INVESTIGATING EYE MOVEMENTS IN NATURAL LANGUAGE AND C++

SOURCE CODE

by

Patrick R. Peachock

Submitted in Partial Fulfillment of the Requirements
for the Degree of

Master of Computing and Information Systems

YOUNGSTOWN STATE UNIVERSITY

May, 2015

Digitally signed by ETD Program
E I D DN: cn=ETD Program,
o=Department of Graduate Studies

and Research, ou=Youngstown
State University,

P rog r a m email=etdadmin@ysu.edu, c=US

Date: 2015.05.27 15:48:19 -04'00'

INVESTIGATING EYE MOVEMENTS IN NATURAL LANGUAGE AND C++

SOURCE CODE

Patrick R. Peachock

I hereby release this thesis to the public. I understand that this thesis will be made

available from the OhioLINK ETD Center and the Maag Library Circulation Desk for
public access. I also authorize the University or other individuals to make copies of this

thesis as needed for scholarly research.

Signature:

Approvals:

Patrick R. Peachock, Student Date
Bonita Sharif, Thesis Advisor Date
Alina Lazar, Committee Member Date
John Sullins, Committee Member Date
Sal Sanders, Associate Dean of Graduate Studies Date

Abstract

Is there an inherent difference in the way programmers read natural language text
compared to source code? Does expertise play a role in the reading behavior of
programmers? In order to start answering these questions, we conduct a controlled
experiment with novice and non-novice programmers while they read small short snippets
of natural language text and C++ source code. The study was conducted with 33 students
recruited from an Introduction to Programming class in the Computer Science and
Information Systems department at Youngstown State University. The students were each
given ten tasks: a set of seven programs, and three natural language texts. The order of the
tasks was randomized within each type. They were asked one of three random
comprehension questions after each task. We use several linearity metrics that were

presented recently in a similar eye tracking study and report on the findings.

The results indicate that novices and non-novices both read source code less
linearly than natural language text. We did not find any differences between novices and
non-novices between natural language text and source code. We discuss the implications

of this work along with directions for future work.

il

Acknowledgements

I’d like to acknowledge my advisor, Dr. Sharif, for putting up with my
procrastination and pushing me to constantly get work done. Without her constant
motivation, I would’ve never become interested in my study. Teresa Busjahn for her
assistance in analysis and running eyeCode, and Ahraz Husain for his script writing ability
that helped in analysis.

My thesis committee, Dr. Lazar and Dr. Sullins for taking time out of their busy
schedules to support me, and Dr. Schueller, without him I would’ve never been a graduate
assistant and I would’ve never pursued my Master’s Degree.

I also want to acknowledge the staff of Uptown Pizza who put up with me hour
after hour many evenings, consistently bringing me food to keep me going and keeping me

motivated while I sat reading, researching, and analyzing.

v

TABLE OF CONTENTS

LIST OF FIGURESuuouiititiiiniitnnininninticinisissssssississississssssssssssssssssesssssssssees VIII
LIST OF TABLES ...cuuitiiiiinininnininississisissssssssssssssssssissessssssssssssssssssssssssssssssssssssees IX
CHAPTER 1 INTRODUCTION....cuiniiuinriiinicsunsnnsucsssssecsessessesssesasssssssssesssssssssssesees 1
1.1 IMOtIVALION ...ttt 3
1.2 Research QUESTIONSccecuiiieiiiiicciiee ettt e 4
1.3 CONtIIDULIONS. ...ttt 4
L4 OrANIZAtION......eeiiiiiiieiiieiie ettt ettt et ettt e st e eteesaaeesbeeseaeebeesnseenseesnseeneeas 5
CHAPTER 2 BACKGROUND AND RELATED WORK.........cuiiirireiirccenenaees 6
2.1 An Overview of Eye-tracking Technology............cccoccveviieiiiniiiinieiiieieeieee, 6
2.2 Code MAINtENANCEcc.eeuieuieiieiieieieiieeieeie ettt sttt 7
23 Program Comprehensioncoceeveriiiienieiiniiniceeeceeeeee e 8
2.4 Eye-tracking Studies in Software Engineering.........c.cccoceeevvinievcnicneenennens 12
2.5 Eye-tracking Studies in Computer Education...........c.cceeevviriiniineniininnennns 21
2.6 Other Biometric-based Studies on Program Comprehension.............ccccecueueee 25
2.7 DASCUSSION c..eieiiieeiiieiie ettt ettt ettt ettt e et e bt e et et eeabeebeeenbeeseesneeeneeenee 27
CHAPTER 3 THE STUDY ...cooiniitinninrininininsnnsnnssessessessesssssasssssssssssssssssssssssessssan 29
3.1 STUAY OVEIVIEW ...ttt 29
3.2 Independent and Dependent Variablesc.cccoceeveiiiniriiiniininiinieieceen 29
33 PartiCIPANTSeeiiiiiee e e 31

3.5 Data Collection and APParatuscccueeruieriierieeiiienieeiee e eiee e eieesereeaee e 35
3.6 Study Procedure and Instrumentation.............cceeeveeriieeriienieeniienie e 36
CHAPTER 4 STUDY RESULTS ...cocuiivuiniriinnuicsnisensaesssnssasssesssssssssssssssssssssssssssssssns 38
4.1 Processing the Data for Analysis.........ccoceeeiieiiiiiienieeiiee e 38
4.2 ComPIrehenSION SCOTES.ccuueiuiieiieeiieeiieeieentteeiteesiteeteesteeereesseeebeenseesnreeseeenns 41
4.3 TIME TAKEN ...ttt 43

4.4 RQI: Is there an inherent difference in the way novice programmers read
natural language text compared to SOUICe COAe?oovvirriiiiiiieiieiiieiie et 46
4.5 Non-novice programmers: Natural language text vs. source code 50

4.6 RQ2: Does expertise play a role in the reading behavior of programmers, in

particular, with respect to linear reading?............ccoeeeveieiieiiieiieeieeee e 53
4.7 Post Questionnaire Results and QUOLEScceeeeviieiiieeiiieeieeceeeeee e 54
4.1 Threats t0 Validitycooeoviiiiiiiiiiiiicee s 57
CHAPTER 5 CONCLUSIONS AND FUTURE WORK..........ccocericvurcrensecsaccanens 58
APPENDIX A: STUDY MATERIAL REPLICATION PACKAGE..........ccccevueeunene 59
ALT. Study INSEIUCTIONS ...eeiiiiiiiiiiiiii ettt 59
A.2. Pre QUESTIONNAITECceiiiriiiieiiiieeeeitieeeeeitee e e eetee e e e eete e e eeetaeeeeeetaeeeeeenraeeeeeearaeaeas 61
A.3. The Stimuli - Natural Text (NT) and Source Code (SC)....ceooveeririiiiniiniieene 63
A.4. The Comprehension Questions for the NT and SC Stimuli.........ccceoeviiniinennns 72
A.5. POSt QUESHIONNAITEccouvviieieiiiieeeeiteeeeeeteeeeeeeie e e e eeaee e e eeeaeeeeeeaaeeeeeearaeeeeeearaeeeas 82

Vi

REFERENCES

vii

LIST OF FIGURES

Figure 1. The number of participants self reporting the programming languages they
knew or are currently 1€arning.ccccoeviiiiiiiiiiiiiiie e 33
Figure 2. Years of programming experience within participants.c.cceeeevvereeneennnene 33
Figure 3. Source code SC2 (CalculateAverage) with line (top) and word (below) AOIs 39
Figure 4. Natural Language NT1 with line (top) and word (below) AOIs....................... 40

Figure 5. Average Comprehension Score for Novices and Non-Novices within each task

Figure 6. Average Comprehension Score for Novices and Non-Novices across all tasks 42

Figure 7. Average total time spent by novices on each task............ccccevveevieiiiiinnnennn. 44
Figure 8. Average total time spent by non-novices on each task.........c..cccceeerieninnennn. 44
Figure 9. Average total time spent on each task between novices and non-novices. 45
Figure 10. Average total time spent on all tasks.ccooiiiiiiiiiiniiii 45
Figure 11. Average linearity measures for all NOVICES.ccccevvieririiiniiinieniiiicrecice 47
Figure 12. Saccade length for all novices in NT and SC..........ccooiiiiniininiiniiniiienne 48
Figure 13. Element coverage for all novices in NT and SC.cccooiviiniiiiniiniincnnne 49
Figure 14. Average linearity measures for all non-novices.ccccceeveeriiienienieeneeneenns 51
Figure 15. Saccade length for all non-novices in NT and SC..........cccccoceeviiiinininncnnn. 52
Figure 16. Element coverage for all non-novices in NT and SC.cccccovvvviniiniincnnn. 53

viii

LIST OF TABLES

Table 1. Overview of the Independent and Dependent Variablesc..ccceveeriiriennnene 30
Table 2 Overview of source code used in the study. The programs were marked as SC1

through SC7 for C++. The difficulty was set based on the types of constructs used.

Table 3 Overview of the natural language texts used in the study. The paragraphs were
marked as NT1 through NT3 ... 35
Table 4 Wilcoxon signed ranked test for NT vs. SC for NOVICES.......ccceververeenieniennnenn 48

Table 5 Needleman-Wunch Results comparing the story order for NT and SC for novices.

... 50
Table 6 Wilcoxon signed ranked test for NT vs. SC for non-novices...........ccceeveeuennnene 52
Table 7 Mann Whitney results for novices vs. non-novices over all tasks....................... 54
Table 8 Post-QuesStioNNaire OPINIONSc..eerueieiierieetieeieeieesiteeteeseeeteesieeeseesneeesseesneeens 55
Table 9 Thought Process QUOLEScocuiriiiiiriiniiiiiieeeeeeeee et 56

iX

CHAPTER 1

INTRODUCTION

Programming is a complex set of activities that involves both reading and writing
source code. Part of programming involves comprehending what is being read.
Programming and comprehension are difficult to tease apart since they are very much
intertwined. Programming languages derive many of their characteristics from natural
languages. A Latin-based language is any language that uses alphabetical characters such
as English or German, instead of symbols. Latin based languages are structured to be read
left to right, and top to bottom in a systematic order. Programs on the other hand are
inherently more structured and complex than natural language text. While most Latin-
based languages are taught to be read left to right, and top to bottom, source code often
does not follow the same structure since it is executed in a specific sequence (generally
based on the control flow graph).

The aim of this research is to compare how reading of natural languages differs
from source code. The best way to do this is to look at programmers’ eye movements while
reading natural language and source code. Barbara Kitchenham was the first to propose
the adaptation of evidence-based paradigm in software engineering in 2004 and called it
“Evidence-based Software Engineering (EBSE). The use of evidence-based medicine had
been around long before the proposal of EBSE. The medical field saw a huge growth back
in the 80’s and 90’s with this platform shift. Being able to view, analyze, and compare

data helped to not only benefit the medical field but increase the amount of publications

1

(Kitchenham, Dyba, & Jorgensen, 2004). We believe that the eye tracker supports the
concept of evidence-based software engineering.

An eye tracker is a device that uses infrared technology to record eye movements.
Eye tracking is important because it gives us accurate data as to what a user is looking at
when reading on a screen. It is different from filling out a questionnaire after you are done
analyzing the task because sometimes a person might misreport on the answer or have the
correct thought process but answer incorrectly. With eye tracking, we can see the thought
processes as the person is looking at and solving the problem on the screen. Knowing how
a user reads is critical in the evolution of tools and techniques to help users read and
comprehend both code and natural language text. Eye tracking has been around in the field
of software engineering since the early 1990’s but has been gaining popularity at a rapid
pace.

