PREDICTING BUG SEVERITY IN OPEN-SOURCE SOFTWARE SYSTEMS USING
SCALABLE MACHINE LEARNING TECHNIQUES

IMRAN

Submitted in Partial Fulfillment of the Requirements
For the Degree of

Master of Computing and Information Systems

YOUNGSTOWN STATE UNIVERSITY

May, 2016

PREDICTING BUG SEVERITY IN OPEN-SOURCE SOFTWARE SYSTEMS USING
SCALABLE MACHINE LEARNING TECHNIQUES

Imran

I hereby release this thesis to the public. I understand that this thesis will be made
available from the OhioLINK ETD Center and the Maag Library Circulation Desk for
public access. I also authorize the University or other individuals to make copies of this
thesis as needed for scholarly research.

Signature:
Imran, Student Date
Approvals:
Dr. Alina Lazar, Thesis Advisor Date
Dr. Bonita Sharif, Committee Member Date
Dr. John Sullins, Committee Member Date

Sal Sanders, Associate Dean of Graduate Studies Date

Imran

2016

111

DEDICATION
It is with my deepest gratitude and warmest affection that I dedicate this thesis to my

parents, professors and friends who have encouraged me.

v

ABSTRACT

As software systems become larger and more complicated, the task of detecting
and fixing bugs to improve the software performance is getting more tedious and
inefficient. Automated processes that detect and report bugs quickly and with high
accuracy are needed. In this thesis, we describe an approach, which is fast and performs
the bug classification task with comparatively better accuracy then previously reported
research. Here, we used the machine learning methods, specifically an online algorithm
for bug classification. This approach involves the use of text mining algorithm for feature
extraction. Then the data is used to train classifier models using an online machine
learning classification algorithm for optimized performance. The above steps are done
twice, once for a binary model and once with a multi-class model. The multi-class model
predicts as many as seven bug severity levels with the aim of prioritizing the bug
assignment process. After analyzing all four datasets collected from open source software
system, we can predict good with accuracy (72%-98%) if the data is balanced and has

sufficient size of training set.

ACKNOWLEDGEMENTS

I would like to thank Dr. Alina Lazar for giving me this opportunity to work on
this challenging research project of predicting bug severity in open-source software
systems using scalable machine learning techniques and helping me to complete this
thesis successfully. She has provided me tremendous encouragement and knowledge of
how to approach a challenging problem by thinking beyond the box. I could not have had
a better advisor for my master.

I thank my committee members Dr. John R Sullins and Dr. Bonita Sharif for their
support and guidelines.

I thank my family for their love and encouragement. I thank all the members who

directly or indirectly helped me to complete my research work.

vi

TABLE OF CONTENTS

LIST OF FIGURES .uucutieiieitineisicsnicssisncssissssssesssnssssssssssissssssessssssssssssssssssssssssssssssssasss IX
LIST OF TABLES ...uuciiistinicsticeisesssncssissssssisssissssssesssssssssssssssssssssssssssssssssssssssassssssassssssss X
CHAPTER 1 INTRODUCTION ...couiinirvensuecsenssenssesssicsesssessssssssssessssssssssssssssssssssssssssase 1
CHAPTER 2 DATASET USED.....cuiiiiiiruicsensenssicssicsesssecsssssssssesssssssssssssssssssssssssssssss 3
CHAPTER 3 RELATED WORKcoiiiiiiisensninseicesssisssissssssnsssissssssessssssssssssssssass 5
3.1 Assigning severity levels automatically..........ccocovveviieniiiiienienieciecieeeeee e 5
3.2 Assigning severity levels using text mining algorithm...........ccccoocevviniininiennenne. 5
3.3 Severity prediction using nearest neighbor classification..............ccceeeveerveerveennnns 6
3.4 Suggesting priority level by considering multifactor............cccoecveevieriiieiienieennnn, 6
3.5 Detection of bug report using textual similarity features..........cccceevvveiverrieennen. 7
CHAPTER 4 METHOD .8
4.1 Machine l@AININGcccuveeeiuiieeiieeeiieeciie ettt e e ee e e sareeeaaeeesaeeeneneeennns 8
4.2 Stochastic gradient descent (SGD)ccccvevviiiiriiieiriieee e 9
4.3 KeyWOord EXtTACtIONceciuiieeiieeriieeeireeeieeeeieeesteeesbeeesreeessseesssseeennseesnsseesnsseesnnns 9
4.4 Generating fRATUTESccccuveeeiieeeiieeeiieeeieeeeieeeeteeesteeeeebeesaaeeesseesnneesnneessneeens 10
4.5 Building the training and testing datasetscceevvveeeriieeeriieeriee e 10
A0 MEASUTESeeouiiiiiiieeeitee ettt ettt ettt et e et e et e st e s bteesbaeesneeesneeeeas 10
CHAPTER 5 EXPERIMENT ...cccccienreienncseissanssssssssssssassssssssasssssssssssssssssassssssssasssssssses 13
5.1 Binary ClassifiCation.........ccueeecuiieiiiieeiiieerieeeiee et e e e eire s aeeeeereeesereeennreeennnees 13

5.1.1 Binary classification without tag data.............cccceeeeeriiiniiiiienieeiee e, 13

5.1.2 Binary classification with tag data..........c.cccceevieriiiiiinieciee e, 18

5.2 Multi-Class ClassifiCation...........cceeriieriierieeiiienieeieecie ettt seeeaee e 20
5.2.1 Multi-class classification on without tag data.............cccceevvieriirvieniiieneenen. 20
5.2.2 Multi-class classification on with tag data...........ccceeeeeviieiiieniiienieeieeeeee, 25
CHAPTER 6 CONCLUSION AND FUTURE WORKcccccivreiiieranssensanssasssassanesas 28
APPENDIX c.ccuiiiiiisuiinisnisississesssnssnsssssississsnss 29
A: Dataset used in CSV fOrmal.........ccceeveiiiiiiiiiieiieeie et 29
B: Converted data in VW format..........ccccoeviiiiieiienieeieeeeeeeee e 30
REFERENCES ..ottt sttt ettt e eneenes 31

viil

LIST OF FIGURES

Figure 1. ROC curve for binary classification without tag and with tag for the Moziilla

