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ABSTRACT 

As software systems become larger and more complicated, the task of detecting 

and fixing bugs to improve the software performance is getting more tedious and 

inefficient. Automated processes that detect and report bugs quickly and with high 

accuracy are needed. In this thesis, we describe an approach, which is fast and performs 

the bug classification task with comparatively better accuracy then previously reported 

research. Here, we used the machine learning methods, specifically an online algorithm 

for bug classification. This approach involves the use of text mining algorithm for feature 

extraction. Then the data is used to train classifier models using an online machine 

learning classification algorithm for optimized performance. The above steps are done 

twice, once for a binary model and once with a multi-class model. The multi-class model 

predicts as many as seven bug severity levels with the aim of prioritizing the bug 

assignment process. After analyzing all four datasets collected from open source software 

system, we can predict good with accuracy (72%-98%) if the data is balanced and has 

sufficient size of training set. 
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of a bug classifier, feature extraction techniques could be employed to feed refined 

information to the classifier. This can be achieved with text mining algorithms that can 

extract important keywords from different bug reports. Text mining have previously been 

used for picking up high importance words from the bug reports, and these words along 

with the original bug report can be effectively used further to improve the overall bug 

classification accuracy of a classifier. In this research, we are aiming to investigate the 

bug classification accuracy of an online machine learning classifiers. We further use a 

keyword extraction algorithm for extracting important tags and then couple them with the 

original bug report to observe whether we can obtain marked improvement in the 

prediction accuracy of the classifier.  

Next, we explore the accuracy of online machine learning algorithm multi-class 

model for classifying bugs into seven different levels of severity: trivial, normal, minor, 

major, enhancement, critical and blocker. We extend our work to include keyword 

extraction algorithm for tag extraction to analyze its effects on the prediction accuracy of 

multi-class classifier. Even though our approach of automatic categorization does not 

achieve perfect accuracy, it shows noticeable improvement in the prediction accuracy and 

hence promises improved performance of the software maintenance tasks.  
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Table 1. Number of Instances in each Dataset 

Dataset Number of 
Instances 

Eclipse 361,006 
Gnome 327,574 
KDE 279,843 
Mozilla 768,335 

                        

 Table 2 shows the number of instances in two categories: non-severe and severe. 

The number of non-severe instances is higher in each dataset as compare to the number 

of severe instances. Percentage of severe instances in Eclipse, Gnome, KDE and Mozilla 

are as follow 15.07%, 43.09%, 48.91% and 19.30%. 

Table 2. Number of non-severe and severe instances in Binary datasets 
Dataset Non-severe Severe 
Eclipse 306,571 54,435 
Gnome 186,452 141,152 
KDE 142,955 136,888 
Mozilla 619,980 148,355 

 

Table 3 reports all the seven-bug severities used for multi-class classification. 

This table shows the number of trivial, normal, minor, major, enhancement, critical and 

blocker number of instances in each dataset. 

Table 3. Number of Trivial, Normal, Minor, Major, Enhancement, Critical and Blocker 
in multiclass datasets 

Dataset Trivial Normal Minor Major Enhancement Critical Blocker 

Eclipse 4,815 242,819 13,438 35,367 45,499 12,845 6,223 
Gnome  5,337 137,818 16,584 17,968 26,683 116,986 6,198 
KDE 0 138,087 4,868 3,727 0 1,449 0 
Mozilla 16,134 523,540 36,617 71,084 43,689 65,478 11,793 
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65% - 75% and recall varies from 70% - 85%. Lamkanfi further expand his work by 

comparing machine learning algorithms (Naïve Bayes, Naïve Bayes multinomial, K-

Nearest Neighbor and Support Vector Machines) to predict the severity of bug reports 

[1]. InFor the Eclipse and Gnome open source systems, Lamkanfi showed that the Naïve 

Bayes multinomial algorithm performs better than the other approachs. Their reported 

accuracy varies from 48% - 93% 

3.3 Severity prediction using nearest neighbor classification 

 Apart from the above mentioned works, Tian et al. [5] presented an approach to 

predict fine grained bug severity prediction using nearest neighbor classification. The 

method they used automatically detects and analyzes bug reports, which had been 

reported in past days with severity labels, and with the help of these reports suggests 

severity labels to new reported bug reports. They used duplicate bug reports with relative 

information and features to determine similarity between both reports. This similarity in 

information helps in assigning the severity labels accurately and quickly.   

