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Abstract 
 

 

 The purpose of this research is to design and model a digital system to acquire, 

lock, and track a GPS signal in parallel on an FPGA.  This project aims to reduce the 

receiver’s time to first fix from a cold start.  Applications for this research include high 

precision targets requiring worldwide coverage where a stored almanac is not 

acceptable and a fast time to first fix is needed.  It can also be utilized in aviation and 

safety of life applications where it is imperative that faulty data is immediately known 

and excluded.  The uniqueness of this project allows ultra-low energy applications with 

only volatile memory and sleep currents in the μA range.  

 Computer simulations have been performed for:  (1) replicating GPS satellite C/A 

code, (2) determining which satellites are visible, (3) coding a hardware description of 

parallel correlation, locking, and tracking.  The system will be distinctive for applications 

where there is no need or possibility for storage of almanac information to obtain time 

to first fix (TTFF) with high speed. During these trials an ‘out of the box’ cold start 

scenario is performed each time the code is run. The results have shown that successful 

GPS signal acquisition and decoding time is 1.7 seconds using hardware coding and an 

FPGA.
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Chapter 1 Introduction 
 

The Global Positioning System (GPS) is a satellite-based navigation system 

developed and maintained by the U.S. Department of Defense [1]. GPS provides 

worldwide coverage where any point on the earth there will be at least three satellites 

visible.  Satellite coverage over the contiguous U.S. is greater and satellites can be 

repositioned during war-time for increased accuracy.  Citizens are becoming reliant on 

the successful operation of the GPS system and many daily tasks are performed using 

the data it provides.  This research aims to reduce an embedded devices time to first fix 

providing less wait time for a consumer and greater performance for an application. An 

initial test was performed using a Garmin Forerunner 210 GPS watch. This watch is a 

common device used by fitness hobbyists in order to track run times and routes. The 

test performed was the time for the watch to receive a valid satellite signal and begin 

timing and location tracking. The test was performed in two separate geographical 

locations in order to test the time to start from a cold ‘out of box’ condition. This 

research will attempt to outperform the Hot-start time of this commercially available 

watch. 

Table 1 Garmin GPS watch startup times 

 Little Rock, Arkansas Youngstown, Ohio 

Cold-start 95 seconds 106 seconds 

Hot-start 8 seconds 7 seconds 
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In theory, five satellites are necessary for a complete navigation solution 

(including velocity) which includes x-position, y-position, z-position, time, and clock bias 

error.  This can be reduced to three satellites excluding the z-position and time for 

reduced accuracy. The complete system consists of three segments which are the 

control, space, and user segments. The control segment is a network of ground based 

systems which continually monitor the health and make fine adjustments to the space 

segment.  The master station is located at Schriever Air Force Base in Colorado Springs, 

Colorado and an overview is shown in Figure 1.  The control segment also includes six 

monitor stations which monitor the exact altitude, position, speed, and overall health of 

the satellites [2]. Each satellite also communicates with the ground control stations in 

order to give the user the most precise data available.  The satellites do not calculate 

their own positions; they receive exact positional information from the ground control 

stations. 

  

Figure 1 GPS control segment  
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Safety measures are taken to ensure the constellation will remain functional 

(with accuracy degradation) even if the master control stations are non-functional.  The 

heart of the space segment is the GPS constellation.  It was originally designed to use 24 

satellites; however, as of June 2014 there are currently 32 satellites in orbit [3]. The 

constellation consists of six orbital planes each 55 degrees relative to the equator and 

60 degrees relative to each other.  The orbits are nongeostationary and orbit at 

approximately 26,560 km. The approximate cost of this constellation to date is 

$10 billion [4]; however, its services are free to any user in the world.  Antennas on 

current satellites are non-directional. The newest generation of satellites are being 

launched with high-gain directional antennas which can be aimed during military 

conflicts to dramatically increase accuracy and signal coverage.  Behind the scenes the 

GPS constellation is extremely technologically advanced, accurate, and secure.  Signals 

are secure from jamming by the use of pseudorandom noise.  Users are denied 

positional accuracy unless they possess a cryptographic key and can access the 

encrypted P-code. This is referred to as anti-spoofing (A/S) and it will not allow an 

unauthorized user to simulate a GPS signal to fool receivers.   

GPS has become increasingly popular in the commercial market to include using 

position information for asset tracking, driving directions, aviation, and time signals.  If 

directions are needed, it is seemingly simple to open a smart phone’s ‘Maps’ app, type 

in an address and get the best routing to your destination.  In aviation, GPS is used to 

improve the safety and efficiency of flight.  GPS based approaches are used to safely 

navigate below the weather until the pilot can become visual with the runway and make 
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a safe landing.  In agriculture, GPS position is used to collect timely geospatial 

information on soil-plant-animal requirements. This data is used for applying site-

specific treatments to increase agricultural production and protect the environment [5]. 

Each application has specific requirements for accuracy and time to first fix. There are 

three different methods for starting states of a receiver which are cold-start, 

warm-start, and hot-start [6] and shown in Figure 2. In a cold-start, the receiver has no 

location or timing data making it the most time consuming start sequence. During a 

warm-start the receiver has valid almanac data and assumes the receiver has not moved 

significantly since its last start. A hot-start is the quickest type of start-up and the 

receiver still has valid ephemeris data and precise time.  Each application of GPS uses 

different techniques to decide which method will be used. 

 

 

Figure 2 GPS startup types 
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Chapter 2 GPS Signal 
 

 The backbone of GPS is based off extremely accurate clocks.  Each satellite 

carries multiple on-board cesium and/or rubidium atomic clocks.  Signals are carried via 

two spread spectrum L-band carrier signals transmitting on carrier frequencies 1575.42 

MHz and 1227.6 MHz.  Both carrier signals are integral multiples of the base frequency 

fB= 1.023 MHz.   