Figure 2. ROC curve for binary classification without tag and with tag for the Eclipse
ALASEL ...ttt ettt h et et 16

Figure 3. ROC curve for binary classification without tag and with tag for the KDE
ALASEL ...ttt et a et be et et 17

Figure 4. ROC curve for binary classification without tag and with tag for GNOME

Figure 5 ROC curve for multi-class classification without tag and with tag for Eclipse
ALASEL ...t ettt ettt b et b et et 21

Figure 6. ROC curve for multi-class classification without tag and with tag for the
GINOME dataset.......ccoueeiiiiiiieiierieeeee ettt 22

Figure 7. ROC curve for multi-class classification without tag and with tag for KDE

Figure 8. ROC curve for multi-class classification without tag and without tag for the

IMOZIILA DAtASEL .ottt ee e e e e e e e e e eeeeeeeeereeaearaeaeeeearanes 24

X

LIST OF TABLES

Table 1. Number of Instances in each Dataset..........ccccoveeveriinieniiiinieecieseeeeieees 4
Table 2. Number of non-severe and severe instances in Binary datasetsc..cc.c...... 4
Table 3 Number of Trivial, Normal, Minor, Major, Enhancement, Critical and Blocker in

MUILICIASS dATASELS......eeuiiiieiieiieitiee e ettt 4

Table 4. Accuracy and time stamps for both the data with tag and without tag in binary

ClASSITICATION ...ttt ettt ettt et e e 19
Table 5. Values of Precision, Recall and F-1 in binaryccccceevvieiiiniieiienieceee, 20
Table 6. Accuracy with or without tag in multiclasscccceevveerieeiieniiieniecie e, 25
Table 7. values of precision, recall and F-1 in multiclass..........c.cccceeeiieniienienieenieennenn, 26

Table 8. Comparison of Precision and Recall between our result and Lamkanfi result... 26
Table 9. Comparison of Area under curve between Lamkanfi and our result.................. 27
Table 10. Comparison of F score between Tian, Valdivia, Baseline model and our result

in Eclipse and MOzZillacooiiiiiiiiii e 27

CHAPTER 1

INTRODUCTION

Software improvement involves considerable amount of resources. The task of
bug tracking is by and large a manual one and affects the cost by billions of dollars each
year of the software industry. Moreover, the task is resource intensive, time consuming
and error prone, which result in high maintenance costs of the software and leads to
decreased productivity. After a bug is submitted, a human triager manually assigns a
priority and a severity each bug reported by a user or a programmer. Priority can be low,
medium and high while severity can be critical, major, moderate, minor, and cosmetic.
The task is much more prone to faults and involves the working of expert triagers. This
further pushes the maintenance cost of the software [1]. Therefore, depending on the
complexity of the software, a bug tracking system like Bugzilla is required by users and
developers to automatically track and classify bugs. Bug tracking systems help in
continuously monitoring, reported bugs. It helps developers and users in storing and
tracking errors and aids them in understanding problems caused by these errors [2]. The
data we are using during our research comes from open software systems like Mozilla
and Eclipse. Open source software systems are different from the ones developed and
own by any company privately. In open source softwares, developers implement software
systems which are publicly accessible at no cost [3].

Machine leaning techniques can provide just the right kind of algorithms to

automate the task of bug prediction and classification. To further enhance the efficiency

1

of a bug classifier, feature extraction techniques could be employed to feed refined
information to the classifier. This can be achieved with text mining algorithms that can
extract important keywords from different bug reports. Text mining have previously been
used for picking up high importance words from the bug reports, and these words along
with the original bug report can be effectively used further to improve the overall bug
classification accuracy of a classifier. In this research, we are aiming to investigate the
bug classification accuracy of an online machine learning classifiers. We further use a
keyword extraction algorithm for extracting important tags and then couple them with the
original bug report to observe whether we can obtain marked improvement in the
prediction accuracy of the classifier.

Next, we explore the accuracy of online machine learning algorithm multi-class
model for classifying bugs into seven different levels of severity: trivial, normal, minor,
major, enhancement, critical and blocker. We extend our work to include keyword
extraction algorithm for tag extraction to analyze its effects on the prediction accuracy of
multi-class classifier. Even though our approach of automatic categorization does not
achieve perfect accuracy, it shows noticeable improvement in the prediction accuracy and

hence promises improved performance of the software maintenance tasks.

CHAPTER 2

DATASET USED

The datasets used for this research were extracted from open source software
systems such as Eclipse, Gnome, KDE and Mozall. Bug reports from the Bugzilla
websites of the four systems were colleted using web scraping. [4, 5].

Each of the four datasets that we are using in this research have more then
100,000 records and 13 features. The features present in the raw datasets are bug id,
product, description, bug severity, dup id, short description, priority, version, component,
delta_ts, bug status, creation ts and resolution. The most important feature to predict bug
severity is the long description. The bug severity can take values in one of the following
categories: trivial, normal, minor, major, enhancement, critical and blocker. For the
binary classification task only two categories the bug severities were divided into two
categories: severe and non-severe. The trivial, normal, and minor were considered under
non-severe category and major, enhancement, critical, and blocker were considered under
severe category. The two categories are denoted by zero and one. Non-severe is replaced
by zero and severe is replaced by one in the data.