Eye tracking has many purposes; testing vision, reading comprehension,
simulations, and even software engineering. Eye tracking has been used in the software
engineering field as early as the late 1980’s. One of the first and most well-known uses
being Martha Crosby’s dissertation (M. Crosby, 1986) in 1986 titled “Natural Versus
Computer Languages: A Reading Comparison”. Since the release of this dissertation,
there has been a growing interest in eye tracking and software engineering. Studies have
been done in many fields including program comprehension (Brooks, 1982; Busjahn &
Schulte, 2013a; Sharif & Maletic, 2010), computer education (Busjahn et al., 2014),

debugging (Bednarik & Tukiainen, 2008), software traceability (Ali, Sharafi, Guéhéneuc,

& Antoniol, 2014; Sharif & Kagdi, 2011; Walters, Falcone, Shibble, & Sharif, 2013;
Walters, Shaffer, Sharif, & Kagdi, 2014), software visualization (Jetty, 2013) and usability.

In this thesis, we conduct a study to test how students comprehend C++ code and
natural language texts. We analyzed three short English texts and seven short C++ code
snippets with several students having a varied set of expertise. The goal is to determine if
there are different styles of reading patterns between different categories of users. In
particular we are interested in characterizing linear reading. Our participants were recruited
from introductory as well as advanced classes in the Computer Science and Information

Systems department at Youngstown State University.

1.1 Motivation

There has been a rapidly growing interest in eye tracking studies. During the 1990’s
there were less than 5 papers published. While studies have given insights as to how users
read code and natural language text separately, there hasn’t been much progress in the
comparing of novices and non-novices reading code. There also has yet to be proof if the
expertise level of a programmer determines how they read and comprehend code. The
ability to read code is just as important as the ability to write code. There is a growing
number of programs that are being worked on that have been built upon previous
programming; knowing what a program does prior to using it as a base building block is
critical to the success of the built program. With a better understanding of how a novice
vs. an expert reads and comprehends code, tools can be developed to teach people to be

better programmers. There is no published research that quantifies the reading approach of

natural language text and source code (besides (Busjahn et al., 2015) for Java). This study

seeks to bridge that gap.

1.2 Research Questions

The following are the research questions we seek to answer.

e RQI1: Is there an inherent difference in the way novice and non-novice
programmers read natural language text compared to source code?

e RQ2: Does expertise play a role in the reading behavior of programmers, in
particular, with respect to linear reading?

Better understanding of the different reading patterns of novice and non-novice
programmers will help us to advance teaching styles, tools, and also improve coding
practices. This study is only a first step towards this long-term goal.

RQI basically seeks to determine if the linear reading patterns found in natural
language text transfers to source code. RQ2 seeks to separate the expertise and compare if

there are differences in two sub groups i.e. novices vs. non-novices.

1.3 Contributions

The main contribution of this thesis is a study on the eye movements in natural
language text and C++ source code within novice and non-novice programmers. The study
consists of 33 test participants reading source code as well as natural text and answering a
comprehension question after each. Based on the eye movements, a set of linearity
measures were calculated based on recent prior work. The linearity measures are used to

quantify linear reading in natural language text and source code. This study is a partial

replication of the recent study published at the International Conference of Program
Comprehension (ICPC 2015) by Busjahn et al (Busjahn et al., 2015).

The differences are briefly highlighted next. Our study used a different experimental
design and was part of a C++ semester long class although other students from senior CS
classes were also recruited. Busjahn et al.’s study was done after students completed an
online module in Java. Unlike Busjahn’s study, our study did not study professional
programmers, rather only novices and non-novices. We refer to any participant as a non-
novice if they were recruited from a class that was at a higher standing than the Introduction
to Computer Programming class (that requires no prior background in programming).
Since these non-novices are not experts, we prefer not to use the term experts to refer to

them.

1.4 Organization

This thesis is organized as follows. The next chapter gives a brief introduction to
eye tracking and related work. Chapter 3 presents the details of the experimental setup for
the study. Chapter 4 discusses observations and results. Chapter 5 concludes the thesis and

presents future work.

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter talks about an overview of program comprehension, a history of eye
tracking studies, and a general discussion on eye tracking history. It has only been within
the past few years that eye tracking in software engineering has become a growing area of
study. Eye tracking in software engineering has primarily been based around a few foci,
model comprehension, code comprehension, and debugging. Because this study focuses on
code reading and comprehension of said code, the chapter will cover a brief history of both

as well as a small overview of eye trackers and eye tracking studies.

2.1 An Overview of Eye-tracking Technology
An eye tracker is a device that is able to detect where a user is looking on the screen.
The screen usually is displaying a stimuli of interest (in our case source code or natural
text). When using an eye tracker, there are two types of data that are typically generated:
eye fixations and saccades. An eye fixation is a resting of the eye on part of the stimuli
for a set amount of time. A saccade is a rapid movement from one eye fixation to the
next. This amount of time can vary slightly but is often between 200 to 300 milliseconds.
Fixations and saccades are connected by scan paths. Some analysis tools tell the different
durations of fixations by marking a dot on the stimuli that grows the longer the eyes rest
in one spot, fixation data can also be recorded as a metric of time. In eye tracking studies,
the process of information happens during fixations but not during saccades (Rayner,

Chace, Slattery, & Ashby, 2006).

Eye trackers come in two different forms, intrusive and non-intrusive. A non-
intrusive eye tracker is not worn by the user in any way. The original non-intrusive eye
trackers first functioned by reflecting light off of a user’s pupils. Some non-intrusive eye
trackers are video-based and use cameras to determine eye movements by other objects on
the face such as the eye-brows and nose. These types of eye trackers use infrared to see a
reflection off of the cornea.

The second form of eye tracker is considered an intrusive eye tracker. These types
of eye trackers are worn by the user. These can consist of a headband with cameras,
glasses, or goggles. The most noticeable problem with these types of eye trackers is that
users are uncomfortable wearing them. The intrusive eye trackers are generally more
accurate than the video-based ones. For our purposes, the video-based eye tracker works

well.

2.2 Code Maintenance

A large part of handling computer programming is the maintenance and upkeep of
code. Code maintenance is defined as the totality of activities required to provide cost-
effective support to a software system. Activities are performed during the pre-delivery
stage as well as the post-delivery stage (Lientz, Swanson, & Tompkins, 1978). It is
estimated that expenditures as high as 50-80% of an Information Systems budget can be
spent on software maintenance. (Banker, Davis, & Slaughter, 1998). Program
maintenance can often be difficult for a programmer because the code was written by
another programmer. A programmer can be more prepared for code maintenance tasks if

they are already able to comprehend code on a high level. In 1987 research focused on

7

program comprehension had estimated more than 50% professional programming time was

spent on code maintenance and upkeep of already written programs (Pennington, 1987).

2.3 Program Comprehension

Comprehension is defined by Merriam-Webster as: the act or action of grasping
with the intellect. A program or computer program is defined as a sequence of instructions,
written to perform a specified task with a computer. Program comprehension is the reading
and understanding of the lines of code within a computer program.

Program comprehension is an important part of computer programming. Software
maintenance is heavily reliant on a programmer’s comprehension of the program that is
being maintained. To help improve the ability to comprehend a computer program, we
must first understand how a program is written and assembled. Practically, an enormous
amount of time is spent developing programs, and even more time is spent debugging them,
and so if we can identify factors that expedite these activities, a large amount of time and
money can be saved (M. E. Hansen, Goldstone, & Lumsdaine, 2013). Finding those
expediting factors can be done by studying the eye movements of programmers.

Brooks first discussed the use of beacons or orthodox segments of code (Brooks,
1983). Ruven Brooks produced a theory of comprehension on computer programs. The
research discussed theories and evidence involving program comprehension and different
hypotheses behind programs.

Beacons have since been studied to show that they encompass more than just code
fragments (Gellenbeck & Cook, 1991). Since the founding discussions of beacons, they

are still not known to be a major part in program comprehension or to be explanation of a

8

professional programmers’ understanding and comprehension of code. Crosby et al. in
2002 provided a complete research article discussing and studying beacons and stated
beacons may be in the eye of the beholder (M. E. Crosby, Scholtz, & Wiedenbeck, 2002).
Fan noted similar results on a study done in 2010 affirming results that suggest beacon
identification is in the eyes of the beholder but noticed that the presence of comments does
have an effect on code reading (Fan, 2010).

In 1988, Soloway et al. designed two studies (Soloway, Lampert, Letovsky,
Littman, & Pinto, 1988) to find important conceptual relations of code. This was done by
taking a look at the different focuses on software documentation. The goal was to find
different representations that could benefit a programmer when making changes to that
code. The first study dealt with exploring the design of software documentation for
maintenance. It focused on different types of representations that could possibly help
programmers when they make changes to a program. The second study dealt with
exploring the types of information that are traded back and forth among the participants in

formal design and code inspection.

The first study was to take a look at the different mindsets, logic, and static
knowledge that professional programmers use. To do this, they gave different
programmers a program that managed a small database as well as the documentation and
code of the program. Given this information the programmers were given a task to restore
a deleted record within the same session of its deletion. Observation was found that
professional level programmers used two different types of strategies related to each the

code and the documentation. After observing and creating an enhanced strategy for reading

9

and performing a task, it was determined that more optimization could be done to help

enhance the strategy.

The second study took a look at information that was shared between programmers
in a formal review process. After taking the time to monitor a formal review team, it was
shown that less than half of that time was focused on the code itself while more than half
was focused on the code being understandable for future programmers. The example
mentioned discussed that by avoiding some optimization of functionality, time spent on
code maintenance down the road could be reduced. It was determined that while
delocalized plans were important in both studies, that the nature of these strategies are in
the eye of the programmer doing the comprehension.

To help further understand what happens in the upkeep of a program, research was
conducted on code naming. Naming in programming is the act of assigning an identifier
to a construct. While simple sounding, naming doesn’t have a standard and is therefore set
by the programmer. A simple guideline to naming is to use a name that is meaningful or
somehow related to the construct in use. Two types of naming conventions are common
among programmers when it comes to naming with multiple words, underscores and camel
case. Since several programming languages are picky about using a space, an underscore
can be used to connect a name with multiple words. The second convention, camel case,
capitalizes only the first letter of each connected word.

Common naming can also take its form from natural language. Since programming
is comprised of a lot of natural text but with specific key words, this is something that

occurs naturally. Looking at the Java programming language, there are different methods

10

within the Java class java.util.Vector that utilize common grammar such as
removeElementAt, setElementAs, and setSize. Naming can also contain what is referred
to as overloading. This means that one name can be common between several functions.
While this can be beneficial due to decreasing the lines of code or having less names to
recall, it can also be complicated. Many constructs with the same name can be difficult to
read and comprehend for novice programmers, or someone unfamiliar with the
programmer’s coding styles.

Naming is an important part of all programs. The research explained several
different ways that programmers use naming. Practical naming conventions have helped
to make most programmers more efficient in naming schemes. Naming combines both
natural language and a methodical thought process, and while it seems simple on the
surface, there is a further cognitive layer that needs to be looked into (Liblit, Begel, &
Sweetser, 2006).

The difficulty in understanding and comprehending of programming are not just
isolated incidences. A multi-national study was conducted in 2001 by the “McCracken
group” that proved that programming is no easy task to learn. In 2004, a group set out to
find out what exactly the root of the problem is when learning how to program. They set
out with multiple choice questions to determine a proper score without subjective
judgement and also because this would remove any language fluency issues, leaving all of

those whom were tested on an even playing field.

