \in \operatorname{Syl}_{p}(H)$, we have $H=\mathcal{O}^{p}(H) P$ and $H / \mathcal{O}^{p}(H)$ is the p-residual of H.

Clearly, $\operatorname{Foc}_{H}(P) \leqslant \operatorname{Foc}_{G}(P)$. Let $x_{1}, x_{2} \in P$ such that $x_{1} \sim_{G} x_{2}$. Since P is abelian, we know $x_{1}, x_{2} \in C_{G}(P)$. It follows from Burnside's Theorem that $x_{1} \sim_{H} x_{2}$, hence $x_{1} x_{2}^{-1} \in \operatorname{Foc}_{H}(P)$. Now we have $\operatorname{Foc}_{G}(P) \leqslant \operatorname{Foc}_{H}(P)$, so $\operatorname{Foc}_{G}(P)=\operatorname{Foc}_{H}(P)$. By Theorem 4.12 and the Focal Subgroup Theorem (4.11),

$$
\frac{G}{\mathcal{O}^{p}(G)} \cong \frac{P}{P \cap G^{\prime}}=\frac{P}{F_{o c}(P)}=\frac{P}{F_{o c}(P)}=\frac{P}{P \cap H^{\prime}} \cong \frac{H}{\mathcal{O}^{p}(H)}=\frac{N_{G}(P)}{\mathcal{O}^{p}\left(N_{G}(P)\right)}
$$

Theorem 4.14. Let G be a group, $P \in \operatorname{Syl}_{p}(G), P$ be abelian, and suppose $P \unlhd G$. If Q is a p-complement of G and $G=\mathcal{O}^{p}(G)$, then $N_{G}(Q)=Q$.

Proof.
Let $R=N_{G}(Q)$ and $P_{0}=P \cap R$. Suppose there exists $Q \leqslant G$ such that $G=P Q$ and $P \cap Q=1$. Now Q is a p^{\prime}-group since

$$
|Q|=\frac{|Q|}{|P \cap Q|}=\frac{|P Q|}{|P|}=\frac{|G|}{|P|}
$$

Moreover, $Q \unlhd R, P_{0} \unlhd R$, and $\left[P_{0}, Q\right] \leqslant P_{0} \cap Q=1$ by coprime orders. Thus $G=P Q \leqslant C_{G}\left(P_{0}\right)$ and $G=C_{G}\left(P_{0}\right)$. Therefore, $P_{0} \leqslant \mathcal{Z}(G)$.

Let $\bar{G}=G / G^{\prime}$. Now \bar{G} is abelian and $\mathcal{O}^{p}(\bar{G})$ is a p^{\prime}-group by Lemma 4.7. However, $G=\mathcal{O}^{p}(G)$ implies $\bar{G}=\overline{\mathcal{O}^{p}(G)}=\mathcal{O}^{p}(\bar{G})$ is a p^{\prime}-group. Thus $p \notin \pi(\bar{G})$, so $|G|_{p}=\left|G^{\prime}\right|_{p}$. By Sylow, $P \leqslant G^{\prime}$ since $P \unlhd G$. Furthermore, we have $\{1\} \unlhd P \leqslant G$, $P /\{1\} \cong P$ is abelian, and $\operatorname{gcd}([G: P],[P:\{1\}])=1$. By Theorem 3.3, $P_{0} \leqslant \mathcal{Z}(G) \cap G^{\prime} \cap P=1$. Therefore,

$$
N_{G}(Q)=R=R \cap G=R \cap P Q=(R \cap P) Q=P_{0} Q=Q
$$

Theorem 4.15. Let G be a group, $J \unlhd H \leqslant G, H / J$ be nilpotent, and suppose $\operatorname{gcd}([G: H],[H: J])=1$. Then the following are equivalent:
(i) G splits normally over H / J.
(ii) Whenever $h_{1}, h_{2} \in H$ are fused in G, it follows $J h_{1}$ and $J h_{2}$ are fused in H / J. Proof.

Suppose G splits normally over H / J. Then the result follows from Theorem 4.1.
To show the remaining implication, use induction on $[H: J]$. Let $\bar{H}=H / J$ and $\mathcal{Z}(\bar{H})=\overline{J_{1}}$. Now $\overline{J_{1}} \unlhd \bar{H}$ and $J \unlhd J_{1} \unlhd H \leqslant G$. Furthermore, $H / J_{1} \cong \bar{H} / \overline{J_{1}}$ implies $\bar{H} / \overline{J_{1}}$ is nilpotent, and since $\left[H: J_{1}\right]$ divides $[H: J]$, it follows that the $\operatorname{gcd}\left([G: H],\left[H: J_{1}\right]\right)=1$. If there exist $h_{1}, h_{2} \in H$ such that $h_{1} \sim_{G} h_{2}$, then by assumption, $\overline{h_{1}} \sim_{\bar{H}} \overline{h_{2}}$. This implies there exists $\bar{h} \in \bar{H}$ such that $\overline{h_{2}}=\overline{h_{1}} \bar{h}=\overline{h_{1}^{h}}$. But then $h_{1}^{h} h_{2}^{-1} \in J \leqslant J_{1}$, so $J_{1} h_{1}^{h} \sim_{H / J_{1}} J_{1} h_{2}$.

If $[H: J]=\left[H: J_{1}\right]$, then $|J|=\left|J_{1}\right|$ and $\left[J: J_{1}\right]=1$. Hence $\mathcal{Z}(\bar{H})=\overline{J_{1}}=1$, but \bar{H} is nilpotent. This implies $\bar{H}=\mathcal{Z}(\bar{H})=1$, so \bar{H} is abelian and the result follows from Theorem 4.1. Without loss of generality, assume $\left[H: J_{1}\right]<[H: J]$. By the induction hypothesis, G splits normally over H / J_{1}, so there exists $K_{1} \unlhd G$ such that $G=H K_{1}$ and $H \cap K_{1}=J_{1}$. Now

$$
\frac{G}{K_{1}}=\frac{H K_{1}}{K_{1}} \cong \frac{H}{H \cap K_{1}}=\frac{H}{J_{1}},
$$

and $J \unlhd J_{1} \leqslant K_{1}$. Moreover, $\overline{J_{1}}=\mathcal{Z}(\bar{H})$ is abelian, $\left|\overline{J_{1}}\right|$ divides $|\bar{H}|$,

$$
\begin{equation*}
\frac{|G|}{|H|}=\frac{|G|}{\left|K_{1}\right|} \cdot \frac{\left|K_{1}\right|}{|H|}=\frac{|H|\left|K_{1}\right|}{\left|H \cap K_{1}\right|\left|K_{1}\right|} \cdot \frac{\left|K_{1}\right|}{|H|}=\frac{|H|}{\left|J_{1}\right|} \cdot \frac{\left|K_{1}\right|}{|H|}=\frac{\left|K_{1}\right|}{\left|J_{1}\right|} \tag{3}
\end{equation*}
$$

and $\operatorname{gcd}([G: H],[H: J])=1$. Consequently, $\operatorname{gcd}\left(\left[J_{1}: J\right],\left[K_{1}: J_{1}\right]\right)=1$.
Suppose $x_{1}, x_{2} \in J_{1}$ such that $x_{1} \sim_{K_{1}} x_{2}$. By hypothesis, $\overline{x_{1}} \sim_{\bar{H}} \overline{x_{2}}$. Since $\overline{x_{1}}, \overline{x_{2}} \in \overline{J_{1}}$, we have $\overline{x_{1}}=\overline{x_{2}}$ and $\overline{x_{1}} \sim_{\overline{J_{1}}} \overline{x_{2}}$. Now $\left[J_{1}: J\right]<[H: J]$; otherwise, \bar{H} is abelian and the result follows from Theorem 4.1. By induction on $J \unlhd J_{1} \leqslant K_{1}, K_{1}$ splits normally over J_{1}, so there exists $K \unlhd K_{1}$ such that $K_{1}=K J_{1}$ and $K \cap J_{1}=J$. Then $H K=H J_{1} K=H K_{1}=G$ and $J \leqslant H \cap K=H \cap K_{1} \cap K=J_{1} \cap K_{1}=J$. Therefore, G splits over \bar{H}.

Let $h \in H$. Now $J \leqslant K \unlhd K_{1} \unlhd G$ implies $J=J^{h} \leqslant K^{h} \leqslant K_{1}^{h}=K_{1}$, and so $J \leqslant K \cap K^{h}$. By the Second Isomorphism Theorem, $K^{h} K / K \cong K^{h} / K^{h} \cap K$ and $\left[K^{h} K: K\right]=\left[K^{h}: K^{h} \cap K\right]$. Now $\left[K^{h} K: K\right]$ divides $\left[K_{1}: K\right]$, but

$$
\frac{\left|K_{1}\right|}{|K|}=\frac{\left|K J_{1}\right|}{|K|}=\frac{\left|J_{1}\right|}{\left|K \cap J_{1}\right|}=\frac{\left|J_{1}\right|}{|J|}
$$

where $\left[J_{1}: J\right]$ divides $[H: J]$. Thus $\left[K^{h} K: K\right]$ divides $[H: J]$. Because $J \leqslant K \cap K^{h}$, $\left[K^{h} K: K\right]=\left[K^{h}: K \cap K^{h}\right]$ divides $\left[K^{h}: J\right]$ and by (3),

$$
\frac{\left|K^{h}\right|}{|J|}=\frac{|K|}{|J|}=\frac{|K|}{\left|K \cap J_{1}\right|}=\frac{\left|K J_{1}\right|}{\left|J_{1}\right|}=\frac{\left|K_{1}\right|}{\left|J_{1}\right|}=\frac{|G|}{|H|}
$$

Thus $\left[K^{h} K: K\right]$ is a common divisor of $[G: H]$ and $[H: J]$, so $\left[K^{h} K: K\right]=1$ and $K^{h} \leqslant K$. It follows that $K^{h}=K$ and $K \unlhd H K=G$. Therefore, G splits normally over \bar{H}.

4.3 Frobenius' Normal p-Complement Theorem

Theorem 4.16. Let G be a group, $P \in \operatorname{Syl}_{p}(G)$, and suppose $N_{G}(Q) / C_{G}(Q)$ is a p-group for all $Q \leqslant P$. If $P^{*} \in \operatorname{Syl}_{p}(G)$ and $x \in P \cap P^{*}$, then there exists $y \in C_{G}(x)$ such that $P^{*}=P^{y}$.

Proof.

Let $Q=P \cap P^{*}, x \in Q$, and proceed by induction on $[P: Q]$. If $[P: Q]=1$, then $P=Q=P \cap P^{*}$, so $P \leqslant P^{*}$ and $P=P^{*}$. Thus we may chose $1 \in C_{G}(x)$, where $P^{1}=P=P^{*}$. Assume $Q<P$ and $Q<P^{*}$. Since P is a p-group, we have P is nilpotent and $Q<N_{P}(Q) \leqslant N_{G}(Q)$ by Lemma 1.16. Now $N_{P}(Q)$ is a p-group, so by Sylow, there exists $Q_{1} \in \operatorname{Syl}_{p}\left(N_{G}(Q)\right)$ such that $N_{P}(Q) \leqslant Q_{1}$. Again by Sylow, there exists $P_{1} \in \operatorname{Syl}_{p}(G)$ such that $Q_{1} \leqslant P_{1}$. Thus $x \in Q<N_{P}(Q) \leqslant P \cap Q_{1} \leqslant P \cap P_{1}$ and $\left[P: P \cap P_{1}\right]<[P: Q]$. By induction, there exists $y_{1} \in C_{G}(x)$ such that $P^{y_{1}}=P_{1}$. By the same argument as above, $Q<N_{P^{y_{1}}}(Q) \leqslant N_{G}(Q)$ and $N_{P^{y_{1}}}(Q)$ is a p-group. By Sylow, there exists $w \in N_{G}(Q)$ such that $N_{P^{y_{1}}}(Q) \leqslant Q_{1}^{w}$.

Let $\overline{N_{G}(Q)}=N_{G}(Q) / C_{G}(Q)$. Now $\overline{Q_{1}} \in \operatorname{Syl}_{p}\left(\overline{N_{G}(Q)}\right)$ and $\left|\overline{Q_{1}}\right|=\left|\overline{N_{G}(Q)}\right|$ since $\overline{N_{G}(Q)}$ is a p-group. Thus $\overline{Q_{1}}=\overline{N_{G}(Q)}$ and $N_{G}(Q)=Q_{1} C_{G}(Q)$. Since $w \in N_{G}(Q)$, we have $w=q_{1} c$ for some $q_{1} \in Q_{1}$ and $c \in C_{G}(Q)$, so $Q_{1}^{w}=Q_{1}^{q_{1} c}=Q_{1}^{c}$. Without loss of generality, assume $w \in C_{G}(Q) \leqslant C_{G}(x)$ and let $u=\left(y_{1} w\right)^{-1}$. From the above,

$$
Q<N_{P^{*}}(Q) \leqslant P^{*} \cap Q_{1}^{w} \leqslant P^{*} \cap P_{1}^{w}=P^{*} \cap P^{y_{1} w}=P^{*} \cap P^{u^{-1}}
$$

Since $u \in C_{G}(x)$, we have $x=x^{u} \in Q^{u}<N_{P^{*}}(Q)^{u} \leqslant\left(P^{*}\right)^{u}$. Hence $x \in P \cap\left(P^{*}\right)^{u}$ and $x=x^{u^{-1}} \in P^{*} \cap P^{u^{-1}}$. Also, since $Q<P^{*} \cap P^{u^{-1}}$, we have

$$
\frac{\left|P^{u^{-1}}\right|}{\left|P^{*} \cap P^{u^{-1}}\right|}<\frac{\left|P^{u^{-1}}\right|}{|Q|}=\frac{|P|}{|Q|},
$$

and $\left[N_{G}(Q)^{u^{-1}}: C_{G}(Q)^{u^{-1}}\right]=\left[N_{G}(Q): C_{G}(Q)\right]$ is a p-number. By the induction hypothesis, there exists $y_{2} \in C_{G}(x)$ such that $\left(P^{*}\right)^{y_{2}}=P^{u^{-1}}$. Therefore, $P=\left(P^{*}\right)^{y_{2} u}=\left(P^{*}\right)^{y_{2}\left(y_{1} w\right)^{-1}}$ and $y_{2}\left(y_{1} w\right)^{-1} \in C_{G}(x)$.

Theorem 4.17. Let G be a group, $J \unlhd H \leqslant V \leqslant G, H / J$ be nilpotent, and $\operatorname{gcd}([G: H],[H: J])=1$. Further suppose, whenever $h_{1}, h_{2} \in H$ are fused in G, it follows that h_{1} and h_{2} are fused in V. Then the following are equivalent:
(i) G splits normally over H / J.
(ii) V splits normally over H / J.

Proof.

Suppose G splits normally over H / J. Now there exists $K \unlhd G$ such that $G=H K$ and $H \cap K=J$. Since $K \unlhd G$, we have $K \cap V \unlhd V$. Furthermore,

$$
V=V \cap G=V \cap H K=H(V \cap K),
$$

and $H \cap(V \cap K)=H \cap K=J$. Therefore, V splits normally over H / J.
Suppose V splits normally over H / J and $h_{1}, h_{2} \in H$ are fused in G. By hypothesis, $h_{1} \sim_{V} h_{2}$. Now $[V: H]$ divides $[G: H]$ and $\operatorname{gcd}([V: H],[H: J])=1$. Hence $J h_{1} \sim_{H / J} J h_{2}$ by Theorem 4.15. By Theorem 4.15 on $J \unlhd H \leqslant G$, we have G splits normally over H / J.

Theorem 4.18 (Frobenius' Normal p-Complement Theorem). Let G be a group and $P \in \operatorname{Syl}_{p}(G)$. Then G has a normal p-complement if and only if one of the following conditions are satisfied:
(i) $N_{G}(Q) / C_{G}(Q)$ is a p-group for all $Q \leqslant P$.
(ii) $N_{G}(Q)$ has a normal p-complement for all $Q \leqslant P$.

Proof.
For (i), suppose G has a normal p-complement. Now there exists $K \unlhd G$ such that $G=P K$ and $P \cap K=1$. Let $Q \leqslant P$. Since

$$
|K|=\frac{|K|}{|P \cap K|}=\frac{|P K|}{|P|}=\frac{|G|}{|P|},
$$

we have K is a p^{\prime}-group. Moreover, $K \cap N_{G}(Q) \unlhd N_{G}(Q)$ and $Q \unlhd N_{G}(Q)$. Thus $\left[K \cap N_{G}(Q), Q\right] \leqslant Q \cap K \cap N_{G}(Q)=1$ by coprime orders. Hence $K \cap N_{G}(Q) \leqslant C_{G}(Q)$.

By the Second Isomorphism Theorem,

$$
\frac{N_{G}(Q)}{K \cap N_{G}(Q)} \cong \frac{N_{G}(Q) K}{K} \leqslant \frac{G}{K}=\frac{P K}{K} \cong \frac{P}{P \cap K},
$$

so $N_{G}(Q) / K \cap N_{G}(Q)$ is a p-group. By Lemma 4.7,

$$
\frac{\mathcal{O}^{p}\left(N_{G}(Q)\right)}{K \cap N_{G}(Q)}=\mathcal{O}^{p}\left(\frac{N_{G}(Q)}{K \cap N_{G}(Q)}\right)=1
$$

thus $\mathcal{O}^{p}\left(N_{G}(Q)\right) \leqslant K \cap N_{G}(Q) \leqslant C_{G}(Q)$. Again by Lemma 4.7, $N_{G}(Q) / C_{G}(Q)$ is a p-group.

Conversely, suppose $N_{G}(Q) / C_{G}(Q)$ is a p-group for all $Q \leqslant P$ and let $V=N_{G}(P)$. Now $P \unlhd V$ and $P \in \operatorname{Syl}_{p}(V)$. By Schur-Zassenhaus Part 1, V splits over P, so there exists $W \leqslant V$ such that $V=P W$ and $P \cap W=1$. Since W is a p^{\prime}-group, we have $W=\left\langle Q: Q \in \operatorname{Syl}_{q}(W), q \in \pi(W)\right\rangle$ and so $W \leqslant \mathcal{O}^{p}(V)$. Now

$$
\frac{\mathcal{O}^{p}(V) C_{G}(P)}{C_{G}(P)} \leqslant \frac{N_{G}(P)}{C_{G}(P)}
$$

is a p-subgroup, but $\mathcal{O}^{p}(V) C_{G}(P) / C_{G}(P)$ is a homomorphic image of a p^{\prime}-group. Thus $\mathcal{O}^{p}(V) C_{G}(P) / C_{G}(P)=1$ and $\mathcal{O}^{p}(V) \leqslant C_{G}(P)$. This implies $W \leqslant C_{G}(P) \leqslant N_{G}(P)$ and $W \unlhd W P=V$. Hence V splits normally over $P \cong P /\{1\}$. Now $\{1\} \unlhd P \leqslant V \leqslant G$, $P /\{1\}$ is nilpotent, and $\operatorname{gcd}([G: P],[P:\{1\}])=1$.

Let $x \in P$ and $g \in G$ such that $x^{g} \in P$. Now $x \in P \cap P^{g^{-1}}$ and by Theorem 4.16, there exists $y \in C_{G}(x)$ such that $P^{y}=P^{g^{-1}}$ or, equivalently, $P^{y g}=P$. Hence $y g \in N_{G}(P)=V$. Also, $x^{y g}=x^{g}$ implies $x \sim_{V} x^{g}$. By Theorem 4.17 used on $\{1\} \unlhd P \leqslant V \leqslant G$, we have G splits normally over $P /\{1\} \cong P$, so G has a normal p-complement.

For (ii), suppose G has a normal p-complement. Now there exists $K \unlhd G$ such that $G=P K$ and $P \cap K=1$. Let $Q \leqslant P, N=N_{G}(Q)$, and $P_{0} \in \operatorname{Syl}_{p}(N)$. Now $K \cap N \unlhd N$ and by the Second Isomorphism Theorem,

$$
\frac{N}{N \cap K} \cong \frac{K N}{K} \leqslant \frac{G}{K}=\frac{P K}{K} \cong \frac{P}{P \cap K}
$$

Hence $N / N \cap K$ is a p-group. Let $\bar{N}=N / N \cap K$. Now $\overline{P_{0}} \in \operatorname{Syl}_{p}(\bar{N})$, but \bar{N} is a
p-group, so $\overline{P_{0}}=\bar{N}$. Thus $N=P_{0}(N \cap K)$ and it follows from Sylow that there exists $g \in G$ with $P_{0} \leqslant P^{g}$. Then

$$
P_{0} \cap N \cap K \leqslant P^{g} \cap N \cap K \leqslant P^{g} \cap K=P^{g} \cap K^{g}=(P \cap K)^{g}=1,
$$

and $N=N_{G}(Q)$ has a normal p-complement.
Conversely, suppose $N_{G}(Q)$ has a normal p-complement for all $Q \leqslant P$. Let $Q \leqslant P, N=N_{G}(Q)$, and $P_{0} \in S y l_{p}(N)$. Now there exists $K \unlhd N$ such that $N=P_{0} K$ and $P_{0} \cap K=1$. Moreover, K is a p^{\prime}-group, $K \unlhd N$, and $Q \unlhd N$. Consequently, $[Q, K] \leqslant Q \cap K=1$ and $K \leqslant C_{G}(Q)$. By the Second Isomorphism Theorem,

$$
\frac{N}{K}=\frac{P_{0} K}{K} \cong \frac{P_{0}}{P_{0} \cap K} \cong P_{0}
$$

so N / K is a p-group. In addition,

$$
\frac{N_{G}(Q)}{C_{G}(Q)} \cong \frac{N_{G}(Q) / K}{C_{G}(Q) / K}
$$

is a p-group. Therefore by $(i), G$ has a normal p-complement.