3.4 Suggesting priority level by considering multifactor 

 Other work of Tian et al. [6] presented an automated approach with the help of 

machine learning in suggesting a priority level on the basis of information in bug reports. 

They consider multifactor temporal, textual, author, related reports, product and severity, 

as potential factors, which affect the priority level of reported bug reports. They use these 

factors as features to train a model with the help of a classification algorithm 

(thresholding and linear regression), which can perform well in ordinal class labels and 
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imbalanced data. They conducted their experiment on more than 100,000 reports 

collected from Eclipse. This experiment shows an improvement of 58.61% in terms of 

average F-measure by outperforming baseline approach. Tian et al. [7] extended their 

previous work by using extracted features to train a discriminative model via a new 

classification algorithm (linear regression) and their framework named DRONE. The new 

work provides a way to handle ordinal class labels and imbalanced data. They managed 

to improve their work on 100,000 bug reports from Eclipse in terms of F-measure by 

209%, which outperform baseline approach. 

3.5 Detection of bug report using textual similarity features 

 In addition to this, Lazar et al. [8] presented an approach, in which they 

implement an improved method of detecting duplicate bug reports using the textual 

similarity features and binary classification. They used a total of 25 textual features, then 

run their classification method to categorize pairs of bugs into two types: duplicate and 

non-duplicate. They used new texual features, derived based on text similarity measures, 

and trained several binary classification models. After training the models, they tested 

their work on bug reports collected from Eclipse, OpenOffice and Mozilla to analyze the 

effectiveness of the improved method. They also compared it with the current state-of-

the-art and highlighted the similarities and differences. They were able to achieve an 

improvement of 6.32% in duplicate bug report detection even without considering 

context-based features. 
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4.2  Stochastic gradient descent (SGD) 

The VW, SGD implementation is one of the fastest online gradient optimization 

algorithm through which we can optimize processing large datasets. In other words, the 

algorithm minimizes the loss function or the objective function [10]. SGD doesn’t 

compute the gradient exactly as other algorithms do. However, it randomly picks 

examples to estimate the gradient in all iteration. SGD does not need to remember its 

previous iteration example, because of its randomly drawn example nature. Bottou 

applied SGD to different variables by enforcing its positivity to help obtain sparser 

solutions [11]. 

4.3  Keyword extraction 

If you are working with text, keyword extraction or tag extraction is an important 

topic. Keyword extraction can be very usefull for index or glossary creation, 

summarizing and word cloud creation. For this task, we are using the keyword extraction 

library named RAKE [12]. This library is a keyword extraction algorithm implemented in 

python. Keywords are of primary importance when we are discussing about texts. 

Through keywords we can build our understanding of the topic expressed in the 

document. Usually, the keyword extraction algorithm is a three-step algorithm. It 

includes candidate selection, properties calculation and scoring, and keywords selection. 

In candidate selection, we extract all those words and phrases, which can be keywords. 

Property calculator calculates a property score for each keyword candidate. To select the 

final keyword, each candidate is scored by combining properties into a formula or by 

machine learning technique. The keyword extraction algorithm helps in automatically 



 

10 

 

getting the most significant words and phrases from the documents, which are under 

analysis.   

4.4 Generating features 

We downloaded four different datasets of bug reports from open source 

repositories. Each dataset Includes the following thirteen features: bug_id, product, 

description, bug_severity, dup_id, short_desc, priority, version, component, delta_ts, 

bug_status, creation_ts and resolution. In both, binary and multi-class, classifications we 

generated four new features named as tag1, tag2, tag3 and tag4. We are using the 

keyword extraction algorithm to generate aforementioned four features. 