While there were differences between institutions such as programming language,

student experience, and student motivation (impact on grades vs. volunteers) the reliability

11

of the questions themselves did fall below a .75 on the Cronbach’s coefficient alpha scale
meaning the whole set of questions was only slightly unreliable, but not worthy of
dismissing, across all institutions. The study goes into detail explaining doodling, notes,
and reading versus writing source code. With all of the data presented the conclusion of
programming skill results in students lacking a precursor to problem-solving and ties
directly to a student’s ability to read code rather than write code. The study while built
upon The McCraken group’s research, left open room for more studies interlacing both
groups research designs, reading code, and writing code (Lister et al., 2004).

Michael Hansen with Robert Goldstone and Andrew Lumsdaine published “What
Makes Code Hard to Understand?”. The research conducted used programmers of all
ranges and was done to help determine what factors could impact the comprehension
difficulty of the code. Their results led to a better understanding that experience helps when
programmers believe that there may be errors but can actually hinder their ability when
they haven’t been trained for specific cases. Their results also showed that vertical
whitespace was a factor in grouping sections of related statements together (M. E. Hansen

etal., 2013).

2.4 Eye-tracking Studies in Software Engineering

Studies involving eye tracking and programming have been a slowly growing area.
Studies involving eye tracking and software engineering have been few compared to other
fields. Program comprehension research has been an even smaller area of eye tracking.
The first paper was published in 1990 by Crosby et al. on eye tracking in source code. The

next paper was not published until 2002, and then not again until 2006. The field has
12

quickly grown since then though to include approximately 35 papers in the software
engineering field since 1990. The reason most likely being that the growing accessibility
to eye trackers within the software engineering field is what is causing the increase in
research.

Following Brooks (Brooks, 1983), Martha Crosby released her dissertation
“Natural Versus Computer Languages: A Reading Comparison” in 1986 (M. Crosby,
1986). The study followed non-expert programmers and their ability to read and
comprehend computer programs. The experiments led to a belief that computer
programming language is more advanced than natural language when it comes to non-
experts and their ability to comprehend programming code. Crosby did not include expert
level programmers though which left the door open for research that would include expert
tiered programmers.

In 2002, Martha Crosby, Jean Scholtz, and Susan Widenbeck released a study titled
“The Roles Beacons Play in Comprehension for Novice and Expert Programmers” (M. E.
Crosby et al., 2002). The study investigated key features of programs that assist in
comprehensibility. The study was done using programmers of all ranges from non-
programmers to advanced experts. The conclusions lead to a belief that those features or
beacons are not necessarily the same for all programmers. What one programmer sees as
a beacon may be looked over quickly by another programmer. The research once again
left more room for study on eye tracking and reading code.

Following in the line of beacons, in 2010 Quyin Fan released the study “The Effects

of Beacons, Comments, and Tasks on Program Comprehension Process in Software

13

Maintenance” (Fan, 2010). This study was built upon Crosby et al’s previous research in
beacons. The observations of the study showed that comments within programming code
helped to increase comprehension levels if the code is familiar to the programmer. When
it came to beacons, Fan noticed the same patterns as Crosby, beacons types are identified
by the individual programmer.

Taking a different direction from the reading and maintenance area of code
comprehension, a new study was done to compare bug tracking in two different
programming languages. Sharif et al. took a look into something that hadn’t been done
yet, a comparison of C++ versus Python source code in the context of debugging (Turner,
Falcone, Sharif, & Lazar, 2014). The choice of the two coding languages were simple,
C++ is a very common and continually used programming language, and research led to
showing that Python was similar to C++ but easier and more graceful. An eye tracker was
used to check if there was a difference in eye gaze behavior between novices and non-
novices across both languages, if there was a difference in visual effort, and also if the
programming language had an impact on efficiency of solving different tasks, in this case,
bug finding and overview tasks.

The study was setup using students studying programming, they were broken up
into groups dependent on their answers of their knowledge of each given programming
language. The total ended up having more participants in the C++ programming group,
this is correlated to the amount of programming courses that the students were able to take
in each programming language. The study itself consisted of three different find-bug tasks

and two overview tasks.

14

The results that were analyzed were accuracy, time, fixation counts, and fixation
duration for each group. Accuracy was higher for all parties in the C++ group, also in the
C++ group, novices took longer overall. For the C++ group, novices had a higher fixation
count when compared to Python. The Python group took longer to complete all of their
tasks. With all of the data analyzed, there was no statistical difference when it came to
comparing C++ and python with accuracy and time, but there was a noticeable difference
when it came to fixation rate on bugs. Being that this is the first study of its kind, this left
open a follow up study that will be focusing on constructs within the two languages where
the users get to see both the C++ and Python codes.

Without having concrete evidence on expedited code reading factors, we rely more
strictly on the data that is retrieved from eye-tracking for program comprehension. To be
able to understand how comprehension is understood through eye tracking data, we must
look at how natural language text is read and understood. Reading can be analytically
divided into perception and comprehension (Busjahn, Schulte, & Busjahn, 2011).

To further look into identifier styles Sharif et al. took an in-depth look at eye
movements on camel case versus underscores (Binkley et al., 2012; Sharif & Maletic,
2010). The study was a replication of Binkley et al.’s research in 2009 that used response
time to get data. Since eye trackers are able to gather more data, the hope was for a better
overall look into identifier styles.

The study consisted of eight phrases followed by an identifier that matched what
they saw exactly. The other three identifiers were distractors that change the identifier.

The goal of doing eye tracking in the study was to focus and see if there was a trigger for

15

comprehension within a given task. Using AOls, the study and focus was easily able to be
narrowed down and analyzed.

With the use of an eye tracker it was able to tell that identifier style significantly
affects time as well as the visual effort that it takes to correctly detect identifiers within a
phrase. While Binkley’s study did not show a relation between the length of a phrase and
its style, eye tracking data reported that camel-cased tasks took longer than underscored
tasks. A higher accuracy for camel-case was found in Binkley’s study. Camel-casing did
noticeably affect the speed of novices over experts though in this study while in Binkley’s
there was a direct correlation to the programmers’ familiarity with their identifier style.
The final conclusions being that there may not have been a difference in accuracy, but there
is a large improvement when it comes to time and visual effort with underscoring (Sharif
& Maletic, 2010).

Since code maintenance is becoming a larger part of programming every day, it’s
important to not just focus on a programmer’s point of view, but also a code reviewer’s
point of view. One group of programmers wanted to take a look directly at the reading of
code. Uwano et al. took a look in 2002 on the eye movements of code readers by doing a
code review study (Uwano, Nakamura, Monden, & Matsumoto, 2006). Source code
review, not just by the writer of the code, but by peers, has been a proven and longtime
used technique to improve code. There are several different types of code review including
Ad-Hoc Review, Perspective-Based Reading, Check-list Based Reading, Defect-Based
Reading, and Usage-Based Reading. While some of the different review types have been

shown to perform better over others, it was never proven via actual eye movements.

16

The researchers set up a well-organized study that looked at line reading, gazes and
glances, and line identification and duration. The researchers developed their own software
that worked with their hardware that did a lot of work for them. It was able to get the data
from the eye tracker, and fit it into their requirements. Five graduates participated in the
study. Each participant had six small programs that they were to review. To ensure the
validity of the data, a manual check was done on data obtained and if more than 30 percent
of data was bad, the whole trial was discarded.

The study showed that a common practice in code reading was to review the whole
block of code in one continuous reading and then look at individual parts of code. The
study also showed a correlation between code reading time, code reading patterns and how
well a code reviewer was able to find an error within the code. The results also proved that
code reviewers have different pattern types when reading, such as recursively going back
and looking at related variables. While the study didn’t show a relationship between these
reading patterns and performance, it is still important to note that code reviewers do read
in a pattern which leaves room for a larger and more in depth study of code reviewers eye
movements.

Following on the same path of Uwano, Falcone and Sharif (Sharif, Falcone, &
Maletic, 2012) conducted a study mimicking that of Uwano et al. but using more
participants with varied programming experience. The goal of the research was to once
again look at how a programmer reads code when given a specific task, with the end goal

being to recognize logical defects.

17

The study looked at two different questions. First, did the time taken to scan affect
accuracy, time, and visual effort of defect detection? Second, does the experience of a
programmer come in to play when doing a code review? The experiment was setup using
a non-intrusive eye tracker. All 15 volunteers were tasked with finding errors in four
different pieces of source code, these codes were used in the Uwano study. A speak aloud
method was used and the programmers once given the stimuli were asked to think out loud
where they thought the bugs were in the code. Once an answer was given, the programmer
moved onto the next stimulus and the test continued.

The study itself varied only slightly from the Uwano study. There were 15
programmers with varied experience instead of only five with the same field of experience.
The Uwano study used six programs total, while this study used four. The Uwano study
also waited until a programmer found the bug or for five minutes maximum, this study did
not. Also, a different eye tracker was used.

Although there were modifications from the Uwano study, the study gives good
results. The study validates that scan time does play an important role in the amount of
time that it takes to detect errors in code. Also, the varied range of programmers gave an
insight to how expert programmers and novice readers take a look at code. Experts tend to
have longer fixations while novices tend to take broader sweeps of the code when looking
for errors. Noticing that there are different eye movement patterns leaves room to look
deeper into scan patterns on code reading and reviewing.

While code reading is an important part of code comprehension, code

summarization is important as well. Having a good understanding of what a program does

18

helps with program maintenance. Some tools can do this for you but they may not always
be best. The backbone of any automatic code summarization is in the keywords and
identifiers programmed into it. In 2014, a study was completed that looked to use eye
movements to better code summarization software (Rodeghero, McMillan, McBurney,
Bosch, & D’Mello, 2014).

The study was conducted by having 10 programmers read Java methods and then
write their own summaries for the code. The research was looking to see how close
programmer’s choice of keywords are to a vector space model, term frequency-inverse
document frequency model (VSM, tf/idf). Also, do programmers focus on signature,
control flow, or invocations of a method any more than other parts of the code?

Using a high frequency eye tracker, the 10 programmers were asked to read Java
methods and write summaries for each method. The choices that the programmers made
were compared to a VSM tf/idf approach. The eye tracking results showed that half of the
top 10 keywords from VSM were the same ones that were most commonly read by the
programmers. The eye-tracking results also showed that programmers seemed to pick
signatures over invocation keywords in Java methods. While the paper goes into further
detail about code summarization, and the tools created, it was from eye-tracking data that
they were able to come to their conclusions.

Code reading and reviewing has been proven to be a multi-leveled comprehensive
task. Code comprehension is becoming a key part of understanding how a program works.

A programmer should be able to understand what problem a program is trying to solve, be

19

able to read the code and analyze how it’s solving the problem, as well as know how to
adapt code to the problem it is solving.

Different methods for analysis of eye tracking data are being used, and while some
are becoming nearly universal, there is always a possibility for improvement in analysis
methods. The results of one such method, ScanMatch, were reported by Cristino et al. in
2010 (Cristino, Mathoét, Theeuwes, & Gilchrist, 2010). Their experiment was designed to
quantitatively explain how similar two eye movement sequences are by using algorithms
within bioinformatics.

Their experiments consisted of data that shows their approach in relation to the
Levenshtein measure which measures the distance between two sequences. Results
showed that ScanMatch outperformed Levenshtein when it came to noisy data. The second
experiment was to check the performance of ScanMatch. Given stimuli and instructions
to follow a number pattern, ScanMatch proved to cluster all of the trials successfully after
comparing every other sequence with ScanMatch. In the third experiment, human eye
movements were tested on a search task to test if ScanMatch would be able to tell the
difference in conditions. One condition had 19 distractors in which different colors were
used. After completing trials, each participant was analyzed on an individual basis,
ScanMatch proved to have a higher normalized score across tasks.

