

PREDICTING BUG SEVERITY IN OPEN-SOURCE SOFTWARE SYSTEMS USING

SCALABLE MACHINE LEARNING TECHNIQUES

By

IMRAN

Submitted in Partial Fulfillment of the Requirements

For the Degree of

Master of Computing and Information Systems

YOUNGSTOWN STATE UNIVERSITY

May, 2016

PREDICTING BUG SEVERITY IN OPEN-SOURCE SOFTWARE SYSTEMS USING

SCALABLE MACHINE LEARNING TECHNIQUES

Imran

I hereby release this thesis to the public. I understand that this thesis will be made
available from the OhioLINK ETD Center and the Maag Library Circulation Desk for
public access. I also authorize the University or other individuals to make copies of this
thesis as needed for scholarly research.

Signature:

 Imran, Student Date

Approvals:

 Dr. Alina Lazar, Thesis Advisor Date

 Dr. Bonita Sharif, Committee Member Date

 Dr. John Sullins, Committee Member Date

 Sal Sanders, Associate Dean of Graduate Studies Date

iii

©

Imran

2016

iv

DEDICATION

It is with my deepest gratitude and warmest affection that I dedicate this thesis to my

parents, professors and friends who have encouraged me.

v

ABSTRACT

As software systems become larger and more complicated, the task of detecting

and fixing bugs to improve the software performance is getting more tedious and

inefficient. Automated processes that detect and report bugs quickly and with high

accuracy are needed. In this thesis, we describe an approach, which is fast and performs

the bug classification task with comparatively better accuracy then previously reported

research. Here, we used the machine learning methods, specifically an online algorithm

for bug classification. This approach involves the use of text mining algorithm for feature

extraction. Then the data is used to train classifier models using an online machine

learning classification algorithm for optimized performance. The above steps are done

twice, once for a binary model and once with a multi-class model. The multi-class model

predicts as many as seven bug severity levels with the aim of prioritizing the bug

assignment process. After analyzing all four datasets collected from open source software

system, we can predict good with accuracy (72%-98%) if the data is balanced and has

sufficient size of training set.

vi

ACKNOWLEDGEMENTS

 I would like to thank Dr. Alina Lazar for giving me this opportunity to work on

this challenging research project of predicting bug severity in open-source software

systems using scalable machine learning techniques and helping me to complete this

thesis successfully. She has provided me tremendous encouragement and knowledge of

how to approach a challenging problem by thinking beyond the box. I could not have had

a better advisor for my master.

 I thank my committee members Dr. John R Sullins and Dr. Bonita Sharif for their

support and guidelines.

 I thank my family for their love and encouragement. I thank all the members who

directly or indirectly helped me to complete my research work.

ix

LIST OF FIGURES

Figure 1. ROC curve for binary classification without tag and with tag for the Moziilla

dataset ... 15

Figure 2. ROC curve for binary classification without tag and with tag for the Eclipse

dataset ... 16

Figure 3. ROC curve for binary classification without tag and with tag for the KDE

dataset ... 17

Figure 4. ROC curve for binary classification without tag and with tag for GNOME

dataset ... 18

Figure 5 ROC curve for multi-class classification without tag and with tag for Eclipse

dataset ... 21

Figure 6. ROC curve for multi-class classification without tag and with tag for the

GNOME dataset .. 22

Figure 7. ROC curve for multi-class classification without tag and with tag for KDE

dataset ... 23

Figure 8. ROC curve for multi-class classification without tag and without tag for the

Mozilla Dataset ... 24

x

LIST OF TABLES

Table 1. Number of Instances in each Dataset .. 4

Table 2. Number of non-severe and severe instances in Binary datasets 4

Table 3 Number of Trivial, Normal, Minor, Major, Enhancement, Critical and Blocker in

multiclass datasets ... 4

Table 4. Accuracy and time stamps for both the data with tag and without tag in binary

classification ... 19

Table 5. Values of Precision, Recall and F-1 in binary .. 20

Table 6. Accuracy with or without tag in multiclass .. 25

Table 7. values of precision, recall and F-1 in multiclass ... 26

Table 8. Comparison of Precision and Recall between our result and Lamkanfi result ... 26

Table 9. Comparison of Area under curve between Lamkanfi and our result 27

Table 10. Comparison of F score between Tian, Valdivia, Baseline model and our result

in Eclipse and Mozilla .. 27

2

of a bug classifier, feature extraction techniques could be employed to feed refined

information to the classifier. This can be achieved with text mining algorithms that can

extract important keywords from different bug reports. Text mining have previously been

used for picking up high importance words from the bug reports, and these words along

with the original bug report can be effectively used further to improve the overall bug

classification accuracy of a classifier. In this research, we are aiming to investigate the

bug classification accuracy of an online machine learning classifiers. We further use a

keyword extraction algorithm for extracting important tags and then couple them with the

original bug report to observe whether we can obtain marked improvement in the

prediction accuracy of the classifier.