5 The Journey to Replacement Theorems

5.1 The Thompson Subgroup

Definition 5.1. Let P be a p-group and define the set

$$
A(P)=\{A \leqslant P: A \text { is abelian and }|A| \text { is maximal }\}
$$

The Thompson subgroup of P is given by $J(P)=\langle A: A \in A(P)\rangle$.

Lemma 5.1. If P is a p-group, then $A(P) \neq 1$.

Proof.
Toward a contradiction, suppose $A(P)=1$ and let $|P|=p^{n}$ for some $n \in \mathbb{N}_{0}$. Now there exists $H \leqslant P$ such that $|H|=p$. Hence $H \cong \mathbb{Z}_{p}$ and H is abelian. It follows that $H \in A(P)=1$, which is contradiction. Therefore, $A(P) \neq 1$.

Theorem 5.1. Let P be a p-group and $A \in A(P)$. Then $A=C_{P}(A)$.

Proof.
Since $A \in A(P)$, we have A is abelian and $A \leqslant C_{P}(A)$. Let $x \in C_{P}(A)$. Now $x \in N_{P}(A)$, so $\langle x\rangle A \leqslant P$. But then $A \leqslant\langle x\rangle A \leqslant P$, where $\langle x\rangle A$ is abelian. By the maximality of $|A|, A=\langle x\rangle A$ and $x \in A$. Therefore, $A=C_{P}(A)$.

Theorem 5.2. Let G be a group and $P \in \operatorname{Syl}_{p}(G)$. Then
(i) $J(P)$ char P.
(ii) If $A \leqslant H \leqslant P$ and $A \in A(P)$, then $J(H) \leqslant J(P)$. If $J(P) \leqslant H \leqslant P$, then $J(P)=J(H)$.
(iii) If $Q \in \operatorname{Syl}_{p}(G)$ such that $J(P) \leqslant Q$, then $J(P)=J(Q)$.
(iv) If $J(P) \leqslant H \leqslant G$ and H is a p-group, then $J(P)$ char H.

Proof.
For (i), let $\phi \in A u t(P)$ and $A \in A(P)$. Now A^{ϕ} is abelian, $\left|A^{\phi}\right|=|A|$, and $A^{\phi} \leqslant P$. Consequently, $A^{\phi} \in A(P)$, so $J(P)^{\phi} \leqslant J(P)$. Therefore, $J(P)$ char P.

For (ii), since $A \leqslant H \leqslant P$ and $A \in A(P)$, we know the orders of elements from $A(H)$ are the same as the orders of elements from $A(P)$. Hence $A(H) \subseteq A(P)$ and so $J(H) \leqslant J(P)$. If $J(P) \leqslant H \leqslant P$, then by above, we have $J(H) \leqslant J(P)$. It follows from $J(P) \leqslant H$ that $A(P) \subseteq A(H)$. Thus $J(P) \leqslant J(H)$, so $J(P)=J(H)$.

For (iii), let $Q \in \operatorname{Syl}_{p}(G)$, where $J(P) \leqslant Q$. By Sylow, there exists $g \in G$ such that $Q=P^{g}$. Now $Q=P^{g} \cong P$ and

$$
J(Q)=\left\langle A^{g}: A \in A(P)\right\rangle=\langle A: A \in A(P)\rangle^{g}=J(P)^{g} .
$$

Thus $|J(Q)|=\left|J(P)^{g}\right|=|J(P)|$. Since $P \cong Q$, elements of $A(P)$ and $A(Q)$ have the same order, but $J(P) \leqslant Q$. Hence $A(P) \subseteq A(Q)$ and $J(P) \leqslant J(Q)$. Therefore, $J(P)=J(Q)$.

For $(i v)$, suppose $J(P) \leqslant H \leqslant G$ and H is a p-group. By Sylow, there exists $Q \in \operatorname{Syl}_{p}(G)$ such that $H \leqslant Q$. Now $J(P) \leqslant Q$ and so by $(i i i), J(P)=J(Q)$. Hence $J(Q) \leqslant H \leqslant Q$ and by $(i i), J(H)=J(Q)=J(P)$. The result from (i).

5.2 Properties of Commutators

Lemma 5.2. Let G be a group, $x, y, z \in G,[y, z]=1$, and suppose $[x, G]$ is abelian. Then $[x, y, z]=[x, z, y]$.

Proof.
Let $g \in G$. Now $[x, g] \in[x, G]$ and

$$
[g, x]=g^{-1} x^{-1} g x=\left(x^{-1} g^{-1} x g\right)^{-1}=[x, g]^{-1} \in[x, G] .
$$

Since $[x, G]$ is abelian,

$$
\begin{aligned}
{[x, y, z] } & =[[x, y], z]=\left[x^{-1} y^{-1} x y, z\right]=\left(x^{-1} y^{-1} x y\right)^{-1} z^{-1}\left(x^{-1} y^{-1} x y\right) z \\
& =y^{-1} x^{-1} y x z^{-1} x^{-1} y^{-1} x y z=x^{-1} x y^{-1} x^{-1} y x z^{-1} x^{-1} y^{-1} x y z \\
& =x^{-1}\left[x^{-1}, y\right]\left[x^{-1}, z\right] z^{-1} y^{-1} x y z=x^{-1}\left[x^{-1}, z\right]\left[x^{-1}, y\right] z^{-1} y^{-1} x z y \\
& =x^{-1} x z^{-1} x^{-1} z x y^{-1} x^{-1} y z^{-1} y^{-1} x z y=z^{-1} x^{-1} z x y^{-1} x^{-1} y y^{-1} z^{-1} x z y \\
& =z^{-1} x^{-1} z x y^{-1} x^{-1} z^{-1} x z y=[x, z]^{-1} y^{-1}[x, z] y=[[x, z], y] \\
& =[x, z, y] .
\end{aligned}
$$

Therefore, $[x, y, z]=[x, z, y]$.
Lemma 5.3. Let G be a group and $a, b, c \in G$. Then
(i) $[a b, c]=[a, c][a, c, b][b, c]$.
(ii) $[a, b, a]=\left[a^{b}, a\right]$.

Proof.
For (i), let $a, b, c \in G$. Then

$$
\begin{aligned}
{[a, c][a, c, b][b, c] } & =a^{-1} c^{-1} a c[a, c]^{-1} b^{-1}[a, c] b b^{-1} c^{-1} b c \\
& =a^{-1} c^{-1} a c[c, a] b^{-1}[a, c] b b^{-1} c^{-1} b c \\
& =a^{-1} c^{-1} a c c^{-1} a^{-1} c a b^{-1} a^{-1} c^{-1} a c b b^{-1} c^{-1} b c \\
& =b^{-1} a^{-1} c^{-1} a b c=(a b)^{-1} c^{-1}(a b) c \\
& =[a b, c] .
\end{aligned}
$$

Therefore, $[a, c][a, c, b][b, c]=[a b, c]$.
For (ii), let $a, b \in G$. Then

$$
\begin{aligned}
{[a, b, a] } & =[a, b]^{-1} a^{-1}[a, b] a=[b, a] a^{-1}[a, b] a=b^{-1} a^{-1} b a a^{-1} a^{-1} b^{-1} a b a \\
& =b^{-1} a^{-1} b a^{-1} b^{-1} a b a=\left(a^{b}\right)^{-1} a^{-1}\left(a^{b}\right) a \\
& =\left[a^{b}, a\right] .
\end{aligned}
$$

Therefore, $[a, b, a]=\left[a^{b}, a\right]$.

Lemma 5.4. Let G be a group and $x \in G$. Then $\left[x^{n}, g\right] \in[x, G]$ for all $g \in G, n \in \mathbb{N}$.
Proof.
We proceed by induction on n. Let $g \in G$. If $n=2$, we have by Lemma 5.3,

$$
\left[x^{2}, g\right]=[x x, g]=[x, g][x, g, x][x, g]=[x, g]\left[x^{g}, x\right][x, g]=[x, g]\left[x, x^{g}\right]^{-1}[x, g] \in[x, G] .
$$

Assume $\left[x^{n}, g\right] \in[x, G]$ for all $g \in G$. By Lemma 5.3 and the induction hypothesis,

$$
\begin{aligned}
{\left[x^{n+1}, g\right] } & =\left[x^{n} x, g\right]=\left[x^{n}, g\right]\left[x^{n}, g, x\right][x, g]=\left[x^{n}, g\right]\left[x^{n}, g\right]^{-1} x^{-1}\left[x^{n}, g\right] x[x, g] \\
& =\left[x^{n}, g\right]\left[g, x^{n}\right] x^{-1}\left[x^{n}, g\right] x[x, g]=\left[x^{n}, g\right] g^{-1} x^{-n} g x^{n} x^{-1} x^{-n} g^{-1} x^{n} g x[x, g] \\
& =\left[x^{n}, g\right] g^{-1} x^{-n} g x^{-1} g^{-1} x^{n} g x[x, g]=\left[x^{n}, g\right]\left(g^{-1} x^{n} g\right)^{-1} x^{-1}\left(g^{-1} x^{n} g\right) x[x, g] \\
& =\left[x^{n}, g\right]\left[\left(x^{n}\right)^{g}, x\right][x, g]=\left[x^{n}, g\right]\left[x,\left(x^{n}\right)^{g}\right]^{-1}[x, g] .
\end{aligned}
$$

Therefore, $\left[x^{n+1}, g\right] \in[x, G]$ and the result holds by induction.
Theorem 5.3 (Properties of Commutators). Let G be a group, $H \leqslant G, K \leqslant G$, $x, y, z \in G$, and $n \in \mathbb{N}$. Then
(i) $[x y, z]=[x, z]^{y}[y, z]$.
(vii) $\binom{n+1}{2}=\binom{n}{2}+n$.
(ii) $[x, y z]=[x, z][x, y]^{z}$.
(viii) $[x, y, x]=\left[x^{y}, x\right]$.
(ix) If $[x, y] \in C_{G}(x) \cap C_{G}(y)$, then
(iv) $[x, y]=x^{-1} x^{y}$.
(a) $[x, y]^{n}=\left[x, y^{n}\right]=\left[x^{n}, y\right]$,
(v) $[G, H] \unlhd G$.
(b) $(x y)^{n}=x^{n} y^{n}[y, x]^{\binom{n}{2}}$.
(vi) $[H, K] \unlhd\langle H, K\rangle$.

Proof.
Properties $(i)-(i v)$ are proven by direct computation.
For (v), let $g, g_{1} \in G$ and $h \in H$. Now

$$
\begin{aligned}
{\left[g_{1}, h\right]^{g} } & =g^{-1} g_{1}^{-1} h^{-1} g_{1} h g=\left(g_{1} g\right)^{-1} h^{-1} g_{1} g h h^{-1} g^{-1} h g \\
& =\left[g_{1} g, h\right][h, g]=\left[g_{1} g, h\right][g, h]^{-1} \in[G, H] .
\end{aligned}
$$

Therefore, $[G, H] \unlhd G$.

For $(v i)$, let $h, h_{1} \in H$ and $k, k_{1} \in K$. By $(i),\left[h h_{1}, k\right]=[h, k]^{h_{1}}\left[h_{1}, k\right]$, so $[h, k]^{h_{1}}=\left[h h_{1}, k\right]\left[h_{1}, k\right]^{-1} \in[H, K]$. Similarly, $\left[h, k k_{1}\right]=\left[h, k_{1}\right][h, k]^{k_{1}}$ and $[h, k]^{k_{1}}=\left[h, k_{1}\right]^{-1}\left[h, k k_{1}\right] \in[H, K]$. Therefore, $[H, K] \unlhd\langle H, K\rangle$.

For (vii),

$$
\begin{aligned}
\binom{n+1}{2} & =\frac{(n+1)!}{2!(n+1-2)!}=\frac{(n+1)!}{2!(n-1)!}=\frac{(n+1)(n)}{2}=\frac{n^{2}+n}{2} \\
& =\frac{n^{2}-n+2 n}{2}=\frac{n(n-1)}{2}+n=\frac{n!}{2!(n-2)!}+n=\binom{n}{2}+n
\end{aligned}
$$

For (viii), by direct computation we have

$$
\begin{aligned}
{[x, y, x] } & =[x, y]^{-1} x^{-1}[x, y] x=[y, x] x^{-1}[x, y] x \\
& =y^{-1} x^{-1} y x x^{-1} x^{-1} y^{-1} x y x=\left(y^{-1} x y\right)^{-1} x^{-1}\left(y^{-1} x y\right) x \\
& =\left(x^{y}\right)^{-1} x^{-1}\left(x^{y}\right) x=\left[x^{y}, x\right] .
\end{aligned}
$$

Therefore, $[x, y, x]=\left[x^{y}, x\right]$.
For $(i x)$, let $[x, y] \in C_{G}(x) \cap C_{G}(y)$ and use induction on n. If $n=1$, then $[x, y]^{1}=\left[x, y^{1}\right]$. Suppose $[x, y]^{n}=\left[x, y^{n}\right]$. Now by the induction hypothesis, $[x, y]^{n+1}=[x, y][x, y]^{n}=[x, y]\left[x, y^{n}\right]$. Since $[x, y] \in C_{G}(x) \cap C_{G}(y)$, we have

$$
\begin{aligned}
{[x, y]\left[x, y^{n}\right] } & =[x, y] x^{-1} y^{-n} x y^{n}=x^{-1} y^{-n} x[x, y] y^{n}=x^{-1} y^{-n} x x^{-1} y^{-1} x y y^{n} \\
& =x^{-1} y^{-n-1} x y^{n+1}=x^{-1} y^{-(n+1)} x y^{n+1}=\left[x, y^{n+1}\right] .
\end{aligned}
$$

Therefore, $[x, y]^{n}=\left[x, y^{n}\right]=\left[x^{n}, y\right]$ for all $n \in \mathbb{N}_{0}$ by induction.
For (b), use induction on n. If $n=2$, then

$$
\begin{aligned}
\left.x^{2} y^{2}[y, x]^{(2)} 2\right) & =x^{2} y^{2}[y, x]=x x y y[x, y]=x x y[y, x] y \\
& =x x y y^{-1} x^{-1} y x y=x y x y=(x y)^{2} .
\end{aligned}
$$

Assume $(x y)^{n}=x^{n} y^{n}[y, x]^{\binom{n}{2}}$. By (a) and (vii),

$$
\begin{aligned}
(x y)^{n+1} & =(x y)^{n} x y=x^{n} y^{n}[y, x]^{\binom{n}{2}} x y=x^{n} y^{n}\left[y^{\binom{n}{2}}, x\right] x y=x^{n} y^{n} y^{-\binom{n}{2}} x^{-1} y^{\binom{n}{2}} x x y \\
& =x^{n} y^{n} y^{n} y^{-n} y^{-\binom{n}{2}} x^{-1} y^{\binom{n}{2}} y^{n} y^{-n} x x y=x^{n} y^{2 n} y^{-\binom{n}{2}-n} x^{-1} y^{\binom{n}{2}+n} y^{-n} x x y \\
& =x^{n} y^{2 n} y^{-\binom{n+1}{2}} x^{-1} y^{\binom{n+1}{2}} y^{-n} x x y=x^{n} y^{2 n} y^{-\binom{n+1}{2}} x^{-1} y^{\binom{n+1}{2}} x x^{-1} y^{-n} x x y \\
& =x^{n} y^{2 n}\left[y^{\binom{n+1}{2}}, x\right] x^{-1} y^{-n} x x y=x^{n} y^{2 n}[y, x]^{\binom{n+1}{2}} x^{-1} y^{-n} x x y \\
& =x^{n} y^{2 n} x^{-1} y^{-n} x x y[y, x]_{\binom{n+1}{2}}=x^{n} y^{2 n} x^{-1} y^{-n} x y^{n} y^{-n} x y[y, x]^{\binom{n+1}{2}} \\
& \left.\left.=x^{n} y^{2 n} x, y^{n}\right] y^{-n} x y[y, x]_{\binom{n+1}{2}}=x^{n} y^{2 n} y^{-n} x\left[x, y^{n}\right] y[y, x]^{n+1} \begin{array}{c}
n \\
2
\end{array}\right) \\
& =x^{n} y^{n} x x^{-1} y^{-n} x y^{n} y[y, x]_{\binom{n+1}{2}}=x^{n} x y^{n} y[y, x]^{\binom{n+1}{2}} \\
& =x^{n+1} y^{n+1}[y, x]_{\binom{n+1}{2}} .
\end{aligned}
$$

Therefore, $(x y)^{n}=x^{n} y^{n}[y, x]^{\binom{n}{2}}$ for all $n \in \mathbb{N}_{0}$ by induction.

Lemma 5.5. Let G be a group, $a, b, c \in G$ such that $c \in C_{G}(b)$ and $b \in C_{G}(a)$. Then $[a b, c]=[a, c]$.

Proof.
By Theorem 5.3 and the hypothesis, $[a b, c]=[a, c]^{b}[b, c]=[a, c]^{b}=[a, c]$.

Lemma 5.6 (Three Subgroups Lemma). Let G be a group, $H \leqslant G, L \leqslant G, K \leqslant G$, and suppose $[H, K, L]=1$ and $[K, L, H]=1$. Then $[L, H, K]=1$.

Proof.

Let $h \in H, k \in K$, and $l \in L$. Consider the element $\left[h, k^{-1}, l\right]^{k}\left[k, l^{-1}, h\right]^{l}\left[l, h^{-1}, k\right]^{h}$. It follows from direct computation that

$$
\left[h, k^{-1}, l\right]^{k}\left[k, l^{-1}, h\right]^{l}\left[l, h^{-1}, k\right]^{h}=k^{-1}\left[h, k^{-1}, l\right] k l^{-1}\left[k, l^{-1}, h\right] l h^{-1}\left[l, h^{-1}, k\right] h=1 .
$$

By hypothesis, $\left[h, k^{-1}, l\right]=1$ and $\left[k, l^{-1}, h\right]=1$, which implies $\left[h, k^{-1}, l\right]^{k}=1$ and $\left[k, l^{-1}, h\right]^{l}=1$. From the above, $1=\left[l, h^{-1}, k\right]^{h}$, or, equivalently, $\left[l, h^{-1}, k\right]=1$. Therefore, $[L, H, K]=1$.

5.3 Thompson Replacement Theorem

Definition 5.2. Let G be a group, $A \leqslant G$, and $B \leqslant G$. If $[B, A, A]=1$, then A acts quadratically on B.

Theorem 5.4. Let P be a p-group, $A \in A(P)$, and $B \leqslant P$. Then $B \leqslant N_{P}(A)$ if and only if A acts quadratically on B.

Proof.
Suppose $B \leqslant N_{P}(A)$. The result follows since A is abelian. Conversely, suppose $[B, A, A]=1$. Now $[B, A] \leqslant C_{P}(A)=A$ by Theorem 5.1. This implies for all $[b, a] \in[B, A]$, there exists $a_{1} \in A$ such that $a_{1}=[b, a]=\left(a^{-1}\right)^{b} a$. It follows that $\left(a^{-1}\right)^{b}=a_{1} a^{-1} \in A$. Therefore, $B \leqslant N_{P}(A)$.

Theorem 5.5. Let P be a p-group, $A \in A(P), x \in P$, and suppose $M=[x, A]$ is abelian. Then $M C_{A}(M) \in A(P)$.

Proof.
Let $C=C_{A}(M)$. It follows from M and C being abelian, and $[M, C]=1$ that $M C$ is abelian. Thus it is enough to show $|M C| \geq|A|$.

By Theorem 5.1, $A=C_{P}(A)$, so

$$
C \cap M \leqslant C_{M}(A)=M \cap C_{P}(A)=M \cap A \leqslant C_{A}(M) \cap M=C \cap M
$$

Hence $C \cap M=C_{M}(A)$. Furthermore,

$$
|M C|=\frac{|M||C|}{|M \cap C|}=\frac{|M|\left|C_{A}(M)\right|}{\left|C_{M}(A)\right|}
$$

and so it is enough to show $\left[M: C_{M}(A)\right] \geq\left[A: C_{A}(M)\right]$. For if true,

$$
\begin{aligned}
\frac{|M|}{|C \cap M|}= & \frac{|M|}{\left|C_{M}(A)\right|} \geq \frac{|A|}{\left|C_{A}(M)\right|}=\frac{|A|}{|C|} \\
& \frac{|M||C|}{|C \cap M|} \geq|A| .
\end{aligned}
$$

Let $u, v \in A$ such that $C_{A}(M) u \neq C_{A}(M) v$, it follows that $[x, u],[x, v] \in M$. If $C_{M}(A)[x, u]=C_{M}(A)[x, v]$, then $y=[x, u]^{-1}[x, v] \in C_{M}(A)$. Now $y=\left(x^{u}\right)^{-1} x^{v}$
and since $y \in C_{M}(A), y=y^{u^{-1}}=\left(\left(x^{u}\right)^{-1} x^{v}\right)^{u^{-1}}=x^{-1} x^{v u^{-1}}=\left[x, v u^{-1}\right]$. Hence $\left[x, v u^{-1}\right] \in C_{M}(A)$, so $\left[x, v u^{-1}, a\right]=1$ for all $a \in A$. Since A is abelian and $v u^{-1} \in A$, we have $\left[v u^{-1}, a\right]=1$ for all $a \in A$. By Lemma $5.2,\left[x, a, v u^{-1}\right]=1$ for all $a \in A$. Thus $v u^{-1} \in C_{A}(M)$ and so $C_{A}(M) u=C_{A}(M) v$, which is a contradiction. Therefore, $\left[M: C_{M}(A)\right] \geq\left[A: C_{A}(M)\right]$ and $M C_{A}(M) \in A(P)$.