They concluded that ScanMatch was able to outperform previous string edit
methods. ScanMatch is able to tell the difference in conditions and able to withstand and
work with noisy data. With the use of ScanMatch, the data received from eye trackers are

able to be better analyzed with more precision.

20

One major enhancement to eye tracking analysis was the introduction of Areas of
Interest or AOIs. An AOI is commonly a rectangle that covers a line of code. Each
individual line gets an AOI and each AOI has its own identifier. By using an AOI, it is
easy to monitor the eye movements within a specific line or segment of code, allowing a
narrowing down to a specific keyword or section of code. If there is at least one fixation
within the AOI, the AOI is considered hit, otherwise the AOI is missed. The use of an AOI
not only helps to better organize data but drastically causes a reduction in scan-path data.

A scan-path is the chronological order of AQOIs or fixations.

2.5 Eye-tracking Studies in Computer Education

Teresa Busjahn and Carsten Schulte describe the style of reading code as a teaching
tool instead of limiting to only writing as a way of learning to program (Busjahn & Schulte,
2013b). They studied the potential to facilitate code reading, the aspects of code reading
that are worthy of being read, inquiries as to what should be known about code reading,
and what comes to mind when thinking about code reading. After tasking 6 participants,
several different aspects of code reading were brought to light. It was learned that code
reading has a direct link to comprehension of all aspects of programming including
algorithms and semantics of constructs. This leaves room open to further study code
reading and techniques.

To confirm that eye tracking was a plausible resource to use in computing
education, a case study and workshop were conducted that would help determine the usage
of eye trackers and the quality of data that could be obtained. It was determined that eye

tracking did allow for a deeper look into how a novice reads and understand code. It was

21

also decided that the detail of data that is found form eye tracking research can help to
advance different learning tools for new programmers. The information gathered isn’t
strictly related to novices though. From the workshop examples that were gathered, there
was a notice in difference in the way that expert programmers read code as well. Knowing
this information could give further direction to one’s own approach when it comes to
reading and writing programming. The paper concludes that eye tracking is a great field
to research for teaching computing. Eye trackers are able to give detailed data into how
individual programmers work as well as help to study the different methods of computing
education (Busjahn et al., 2014). More information about this study is given below.

Over the time of one programming course, it is possible for a novice’s eye
movements to change. There can be several different patterns of code reading namely,
JumpControl, Linear, LineScan, Scan, Flicking, Thrashing, and Signatures. These cover
all categories of gaze patterns from natural text reading (left to right, top to bottom) to
gazes focusing on methods, or gazes jumping all over the code with no recognizable
pattern. They also describe different strategies of reading, DesignAtOnce, Debugging,
ProgramFlow, TestHypothesis, Trail&Error, and FlowCycle. These strategies help an
analyst determine what’s happening in the programmer’s mind, such as ProgramFlow
which describes the following of the execution order of the code, or Debugging which
notices eye gazes look at all elements evenly, suggesting that the reader is trying to find
errors. The research takes a look at one programmer over the length of a programming

course and notices that eye movements change quite a bit.

22

The first part of the research was at the beginning of the course. The student read
through their code in a linear manner, left to right, top to bottom. The second recording
was during the middle of the course and already changes in code reading patterns were
visible. While the participant started in a linear fashion, there were more regressions, and
these regressions seemed to be focused on variables. This suggests that the reader was
checking to follow the history of the variable. At the end of the course, a third recording
was completed. Again, the participant started off in a linear fashion but soon jumped
straight to the method of the program, after gathering enough information to understand
the code, the reader’s eye movements then start to move in a random pattern.

Although the test participant was only one individual, the data on the gaze and eye
movements were enough to prove that within a short period of time, a reader’s eye
movements can change quite a bit. Regressions that were seen were part of a confirmation
strategy, the test participant was making sure that their program was doing that they
thought. This could be an issue due to the fact that programs do not always work in a
natural text fashion, so confirming in a linear order isn’t always going to work. The data
does come to light though and bring into consideration that any novice programmer that
changes from story reading to code reading could be a possible step on the way to becoming
a better code reader.

With an ever growing interest in teaching computer science and finding ways to
understand computer science, program comprehension is becoming more and more a main
player in the field of education. In 2010, Schulte et al. reviewed program comprehension

for CS educators (Schulte, Clear, Taherkhani, Busjahn, & Paterson, 2010). The review is

23

explained from a CS educator’s perspective. Program comprehension is broken down into
sections, external representation, cognitive structure, and the assimilation process. Any
part of a program that is not already known by the programmer is considered an external
representation while cognitive structure pertains to the already known information that
each programmer possesses. The final step, assimilation is the process of going about
trying to strategize and solve the programming process at hand.

The research goes into different models of program comprehension that represent
different focuses of thought within program comprehension. The different models include
the Block Model, Soloway and Ehrlich, Pennington, Letovsky, and more. The research
goes into empirical work, characterization, external representations, assimilation, cognitive
structure, and mapping to Block Model. The research shows common part for each
different model. For example, representation of comprehension and assimilation were
similar for several different models.

Schulte concludes with the primary foci of the different models. The first being
domain knowledge for comprehension being an underestimated way of teaching. The
second being that there are several different possible learning tasks for reading and
comprehending programs. Plus the possible use of instruments could be helpful for
learning. Finally, experts have a flexible and navigational mental representation of what a
program does by reading code and knowledge learned by novice programmers can be

likened to a patches being sewn together.

24

2.6 Other Biometric-based Studies on Program Comprehension

Since the comprehension of natural text has been understood for decades. Getting
into the mind of a programmer is the best way to understand how programs are
comprehended. Siegmund et al. took program comprehension to a new level when they
ran experiments using functional magnetic resonance imaging (fMRI) on programmers
while reading different code segments. The goal of the study was to find the different parts
of the brain that are activated when a programmer is reading and processing code.

Preparation for the study was important when it came to doing the fMRI study.
Avoiding biases was key and given little wiggle room, the source code snippets had to
remain small, which was a difficult task because the programs had to have enough of a
challenge to allow for the fMRI to read brain activity. This limited the process to only
comprehending one aspect of complex comprehension, but still left an opening for studies
to follow.

The study showed that different areas of the brain that processed attention,
language, memory, categorization, problem solving, verbal and numerical memory, and
reading all came in to play when a programmer was reading and solving code. Reading
source-code statements showed close to reading sentences in that the part of the brain was
active that is used for silent word reading. Problem solving was also triggered due to it
being similar to different psychological tasks involving abstracting patterns and
constructing how they work. Verbal and numeric memory were of course important,

keeping manipulated variables in memory would activate this part of the brain.

25

The conclusion of the fMRI study brought to light the neuroscience aspect of
program comprehension. While having been used for decades, it is now clear that different
parts of the brain are activated when reading and comprehending code. These five parts of
the brain all fit the bottom-up program comprehension method. The study also confirmed
Dijkstra’s notice of language processing being an integral part of program comprehension.
Without an understanding of language processing, there can be all sorts of problems when
it comes to comprehending code. The study, while small, proved accurate with clear results
which left open the door for more neuropsychological studies on code comprehension
(Siegmund et al., 2014).

Being able to look into how a programmer thinks can assist in the prevention of
bugs before a program is ever even compiled. Begel et al. did research into using psycho-
physiological sensors to determine a programmer’s mental state when programming (Fritz,
Begel, Miiller, Yigit-Elliott, & Ziiger, 2014). They look a look at using eye tracking, EDA,
and EEG sensors to see if they could predict if a task had different difficulties, which
sensors worked best, and can they use psycho- physiological measure to predict task
difficulty while the programmer is working.

Their experiment consisted of 15 professional programmers, each programming
eight different comprehension tasks. Data was gathered from the participants using
different sensors, eye-tracking, EDA, and EEG. Video of both the participant as well as a
screen capture, and audio recordings were performed as well. After each task the
participants were given a survey to fill out several different questions; mental, physical,

and temporal demands, performance, effort, and frustration.

26

The results came to conclude that regular stress can cause a programmer to create
bugs in their software. These stress levels can be predicted using psycho-physiological
sensors with precision of 70% over a 62% recall. The test also was able to show that a
multitude of sensors doesn’t have to be used to show these results. The data found has
given an extra insight into helping develop tools that could possibly prevent a programmer

from introducing more bugs into their code.

2.7 Discussion

With the continual cost of maintaining code there are further studies that need to be
done to help alleviate the weight of code maintenance. With studies showing that
maintenance is at least 50% of the time spent programming is on maintenance and reading
code, it is important that studies focus on key elements that are linked to reducing the
amount of time spent reading code. Since reading code is a comprehensive task and eye
tracking is the primary link to reading, we need to take a look at how natural comprehension
of text is done. To do this we need to compare how users read and comprehend natural
text versus how they read programming code.

With a new insight on the process of research from Kitchenham (evidence-based
software engineering) (Kitchenham et al., 2004) and easier access to eye-trackers, we have
seen a continual growth in eye-tracking research, whether the research is on code reading,
code comprehension, psycho-physiological evaluation, or eye movements in general. As
long as there is a possibility to find the connection between expert code readers and novice

code readers, we will continue to use eye tracking to help us find the primary connections

27

between the two as well as study naming conventions, programming comprehension, and
bug-finding processes.

The previous studies did not consider to quantify linearity between source code and
natural language texts besides our very recent work related to Java code (Busjahn et al.,

2015). We attempted to extend what was done in (Busjahn et al., 2015) with C++.

28

CHAPTER 3

THE STUDY

This chapter presents the details of the study. We describe our experimental design,
tasks and stimuli, participant recruiting, measures we used as well as a detailed description
of the study instrumentation. The appendix contains a complete listing of all study

materials.

3.1 Study Overview

This study seeks to analyze and compare the reading and comprehension of natural
language text and C++ source code. The main purposes of this study are to determine if
natural text is read differently from source code as well as if novice programmers read
differently than non-novices. We consider a non-novice to be a student who was exposed
to programming in a prior course. They are typically students enrolled in a higher level

course. Novices on the other hand had little or no programming background.

3.2 Independent and Dependent Variables

The independent variable in this study is the type of stimulus being presented:
source code (SC) or natural language text (NT). We had seven source code programs and
three English language texts to be tested. The dependent variables we collect are related to
our research questions. Table 1 describes the independent and dependent variables for the

study.

29

Table 1. Overview of the Independent and Dependent Variables
Independent Variables e Type of stimulus (SC or NT)

e Expertise (Novice or Non-novice)
Dependent Variables e Linearity Metrics
o Vertical Next Text
o Vertical Later Text
o Horizontal Later Text
o Regression Rate
o Line Regression Rate
e Saccade Length

e Element Coverage

The dependent variables are explained below. These measures are all based on
where the person fixated at and the time they fixated on that location (in other words the
fixation counts and the fixation durations). We use eyeCode (M. Hansen, 2015) to map
the gaze coordinates to line and word positions in the stimuli for both NT and SC. These
have been adapted from (Busjahn et al., 2015).

e Vertical Next Text (%): The percentage of forward saccades that either stay on the

same line or move one line down.

e Vertical Later Text (%): The percentage of forward saccades that either stay on the

same line or move down any number of lines.

e Horizontal Later Text (%): The percentage of forward saccades within a line.

30

e Regression Rate (%): The percentage of backward saccades of any length.

e Line Regression Rate (%): The percentage of backward saccades within a line.

e Saccade Length: Average Euclidean distance between every successive pair of

fixations.

e Element Coverage (%): Fraction of words the participant looked at.