Next, we explore the accuracy of online machine learning algorithm multi-class

model for classifying bugs into seven different levels of severity: trivial, normal, minor,

major, enhancement, critical and blocker. We extend our work to include keyword

extraction algorithm for tag extraction to analyze its effects on the prediction accuracy of

multi-class classifier. Even though our approach of automatic categorization does not

achieve perfect accuracy, it shows noticeable improvement in the prediction accuracy and

hence promises improved performance of the software maintenance tasks.

4

Table 1. Number of Instances in each Dataset

Dataset Number of
Instances

Eclipse 361,006
Gnome 327,574
KDE 279,843
Mozilla 768,335

 Table 2 shows the number of instances in two categories: non-severe and severe.

The number of non-severe instances is higher in each dataset as compare to the number

of severe instances. Percentage of severe instances in Eclipse, Gnome, KDE and Mozilla

are as follow 15.07%, 43.09%, 48.91% and 19.30%.

Table 2. Number of non-severe and severe instances in Binary datasets
Dataset Non-severe Severe
Eclipse 306,571 54,435
Gnome 186,452 141,152
KDE 142,955 136,888
Mozilla 619,980 148,355

Table 3 reports all the seven-bug severities used for multi-class classification.

This table shows the number of trivial, normal, minor, major, enhancement, critical and

blocker number of instances in each dataset.

Table 3. Number of Trivial, Normal, Minor, Major, Enhancement, Critical and Blocker
in multiclass datasets

Dataset Trivial Normal Minor Major Enhancement Critical Blocker

Eclipse 4,815 242,819 13,438 35,367 45,499 12,845 6,223
Gnome 5,337 137,818 16,584 17,968 26,683 116,986 6,198
KDE 0 138,087 4,868 3,727 0 1,449 0
Mozilla 16,134 523,540 36,617 71,084 43,689 65,478 11,793

6

65% - 75% and recall varies from 70% - 85%. Lamkanfi further expand his work by

comparing machine learning algorithms (Naïve Bayes, Naïve Bayes multinomial, K-

Nearest Neighbor and Support Vector Machines) to predict the severity of bug reports

[1]. InFor the Eclipse and Gnome open source systems, Lamkanfi showed that the Naïve

Bayes multinomial algorithm performs better than the other approachs. Their reported

accuracy varies from 48% - 93%

3.3 Severity prediction using nearest neighbor classification

 Apart from the above mentioned works, Tian et al. [5] presented an approach to

predict fine grained bug severity prediction using nearest neighbor classification. The

method they used automatically detects and analyzes bug reports, which had been

reported in past days with severity labels, and with the help of these reports suggests

severity labels to new reported bug reports. They used duplicate bug reports with relative

information and features to determine similarity between both reports. This similarity in

information helps in assigning the severity labels accurately and quickly.

3.4 Suggesting priority level by considering multifactor

 Other work of Tian et al. [6] presented an automated approach with the help of

machine learning in suggesting a priority level on the basis of information in bug reports.

They consider multifactor temporal, textual, author, related reports, product and severity,

as potential factors, which affect the priority level of reported bug reports. They use these

factors as features to train a model with the help of a classification algorithm

(thresholding and linear regression), which can perform well in ordinal class labels and

7

imbalanced data. They conducted their experiment on more than 100,000 reports

collected from Eclipse. This experiment shows an improvement of 58.61% in terms of

average F-measure by outperforming baseline approach. Tian et al. [7] extended their

previous work by using extracted features to train a discriminative model via a new

classification algorithm (linear regression) and their framework named DRONE. The new

work provides a way to handle ordinal class labels and imbalanced data. They managed

to improve their work on 100,000 bug reports from Eclipse in terms of F-measure by

209%, which outperform baseline approach.