 �� =	�� ∙ 1540	 (1) 

 �� =	�� ∙ 1200	 (2) 

 

The L1 signal utilizes binary phase shift keying (BPSK), modulated by two pseudorandom 

noise (PRN) codes in phase quadrature, designated as the C/A code and P-code. The 

L2 signal is BPSK modulated by only the P-code.  This paper will focus on the L1 signal 

since the L2 signal is only usable with a valid crypto code from the U.S. military.  The 

L1 signal can be mathematically modeled with a 1.023 MHz chipping rate and 1 ms 

period. Using PI and PQ as the respective carrier powers for the I and Q components, d(t) 

as the 50 bps data modulation, and c(t) and p(t) as the respective C/A and P 

pseudorandom waveforms we can model the L1 signal in the time domain as 
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 �1��� = 	2���������������� + �� + 	2���������������� + ��		 (3) 

 

An RF front end, normally an ASIC, is used to extrapolate this analog signal into the 

digital domain. These chips typically contain an RF amplifier followed by mixing of the 

signal down to an IF with filtering to eliminate out-of-band signals [7]. The output is 

normally composed of I and Q components which can range from 2 to 4 bits. The power 

consumption of RF front ends can be as little as 23 mA [8]. 

 

2.1 Pseudoranges 
 

The GPS receiver uses the concept of one-way time of arrival ranging.  The range 

is computed by multiplying the speed of light by the amount of delay that a GPS signal 

needs to travel from the satellite to the receiver. This quantity is very important as time 

is one of the base SI quantities which have the highest accuracy of measurement [9].  

Pseudorange is the distance to a satellite measured in this fashion, plus or minus some 

additional error sources [10]. The calculation of a three-dimensional position (not 

including velocity) requires a minimum of four satellites- three for x, y, z coordinates, 

and one to solve for clock bias error.  Additional satellites are required for certain 

applications such as aviation which utilize receiver autonomous integrity monitoring 

(RAIM) and fault detection exclusion (FDE) for additional safety measures. RAIM 

automatically verifies the validity of data against other satellites, ground stations, and 

the receivers known position to decide if one of the received signals is invalid.  This is 

important because the navigational message (which includes satellite health data) does 
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not transmit at a fast enough rate. These pseudoranges can be shown mathematically 

as: 

 ��1…��4 = 	∆!1…∆!4 ∙ �			 (4) 

 �"1 − $"�� + �"2 − $%�� + �"3 − $"�� = ���1 − '( ∙ ��� (5) 

where c = 299,792,458 [m/s], ux, uy, and uz are user positions, x1, x2, x3 are satellite 

positions, CE is receiver clock bias error, ΔT1… ΔT4 are difference between time-coded 

satellite signals and received signal. 

 

After considering the use of four satellites, squaring both sides, and rewriting in matrix 

form it yields: 

)**
*+��1 − �"1� + %1� + ,1�� − -���2 − �"2� + %2� + ,2�� − -���3 − �"3� + %3� + ,3�� − -���4 − �"4� + %4� + ,4�� − -�.//

/0 = 1−2"1 − 2%1 − 2,1	1−2"2 − 2%2 − 2,2	1−2"3 − 2%3 − 2,3	1−2"4 − 2%4 − 2,4	12 3
$"$%$,'(4	  (6) 

 5 = 67  (7) 

 68�5 = 68�67 = 3$"$%$,'(4  (8) 

 

Once the users position is known from the satellites coordinates are transferred 

to a spherical coordinate system with the earth’s core as the center. The distance from 

the center of earth r, latitude L, and longitude l can be found as 

 - = 9":� + %:� + ,:�	  (9) 

 � = �;�8�< =>?@>ABC>AD	   (10) 
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 E = 	 �;�8� FC>@>G	  (11) 

These equations do not give exact latitudes and longitudes since earth is not a perfect 

sphere therefore modification is necessary transferring spherical coordinates to 

ellipsoidal. 

 

2.2 Navigation Message 
 

The GPS navigation message is transmitted at a data rate of 50 bps.  This 

message is modulated in the L1 carrier signal.   The message structure is composed of a 

basic format of a 1500 bit long frame made up of five 300 bit sub frames. Each sub 

frame starts with a pair utilizing a Telemetry (TLM) word and a Handover word (HOW) 

shown in Figure 3. Each pair contains code checking parity. The first three sub-frames 

contain the required data to calculate user position; therefore a minimum of 18 seconds 

of data is necessary to calculate a user position [11]. Each satellite transmits two types 

of data the Almanac Data and the Ephemeris Data.  Almanac data is course orbital 

parameters for all SVNs and each SVN broadcasts Almanac data for all SVNs.  Almanac 

data is not very precise.  Ephemeris data is very precise orbital and clock parameters 

and each SVN only transmits ephemeris data for itself. Almanac data is considered valid 

for several months where ephemeris data is transmitted every 30 seconds and valid only 

for 30 minutes. 
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Figure 3 Navigation message TLM format 

 

The 300 bit sub frames of the navigation message contain the following information 

with the LSB transmitted last. 