4.5 Building the training and testing datasets 

We are using a script written in python to divide the datasets into training and test 

sets. We divide the data into a train and test datasets in the ratio 9:1. The datasets are then 

converted from the cvs format into the online machine learning format. The data is then 

scaled down into the [0,1] interval.  We assigned the value zero to non-severe bugs and 

value one to severe in case of binary classification.   

4.6 Measures 

Usually, in most research about classification methods, accuracy is considered as 

the main measure to express performance. There are other measures, which can be used 

in addition to accuracy, especially when we are talking about highly imbalanced data. In 

order to obtain the holistic performance view, we give equal weightage to the following 

performance measures: precision, recall, f-measure and ROC curve. We use Perf [13] to 
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calculate performance measures in binary classification. It is a tool that calculates 

performance measures. We also used the scikit-learn kit [14] for multi-class 

classification. These tools are customized for calculating machine learning performance 

metrics. They can help in calculating different performance metrics for binary 

classification and multi-class classification problems. Perf and scikit-learn include 

different measures, out of which we used accuracy, precision, recall, F-score and area 

under the ROC curve. Following are the definitions and formula of the precision, recall 

and F-score measures: 

Precision (P): The percentage bugs report correctly predicted either severe or non-

severe. Then we consider precision for each severe and non-severe category separately. It 

is defined it: 

Precision =  
tp

tp + fp
                                                                              (1) 

 Where tp stands for true positive and fp stands for false positives. Moreover, in 

our case true positive is correctly classified instances and false positive is incorrectly 

classified instances. 

Recall (R): The percentage of all bug reports with a severity severe and non-

severe that is correctly predicted as severe or non-severe called recall. It can be formally 

defined as:  

 

Recall =  
tp

tp + fn
                                                                 (2) 

Here fn stands for false negative. In our case false negative is incorrectly 

classified instances. 
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F-measure (F): The weighted harmonic mean of precision and recall is called F-

measure. The harmonic mean is a conservative average. Usually the balanced F-measure 

is used. It is defined as follows: 

 

F-measure = 2*
presision * recall

presision +  recall
 

For positive real β 

f-measure =
(β2+1)precision.recall

β2precision+recall
                                  (3)         

 

  





 

14 

 

and test datasets using a ratio of 9:1. The train dataset is then used to train the online 

machine learning binary classification model. The classifcation model is then deployed to 

make predictions on the test dataset. Prediction outputs along with the original bug 

severity values are stored in an output text file. Performance metrics are calculated using 

the perf tool on the output text file.  

Performance measures, including precision, recall and F-measures are plotted 

using Numpy and Matplotlib python libraries. Area under the curve (ROC) compares the 

rate of true positives with the rate of false positives and indicates how good a classifier 

performance is.  

  The overallAccuracy obtained is better than the accuracy reported by previous 

works in the same field.  Table 4, shows that accuracy is varying from 82% to 98% for 

the binary classification model. Highest accuracy is obtained for the GNOME dataset ( 

98.025%), while the lowest accuracy is 82.951% for the KDE dataset. 
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Figure 1. ROC curve for binary classification without tag and with tag for the Moziilla 
dataset 

 

 

In Figure 1, Figure 2, Figure 3 and Figure 4, we can see two lines, one in green 

and another one in red. The green line represents the graph related to the result for the 

dataset with tags while red is describing the results for the dataset that did not include 

tags. This graph is plotted between true positive and false negative. True positive is 

correctly classified instances while falsely positive represent incorrectly classified 

instances. If the curve is closer to the left border and the top border, the result is more 
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accurate. If the curve is closer to 45-degree diagonal on the graph, the result are 

considered less accurate. 

In Figure 1 we can see that the results for the dataset without tags are closer to the 

left border and the top border, which means, the results results are sligthly better as 

compared to the dataset with tag. 