Table 1, it shows the number of instances in each of the four datasets Eclipse,
Gnome, KDE and Mozilla used in our research. Each dataset has more than 279,000
instances. The dataset with the highest number of instances is Mozilla with 768,335

instances.

Table 1. Number of Instances in each Dataset

Dataset E:;?::;Zs()f
Eclipse 361,006
Gnome 327,574
KDE 279,843
Mozilla 768,335

Table 2 shows the number of instances in two categories: non-severe and severe.
The number of non-severe instances is higher in each dataset as compare to the number
of severe instances. Percentage of severe instances in Eclipse, Gnome, KDE and Mozilla

are as follow 15.07%, 43.09%, 48.91% and 19.30%.

Table 2. Number of non-severe and severe instances in Binary datasets

Dataset | Non-severe | Severe

Eclipse 306,571 | 54,435
Gnome 186,452 | 141,152
KDE 142,955 | 136,888
Mozilla 619,980 | 148,355

Table 3 reports all the seven-bug severities used for multi-class classification.
This table shows the number of trivial, normal, minor, major, enhancement, critical and

blocker number of instances in each dataset.

Table 3. Number of Trivial, Normal, Minor, Major, Enhancement, Critical and Blocker
in multiclass datasets

Dataset Trivial [Normal | Minor | Major | Enhancement | Critical | Blocker
Eclipse 4,815 | 242,819 | 13,438 [35,367 45,499 | 12,845 6,223
Gnome 5,337 [137,818 | 16,584 | 17,968 26,683 | 116,986 6,198
KDE 0] 138,087 | 4,868 3,727 0 1,449 0
Mozilla 16,134 | 523,540 | 36,617 | 71,084 43,689 | 65,478 | 11,793

CHAPTER 3

RELATED WORK

A number of cutting edge researches have been carried out in the field of bug

classification. The focus has mainly been on assigning priority and severity.

3.1 Assigning severity levels automatically

The first research in the field of bug classification was done by Marcus and
Menzis [4]. They built an automated method, which helps the software engineer to assign
different severity levels to the reported bug reports by user and developer. They called
this method SEVERIS (Severity issue assesment). SEVERIS is a combination of machine
learning (Naive Bayes) and text mining techniques applied to bug reports. Their approach
is able to classify the output into five fine-grained severity levels with accuracy that very

from 65% to 98%.

3.2 Assigning severity levels using text mining algorithm

Lamkanfi et al. [7] extended the work of Marcus and Menzis They worked to
improve the performance of prediction. They were the first to predict the severity of bug
reports from various projects of open source repositories such as Mozilla, Eclipse and
Gnome. They basically coarse grained the five of the six severity levels of Bugzilla into
two severe and non-severe and one is omitted. The severe group includes blocker,
critical and major while minor and trivial are grouped under non severe. They found in
their research that by giving sufficient training data, we could predict severity of a

reported bug with good accuracy. Accuracy in terms of precision and recall varies from

5

65% - 75% and recall varies from 70% - 85%. Lamkanfi further expand his work by
comparing machine learning algorithms (Naive Bayes, Naive Bayes multinomial, K-
Nearest Neighbor and Support Vector Machines) to predict the severity of bug reports
[1]. InFor the Eclipse and Gnome open source systems, Lamkanfi showed that the Naive
Bayes multinomial algorithm performs better than the other approachs. Their reported

accuracy varies from 48% - 93%

3.3 Severity prediction using nearest neighbor classification

Apart from the above mentioned works, Tian et al. [5] presented an approach to
predict fine grained bug severity prediction using nearest neighbor classification. The
method they used automatically detects and analyzes bug reports, which had been
reported in past days with severity labels, and with the help of these reports suggests
severity labels to new reported bug reports. They used duplicate bug reports with relative
information and features to determine similarity between both reports. This similarity in

information helps in assigning the severity labels accurately and quickly.

3.4 Suggesting priority level by considering multifactor

Other work of Tian et al. [6] presented an automated approach with the help of
machine learning in suggesting a priority level on the basis of information in bug reports.
They consider multifactor temporal, textual, author, related reports, product and severity,
as potential factors, which affect the priority level of reported bug reports. They use these
factors as features to train a model with the help of a classification algorithm

(thresholding and linear regression), which can perform well in ordinal class labels and

imbalanced data. They conducted their experiment on more than 100,000 reports
collected from Eclipse. This experiment shows an improvement of 58.61% in terms of
average F-measure by outperforming baseline approach. Tian et al. [7] extended their
previous work by using extracted features to train a discriminative model via a new
classification algorithm (linear regression) and their framework named DRONE. The new
work provides a way to handle ordinal class labels and imbalanced data. They managed
to improve their work on 100,000 bug reports from Eclipse in terms of F-measure by

209%, which outperform baseline approach.

3.5 Detection of bug report using textual similarity features

In addition to this, Lazar et al. [8] presented an approach, in which they
implement an improved method of detecting duplicate bug reports using the textual
similarity features and binary classification. They used a total of 25 textual features, then
run their classification method to categorize pairs of bugs into two types: duplicate and
non-duplicate. They used new texual features, derived based on text similarity measures,
and trained several binary classification models. After training the models, they tested
their work on bug reports collected from Eclipse, OpenOffice and Mozilla to analyze the
effectiveness of the improved method. They also compared it with the current state-of-
the-art and highlighted the similarities and differences. They were able to achieve an
improvement of 6.32% in duplicate bug report detection even without considering

context-based features.

CHAPTER 4

METHOD

Under this section we describe the method step-by-step. Firstly, we discuss the
tools and algorithms. Next we describe how the features were generated. Then, we
explain how we divided the dataset into training and testing. In the end, we give a brief

idea of the performance measures used to analyze and compare the experiments.