Sub frame 1 – Satellite clock and health data 

• Contains clock and clock corrections parameters 

• Satellite accuracy 

• Satellite health 

• Reserved data 

 

Sub frames 2 and 3 – Satellite ephemeris data 

• Orbital parameters 

• Harmonic corrections 

• Reference time  

• Satellite position information 

 

 

Sub frames 4 and 5 – Support data 

• Almanac data 

• Special messages  

• Ionosphere data 

• Spare frames 
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2.3 Pseudo-Random Noise (PRN) 
 

Two independent signals are transmitted by each satellite called the course 

acquisition (C/A) code and the precise (P) code.  Each satellite has a unique C/A code 

which can allow the user to determine which satellite the signal comes from.  The C/A 

code is a sequence of 1,023 bi-phase modulations.  Each opportunity for a phase-

reversal modulation, or switch from a zero to a one, is called a chip (whether or not the 

phase is actually reversed) [4]. The entire sequence is repeated 1,023 times per second, 

which results in a chip rate of 1.023 MHz.  GPS receivers internally match the unique 

code of each satellite and compare that to the actual received code.  The difference in 

time can be calculated.  This method of measurement is known as code correlation and 

is shown in Figure 4.  Code correlation will only tell the user where they are in relation 

to the satellite. Alone it cannot calculate the user’s location on earth.  In order for the 

user to know the satellites position, each satellite transmits its position in space on the 

ephemeris.  Another important aspect included in the navigation message is the atomic 

clock bias errors.  The position of the satellites is not calculated by the satellites 

themselves but uploaded from the control stations on the ground.  The satellites merely 

relay this information to the end user.      
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Figure 4 PRN time calculation 

 

 

2.4 Spread Spectrum and Code Division Multiple Access (CDMA) 
 

GPS signals use a spread spectrum communication system. Spread spectrum 

uses a larger frequency bandwidth than is needed to transmit information in order to 

make the transmission more secure.  This method has been used by the military for 

decades in order to make communications more difficult to intercept and jam.  

Additionally, a spread spectrum delivers multi-user random access and high resolution. 

Spread spectrum communications were a catalyst for commercial applications including 

mobile radio applications, satellite communications, and positioning systems as more 

bandwidth is requested by consumers [9].  

 

2.5 Course Acquisition (C/A) Code 
 

The course acquisition code serves several purposes to include accurate range 

measurements, resistance to errors caused by multipath, simultaneous range 

measurement from several satellites, and protection from jamming.  Each satellite has a 

unique C/A code which allows the receiver to communicate with multiple satellites on 

the same frequency at the same time.  All of the codes consist of a repeating sequence 
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of 1023 chips occurring at a rate of 1.023 MHz with a period of 1ms.  Each chip is either 

positive or negative with the same magnitude. The polarities of the 1023 chips appear 

to be randomly distributed but are in fact generated by a deterministic algorithm 

implemented by shift registers. The algorithm produces Gold codes, which have the 

property of low cross-correlation between different codes.  C/A code has a unique 

property called autocorrelation.  This method is used in many fields such as 

communications, statistics, and finance.  Autocorrelation is a mathematical tool for 

finding repeating patterns.  The C/A code has an autocorrelation function defined as 

 %��� = 	 �H I ������� − !���		HJ  (12) 

where c(t) is the C/A-code waveform, t is the relative delay (in seconds), and T is the 

code period (1 ms).  This autocorrelation function is the basis for code tracking in GPS 

receivers.  As GPS is a spread spectrum signal the power spectrum is distributed in the 

frequency domain.  This can be shown mathematically and is related to the 

autocorrelation function by: 

 K��� = 	 limH→P ��H I K�Q�R8S�TUV�QH8H 	 (13) 

When plotted, this function would consist of spectral lines with 1-kHz spacing due to the 

1-ms periodic structure [1]. 
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Figure 5 C/A power distribution when fc = 1.023MHz 

 

2.6 Doppler Shift 

 

Doppler shift is the change in frequency of a wave relative to the observer 

caused by both the source and observer’s relative motion.  This phenomenon plays an 

important role in GPS signal integrity.  Sources of this error include the rotation of earth, 

satellite orbit speed, and the receiver’s relative motion to earth and the 

constellation [12]. Doppler Shift error is able to be calculated and is extremely important 

when the receiver is moving at high speeds in applications such as aircraft or missiles.  

The maximum rate of change of Doppler shift error can be found by taking the 

derivative of the doppler shift with respect to time. The solution comes out to 

approximately 0.178 m/s2 or 10 kHz/s [13]. This error can be corrected in software or 

hardware after the navigation message has been extracted.  The importance of this 

error is great as one second of error in measuring the travel time translates into 

approximately 300 meters of error in position [14]. 
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2.7 Signal Acquisition and Tracking 
 

A GPS receiver has many functions which need complete before it can provide a 

valid position solution.  First, the transmitted signal needs to be filtered and processed 

into a digital IF signal.  ASICs will output in-phase (I) and quadrature (Q) phase 

components made up of: 

 � = �;�; ∙ sin��[2\��	 (14) 

 � = �;�; ∙ cos��[2\��	 (15) 

where fc is the L1 carrier frequency.  This information will be translated into PRN code 

which can then be tracked. The necessary steps must occur in a specific order for the 

data to be valid. 

 

2.7.1 Determine which satellites are visible to the receiver. 

 

In the first step the receiver needs to determine which satellites are available to 

lock onto.  Ideally the receiver will find these satellites quickly, and this performance is 

measured as time to first fix (TTFF).  Depending on receiver characteristics, the TTFF 

might range from seconds to several minutes. Receivers store almanac data which gives 

the approximate locations of satellites.  If the receiver knows its approximate position 

(within a few hundred miles) it can search for applicable satellites.  The almanac data 

stored by the receiver is valid for several months.  If the receiver is straight out of the 

box, the search is known as a blind search as it has no almanac data or idea of its 

position.  Cell phones use a technology known as aGPS, in order to decrease the TTFF.  