Theorem 5.6 (Thompson Replacement Theorem). Let P be a p-group, $A \in A(P)$, $B \leqslant P, B$ be abelian, and suppose $A \leqslant N_{P}(B)$, but $B \not N_{P}(A)$. Then there exists $A^{*} \in A(P)$ such that
(i) $A \cap B<A^{*} \cap B$.
(ii) $A^{*} \leqslant N_{P}(A)$.

Proof.

Since $A \leqslant N_{P}(B)$, we have $B \unlhd A B \leqslant P$. Let $N=N_{B}(A)$. Since B is abelian and $A \leqslant N_{P}(B)$, we have $N \unlhd A B$. Moreover, $N<B$ because $B \not N_{P}(A)$. Let $\overline{A B}=A B / N$. Now $\bar{B} \unlhd \overline{A B}$ and \bar{B} is nontrivial. Since $\overline{A B}$ is a p-group, we have $\bar{B} \cap \mathcal{Z}(\overline{A B}) \neq 1$ by Theorem 1.15 and Lemma 1.18. Hence there exists a nontrivial $\bar{x} \in \bar{B} \cap \mathcal{Z}(\overline{A B})$ such that $[\bar{x}, \bar{A}]=1$ and $[x, A] \leqslant N$. Let $M=[x, A]$. Now $M<B$ and M is abelian. By Theorem 5.5, $A^{*}=M C_{A}(M) \in A(P)$. Furthermore, $C_{A}(M) \leqslant N_{P}(A)$ and $M \leqslant N=N_{B}(A) \leqslant N_{P}(A)$. It follows that

$$
A^{*}=M C_{A}(M) \leqslant N_{P}(A)
$$

Since $\bar{x} \in \bar{B} \cap \mathcal{Z}(\overline{A B})$ is nontrivial, we have $x \notin N$ and $M=[x, A] \notin A$. Now $x \in B$ and $x \in C_{P}(A \cap B)$. Also, $A \leqslant C_{P}(A \cap B)$ since A is abelian. Hence

$$
M=[x, A] \leqslant C_{P}(A \cap B) \leqslant N_{P}(A \cap B)
$$

and $M(A \cap B) \leqslant P$. However, $M \nless A$, so $A \cap B<M(A \cap B) \leqslant A^{*} \cap B$. Therefore, $A \cap B<A^{*} \cap B$.

5.4 Glauberman Replacement Theorem

Definition 5.3. Let G be a group, $H \leqslant G$, and $K \leqslant G$. Define $[H, K ; 0]=H$, $[H, K ; 1]=[[H, K ; 0], K]=[H, K],[H, K ; 2]=[[H, K ; 1], K]=[H, K, K], \ldots$, and inductively, $[H, K ; n]=[[H, K ; n-1], K]$.

Definition 5.4. Let G be a nilpotent group and $n+1$ be minimal such that the lower central series of G terminates at 1 -that is, $K_{n+1}(G)=1$. We say the nilpotency class of G is n and write $\operatorname{cl}(G)=n$.

Theorem 5.7. Let $P=B A$ be a p-group, $B \unlhd P, A$ be abelian, $B^{\prime} \leqslant \mathcal{Z}(P)$, $\bar{P}=P / B^{\prime}$, and suppose n is minimal with respect to $[B, A ; n]$ being abelian. Then
(i) $K_{i}(\bar{P})=[\bar{B}, \bar{A} ; i-1]$ for all $i \geq 2$.
(ii) $[B, A ; i+1] \leqslant[B, A ; i]$ for all $i \geq 0$.
(iii) If $[B, A ; n+1]=1$, then $n \leq 2$ and $\operatorname{cl}(P) \leq 4$.

Proof.

For (i), since B^{\prime} char $B \unlhd P$, we know $B^{\prime} \unlhd P$. By the Second and Third Isomorphism Theorems,

$$
\frac{\bar{P}}{\bar{B}} \cong \frac{P}{B}=\frac{B A}{B} \cong \frac{A}{A \cap B}
$$

and so \bar{P} / \bar{B} is abelian. It follows that $K_{i}(\bar{P} / \bar{B})=1$ for all $i \geq 2$, which implies $K_{i}(\bar{P}) \leqslant \bar{B}$ for all $i \geq 2$. Moreover, \bar{B} is abelian. Let $\bar{x} \in K_{i}(\bar{P}), \bar{a} \in \bar{A}$, and $\bar{b} \in \bar{B}$. By Theorem 5.3 and since \bar{B} is abelian, we have $[\bar{b} \bar{a}, \bar{x}]=[\bar{b}, \bar{x}]^{\bar{a}}[\bar{a}, \bar{x}]=[\bar{a}, \bar{x}]$. Hence $\left[K_{i}(\bar{P}), \bar{P}\right]=\left[K_{i}(\bar{P}), \bar{A}\right]$ for all $i \geq 2$.

We proceed by induction on i. Suppose $i=2$ and let $\bar{a} \in \bar{A}, \bar{b} \in \bar{B}$, and $\bar{x} \in \bar{P}$. Now $[\bar{a} \bar{b}, \bar{x}]=[\bar{a}, \bar{x}]^{\bar{b}}[\bar{b}, \bar{x}]=[\bar{a}, \bar{x}][\bar{b}, \bar{x}]$ since $[\bar{a}, \bar{x}] \in \bar{P}^{\prime}=K_{2}(\bar{P}) \leqslant \bar{B}$. Thus $K_{2}(\bar{P})=[\bar{P}, \bar{P}]=[\bar{A}, \bar{P}][\bar{B}, \bar{P}]$. Furthermore, \bar{A} is abelian, $\bar{B} \unlhd \bar{P}$, and $\overline{B^{\prime}}=1$. By Theorem 5.3, we have

$$
[\bar{A}, \bar{P}]=[\bar{A}, \bar{B} \bar{A}]=[\bar{A}, \bar{A}][\bar{A}, \bar{B}]^{\bar{A}}=[\bar{A}, \bar{B}]
$$

and

$$
[\bar{B}, \bar{P}]=[\bar{B}, \bar{B} \bar{A}]=[\bar{B}, \bar{A}][\bar{B}, \bar{B}]^{\bar{A}}=[\bar{B}, \bar{A}]=[\bar{A}, \bar{B}] .
$$

Hence $K_{2}(\bar{P})=\bar{P}^{\prime}=[\bar{P}, \bar{P}]=[\bar{B}, \bar{A}]=[\bar{B}, \bar{A} ; 1]$. Assume $K_{i}(\bar{P})=[\bar{B}, \bar{A} ; i-1]$. Now

$$
K_{i+1}(\bar{P})=\left[K_{i}(\bar{P}), \bar{P}\right]=\left[K_{i}(\bar{P}), \bar{A}\right]=[[\bar{B}, \bar{A} ; i-1], \bar{A}]=[\bar{B}, \bar{A} ; i]
$$

Therefore, (i) holds by induction.
For (ii), it is enough to show $A \leqslant N_{P}([B, A ; i])$ for all $i \in \mathbb{N}_{0}$ and we proceed by induction on i. If $i=0$, then $A \leqslant N_{P}(B)=N_{P}([B, A ; 0])$ since $B \unlhd P$. Assume $A \leqslant N_{P}([B, A ; i])$ and let $a \in A$. Now

$$
[B, A ; i+1]^{a}=[[B, A ; i], A]^{a}=\left[[B, A ; i]^{a}, A\right]=[[B, A ; i], A]=[B, A ; i+1],
$$

so $A \leqslant N_{P}([B, A ; i+1])$. Thus $A \leqslant N_{P}([B, A ; i])$ for all $i \geq 0$. Therefore, $[B, A ; i+1]=[[B, A ; i], A] \leqslant[B, A ; i]$ for all $i \geq 0$.

For (iii), if $[B, A ; n+1]=1$, then $[\bar{B}, \bar{A} ; n+1]=1$. By (i), we have $K_{n+2}(\bar{P})=[\bar{B}, \bar{A} ; n+1]=1$, which implies $\overline{K_{n+2}(P)}=K_{n+2}(\bar{P})=1$. Hence $K_{n+2}(P) \leqslant B^{\prime} \leqslant \mathcal{Z}(P)$ and $K_{n+3}(P)=\left[K_{n+2}(P), P\right] \leqslant[\mathcal{Z}(P), P]=1$. Let $m=\left\lfloor\frac{1}{2}(n+4)\right\rfloor$. Since $n \geq 1$, we have $m \geq 2$, and by the definition of $m, 2 m \geq n+3$. Now $\left[K_{m}(P), K_{m}(P)\right] \leqslant K_{2 m}(P) \leqslant K_{n+3}(P)=1$, thus $K_{m}(P)$ is abelian and $K_{m}(\bar{P})=\overline{K_{m}(P)}$ is abelian. By $(i), K_{m}(\bar{P})=[\bar{B}, \bar{A} ; m-1]$ is abelian and by the minimality of $n, n \leq m-1 \leq \frac{1}{2}(n+4)-1=\frac{1}{2} n+1$. Now $n \leq \frac{1}{2} n+1$ implies $n \leq 2$. Thus $K_{n+3}(P)=1$ and $n \leq 2$. Therefore, $n+3 \leq 5$ and $c l(P) \leq 4$.

Theorem 5.8 (Glauberman Replacement Theorem). Let P be a p-group, p be odd, $B \unlhd P$ such that $B^{\prime} \leqslant \mathcal{Z}(J(P)), \operatorname{cl}(B) \leq 2$, and suppose $A \in A(P)$ such that $B \nless N_{P}(A)$. Then there exists $A^{*} \in A(P)$ such that
(i) $A \cap B<A^{*} \cap B$.
(ii) $A^{*} \leqslant N_{P}(A)$.

Proof.

Use induction on $|P|$. Since $B \unlhd P$, we have $A B \leqslant P$. If $A B<P$, then since $A \leqslant A B$, we have $A(A B) \subseteq A(P)$. By Theorem 5.2(ii), $J(A B) \leqslant J(P)$. Now $[\mathcal{Z}(J(P)), A]=1$, so $\mathcal{Z}(J(P)) \leqslant C_{P}(A)=A$ by Theorem 5.1. It follows that $[J(A B), \mathcal{Z}(J(P))]=1$ and since $\mathcal{Z}(J(P)) \leqslant A \leqslant J(A B)$, we have $\mathcal{Z}(J(P)) \leqslant \mathcal{Z}(J(A B))$. Thus $B^{\prime} \leqslant \mathcal{Z}(J(A B))$. Moreover, $A \in A(A B)$ and $A \leqslant A B$. Since $B \unlhd P$, we have $B \unlhd A B$. By the induction hypothesis, there exists $A^{*} \in A(A B)$ such that $A \cap B<A^{*} \cap B$ and $A^{*} \leqslant N_{A B}(A) \leqslant N_{P}(A)$. Thus $A^{*} \in A(P)$ and we are done.

Without loss of generality, assume $P=A B$ and let n be chosen minimal with respect to $[B, A ; n]$ being abelian.

Case 1: $[B, A ; n+1] \neq 1$.

Let $r \in \mathbb{N}$ be minimal such that $[B, A ; r]=1$. Since $n \geq 1$, we have $r \geq n+2 \geq 3$ by Theorem 5.7. By the minimality of $r, 1 \neq[B, A ; r-1]=[[B, A ; r-2], A]$, so $A \nless C_{P}([B, A ; r-2])$. Hence there exists $x \in[B, A ; r-3]$ such that $A \nless C_{P}([x, A])$. Let $M=[x, A]$. Now $M \leqslant[B, A ; r-2] \leqslant[B, A ; n]$ and so M is abelian since $r-2 \geq n$. By Theorem 5.5, $A^{*}=M C_{A}(M) \in A(P)$. Now

$$
[B, A \cap B, A] \leqslant\left[B^{\prime}, A\right] \leqslant[\mathcal{Z}(J(P)), A]=1
$$

and $[A \cap B, A, B] \leqslant[A, A, B]=[1, B]=1$ since A is abelian. By the Three Subgroups Lemma (5.6), $[A, B, A \cap B]=1$, and it follows that $A \cap B \leqslant C_{P}([A, B]) \leqslant C_{P}([B, A ; i])$ for all $i \geq 1$. Hence $A \cap B \leqslant C_{P}(M)$. Since A is abelian and $A \nless C_{P}(M)$, we have $M \nless A$, which implies $M \leqslant B$ because $P=A B$. Thus $A^{*} \cap B \geqslant M(A \cap B)>A \cap B$. By Lemma 5.5,

$$
\left[A^{*}, A, A\right]=\left[M C_{A}(M), A, A\right]=[M, A, A] \leqslant[[B, A ; r-2], A, A]=[B, A ; r]=1
$$

so $\left[A^{*}, A\right] \leqslant C_{P}(A)=A$. Therefore, $A^{*} \leqslant N_{P}(A)$.

Case 2: $[B, A ; n+1]=1$.

Since $c l(B) \leq 2$, we know $K_{3}(B)=1, K_{2}(B)=1$, or $K_{1}(B)=1$. If $K_{3}(B)=1$, then $[B, B, B]=\left[B^{\prime}, B\right]=1$ and so $B^{\prime} \leqslant \mathcal{Z}(B)$. In any case, $B^{\prime} \leqslant \mathcal{Z}(J(A B))=\mathcal{Z}(J(P))$. It follows from Theorem 5.7 that $n \leq 2$ and $\operatorname{cl}(P) \leq 4$. If $n=1$, then $[B, A ; 2]=[B, A, A]=1$, hence $[B, A] \leqslant C_{P}(A)=A$. This implies $B \leqslant N_{P}(A)$, which is a contradiction. Thus $n=2$ and $[B, A ; 3]=1$.

Let $u, v \in A, x \in B$, and $w=[x, v] \in[B, A] \leqslant B$. By the Three Subgroups Lemma, $[x, u, w]^{u^{-1}}\left[u^{-1}, w^{-1}, x\right]^{w}\left[w^{-1}, x^{-1}, u^{-1}\right]^{x}=1$. Since $B \unlhd P$, all three commutators are contained in B^{\prime} and $\left[w^{-1}, x^{-1}, u^{-1}\right]=1$ since $B^{\prime} \leqslant \mathcal{Z}(P)$. Hence $[x, u, w]\left[u^{-1}, w^{-1}, x\right]=1$. Since $\left[u^{-1}, w^{-1}\right]$ and $x \in B$, we have by $(i x)$ and (iii) of Theorem 5.3,

$$
\begin{equation*}
[x, u, w]=\left[u^{-1}, w^{-1}, x\right]^{-1}=\left[\left[u^{-1}, w^{-1}\right]^{-1}, x\right]=\left[w^{-1}, u^{-1}, x\right] . \tag{4}
\end{equation*}
$$

Let $\bar{P}=P / B^{\prime}$. Now $[B, A ; 3]=1$ implies $[B, A, A] \leqslant C_{P}(A)=A$, and by Theorem 5.7, $K_{i}(\bar{P})=[\bar{B}, \bar{A} ; i-1] \leqslant \bar{B}$ for all $i \geq 2$. Thus $[\bar{B}, \bar{A}, \bar{A}] \leqslant \bar{A} \cap \bar{B}$ and $\bar{P}=\bar{A} \bar{B}$. Since \bar{A} and \bar{B} are abelian, we have $[\bar{B}, \bar{A}, \bar{A}] \leqslant \mathcal{Z}(\bar{A} \bar{B})=\mathcal{Z}(\bar{P})$. By Theorem 5.3(ix) and Lemma 5.2 with $[\bar{u}, \bar{v}]=1$,

$$
\begin{equation*}
\left[[\bar{x}, \bar{v}]^{-1}, \bar{u}^{-1}\right]=\left[[\bar{x}, \bar{v}], \bar{u}^{-1}\right]^{-1}=\left([[\bar{x}, \bar{v}], \bar{u}]^{-1}\right)^{-1}=[\bar{x}, \bar{v}, \bar{u}]=[\bar{x}, \bar{u}, \bar{v}] . \tag{5}
\end{equation*}
$$

From (4) and (5), we have

$$
\begin{equation*}
\left[\bar{w}^{-1}, \bar{u}^{-1}\right]=[[\bar{x}, \bar{u}],[\bar{x}, \bar{v}]]=[[\bar{x}, \bar{u}], \bar{w}]=\left[\bar{w}^{-1}, \bar{u}^{-1}, \bar{x}\right]=[[\bar{x}, \bar{u}, \bar{v}], \bar{x}], \tag{6}
\end{equation*}
$$

but interchanging \bar{u} and \bar{v} in (6) results in $[[\bar{x}, \bar{v}],[\bar{x}, \bar{u}]]=[[\bar{x}, \bar{v}, \bar{u}], \bar{x}]=[[\bar{x}, \bar{u}, \bar{v}], \bar{x}]$. Hence

$$
[[\bar{x}, \bar{u}],[\bar{x}, \bar{v}]]=[[\bar{x}, \bar{v}],[\bar{x}, \bar{u}]]=[[\bar{x}, \bar{u}],[\bar{x}, \bar{v}]]=[[\bar{x}, \bar{u}],[\bar{x}, \bar{v}]]^{-1}
$$

It then follows from Theorem 5.3(ii), Lemma 5.5, and $B^{\prime} \leqslant \mathcal{Z}(P)$ that

$$
\begin{aligned}
{[\overline{[x, u]}, \overline{[x, v]}] } & =[\overline{[x, u]}, \overline{[x, v]}]^{-1} \\
{\left[[x, u] z_{1},[x, v] z_{2}\right] } & =\left[[x, u] z_{3},[x, v] z_{4}\right]^{-1} \\
{[[x, u],[x, v]] } & =[[x, u],[x, v]]^{-1} .
\end{aligned}
$$

Thus $[[x, u],[x, v]]^{2}=1$. Because p is an odd prime, we have $[[x, u],[x, v]]=1$, so $[x, A]$ is abelian for all $x \in B$. However, $B \nless N_{P}(A)$ and $[B, A] \notin A$, so there exists $x \in B$ such that $[x, A] \not \approx A$.

Let $M=[x, A]$. Now M is abelian and by Theorem 5.5, $A^{*}=M C_{A}(M) \in A(P)$. As in Case 1, we have $A \cap B \leqslant C_{P}([B, A]) \leqslant C_{P}(M)$. Since $M \nless A, A \cap B \leqslant C_{A}(M)$, and $B \unlhd P$, we have $A^{*} \cap B \geqslant M(A \cap B)>A \cap B$. By Theorem 5.3,

$$
\left[A^{*}, A, A\right]=\left[M C_{A}(M), A, A\right]=[M, A, A] \leqslant[B, A, A, A]=[B, A, 3]=1
$$

Therefore, $\left[A^{*}, A\right] \leqslant C_{P}(A)=A$ and so $A^{*} \leqslant N_{P}(A)$.

$6 \quad p$-Separability and p-Solvability

Definition 6.1. Let G be a group. A composition series of G is a subnormal series of the form

$$
G=G_{1} \unrhd G_{2} \unrhd G_{3} \unrhd \cdots \unrhd G_{n}=1,
$$

where G_{i} / G_{i+1} is simple for $1 \leq i \leq n-1$. The quotient groups G_{i} / G_{i+1} are called composition factors of G.

Definition 6.2. Let G be a group and π be a set of primes.
(i) G is a π-separable group if every composition factor of G is a π-group or a π^{\prime}-group.
(ii) G is a π-solvable group if every composition factor of G is a π^{\prime}-group or a p-group for some $p \in \pi$.

Similarly, we define p-separable and p-solvable groups when $\pi=\{p\}$.

The Jordan-Hölder Theorem (Theorem 2.8, pg. 6, [Gor07]) proves two composition series of a group are of the same length and the factors are unique up to isomorphism.

Theorem (Schreier). Let $A \unrhd B \unrhd C$ be a subnormal series, and suppose A / B and B / C are abelian. Then the series can be refined to a composition series
$A \unrhd D \unrhd B \unrhd C$, where the factors are simple and abelian.

Proof.
Theorem 2.7, pg. 6 in [Gor07]].

Theorem 6.1. Let G be a group. Then
(i) G is π-separable if and only if G is π^{\prime}-separable.
(ii) G is p-separable if and only if G is p-solvable for all $p \in \pi(G)$.
(iii) If G is π-solvable, then G is π-separable.
(iv) G is solvable if and only if G is p-solvable for all $p \in \pi(G)$.

Proof.

For (i), suppose G is π-separable. Now every composition factor of G is a π-group or a π^{\prime}-group. Equivalently, every composition factor of G is a $\left(\pi^{\prime}\right)^{\prime}$-group or a π^{\prime}-group, respectively. Thus G is π^{\prime}-separable.

For (ii), let $p \in \pi(G)$ and suppose G is p-separable. Now every composition factor of G is a p-group or a p^{\prime}-group. Thus G is p-solvable. The converse is trivial.

For (iii), suppose G is π-solvable. Now every composition factor of G is a π^{\prime}-group or a p-group for some $p \in \pi$. Since a p-group is a π-group for $p \in \pi$, we have G is π-separable.

For (iv), suppose G is solvable and let $p \in \pi(G)$. Now there exists a subnormal series $G=H_{1} \unrhd H_{2} \unrhd \cdots \unrhd H_{m}=1$, where H_{i} / H_{i+1} is abelian for $1 \leq i \leq m-1$. By Schreier's Theorem, we can refine to a composition series $G=G_{1} \unrhd \cdots \unrhd G_{n}=1$, where G_{i} / G_{i+1} is simple and abelian for $1 \leq i \leq n-1$. Then G_{i} / G_{i+1} is cyclic of prime order for $1 \leq i \leq n-1$, which implies for every $1 \leq i \leq n-1$, there exists a prime p_{i} such that G_{i} / G_{i+1} is a p_{i}-group. Moreover, for every $1 \leq i \leq n-1$, either $p_{i}=p$ or $p_{i} \neq p$. Thus all composition factors are p-groups or p^{\prime}-groups. Therefore, G is p-solvable.