4.1 Machine learning

Machine Learning is a technique of driving intelligence from the data. Machine
learning models keep evolving in order to make data driven predictions. Online Machine
learning is a more sophisticated technique as it allows models to dynamically update
themselves based on the real time data. In this research, we use one of the online machine
learning package named Vowpal Wabbit (VW) [9]. This online machine-learning
algorithm can handle different kind of problems and also different loss functions. These
algorithms can make several iterations of data in less time. On the first run, it saves the
data in a cache file, which can be quickly retrieved for making several of the following
passes while training a model, hence making the entire training process very fast. It
further speed up its process by two methods, i.e. it uses a single floating algorithm and
employs parallel processing using two threads for training a model (loading data from the

compressed files and updating the model).

4.2 Stochastic gradient descent (SGD)

The VW, SGD implementation is one of the fastest online gradient optimization
algorithm through which we can optimize processing large datasets. In other words, the
algorithm minimizes the loss function or the objective function [10]. SGD doesn’t
compute the gradient exactly as other algorithms do. However, it randomly picks
examples to estimate the gradient in all iteration. SGD does not need to remember its
previous iteration example, because of its randomly drawn example nature. Bottou
applied SGD to different variables by enforcing its positivity to help obtain sparser

solutions [11].

4.3 Keyword extraction

If you are working with text, keyword extraction or tag extraction is an important
topic. Keyword extraction can be very usefull for index or glossary -creation,
summarizing and word cloud creation. For this task, we are using the keyword extraction
library named RAKE [12]. This library is a keyword extraction algorithm implemented in
python. Keywords are of primary importance when we are discussing about texts.
Through keywords we can build our understanding of the topic expressed in the
document. Usually, the keyword extraction algorithm is a three-step algorithm. It
includes candidate selection, properties calculation and scoring, and keywords selection.
In candidate selection, we extract all those words and phrases, which can be keywords.
Property calculator calculates a property score for each keyword candidate. To select the
final keyword, each candidate is scored by combining properties into a formula or by

machine learning technique. The keyword extraction algorithm helps in automatically

9

getting the most significant words and phrases from the documents, which are under

analysis.

4.4 Generating features

We downloaded four different datasets of bug reports from open source
repositories. Each dataset Includes the following thirteen features: bug id, product,
description, bug severity, dup id, short desc, priority, version, component, delta ts,
bug_status, creation ts and resolution. In both, binary and multi-class, classifications we
generated four new features named as tagl, tag2, tag3 and tag4d. We are using the

keyword extraction algorithm to generate aforementioned four features.

4.5 Building the training and testing datasets

We are using a script written in python to divide the datasets into training and test
sets. We divide the data into a train and test datasets in the ratio 9:1. The datasets are then
converted from the cvs format into the online machine learning format. The data is then
scaled down into the [0,1] interval. We assigned the value zero to non-severe bugs and

value one to severe in case of binary classification.

4.6 Measures

Usually, in most research about classification methods, accuracy is considered as
the main measure to express performance. There are other measures, which can be used
in addition to accuracy, especially when we are talking about highly imbalanced data. In
order to obtain the holistic performance view, we give equal weightage to the following

performance measures: precision, recall, f-measure and ROC curve. We use Perf [13] to

10

calculate performance measures in binary classification. It is a tool that calculates
performance measures. We also used the scikit-learn kit [14] for multi-class
classification. These tools are customized for calculating machine learning performance
metrics. They can help in calculating different performance metrics for binary
classification and multi-class classification problems. Perf and scikit-learn include
different measures, out of which we used accuracy, precision, recall, F-score and area
under the ROC curve. Following are the definitions and formula of the precision, recall
and F-score measures:

Precision (P): The percentage bugs report correctly predicted either severe or non-
severe. Then we consider precision for each severe and non-severe category separately. It

1s defined it:

.. tp
Precision = P (D)

Where tp stands for true positive and fp stands for false positives. Moreover, in
our case true positive is correctly classified instances and false positive is incorrectly
classified instances.

Recall (R): The percentage of all bug reports with a severity severe and non-
severe that is correctly predicted as severe or non-severe called recall. It can be formally

defined as:

_ _t
Recall = s (2)

Here fn stands for false negative. In our case false negative is incorrectly

classified instances.
11

F-measure (F): The weighted harmonic mean of precision and recall is called F-
measure. The harmonic mean is a conservative average. Usually the balanced F-measure

1s used. It is defined as follows:

, presision * recall

F-measure = 2 —
presision + recall

For positive real 3

2+1)precision.recall
f-measure = & FDPre (3)
B2precision+recall

12

CHAPTER 5

EXPERIMENT

We divide this work into two steps. First we predict the bug severity without tagsor

keywords. Second we predict bug severity with tags.

5.1 Binary Classification
We perform our first experiment on binary classification. In binary classification,
we calculate accuracy, precision, recall and plot ROC curve for the two different cases.

First the initial dataset is used and second the tags are added to the dataset.

5.1.1 Binary classification without tag data

In this research, we follow an approach, which states that the words used in any
bug report are significant and informative enough to describe it. Tailoring the above
approach to this research, we can classify a bug, based on its short and long description,
as severe or non-severe.

Data was downloed from from different open source systems, namely: Eclipse,
GNOME, KDE and Mozilla. Thirteen data features were selected from the bug reports.
Datasets in csv format were converted into an online machine-learning format using a
conversion script written in python. The bug severity field contains seven different
severity levels. The script also changes the seven severity levels, in the bug severity field,
into two categories, severe and non-severe. Trivial, normal, minor are grouped under the
non-severe category and major, enhancement, critical, blocker are assigned to the severe

category [7]. We use another script written in python to divide the dataset into training

13

and test datasets using a ratio of 9:1. The train dataset is then used to train the online
machine learning binary classification model. The classifcation model is then deployed to
make predictions on the test dataset. Prediction outputs along with the original bug
severity values are stored in an output text file. Performance metrics are calculated using
the perf tool on the output text file.