This uses almanac data stored in the cell tower to approximate the phones location. 
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2.7.2 Determine the approximate Doppler of each satellite. 

 

The receiver, knowing its approximate location and velocity, can further reduce 

the TTFF by estimating the Doppler shift frequency.  This reduces the number of 

searches the receiver needs to perform.  A common method to search for doppler shift 

is to relate the satellite velocity vector (v) to and receiver reference clock error (u) with 

the carrier wavelength (λ) known. 

 ��1 = 	 �_ �` · b1 − `1 · b1� + �c	 (16) 

 

2.7.3 Search for the signal. 

 

GPS Signals, being spread spectrum signals, are not as easily tuned as normal 

radio waves.  Since the C/A code’s total signal power is spread over a wide bandwidth, 

the signal needs to be decoded with a replica code in order to align with the received 

code.  The receiver needs to execute a two-dimensional search in order to find the 

satellite signal.  The dimensions are the C/A code delay and carrier frequency.  This 

search must be conducted across the full delay range of the C/A code for each 

frequency searched.  A generic method to execute the search is to multiply the received 

waveform by replicas of C/A code, translated by various frequencies, and then passed 

through a baseband correlator and lowpass filter. Figure 6 shows this generic search.  

The energy detected will be significant only if the selected code delay and frequency 

translation match the received signal.  When this energy reaches a predetermined 

threshold, the signal is considered received.  Receivers with a relatively high threshold 

may not be able to detect satellites which are actually visible. 
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Figure 6 Generic C/A search 

 

 

2.7.4 Detect and confirm the presence of signal. 

 

The confirmation of a GPS signal can be cumbersome since by the time the GPS 

signal reaches earth the signal is extremely weak.  This can be problematic in receivers 

as the pre-defined threshold set may not be sufficient to confirm a signal.   

 

2.7.5 Lock onto and track the C/A code. 

 

When the signal is confirmed the reference signal generated by the receiver will 

be in close alignment with the received signal. This is true at the initial time; however, 

since the receiver and satellite are constantly moving eventually the doppler shift will 

bring them out of alignment again.  There is a need to continually adjust the timing of 

the reference code so it maintains accurate alignment with the received code which is 

known as code tracking. Code tracking should be initiated as soon as signal detection is 
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confirmed. The receiver generated code needs to line up with incoming code as closely 

as possible.  Additionally during this step the code is despread and the precise time 

measurement or time of arrival (TOA) is taken. 

 

2.7.6 Lock onto and track the carrier. 

 

Next, the carrier phase needs to be tracked to provide velocity measurements 

and obtain pseudorange measurements for high-accuracy receivers using a phase-lock 

loop (PLL).  A PLL is a control system which generates an output signal with a phase 

related to the input signal.  Another common method of locking onto the carrier is using 

a Costas loop.  In this design the output of the receiver intermediate frequency (IF) 

amplifier is converted to a complex baseband signal by multiplying by I and Q outputs of 

a numerically controlled oscillator (NCO) and integrating each product. 

 

 

2.7.7 Perform data bit synchronization. 

 

In order for bit synchronization to occur it is important for the carrier loop to be 

locked.   When the PLL is locked, the output of the I integrator will be a sequence of 

values occurring once per millisecond.  A common method to perform data bit 

synchronization is to realize a modulo-20 counter using the receiver-generated C/A code 

and mark the data boundaries.   

 

2.7.8 Demodulate the navigation data. 
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Once the data bits are synchronized the navigation data can be demodulated. A 

common method is to integrate the in-phase component generated by a PLL.  Each data 

bit is generated by integrating the in-phase component over 20ms. 
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Chapter 3 Hardware Design and Simulation 
 

3.1 Overview 
 

The tasks of this system include (1) replicating GPS satellite C/A code, 

(2) determining which satellites are visible, (3) coding a hardware description of parallel 

correlation, locking, and tracking.  The verification was done using a variety of software 

including MATLAB, Python, ModelSIM, and Altera Quartus II.  The general program flow 

is shown in Figure 7.  The entirety of the code was custom created.  

 

Figure 7 General hardware overview 

 

  The simulation assumes the analog processing has been completed by a chip 

such as Maxim 2769 or Skyworks 4150.  Only the digital tasks are included up to 

decoding the navigation message. The goal is decreasing the search time from a cold 

start using the concurrent processing properties of an FPGA.  The functional diagram in 

Figure 8 shows analog processing steps prior to digital processing performed in this 

project.  GPS ASIC chips also include a clock output (CLK_OUT) signal which is a 1.023 

MHz signal synchronized with the incoming satellite signal.   
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Figure 8 Analog processing functional diagram for a typical ASIC chip 

 

 

 The output of this ASIC is fed into multiple channels of an FPGA which 

simultaneously track each channel until all of the visible satellites are tracked.  An FPGA 

is capable of running code concurrently as shown in Figure 9, unlike a microcontroller or 

general purpose processor, which executes code sequentially via a task scheduler.  This 

capability allows all channels to be tracked without delay. 

 

Figure 9 Parallel properties of FPGA 
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3.2 Generate Satellite C/A Code: MATLAB ca_gen.m 
 

MATLAB (matrix laboratory) is a high-level programming language intended 

primarily for numerical computing. It shares much of its syntax with the C language, 

however it includes many built in functions for mathematical computations.   MATLAB 

was used to generate C/A codes of a specific, but random, satellite. The code was built 

from the bottom up.  The code uses a G2 generator along with an MLS which uses a 

code phase selection to form the output.  Each SVN has an assigned PRN number, phase 

selection, and chip delay. This C/A code uniquely identifies each satellite [30]. The first 

five satellites per the GPS standards are shown in Table 2. 