The first five measures indicate reading behavior and will be mainly used to
compare the SC to the NT’s which are related to RQ1. They are based on fixations and take
into account both horizontal and vertical reading.

The last two measures indicate differences between non-novices and novices. Non-
novices for example tend to have longer saccades than novices and also tend to focus on

relevant parts of the code i.e. element coverage is smaller.

3.3 Participants

For this study we recruited a total of 33 participants all of whom were students at
Youngstown State University. Participants were recruited of their own free will with the
option to opt out of the study at any time. The participants ranged from 0 years of
programming experience to 5 years or greater programming experience. We wanted to
capture a broad range of programmers so as to help with our second research question RQ?2.
We broke down participants into two separate groups determined by their experience in
programming, Students who had taken higher level classes and/or have programmed

professionally were classified as non-novices. While those in the Introduction to

31

Programming class were classified as novices. Note that most of the novices did not have
any kind of programming background prior to taking the Introduction to Programming
class. In total there were 11 non-novices programmers and 22 novice programmers.

The students participating from the Introduction to Programming class were given
this study as an extra credit assignment. They were tested during week 6 and 7 after the
semester started. This means that they had six weeks to learn C++ notation as well as the
concepts such as data types, arithmetic operators, variables, declarations, assignment and
initialization, selection structures, and looping structures.

The participants filled out a pre-questionnaire before they did the study. There were
15 female and 18 male students. The age range was between 18 to 27 years of age. All
students were well versed in the English language. A majority of them were native English

speakers. Figure 1 and Figure 2 present some demographics on our participants.

32

Participant Count per Programming Language

Number of Participants
= = [[\ w
o wu o wu o

(9]

0 . .

C/C++ Java Python

Figure 1. The number of participants self reporting the programming languages
they knew or are currently learning.

14 Participant Count per Years of Programming
12 Experience
E 10
-3
_U
£t 8
(-8
5 s
u
£
s 4
4
2 I I I
0
None 1-2 years 3-5years >5 years

Figure 2. Years of programming experience within participants.

33

3.4 Tasks

A total of 10 tasks (11 including the demo task) were given to the test participants.
Three of these tasks were a natural text paragraph (NT). Each NT discussed a different
topic, one involving the history of black powder, one involving the adaptation of dung
beetles into a new environment, and one discussing government and economy. The other
7(8) tasks were all short C++ source code programs. All of the programs were of an easy
enough difficulty that the Introduction to Computer Programming class would have been
able to figure out the output of the programs. The programs ranged from simple output
and input statements to nested loops, so the range of difficulty did vary, though not to
impossible standards.

The test participants were given as much time as they needed to read the NT and
SC tasks. A comprehension question was given after each test. The comprehension
question was randomly chosen between the following: A summary of the NT / SC, a
multiple choice of the NT / SC, a fact about the NT, or the output of the SC. There was
also an option for participants to put that they didn’t know and were encouraged not to
guess. The order in which the tasks were displayed was determined by a random number
generator. Each comprehension question per task was also determined by running a
random number generator over the NTs first and the SCs second. This not only gave us an
overall understanding how the participants answered as a whole, but helped to prevent the
participants from discussing the answers of the questions with each other. Table 2 and

Table 3 present the tasks.

34

Table 2 Overview of source code used in the study. The programs were marked as SC1 through
SC7 for C++. The difficulty was set based on the types of constructs used.

SCID Program LOC Constructs Difficulty
SC1 CakePrice.txt 7 pseudocode, if/felse Easy

SC2 CalculateAverage.cpp 17 Average, division Medium
SC3 CountDown.cpp 13 while loop Easy

SC4 SimpleExpression.cpp 8 Output statement Easy

SC5 SignChecker.cpp 21 If/else statement Difficult
SCé6 PrintPattern.cpp 14 Nested for loop Difficult
SC7 DollarsAndCents.cpp 12 division and mod Medium

Table 3 Overview of the natural language texts used in the study. The paragraphs were marked
as NT1 through NT3

NT ID Description Number of Words
NT1 Rockets 78
NT2 Beetles 74
NT3 Government 80

Please refer to Appendix A for details on each of these stimuli.

3.5 Data Collection and Apparatus

The eye tracker used in the study was the Tobii X60 (www.tobii.com) eye tracker.
The eye tracker is a 60 Hz video-based binocular remote eye tracker that is not intrusive.
The eye tracker does not require a head piece, it sits on the desk directly in front of the

monitor. At 60 Hz, the eye tracker is able to generate 60 samples of eye data per second.

35

The Tobii X60 has an accuracy of roughly 0.5 degrees or approximately 15 pixels. The
eye tracker is able to compensate for head movement during the study. The study itself
was conducted on a 24 inch monitor with a 1920x1080 resolution. While there were two
monitors in extended desktop setting, the test participant only used one monitor while the
experimenter used the other to setup, initiate, and monitor the study. Besides the eye
tracker, audio and video of the participants were also recorded via a Logitech webcam. The
eye gaze data recorded included timestamps, gaze positions, fixations, durations, pupil size,
validity codes, areas of interest, start time, and end time for each trial. In this study we use
fixations, durations, validity, and area of interest. The areas of interest were generated

using eyeCode (M. Hansen, 2015). The entire study was conducted in Tobii Studio.

3.6 Study Procedure and Instrumentation

The study was conducted in accordance with IRB policies (IRB Protocol Number:
081-2015) and procedures at the SERESL (Software Engineering Research and Empirical
Studies Lab) on the Youngstown State University Campus. On the day of the study, test
subjects were informed that the purpose of the study was to understand how programmers
read both natural language text and C++ programming source code. Subjects were then
asked to answer a pre-questionnaire online. Each participant was issued an ID. The
subjects were seated approximately 60-65 cm away from the screen. Before the natural
text tasks, the user was presented with a screen giving instructions on the upcoming tasks.
Before the C++ source code tasks, the users were presented with a set of instructions as
well as a demo source code along with its questions and the form in which they should be

answered. The natural text tasks were presented first (in a random order) followed by the

36

seven source code tasks (in a random order). Subjects announced out loud when they were
ready to begin the test and used the mouse to continue on to the next slide. Subjects
selected one of three numbers (in a random order) after each task and answered the question
that followed using the mouse or keyboard. After each task, subjects were presented with
a short questionnaire about the difficulty of the task and their confidence in their answer.
After all tasks were answered, test subjects were presented with a post questionnaire that

asked about difficulty, time needed, and if any problems occurred during the test.

37

CHAPTER 4

STUDY RESULTS

We present the results in terms of our two research questions. We first describe
how the data was processed followed by comprehension task and timing results. Threats

to validity and a discussion finally close the chapter.

4.1 Processing the Data for Analysis

After the study was complete, the data was exported from Tobii Studio to flat files.
Before we run the statistical tests on the data, we needed to map the fixations on source
code elements. We use eyeCode (M. Hansen, 2015) for this purpose. eyeCode is able to
automatically determine lines and words given an image stimulus. These lines and words
form the areas of interest (AOI). In our case the image stimulus is the NT and SC tasks.
Then, it also maps the fixations on corresponding words so we are able to determine which
fixation falls on which word in natural text or source code element.

Figure 3 and Figure 4 show us the pictorial description of how eyeCode segments

the lines and words. The fixations are not shown in the figures but they are exported to a

file.

38

Fout << "Enter a whole number " << endl|

cin >> NumTwo

gverage = (NumOne +NumTwo) /2.0

fout << "The average value is " << average << end ;

ot oain {1
[NumOnel
I S |
Foat [N |
o << I S A { (8 Bl |
Bl B NumOre) |

6ot < I I I |
B 5 |

MR 5 (I B (rrd 2.9
pout 5 (e NN =< = | I 6 |

i 9 |

i

Figure 3. Source code SC2 (CalculateAverage) with line (top) and word (below)
AOIs

39

in the tenth century, black powder was first compounded from its basic

ingredients of saltpetre, charcoal and sulphur,

SSSSSSSSSSSSSSSS

Irinked‘ ‘inextricably‘ .

historians .-- the with
l-----lstud'esl sforon
----I@---I
- I study it - civilisation.| It is probable - %’gh@ -
i e ety - R ll_-l

ingredients . | charcoal a nd sulphur.

Figure 4. Natural Language NT1 with line (top) and word (below) AOIs

Before we proceed to answer the research questions, we first report on the
comprehension and timing results of the study. We use the Mann-Whitney test to compare

novices and non-novices. We use the Wilcoxon paired test to compare within each group

40

i.e., within novices or within non-novices. These are non-parametric tests as our sample is

not large enough for parametric tests.

4.2 Comprehension Scores

We use the abbreviation NT for natural language texts and SC for source code. See
Figure 5 and Figure 6 for comprehension scores. We observe that overall non-novices
scored higher than novices. In Figure 5, we can also see the gap between novices and non-
novices per task. The gaps are larger for difficult programs like SignChecker and
PrintPattern. The other programs that fell into the medium and easy difficulty category had
less of a gap between novices and non-novices. This indicates that novices had a hard time

giving a correct answer for difficult problems.

41

Novice Vs. Non-Novices Comprehension Scores Eiovice Averag:

B Non-novice Average
3.00

2.82 2.82 2,82
2.64 2.64 2.64
2.55 2.55
250 240 2.4
2,27 ™
= 21
2.05 2.05 2.05 =]
2.00 1.82
4]
—
QO 150
o
v
1.00
0.50
0.00
& & & e 5 Q& © & & o
oc‘."z Q,ze‘? é‘\% N’,Cs&' ’b\d" (\60@ & 1.53' ‘ch‘}‘ éga\o
g
& & Y & & & & 8
N iy O & % o 5 < 6;,\% Q\@
> S & & B 2
o o
C,

Figure 5. Average Comprehension Score for Novices and Non-Novices within each
task

Average Comprehension Scores of All Tasks
27.00

26.00

8 8

omprehension Score Tota
VY
8 8

§ 2100

20.00
Novice Non-Novice

Figure 6. Average Comprehension Score for Novices and Non-Novices across all
tasks

42

The Mann-Whitney test on the total scores between novices and non-novices
showed significant differences (p=0.00019, U=213.500). The non-novices did significantly

better i.e. higher scores, than the novices.

4.3 Time Taken

Figure 7 through Figure 10 shows the time taken on each task and over all tasks
combined. It also reports on time differences between novices and non-novices. Both
novices and non-novices spent the least amount of time in SC4 which was a small and
simple program. Similar to comprehension scores, the gaps between novices and non-
novices are much more apparent in difficult programs. Non-novices also tend to take the
study more seriously compared to novices and so they spend more time on the tasks. A
Mann-Whitney test reveals no significant differences in time between novices and non-

novices (p=0.866, U=126).

43

Novice Average Per Task

80
60

35.98
40 2421 23:83 2261 22.34 23.09 28.56 27.13

» AElcmnElE
0

Novice Average
Per Task

Time in Seconds

B NT1-Rockets HNT2-Beetles m NT3-Government
W SC1-CakePrice B SC2-CalcAvg M SC3-Countdown
B SC4-SimpleExpression B SC5-SignChecker W SC6-PrintPattern
m SC7-DollarsAndCents

Figure 7. Average total time spent by novices on each task

Non-Novice Average Per Task
80 69.41

60 50.44 653
40 35. 66) 34.29 34.77 35.05 39.56
0

Non-Novice Average

Time in Seconds

Per Task
B NT1-Rockets B NT2-Beetles B NT3-Government
W SC1-CakePrice | SC2-CalcAvg ® SC3-Countdown

B SC4-SimpleExpression B SC5-SignChecker B SC6-PrintPattern
W SC7-DollarsAndCents

Figure 8. Average total time spent by non-novices on each task

44

Completion Time Per Task (in seconds)

80.00
69.41
70.00
60.00 enad 56.59
2 50,00
s 4318
g 39.56
@ 40,00 35.66 34.29 34.77 35.05 35.
@
E 30.00 285 27.1
13.37
20.00
10.8 11 80
10.00
0.00
A N
Pt & & & ad &
N &
& o & ‘e? 'b\ 'ko @"" & &~ é-"
b - & > < -) < 2 Ly
N AV & < ¥ d ¥ & &L &
S " o S o N o o @
A & ;‘,\6\ {_,(.a ‘a(" ’\90
i (%)
o 9

Comparison Per Task

= Novice Average 8 Non-Novice Average

Figure 9. Average total time spent on each task between novices and non-novices.