 

 Figure 2. ROC curve for binary classification without tag and with tag for the Eclipse 

dataset 

Figure 2 shows that we have significantly better result for without tag data instead 

of with tag data. 
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Figure 3. ROC curve for binary classification without tag and with tag for the KDE 

dataset 

Figure 3 has a much better result in terms of the data, which has the tag. If we 

compare it to previous figures, we can find that the data with tags, has the same curve as 

the data without tag. 
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     Figure 4. ROC curve for binary classification without tag and with tag for GNOME 
dataset 

 

Figure 4 shows the data for GNOME for both tag and without tag. We can see 

from the graphthat these are the best result we have obtained among all four datasets for 

binary classification. The curve follows closer to the left border and the upper border 

which means is the most accurate among all four datasets. 

5.1.2 Binary classification with tag data 

Here, we follow the same procedure as above except for one change. Four extra 

keywords, extracted with the help of the keyword extraction library, are added to our raw 
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dataset, making the total number of field count equal to seventeen. The new fields are 

named tag1, tag2, tag3 and tag4. The keyword extraction algorithm produces a list of 

important keyword with weights assigned to each keyword. We use our tag extraction 

script written in python to select the top four most important keywords.  

For binary classification with tag data we have got accuracy ranging between 80% 

to 97%. As we can see in Table 4, accuracy has decreased in all four cases when we add 

tags and that the running time is higher as compare to without tag data. In these tag 

datasets, the lowest accuracy obtainedwas for the Mozilla dataset (80.328%). While we 

have got 96.648% accuracy as highest one in Gnome dataset. 

We are exploring accuracy and time is seconds taken to build a model for each 

dataset with and without dataset in Table 4. This table shows that if we use the extra tags, 

time increases to build a model while no significant improvement in accuracy is seen. 

Table 4. Accuracy and time stamps for both the data with tag and without tag in binary 
classification 

  Time(s) Accuracy 
(%) Time(s) Accuracy 

(%) 
Dataset No Tag No Tag Tag Tag 
Eclipse 13.062 92.449 21.903 86.111 
Gnome 8.823 98.025 21.762 96.648 
KDE 14.486 82.951 19.271 82.772 
Mozilla 21.953 92.714 19.789 80.328 

we are comparing three additional measures for each dataset in both conditions 

with tag and without tag. Values of precision, recall and F-1 measures are reported as 

almost same in each dataset in both cases, with or without tag. 
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Table 5, we are comparing three additional measures for each dataset in both 

conditions with tag and without tag. Values of precision, recall and F-1 measures are 

reported as almost same in each dataset in both cases, with or without tag. 

Table 5. Values of Precision, Recall and F-1 in binary 
  No Tag Tag No Tag Tag No Tag Tag 
Dataset Precision Precision Recall Recall F score F score 
Eclipse 0.647 0.645 0.721 0.720 0.654 0.652 
Gnome 0.911 0.900 0.826 0.908 0.866 0.899 
KDE 0.687 0.685 0.775 0.775 0.707 0.707 
Mozilla 0.861 0.862 0.894 0.894 0.857 0.858 

 

5.2 Multi-Class Classification 

After performing our experiment on binary classification, we performed a similar 

experiment on multi-class classification. In multi-class classification, we calculate 

accuracy, precision, recall and plot ROC curve again for two different cases first is for 

without tags datasets and the second is by generating tags datasets. 

5.2.1 Multi-class classification on without tag data 

The same procedure is followed as that for binary classification without tags 

except for one major change. During the conversion of the csv file, containing bug 

reports, all the seven severity levels remain as they are and are assigned values from one 

to seven where one being least severe and seven being most severe. 

In Table 6, we can see that the accuracy is varying from 72% to 91% in multi-

classclassification in case of no tag. Highest accuracy, we have got for the GNOME 

dataset (90.942%), while the lowest accuracy is 72.116% for the Eclipse dataset. 
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In all four graphs for the multi-class classification below, we used two different 

lines in two colors, red and green. The red color line shows the curve for the without tag 

dataset while green lines show the results for the with tag dataset. For better test result 

curve should be closer to the top upper left corner. The closer is the curve to the left 

upper curve, better the test result would be. The graph is also showing the values for area 

for both with tag and without tag datasets. 