Table 2 Autocorrelation assignments 

Satellite ID Code Phase Selection Code Delay Chips 

1 2 ⊕ 6 5 

2 3 ⊕ 7 6 

3 4 ⊕ 8 7 

4 5 ⊕ 9 8 

5 1 ⊕ 9 17 

 

 The code generates binary values of one complete C/A cycle, 1023 chips, output 

in a text file named svn1.out, svn2.out, etc.  The function input is the PRN number of 

which satellite the user wants.  For this project the satellite PRN codes used are SVNs 

3,7,23,16,4, and 27.  These are in no specific order and are used solely to see if the VHDL 

code will be able to discriminate between satellites. An array is built with delay values 

and modulo 2 addition is used along with up sampling in order to achieve the 1.023 MHz 

digital samples necessary.  MATLAB’s built in ‘dlmwrite’ function was used in order to 
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pre-process the output for the next step.  An example syntax of ca_gen is shown in 

Figure 10. 

 

Figure 10 MATLAB command of PRN C/A Code 

 

 

3.3 Preparing to Simulate: Python to_modelsim.py 
 

Python is an open source high-level interpreted scripting language that boasts 

many features which makes code easy to modify and reuse.  This was essential for this 

project in order to try different scenarios ensuring the end product works as expected.  

An options block was essential for changing simulation scenarios such as satellite 

numbers, times, and inducing errors.  Figure 11 shows the options for the Python 

outputs. 

 

Figure 11 Options for output files 
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The purpose of the Python script is to output two separate files and easily make 

changes in the data.  The first file outputs actual ModelSIM commands, which makes it 

possible to copy and paste the output directly to the ModelSIM command line as shown 

in Figure 12.  It is the equivalent of setting up a VHDL test bench except this allows both 

ModelSIM and VHDL code to be generated at the same time. This dual output reduces 

simulation setup time. 

 

 

Figure 12 ModelSIM command line output from Python code 

 

 

The second file outputs VHDL signals simulating SDRAM or internal FPGA 

memory which will be compared to the received C/A code.  This allows the VHDL code 

to create a logical shift right in order to lock onto C/A code.  This allows changing 

satellite PRN codes with ease and the addition of all of the satellites PRN codes in a 

short amount of time with high accuracy.   This code is also capable of directly being 

copied into the top level VHDL file.  Using a scripting language to output these SDRAM 

values saved a great amount of time as the code needed to be repeated for all SVNs and 

an error can easily be introduced if hand typed. 
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Figure 13 VHDL signals output from Python code 

 

 

It is important to note that the entire VHDL file is not output using Python.  The 

Python output as shown in Figure 13, is a small portion that reduces time and errors in 

between each setup.  The output is simply cut and paste into the top level VHDL file. 

 

3.4 Simulation: VHDL 
 

VHDL is a hardware description language created by the Department of Defense 

and standardized by IEEE in 1983.  VHDL differs from high-level languages since it is a 

hardware description language. Instead of using a processor and task scheduler to 

execute tasks, the code is directly executed using gates in hardware.  This allows for 

real-time parallel programming and performance which is not possible using software.  

However, most FPGA architectures allows CPUs and HDLs to run together maximizing 

the benefit. 

 

3.5 Parallel Correlator in VHDL 
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The parallel correlator must be able to execute tasks both sequentially and 

concurrently.  This is not possible with software; therefore a hardware approach needed 

to be taken.  For the scope of this paper any notation of caX will refer to one of the 

parallel channels ca0 through ca5. This ‘X’ notation will assume that all six channels are 

active at the same time and performing the same tasks. The tasks involved are 

(1) determining which satellites are visible, (2) replicating GPS satellite C/A code, and 

(3) correlation, locking, and tracking.  A functional diagram was created to make 

program flow easier and shown in Figure 14. 

 

 

Figure 14 Overview of a single parallel correlator 
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3.5.1 Determining which satellites are visible 

 

The first task involved is to determine which satellites are visible.  Once a data 

stream is received on ca0, the save signal goes high and the next 1046 bits are stored in 

ca0_mem.  This allows for the entire C/A code to be stored independent of the receive 

time.  This also allows the different C/A codes to start at other than time = 0. 

 

 
Figure 15 Saving incoming C/A code to FPGA memory 

 

Notice in Figure 15 when the LSB of ca0 is received the ca0_save signal goes high 

indicating that the entire C/A code will be saved in the ca0_mem memory.  Once the 

entire code is received, ca0_save goes low and no more data will be shifted into 

ca0_mem.  Memory writes are controlled by a 1.023 MHz clock which is forced in 

ModelSIM and a phase-locked loop when realized on hardware.  Note that in reality 

these clock signals are not synchronized; however, most analog baseband processors 

have a clock out signal which is synchronized with the incoming satellite which makes 

this a viable option.  Figure 16 shows the parallel process and the different delays 

simulating weaker and stronger satellite signals.  Weaker signals will take longer for the 

analog processor to discriminate and therefore all signals will become digitized at 

different rates.  
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Figure 16 Parallel capturing of visible satellites along with different start times of C/A 

code 

 

Once C/A code is matched up with one of the caX_SDRAM memories, svn_array 

will show which satellites are visible to the hardware for further processing.  A ‘0’ value 

in the array means there is no valid satellite visible.  In Figure 16, the array initialized 

with {0 0 0 0 0 0} means there are no valid visible satellites. After all six complete C/A 

codes are transmitted svn_array is {3 7 23 16 4 27) as the PRN for SVN’s 3, 7, 23, 16, 4, 

27 were transmitted on ca0 through ca5. A typical SDRAM controller used to store all 

C/A codes is shown in Figure 17.  It is necessary to preload these values so the system 

can locate the proper satellite.   Figure 18 shows the logical shift once the C/A capture is 

complete.  This is necessary to match the C/A code because the LSB will not necessarily 

be transmitted first as the satellite is continuously transmitting this information.  All of 

the caX_SDRAM’s continuously shift while unknown code is on any of the caX_mem 

channels.  
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Figure 17 SDRAM controller  

 

  Notice in Figure 18 the shift process does not start until 1148 ms into the 

simulation.  This is because the search doesn’t start until the caX_shift_control signal 

goes low.  When realized on hardware, the search should be abandoned after a 

predetermined amount of time and caX_mem dumped when a valid C/A code is not 

found.   