Conversely, let $G=G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{n}=1$ be a composition series of G, where each factor is simple and for all $1 \leq i \leq n-1, G_{i} / G_{i+1}$ is a p-group or a p^{\prime}-group for all $p \in \pi(G)$. Since $\left[G_{i}: G_{i+1}\right]$ divides $|G|$ for all $1 \leq i \leq n-1$, there exists $p_{i} \in \pi(G)$ such that G_{i} / G_{i+1} is a p_{i}-group. Let $\overline{G_{i}}=G_{i} / G_{i+1}$ for each $1 \leq i \leq n-1$. Since $\overline{G_{i}}$ is a p_{i}-group, we know $\overline{G_{i}}$ is solvable. It follows that there exists a subnormal series $\overline{G_{i}}=\overline{G_{i 1}} \unrhd \overline{G_{i 2}} \unrhd \cdots \unrhd \overline{G_{i k_{i}}}=1,\left(k_{i} \in \mathbb{N}\right)$ such that $\overline{G_{i j}} / \overline{G_{i(j+1)}} \cong G_{i j} / G_{i(j+1)}$ is abelian for all $1 \leq i \leq n-1$ and for all $1 \leq j \leq k_{i}-1$. Hence we have a subnormal series

$$
\begin{gathered}
G=G_{11} \unrhd G_{12} \unrhd \cdots \unrhd G_{2}=G_{21} \unrhd G_{22} \unrhd \cdots \unrhd G_{3} \unrhd \cdots \\
\unrhd G_{n-1}=G_{(n-1) 1} \unrhd G_{(n-1) 2} \unrhd \cdots \unrhd G_{n}=1,
\end{gathered}
$$

and

$$
\frac{G_{i j}}{G_{i(j+1)}} \cong \frac{G_{i j} / G_{j+1}}{G_{i(j+1)} / G_{j+1}}
$$

is abelian for all $1 \leq i \leq n-1$ and for all $1 \leq j \leq k_{i}-1$. Therefore, G is solvable.

Definition 6.3. Let G be a group and π be a set of primes. Define the unique maximal normal π-subgroup of G by

$$
\mathcal{O}_{\pi}(G)=\prod_{P \unlhd G} P
$$

where P is a π-group. We can similarly define $\mathcal{O}_{\pi^{\prime}}(G)$.

Lemma 6.1. Let G be a group and π be a set of primes. Then $\mathcal{O}_{\pi}(G)$ char G.

Proof.
Let $\phi \in \operatorname{Aut}(G)$ and $Q \unlhd G$ be a π-subgroup. Now $Q^{\phi} \unlhd G$ and Q^{ϕ} is a π-group. Thus $Q^{\phi} \leqslant \mathcal{O}_{\pi}(G)$ and $\mathcal{O}_{\pi}(G)$ char G.

Definition 6.4. Let G be a group and π be a set of primes. Define

$$
\mathcal{O}_{\pi^{\prime}}\left(\frac{G}{\mathcal{O}_{\pi}(G)}\right)=\frac{\mathcal{O}_{\pi, \pi^{\prime}}(G)}{\mathcal{O}_{\pi}(G)}, \quad \mathcal{O}_{\pi}\left(\frac{G}{\mathcal{O}_{\pi, \pi^{\prime}}(G)}\right)=\frac{\mathcal{O}_{\pi, \pi^{\prime}, \pi}(G)}{\mathcal{O}_{\pi, \pi^{\prime}}(G)}, \ldots
$$

and so on. The π-series of G is the normal series

$$
1 \unlhd \mathcal{O}_{\pi}(G) \unlhd \mathcal{O}_{\pi, \pi^{\prime}}(G) \unlhd \mathcal{O}_{\pi, \pi^{\prime}, \pi}(G) \unlhd \cdots
$$

Lemma 6.2. Let G be a group. Then $\mathcal{O}_{\pi}\left(G / \mathcal{O}_{\pi}(G)\right)=1$.

Proof.
Suppose $H / \mathcal{O}_{\pi}(G) \unlhd G / \mathcal{O}_{\pi}(G)$ is a π-subgroup. Now $H \unlhd G$ and

$$
|H|=\frac{|H|}{\left|\mathcal{O}_{\pi}(G)\right|} \cdot\left|\mathcal{O}_{\pi}(G)\right|
$$

so H is a π-group. Thus $H \leqslant \mathcal{O}_{\pi}(G)$ and $H / \mathcal{O}_{\pi}(G)=1$. Therefore, $\mathcal{O}_{\pi}\left(G / \mathcal{O}_{\pi}(G)\right)=1$.

Theorem 6.2. Let G be a group and π be a set of primes.
(i) If G is π-separable and N is a minimal normal subgroup of G, then N is a π-group or a π^{\prime}-group.
(ii) If G is π-separable, $H \leqslant G$, and $N \unlhd G$, then H and G / N are π-separable.
(iii) If G is π-solvable, $H \leqslant G$, and $N \unlhd G$, then H and G / N are π-solvable.
(iv) G is π-separable if and only if the π-series terminates at G.

Proof.

For (i), since N is a minimal normal subgroup, we know N is characteristically simple. By Theorem 1.13, $N \cong \bigotimes_{i=1}^{n} N_{i}$, where the N_{i} 's are simple isomorphic groups. Refine the series $N_{1} \unrhd 1$ to a composition series of G,

$$
G=G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{m}=N_{1} \unrhd 1
$$

Since G is π-separable, $N_{1} \cong N_{1} /\{1\}$ is either a π-group or a π^{\prime}-group. Thus $N=\bigotimes_{i=1}^{n} N_{i}$ is either a π-group or a π^{\prime}-group.

For (ii), let $N=N_{1} \unrhd N_{2} \unrhd \cdots \unrhd N_{m}=1$ be a composition series of N and refine to a composition series of G,

$$
G=G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{k}=N=N_{1} \unrhd N_{2} \unrhd \cdots \unrhd N_{m}=1 .
$$

Let $\bar{G}=G / N$. Now

$$
\bar{G}=\overline{G_{1}} \unrhd \overline{G_{2}} \unrhd \cdots \unrhd \overline{G_{k}}=1
$$

is a composition series of \bar{G}. If G is π-separable, then $\overline{G_{i}} / \overline{G_{i+1}} \cong G_{i} / G_{i+1}$ is a π-group or a π^{\prime}-group for each $1 \leq i \leq k-1$. Thus \bar{G} is π-separable.

If $H=G$, then we are done. Assume $H<G$ and proceed by induction on $|G|$. Let N be a minimal normal subgroup of G and $\bar{G}=G / N$. If G is π-separable, then \bar{G} is π-separable by the above. Now $\bar{H}<\bar{G}$ and so by induction, \bar{H} is π-separable. Let $\bar{H}=\bar{H}_{1} \unrhd \bar{H}_{2} \unrhd \cdots \unrhd \bar{H}_{k}=1$ be a composition series of \bar{H}. Since $\bar{H} \cong H N / N \cong H / H \cap N$, we have $H=H_{1} \unrhd H_{2} \unrhd \cdots \unrhd H \cap N$ and it remains
to show $H \cap N$ is π-separable. By $(i), N$ is a π-group or a π^{\prime}-group, so $H \cap N$ is a π-group or a π^{\prime}-group, respectively. This implies any composition factor of $H \cap N$ is a π-group or a π^{\prime}-group. Thus $H \cap N$ is π-separable. Therefore, H is π-separable.

For (iii), let $N=N_{1} \unrhd N_{2} \unrhd \cdots \unrhd N_{m}=1$ be a composition series of N and refine to a composition series of G,

$$
G=G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{k}=N=N_{1} \unrhd N_{2} \unrhd \cdots \unrhd N_{m}=1
$$

Let $\bar{G}=G / N$. Now

$$
\bar{G}=\overline{G_{1}} \unrhd \overline{G_{2}} \unrhd \cdots \unrhd \overline{G_{k}}=1
$$

is a composition series of \bar{G}. If G is π-solvable, then $\overline{G_{i}} / \overline{G_{i+1}} \cong G_{i} / G_{i+1}$ is a π^{\prime}-group or a p-group for some $p \in \pi$ for each $1 \leq i \leq k-1$. Thus \bar{G} is π-solvable.

If $H=G$, then we are done. Assume $H<G$ and proceed with induction on $|G|$. Let N be a minimal normal subgroup of G and $\bar{G}=G / N$. If G is π-solvable, then \bar{G} is π-solvable. Now $\bar{H}<\bar{G}$ and so by induction, \bar{H} is π-solvable. As before, since $\bar{H} \cong H N / N \cong H / H \cap N$, it remains to show $H \cap N$ is π-solvable. Again by $(i), N$ is a π-group or a π^{\prime}-group. If N is a π-group, then N is π-solvable since $N \unlhd G$. Thus N is a p-group for some $p \in \pi$ and $H \cap N$ is a p-group. Thus all composition factors of $H \cap N$ are p-groups. If N is a π^{\prime}-group, then $H \cap N$ is a π^{\prime}-group and so are all the composition factors of $H \cap N$. Hence $H \cap N$ is π-solvable. Therefore, H is π-solvable.

For (iv), suppose the π-series terminates at G. Refine the normal series

$$
\begin{equation*}
1 \unlhd \mathcal{O}_{\pi}(G) \unlhd \mathcal{O}_{\pi, \pi^{\prime}}(G) \unlhd \mathcal{O}_{\pi, \pi^{\prime}, \pi}(G) \unlhd \cdots \unlhd G \tag{7}
\end{equation*}
$$

to a composition series of G,

$$
\begin{equation*}
G=G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{n}=1 \tag{8}
\end{equation*}
$$

Since all the factors in (7) are π-groups or π^{\prime}-groups, the same is true for all factors in (8). Thus G is π-separable. Conversely, suppose G is π-separable, but the π-series does not terminate at G. Consider a case where $\mathcal{O}_{\pi}(G)=\mathcal{O}_{\pi, \pi^{\prime}}(G)$. Now
$\mathcal{O}_{\pi^{\prime}}\left(G / \mathcal{O}_{\pi}(G)\right)=\mathcal{O}_{\pi, \pi^{\prime}}(G) / \mathcal{O}_{\pi}(G)=1$ and $\mathcal{O}_{\pi}\left(G / \mathcal{O}_{\pi}(G)\right)=1$. Thus there exists $L \unlhd G$ such that $\mathcal{O}_{\pi}(G / L)=\mathcal{O}_{\pi^{\prime}}(G / L)=1$. Let $\bar{G}=G / L$ and \bar{N} be a minimal normal subgroup of \bar{G}. By (ii), \bar{G} is π-separable since G is π-separable and by $(i), \bar{N}$ is a π-group or a π^{\prime}-group. Since $\bar{N} \unlhd \bar{G}$, we have $\bar{N} \leqslant \mathcal{O}_{\pi}(\bar{G}) \cup \mathcal{O}_{\pi^{\prime}}(\bar{G})=1$. This implies $\bar{N}=1$, a contradiction. Therefore, the π-series must terminate at G.

Theorem 6.3. Let G be a π-separable group. If $\mathcal{O}_{\pi^{\prime}}(G)=1$, then

$$
C_{G}\left(\mathcal{O}_{\pi}(G)\right) \leqslant \mathcal{O}_{\pi}(G)
$$

Proof.

Let $H=\mathcal{O}_{\pi}(G), C=C_{G}(H)$, and suppose $C \nless H$. Since $H \unlhd G$, we have $C \unlhd G$, and since $\mathcal{O}_{\pi}(C)$ char $C \unlhd G$, we have $\mathcal{O}_{\pi}(C) \unlhd G$. Now $\mathcal{O}_{\pi}(C) \leqslant H=\mathcal{O}_{\pi}(G)$ and $\mathcal{O}_{\pi}(C) \leqslant \mathcal{Z}(H)$ because $\left[\mathcal{O}_{\pi}(C), H\right]=1$. Since $\mathcal{Z}(H)$ char $H \unlhd G$, we have $\mathcal{Z}(H) \unlhd G$. Now $[H, \mathcal{Z}(H)]=1$ implies $\mathcal{Z}(H) \leqslant C$. Thus $\mathcal{Z}(H) \unlhd C$, but $\mathcal{Z}(H)$ is a π-group. Therefore, $\mathcal{Z}(H) \leqslant \mathcal{O}_{\pi}(C)$ and $\mathcal{O}_{\pi}(C)=\mathcal{Z}(H)$.

Since G is π-separable, C is π-separable by Theorem 6.2. It follows from $C \notin H$ and $\mathcal{O}_{\pi}(C) \leqslant H$ that $\mathcal{O}_{\pi}(C)<C$. Thus $\mathcal{O}_{\pi}(C)<\mathcal{O}_{\pi, \pi^{\prime}}(C)$. Let $L=\mathcal{O}_{\pi, \pi^{\prime}}(C)$. Now $L / \mathcal{O}_{\pi}(C)=\mathcal{O}_{\pi^{\prime}}\left(C / \mathcal{O}_{\pi}(C)\right)$ is a π^{\prime}-group, hence $\mathcal{O}_{\pi}(C) \in \operatorname{Hall}_{\pi}(L)$ and $\mathcal{O}_{\pi}(C) \unlhd L$. By Schur-Zassenhaus Part 1, L splits over $\mathcal{O}_{\pi}(C)$, so there exists $K \leqslant L$ such that $L=K \mathcal{O}_{\pi}(C)$ and $K \cap \mathcal{O}_{\pi}(C)=1$. Now

$$
|K|=\frac{|K|}{1}=\frac{|K|}{\left|K \cap \mathcal{O}_{\pi}(C)\right|}=\frac{\left|K \mathcal{O}_{\pi}(C)\right|}{\left|\mathcal{O}_{\pi}(C)\right|}=\frac{|L|}{\left|\mathcal{O}_{\pi}(C)\right|}
$$

and so K is a π^{\prime}-group. In addition,

$$
\frac{|L|}{|K|}=\frac{\left|K \mathcal{O}_{\pi}(C)\right|}{|K|}=\frac{\left|\mathcal{O}_{\pi}(C)\right|}{\left|K \cap \mathcal{O}_{\pi}(C)\right|},
$$

so $K \in \operatorname{Hall}_{\pi^{\prime}}(L)$. Moreover, $\left[K, \mathcal{O}_{\pi}(C)\right] \leqslant\left[C, \mathcal{O}_{\pi}(C)\right]=[C, \mathcal{Z}(H)]=1$ and $K \unlhd K \mathcal{O}_{\pi}(C)=L$. By Lemma 4.6, K char L. Since $L \unlhd G$, we have $K \unlhd G$ and it follows that $K \leqslant \mathcal{O}_{\pi^{\prime}}(G)=1$. Then $L=\mathcal{O}_{\pi}(C)$, which is a contradiction. Therefore, $C_{G}\left(\mathcal{O}_{\pi}(G)\right) \leqslant \mathcal{O}_{\pi}(G)$.

Theorem 6.4. Let G be a p-solvable group and $P \in \operatorname{Syl}_{p}(G)$. Then

$$
C_{G}\left(P \cap \mathcal{O}_{p^{\prime}, p}(G)\right) \leqslant \mathcal{O}_{p^{\prime}, p}(G) .
$$

Proof.
Let $\bar{G}=G / \mathcal{O}_{p^{\prime}}(G)$ and $\bar{K}=\mathcal{O}_{p^{\prime}}(\bar{G})$. By Lemma $6.2, \bar{K}=1$. Since G is p-solvable, we have \bar{G} is p-separable by Theorem 6.1(ii). It follows from Theorem 6.3 that $C_{\bar{G}}\left(\mathcal{O}_{p}(\bar{G})\right) \leqslant \mathcal{O}_{p}(\bar{G})$. Since $\mathcal{O}_{p^{\prime}, p}(G) \unlhd G$, we have $P \cap \mathcal{O}_{p^{\prime}, p}(G) \in \operatorname{Syl}_{p}\left(\mathcal{O}_{p^{\prime}, p}(G)\right)$. Let $L=\mathcal{O}_{p^{\prime}, p}(G)$. Now $\bar{L}=\overline{\mathcal{O}_{p^{\prime}, p}(G)}=\mathcal{O}_{p}(\bar{G})$ is a p-group, so $\overline{P \cap L}=\bar{L}=\mathcal{O}_{p}(\bar{G})$. Thus

$$
\overline{C_{G}(P \cap L)} \leqslant C_{\bar{G}}(\overline{P \cap L})=C_{\bar{G}}\left(\mathcal{O}_{p}(\bar{G})\right) \leqslant \mathcal{O}_{p}(\bar{G})=\bar{L},
$$

which implies

$$
C_{G}(P \cap L) \mathcal{O}_{p^{\prime}}(G) \leqslant L \mathcal{O}_{p^{\prime}}(G)=\mathcal{O}_{p^{\prime}, p}(G) \mathcal{O}_{p^{\prime}}(G)=\mathcal{O}_{p^{\prime}, p}(G)
$$

Therefore, $C_{G}(P \cap L)=C_{G}\left(P \cap \mathcal{O}_{p^{\prime}, p}(G)\right) \leqslant \mathcal{O}_{p^{\prime}, p}(G)$.

$6.1 p$-Constrained and p-Stability

Definition 6.5. Let G be a group and p be a prime. Then G is p-constrained if

$$
C_{G}(P) \leqslant \mathcal{O}_{p^{\prime}, p}(G)
$$

for all $P \in \operatorname{Syl}_{p}\left(\mathcal{O}_{p^{\prime}, p}(G)\right)$.

Theorem 6.5. Let G be a p-constrained group.
(i) If $\mathcal{O}_{p^{\prime}}(G)<G$, then $\mathcal{O}_{p^{\prime}}(G)<\mathcal{O}_{p^{\prime}, p}(G)$.
(ii) Let $\bar{G}=G / \mathcal{O}_{p^{\prime}}(G)$. Then $C_{\bar{G}}\left(\mathcal{O}_{p}(\bar{G})\right) \leqslant \mathcal{O}_{p}(\bar{G})$.
(iii) If $P \in \operatorname{Syl}_{p}\left(\mathcal{O}_{p^{\prime}, p}(G)\right)$ and $Q \leqslant G$ is a p^{\prime}-subgroup such that P acts on Q, then $Q \leqslant \mathcal{O}_{p^{\prime}}(G)$.

Proof.
For (i), suppose $\mathcal{O}_{p^{\prime}}(G)<G$. If $\mathcal{O}_{p^{\prime}, p}(G)=\mathcal{O}_{p^{\prime}}(G)$, then $\mathcal{O}_{p^{\prime}, p}(G)$ is a p^{\prime}-group
and $\{1\} \in \operatorname{Syl}_{p}\left(\mathcal{O}_{p^{\prime}, p}(G)\right)$. Since G is p-constrained, $C_{G}(\{1\}) \leqslant \mathcal{O}_{p^{\prime}, p}(G)=\mathcal{O}_{p^{\prime}}(G)$. However, $C_{G}(\{1\})=G$, so $G \leqslant \mathcal{O}_{p^{\prime}, p}(G)$. This implies $G=\mathcal{O}_{p^{\prime}}(G)$, which is a contradiction. Therefore, $\mathcal{O}_{p^{\prime}}(G)<\mathcal{O}_{p^{\prime}, p}(G)$.

For (ii), let $P \in \operatorname{Syl}_{p}\left(\mathcal{O}_{p^{\prime}, p}(G)\right)$. Now $\bar{P} \in \operatorname{Syl}_{p}\left(\overline{\mathcal{O}_{p^{\prime}, p}(G)}\right)$, but $\overline{\mathcal{O}_{p^{\prime}, p}(G)}$ is a p-group. Thus $\bar{P}=\overline{\mathcal{O}_{p^{\prime}, p}(G)}$ and $P \mathcal{O}_{p^{\prime}}(G)=\mathcal{O}_{p^{\prime}, p}(G)$. Since $\mathcal{O}_{p^{\prime}, p}(G) \unlhd G$, we have by the Frattini Argument, $G=N_{G}(P) \mathcal{O}_{p^{\prime}, p}(G)=N_{G}(P) P \mathcal{O}_{p^{\prime}}(G)=N_{G}(P) \mathcal{O}_{p^{\prime}}(G)$. Hence $\bar{G}=\overline{N_{G}(P)}$. Then there exists $C \leqslant N_{G}(P)$ such that

$$
\bar{C}=C_{\bar{G}}(\bar{P})=C_{\bar{G}}\left(\overline{\mathcal{O}_{p^{\prime}, p}(G)}\right)=C_{\bar{G}}\left(\mathcal{O}_{p}(\bar{G})\right) .
$$

Now $[\bar{P}, \bar{C}]=1$ implies $[P, C] \leqslant \mathcal{O}_{p^{\prime}}(G)$, and we have $[P, C] \leqslant P$ since $C \leqslant N_{G}(P)$. Thus $[P, C] \leqslant P \cap \mathcal{O}_{p^{\prime}}(G)=1$ and $C \leqslant C_{G}(P) \leqslant \mathcal{O}_{p^{\prime}, p}(G)$ since G is p-constrained. Therefore, $\bar{C}=C_{\bar{G}}\left(\mathcal{O}_{p}(\bar{G})\right) \leqslant \overline{\mathcal{O}_{p^{\prime}, p}(G)}=\mathcal{O}_{p}(\bar{G})$.