  

 

Figure 5. ROC curve for multi-class classification without tag and with tag for Eclipse 

dataset 
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Figure 5 shows that without tags and with tag results have same curve. It also 

shows that both kinds have the same area, which is 0.84. 

 

Figure 6. ROC curve for multi-class classification without tag and with tag for the 
GNOME dataset 

 

Figure 6 shows that without tags and with tag have better curves than the Eclipse 

dataset curve. It is closer to the upper left corner. It also shows that both kinds have same 

and much better area (0.95), for both with tag and without tag data. 
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Figure 7. ROC curve for multi-class classification without tag and with tag for KDE 
dataset 

 

Figure 7 shows that without tags and with tag have better curves than the Eclipse 

dataset curve, but lesser accurate to gnome curve. It has less area as compared to 

GNOME dataset graph in both cases whereas; the area under the ROC curve in both 

cases is 0.87. 
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Figure 8. ROC curve for multi-class classification without tag and without tag for the 
Mozilla Dataset 

 

Figure 8 shows the Mozilla dataset has the second best curve after the GNOME 

dataset. It has also better area under ROC curve. If we compare it with the GNOME in 

terms of area, it is only short by 0.01. 
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5.2.2 Multi-class classification on with tag data 

The same procedure is followed as that for binary classification with tags except 

for one major change. During the conversion of the csv file, containing bug reports, all 

the seven severity levels remain as they are and are assigned values from one to seven 

where one being least severe and seven being most severe. 

Accuracy improves by slightly less than 1 percent in some dataset. We can see 

that in Table 6 the accuracy is varying from 72% to91 % in multi-class classification in 

case of tag. We obtained the highest accuracy in the GNOME dataset, which is 90.826%, 

while the lowest accuracy is 72.024% in Eclipse dataset. 

 Table 6 describes the accuracy and running time for all four datasets. It is also 

comparing the accuracy and time taken to build the model between with tag and without 

tag dataset. There is not much improvement in time as well as accuracy, however we can 

see a slight improvement for the Mozilla dataset. 

Table 6. Accuracy with or without tag in multiclass 

  Time(s) Accuracy (%) Time(s) Accuracy (%) 

Dataset No Tag No Tag Tag Tag 
Eclipse 3.834 72.116 4.404 72.024 
Gnome 6.723 90.942 10.717 90.826 
KDE 2.105 77.571 3.102 77.513 
Mozilla 7.774 89.409 7.774 89.447 

 

Table 7 is explaining all three measures for all four datasets in both cases with tag 

and without tag. In both cases, if we analyse precision in tag and no tag, we find that 

apart from GNOME dataset all other datasets have a better result in the no tag case. For 
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recall, GNOME and KDE have better result in the tag case. F-1 measure has better result 

for GNOME dataset in the tag case.   

Table 7. values of precision, recall and F-1 in multiclass 
  No Tag Tag No Tag Tag No Tag Tag 
Dataset Precision Precision Recall Recall F score F score 
Eclipse 0.51969 0.41402 0.21838 0.16085 0.30754 0.23169 
Gnome 0.91101 0.98547 0.82689 0.97135 0.86691 0.97836 
KDE 0.90423 0.86935 0.84312 0.86935 0.87261 0.82166 
Mozilla 0.65876 0.58921 0.44732 0.42019 0.53283 0.4598 

 

In Table 8, we compare our results with results previously reported by Lamkanfi. 

We compare the highest value of precision and recall in any case of Lamkanfi research 

with our highest value of precision and recall in any case. We can see from the table 8 

apart from Eclipse dataset (which is also very close to Lamkanfi work) we have good 

values of precision and recall in both GNOME and Mozilla datasets. 