Total Average Time - All Tasks

450 412.32
400

350
300
250
200
150
100

50

237.41

Time in Seconds

Non-Novices Novices

Figure 10. Average total time spent on all tasks.

45

4.4 RQI1: Is there an inherent difference in the way novice programmers read
natural language text compared to source code?

In order to answer RQ1, we report on the linearity metrics we introduced in Section
3.2. Figure 11 shows the five linearity metrics for NT and SC. Notice that the measures
Vertical Next Text, Vertical Later Text, and Horizontal Later Text are all higher for NT
compared to SC. These are all linearity measures indicating that NT is read more linearly
than SC. The regression measures deal with non-linear reading. The line regression rates
were higher in NT than SC i.e., participants went back to read a line more often in NT than
SC.

We ran the Wilcoxon paired test within novices to see if the above measures were
significantly different. Table 4 shows the results of the Wilcoxon test. We see that the
measures Vertical Next Text, Vertical Later Text, and Horizontal Later Text and Line
Regression Rate are all significantly different between NT and SC. The Regression Rate
which involves regressions of any length is not. This means that there is significant more
line regressions in SC vs. NT reading. This also indicates that SC is harder for novices to

read than NT even though the reading is less linear.

46

Percentage of eye movements

Percentage of eye movements

70
60
50
40
30
20
10

70
60
50
40
30
20
10

Vertical Next Text Vertical Later Text

64.49 » 70 64.94
S 60
£
¢ 50
o
316 E 40 33.34
3 30
k]
20
m
€ 10
S
5 0
Novice-NT Novice-SC 2 Novice-NT Novice-SC
Horizontal Later Text Regression Rate
» 70
& 60
§
41.38 z 0
E 40
-1}
>
v 30
kS
&
H - H BN
Q
o
E 0
Novice-NT Novice-SC Novice-NT Novice-SC
Line Regression Rate
@ 70
S 60
£
@ 50
(=]
E 40
2
® 30
= 20
1]
?E'P 5 5.05
10 :
1]
(5]
() e
Novice-NT Novice-SC

Figure 11. Average linearity measures for all novices.

47

Table 4 Wilcoxon signed ranked test for NT vs. SC for Novices

Linearity Measure Sum of Positive Signed D
Ranks

Vertical Next Text 253 p<0.001 *

Vertical Later Text 253 p<0.001 *

Horizontal Later Text 253 p <0.001 *

Regression Rate 136 p=0.775

Line Regression Rate 246 p <0.001 *

In Figure 12, we see that the length of the saccade is higher for NT than SC. This
means that in NT they jumped a few lines more than in the SC. In Figure 13 we present
the element coverage. This means that 31.7% of NT in novices were looked at and 34%
of elements were looked at for SC. This measure simply indicates how many elements on

the stimulus were looked at. We also discuss this point in the threats to validity section.

Saccade Length

190
170
150
130
110

90

166.47

71.13
o]
50

Novice-NT Novice-SC

Average Euclidean Distance

Figure 12. Saccade length for all novices in NT and SC.

48

Element Coverage

, 100
z

14}

g 80

Q

>

o

£ 60

o4}

o 34.83
2 40 31.7 :
o

&

s .

=

[+

L=}

S 0

(=

Novice-NT Novice-SC

Figure 13. Element coverage for all novices in NT and SC.

Both saccade length (p < 0.001) and element coverage (p = 0.03) are significantly
different between NT and SC. This is another indication that NT and SC are quite different
in terms of their cognitive load.

We now discuss the alignment of NT and SC to Story Order and show the results of the
Needleman-Wunch (N-W algorithm) in Table 5. Story order is basically reading the
stimulus one line at a time from top to bottom (typically the way we read natural language
text). The N-W algorithm is used as a string matching algorithm to determine story order.
It has also been used by Cristino et al. (Cristino et al., 2010) in earlier work on eye
movement research. The algorithm gives a similarity score where a high score indicates
that two sequences are close to each other. The difference between naive and dynamic
scores is whether repetitions through the code are counted. So if we care about how many
times the person read through the code, we keep repeating the string matching with the

story order and the eye gaze movements to get a dynamic score.

49

Table 5 Needleman-Wunch Results comparing the story order for NT and SC for

novices.
Story Order NT SC p
Naive N-W Score -8.27 -21.16 <0.001
Dynamic N-W Score 1871 -4.06 <0.001
Repetitions 3.42 2.6 <0.001

These scores are not close to one another. This means that even novices do not start
with an approach that is very top down and left to right (contrary to what (Busjahn et al.,
2015) found). The results indicate that both natural language text and source code were
both read multiple times. The NT was read 3.42 times compared to SC which was read 2.6
times. The more read-throughs the higher the N-W alignment score. We found a significant

difference between NT and SC’s story order for novices.

4.5 Non-novice programmers: Natural language text vs. source code

See Figure 14 for a similar set of linearity metrics for non-novices (similar to what
we showed for novices in the previous section. In Table 6, we do an equivalent analysis on
non-novices by running the Wilcoxon test to detect for differences in how non-novices read
NT vs. SC. It follows the same general trend as novices with one exception. The regression

rate is also significantly different for experts between NT and SC.

50

S = A B
o ©c O O ©O

=y
o

Percentage of eye movements
w
(= (=]

~
o o o

o

e RO ¥V T - ¥, R«
o o

Percentage of eye movements
o

(=]

Vertical Next Text Vertical Later Text

61.23 yu 70 61.66
S 60
E
¢ 50
o
E 40
29.54
27.62 > 30
e
o
@ 20
©
€ 10
8
o 0
Non-novice-NT Non-novice-SC o Non-novice-NT Non-novice-SC
Horizontal Later Text Regression Rate
o 19 18.41
-
£ 18
5
38.25 £ 17
QU
1)
s 16 15.53
12 &
s .
[] :
QU
o
E 14
Non-novice-NT Non-novice-SC Non-novice-NT Non-novice-SC

Line Regression Rate

70
60
50
40
30

20
9.47
4.8

10 :
, N —

Non-novice-NT Non-novice-SC

Percentage of eye movements

Figure 14. Average linearity measures for all non-novices.

51

Table 6 Wilcoxon signed ranked test for NT vs. SC for non-novices

Linearity Measure Sum of Positive Signed D
Ranks

Vertical Next Text 253 p=0.001 *

Vertical Later Text 253 p=0.001*

Horizontal Later Text 253 p=0.001 *

Regression Rate 136 p=0.01*

Line Regression Rate 246 p=0.002 *

Figure 15 and Figure 16 show the saccade length and element coverage respectively
for non-novices. Both the saccade length (p = 0.001) and coverage (p = 0.01) were

significantly different for NT and SC in the non-novices group as well.

Saccade Length
190 181.16
170
150
130
110

90
0 62.96

50 1

Non-novice-NT Non-novice-SC

Average Euclidean Distance

Figure 15. Saccade length for all non-novices in NT and SC.

52

Element Coverage

@ 100

=

Q

£ 80

Q

=

o

£ 60

Q

g 33.43
5 40 28.37 :
3]

1)

= .

=

8

o

o O

= Non-novice-NT Non-novice-SC

Figure 16. Element coverage for all non-novices in NT and SC.

4.6 RQ2: Does expertise play a role in the reading behavior of programmers, in
particular, with respect to linear reading?

We ran the Mann-Whitney test on all novices vs. non-novices. We did not find any
significant differences in novices vs. non-novices here as was found in (Busjahn et al.,
2015). It could be because our non-novices were not really experts in industry. They were
just slightly more advanced than novices. Table 7 shows the results of the Mann Whitney

test.

53

Table 7 Mann Whitney results for novices vs. non-novices over all tasks

Linearity Measure U p

Vertical Next Text 546 p=0.406
Vertical Later Text 539 P=0.461
Horizontal Later Text 536 p=0.487
Regression Rate 540 p=0453
Line Regression Rate 487 p=0.973

We plan on conducting the study with real experts to see if a difference can be

found for linearity metrics.

4.7 Post Questionnaire Results and Quotes

After the study, we asked the participants if they had enough time to complete the
tasks which was unanimously agreed upon as a yes. Participants were also asked about the
difficult of the study overall, less than 10% found it very easy, 34% found it easy, 41%
considered it average, and 16% found it difficult. The last question asked was about any
difficulty faced during the study, 7 participants agreed that it was difficult when it came to
remember the stimuli and answer the comprehension question. The following table gives

some insight as to what some participants thought of the study overall.

54

Table 8 Post-Questionnaire opinions

ID Did you have How would you Describe any difficulty you faced
sufficient time rate the overall during the study
to complete the | difficulty of the
study? tasks?

PO8 | Yes Difficult I faced some difficulty with the programs
because I did not understand parts of it.

P09 | Yes Easy The hardest part was memorizing what
the output was as opposed to figuring out
what the program was doing.

P16 | Yes Difficult understanding what it is asking and
remembering it

P22 | Yes Average Remembering what was on previous
screens was difficult.

P23 | Yes Very easy I didn't remember those readings.

P25 | Yes Easy 1 may not have as much programming
experience as 1 would like to have had to
answer these questions

P27 | Yes Very easy Short term memory loss

P28 | Yes Average I had no real difficulty with the
directions or how to complete the study.
The only real problem I faced was the
output of the incremental program. That
was because of my own skill level not
the program itself.

The results of the study indicate that novices and non-novices both read source code

similarly however, non-novices read code less linearly than natural language. Also, the

level of the programmer changes the way that they see a program. We asked participants

about what was going on in their minds as they watched their eye movements for two

different programs, PrintPatternTest and SignChecker. Table 9 show some of these quotes.

55

Table 9 Thought Process Quotes

Name

SKkill Level

Program

Quote

P1

Novice

PrintPattern

I was trying to do the loop, just go over it
trying to make a tracing table

SignChecker

We haven't gone over strings yet so I figured
it was just like everything else. I kind of
forgot to look at the output.

P2

Non-
novice

PrintPattern

[noticed I'm skipping all over the place, 1
was reading real fast skimming, but kept
bouncing up to the top to know what I was
thinking

SignChecker

I was sort of just reading what it was going
to do and I ended up having to pop back up
to the top to see how many i and j were
because I wasn't exactly paying attention to
variables at the start

P3

Novice

PrintPattern

Obviously I have no clue what the computer
programming is and I knew I couldn't go
back to it so a lot of it was trying to
remember the little things.

SignChecker

I had no idea, this was the first one [
literally had no idea what was going on,
absolutely nothing and I was just looking
for patterns. That the number was 0 and
what the number means. You can kind of
understand it, most of it was just trying to
remember if i got asked if the number was
greater than 0 or less than 0 it's negative. |
got what it meant really fast I just wanted to

make sure, yeah.