For (iii), let $\bar{G}=G / \mathcal{O}_{p^{\prime}}(G), P \in \operatorname{Syl}_{p}\left(\mathcal{O}_{p^{\prime}, p}(G)\right)$, and $Q \leqslant G$ be a p^{\prime}-subgroup such that $P \leqslant N_{G}(Q)$. By the same argument as in $(i i), \bar{P}=\overline{\mathcal{O}_{p^{\prime}, p}(G)}=\mathcal{O}_{p}(\bar{G}) \unlhd \bar{G}$. Now $\bar{P} \leqslant \overline{N_{G}(Q)} \leqslant N_{\bar{G}}(\bar{Q})$ and $[\bar{P}, \bar{Q}] \leqslant \bar{P} \cap \bar{Q}=1$. It follows from (ii) that

$$
\bar{Q} \leqslant C_{\bar{G}}(\bar{P})=C_{\bar{G}}\left(\mathcal{O}_{p}(\bar{G})\right) \leqslant \mathcal{O}_{p}(\bar{G}) .
$$

Consequently, $\bar{Q}=1$ since $\mathcal{O}_{p}(\bar{G})$ is a p-group. Therefore, $Q \leqslant \mathcal{O}_{p^{\prime}}(G)$.
Definition 6.6. Let G be a group and p be a prime. Then G is called p-stable if
(i) p is odd.
(ii) $\mathcal{O}_{p}(G) \neq 1$.
(iii) Whenever $P \leqslant G$ is a p-subgroup, $P \mathcal{O}_{p^{\prime}}(G) \unlhd G, A \leqslant N_{G}(P)$, and A is a p-group acting quadratically on P, it follows that

$$
\frac{A C_{G}(P)}{C_{G}(P)} \leqslant \mathcal{O}_{p}\left(\frac{N_{G}(P)}{C_{G}(P)}\right) .
$$

Lemma 6.3. Let G be a group, $N \unlhd G, L \unlhd G, L \leqslant N$, and L be a p-group. If $\mathcal{O}_{p}(G / N)=1$, then $\mathcal{O}_{p}(G / L) \leqslant N / L$.

Proof.
Let $\bar{G}=G / L$ and $\bar{U}=\mathcal{O}_{p}(\bar{G})$. Now $\bar{U} \unlhd \bar{G}, U \unlhd G$, and

$$
|U|=\frac{|U|}{|L|} \cdot|L|=|\bar{U}| \cdot|L|,
$$

so U is a p-group. Since $U \unlhd G$, we have $U N / N \unlhd G / N$ and $[U N: N]=[U: U \cap N]$. Thus $U N / N$ is a p-group and $U N / N \leqslant \mathcal{O}_{p}(G / N)=1$, which implies $U \leqslant U N \leqslant N$. Therefore, $\bar{U}=\mathcal{O}_{p}(\bar{G}) \leqslant \bar{N}$.

Theorem 6.6. Let G be a group, p be a prime such that G is p-stable and p-constrained, $P \in \operatorname{Syl}_{p}(G), A \unlhd P$, and suppose A is abelian. Then $A \leqslant \mathcal{O}_{p^{\prime}, p}(G)$.

Proof.

Let $Q=P \cap \mathcal{O}_{p^{\prime}, p}(G)$. By Lemma 1.8, $Q \in \operatorname{Syl}_{p}\left(\mathcal{O}_{p^{\prime}, p}(G)\right)$. Let $\bar{G}=G / \mathcal{O}_{p^{\prime}}(G)$. Now $\bar{Q} \in S y l_{p}\left(\overline{\mathcal{O}_{p^{\prime}, p}(G)}\right)$, but $\overline{\mathcal{O}_{p^{\prime}, p}(G)}=\mathcal{O}_{p}(\bar{G})$, so $\overline{\mathcal{O}_{p^{\prime}, p}(G)}$ is a p-group. Thus $\bar{Q}=\overline{\mathcal{O}_{p^{\prime}, p}(G)}=\mathcal{O}_{p}(\bar{G})$ and $\mathcal{O}_{p^{\prime}, p}(G)=Q \mathcal{O}_{p^{\prime}}(G) \unlhd G$. Now $Q \unlhd P$ since $\mathcal{O}_{p^{\prime}, p}(G) \unlhd G$, and so $A \leqslant N_{G}(Q)$. Moreover, $[Q, A, A] \leqslant[A, A]=1$, which means A acts quadratically on Q. It follows from the p-stability of G that

$$
\begin{equation*}
\frac{A C_{G}(Q)}{C_{G}(Q)} \leqslant \mathcal{O}_{p}\left(\frac{N_{G}(Q)}{C_{G}(Q)}\right) . \tag{9}
\end{equation*}
$$

Furthermore, G is p-constrained, $C_{G}(Q) \leqslant \mathcal{O}_{p^{\prime}, p}(G)=Q \mathcal{O}_{p^{\prime}}(G)$, and $\overline{C_{G}(Q)} \leqslant \overline{\mathcal{O}_{p^{\prime}, p}(G)}=\bar{Q}$. By the Frattini Argument,

$$
G=N_{G}(Q) Q \mathcal{O}_{p^{\prime}}(G)=N_{G}(Q) \mathcal{O}_{p^{\prime}}(G)
$$

Therefore, $\bar{G}=\overline{N_{G}(Q)}$.
Let $\widetilde{N_{G}(Q)}=N_{G}(Q) / C_{G}(Q)$ and $\widetilde{U}=\mathcal{O}_{p}\left(\widetilde{N_{G}(Q)}\right)$. Now $\widetilde{U} \unlhd \widetilde{N_{G}(Q)}$, so $U \unlhd N_{G}(Q)$. Let $U_{0} \in \operatorname{Syl}_{p}(U)$. By Lemma 1.8, $\widetilde{U_{0}} \in S y l_{p}(\widetilde{U})$, but \widetilde{U} is a p-group. Hence $\widetilde{U_{0}}=\widetilde{U}$ and $U=U_{0} C_{G}(Q)$. Then $\bar{U}=\overline{U_{0}} \overline{C_{G}(Q)}$ and by the Second Isomorphism Theorem,

$$
\frac{\bar{U}}{\overline{C_{G}(Q)}}=\frac{\overline{U_{0}} \overline{C_{G}(Q)}}{\overline{C_{G}(Q)}} \cong \frac{\overline{U_{0}}}{\overline{U_{0} \cap C_{G}(Q)}}
$$

which implies $\bar{U} / \overline{C_{G}(Q)}$ is a p-group. Furthermore, $\bar{U} \unlhd \overline{N_{G}(Q)}=\bar{G}$ and

$$
\frac{\bar{U}}{\overline{C_{G}(Q)}} \unlhd \frac{\overline{N_{G}(Q)}}{\overline{C_{G}(Q)}}=\frac{\bar{G}}{\overline{C_{G}(Q)}}
$$

Thus $\bar{U} / \overline{C_{G}(Q)} \leqslant \mathcal{O}_{p}\left(\overline{N_{G}(Q)} / \overline{C_{G}(Q)}\right)$. By (9), we have $A C_{G}(Q) \leqslant U$ and so $\overline{A C_{G}(Q)} \leqslant \bar{U}$. Also, $\bar{Q} \unlhd \overline{N_{G}(Q)}$ and $\mathcal{O}_{p}\left(\overline{N_{G}(Q)} / \bar{Q}\right)=\mathcal{O}_{p}\left(\bar{G} / \mathcal{O}_{p}(\bar{G})\right)=1$ by Lemma 6.2. And from Lemma 6.3,

$$
\frac{\overline{A C_{G}(Q)}}{\overline{C_{G}(Q)}} \leqslant \frac{\bar{U}}{\overline{C_{G}(Q)}} \leqslant \mathcal{O}_{p}\left(\frac{\overline{N_{G}(Q)}}{\overline{C_{G}(Q)}}\right)=\mathcal{O}_{p}\left(\frac{\bar{G}}{\overline{C_{G}(Q)}}\right) \leqslant \frac{\bar{Q}}{\overline{C_{G}(Q)}} .
$$

Therefore, $\bar{A} \leqslant \bar{A} \overline{C_{G}(Q)} \leqslant \bar{Q}$ and $A \leqslant A \mathcal{O}_{p^{\prime}}(G) \leqslant Q \mathcal{O}_{p^{\prime}}(G)=\mathcal{O}_{p^{\prime}, p}(G)$.

Theorem 6.7. Let G be a p-stable group, $B \unlhd G$ be a p-subgroup, and $P \in \operatorname{Syl}_{p}(G)$. Then $B \cap \mathcal{Z}(J(P)) \unlhd G$.

Proof.

Let G be a counterexample such that $|B|$ is minimal and Let $B_{1}=\left\langle(Z \cap B)^{G}\right\rangle$ be the normal closure of $Z \cap B$, where $Z=\mathcal{Z}(J(P))$. Since $B \unlhd G$, we have $B_{1} \leqslant B, B_{1}$ is a p-group, and $B_{1} \unlhd G$. If $B_{1}<B$, then $B_{1} \cap Z \unlhd G$ by the minimality of $|B|$. By the definition of B_{1}, we have $Z \cap B=Z \cap B_{1}$, so $Z \cap B \unlhd G$. This is a contradiction since B is a counterexample. Therefore, $B=B_{1}$. Now B^{\prime} char $B \unlhd G$ and $B^{\prime} \unlhd G$ by Lemma 1.12. Also, B^{\prime} is a p-group and by Theorem $1.18, B^{\prime}=K_{2}(B)<B$ since B is nilpotent. By the minimality of $|B|, Z \cap B^{\prime} \unlhd G$.

We claim $B^{\prime} \leqslant Z$. Now Z char $J(P)$ char P, Z char P, and by Lemma 1.12, $Z \unlhd P$. Since B is a normal p-group, we have $B \leqslant P$ from Sylow. It follows that $[Z \cap B, B] \leqslant Z \cap[B, B]=Z \cap B^{\prime}$. Let $g \in G$. By the above,

$$
\left[(Z \cap B)^{g}, B\right]=[Z \cap B, B]^{g} \leqslant\left(Z \cap B^{\prime}\right)^{g} \leqslant Z \cap B^{\prime}
$$

so $B^{\prime}=[B, B]=\left[B, B_{1}\right]=\left[B,\left\langle(Z \cap B)^{G}\right\rangle\right] \leqslant Z \cap B^{\prime}$. Therefore, $B^{\prime}=Z \cap B^{\prime}$ and $B^{\prime} \leqslant Z$. Moreover, $\left[Z \cap B, B^{\prime}\right] \leqslant[Z, Z]=1$ and

$$
\left[B, B^{\prime}\right]=\left[B_{1}, B^{\prime}\right]=\left[\left\langle(Z \cap B)^{G}\right\rangle, B^{\prime}\right] \leqslant[Z, Z]=1
$$

Thus $c l(B) \leqslant 2$.
Let $L \unlhd G$ such that $L \leqslant N_{G}(Z \cap B)$ and $|L|$ is maximal. Now $P \cap L \in \operatorname{Syl}_{p}(L)$ and by the Frattini Argument, $G=N_{G}(P \cap L) L$. If $J(P) \leqslant P \cap L$, then by Theorem 5.2(i), $J(P)$ char $P \cap L$. This implies $N_{G}(P \cap L) \leqslant N_{G}(J(P))$ and $G=N_{G}(J(P)) L$. Similarly, since $Z=\mathcal{Z}(J(P))$ char $J(P)$, we have $N_{G}(J(P)) \leqslant N_{G}(Z)$ and $G=N_{G}(Z) L$. Hence $Z \cap B \unlhd N_{G}(Z) L=G$, which is a contradiction. Therefore, $J(P) \nless P \cap L$.

By the Glauberman Replacement Theorem (5.8), there exists $A \in A(P)$ such that $[B, A, A] \leqslant[A, A]=1$. Furthermore, G is p-stable, $B \mathcal{O}_{p^{\prime}}(G) \unlhd G$, and B is a p-group. Consequently,

$$
\begin{equation*}
\frac{A C_{G}(B)}{C_{G}(B)} \leqslant \mathcal{O}_{p}\left(\frac{N_{G}(B)}{C_{G}(B)}\right) \leqslant \mathcal{O}_{p}\left(\frac{G}{C_{G}(B)}\right) . \tag{10}
\end{equation*}
$$

Since $B \unlhd G$, we have $C_{G}(B) \unlhd G$. Now $L \leqslant L C_{G}(B) \unlhd G$, but $L C_{G}(B) \leqslant N_{G}(Z \cap B)$. By the maximality of $|L|, L=L C_{G}(B)$ and it follows that $C_{G}(B) \leqslant L$.

We claim $A L / L \leqslant \mathcal{O}_{p}(G / L)$. Let $\widetilde{G}=G / C_{G}(B)$ and $\widetilde{U}=\mathcal{O}_{p}(\widetilde{G})$. Now $\widetilde{U} \unlhd \widetilde{G}$ and $U \unlhd G$. Let $U_{0} \in \operatorname{Syl}_{p}(U)$. Then $\widetilde{U_{0}} \in \operatorname{Syl}_{p}(\widetilde{U})$, but \widetilde{U} is a p-group. Thus $\widetilde{U_{0}}=\widetilde{U}$ and $U=U_{0} C_{G}(B) \unlhd G$. By (10), $A \leqslant U \unlhd G$, so $A L / L \leqslant U L / L \unlhd G / L$. Moreover,

$$
\frac{U L}{L}=\frac{U_{0} C_{G}(B) L}{L}=\frac{U_{0} L}{L} \cong \frac{U_{0}}{U_{0} \cap L},
$$

and $U L / L$ is a p-group. Therefore, $A L / L \leqslant U L / L \leqslant \mathcal{O}_{p}(G / L)$.
Let $\bar{G}=G / L$ and $\bar{K}=\mathcal{O}_{p}(\bar{G})$. Now $L \leqslant K \unlhd G$ and $P \cap K \in \operatorname{Syl}_{p}(K)$. Then $\overline{P \cap K} \in \operatorname{Syl}_{p}(\bar{K})$, but since \bar{K} is a p-group, $\overline{P \cap K}=\bar{K}$. Thus $K=(P \cap K) L$. It follows from $Z \unlhd P$ and $B \unlhd G$ that $K=(P \cap K) L \leqslant N_{G}(Z \cap B)$. By the maximality of $|L|$, we have $K=L$ and $\bar{K}=\mathcal{O}_{p}(\bar{G})=1$.

Since $\bar{A} \leqslant \mathcal{O}_{p}(\bar{G})=1$, we have $A \leqslant L$ and $A \leqslant P \cap L$, so $A \in A(P \cap L)$. By Theorem 5.2(ii), $A \leqslant J(P \cap L)$ and $J(P \cap L) \leqslant J(P)$. Thus by Theorem 5.1,

$$
Z \cap B=\mathcal{Z}(J(P)) \cap B \leqslant C_{P}(A)=A \leqslant J(P \cap L) \leqslant J(P)
$$

and $Z \cap B \leqslant \mathcal{Z}(J(P \cap L))$. Let $X=\mathcal{Z}(J(P \cap L))$. Since X char $P \cap L$, we have
$N_{G}(P \cap L) \leqslant N_{G}(X)$. But $G=N_{G}(P \cap L) L$ and so $G=N_{G}(X) L$. Hence

$$
B=B_{1}=\left\langle(Z \cap B)^{G}\right\rangle=\left\langle(Z \cap B)^{N_{G}(X) L}\right\rangle=\left\langle(Z \cap B)^{N_{G}(X)}\right\rangle \leqslant\left\langle X^{N_{G}(X)}\right\rangle \leqslant X .
$$

Since $J(P) \nless P \cap L$, there exists $A_{1} \in A(P)$ such that $A_{1} \nless P \cap L$. This implies $A_{1} \nless L$, thus $\left[B, A_{1}, A_{1}\right] \neq 1$.

Let $A_{1} \in A(P)$ such that $A_{1} \nless L$ and $\left|A_{1} \cap B\right|$ is maximal. By the above, $\left[B, A_{1}, A_{1}\right] \neq 1$, so $B \nless N_{G}\left(A_{1}\right)$. By the Thompson Replacement Theorem (5.6), there exists $A^{*} \in A(P)$ such that $A_{1} \cap B<A^{*} \cap B$ and $A^{*} \leqslant N_{G}\left(A_{1}\right)$. Now $A^{*} \leqslant L$ by the maximality of $\left|A_{1} \cap B\right|$, which implies $A^{*} \leqslant P \cap L$, so $A^{*} \leqslant J(P \cap L)$. Thus $B \leqslant X \leqslant C_{P}\left(A^{*}\right)=A^{*} \leqslant N_{G}\left(A_{1}\right)$ and $\left[B, A_{1}, A_{1}\right]=1$, which is a contradiction. Therefore, no such counterexample G exists.

Lemma 6.4. Let G be a group, $P \leqslant G$ be a p-subgroup, $H \unlhd G$ be a p^{\prime}-subgroup, and $\bar{G}=G / H$. Then
(i) $\overline{N_{G}(P)}=N_{\bar{G}}(\bar{P})$.
(ii) $\overline{C_{G}(P)}=C_{\bar{G}}(\bar{P})$.

Proof.

For (i), let $\bar{n} \in \overline{N_{G}(P)}$. Now $\bar{P}=\overline{P^{n}}=\bar{P}^{n}$, so $\bar{n} \in N_{\bar{G}}(\bar{P})$ and it follows that $\overline{N_{G}(P)} \leqslant N_{\bar{G}}(\bar{P})$. Conversely, let $\bar{n} \in N_{\bar{G}}(\bar{P})$. Now $\bar{P}=\bar{P}^{n}=\overline{P^{n}}$ and $P^{n} H=P H$. Since $H \cap P=1$, we have $P^{n}, P \in \operatorname{Syl}_{p}(P H)$. By Sylow, there exists $h \in H$ such that $P^{n h}=P$. Hence $n h \in N_{G}(P)$, so $\bar{n} \in \overline{N_{G}(P)}$. Therefore, $\overline{N_{G}(P)}=N_{\bar{G}}(\bar{P})$.

For (ii), we immediately have $\overline{C_{G}(P)} \leqslant C_{\bar{G}}(\bar{P})$. Let $\bar{C}=C_{\bar{G}}(\bar{P})$. Now $[\bar{P}, \bar{C}]=1$ and so $[P, C] \leqslant H \leqslant C$. From $(i), \bar{C} \leqslant N_{\bar{G}}(\bar{P})=\overline{N_{G}(P)}$. Thus $C \leqslant N_{G}(P) H$ and by Lemma 1.1, $C=C \cap N_{G}(P) H=\left(C \cap N_{G}(P)\right) H=N_{C}(P) H$. This implies $\left[P, N_{C}(P)\right] \leqslant P \cap[P, C] \leqslant P \cap H=1$ and $N_{C}(P) \leqslant C_{G}(P)$. It follows that $C=N_{C}(P) H \leqslant C_{G}(P) H$. Therefore, $\bar{C}=C_{\bar{G}}(\bar{P}) \leqslant \overline{C_{G}(P)}$ and $C_{\bar{G}}(\bar{P})=\overline{C_{G}(P)}$.

It is common to say "the normalizer passes" and "the centralizer passes" when the conditions of Lemma 6.4 are satisfied.

Lemma 6.5. Let G be a group and $\bar{G}=G / \mathcal{O}_{p^{\prime}}(G)$. If G is p-stable and p-constrained, then \bar{G} is p-stable and p-constrained.