 Table 8. Comparison of Precision and Recall between our result and Lamkanfi result 

 
Lamkanfi Our Result 

Datasets Precision Recall Precision Recall 

Eclipse 0.713 0.738 0.647 0.721 

Gnome 0.828 0.842 0.985 0.971 

Mozilla 0.752 0.785 0.862 0.894 
 

In Table 9, we compare the area under curve values with Lamkanfi [15] work in 

any case of the dataset. We can see that for Eclipse, GNOME and Mozilla datasets our 

results are better than the result of Lamkanfi. 
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Table 9. Comparison of Area under curve between Lamkanfi and our result 

 
Lamkanfi Our Result 

Datasets AUC AUC 

Eclipse 0.775 0.84 

Gnome 0.869 0.95 

Mozilla 0.813 0.94 
 

In Table 10, we compared our work for F-1 measure with Tian et al. [5], Valdivia 

et al. [16] and baseline model in Eclipse and Mozilla open source software system. We 

can see that in the Tian’s research F-1 score is 65.10%, in Valdivia is 15.40% and in 

baseline model F score is 5.30% that are less than our result 65.20% in Eclipse dataset. 

On the other hand, in the Mozilla dataset, our result of the F-1 score (85.80%) is much 

better than the Tian (56.00%), Valdivia (42.10%) and baseline model (20.05%). 

Table 10. Comparison of F score between Tian, Valdivia, Baseline model and our result 
in Eclipse and Mozilla 

 
Tian Valdivia Baselinemodel Our work 

Dataset F score F score Fscore F score 

Eclipse 65.10% 15.40% 5.30% 65.20% 

Mozilla 56.00% 42.10% 20.05% 85.80% 
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APPENDIX 

A: Dataset used in CSV format 
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B: Converted data in VW format 

2 1.0 214966|xsnum digit:0 istart:1 textblock:1 url:0 lines:3 question:0 period:3 

finalthanks:0 initcap:3 exclam:0 nonword:5 sent:3 codeblock:0 |yslen code:0 lasttext:439 

title:60 text:439 lastcode:0 firsttext:439 firstcode:0 |zsratio esent:0.0 ftext:1.0 qsent:0.0 

psent:1.0 fcode:0 ftc:0 tc:0 |wsmean text:439.0 code:0 sent:145.333333333 

|short_descwords search for problems api selectively tooling usage more |bodywords and 

this all reference process into up will api references determine in speed any if information 

from for to support there extracted add usage prerequisite resolved then allow problems 

component elementsconditions appears those noreference a restrictions search i builder 

modified us specific collect previoulsy components were the first 

2 1.0 214967|xsnum digit:2 istart:0 textblock:1 url:0 lines:1 question:0 period:1 

finalthanks:0 initcap:1 exclam:0 nonword:3 sent:1 codeblock:0 |yslen code:0 lasttext:93 

title:42 text:93 lastcode:0 firsttext:93 firstcode:0 |zsratio esent:0.0 ftext:1.0 qsent:0.0 

psent:1.0 fcode:0 ftc:0 tc:0 |wsmean text:93.0 code:0 sent:93.0 |short_descwords 

abouthtml orgapachecommonspool missing |bodywords 13 builds missing abouthtml is 

orgapachecommonspool bundle an version in the latest 

2 1.0 214971|xsnum digit:0 istart:0 textblock:1 url:0 lines:1 question:0 period:0 

finalthanks:0 initcap:1 exclam:0 nonword:1 sent:1 codeblock:0 |yslen code:0 lasttext:82 

title:55 text:82 lastcode:0 firsttext:82 firstcode:0 |zsratio esent:0.0 ftext:1.0 qsent:0.0 

psent:0.0 fcode:0 ftc:0 tc:0 |wsmean text:82.0 code:0 sent:82.0 |short_descwords tasks no 

edit task to unable reassign permissions if |bodywords a tasks reassing to is actions field 

unable through in reassign the panel 
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