 

Figure 18 Logical shift after C/A capture 
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3.5.2 Replicating GPS satellite C/A code 

 

Once the system knows which satellites are visible it needs to exactly replicate 

the code in order to calculate timing for the navigation solution.  The calculation of 

timing comes from the difference in time stamps in the navigation message and 

knowing the constant speed of light (the signals are transmitted at the speed of light).  

Knowing the timing is important because the amount of time offset made by the 

receiver's code to make the correlation is directly proportional to the range between 

the receiver and the satellite.  These range measurements are known as pseudoranges.  

Once the pseudoranges are calculated the navigation message can be extracted for a 

more precise position.  The replicated code is useless unless it is correlated 

(synchronized) with the incoming c/a signal.  The next step in determining position is to 

synchronize the signals.  Figure 19 shows the simulation results of replicated code 

searching waveforms. 

 

Figure 19 Replicated code searching before correlation 

 

 

3.5.3 Correlation, locking, and tracking 

 

Once the code is replicated it needs to be correlated, or synchronized with the 

incoming real-time data from the satellites.  Once again the caX_SDRAM memory is 

used to replicate the C/A code.  In order to correlate a snapshot of each vector is taken 

and compared in VHDL.  If the memories do not match then caX_locked is logic low 
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which is logically AND with ca0_replicate and the output will be ‘0’ until correlation is 

complete.  The next step is a logical shift of caX_SDRAM (similar to the algorithm used 

to search for satellites) and then compared again. Once the codes match, caX_locked 

will go high and an output will be realized on caX_replicate. The simulation results are 

shown in Figure 20 with 1.023 MHz clock. 

 

 

Figure 20 Tracking and correlation of a single satellite 
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Chapter 4 Hardware Realization 
 

Realizing the simulated code on real hardware is a task for future research; 

however, the basic correlation code was tested using actual hardware to verify the end 

result.  Altera Quartus II was used to compile the parallel correlator along with a Terasic 

DE2-115 development and education board as shown in Figure 21, to execute the 

compiled code. A custom PCB was designed and built in order to test the system after 

the RF front end. 

 

 

Figure 21 Altera Cyclone IV FPGA on DE2 board 
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The heart of the DE2 board is an Altera Cyclone IV EP4CE115F29C7N.  This FPGA 

contains 114,480 LEs, 532 embedded 9-bit multipliers, and 4 dedicated PLLs.  The main 

purpose of programming the FPGA was to ensure the simulated code is capable of being 

executed in real-world scenarios.  A state machine in Figure 22 was created for easy 

interpretation of the current state of hardware.  This made troubleshooting a breeze as 

the DE2 board would tell you which step of the process was trying to be executed on its 

7-segment display. 

 

Figure 22 FPGA state machine 
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  The compiler in Quartus II was able to compile the code and downloaded to the 

DE2 board.  The realization of the C/A shift operations is shown in Figure 23. 

 

Figure 23 Compilers realization of a C/A shift register 

  

In order to simulate the satellites code, an internal connection was made in 

VHDL which outputted code from SDRAM at a rate of 1.023 MHz just as the satellite 

would (after the RF front end).  The C/A output was fed into the ca0 signal simulating 

the ‘force’ function in ModelSIM. The results of the code execution was exactly as 

expected.  The shift register was able to lock onto the incoming C/A code and replicate 

the code synchronous with a 1.023 MHz PLL.  Figure 24 shows the PLL and ca0_replicate 

output from an oscilloscope.  This test simulated signal transmission time of 0 seconds, 

which only allowed the replication, tracking, and locking functions be tested. Future 

work will involve building analog components along with the necessary filters and 

antennas to receive signals from satellites.  
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Figure 24 Hardware realization of correlation 

 

 A custom prototype board containing a GNSS receiver, antennas, and driver was 

designed and built in order to test real-world GPS signal and RF front end acquisition as 

shown in Figure 25.   

 

Figure 25 Analog GPS front end board 
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 The complete system test setup is shown in Fig. 26, the DE2 board has 7-segment 

LED display indicating state 1 (S1), which is waiting for the valid GPS signals. 

 
Figure 26 Complete system testing 
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Chapter 5 Conclusion 
 

The purpose of this research was to explore the possibilities of using an FPGA to 

simulate a hardware-accelerated GPS parallel correlator and exceed the performance of 

a commercially available watch. Simulation results in Figure 27 show a valid solution 

using a hardware-defined approach at 1778 ms.  

 

 

Figure 27 Hardware simulation results 

 

Table 3 shows that hardware defined approach results are over 4 times faster than the 

commercially available watch. 