Proof.
By hypothesis, $\mathcal{O}_{p^{\prime}}(\bar{G})=1$. Thus $\mathcal{O}_{p^{\prime}, p}(\bar{G}) \cong \mathcal{O}_{p^{\prime}, p}(\bar{G}) / \mathcal{O}_{p^{\prime}}(\bar{G})=\mathcal{O}_{p}\left(\bar{G} / \mathcal{O}_{p^{\prime}}(\bar{G})\right)$, so $\mathcal{O}_{p^{\prime}, p}(\bar{G})$ is a p-group. As a result, it is enough to show $C_{\bar{G}}\left(\mathcal{O}_{p^{\prime}, p}(\bar{G})\right) \leqslant \mathcal{O}_{p^{\prime}, p}(\bar{G})$. Now $\overline{\mathcal{O}_{p^{\prime}, p}(G)}=\mathcal{O}_{p}(\bar{G}) \unlhd \bar{G}$ is a p-subgroup and it follows that $\overline{\mathcal{O}_{p^{\prime}, p}(G)} / \mathcal{O}_{p^{\prime}}(\bar{G}) \unlhd \bar{G} / \mathcal{O}_{p^{\prime}}(\bar{G})$ is a p-subgroup. This implies

$$
\frac{\overline{\mathcal{O}_{p^{\prime}, p}(G)}}{\mathcal{O}_{p^{\prime}}(\bar{G})} \leqslant \mathcal{O}_{p}\left(\frac{\bar{G}}{\mathcal{O}_{p^{\prime}}(\bar{G})}\right)=\frac{\mathcal{O}_{p^{\prime}, p}(\bar{G})}{\mathcal{O}_{p^{\prime}}(\bar{G})}
$$

and so $\overline{\mathcal{O}_{p^{\prime}, p}(G)} \leqslant \mathcal{O}_{p^{\prime}, p}(\bar{G})$. By Theorem 6.5 with $\pi=\{p\}$,

$$
C_{\bar{G}}\left(\mathcal{O}_{p^{\prime}, p}(\bar{G})\right) \leqslant C_{\bar{G}}\left(\overline{\mathcal{O}_{p^{\prime}, p}(G)}\right)=C_{\bar{G}}\left(\mathcal{O}_{p}(\bar{G})\right) \leqslant \mathcal{O}_{p}(\bar{G})=\overline{\mathcal{O}_{p^{\prime}, p}(G)} \leqslant \mathcal{O}_{p^{\prime}, p}(\bar{G})
$$

Therefore, $C_{\bar{G}}\left(\mathcal{O}_{p^{\prime}, p}(\bar{G})\right) \leqslant \mathcal{O}_{p^{\prime}, p}(\bar{G})$ and \bar{G} is p-constrained.
Let $\bar{P} \leqslant \bar{G}$ be a p-subgroup such that $\bar{P} \mathcal{O}_{p^{\prime}}(\bar{G}) \unlhd \bar{G}$ and $\bar{A} \leqslant N_{\bar{G}}(\bar{P})$ be a p-subgroup acting quadratically on \bar{P}. Since $\mathcal{O}_{p^{\prime}}(\bar{G})=1$, we have $\bar{P} \unlhd \bar{G}$. Let $A_{0} \in \operatorname{Syl}_{p}(A)$ and $P_{0} \in \operatorname{Syl}_{p}(P)$. Since \bar{A} and \bar{P} are p-subgroups, we have $\bar{A}=\overline{A_{0}}$ and $\bar{P}=\overline{P_{0}}$. Moreover, $P_{0} \mathcal{O}_{p^{\prime}}(G) \unlhd G$ and $\overline{A_{0}} \leqslant N_{\bar{G}}\left(\overline{P_{0}}\right)=\overline{N_{G}\left(P_{0}\right)}$, which implies $A_{0} \leqslant A_{0} \mathcal{O}_{p^{\prime}}(G) \leqslant N_{G}\left(P_{0}\right) \mathcal{O}_{p^{\prime}}(G)$. Also, $A_{0} \in \operatorname{Syl}_{p}\left(N_{G}\left(P_{0}\right) \mathcal{O}_{p^{\prime}}(G)\right)$ since $\mathcal{O}_{p^{\prime}}(G)$ is a p^{\prime}-group. By Sylow, there exists $x \in N_{G}\left(P_{0}\right) \mathcal{O}_{p^{\prime}}(G)$ such that $A_{0}^{x} \leqslant N_{G}\left(P_{0}\right)$. Since \bar{A} acts quadratically on \bar{P}, it follows that $\overline{A_{0}}$ acts quadratically on $\overline{P_{0}}$. Furthermore, $\bar{x} \in \overline{N_{G}\left(P_{0}\right)}=N_{\bar{G}}\left(\overline{P_{0}}\right)$ and $\left[\overline{P_{0}}, \overline{A_{0}}, \overline{A_{0}}\right]=1$, which implies

$$
\left[P_{0} \mathcal{O}_{p^{\prime}}(G), A_{0}^{x} \mathcal{O}_{p^{\prime}}(G), A_{0}^{x} \mathcal{O}_{p^{\prime}}(G)\right] \leqslant \mathcal{O}_{p^{\prime}}(G)
$$

Thus $\left[P_{0}, A_{0}^{x}, A_{0}^{x}\right] \leqslant \mathcal{O}_{p^{\prime}}(G) \cap P_{0}=1$. Since G is p-stable,

$$
\frac{A_{0}^{x} C_{G}\left(P_{0}\right)}{C_{G}\left(P_{0}\right)} \leqslant \mathcal{O}_{p}\left(\frac{N_{G}\left(P_{0}\right)}{C_{G}\left(P_{0}\right)}\right) \quad \text { and } \quad \frac{\overline{A_{0}^{x} C_{G}\left(P_{0}\right)}}{\overline{C_{G}\left(P_{0}\right)}} \leqslant \mathcal{O}_{p}\left(\frac{\overline{N_{G}\left(P_{0}\right)}}{\overline{C_{G}\left(P_{0}\right)}}\right)
$$

By Lemma 6.4 with $\overline{P_{0}}=\bar{P}$ and $\overline{A_{0}}=\bar{A}$, we have

$$
\frac{\bar{A}^{\bar{x}} C_{\overline{\bar{G}}}(\bar{P})}{C_{\bar{G}}(\bar{P})} \leqslant \mathcal{O}_{p}\left(\frac{N_{\bar{G}}(\bar{P})}{C_{\bar{G}}(\bar{P})}\right) \quad \text { implies } \quad\left(\frac{\bar{A} C_{\bar{G}}(\bar{P})}{C_{\bar{G}}(\bar{P})}\right)^{C_{\bar{G}}(\bar{P}) \bar{x}} \leqslant \mathcal{O}_{p}\left(\frac{N_{\bar{G}}(\bar{P})}{C_{\bar{G}}(\bar{P})}\right)
$$

Thus

$$
\frac{\bar{A} C_{\bar{G}}(\bar{P})}{C_{\bar{G}}(\bar{P})} \leqslant \mathcal{O}_{p}\left(\frac{N_{\bar{G}}(\bar{P})}{C_{\bar{G}}(\bar{P})}\right)^{\left(C_{\bar{G}}(\bar{P}) \bar{x}\right)^{-1}}=\mathcal{O}_{p}\left(\frac{N_{\bar{G}}(\bar{P})}{C_{\bar{G}}(\bar{P})}\right)
$$

follows from

$$
\mathcal{O}_{p}\left(\frac{N_{\bar{G}}(\bar{P})}{C_{\bar{G}}(\bar{P})}\right) \unlhd \frac{N_{\bar{G}}(\bar{P})}{C_{\bar{G}}(\bar{P})} .
$$

Therefore, \bar{G} is p-stable.

Theorem 6.8 (Glauberman's $Z J$ Theorem). Let G be a p-stable and p-constrained group, and $P \in \operatorname{Syl}_{p}(G)$. If $\mathcal{O}_{p}(G) \neq 1$, then $G=N_{G}(\mathcal{Z}(J(P))) \mathcal{O}_{p^{\prime}}(G)$.

Proof.
We proceed by induction on $|G|$. Let $\bar{G}=G / \mathcal{O}_{p^{\prime}}(G)$ and suppose $\mathcal{O}_{p^{\prime}}(G) \neq 1$. Since $\mathcal{O}_{p}(G)$ a normal p-group, we have $\overline{\mathcal{O}_{p}(G)}$ is a normal p-group and $\overline{\mathcal{O}_{p}(G)} \leqslant \mathcal{O}_{p}(\bar{G})$. If $\overline{\mathcal{O}_{p}(G)}=1$, then $\mathcal{O}_{p}(G) \leqslant \mathcal{O}_{p^{\prime}}(G) \neq 1$. This implies $\mathcal{O}_{p}(G)=1$, which is a contradiction. Thus $\overline{\mathcal{O}_{p}(G)} \neq 1$. Moreover, $\bar{P} \in \operatorname{Syl}_{p}(\bar{G})$. By the induction hypothesis, $\bar{G}=N_{\bar{G}}(\mathcal{Z}(J(\bar{P}))) \mathcal{O}_{p^{\prime}}(\bar{G})$, but $\mathcal{O}_{p^{\prime}}(\bar{G})=1$ and so $\bar{G}=N_{\bar{G}}(\mathcal{Z}(J(\bar{P})))$. By Lemma 6.4, $\bar{G}=\overline{N_{G}(\mathcal{Z}(J(P)))}$ and it follows that $G=N_{G}(\mathcal{Z}(J(P))) \mathcal{O}_{p^{\prime}}(G)$.

Without loss of generality, assume $\mathcal{O}_{p^{\prime}}(G)=1$. Now $\mathcal{Z}(J(P))$ char $J(P)$ char P, $\mathcal{Z}(J(P)) \unlhd P$, and $\mathcal{Z}(J(P))$ is abelian. By Theorem 6.6, $\mathcal{Z}(J(P)) \leqslant \mathcal{O}_{p^{\prime}, p}(G)$. Since $\mathcal{O}_{p^{\prime}, p}(G) \unlhd G$ and $\mathcal{O}_{p^{\prime}}(G)=1$, we have $\mathcal{O}_{p^{\prime}, p}(G)$ is a p-group and $\mathcal{O}_{p^{\prime}, p}(G) \leqslant \mathcal{O}_{p}(G)$. By Theorem 6.7, $\mathcal{O}_{p}(G) \cap \mathcal{Z}(J(P)) \unlhd G$, but $\mathcal{Z}(J(P)) \leqslant \mathcal{O}_{p^{\prime}, p}(G) \leqslant \mathcal{O}_{p}(G)$. Hence $\mathcal{O}_{p}(G) \cap \mathcal{Z}(J(P))=\mathcal{Z}(J(P))$. Therefore, $\mathcal{Z}(J(P)) \unlhd G$ and $G=N_{G}(\mathcal{Z}(J(P)))$.

6.2 Some Groups of Matrices

Definition 6.7. Let p be a prime, $r \in \mathbb{N}$, and $q=p^{r}$.
(i) The general linear group is given by

$$
G L_{n}(q)=\left\{A \in M_{n}(G F(q)): \operatorname{det}(A) \neq 0\right\} .
$$

(ii) The special linear group is given by

$$
S L_{n}(q)=\left\{A \in G L_{n}(q): \operatorname{det}(A)=1\right\} .
$$

(iii) The projective special linear group is given by

$$
L_{n}(q)=P S L_{n}(q)=\frac{S L_{n}(q)}{\mathcal{Z}\left(S L_{n}(q)\right)}
$$

Theorem 6.9. Let p be a prime, $r \in \mathbb{N}$, and $q=p^{r}$. Then
(i) $G L_{n}(q)$ is a group under matrix multiplication.
(ii) $S L_{n}(q) \leqslant G L_{n}(q)$.
(iii) $\left|G L_{2}(q)\right|=\left(q^{2}-1\right)\left(q^{2}-q\right)$.
(iv) $\left|S L_{2}(q)\right|=\left(q^{2}-1\right)\left(q^{2}-q\right) /(q-1)$.

Proof.
For (i), let $A=\left[a_{i j}\right], B=\left[b_{i j}\right] \in G L_{n}(q)$ and set $\left[c_{i j}\right]=C=A B$. From [Cur74], $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$, so $c_{i j} \in G F(q)$ and $C \in M_{n}(G F(q))$. Moreover, $\operatorname{det}(C)=\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \neq 0$. Hence $C \in G L_{n}(q)$. Furthermore, $G L_{n}(q)$ is associative; has an identity matrix $I_{n}=\left[e_{i j}\right]$, where

$$
e_{i j}= \begin{cases}1, & \text { for } i=j \\ 0, & \text { for } i \neq j\end{cases}
$$

such that $A I_{n}=I_{n} A=A$ for all $A \in G L_{n}(q)$; and every $A \in G L_{n}(q)$ is invertible since $\operatorname{det}(A) \neq 0$. Therefore, $G L_{n}(q)$ is a group under matrix multiplication.

For (ii), let $A, B \in S L_{n}(q)$. Now $A B^{-1} \in G L_{n}(q)$ by (i) and

$$
\operatorname{det}\left(A B^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(B^{-1}\right)=\operatorname{det}(A) \operatorname{det}(B)^{-1}=1
$$

Thus $A B^{-1} \in S L_{n}(q)$ and $S L_{n}(q) \leqslant G L_{n}(q)$ by the Subgroup Test.
For (iii), from [Cur74], an equivalent condition for a matrix having nonzero determinant is for a matrix to have linearly independent rows. Consider a matrix in $G L_{2}(q)$. There are q^{2} possible combinations of elements from $G F(q)$ to form the first row; however, the first row must be nonzero. Thus there are $q^{2}-1$ possibilities for
row one. The second row cannot be a multiple of the first and there are q possible multiples of row one. In total, there are $q^{2}-q$ possible choices for row two. Therefore, $\left|G L_{2}(q)\right|=\left(q^{2}-1\right)\left(q^{2}-q\right)$.

For $(i v)$, define det : $G L_{n}(q) \rightarrow G F(q)^{*}$ by $A^{\text {det }}=\operatorname{det}(A)$ for all $A \in G L_{n}(q)$. Clearly, det is a homomorphism. Let $a \in G F(q)^{*}$ and consider $A=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \in G L_{2}(q)$. Then $A^{\text {det }}=a$ and so det is surjective. Now $A \in S L_{2}(q)$ if and only if $A^{\text {det }}=1$, or, equivalently, $A \in K e r$ det. Hence $S L_{2}(q)=K e r$ det. By the First Isomorphism Theorem,

$$
\frac{G L_{2}(q)}{S L_{2}(q)}=\frac{G L_{2}(q)}{K e r \operatorname{det}} \cong G L_{2}(q)^{\operatorname{det}}=G F(q)^{*}
$$

and

$$
\left|\frac{G L_{2}(q)}{S L_{2}(q)}\right|=\frac{\left|G L_{2}(q)\right|}{\left|S L_{2}(q)\right|}=\left|G F(q)^{*}\right|=q-1 .
$$

Therefore, $\left|S L_{2}(q)\right|=\left(q^{2}-1\right)\left(q^{2}-q\right) /(q-1)$.
Theorem 6.10. The Sylow 2-subgroups of $S L_{2}(3)$ are non-abelian.

Proof.
By Theorem 6.9, $\left|S L_{2}(3)\right|=\left(3^{2}-1\right)\left(3^{2}-3\right) /(3-1)=2^{3} \cdot 3$ and so $\left|S L_{2}(3)\right|_{2}=2^{3}$. Consider $P=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right),\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right),\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}2 & 2 \\ 2 & 1\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right)\right\}$. Clearly, $P \in S y l_{2}\left(S L_{2}(3)\right)$; however, $\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right)$. Therefore, P is non-abelian and all other Sylow 2-subgroups of $S L_{2}(3)$ are conjugate to P.

Definition 6.8. Let G and K be groups. Then K is involved in G if there exists $N \unlhd H \leqslant G$ such that $K \cong H / N$.

Definition 6.9. Let G be a group and p be a prime. Then G is strongly p-solvable if G is p-solvable and either,
(i) $p \geq 5$, or
(ii) $p=3$ and $S L_{2}(3)$ is not involved in G.

Theorem 6.11. Let G be a group with abelian Sylow 2-subgroups. Then $S L_{2}(3)$ is not involved in G.

Proof.

Toward a contradiction, suppose there exists $N \unlhd H \leqslant G$ such that $H / N \cong S L_{2}(3)$. Let $P_{1} \in S y l_{2}(H)$. By Sylow, there exists $P \in S y l_{2}(G)$ such that $P_{1} \leqslant P$. Since P is abelian, it follows that P_{1} is abelian. Moreover, $P_{1} N / N \in S y l_{2}(H / N)$ and $P_{1} N / N$ is abelian. Since $H / N \cong S L_{2}(3)$, we have Sylow 2-subgroups of $S L_{2}(3)$ are abelian. However, this contradicts Theorem 6.10. Therefore, $S L_{2}(3)$ is not involved in G.

Theorem 6.12. Let G be a group. If G is strongly p-solvable, then G is p-constrained.

Proof.
By hypothesis, G is p-solvable. Let $P_{1} \in S y l_{p}\left(\mathcal{O}_{p^{\prime}, p}(G)\right)$ and $H=\mathcal{O}_{p^{\prime}, p}(G)$. Now there exists $P \in S y l_{p}(G)$ such that $P_{1} \leqslant P$. Moreover, $P \cap H \leqslant H$ and $P \cap H$ is a p-group. By Sylow, there exists $h \in H$ such that $P \cap H \leqslant P_{1}^{h}$, so $P_{1} \leqslant P \cap H \leqslant P_{1}^{h}$, but $\left|P_{1}\right|=\left|P_{1}^{h}\right|$. Thus $P_{1}=P \cap H=P \cap \mathcal{O}_{p^{\prime}, p}(G)$ and by Theorem 6.4,

$$
C_{G}\left(P_{1}\right)=C_{G}\left(P \cap \mathcal{O}_{p^{\prime}, p}(G)\right) \leqslant \mathcal{O}_{p^{\prime}, p}(G)
$$

Therefore, G is p-constrained.

Lemma 6.6. Let G be a group, $P \in \operatorname{Syl}_{p}(G), N \unlhd G$ be a p^{\prime}-subgroup, and $\bar{G}=G / N$. Then
(i) $\overline{J(P)} \leqslant J(\bar{P})$.
(ii) $\overline{\mathcal{Z}(J(P))} \leqslant \mathcal{Z}(J(\bar{P}))$.
(iii) $\overline{N_{G}(\mathcal{Z}(J(P)))} \leqslant N_{\bar{G}}(\mathcal{Z}(J(\bar{P})))$.

Proof.
For (i), let $A \in A(P)$. Now $\bar{A} \leqslant \bar{P}, \bar{A}$ is abelian, and

$$
|\bar{A}|=\frac{|A N|}{|N|}=\frac{|A|}{|A \cap N|}=|A|
$$

by the coprime orders of N and A. Thus $\bar{A} \in A(\bar{P})$, which implies $\overline{J(P)} \leqslant J(\bar{P})$.
For (ii), let $z \in \mathcal{Z}(J(P))$. Now $z \in J(P)$, so $\bar{z} \in \overline{J(P)}$. Clearly, $\bar{z} \in \mathcal{Z}(\overline{J(P)})$, but by $(i), \mathcal{Z}(\overline{J(P)}) \leqslant \mathcal{Z}(J(\bar{P}))$. Thus $\bar{z} \in \overline{\mathcal{Z}(J(P))} \leqslant \mathcal{Z}(\overline{J(P)}) \leqslant \mathcal{Z}(J(\bar{P}))$.

For (iii), $J(P)$ is a p-group, so $\mathcal{Z}(J(P))$ is a p-group. By Lemma 6.4 and (ii), we have $\overline{N_{G}(\mathcal{Z}(J(P)))} \leqslant N_{\bar{G}}(\overline{\mathcal{Z}(J(P))}) \leqslant N_{\bar{G}}(\mathcal{Z}(J(\bar{P})))$.

Theorem 6.13. Let G be a group. If G is strongly p-solvable, then G is p-stable.

Proof.
See Theorem 5.3, pg. 235 in [Gor07].

Theorem 6.14 (Glauberman-Thompson Normal p-Complement). Let G be a group and $P \in \operatorname{Syl}_{p}(G)$, where p is odd. If $N_{G}(\mathcal{Z}(J(P)))$ has a normal p-complement, then G has a normal p-complement.

Proof.

Let G be a counterexample such that $|G|$ is minimal. If there exists $H<G$ such that $P \leqslant H$, then $P \in \operatorname{Syl}_{p}(H)$. Furthermore, $\mathcal{Z}(J(P))$ char $J(P)$ char P, so $\mathcal{Z}(J(P))$ char P and $\mathcal{Z}(J(P)) \unlhd P$. Thus $P \leqslant N_{H}(\mathcal{Z}(J(P))) \leqslant N_{G}(\mathcal{Z}(J(P)))$. By Lemma 4.2, $N_{H}(\mathcal{Z}(J(P)))$ has a normal p-complement and it follows from the minimality of $|G|, H$ has a normal p-complement. Since G is a counterexample, we have by Frobenius' Theorem (2.11) there exists $H \leqslant G$ such that H is a p-group, $N=N_{G}(H)$ has no normal p-complements, and $|N|_{p}$ is maximal.

We may assume $P \cap N \in \operatorname{Syl}_{p}(N)$; otherwise from Sylow, there exists $P_{0} \in \operatorname{Syl}_{p}(N)$ such that $P \cap N \leqslant P_{0}$. Also by Sylow, there exists $g \in G$ such that $P_{0} \leqslant P^{g}$, but again, there exists $n \in N$ such that $P^{g} \cap N \leqslant P_{0}^{n}$. Now $P_{0} \leqslant P^{g} \cap N \leqslant P_{0}^{n}$, but $\left|P_{0}\right|=\left|P_{0}^{n}\right|$, thus $P^{g} \cap N=P_{0} \in \operatorname{Syl}_{p}(N)$. But then $N_{G}\left(\mathcal{Z}\left(J\left(P^{g}\right)\right)\right)=N_{G}(\mathcal{Z}(J(P)))^{g}$ has a normal p-complement since $N_{G}(\mathcal{Z}(J(P)))$ has a normal p-complement. Without loss of generality, we may take $P=P^{g}$.

Suppose $P \nless N=N_{G}(H)$. Let $R=P \cap N, L=N_{N}(\mathcal{Z}(J(R)))$, and $M=N_{G}(\mathcal{Z}(J(R)))$. Now $R<P$ and $L \leqslant M$. By Lemma 1.16 on $P, R<N_{P}(R)$ and $\mathcal{Z}(J(R))$ char R, thus $R<N_{P}(R) \leqslant N_{P}(\mathcal{Z}(J(R))) \leqslant P \cap M$. It follows that $|M|_{p} \geq|P \cap M|>|R|=|N|_{p}, M=N_{G}(\mathcal{Z}(J(R)))$, and $\mathcal{Z}(J(R))$ is a p-group. By the maximality of $|N|_{p}, M$ must have a normal p-complement. Now
$\mathcal{Z}(J(R))$ char $J(R)$ char R, so $R \leqslant N_{N}(\mathcal{Z}(J(R)))=L \leqslant M$. By Lemma 4.2, L has a normal p-complement, but $L=N_{N}(\mathcal{Z}(J(R)))$ and $R=P \cap N \in \operatorname{Syl}_{p}(N)$. Also, $N<G$ since $P \nless N$. By the minimality of $|G|, N$ has a normal p-complement, but this is a contradiction. Thus $P \leqslant N$. If $N<G$, then N has a normal p-complement, which is again a contradiction. Therefore, $P \leqslant N=N_{G}(H)=G$ and $H \unlhd G$.