3.5 Detection of bug report using textual similarity features

 In addition to this, Lazar et al. [8] presented an approach, in which they

implement an improved method of detecting duplicate bug reports using the textual

similarity features and binary classification. They used a total of 25 textual features, then

run their classification method to categorize pairs of bugs into two types: duplicate and

non-duplicate. They used new texual features, derived based on text similarity measures,

and trained several binary classification models. After training the models, they tested

their work on bug reports collected from Eclipse, OpenOffice and Mozilla to analyze the

effectiveness of the improved method. They also compared it with the current state-of-

the-art and highlighted the similarities and differences. They were able to achieve an

improvement of 6.32% in duplicate bug report detection even without considering

context-based features.

9

4.2 Stochastic gradient descent (SGD)

The VW, SGD implementation is one of the fastest online gradient optimization

algorithm through which we can optimize processing large datasets. In other words, the

algorithm minimizes the loss function or the objective function [10]. SGD doesn’t

compute the gradient exactly as other algorithms do. However, it randomly picks

examples to estimate the gradient in all iteration. SGD does not need to remember its

previous iteration example, because of its randomly drawn example nature. Bottou

applied SGD to different variables by enforcing its positivity to help obtain sparser

solutions [11].

4.3 Keyword extraction

If you are working with text, keyword extraction or tag extraction is an important

topic. Keyword extraction can be very usefull for index or glossary creation,

summarizing and word cloud creation. For this task, we are using the keyword extraction

library named RAKE [12]. This library is a keyword extraction algorithm implemented in

python. Keywords are of primary importance when we are discussing about texts.

Through keywords we can build our understanding of the topic expressed in the

document. Usually, the keyword extraction algorithm is a three-step algorithm. It

includes candidate selection, properties calculation and scoring, and keywords selection.

In candidate selection, we extract all those words and phrases, which can be keywords.

Property calculator calculates a property score for each keyword candidate. To select the

final keyword, each candidate is scored by combining properties into a formula or by

machine learning technique. The keyword extraction algorithm helps in automatically

10

getting the most significant words and phrases from the documents, which are under

analysis.

4.4 Generating features

We downloaded four different datasets of bug reports from open source

repositories. Each dataset Includes the following thirteen features: bug_id, product,

description, bug_severity, dup_id, short_desc, priority, version, component, delta_ts,

bug_status, creation_ts and resolution. In both, binary and multi-class, classifications we

generated four new features named as tag1, tag2, tag3 and tag4. We are using the

keyword extraction algorithm to generate aforementioned four features.

4.5 Building the training and testing datasets

We are using a script written in python to divide the datasets into training and test

sets. We divide the data into a train and test datasets in the ratio 9:1. The datasets are then

converted from the cvs format into the online machine learning format. The data is then

scaled down into the [0,1] interval. We assigned the value zero to non-severe bugs and

value one to severe in case of binary classification.

4.6 Measures

Usually, in most research about classification methods, accuracy is considered as

the main measure to express performance. There are other measures, which can be used

in addition to accuracy, especially when we are talking about highly imbalanced data. In

order to obtain the holistic performance view, we give equal weightage to the following

performance measures: precision, recall, f-measure and ROC curve. We use Perf [13] to

11

calculate performance measures in binary classification. It is a tool that calculates

performance measures. We also used the scikit-learn kit [14] for multi-class

classification. These tools are customized for calculating machine learning performance

metrics. They can help in calculating different performance metrics for binary

classification and multi-class classification problems. Perf and scikit-learn include

different measures, out of which we used accuracy, precision, recall, F-score and area

under the ROC curve. Following are the definitions and formula of the precision, recall

and F-score measures:

Precision (P): The percentage bugs report correctly predicted either severe or non-

severe. Then we consider precision for each severe and non-severe category separately. It

is defined it:

Precision =
tp

tp + fp
 (1)

 Where tp stands for true positive and fp stands for false positives. Moreover, in

our case true positive is correctly classified instances and false positive is incorrectly

classified instances.

Recall (R): The percentage of all bug reports with a severity severe and non-

severe that is correctly predicted as severe or non-severe called recall. It can be formally

defined as:

Recall =
tp

tp + fn
 (2)

Here fn stands for false negative. In our case false negative is incorrectly

classified instances.