56

4.1 Threats to Validity

We now discuss the threats to validity to this study. To account for different control
structures in source code as well as different word lengths in natural language text, we used
three NT passages and seven source code passages. The fact that we did not find any
differences between novices and non-novices indicates that they are possibly at the same
level of reading skills. In order to find differences in linearity, it might be necessary to
study expert programmers in industry who program on a daily basis and have been working
in industry for more than 10 years.

One major threat to validity is the skewness that occurs in eye tracking data. The
linearity metrics are directly dependent on how accurately the fixations are mapped to
words or source code elements. We did not correct skewness for this study and hence the
results should be taken with caution. We also discarded all trials with less than 60%
mapping on source code elements and found the same significant results. This indicates
that we might find even more strength and effect in our findings if all the data was
corrected. We are currently working on an automated fixation-correction algorithm

Also, on examining the scan paths, we found that most of them were close to the
word that they were looking at. We strongly believe that after correction, we should see

even stronger significance. We have left this as an immediate future exercise.

57

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

We conducted a study that characterized linearity in eye movements between
natural language text and source code in C++. This study replicates an earlier study that
looks into Java code. Our results show that both non-novices and novices read source code
significantly different than natural language text, while most natural text is read left to
right, top to bottom with few regressions, source code is read in a less linear manner with
more regressions. While these findings are different, aggregate data shows that there is no
difference overall between novices and non-novices in our study sample. We consider this
study as a first of two studies done this year (2015) that quantifies linearity. Even though
this seems to be quite intuitive, there was no proof that this was indeed the case.

As part of future work, we are currently conducting a second phase of this study
with the same group of students. The purpose is to determine if the eye movements differ
at the end of the semester indicating if any learning occurred. This phase of the study is
being conducted during the last week of the semester. We are also taking a look at fixations
and durations on specific areas (beacons) in the code provided and want to determine if the
difficulty of a task makes a difference on how both novices and experts read the code.
Beacons are places in the code that non-novices tend to focus on as one chunk of data. We
believe that studies like this one help towards quantifying eye movements for specific
tasks. In our case the task was to quantify linearity. More studies and replications need to
be done to add to the body of knowledge and thereby advance the state of the art in

experimentation.

58

APPENDIX A: Study Material Replication Package

A.1. Study Instructions

The purpose of this study is to understand how people comprehend code and natural
languages. It is not to measure your skills at programming. There are two parts to this study.
First, you will be asked to read three English passages and answer a question about them.
The second part of the study will involve reading C++ code and answering a question about
the code.
Three possible comprehension questions you could be asked are:
A multiple choice question about the algorithmic idea (or text passage for the
passages)
OR
What is the output of the program? (some fact about the passages)
OR
Give a summary of the program (or passages). Here you will say what the program
(passage) does and
what the algorithmic idea is.

¢ You may study the English text and code snippet for as long as you like. But as
soon as you are done understanding what it does, we ask that you move on to answer
the question following it.

e Please do not guess the answers.

e The source code given to you does not contain any bugs.

e I would like to encourage you to please think aloud. Verbalize your thoughts as this
will help us understand your thought process.

e Please answer the questions from the perspective of a person trying to understand
and comprehend the code.

e You will fill in your answers in a web form that will pop up automatically.

e For each question, you will be asked to rate the difficulty level you faced and your
confidence in the answer you provided. Use the mouse to select the options.

e When you are done with the reading the code on the screen, click the LEFT mouse
button only once to advance to the next screen.

e Important note: You will not be able to see the source code while you are answering
the question.

e There is no possibility to go back. Please be sure of your choices before you
advance to the next screen.

59

e Please try to maintain your position in the chair while you do the study so that we
do not lose the tracking of your eyes. Moving the chair back or moving yourself
back in the chair will cause the eye tracker to stop tracking. Small head movements
such as looking at the keyboard to type should be fine.

¢ Find a comfortable position so we can begin.

e We will first begin with calibrating your eyes. Look at the black dot in the center
of the red circle and follow it around on the screen.

e Then, we will begin with a sample task followed by the actual study questions

We request that you please not let students who have not taken the study in your class know
of the questions asked after you leave. Thank you for maintaining the integrity of the data.

We appreciate your time in taking this study.

60

A.2. Pre Questionnaire
ID *
What is your native language? *

Your English Level? *
o None
o Low
o Medium

o High
Your overall programming expertise? *

o None
o Low
o Medium

o High
Your expertise in C++? *

o None

o Low

o Medium
o High

o <I18years
o 18 —22 years
o 23 -27years

o >27years

Gender *
o Male
o Female

Years of programming experience in C++ *

o None

o <1

o 1-2years
o 3-5years
o >5years

How often do you program in C++? *
less than 1 hour / month
less than 1 hour / week

less than 1 hour / day

o O O O

more than 1 hours/day

Years of programming experience in any language *

61

None

<1

1-2 years
3-5 years

o O O O O

>5 years
How often do you program in a language other than C++? *

o less than 1 hour / month
o less than 1 hour / week
o less than 1 hour / day

o more than 1 hours/day
When did you first start programming? (list the year) *

Which language did you first learn programming in? *

What programming language classes are you currently taking? *
State the course number. for e.g., CSIS 2610 and/or CSIS 3700

Which programming languages do you know? *
State the language and level of expertise (low, medium, high)

Do you want to say anything else about your programming background? If yes, you may
enter it below.

62

A.3. The Stimuli - Natural Text (NT) and Source Code (SC)

NT1: Civilisation

The invention of rockets is linked inextricably with the invention of
'black powder'. Most historians of technology credit the Chinese with
its discovery. They base their belief on studies of Chinese writings or on
the notebooks of early Europeans who settled in or made long visits to
China to study its history and civilisation. It is probable that, some time
in the tenth century, black powder was first compounded from its basic

ingredients of saltpetre, charcoal and sulphur.

NT2: Beetles

Introducing dung beetles into a pasture is a simple process:
approximately 1,500 beetles are released, a handful at a time, into
fresh cow pats in the cow pasture. The beetles immediately disappear
beneath the pats digging and tunnelling and, if they successfully adapt
to their new environment, soon become a permanent, self-sustaining
part of the local ecology. In time they multiply and within three or four

years the benefits to the pasture are obvious.

63

NT3: Government

The role of governments in environmental management is difficult but

inescapable. Sometimes, the state tries to manage the resources it

owns, and does so badly. Often, however, governments act in an even

more harmful way. They actually subsidise the exploitation and

consumption of natural resources. A whole range of policies, from

farm-price support to protection for coal-mining, do environmental

damage and (often) make no economic sense. Scrapping them offers a

two-fold bonus: a cleaner environment and a more efficient economy.

Demo Source Code and Solution Shown

#include <iostream>

using namespace std;

int main() {

intn=6;

if(ln%2==0){
cout<<n<<"iseven." << endl;

}
else {

cout << n<<"isodd." << endl;

return0;

64

Sample Task - Solution

If you were asked

#include <iostream> What is the output of the program?
using namespace std; Your answer would be
6 iseven
intmain() {
inth=6; If you were asked
Write a summary of the program?
if(n%2==0){ Your answer would be
cout << n<<"iseven." << endl; This program determines if the number 6 is
} odd or even. In this case, since 6 is even, it
else { prints “6 is even”. It uses the % (modulo)
cout<<n<<"isodd." << endl; operator to check for no remainderin the
} case of even numbers.

If you were asked to choose from the following
choices on what the program outputs,

You would choose choice A as your answer.

A. 6iseven

B. 6isodd

C. 3iseven

D. 3isodd

return Q;

Remember that you will only be asked one of the questions above.

SC1: Cake price pseudocode

cake prices are 1.0 and 2.0

for each item
if cake price is even
print "even"
else

print "uneven”

65

SC2: Calculate Average

#include <iostream>

using namespace std;

int main () {
int NumOne ;
int NumTwo ;
float average ;
cout << "Enter a whole number " << endl ;
cin >> NumOne ;
cout << "Enter a second whole number " << endl ;

cin > NumTwo ;

average = (NumOne + NumTwo)/2.0;

cout << "The average value is " << average << end| ;

return O ;

66

SC3 : CountDown

#include <iostream=

using namespace std;

int main ()
{
intn=3;
while (n>1){
cout<<n;
n=n-1;
}
return O ;
}

67

SC4: Simple Expression

#include <iostream>

using namespace std;

int main () {
cout << "answer=";

cout<< (40 +2) <<endl;

return O;

68

SCS: Sign Checker
#include <iostream>
#include <cstring>

using namespace std;

int main () {
int number=20;

string theSign="";

if (number>=0) {
theSign = "positive”;
}elseif (number <0){
theSign = "negative";
}else{

theSign = "null" ;

cout << "This is your number " << number

<< " The signis " << theSign << endI;

return 0 ;

69

SC6: Dollars and Cents

#include <iostream>

using namespace std;

intmain () {
intcents = 140 ;
int dollars = cents / 100 ;
int restCents = cents % 100 ;
cout << "Thatis " << dollars << " dollar(s)and " ;

cout << restCents << " cent(s) " ;

return 0 ;

70

SC7: Print Pattern Test

#include <iostream:>

using namespace std;

int main () {
for(inti=1;i<=3;i++){
for(intj=0;j<i;j++){

n & mn

cout << :

}

cout<<" . ";

return O ;

71

A.4. The Comprehension Questions for the NT and SC Stimuli

Before each text, one of these three instructions will be
given:

Please read and comprehend the following text. When you are
done, press the left mouse button.

Then you will be given a MULTIPLE CHOICE question about the
content.

Please read and comprehend the following text. When you are
done, press the left mouse button.

Then you will be asked about SOME FACT from the texts.
Please read and comprehend the following text. When you are
done, press the left mouse button.

Then you will be asked to give a SUMMARY.

You will not know which of the above questions (multiple choice, some fact, or
summary) you will be asked about.

You will not be able to view the passage while you answer the questions.

Say Begin when you are ready to start

72

1-MC for NT1

Which statement describes the content of the texi? *

() Black powder was probably discovered some time in the tenth century by the Chinese. It is essential for
the invention of rockets.

(_» Historians believe that black powder was discovered by the Europeans after visits to China.
(Based on Chinese and European accounts, rockets were essential for the invention of black powder

& I'm not sure

-

Never submif passwords through Google Forms.

NTT

* Required

2 - Some Fact for NT1

Where was black powder supposedly discovered? *

-

Never submit passwords through Google Forms.

73

NT2

* Required

1-MC for NT2

Which statement describes the content of the text? *

) Dung beetles dig themselves into pastures and have to be permanently maintained
() Dung beetles live on cow pats and have to be permanently maintained

_» Dung beetles dig themselves into pastures and become a self-sustaining part of the ecosystem

& I'm not sure

=

Never submit passwords through Google Forms.

NT2

* Required

2 - Some Fact for NT2

Can pastures benefit from dung beetles? *

N -

Never submit passwords through Google Forms.

74

NT3

* Required

1-MC for NT3

Which statement describes the content of the texi? *
(_» Economy sometimes mismanages resources with provisions that are meant to support the environment
() Governments sometimes mismanage resources with provisions that are meant fo support the economy

) Governments sometimes mismanage resources with provisions that are meant to support the
environment

() I'm not sure

o

MNever submit passwords through Google Forms.

NT3

2 - Some Fact for NT3

Discarding certain financial supports would be beneficial for economy and

-

MNever submit passwords through Google Forms.

75

CakePrice.txt

* Required

1- MC for CakePrice

What is the output? *
2 even

i) uneven

) even, uneven

i) uneven, even

i3 I'm not sure

Never submit passwords through Google Forms.