We claim $\mathcal{O}_{p^{\prime}}(G)=1$. Suppose not and let $\bar{G}=G / \mathcal{O}_{p^{\prime}}(G)$. Now $\bar{P} \in \operatorname{Syl}_{p}(\bar{G})$, p is odd, and $N_{\bar{G}}(\mathcal{Z}(J(\bar{P})))=\overline{N_{G}(\mathcal{Z}(J(P)))}$ has a normal p-complement by Lemma 4.3. By the minimality of $|G|, \bar{G}$ has a normal p-complement. Hence $\bar{G}=\bar{P} \mathcal{O}_{p^{\prime}}(\bar{G})$, but $\mathcal{O}_{p^{\prime}}(\bar{G})=1$, so $\bar{G}=\bar{P}$. It follows that $G=P \mathcal{O}_{p^{\prime}}(G)$ and G has a normal p-complement. This is a contradiction, so $\mathcal{O}_{p^{\prime}}(G)=1$.

Since H is a p-group and $H \unlhd G$, we have by Sylow, $H \leqslant P$. If $P=H$, then $P \unlhd G$. Also, $\mathcal{Z}(J(P))$ char $P \unlhd G$ implies $\mathcal{Z}(J(P)) \unlhd G$ and $G=N_{G}(\mathcal{Z}(J(P)))$. Now G has a normal p-complement and this is a contradiction, so $H<P$. Since $H \unlhd G$ and $\mathcal{O}_{p}(G) \unlhd G$, we have $N=N_{G}(H)=G=N_{G}\left(\mathcal{O}_{p}(G)\right)$. Thus $N_{G}\left(\mathcal{O}_{p}(G)\right)$ has no normal p-complement, $\mathcal{O}_{p}(G)$ is a p-group, and $\left|N_{G}\left(\mathcal{O}_{p}(G)\right)\right|_{p}=|N|_{p}$. Without loss of generality, assume $H=\mathcal{O}_{p}(G)$.

Let $\widetilde{G}=G / H$. Since $H<P$, we have $\widetilde{P} \in \operatorname{Syl}_{p}(\widetilde{G})$ is nontrivial. Let $\widetilde{N_{1}}=N_{\widetilde{G}}(\mathcal{Z}(J(\widetilde{P})))$ and $\widetilde{H_{1}}=\mathcal{Z}(J(\widetilde{P}))$. Since $\widetilde{P} \neq 1$, we have $\mathcal{Z}(\widetilde{P}) \neq 1$, which implies there exist maximally abelian subgroups of \widetilde{P}. Hence $J(\widetilde{P}) \neq 1$, which implies $\widetilde{H_{1}} \neq 1$ and $H<H_{1}$. Also, $\widetilde{N_{1}}=N_{\widetilde{G}}\left(\widetilde{H_{1}}\right)=\widetilde{N_{G}\left(H H_{1}\right)}=\widetilde{N_{G}\left(H_{1}\right)}$, so $N_{1}=N_{G}\left(H_{1}\right)$. Since H_{1} is a p-group and $H<H_{1}$, we have $H_{1} \nexists G$; otherwise, $H_{1} \leqslant H$. Thus $N_{1}=N_{G}\left(H_{1}\right)<G$. Now $\widetilde{P} \leqslant \widetilde{N}_{1}$ and $P \leqslant N_{1}<G$. By our work in the introduction,
N_{1} has a normal p-complement, so $\widetilde{N_{1}}$ has a normal p-complement by Lemma 4.3. By the minimality of $|G|, \widetilde{G}$ has a normal p-complement. It follows that

$$
\begin{array}{r}
\widetilde{G}=\widetilde{P} \mathcal{O}_{p^{\prime}}(\widetilde{G})=P \widetilde{P \mathcal{O}_{p, p^{\prime}}}(G) \text { and } G=P \mathcal{O}_{p, p^{\prime}}(G) H=P \mathcal{O}_{p, p^{\prime}}(G) . \text { Now } \\
\frac{G}{\mathcal{O}_{p, p^{\prime}}(G)}=\frac{P \mathcal{O}_{p, p^{\prime}}(G)}{\mathcal{O}_{p, p^{\prime}}(G)} \cong \frac{P}{P \cap \mathcal{O}_{p, p^{\prime}}(G)}
\end{array}
$$

is a p-group, which implies

$$
\frac{G}{\mathcal{O}_{p, p^{\prime}}(G)}=\mathcal{O}_{p}\left(\frac{G}{\mathcal{O}_{p, p^{\prime}}(G)}\right)=\frac{\mathcal{O}_{p, p^{\prime}, p}(G)}{\mathcal{O}_{p, p^{\prime}}(G)}
$$

Thus $G=\mathcal{O}_{p, p^{\prime}, p}(G)$. By Theorem 6.2(iv), G is p-separable and by Theorem $6.1(i i)$, G is p-solvable.

Now we want to show G is strongly p-solvable. If $p \geq 5$, then G is strongly p-solvable since G is p-solvable. If $p=3$, then we must show $S L_{2}(3)$ is not involved in G. By the coprime action of \widetilde{P} on $\mathcal{O}_{p^{\prime}}(\widetilde{G})$, we have for all $q \in \pi\left(\mathcal{O}_{p^{\prime}}(\widetilde{G})\right)$, there exists $\widetilde{Q} \in \operatorname{Syl}_{q}\left(\mathcal{O}_{p^{\prime}}(\widetilde{G})\right)$ such that $\widetilde{P} \leqslant N_{\widetilde{G}}(\widetilde{Q})$. Since $\mathcal{Z}(\widetilde{Q})$ char \widetilde{Q}, we have $\widetilde{P} \leqslant N_{\widetilde{G}}(\mathcal{Z}(\widetilde{Q}))$. Let $\widetilde{G_{1}}=\widetilde{P} \mathcal{Z}(\widetilde{Q})$ and $\widetilde{Q_{1}}=\mathcal{Z}(\widetilde{Q})$. Now $G_{1}=P Q_{1}$, where Q_{1} is a q-group. In addition, $1=[\mathcal{Z}(\widetilde{Q}), \mathcal{Z}(\widetilde{Q})]=\left[\widetilde{Q_{1}}, \widetilde{Q_{1}}\right]$ and so $\left[Q_{1}, Q_{1}\right] \leqslant H \cap Q_{1}=1$. Thus Q_{1} is abelian. If $G_{1}<G$, then G_{1} has a normal p-complement, where Q_{1} is the normal p-complement. It follows that $\left[Q_{1}, H\right] \leqslant H \cap Q_{1}=1$ and $Q_{1} \leqslant C_{G}(H)=C_{G}\left(\mathcal{O}_{p}(G)\right) \leqslant \mathcal{O}_{p}(G)$ by Theorem 6.3 because G is p-separable and $\mathcal{O}_{p^{\prime}}(G)=1$. Hence $Q_{1}=1$ and $\widetilde{Q_{1}}=\mathcal{Z}(\widetilde{Q})=1$. This is a contradiction since $\widetilde{Q} \in \operatorname{Syl}_{q}\left(\mathcal{O}_{p^{\prime}}(\widetilde{G})\right)$. Thus $G=G_{1}=P Q_{1}$, where P is a 3-group, and Q_{1} is a q-group for $q \neq 3$. Now the Sylow 2-subgroups of G are abelian since Q_{1} is abelian. By Theorem 6.11, $S L_{2}(3)$ is not involved in G. Therefore, G is strongly p-solvable.

Since G is strongly p-solvable, G is p-constrained by Theorem 6.12 , and by Theorem 6.13, G is p-stable. Now $H \leqslant \mathcal{O}_{p}(G)$ is nontrivial, so by Glauberman's $Z J$-Theorem (6.8), $G=N_{G}(\mathcal{Z}(J(P))) \mathcal{O}_{p^{\prime}}(G)$, but $\mathcal{O}_{p^{\prime}}(G)=1$. Thus $G=N_{G}(\mathcal{Z}(J(P)))$, but then G has a normal p-complement. This is a contradiction since G is a counterexample. Therefore, no such counterexample exists.

7 Fixed-Point-Free Automorphisms

Definition 7.1. Let G be a group and $\phi \in \operatorname{Aut}(G)$. The centralizer in G of ϕ is

$$
C_{G}(\phi)=\left\{g \in G: g^{\phi}=g\right\},
$$

and $C_{G}(\phi) \leqslant G$. We say the automorphism ϕ acts fixed-point-freely on G if $C_{G}(\phi)=1$.

Definition 7.2. Let G be a group and $\phi \in \operatorname{Aut}(G)$. Then $[g, \phi]=g^{-1} g^{\phi}$ for all $g \in G$.

Theorem 7.1. Let G be a group, $\phi \in \operatorname{Aut}(G), C_{G}(\phi)=1$, and suppose $|\phi|=n$ for some $n \in \mathbb{N}$. Then
(i) $G=\{[g, \phi]: g \in G\}=\left\{g^{\phi} g^{-1}: g \in G\right\}$.
(ii) $g g^{\phi} g^{\phi^{2}} \cdots g^{\phi^{n-1}}=1$ for all $g \in G$.

Proof.
For (i), suppose $x, y \in G$ such that $[x, \phi]=[y, \phi]$. Now $x^{-1} x^{\phi}=y^{-1} y^{\phi}$, so $y x^{-1}=\left(y x^{-1}\right)^{\phi}$. Hence $y x^{-1} \in C_{G}(\phi)=1$ and $y=x$. Thus $|\{[g, \phi]: g \in G\}|=|G|$, but $\{[g, \phi]: g \in G\} \leqslant G$. Therefore, $G=\{[g, \phi]: g \in G\}$. Similarly, if $x^{\phi} x^{-1}=y^{\phi} y^{-1}$ for some $x, y \in G$, then $\left(y^{-1} x\right)^{\phi}=y^{-1} x$ and $y^{-1} x \in C_{G}(\phi)=1$. Thus $x=y$ and $\left|\left\{g^{\phi} g^{-1}: g \in G\right\}\right|=|G|$. Therefore, $G=\left\{g^{\phi} g^{-1}: g \in G\right\}$.

For (ii), let $g \in G$. By (i), there exists $x \in G$ such that $g=[x, \phi]=x^{-1} x^{\phi}$. Now

$$
\begin{aligned}
g g^{\phi} g^{\phi^{2}} \cdots g^{\phi^{n-1}}= & x^{-1} x^{\phi}\left(x^{-1} x^{\phi}\right)^{\phi}\left(x^{-1} x^{\phi}\right)^{\phi^{2}} \cdots\left(x^{-1} x^{\phi}\right)^{\phi^{n-1}} \\
= & x^{-1} x^{\phi}\left(x^{\phi}\right)^{-1} x^{\phi^{2}}\left(x^{\phi^{2}}\right)^{-1} x^{\phi^{3}}\left(x^{\phi^{3}}\right)^{-1} \cdots \\
& x^{\phi^{4}}\left(x^{\phi^{4}}\right)^{-1} \cdots\left(x^{\phi^{n-1}}\right)^{-1} x^{\phi^{n}} \\
= & x^{-1} x^{\phi^{n}}=x^{-1} x=1 .
\end{aligned}
$$

Therefore, $g g^{\phi} g^{\phi^{2}} \cdots g^{\phi^{n-1}}=1$.

Theorem 7.2. Let G be a group and $\phi \in \operatorname{Aut}(G)$ such that $C_{G}(\phi)=1$. Then
(i) For each $p \in \pi(G)$, there exists a unique $P \in \operatorname{Syl}_{p}(G)$ that is ϕ-invariant.
(ii) If $H \leqslant G$ is a ϕ-invariant p-subgroup, then $H \leqslant P$.

Proof.

For (i), let $P \in \operatorname{Syl}_{p}(G)$. Now $\left|P^{\phi}\right|=|P|$, so $P^{\phi} \in \operatorname{Syl}_{p}(G)$. By Sylow, there exists $g \in G$ such that $P^{\phi}=P^{g}$ and by Theorem 7.1, there exists $x \in G$ such that $g=[x, \phi]=x^{-1} x^{\phi}$. Since $\left|P^{x^{-1}}\right|=|P|$, we have $P^{x^{-1}} \in \operatorname{Syl}_{p}(G)$. Also, $\left(x^{\phi}\right)^{-1}=g^{-1} x^{-1}$ and

$$
\left(P^{x^{-1}}\right)^{\phi}=\left(P^{\phi}\right)^{\left(x^{-1}\right) \phi}=\left(P^{\phi}\right)^{\left(x^{\phi}\right)^{-1}}=\left(P^{g}\right)^{g^{-1} x^{-1}}=P^{x^{-1}}
$$

Thus $\left(P^{x^{-1}}\right)^{\phi}=P^{x^{-1}}, P^{x^{-1}} \in S y l_{p}(G)$, and $P^{x^{-1}}$ is ϕ-invariant.
To show uniqueness, suppose $P, Q \in \operatorname{Syl}_{p}(G)$ are ϕ-invariant. By Sylow, there exists $g \in G$ such that $P^{g}=Q$. Now $P^{g}=Q=Q^{\phi}=\left(P^{g}\right)^{\phi}=P^{g^{\phi}}$, so $P=P^{g^{\phi} g^{-1}}$ and $g^{\phi} g^{-1} \in N_{G}(P)$. Since P is ϕ-invariant, we have $N_{G}(P)$ is ϕ-invariant. Moreover, $C_{N_{G}(P)}(\phi) \leqslant C_{G}(\phi)=1$, so ϕ acts fixed-point-freely on $N_{G}(P)$. By Theorem 7.1, there exists $n \in N_{G}(P)$ such that $g^{\phi} g^{-1}=n^{\phi} n^{-1}$. Then

$$
n^{-1} g=\left(n^{\phi}\right)^{-1} g^{\phi}=\left(n^{-1}\right)^{\phi} g^{\phi}=\left(n^{-1} g\right)^{\phi}
$$

and $n^{-1} g \in C_{G}(\phi)=1$. Thus $g=n \in N_{G}(P)$ and $Q=P^{g}=P$.
For (ii), let $P \in \operatorname{Syl}_{p}(G)$ be the unique ϕ-invariant Sylow p-subgroup of G guaranteed by (i) and $P_{1} \leqslant G$ be a maximal ϕ-invariant p-subgroup such that $H \leqslant P_{1}$. Since P_{1} is ϕ-invariant, $N_{G}\left(P_{1}\right)$ is ϕ-invariant. Moreover, $C_{N_{G}\left(P_{1}\right)}(\phi) \leqslant C_{G}(\phi)=1$. By (i), there exists a unique $P_{2} \in \operatorname{Syl}_{p}\left(N_{G}\left(P_{1}\right)\right)$ such that P_{2} is ϕ-invariant. Now $P_{1} \unlhd N_{G}\left(P_{1}\right)$ is a p-subgroup, so $P_{1} \leqslant P_{2}$. Then $H \leqslant P_{1} \leqslant P_{2}$ and by the maximality of P_{1}, we have $P_{1}=P_{2}$. Thus $P_{1} \in \operatorname{Syl}_{p}\left(N_{G}\left(P_{1}\right)\right)$. By Lemma 1.17, $P_{1} \in \operatorname{Syl}_{p}(G)$ and P_{1} is ϕ-invariant. It follows from the uniqueness of P that $P_{1}=P$. Therefore, $H \leqslant P$.

Theorem 7.3. Let G be a group, $\phi \in \operatorname{Aut}(G), C_{G}(\phi)=1, N \unlhd G$ be ϕ-invariant, and $\bar{G}=G / N$. Define the induced homomorphism on \bar{G} by

$$
\bar{g}^{\phi}=\overline{g^{\phi}}
$$

for all $\bar{g} \in \bar{G}$. Then $C_{\bar{G}}(\phi)=1$.

Proof.

Let $\bar{a}, \bar{b} \in \bar{G}$. If $\bar{a}=\bar{b}$, then $b^{-1} a \in N$ and $a=b n$ for some $n \in N$. Since N is ϕ-invariant, $\bar{a}^{\phi}=\overline{a^{\phi}}=\overline{(b n)^{\phi}}=\overline{b^{\phi} n^{\phi}}=\overline{b^{\phi}} \overline{n^{\phi}}=\overline{b^{\phi}}=\bar{b}^{\phi}$. Thus $\bar{a}^{\phi}=\bar{b}^{\phi}$ and ϕ is well-defined. It remains to show $\phi \in \operatorname{Aut}(\bar{G})$.

Let $\bar{a}, \bar{b} \in \bar{G}$. Now $(\bar{a} \bar{b})^{\phi}=\overline{(a b)^{\phi}}=\overline{a^{\phi} b^{\phi}}=\overline{a^{\phi}} \overline{b^{\phi}}=\bar{a}^{\phi} \bar{b}^{\phi}$, and ϕ is a homomorphism. Let $\bar{a} \in \bar{G}$. Then $a \in G$ and so there exists $b \in G$ such that $b^{\phi}=a$. It follows that $\bar{a}=\overline{b^{\phi}}=\bar{b}^{\phi}$ and ϕ is surjective on \bar{G}. To show ϕ is injective, suppose $\bar{a}^{\phi}=\bar{b}^{\phi}$. Now $\overline{a^{\phi}}=\overline{b^{\phi}}$ and $\left(b^{\phi}\right)^{-1} a^{\phi}=\left(b^{-1} a\right)^{\phi} \in N$. Since N is ϕ-invariant and ϕ is surjective on G, we have $N^{\phi}=N$. Thus there exists $n \in N$ such that $\left(b^{-1} a\right)^{\phi}=n^{\phi}$ and since ϕ is injective on G, we have $b^{-1} a=n \in N$. This implies $\bar{a}=\bar{b}$. Therefore, $\phi \in \operatorname{Aut}(\bar{G})$.

Finally, if $\bar{a} \in C_{\bar{G}}(\phi)$, then $\bar{a}^{\phi}=\bar{a}$ and $a^{-1} a^{\phi} \in N$. Now $C_{N}(\phi) \leqslant C_{G}(\phi)=1$, so by Theorem 7.1, there exists $n \in N$ such that $a^{-1} a^{\phi}=[n, \phi]=n^{-1} n^{\phi}$. Hence $n a^{-1}=\left(n a^{-1}\right)^{\phi}$ and $n a^{-1}$ is a fixed-point of ϕ. However, $C_{G}(\phi)=1$ forces $n=a$ and $\bar{a}=1$. Therefore, $C_{\bar{G}}(\phi)=1$.

7.1 Some Examples

We provide some examples exemplifying the relationship between Thompson's Theorem and Frobenius' Conjecture.

Theorem 7.4. Let G be a group, $\phi \in \operatorname{Aut}(G), C_{G}(\phi)=1$, and suppose $|\phi|=2$. Then G is abelian.

Proof.
By Theorem 7.1, $x x^{\phi}=1$ for all $x \in G$, so $x^{\phi}=x^{-1}$ for all $x \in G$. Let $x, y \in G$.

Now $x y=\left(y^{-1} x^{-1}\right)^{-1}=\left(y^{\phi} x^{\phi}\right)^{-1}=\left((y x)^{\phi}\right)^{-1}=\left((y x)^{-1}\right)^{-1}=y x$. Therefore, G is abelian.

By Lemma 1.13, G is nilpotent and from Theorem 1.21, G is solvable. Thus Frobenius' Conjecture holds true.

Theorem 7.5. Let G be a group, $\phi \in \operatorname{Aut}(G), C_{G}(\phi)=1$, and suppose $|\phi|=3$. Then G is nilpotent.

Proof.
Suppose G is not nilpotent. Since $C_{G}(\phi)=1$, there exists a $P \in \operatorname{Syl}_{p}(G)$ such that $P \nexists G$ and P is ϕ-invariant by Theorem 7.2. Let $Q \in \operatorname{Syl}_{p}(G)$ such that $Q \neq P$. Now $Q \nless P$ and there exists $x \in Q \backslash P$. By Theorem 7.1, $x x^{\phi} x^{\phi^{2}}=1$ and $x^{\phi^{2}} x^{\phi} x=1$, which implies $x x^{\phi}=\left(x^{\phi^{2}}\right)^{-1}=x^{\phi} x$.

Let $H=\left\langle x^{\phi}, x\right\rangle$. Now H is abelian since $x x^{\phi}=x^{\phi} x$. Since $|x|$ is a p-number, we know $\left|x^{\phi}\right|$ is a p-number and H is a p-group. Clearly, $x^{\phi} \in H$. Moreover, $\left(x^{\phi}\right)^{\phi}=x^{\phi^{2}}=\left(x^{\phi} x\right)^{-1} \in H$, so H is ϕ-invariant. By Theorem $7.2, H \leqslant P$, which places $x \in P$, a contradiction. Therefore, G is nilpotent.

By Theorem 1.21, G is solvable. Therefore, Frobenius' Conjecture holds true.

Definition 7.3. Let G be a group and $A \leqslant A u t(G)$. The centralizer in G of A is

$$
C_{G}(A)=\left\{g \in G: g^{\phi}=g \text { for all } \phi \in A\right\}
$$

and $C_{G}(A) \leqslant G$.

Definition 7.4. Let G be a group and p be a prime. Define

$$
\Omega_{1}(G)=\left\langle g \in G: g^{p}=1\right\rangle
$$

where $\Omega_{1}(G)$ char G.

8 The Proof of Thompson's Theorem

Theorem 8.1 (Thompson). Let G be a group, $\phi \in \operatorname{Aut}(G), C_{G}(\phi)=1$ and suppose $|\phi|=r$ for some prime r. Then G is nilpotent .