12

F-measure (F): The weighted harmonic mean of precision and recall is called F-

measure. The harmonic mean is a conservative average. Usually the balanced F-measure

is used. It is defined as follows:

F-measure = 2*
presision * recall

presision + recall

For positive real β

f-measure =
(β2+1)precision.recall

β2precision+recall
 (3)

14

and test datasets using a ratio of 9:1. The train dataset is then used to train the online

machine learning binary classification model. The classifcation model is then deployed to

make predictions on the test dataset. Prediction outputs along with the original bug

severity values are stored in an output text file. Performance metrics are calculated using

the perf tool on the output text file.

Performance measures, including precision, recall and F-measures are plotted

using Numpy and Matplotlib python libraries. Area under the curve (ROC) compares the

rate of true positives with the rate of false positives and indicates how good a classifier

performance is.

 The overallAccuracy obtained is better than the accuracy reported by previous

works in the same field. Table 4, shows that accuracy is varying from 82% to 98% for

the binary classification model. Highest accuracy is obtained for the GNOME dataset (

98.025%), while the lowest accuracy is 82.951% for the KDE dataset.

15

Figure 1. ROC curve for binary classification without tag and with tag for the Moziilla
dataset

In Figure 1, Figure 2, Figure 3 and Figure 4, we can see two lines, one in green

and another one in red. The green line represents the graph related to the result for the

dataset with tags while red is describing the results for the dataset that did not include

tags. This graph is plotted between true positive and false negative. True positive is

correctly classified instances while falsely positive represent incorrectly classified

instances. If the curve is closer to the left border and the top border, the result is more

16

accurate. If the curve is closer to 45-degree diagonal on the graph, the result are

considered less accurate.

In Figure 1 we can see that the results for the dataset without tags are closer to the

left border and the top border, which means, the results results are sligthly better as

compared to the dataset with tag.

 Figure 2. ROC curve for binary classification without tag and with tag for the Eclipse

dataset

Figure 2 shows that we have significantly better result for without tag data instead

of with tag data.

17

Figure 3. ROC curve for binary classification without tag and with tag for the KDE

dataset

Figure 3 has a much better result in terms of the data, which has the tag. If we

compare it to previous figures, we can find that the data with tags, has the same curve as

the data without tag.

18

 Figure 4. ROC curve for binary classification without tag and with tag for GNOME
dataset

Figure 4 shows the data for GNOME for both tag and without tag. We can see

from the graphthat these are the best result we have obtained among all four datasets for

binary classification. The curve follows closer to the left border and the upper border

which means is the most accurate among all four datasets.

5.1.2 Binary classification with tag data

Here, we follow the same procedure as above except for one change. Four extra

keywords, extracted with the help of the keyword extraction library, are added to our raw

19

dataset, making the total number of field count equal to seventeen. The new fields are

named tag1, tag2, tag3 and tag4. The keyword extraction algorithm produces a list of

important keyword with weights assigned to each keyword. We use our tag extraction

script written in python to select the top four most important keywords.

For binary classification with tag data we have got accuracy ranging between 80%

to 97%. As we can see in Table 4, accuracy has decreased in all four cases when we add

tags and that the running time is higher as compare to without tag data. In these tag

datasets, the lowest accuracy obtainedwas for the Mozilla dataset (80.328%). While we

have got 96.648% accuracy as highest one in Gnome dataset.

We are exploring accuracy and time is seconds taken to build a model for each

dataset with and without dataset in Table 4. This table shows that if we use the extra tags,

time increases to build a model while no significant improvement in accuracy is seen.

Table 4. Accuracy and time stamps for both the data with tag and without tag in binary
classification

 Time(s) Accuracy
(%) Time(s) Accuracy

(%)
Dataset No Tag No Tag Tag Tag
Eclipse 13.062 92.449 21.903 86.111
Gnome 8.823 98.025 21.762 96.648
KDE 14.486 82.951 19.271 82.772
Mozilla 21.953 92.714 19.789 80.328

we are comparing three additional measures for each dataset in both conditions

with tag and without tag. Values of precision, recall and F-1 measures are reported as

almost same in each dataset in both cases, with or without tag.

20

Table 5, we are comparing three additional measures for each dataset in both

conditions with tag and without tag. Values of precision, recall and F-1 measures are

reported as almost same in each dataset in both cases, with or without tag.