Performance measures, including precision, recall and F-measures are plotted
using Numpy and Matplotlib python libraries. Area under the curve (ROC) compares the
rate of true positives with the rate of false positives and indicates how good a classifier
performance is.

The overallAccuracy obtained is better than the accuracy reported by previous
works in the same field. Table 4, shows that accuracy is varying from 82% to 98% for
the binary classification model. Highest accuracy is obtained for the GNOME dataset (

98.025%), while the lowest accuracy is 82.951% for the KDE dataset.

14

- - Without Tag — With Tag
1.0 . . . T

True Positive

0.0 | | |
0.0 0.2 0.4 0.6 0.8 10

False Positive

Figure 1. ROC curve for binary classification without tag and with tag for the Moziilla
dataset

In Figure 1, Figure 2, Figure 3 and Figure 4, we can see two lines, one in green
and another one in red. The green line represents the graph related to the result for the
dataset with tags while red is describing the results for the dataset that did not include
tags. This graph is plotted between true positive and false negative. True positive is
correctly classified instances while falsely positive represent incorrectly classified

instances. If the curve is closer to the left border and the top border, the result is more

15

accurate. If the curve is closer to 45-degree diagonal on the graph, the result are

considered less accurate.
In Figure 1 we can see that the results for the dataset without tags are closer to the
left border and the top border, which means, the results results are sligthly better as

compared to the dataset with tag.

- - Without Tag — With Tag

1.0

0.8

e
o

True Positive

o
~

0.2

0.0 | | |
0.0 0.2 0.4 0.6 0.8 10

False Positive

Figure 2. ROC curve for binary classification without tag and with tag for the Eclipse
dataset
Figure 2 shows that we have significantly better result for without tag data instead

of with tag data.

16

- - Without Tag — With Tag
1.0 . . . T

True Positive

0.0 | | |
0.0 0.2 0.4 0.6 0.8 10

False Positive

Figure 3. ROC curve for binary classification without tag and with tag for the KDE
dataset
Figure 3 has a much better result in terms of the data, which has the tag. If we
compare it to previous figures, we can find that the data with tags, has the same curve as

the data without tag.

17

- - Without Tag — With Tag

1.0 — —
p—

0.8 .

0.6 - .

True Positive

0.2} .

0.0 | | |
0.0 0.2 0.4 0.6 0.8 10

False Positive

Figure 4. ROC curve for binary classification without tag and with tag for GNOME
dataset
Figure 4 shows the data for GNOME for both tag and without tag. We can see
from the graphthat these are the best result we have obtained among all four datasets for
binary classification. The curve follows closer to the left border and the upper border

which means is the most accurate among all four datasets.

5.1.2 Binary classification with tag data
Here, we follow the same procedure as above except for one change. Four extra

keywords, extracted with the help of the keyword extraction library, are added to our raw

18

dataset, making the total number of field count equal to seventeen. The new fields are
named tagl, tag2, tag3 and tag4. The keyword extraction algorithm produces a list of
important keyword with weights assigned to each keyword. We use our tag extraction
script written in python to select the top four most important keywords.

For binary classification with tag data we have got accuracy ranging between 80%
to 97%. As we can see in Table 4, accuracy has decreased in all four cases when we add
tags and that the running time is higher as compare to without tag data. In these tag
datasets, the lowest accuracy obtainedwas for the Mozilla dataset (80.328%). While we
have got 96.648% accuracy as highest one in Gnome dataset.

We are exploring accuracy and time is seconds taken to build a model for each
dataset with and without dataset in Table 4. This table shows that if we use the extra tags,

time increases to build a model while no significant improvement in accuracy is seen.

Table 4. Accuracy and time stamps for both the data with tag and without tag in binary

classification
Time(s) Accuracy Time(s) Accuracy
(%) (%)

Dataset | No Tag No Tag Tag Tag
Eclipse 13.062 92.449 | 21.903 86.111
Gnome 8.823 98.025 | 21.762 96.648
KDE 14.486 82.951 | 19.271 82.772
Mozilla | 21.953 92.714 | 19.789 80.328

we are comparing three additional measures for each dataset in both conditions
with tag and without tag. Values of precision, recall and F-1 measures are reported as

almost same in each dataset in both cases, with or without tag.

19

Table 5, we are comparing three additional measures for each dataset in both
conditions with tag and without tag. Values of precision, recall and F-1 measures are

reported as almost same in each dataset in both cases, with or without tag.

Table 5. Values of Precision, Recall and F-1 in binary

No Tag Tag No Tag Tag No Tag | Tag
Dataset | Precision | Precision | Recall Recall | F score | F score
Eclipse 0.647 0.645 0.721 0.720 0.654 0.652
Gnome 0.911 0.900 0.826 0.908 0.866 0.899
KDE 0.687 0.685 0.775 0.775 0.707 0.707
Mozilla 0.861 0.862 0.894 0.894 0.857 0.858

5.2 Multi-Class Classification

After performing our experiment on binary classification, we performed a similar
experiment on multi-class classification. In multi-class classification, we calculate
accuracy, precision, recall and plot ROC curve again for two different cases first is for

without tags datasets and the second is by generating tags datasets.

5.2.1 Multi-class classification on without tag data

The same procedure is followed as that for binary classification without tags
except for one major change. During the conversion of the csv file, containing bug
reports, all the seven severity levels remain as they are and are assigned values from one
to seven where one being least severe and seven being most severe.