Table 3 Simulation results comparison 

 Garmin Forerunner 210 Hardware-defined 

approach 

Startup time 8 seconds 1.7 seconds 

 

 

  This research shows the results of many lines of code spanning multiple 

languages in order to replicate GPS satellite C/A code, determine the visibility, correlate, 

and verify the model.  The results show that it theoretically is possible to track multiple 

satellites in parallel using hardware and a single ASIC RF front end.  A high precision GPS 

receiver can be produced with a small footprint and small power consumption.  With 
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the increasing complexity of the newest generation GPS satellites this high-performance 

programmable hardware can be re-programmed on the fly to accept new features of 

the next generation satellites.  Selected code samples are shown in the appendix; 

however, the full code will not be released as there may be future commercial 

applications.   Future work will include making the program user friendly, verifying the 

code using actual hardware to include the analog components, and calculation of the 

actual navigation solution.   
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Appendix  
 

Included in this appendix are sample codes from selected parts of the project. 

Full codes are not included for possible future testing and commercialization.  The code 

samples included in this appendix are: 

File Name Language 

ca_gen.m MATLAB 

to_modelsim.py Python 

pcorr.vhd VHDL 

satclk.vhd VHDL 

Table 4 Appendix code descriptions 

 

 

A.1 ca_gen.m sample code 
 
prnArr=[2 6;3 7;4 8;5 9;1 9;2 10;1 8;2 9;3 10;2 3;3 4;5 6;6 7;7 8;8 9;9 10;1 4;2 5;3 

6;4 7;5 8;6 9;1 3;4 6;5 7;6 8;7 9;8 10;1 6;2 7;3 8;4 9 5 10 4 10 1 72 8 4 10]; 

 

psel = prnArr (sv,:); 
 

for inc=1:L 

    g2(:,inc)=mod(sum(q(psel),2),2); 

    g(:,inc)=mod(g1(n)+g2(:,inc),2); 

   g1=[mod(sum(g1.*s),2) g1(1:n-1)]; 
   q=[mod(sum(q.*t),2) q(1:n-1)]; 

end 

 

svn1=cacode([3],1.023);  

dlmwrite('svn1.out',svn1, ',') 

svn2=cacode([7],1.023);  
dlmwrite('svn2.out',svn2, ',') 

svn3=cacode([23],1.023);  

dlmwrite('svn3.out',svn3, ',') 

svn4=cacode([16],1.023);  

dlmwrite('svn4.out',svn4, ',') 
svn5=cacode([4],1.023);  

dlmwrite('svn5.out',svn5, ',') 

svn6=cacode([27],1.023);  
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dlmwrite('svn6.out',svn6, ',') 

 

 

 

A.2 to_modelsim.py sample code 
 
def generate(): 

  file_out = open("sim_commands.txt","w") 
  svn1 = open('svn1.out', 'r') 

  svn2 = open('svn2.out', 'r') 

  svn3 = open('svn3.out', 'r') 

  svn4 = open('svn4.out', 'r') 

  svn5 = open('svn5.out', 'r') 
  svn6 = open('svn6.out', 'r') 

 

 

  svn1_file_contents = svn1.read() 

  svn1_delimited_list = svn1_file_contents.split(",") 

 
  svn2_file_contents = svn2.read() 

  svn2_delimited_list = svn2_file_contents.split(",") 

 

  svn3_file_contents = svn3.read() 

  svn3_delimited_list = svn3_file_contents.split(",") 
 

  svn4_file_contents = svn4.read() 

  svn4_delimited_list = svn4_file_contents.split(",") 

 

  svn5_file_contents = svn5.read() 

  svn5_delimited_list = svn5_file_contents.split(",") 
 

  svn6_file_contents = svn6.read() 

  svn6_delimited_list = svn6_file_contents.split(",") 

 

  print("+delimited lists complete") 
 

  #format:  value time, value time, value time, 

 
  r = [] 

  r.append(0) 

 

  t = 0 + t_delay_svn1 

  step = 1/1.023 
 

  print(len(svn1_delimited_list)) 

  n = 0 

 

  for k in range(nRepeat): 

 
    for i in range(len(svn1_delimited_list)): 

      file_out.write(str(svn1_delimited_list[i]) + " " + str(t)) 

      n += 1 

 

      if i < len(svn1_delimited_list) - 1: 
        file_out.write(", ") 

 

      t = t + step 

      r.append(t) 
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    if k < (nRepeat - 1): 

      file_out.write(", ") 

 
  print(n) 

 

  st = 29.3255 # step*30 

 

  t = 0 + t_delay_svn1 + st 

  step = 1/1.023 
 

  print(len(svn1_delimited_list)) 

  n = 0 

 

  for k in range(nRepeat): 
 

    for i in range(len(svn1_delimited_list)): 

      file_out.write(str(svn1_delimited_list[i]) + " " + str(t)) 

      n += 1 

 

      if i < len(svn1_delimited_list) - 1: 
        file_out.write(", ") 

 

 

      if st > 0: 

        st = st - step 
        t = t 

        print(st) 

      else: 

        t = r[i+1] 

 

    if k < (nRepeat - 1): 
      file_out.write(", ") 

  print(r) 

 

 

 

A.3 sim_commands.txt sample output 
 

 
+delimited lists complete 

 

This file was automatically generated by:  
to_modelsim.py v.1.2.1 built: 10/06/14 15:03:33  

M. Sammartino 

 

+modelsim command: 

 
add wave -position insertpoint  \ 

sim:/pcorr/CLOCK_50 

add wave -position insertpoint  \ 

sim:/pcorr/clk_1p023m 

add wave -position insertpoint  \ 

sim:/pcorr/ca0 
add wave -position insertpoint  \ 

sim:/pcorr/ca0_mem 

add wave -position insertpoint  \ 

sim:/pcorr/ca0_SDRAM 

add wave -position insertpoint  \ 
sim:/pcorr/ca0_shift_control 
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add wave -position insertpoint  \ 

sim:/pcorr/ca0_replicate 

add wave -position insertpoint  \ 
sim:/pcorr/ca0_replicate_idx 

restart  

 

force -freeze sim:/pcorr/CLOCK_50 1 0, 0 {50 ms} -r 100 

force -freeze sim:/pcorr/clk_1p023m 1 0, 0 {1.023 ms} -r 2.046  

force -freeze sim:/pcorr/ca0 0 0, 1 100, 1 100.97751710654937, 1 101.95503421309874, 1 
102.93255131964811, 0 103.91006842619748, …. 