CakePrice.txt

* Required

3 - Qutput for CakePrice

What is the program's output? *
(If you don't know the answer, type '7")

Never submit passwords through Google Forms.

76

CalculateAverage.cpp

* Required

1-MC for CalculateAverage

This program *

i ... gets two numbers from the user and prints their sum

i ... gets two numbers from the user and prints their average
2 ... determines the average value of two

i ... prints that there is no average

i2) ldon't know

Newver submit passwords through Google Forms.

CalculateAverage.cpp

* Required

3 - Output for CalculateAverage

What is the program's output if the program is executed with the numbers 2 and 8 as input. *

(If you don't know the answer, type '?".

= Back

Never submit passwords through Google Forms.

77

CountDown.cpp

* Required

1 - MC for CountDown

What is the output? *
o 3

o 32

@ 3,21

2 | don't know

Never submit passwords through Google Forms.

CountDown.cpp

* Required

3 - Output for Countdown

What is the program's output? *
(if you don't know the answer, type "?'.)

o

Never submit passwords through Google Forms.

78

SimpleExpression.cpp

* Required

1 - MC for SimpleExpression

What is the output? *
o 42

i) The answer is 42
i) answer =42

i answer=40+2

i | don't know

Never submit passwords through Google Forms.

SimpleExpression.cpp

* Required

3 - Output for SimpleExpression

What is the program's output? *
(If you den't know the answer, type '7')

MNever submit passwords through Google Forms.

79

SignChecker.cpp

* Required

1 - MC for SignChecker

What is the output? *

i) The sign is positive

i) This iz your number 0. The sign is negative
i) This iz your number 0. The sign is null

i) The sign is pesitive, negative, or null

2 | do not kmow

Newver submit passwords through Google Forms.

SignChecker.cpp

* Required

3 - Output for SignChecker

What is the program's output? *
(If you don't know the answer, type '7')

[

Never submit passwords through Google Forms.

80

PrintPattern.cpp

* Required

1 - MC for PrintPattern.cpp

What is the output? *

e 1 W i Wl

@ | don't know

MNever submit passwords through Google Forms.

PrintPattern.cpp

* Required

3 - Output for Print Pattern

What is the program's output? *

(If you don't know the answer, type '7")

Never submit passwords through Google Forms.

81

A.5. Post Questionnaire

ID *
o This is a required question
Did you have sufficient time to complete the study? *
o Yes
o No
o This is a required question
How would you rate the overall difficulty of the tasks? *
Very easy
Easy
Average
Difficult
o Very Difficult
Describe any difficulty you faced during the study

o O O O

Any other comments about the study are welcome

82

References

Ali, N., Sharafi, Z., Guéhéneuc, Y.-G., & Antoniol, G. (2014). An empirical study on the
importance of source code entities for requirements traceability. Empirical
Software Engineering, 1-37. http://doi.org/10.1007/s10664-014-9315-y

Banker, R. D., Davis, G. B., & Slaughter, S. A. (1998). Software Development Practices,
Software Complexity, and Software Maintenance Performance: A Field Study.
Management Science, 44(4), 433—450. http://doi.org/10.1287/mnsc.44.4.433

Bednarik, R., & Tukiainen, M. (2008). Temporal Eye-Tracking Data: Evolution of
Debugging Strategies with Multiple Representations Case Study : Visual Attention
During Debug-. In 2008 Symposium on Eye Tracking Research & Applications
(Savannah, Georgia, March 26 - 28, 2008) (Vol. 1, pp. 99-102). New York: ETRA
’08. ACM.

Binkley, D., Davis, M., Lawrie, D., Maletic, J. I., Morrell, C., & Sharif, B. (2012). The
impact of identifier style on effort and comprehension. Empirical Sofiware
Engineering, 18(2), 219-276. http://doi.org/10.1007/s10664-012-9201-4

Brooks, R. (1982). A Theoretical Analysis of the Role of Documentation in the
Comprehension of Computer Programs (pp. 125-129). New York, NY, USA:
ACM. http://doi.org/10.1145/800049.801768

Brooks, R. (1983). Towards a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies, 18(6), 543-554.

http://doi.org/10.1016/S0020-7373(83)80031-5

83

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J., Schulte, C., ... Tamm, S.
(2015). Eye Movements in Code Reading: Relaxing the Linear Order. In
International Conference on Program Comprehension (p. to appear).

Busjahn, T., & Schulte, C. (2013a). The Use of Code Reading in Teaching Programming
(pp- 3-11). New York, NY, USA: ACM. http://doi.org/10.1145/2526968.2526969

Busjahn, T., & Schulte, C. (2013b). The Use of Code Reading in Teaching Programming
(pp- 3—11). New York, NY, USA: ACM. http://doi.org/10.1145/2526968.2526969

Busjahn, T., Schulte, C., & Busjahn, A. (2011). Analysis of code reading to gain more
insight in program comprehension. In Proceedings of the 11th Koli Calling
International Conference on Computing Education Research - Koli Calling ’11
(pp- 1-9). New York, New York, USA: ACM Press.
http://doi.org/10.1145/2094131.2094133

Busjahn, T., Schulte, C., Sharif, B., Simon, Begel, A., Hansen, M., ... Antropova, M.
(2014). Eye Tracking in Computing Education (pp. 3—10). New York, NY, USA:
ACM. http://doi.org/10.1145/2632320.2632344

Cristino, F., Mathot, S., Theeuwes, J., & Gilchrist, I. D. (2010). ScanMatch: A novel
method for comparing fixation sequences. Behavior Research Methods, 42(3),
692-700. http://doi.org/10.3758/BRM.42.3.692

Crosby, M. (1986). Natural Versus Computer Languages: A Reading Comparison.

University of Hawaii.

84

Crosby, M. E., Scholtz, J., & Wiedenbeck, S. (2002). The Roles Beacons Play in
Comprehension for Novice and Expert Programmers. In /4th Workshop of the
Psychology of Programming Interest Group (pp. 58—73). Citeseer.

Fan, Q. (2010). The effects of beacons, comments, and tasks on program comprehension
process in software maintenance. University of Maryland at Baltimore County,
Catonsville, {MD}, {USA}.

Fritz, T., Begel, A., Miiller, S. C., Yigit-Elliott, S., & Ziiger, M. (2014). Using Psycho-
physiological Measures to Assess Task Difficulty in Software Development. In
Proceedings of the 36th International Conference on Software Engineering (pp.
402—413). New York, NY, USA: ACM.

Gellenbeck, E. M., & Cook, C. R. (1991). An Investigation of Procedure and Variable
Names As Beacons During Program Comprehension. Corvallis, OR, USA: Oregon
State University.

Hansen, M. (2015). EyeCode. Retrieved April 30, 2015, from

Hansen, M. E., Goldstone, R. L., & Lumsdaine, A. (2013). What Makes Code Hard to
Understand? CoRR, abs/1304.5257. Retrieved from http://arxiv.org/abs/1304.5257

Jetty, G. H. (2013, May). An Empirical Study Assessing the Impact of SeelT3D on
Comprehension. Youngstown State University, Youngstown.

Kitchenham, B. A., Dyba, T., & Jorgensen, M. (2004). Evidence-Based Software
Engineering. In Proceedings of the 26th International Conference on Software
Engineering (pp. 273-281). Washington, DC, USA: IEEE Computer Society.

Retrieved from http://dl.acm.org/citation.cfm?1d=998675.999432

85

Liblit, B., Begel, A., & Sweetser, E. (2006). Cognitive Perspectives on the Role of Naming
in Computer Programs. In Proceedings of the 18th Annual Psychology of
Programming Workshop. Brighton, England, United Kingdom.

Lientz, B. P., Swanson, E. B., & Tompkins, G. E. (1978). Characteristics of application
software maintenance. Communications of the ACM, 21(6), 466-471.
http://doi.org/10.1145/359511.359522

Lister, R., Seppild, O., Simon, B., Thomas, L., Adams, E. S., Fitzgerald, S., ... Sanders,
K. (2004). A multi-national study of reading and tracing skills in novice
programmers. ACM SIGCSE Bulletin, 36(4), 119.
http://doi.org/10.1145/1041624.1041673

Pennington, N. (1987). Stimulus Structures and Mental Representations in Expert
Comprehension of Computer Programs. Cognitive Psychology, (19), 295-341.

Rayner, K., Chace, K. H., Slattery, T. J., & Ashby, J. (2006). Eye Movements as
Reflections of Comprehension Processes in Reading. Scientific Studies of Reading,
10(3), 241-255. http://doi.org/10.1207/s1532799xssr1003 3

Rodeghero, P., McMillan, C., McBurney, P. W., Bosch, N., & D’Mello, S. (2014).
Improving automated source code summarization via an eye-tracking study of
programmers. In Proceedings of the 36th International Conference on Software
Engineering (pp. 390—401). ACM. http://doi.org/10.1145/2568225.2568247

Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., & Paterson, J. H. (2010). An
introduction to program comprehension for computer science educators (p. 65).

ACM Press. http://doi.org/10.1145/1971681.1971687

86

Sharif, B., Falcone, M., & Maletic, J. I. (2012). An eye-tracking study on the role of scan
time in finding source code defects. In Proceedings of the Symposium on Eye
Tracking Research and Applications - ETRA ’12 (pp. 381-384). New York, New
York, USA: ACM Press. http://doi.org/10.1145/2168556.2168642

Sharif, B., & Kagdi, H. (2011). On the Use of Eye Tracking in Software Traceability (pp.
67-70). New York, NY, USA: ACM. http://doi.org/10.1145/1987856.1987872

Sharif, B., & Maletic, J. I. (2010). An eye tracking study on camelCase and under_score
identifier styles. In Proceedings of the 2010 IEEE 18th International Conference
on Program Comprehension (pp. 196-205). IEEE.
http://doi.org/10.1109/ICPC.2010.41

Siegmund, J., Késtner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., ... Brechmann,
A. (2014). Understanding understanding source code with functional magnetic
resonance imaging. Proceedings of the 36th International Conference on Software
Engineering, 378-389. http://doi.org/10.1145/2568225.2568252

Soloway, E., Lampert, R., Letovsky, S., Littman, D., & Pinto, J. (1988). Designing
Documentation to Compensate for Delocalized Plans. Commun. ACM, 31(11),
1259-1267. http://doi.org/10.1145/50087.50088

Turner, R., Falcone, M., Sharif, B., & Lazar, A. (2014). An eye-tracking study assessing
the comprehension of c++ and Python source code. In Proceedings of the
Symposium on Eye Tracking Research and Applications (pp. 231-234). Safety

Harbor, Florida: ACM. http://doi.org/10.1145/2578153.2578218

87

Uwano, H., Nakamura, M., Monden, A., & Matsumoto, K. (2006). Analyzing Individual
Performance of Source Code Review Using Reviewers’ Eye Movement (pp. 133—
140). New York, NY, USA: ACM. http://doi.org/10.1145/1117309.1117357

Walters, B., Falcone, M., Shibble, A., & Sharif, B. (2013). Towards an eye-tracking
enabled IDE for software traceability tasks. In Proceedings of the 2013
International Workshop on Traceability in Emerging Forms of Software
Engineering (pp. 51-54). IEEE. http://doi.org/10.1109/TEFSE.2013.6620154

Walters, B., Shaffer, T., Sharif, B., & Kagdi, H. (2014). Capturing software traceability
links from developers’ eye gazes. In Proceedings of the 22nd International
Conference on Program Comprehension (pp. 201-204). ACM.

http://doi.org/10.1145/2597008.2597795

88

		2015-05-27T15:48:19-0400
	ETD Program