In Table 6, we can see that the accuracy is varying from 72% to 91% in multi-
classclassification in case of no tag. Highest accuracy, we have got for the GNOME

dataset (90.942%), while the lowest accuracy is 72.116% for the Eclipse dataset.
20

In all four graphs for the multi-class classification below, we used two different
lines in two colors, red and green. The red color line shows the curve for the without tag
dataset while green lines show the results for the with tag dataset. For better test result
curve should be closer to the top upper left corner. The closer is the curve to the left
upper curve, better the test result would be. The graph is also showing the values for area

for both with tag and without tag datasets.

Receiver operating characteristic for multi-class
T T T

True Positive Rate

e == WithoutTag ROC curve (area = 0.84)
e — WithTag ROC curve (area = 0.84)
00 - - | 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 5. ROC curve for multi-class classification without tag and with tag for Eclipse

dataset

21

Figure 5 shows that without tags and with tag results have same curve. It also

shows that both kinds have the same area, which is 0.84.

Receiver operating characteristic for multi-class
T T T

1.0} -
b .7
// ’
0.8 { v .
, -
@ /,
o .7
~ 06} . |
= -
- -
w -
o -
[« 18 E . #
S 0.4 i]
= e
-
/’ :
0.2} I _
e = = WithoutTag ROC curve (area = 0.95)
Pid — WithTag ROC curve (area = 0.95)
0.0 - | | 1 1
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 6. ROC curve for multi-class classification without tag and with tag for the
GNOME dataset

Figure 6 shows that without tags and with tag have better curves than the Eclipse
dataset curve. It is closer to the upper left corner. It also shows that both kinds have same

and much better area (0.95), for both with tag and without tag data.

22

Receiver operating characteristic for multi-class
T T T

1.0}

0.8}
B -
2 -
= 0.6 . |
= .
a P ~
[e] Pl
o . ”
S 04l e]
= e

0.2 L7 1

e - == WithoutTag ROC curve (area = 0.87)
e — WithTag ROC curve (area = 0.87)
00 - | 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 7. ROC curve for multi-class classification without tag and with tag for KDE
dataset

Figure 7 shows that without tags and with tag have better curves than the Eclipse
dataset curve, but lesser accurate to gnome curve. It has less area as compared to
GNOME dataset graph in both cases whereas; the area under the ROC curve in both

cases is 0.87.

23

Receiver operating characteristic for multi-class
T T T

10 ~ ___.._.--1—'
"/
[.
0.8 s |
-~
. Fd
w /,
© e
0.6 . |
= .
= -
(%] Fa
[e] Pl
o -
ﬂJ -
= 04 P i
= [’ p
/.ﬂ
rd /,
0.2 R .
e - == WithoutTag ROC curve (area = 0.94)
e — WithTag ROC curve (area = 0.94)
00 - | 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 8. ROC curve for multi-class classification without tag and without tag for the
Mozilla Dataset

Figure 8 shows the Mozilla dataset has the second best curve after the GNOME
dataset. It has also better area under ROC curve. If we compare it with the GNOME in

terms of area, it is only short by 0.01.

24

5.2.2 Multi-class classification on with tag data

The same procedure is followed as that for binary classification with tags except
for one major change. During the conversion of the csv file, containing bug reports, all
the seven severity levels remain as they are and are assigned values from one to seven
where one being least severe and seven being most severe.

Accuracy improves by slightly less than 1 percent in some dataset. We can see
that in Table 6 the accuracy is varying from 72% to91 % in multi-class classification in
case of tag. We obtained the highest accuracy in the GNOME dataset, which is 90.826%,
while the lowest accuracy is 72.024% in Eclipse dataset.

Table 6 describes the accuracy and running time for all four datasets. It is also
comparing the accuracy and time taken to build the model between with tag and without
tag dataset. There is not much improvement in time as well as accuracy, however we can

see a slight improvement for the Mozilla dataset.

Table 6. Accuracy with or without tag in multiclass

Time(s) | Accuracy (%) | Time(s) | Accuracy (%)
Dataset | No Tag No Tag Tag Tag
Eclipse 3.834 72.116 4.404 72.024
Gnome 6.723 90.942 | 10.717 90.826
KDE 2.105 77.571 3.102 77.513
Mozilla 7.774 89.409 7.774 89.447

Table 7 is explaining all three measures for all four datasets in both cases with tag
and without tag. In both cases, if we analyse precision in tag and no tag, we find that
apart from GNOME dataset all other datasets have a better result in the no tag case. For

25

recall, GNOME and KDE have better result in the tag case. F-1 measure has better result

for GNOME dataset in the tag case.

Table 7. values of precision, recall and F-1 in multiclass

No Tag | Tag No Tag | Tag No Tag | Tag
Dataset | Precision | Precision | Recall | Recall | F score | F score
Eclipse 0.51969 | 0.41402 [0.21838 | 0.16085 | 0.30754 | 0.23169
Gnome | 091101 | 0.98547 | 0.82689 | 0.97135 | 0.86691 | 0.97836
KDE 0.90423 | 0.86935 | 0.84312 | 0.86935 | 0.87261 | 0.82166
Mozilla [0.65876 | 0.58921 | 0.44732 | 0.42019 | 0.53283 | 0.4598

In Table 8, we compare our results with results previously reported by Lamkanfi.
We compare the highest value of precision and recall in any case of Lamkanfi research
with our highest value of precision and recall in any case. We can see from the table 8
apart from Eclipse dataset (which is also very close to Lamkanfi work) we have good

values of precision and recall in both GNOME and Mozilla datasets.