Table 5. Values of Precision, Recall and F-1 in binary
 No Tag Tag No Tag Tag No Tag Tag
Dataset Precision Precision Recall Recall F score F score
Eclipse 0.647 0.645 0.721 0.720 0.654 0.652
Gnome 0.911 0.900 0.826 0.908 0.866 0.899
KDE 0.687 0.685 0.775 0.775 0.707 0.707
Mozilla 0.861 0.862 0.894 0.894 0.857 0.858

5.2 Multi-Class Classification

After performing our experiment on binary classification, we performed a similar

experiment on multi-class classification. In multi-class classification, we calculate

accuracy, precision, recall and plot ROC curve again for two different cases first is for

without tags datasets and the second is by generating tags datasets.

5.2.1 Multi-class classification on without tag data

The same procedure is followed as that for binary classification without tags

except for one major change. During the conversion of the csv file, containing bug

reports, all the seven severity levels remain as they are and are assigned values from one

to seven where one being least severe and seven being most severe.

In Table 6, we can see that the accuracy is varying from 72% to 91% in multi-

classclassification in case of no tag. Highest accuracy, we have got for the GNOME

dataset (90.942%), while the lowest accuracy is 72.116% for the Eclipse dataset.

21

In all four graphs for the multi-class classification below, we used two different

lines in two colors, red and green. The red color line shows the curve for the without tag

dataset while green lines show the results for the with tag dataset. For better test result

curve should be closer to the top upper left corner. The closer is the curve to the left

upper curve, better the test result would be. The graph is also showing the values for area

for both with tag and without tag datasets.

Figure 5. ROC curve for multi-class classification without tag and with tag for Eclipse

dataset

22

Figure 5 shows that without tags and with tag results have same curve. It also

shows that both kinds have the same area, which is 0.84.

Figure 6. ROC curve for multi-class classification without tag and with tag for the
GNOME dataset

Figure 6 shows that without tags and with tag have better curves than the Eclipse

dataset curve. It is closer to the upper left corner. It also shows that both kinds have same

and much better area (0.95), for both with tag and without tag data.

23

Figure 7. ROC curve for multi-class classification without tag and with tag for KDE
dataset

Figure 7 shows that without tags and with tag have better curves than the Eclipse

dataset curve, but lesser accurate to gnome curve. It has less area as compared to

GNOME dataset graph in both cases whereas; the area under the ROC curve in both

cases is 0.87.

24

Figure 8. ROC curve for multi-class classification without tag and without tag for the
Mozilla Dataset

Figure 8 shows the Mozilla dataset has the second best curve after the GNOME

dataset. It has also better area under ROC curve. If we compare it with the GNOME in

terms of area, it is only short by 0.01.

25

5.2.2 Multi-class classification on with tag data

The same procedure is followed as that for binary classification with tags except

for one major change. During the conversion of the csv file, containing bug reports, all

the seven severity levels remain as they are and are assigned values from one to seven

where one being least severe and seven being most severe.

Accuracy improves by slightly less than 1 percent in some dataset. We can see

that in Table 6 the accuracy is varying from 72% to91 % in multi-class classification in

case of tag. We obtained the highest accuracy in the GNOME dataset, which is 90.826%,

while the lowest accuracy is 72.024% in Eclipse dataset.

 Table 6 describes the accuracy and running time for all four datasets. It is also

comparing the accuracy and time taken to build the model between with tag and without

tag dataset. There is not much improvement in time as well as accuracy, however we can

see a slight improvement for the Mozilla dataset.

Table 6. Accuracy with or without tag in multiclass

 Time(s) Accuracy (%) Time(s) Accuracy (%)

Dataset No Tag No Tag Tag Tag
Eclipse 3.834 72.116 4.404 72.024
Gnome 6.723 90.942 10.717 90.826
KDE 2.105 77.571 3.102 77.513
Mozilla 7.774 89.409 7.774 89.447

Table 7 is explaining all three measures for all four datasets in both cases with tag

and without tag. In both cases, if we analyse precision in tag and no tag, we find that

apart from GNOME dataset all other datasets have a better result in the no tag case. For

26

recall, GNOME and KDE have better result in the tag case. F-1 measure has better result

for GNOME dataset in the tag case.

Table 7. values of precision, recall and F-1 in multiclass
 No Tag Tag No Tag Tag No Tag Tag
Dataset Precision Precision Recall Recall F score F score
Eclipse 0.51969 0.41402 0.21838 0.16085 0.30754 0.23169
Gnome 0.91101 0.98547 0.82689 0.97135 0.86691 0.97836
KDE 0.90423 0.86935 0.84312 0.86935 0.87261 0.82166
Mozilla 0.65876 0.58921 0.44732 0.42019 0.53283 0.4598

In Table 8, we compare our results with results previously reported by Lamkanfi.