Proof.
Let G be a counterexample such that $|G|$ is minimal. Suppose there exists $1 \neq N \triangleleft G$ such that N is ϕ-invariant and $N<G$. Now $\phi \in \operatorname{Aut}(N)$ since N is ϕ-invariant. Let $|\phi|=k$ on N and $|\phi|=l$ on G / N, where $k \leq r$ and $l \leq r$. If $k<r$, then $\left\langle\phi^{k}\right\rangle \leqslant\langle\phi\rangle$ and $k=\left|\left\langle\phi^{k}\right\rangle\right|| |\langle\phi\rangle \mid=r$, which implies $k=1$ or $k=r$. Respectively, we have $\left\langle\phi^{k}\right\rangle=\langle\phi\rangle$ or $\left\langle\phi^{k}\right\rangle=1$. If $\left\langle\phi^{k}\right\rangle=1$, then $\phi^{k}=1, r \mid k$, and $r \leq k$. This is a contradiction, so $\left\langle\phi^{k}\right\rangle=\langle\phi\rangle$. But then $1 \neq N \leqslant C_{G}\left(\left\langle\phi^{k}\right\rangle\right)=C_{G}(\langle\phi\rangle)=C_{G}(\phi)=1$ and we have another contradiction, thus $k=r$. Suppose $l<r$. By a similar argument, we have $\left\langle\phi^{l}\right\rangle=\langle\phi\rangle$. Now $\left[G / N, \phi^{l}\right]=1$, so $\left[G / N,\left\langle\phi^{l}\right\rangle\right]=1$. Hence $\left[G, \phi^{l}\right] \leqslant N$ and $\left[G,\left\langle\phi^{l}\right\rangle\right] \leqslant N$. By Theorem 7.1, $G=[G, \phi]$, but $[G, \phi] \leqslant[G,\langle\phi\rangle]=\left[G,\left\langle\phi^{l}\right\rangle\right] \leqslant N$. This is a contradiction and so $l=r$. Now $N<G, C_{N}(\phi) \leqslant C_{G}(\phi)=1,|\phi|=r$ on N, and $\phi \in \operatorname{Aut}(N)$. Thus N is nilpotent by the minimality of $|G|$. Also, $C_{G / N}(\phi)=1$ by Theorem 7.3, $|\phi|=r$ on G / N, and $\phi \in \operatorname{Aut}(G / N)$. It follows from the minimality of $|G|$ that G / N is nilpotent. Therefore, N and G / N are solvable by Theorem 1.21, and G is solvable by Lemma 1.26.

Suppose G contains no nontrivial proper normal ϕ-invariant subgroups. If G is a 2-group, then G is nilpotent, which is a contradiction. Thus $\pi(G)$ contains primes other than 2. By Theorem 7.2, there exists $P \in \operatorname{Syl}_{p}(G)$ such that P is ϕ-invariant and p is odd. Now $\mathcal{Z}(J(P))$ is nontrivial and $\mathcal{Z}(J(P))$ char P, so $\mathcal{Z}(J(P))$ is ϕ-invariant. Since $1 \neq \mathcal{Z}(J(P))<G$, it follows that $N=N_{G}(\mathcal{Z}(J(P)))<G$, where N is ϕ-invariant. Also, $C_{N}(\phi) \leqslant C_{G}(\phi)=1$. By the minimality of $|G|, N$ is nilpotent. Thus N has a normal p-complement and so by Glauberman-Thompson (6.14), G has a normal p-complement. Hence $G=P \mathcal{O}_{p^{\prime}}(G)$. Since $\mathcal{O}_{p^{\prime}}(G)$ char G, we have
$\mathcal{O}_{p^{\prime}}(G) \unlhd G$ and $\mathcal{O}_{p^{\prime}}(G)$ is ϕ-invariant. By our assumption, $\mathcal{O}_{p^{\prime}}(G)=1$ or $\mathcal{O}_{p^{\prime}}(G)=G$. Respectively, $G=P$ or $P=1$. In either case, we have a contradiction, so G contains a minimal ϕ-invariant subgroup. Therefore, G is solvable.

Let $1 \neq N \unlhd G$ such that N is minimal with respect to being ϕ-invariant. Then N is characteristically simple and by Theorem $1.13, N \cong \bigotimes_{i=1}^{n} N_{i}$, where the N_{i} 's are simple isomorphic groups. If there exists $1 \leq i \leq n$ such that N_{i} is non-abelian, then $1 \neq N_{i}^{\prime} \unlhd N_{i}$, so $N_{i}^{\prime}=N_{i}^{(1)}=N_{i}$ since N_{i} is simple. But then $N_{i}^{(k)}=N_{i}$ for all $k \in \mathbb{N}$ and N_{i} is not solvable by Theorem 1.20. However, G is solvable and we have a contradiction to Lemma 1.25. Thus N_{i} is abelian for all $1 \leq i \leq n$. Since N_{i} is simple, we have $N_{i} \cong \mathbb{Z}_{p}$ for some prime p. Therefore, $N \cong \mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}$ is an elementary abelian p-group.

Let $\bar{G}=G / N$. Using a previous argument, \bar{G} is nilpotent by the minimality of $|G|$. If \bar{G} is a p-group, then $|G|=|\bar{G}| \cdot|N|$ and G is a p-group. Hence G is nilpotent by Theorem 1.15. This is a contradiction. By Theorem 7.2, there exists $\bar{Q} \in \operatorname{Syl}_{q}(\bar{G})$ such that \bar{Q} is ϕ-invariant. Since \bar{Q} is a q-group, $\mathcal{Z}(\bar{Q}) \neq 1$ and $\Omega_{1}(\mathcal{Z}(\bar{Q})) \neq 1$. Also, since \bar{G} is nilpotent, $\Omega_{1}(\mathcal{Z}(\bar{Q}))$ char $\mathcal{Z}(\bar{Q})$ char $\bar{Q} \unlhd \bar{G}$ and $\Omega_{1}(\mathcal{Z}(\bar{Q})) \unlhd \bar{G}$ by Lemma 1.12. Moreover, $\Omega_{1}(\mathcal{Z}(\bar{Q}))$ is ϕ-invariant since $\Omega_{1}(\mathcal{Z}(\bar{Q}))$ char \bar{Q}. Let $1 \neq \overline{M_{0}} \leqslant \Omega_{1}(\mathcal{Z}(\bar{Q}))$ be minimal with respect to being ϕ-invariant. Because \bar{G} is nilpotent, $\overline{M_{0}} \leqslant \Omega_{1}(\mathcal{Z}(\bar{Q})) \leqslant \mathcal{Z}(\bar{Q}) \leqslant \mathcal{Z}(\bar{G})$, so $\overline{M_{0}} \unlhd \bar{G}$. Since $\overline{M_{0}}$ is ϕ-invariant, $\overline{M_{0}}={\overline{M_{0}}}^{\phi}=\overline{M_{0}^{\phi}}$ and $M_{0}^{\phi} \leqslant M_{0}^{\phi} N=M_{0}$. Thus M_{0} is ϕ-invariant and $M_{0} \unlhd G$. Now $C_{M_{0}}(\phi) \leqslant C_{G}(\phi)=1$ and it follows from Theorem 7.2 that there exists $M \in \operatorname{Syl}_{q}\left(M_{0}\right)$, where M is ϕ-invariant. Now $\bar{M} \in \operatorname{Syl}_{q}\left(\overline{M_{0}}\right)$, but $\overline{M_{0}}$ is a q-group, so $\bar{M}=\overline{M_{0}}$. Therefore, $M N=M_{0}$.

We claim $G=M N$. Suppose $G \neq M N$. Now $M N$ is ϕ-invariant, $C_{M N}(\phi) \leqslant C_{G}(\phi)=1$, and $|\phi|=r$. Thus $M N$ is nilpotent by the minimality of $|G|$. Furthermore, $M \in S y l_{q}(M N), M \unlhd M N, M$ char $M N=M_{0} \unlhd G$, and $M \unlhd G$ by Lemma 1.12. Let $\widetilde{G}=G / M$. By a similar argument as above, \widetilde{G} is nilpotent. Then
$\widetilde{G} \times \bar{G}$ is nilpotent by Lemma 1.21 . Let $\theta: G \rightarrow \widetilde{G} \times \bar{G}$ be defined by $g^{\theta}=(\widetilde{g}, \bar{g})$ for all $g \in G$. Clearly, θ is a homomorphism with $\operatorname{Ker} \theta=M \cap N=1$ by coprime orders. By the First Isomorphism Theorem, $G \cong G / \operatorname{Ker} \theta \cong G^{\theta} \leqslant \widetilde{G} \times \bar{G}$, so G is nilpotent by Lemma 1.14, which is a contradiction. Thus $G=M N$.

If $r=p$, then $\langle\phi\rangle$ is a p-group and acts on the p-group N. By Lemma 1.10, $1 \neq C_{N}(\langle\phi\rangle) \leqslant C_{G}(\phi)=1$, which is a contradiction. Thus $r \neq p$. Similarly, if $r=q$, let $\langle\phi\rangle$ act on M and we result in a similar contradiction, so $r \neq q$. Now we claim M is an elementary abelian q-group. Since M^{\prime} char M, we have M^{\prime} is ϕ-invariant. Thus $\overline{M^{\prime}} \leqslant \bar{M}=\overline{M_{0}}$ and $\overline{M^{\prime}}$ is ϕ-invariant. By the minimality of $\overline{M_{0}}$, either $\overline{M^{\prime}}=1$ or $\overline{M^{\prime}}=\bar{M}$. If $\overline{M^{\prime}}=\bar{M}$, then $M^{\prime} N=M N$, but $M \cap N=1$ and $M^{\prime}=M$. Hence M cannot be nilpotent; however, M is a q-group. This is a contradiction, so $\overline{M^{\prime}}=1$. It follows that $M^{\prime} \leqslant M \cap N=1$ and M is abelian. Thus $\Omega_{1}(M)$ is abelian and it is enough to show $\Omega_{1}(M)=M$. Now $\Omega_{1}(M)$ char M and $\overline{\Omega_{1}(M)}$ char $\bar{M}=\overline{M_{0}}$, where $\overline{\Omega_{1}(M)}$ is ϕ-invariant. By the minimality of $\overline{M_{0}}$, either $\overline{\Omega_{1}(M)}=1$ or $\overline{\Omega_{1}(M)}=\bar{M}$. If $\overline{\Omega_{1}(M)}=1$, then $\Omega_{1}(M) \leqslant M \cap N=1$, which is a contradiction since M is a q-group. Thus $\overline{\Omega_{1}(M)}=\bar{M}$ and $\Omega_{1}(M) N=M N$, but $\Omega_{1}(M) \cap N \leqslant M \cap N=1$, so $\Omega_{1}(M)=M$. Therefore, M is an elementary abelian q-group.

Next we claim $C_{M}(N)=1$. Since M and N are ϕ-invariant, we have $C_{M}(N)$ is ϕ-invariant. Now $\overline{C_{M}(N)} \leqslant \bar{M}=\overline{M_{0}}$ and $\overline{C_{M}(N)}$ is ϕ-invariant. By the minimality of $\overline{M_{0}}$, either $\overline{C_{M}(N)}=1$ or $\overline{C_{M}(N)}=\bar{M}$. If $\overline{C_{M}(N)}=\bar{M}$, then $C_{M}(N) N=M N$. But $M \cap N=1$, so $M=C_{M}(N)$. Thus $M \unlhd M N=G$ and $N \unlhd G$, where M and N are nilpotent. By Lemma 1.20, G is nilpotent, which is a contradiction. Hence $\overline{C_{M}(N)}=1$ and $C_{M}(N) \leqslant M \cap N=1$. Therefore, $C_{M}(N)=1$.

Since M is ϕ-invariant, $\langle\phi\rangle$ acts in M in the natural manner. Thus $G^{*}=M \rtimes_{i d}\langle\phi\rangle$ is a group by Theorem 1.23. Let G^{*} act on N over \mathbb{Z}_{p} via $\theta: G^{*} \rightarrow \operatorname{Aut}(N)$ defined by $n^{\left(m, \phi^{k}\right)^{\theta}}=\left(n^{\phi^{k}}\right)^{m}$ for all $n \in N$ and for all $\left(m, \phi^{k}\right) \in G^{*}$. By Theorem 1.23, $\left|G^{*}\right|=r q^{n}$ for some $n \in \mathbb{N}$. Since p, q, and r are distinct primes, $\operatorname{gcd}\left(r q^{n}, \operatorname{char} \mathbb{Z}_{p}\right)=1$.

We claim M is a minimal normal subgroup of G^{*}. Suppose $L \leqslant M$ such that $L \unlhd G^{*}$. Since M is elementary abelian q-group, we have L is an elementary abelian q-group, so L char M. Now \bar{L} char $\bar{M}=\overline{M_{0}}$ and \bar{L} is ϕ-invariant. By the minimality of $\overline{M_{0}}$, either $\bar{L}=1$ or $\bar{L}=\bar{M}$. If $\bar{L}=1$, then $L \leqslant N$, where N is a p-group. Thus $L=1$ since L is a q-group with $q \neq p$. If $\bar{L}=\bar{M}$, then $L N=M N$ and since $L \cap N \leqslant M \cap N=1$, we have $L=M$. Therefore, M is a minimal normal elementary abelian q-subgroup of G^{*}.

Clearly, $M \leqslant C_{G^{*}}(M)$. Let $\left(m, \phi^{k}\right) \in C_{G^{*}}(M)$ for $1 \leq k \leq r$ and suppose $k<r$. Now for all $x \in M,\left(m, \phi^{k}\right)(x, 1)=(x, 1)\left(m, \phi^{k}\right)$ and $\left(m x^{\phi^{k}}, \phi^{k}\right)=\left(x m, \phi^{k}\right)$. This implies $m x^{\phi^{k}}=x m$, but M is abelian, so $x^{\phi^{k}}=x$ for all $x \in M$. Thus $\phi^{k}=1$ and $r \leq k$, which is a contradiction. Hence $k=r, \phi^{k}=1$, and $\left(m, \phi^{k}\right)=(m, 1)$, which implies $C_{G^{*}}(M)=M$. Moreover, since $\langle\phi\rangle$ is cyclic and $|\phi|=r$, we have $\langle\phi\rangle \cong \mathbb{Z}_{r}$.

Suppose $\left(m, \phi^{k}\right) \in \operatorname{Ker} \theta$, where $1 \leq k \leq r$. Now $\left(m, \phi^{k}\right)^{\theta}=1$ and for all $n \in N$, $\left(n^{\phi^{k}}\right)^{m}=n$ and $n^{\phi^{k}} m=m n$. If $k<r$, then $\left\langle\phi^{k}\right\rangle=\langle\phi\rangle$ and $C_{M}(\phi) \leqslant C_{G}(\phi)=1$. Moreover,

$$
C_{M}(\phi) \leqslant C_{M}\left(\phi^{k}\right) \leqslant C_{M}\left(\left\langle\phi^{k}\right\rangle\right)=C_{M}(\langle\phi\rangle) \leqslant C_{M}(\phi)
$$

Thus $C_{M}\left(\phi^{k}\right)=C_{M}(\phi)=1$, so ϕ^{k} acts fixed-point-freely on M. By Theorem 7.1, $M=\left\{\left[m, \phi^{k}\right]: m \in M\right\}$ and so there exists $m_{1} \in M$ such that $m=\left[m_{1}, \phi^{k}\right]=m_{1}^{\phi^{k}} m_{1}^{-1}$. Now for all $n \in N$ we have, $n^{\phi^{k}} m_{1}^{\phi^{k}} m_{1}^{-1}=m_{1}^{\phi^{k}} m_{1}^{-1} n$ and $\left(n^{m_{1}}\right)^{\phi^{k}}=n^{m_{1}}$. Thus $n^{m_{1}} \in C_{G}\left(\phi^{k}\right)=1$, so $n=1$, but then $N=1$. This is a contradiction and so $k=r$. It follows that $\phi^{k}=1$ and $n m=m n$. Hence $m \in C_{M}(N)=1$ and $m=1$. Therefore, $\left(m, \phi^{k}\right)=(1,1), \operatorname{Ker} \theta=(1,1)$, and G^{*} acts faithfully on N over \mathbb{Z}_{p}.

By Theorem 2.14, $1 \neq C_{N}(\langle\phi\rangle) \leqslant C_{G}(\langle\phi\rangle)=C_{G}(\phi)=1$, which is a contradiction. Therefore, no such counterexample G exists.

References

[Cur74] Charles W. Curtis. Linear Algebra: An Introductory Approach. Springer, New York, New York, 1974.
[DG61] I.N. Herstein Daniel Gorenstein. Finite Groups Admitting a Fixed-PointFree Automorphism of Order 4. American Journal of Mathematics, 83(1):7178, 1961.
[Gor07] Daniel Gorenstein. Finite Groups. AMS Chelsea Publishing, Providence, Rhode Island, second edition, 2007.
[Ral72] Elizabeth Wall Ralston. Solvability of Finite Groups Admitting Fixed-PointFree Automorphisms of Order rs. Journal of Algebra, 23(1):164-180, 1972.
[Tho59] John Thompson. Finite Groups with Fixed-Point-Free Automorphisms of Prime Order. Proceedings of the National Academy of Sciences of the United States of America, 45(4):578-581, 1959.

Index

```
\(A(P), 69\)
Aut (G), 7
Aut (V,F), 25
\(C_{G}(\phi), 102\)
\(C_{H}(G), 8\)
\(C_{V}(G), 26\)
\(F G\)-isomorphism, 30
\(F G\)-module, 25
\(F G\)-submodule, 25
\(\operatorname{Foc}_{G}(H), 59\)
\(G^{\prime}, 2\)
\(G L_{n}(q), 95\)
\(G^{(i)}, 18\)
\(G^{\phi}\)-invariant, 25
\(G_{a}, 4\)
\(G_{i}, 18\)
\(H\) char \(G, 8\)
\(H \rtimes_{\phi} K, 23\)
\(\operatorname{Hall}_{\pi}(G), 51\)
\(J(P), 69\)
\(K_{i}(G), 17\)
\(L(V, W), 24\)
\(M_{n}(F), 25\)
\(P S L_{n}(q), 95\)
\(S L_{n}(q), 95\)
\(\operatorname{Syl}_{p}(G), S_{p}^{G}, 5\)
Sym(S), 4
\(T / U, 43\)
\(V \otimes_{F} E, 35\)
\(W e d d_{V}(H), 34\)
\(Z_{i}(G), 11\)
[G,H], 3
\([G: H], 2\)
\([H, G], 7\)
[ \(H, K ; n\) ], 77
[a,b], 2
\(\Omega, 46\)
\(\Omega_{1}(G), 105\)
\(\langle S\rangle, 30\)
\(|G|_{\pi}, 51\)
\(|G|_{p}, 5\)
```

$\mathcal{O}^{p}(G), 60$
$\mathcal{O}_{\pi}(G), \mathcal{O}_{\pi^{\prime}}(G), 84$
$\mathcal{O}_{p}(G), \mathcal{O}_{p^{\prime}}(G), 27$
$\mathscr{T}, 43$
π-group, π^{\prime}-group, 1
π-separable, p-separable, 82
π-series, 84
π-solvable, p-solvable, 82
$\pi(G), 1$
$\tau, 44$
$a G, 4$
char $R, 26$
$\operatorname{cl}(G), 77$
$n^{\text {th }}$ roots of unity, 35
$n_{p}(G), 5$
p-constrained, 88
p-residual, 61
p-stable, 89
$x \sim_{G} y, 1$
automorphism, 7
automorphism group, 7
centralizer
of an automorphism, 102
on a group, 8
on a vector space, 26
characteristic, 26
characteristic subgroup, 8
characteristically simple, 9
commutator, 2
subgroup, 2
complement, 48
completely reducibly, 28
composition factors, 82
composition series, 82
derived series, 18
direct sum, 28
elementary abelian p-group, 10
factors, 18
faithful, 25
fixed-point-free, 102
Focal subgroup, 59
Frobenius
complement, 39
group, 39
kernel, 39
fusion, 1
general linear group, 95
generated subspace, 30
group action
on a set, 4
over a group, 7
over a vector space, 25
Hall π-subgroup, 51
involved, 97
irreducible, 27
linear transformation, 24
lower central series, 17
maximal subgroup, 16
minimal normal subgroup, 10
nilpotency class, 77
nilpotent, 11
normal p-complement, 48
orbit, 4
permutation group, 4
primitive $n^{\text {th }}$ root, 35
projective special linear group, 95
quadratic action, 75
representation, 25
semidirect product, 23
solvable, 18
special linear group, 95
splits, 48
stabilizer, 4
strongly p-solvable, 97
subspace, 25

Sylow p-subgroup, 5
tensor product, 35
Theorem
Burnside, 51
Burnside's Normal p-Complement, 55
Cauchy, 2
Class Equation, 5
Clifford, 31
Finite Abelian Groups, 3
First Isomorphism, 1
Fixed Point Theorem for Groups, 6
Fixed Point Theorem for Vector Spaces, 26
Focal Subgroup, 60
Frattini Argument, 6
Frobenius, 39
Frobenius' Normal p-Complement, 66
General Frattini, 7
Glauberman Replacement, 78
Glauberman's ZJ, 95
Glauberman-Thompson Normal p-Complement, 99
Hall, 52
Lagrange, 2
Maschke, 29
Orbit-Stabilizer Relation, 4
Schreier, 82
Schur-Zassenhaus Pt. 1, 56
Schur-Zassenhaus Pt. 2, 57
Second Isomorphism, 1
Sylow, 5
Third Isomorphism, 1
Thompson, 106
Thompson Replacement, 76
Thompson subgroup, 69
Three Subgroups Lemma, 74
transfer homomorphism, 44
transitive, 5
transversal, 43
upper central series, 11
vector space, 24
Wedderburn components, 34