Table 8. Comparison of Precision and Recall between our result and Lamkanfi result

Lamkanfi Our Result
Datasets | Precision | Recall | Precision | Recall
Eclipse 0.713 | 0.738 0.647 | 0.721
Gnome 0.828 | 0.842 0.985 | 0.971
Mozilla 0.752 | 0.785 0.862 | 0.894

In Table 9, we compare the area under curve values with Lamkanfi [15] work in
any case of the dataset. We can see that for Eclipse, GNOME and Mozilla datasets our

results are better than the result of Lamkanfi.

26

Table 9. Comparison of Area under curve between Lamkanfi and our result

Lamkanfi | Our Result
Datasets AUC AUC
Eclipse 0.775 0.84
Gnome 0.869 0.95
Mozilla 0.813 0.94

In Table 10, we compared our work for F-1 measure with Tian et al. [5], Valdivia
et al. [16] and baseline model in Eclipse and Mozilla open source software system. We
can see that in the Tian’s research F-1 score is 65.10%, in Valdivia is 15.40% and in
baseline model F score is 5.30% that are less than our result 65.20% in Eclipse dataset.
On the other hand, in the Mozilla dataset, our result of the F-1 score (85.80%) is much

better than the Tian (56.00%), Valdivia (42.10%) and baseline model (20.05%).

Table 10. Comparison of F score between Tian, Valdivia, Baseline model and our result

in Eclipse and Mozilla
Tian Valdivia | Baselinemodel | Our work
Dataset F score | F score Fscore F score
Eclipse 65.10% | 15.40% 5.30% 65.20%
Mozilla 56.00% | 42.10% 20.05% 85.80%

27

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we present an approach that combines feature extraction and
machine learning to predict the severity level of a bug report. We are using keyword
extraction text-mining algorithm for extracting keywords. With the help of the keyword
extraction algorithm, we extracted important keywords from description feature and used
four different tags in each binary and multi-class classification case. Then. we trained
model on 90% of refined data using machine learning algorithms. After training the
model, we tested this model on the 10% refined dataset. This obtained refined dataset,
better performace and achieved higher classification accuracy. We validated our
approach on bug reports from Eclipse, Mozilla, GNOME and KDE. The average
accuracy of our method is greater than 90% and performs better than many other present
time machine learning approaches for bug classification. We also compare precision,
recall, F-1 score and ROC curves with other research we claim to have improved the
performance for each dataset (precision varies from 0.4 up to 0.98, recall varies from 0.16
up to 0.97, F-1 score varies from 0.23 to 0.97 and the highest value of the ROC curve is
0.95). In future, we plan to include a combination of text mining algorithms to see if we
can improve our accuracy further. We would also like to test our refined data on new

machine learning algorithms to find if significant speed improvements could be achieved.

28

APPENDIX

Dataset used in CSV format

A

Q314 #0:6T 80/0T/T
XIALNOM T:8T 80/0T/T
Q3xI4 £1°8T 80/0T/T

Q314 60:8T 80/0T/T

Q3xI14 BE:LT 80/0T/T

Q3xI4 S5°9T 80/0T/T
31¥JIMdNAN E5:4T 80/0T/T
Q3x14 8E:9T 80/0T/T

Q3xI4 87°9T 80/0T/T
uopnjosal 5} UONEAID

Q3N10S3Y S5t 80/TT/T
a3INI0S3Y SSHT ET/9/9
Q350M0 TYLT BO/T/L
Q3I4I¥3A ST:ZT 80/%/T
Q3NI0S3Y 8TTT OT/6/2T
a314143A TYST BO/S/T
Q3N10S3Y SEL 60/L1/6
Q3NI0S3Y 6T:LT 80/0T/T

a314143A 0E:9T BO/ST/T
snjejs 8ng 5} eyap

Wal p'e

N #'€

Aaauuod 91
alo) TEE

uojlepunog T

N ¥e

BN ZT
sajpung payadsun

SJ01EqNIU| §'E
wauodwod uoissan

£d 3] [Busanoy]
£d |gnag [wil]
£d 1 uopauuoy
£d31dwod][5'T]
£d ge aanpoJiu|
£d s13ay ul-3nig
£d 28 0} @|qeun
£d 2"ayoedeSio
€d [Buyjoos de]
Ajuoud 2sap loys

Il JOURU Jul[RUORIPPY
[uswaoueyua ased e pey |
i |BWIOu [303UU0d BY|
0 |ew.ou 03 A1y 2sea|d
i} |ew.ou .ySju Juaun)
il |ewJou 43 0] JUB3W |
i |ewJou | 0} 3|geun §|
] |ewuou dedeSio ayl
il |elouy Jsping syl