We compare the highest value of precision and recall in any case of Lamkanfi research

with our highest value of precision and recall in any case. We can see from the table 8

apart from Eclipse dataset (which is also very close to Lamkanfi work) we have good

values of precision and recall in both GNOME and Mozilla datasets.

 Table 8. Comparison of Precision and Recall between our result and Lamkanfi result

Lamkanfi Our Result

Datasets Precision Recall Precision Recall

Eclipse 0.713 0.738 0.647 0.721

Gnome 0.828 0.842 0.985 0.971

Mozilla 0.752 0.785 0.862 0.894

In Table 9, we compare the area under curve values with Lamkanfi [15] work in

any case of the dataset. We can see that for Eclipse, GNOME and Mozilla datasets our

results are better than the result of Lamkanfi.

27

Table 9. Comparison of Area under curve between Lamkanfi and our result

Lamkanfi Our Result

Datasets AUC AUC

Eclipse 0.775 0.84

Gnome 0.869 0.95

Mozilla 0.813 0.94

In Table 10, we compared our work for F-1 measure with Tian et al. [5], Valdivia

et al. [16] and baseline model in Eclipse and Mozilla open source software system. We

can see that in the Tian’s research F-1 score is 65.10%, in Valdivia is 15.40% and in

baseline model F score is 5.30% that are less than our result 65.20% in Eclipse dataset.

On the other hand, in the Mozilla dataset, our result of the F-1 score (85.80%) is much

better than the Tian (56.00%), Valdivia (42.10%) and baseline model (20.05%).

Table 10. Comparison of F score between Tian, Valdivia, Baseline model and our result
in Eclipse and Mozilla

Tian Valdivia Baselinemodel Our work

Dataset F score F score Fscore F score

Eclipse 65.10% 15.40% 5.30% 65.20%

Mozilla 56.00% 42.10% 20.05% 85.80%

29

APPENDIX

A: Dataset used in CSV format

30

B: Converted data in VW format

2 1.0 214966|xsnum digit:0 istart:1 textblock:1 url:0 lines:3 question:0 period:3

finalthanks:0 initcap:3 exclam:0 nonword:5 sent:3 codeblock:0 |yslen code:0 lasttext:439

title:60 text:439 lastcode:0 firsttext:439 firstcode:0 |zsratio esent:0.0 ftext:1.0 qsent:0.0

psent:1.0 fcode:0 ftc:0 tc:0 |wsmean text:439.0 code:0 sent:145.333333333

|short_descwords search for problems api selectively tooling usage more |bodywords and

this all reference process into up will api references determine in speed any if information

from for to support there extracted add usage prerequisite resolved then allow problems

component elementsconditions appears those noreference a restrictions search i builder

modified us specific collect previoulsy components were the first

2 1.0 214967|xsnum digit:2 istart:0 textblock:1 url:0 lines:1 question:0 period:1

finalthanks:0 initcap:1 exclam:0 nonword:3 sent:1 codeblock:0 |yslen code:0 lasttext:93

title:42 text:93 lastcode:0 firsttext:93 firstcode:0 |zsratio esent:0.0 ftext:1.0 qsent:0.0

psent:1.0 fcode:0 ftc:0 tc:0 |wsmean text:93.0 code:0 sent:93.0 |short_descwords

abouthtml orgapachecommonspool missing |bodywords 13 builds missing abouthtml is

orgapachecommonspool bundle an version in the latest

2 1.0 214971|xsnum digit:0 istart:0 textblock:1 url:0 lines:1 question:0 period:0

finalthanks:0 initcap:1 exclam:0 nonword:1 sent:1 codeblock:0 |yslen code:0 lasttext:82

title:55 text:82 lastcode:0 firsttext:82 firstcode:0 |zsratio esent:0.0 ftext:1.0 qsent:0.0

psent:0.0 fcode:0 ftc:0 tc:0 |wsmean text:82.0 code:0 sent:82.0 |short_descwords tasks no

edit task to unable reassign permissions if |bodywords a tasks reassing to is actions field

unable through in reassign the panel

31

REFERENCES

[1] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing Mining

Algorithms for Predicting the Severity of a Reported Bug,” in 2011 15th European

Conference on Software Maintenance and Reengineering (CSMR), 2011, pp. 249–258.