 

 

 

A.4 vhdl_signals.txt sample output 
 

 
This file was automatically generated by:  

to_modelsim.py v.1.2.1 built: 10/06/14 15:03:33  

M. Sammartino 

 
signal ca0_SDRAM : std_logic_vector(1045 downto 0) := 

"11110010001110001000010100100111010100011101110111101000010000100010001000100001110100

111011001001000111101010110110011001101100100000000010110000111010111101111000010011011

110111100110100101001010011101010110111000111100111101000100001111101111100101001011101

000000011010011101101011110010100101110000001000110011101001011110101101011000101011110
100000011001001101000110001111001110110000000111110011110101011110110000111001010101011

101011110000110100010100110001101111011000110111011010110010111011011111100010000111101

001010000011101110100110100111101001111111000001011010101100001110010111011010110010110

101011111110011001010110100001100101111100111101000100001111010011110010101101000100110

011111000001110110110011101110101001110000111000100111010100001110011100001101101001000

111000011100010111110000110101010001110111010011101100001010100011000000101111000111000
011000110010111100000001110100100001010001101111100011110110001000110000010100001011100

000101110010000111100001101100011011100010011100101111110011111100110010000000101000100

100 

"; 

 
+hex format 0x 

signal ca0_SDRAM : std_logic_vector(263 downto 0) := 

"0x3c8e2149d4777a10888874ec91ead99b200b0ebde137bcd294eadc79e887df2974069daf2970233a5eb5

8af40c9a31e7603e7abd872abaf0d14c6f6376b2edf887a50774d3d3f82d5872ed65abf995a197cf443d3ca

d133e0ed9dd4e1c4ea1ce1b48e1c5f0d51dd3b0a8c0bc70c65e03a428df1ec460a1705c8786c6e272fcfcc8

0a24"; 

 

 

A.5 pcorr.vhd sample code 
 
entity pcorr is 

 

port(  

    CLOCK_50 : in std_logic; --50 MHz clock 
ca0,ca1,ca2,ca3,ca4,ca5 : in std_logic; --incoming c/a    code     

    SW : in std_logic_vector(15 downto 0); --Switch inputs 

    KEY : in std_logic_vector(3 downto 0); --Key inputs    

    LEDR: buffer std_logic_vector(15 downto 0); -- Red LED's 

    LEDG: buffer std_logic_vector(7 downto 0);  -- Green  

    SATCLK_OUT: out std_logic; 
   GPIO: inout std_logic_vector(35 downto 0)   
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 ); 

end pcorr; 

 
component satclk  

 PORT( 

  areset  : IN STD_LOGIC  := '0'; 

  inclk0  : IN STD_LOGIC  := '0'; 

  c0        : OUT STD_LOGIC ; 

  locked  : OUT STD_LOGIC   ); 
end component; 

 

 

 

     process(clk_1p023m, ca0) 
       begin 

          

         if (clk_1p023m'event and (clk_1p023m = '1' or               clk_1p023m = 

'0')  and ca0_save = '1' and ca0_write_control /= 0) then --and ca0_write_control < 

1045 and ca0_save = '1') then 

           ca0_mem(ca0_write_control) <= ca0; 
           ca0_write_control <= ca0_write_control - 1;    

         end if; 

 

 

      satclk_inst : satclk PORT MAP ( 
      areset  => areset_sig, 

  inclk0  => CLOCK_50, 

  c0  => sat_clk, 

  locked  => pllsatclk_locked_sig ); 

 

 

A.6 satclk.vhd sample code 
 
PORT ( 
   areset : IN STD_LOGIC ; 

   clk : OUT STD_LOGIC_VECTOR (4 DOWNTO 0); 

   inclk : IN STD_LOGIC_VECTOR (1 DOWNTO 0); 

   locked : OUT STD_LOGIC  

 ); 
 END COMPONENT; 

 

BEGIN 

 sub_wire5_bv(0 DOWNTO 0) <= "0"; 

 sub_wire5    <= To_stdlogicvector(sub_wire5_bv); 

 locked    <= sub_wire0; 
 sub_wire2    <= sub_wire1(0); 

 c0    <= sub_wire2; 

 sub_wire3    <= inclk0; 

 sub_wire4    <= sub_wire5(0 DOWNTO 0) & sub_wire3; 

 
 altpll_component : altpll 

 GENERIC MAP ( 

  bandwidth_type => "AUTO", 

  clk0_divide_by => 50000000, 

  clk0_duty_cycle => 50, 

  clk0_multiply_by => 1022999, 
  clk0_phase_shift => "0", 

  compensate_clock => "CLK0", 

  inclk0_input_frequency => 20000, 
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  intended_device_family => "Cyclone IV E", 

  lpm_hint => "CBX_MODULE_PREFIX=satclk", 

  lpm_type => "altpll", 
  operation_mode => "NORMAL", 

  pll_type => "AUTO", 

  port_activeclock => "PORT_UNUSED", 

  port_areset => "PORT_USED", 
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