pidnp Ajuanas™8ng uondudsap

wJopield
wiopeld
sj00) E3EQ
lar
jurasdija3
3ad

uAjAg
ugi0

3ad
janpoud

29

B: Converted data in VW format
2 1.0 214966[xsnum digit:0 istart:1 textblock:1 url:0 lines:3 question:0 period:3
finalthanks:0 initcap:3 exclam:0 nonword:5 sent:3 codeblock:0 |yslen code:0 lasttext:439
title:60 text:439 lastcode:0 firsttext:439 firstcode:0 |zsratio esent:0.0 ftext:1.0 gsent:0.0
psent:1.0 fcode:0 ftc:0 tc:0 |wsmean text:439.0 code:0 sent:145.333333333
|short descwords search for problems api selectively tooling usage more [bodywords and
this all reference process into up will api references determine in speed any if information
from for to support there extracted add usage prerequisite resolved then allow problems
component elementsconditions appears those noreference a restrictions search 1 builder
modified us specific collect previoulsy components were the first
2 1.0 214967|xsnum digit:2 istart:0 textblock:1 url:0 lines:1 question:0 period:1
finalthanks:0 initcap:1 exclam:0 nonword:3 sent:1 codeblock:0 |yslen code:0 lasttext:93
title:42 text:93 lastcode:0 firsttext:93 firstcode:0 |zsratio esent:0.0 ftext:1.0 gsent:0.0
psent:1.0 fcode:0 ftc:0 tc:0 |[wsmean text:93.0 code:0 sent:93.0 [short descwords
abouthtml orgapachecommonspool missing |bodywords 13 builds missing abouthtml is
orgapachecommonspool bundle an version in the latest
2 1.0 214971 |xsnum digit:0 istart:0 textblock:1 url:0 lines:1 question:0 period:0
finalthanks:0 initcap:1 exclam:0 nonword:1 sent:1 codeblock:0 |yslen code:0 lasttext:82
title:55 text:82 lastcode:0 firsttext:82 firstcode:0 |zsratio esent:0.0 ftext:1.0 gsent:0.0
psent:0.0 fcode:0 ftc:0 tc:0 [wsmean text:82.0 code:0 sent:82.0 [short descwords tasks no
edit task to unable reassign permissions if [bodywords a tasks reassing to is actions field

unable through in reassign the panel

30

REFERENCES

[1] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing Mining
Algorithms for Predicting the Severity of a Reported Bug,” in 2011 15th European
Conference on Software Maintenance and Reengineering (CSMR), 2011, pp. 249-258.

[2] N. Serrano and 1. Ciordia, “Bugzilla, ITracker, and other bug trackers,” IEEE
Softw., vol. 22, no. 2, pp. 11-13, Mar. 2005.

[3] “Open Source Software and the ‘Private-Collective’ Innovation Model: Issues for
Organization Science,” Organ. Sci., vol. 14, no. 2, pp. 209-223, Apr. 2003.

[4] T. Menzies and A. Marcus, “Automated severity assessment of software defect
reports,” in IEEE International Conference on Software Maintenance, 2008. ICSM 2008,
2008, pp. 346-355.

[5] Y. Tian, D. Lo, and C. Sun, “Information Retrieval Based Nearest Neighbor
Classification for Fine-Grained Bug Severity Prediction,” in 2012 [19th Working
Conference on Reverse Engineering (WCRE), 2012, pp. 215-224.

[6] Y. Tian, D. Lo, and C. Sun, “DRONE: Predicting Priority of Reported Bugs by
Multi-factor Analysis,” in 2013 [EEE International Conference on Software
Maintenance, Los Alamitos, CA, USA, 2013, vol. 0, pp. 200-209.

[7] Y. Tian, D. Lo, X. Xia, and C. Sun, “Automated prediction of bug report priority
using multi-factor analysis,” Empir. Softw. Eng., vol. 20, no. 5, pp. 1354-1383, Aug.
2014.

(8] A. Lazar, S. Ritchey, and B. Sharif, “Improving the Accuracy of Duplicate Bug

Report Detection Using Textual Similarity Measures,” in Proceedings of the 1l1th

31

Working Conference on Mining Software Repositories, New York, NY, USA, 2014, pp.
308-311.

[9] “JohnLangford/vowpal wabbit,” GitHub. [Online]. Available:
https://github.com/JohnLangford/vowpal wabbit. [Accessed: 16-Feb-2016].

[10] “Stochastic gradient descent,” Wikipedia, the free encyclopedia. 03-Feb-2016.
[11] L. Bottou, “Stochastic Gradient Descent Tricks,” in Neural Networks: Tricks of
the Trade, G. Montavon, G. B. Orr, and K.-R. Miiller, Eds. Springer Berlin Heidelberg,
2012, pp. 421-436.

[12] “zelandiya/RAKE-tutorial,” GitHub. [Online]. Available:
https://github.com/zelandiya/RAKE-tutorial. [Accessed: 02-May-2016].

[13] “KDD Cup 2004 - Download PERF Software.” [Online]. Available:
http://osmot.cs.cornell.edu/kddcup/software.html. [Accessed: 02-May-2016].

[14] “scikit-learn: machine learning in Python — scikit-learn 0.17.1 documentation.”
[Online]. Available: http://scikit-learn.org/stable/index.html. [Accessed: 02-May-2016].
[15] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity of a
reported bug,” in 2010 7th IEEE Working Conference on Mining Software Repositories
(MSR), 2010, pp. 1-10.

[16] H. Valdivia Garcia and E. Shihab, “Characterizing and Predicting Blocking Bugs
in Open Source Projects,” in Proceedings of the 11th Working Conference on Mining

Software Repositories, New York, NY, USA, 2014, pp. 72-81.

32

	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 DATASET USED
	CHAPTER 3 RELATED WORK
	3.1 Assigning severity levels automatically
	3.2 Assigning severity levels using text mining algorithm
	3.3 Severity prediction using nearest neighbor classification
	3.4 Suggesting priority level by considering multifactor
	3.5 Detection of bug report using textual similarity features

	CHAPTER 4 METHOD
	4.1 Machine learning
	4.2 Stochastic gradient descent (SGD)
	4.3 Keyword extraction
	4.4 Generating features
	4.5 Building the training and testing datasets
	4.6 Measures

	CHAPTER 5 EXPERIMENT
	5.1 Binary Classification
	5.1.1 Binary classification without tag data
	5.1.2 Binary classification with tag data

	5.2 Multi-Class Classification
	5.2.1 Multi-class classification on without tag data
	5.2.2 Multi-class classification on with tag data

	CHAPTER 6 CONCLUSION AND FUTURE WORK
	APPENDIX
	A: Dataset used in CSV format
	B: Converted data in VW format
	REFERENCES

		2016-05-20T14:16:10-0400
	College of Graduate Studies