[2] N. Serrano and I. Ciordia, “Bugzilla, ITracker, and other bug trackers,” IEEE

Softw., vol. 22, no. 2, pp. 11–13, Mar. 2005.

[3] “Open Source Software and the ‘Private-Collective’ Innovation Model: Issues for

Organization Science,” Organ. Sci., vol. 14, no. 2, pp. 209–223, Apr. 2003.

[4] T. Menzies and A. Marcus, “Automated severity assessment of software defect

reports,” in IEEE International Conference on Software Maintenance, 2008. ICSM 2008,

2008, pp. 346–355.

[5] Y. Tian, D. Lo, and C. Sun, “Information Retrieval Based Nearest Neighbor

Classification for Fine-Grained Bug Severity Prediction,” in 2012 19th Working

Conference on Reverse Engineering (WCRE), 2012, pp. 215–224.

[6] Y. Tian, D. Lo, and C. Sun, “DRONE: Predicting Priority of Reported Bugs by

Multi-factor Analysis,” in 2013 IEEE International Conference on Software

Maintenance, Los Alamitos, CA, USA, 2013, vol. 0, pp. 200–209.

[7] Y. Tian, D. Lo, X. Xia, and C. Sun, “Automated prediction of bug report priority

using multi-factor analysis,” Empir. Softw. Eng., vol. 20, no. 5, pp. 1354–1383, Aug.

2014.

[8] A. Lazar, S. Ritchey, and B. Sharif, “Improving the Accuracy of Duplicate Bug

Report Detection Using Textual Similarity Measures,” in Proceedings of the 11th

32

Working Conference on Mining Software Repositories, New York, NY, USA, 2014, pp.

308–311.

[9] “JohnLangford/vowpal_wabbit,” GitHub. [Online]. Available:

https://github.com/JohnLangford/vowpal_wabbit. [Accessed: 16-Feb-2016].

[10] “Stochastic gradient descent,” Wikipedia, the free encyclopedia. 03-Feb-2016.

[11] L. Bottou, “Stochastic Gradient Descent Tricks,” in Neural Networks: Tricks of

the Trade, G. Montavon, G. B. Orr, and K.-R. Müller, Eds. Springer Berlin Heidelberg,

2012, pp. 421–436.

[12] “zelandiya/RAKE-tutorial,” GitHub. [Online]. Available:

https://github.com/zelandiya/RAKE-tutorial. [Accessed: 02-May-2016].

[13] “KDD Cup 2004 - Download PERF Software.” [Online]. Available:

http://osmot.cs.cornell.edu/kddcup/software.html. [Accessed: 02-May-2016].

[14] “scikit-learn: machine learning in Python — scikit-learn 0.17.1 documentation.”

[Online]. Available: http://scikit-learn.org/stable/index.html. [Accessed: 02-May-2016].

[15] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity of a

reported bug,” in 2010 7th IEEE Working Conference on Mining Software Repositories

(MSR), 2010, pp. 1–10.

[16] H. Valdivia Garcia and E. Shihab, “Characterizing and Predicting Blocking Bugs

in Open Source Projects,” in Proceedings of the 11th Working Conference on Mining

Software Repositories, New York, NY, USA, 2014, pp. 72–81.

	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 DATASET USED
	CHAPTER 3 RELATED WORK
	3.1 Assigning severity levels automatically
	3.2 Assigning severity levels using text mining algorithm
	3.3 Severity prediction using nearest neighbor classification
	3.4 Suggesting priority level by considering multifactor
	3.5 Detection of bug report using textual similarity features

	CHAPTER 4 METHOD
	4.1 Machine learning
	4.2 Stochastic gradient descent (SGD)
	4.3 Keyword extraction
	4.4 Generating features
	4.5 Building the training and testing datasets
	4.6 Measures

	CHAPTER 5 EXPERIMENT
	5.1 Binary Classification
	5.1.1 Binary classification without tag data
	5.1.2 Binary classification with tag data

	5.2 Multi-Class Classification
	5.2.1 Multi-class classification on without tag data
	5.2.2 Multi-class classification on with tag data

	CHAPTER 6 CONCLUSION AND FUTURE WORK
	APPENDIX
	A: Dataset used in CSV format
	B: Converted data in VW format
	REFERENCES

		2016-05-20T14:16:10-0400
	College of Graduate Studies

