#### Phytoremediation of Lead Contaminated Soil from an Abandoned Urban Lot

by

Yener Ulus

#### Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in the

Biology

Program

# YOUNGSTOWN STATE UNIVERSITY

August, 2016

#### Phytoremediation of Lead Contaminated Soil from an Abandoned Urban Lot

Yener Ulus

I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research.

Signature:

Yener Ulus, Student

Approvals:

Dr. Carl G. Johnston, Thesis Advisor

Dr. Felicia P. Armstrong, Committee Member

Date

Date

Date

Dr. Josef B. Simeonsson, Committee Member

Dr. Salvatore Sanders, Associate Dean Graduate Studies and Research Date

Date

# Abstract

Soil is subjected to contamination from industrial activities as well as from old house paint. There are many soil remediation technologies including solidification, leaching, soil washing. However, these techniques are not cost effective and cause secondary pollution for the environment. (Jeanna R. Henry, 2000). Phytoremediation, the technology of using plants and their associated soil microorganism to remove environmental contaminants has recently been shown to be effective for removing lead from soil.

The aim of this project is to evaluate two different plants, *Helianthus annuus* (Sunflower) and Brassica Juncea (Indian Mustard), as well as the chealator N-(2-Hydroxyethyl) ethylenediamine- N,N',N'-triacetic acid trisodium salt (EDDS) for remediating lead contaminated residential soil.

There was significant interactions in roots between metal concentration and growth times  $(\alpha = 0.005)$ , and metal concentration and the different treatments ( $\alpha = 0.004$ ). However, there was no significant interactions between metal concentration values, treatment and growth time in the soil and shoots. With longer growth times, different metal extraction methods, multiple plants in a single pot would increase metals uptake, particularly lead.

# ACKNOWLEDGEMENTS

#### Dr. Carl G. Johnston,

First of all I would like to thank Dr. Johnston for letting me be a part of his lab. You guided me through past two years and helped to learn new things. Thank you.

#### Dr. Felicia P. Armstrong, Dr. Josef B. Simeonsson, (my committee),

My committee members helped me many times with every question that I had to solve. Thank you.

#### Dr. Thomas P. Diggins,

I would like to thank Dr. Diggins for helping me to do statistical analysis.

#### Dr. Patricia, Joshua Engle and Kevin Summerville,

Also, I would like to thank you Dr. Patricia, Joshua Engle and Kevin Summerville, for helping me for technical support.

# **TABLE OF CONTENTS**

| ABSTRACT                                        | iii       |
|-------------------------------------------------|-----------|
| ACKNOWLEDGEMENTS                                | iv        |
| TABLE OF CONTENTS                               | V         |
| LIST OF FIGURES                                 | vii       |
| CHAPTER 1: INTRODUCTION                         | 1         |
| 1.1 LEAD POLLUTION IN URBAN SOIL                | 1         |
| 1.2 PHYTOREMEDIATION                            | 2         |
| 1.3 INDIAN MUSTARD & SUNFLOWER AS A HYPERACCUMU | JLATORS.3 |
| 1.4 CHELATOR EFFECTS ON PHYTOREMEDIATION        | 4         |
| CHAPTER 2: SPECIFIC AIMS AND HYPOTHESIS         | 5         |
| 2.1 RESEARCH GOALS                              | 6         |
| 2.2 HYPOTHESIS                                  | 6         |
| CHAPTER 3: MATERIALS AND METHODS                | 6         |
| 3.1 SELECTED PLANT SPECIES                      | 7         |
| 3.2 PLANTING                                    | 7         |
| 3.3 SITE HISTORY                                | 8         |
| 3.4 SOIL COLLECTION                             | 11        |
| 3.5 REMOVAL OF ORGANIC MATTER, CALIBRATION OF   |           |
| HYDROMETER ABD SOIL TEXTURE ANALYSIS            | 12        |
| 3.6 SOIL PH                                     | 12        |
| 3.7 ORGANIC MATTER                              | 13        |
| 3.8 MEHLICH III AVAILABLE METAL EXTRACTION      |           |

| 3.9 METAL EXTRACTION BY LITHIUM METABORATE14             | 4 |
|----------------------------------------------------------|---|
| 3.10 PLANT TISSUE ANALYSIS14                             | 4 |
| 3.11 PREPRATION OF STANDARDS FOR STANDARD CURVE14        | 1 |
| 3.12 EXPERIMNET DESIGN                                   | 5 |
| CHAPTER 4: RESULTS                                       | 8 |
| 4.1 RESULT SUMMARY                                       | 8 |
| CHAPTER 5: DISCUSSION                                    | 9 |
| CHAPTER 6: APPENDICES                                    | 2 |
| Appendix A SOIL METAL CONCENTRATIONS                     | 2 |
| Appendix B SHOOT METAL CONCENTRATIONS                    | 5 |
| Appendix C ROOT METAL CONCENTRATIONS                     | 0 |
| Appendix D SOIL AVAILABLE METAL CONCENTRATIONS FOR GROUP |   |
| B74                                                      | 4 |
| Appendix E STATISTICAL ANALYSIS FOR THE ALL METAL        |   |
| CONCENTRATIONS OF THE PLANT ROOTS                        | 5 |
| CHAPTER 7: REFERENCES                                    | 6 |

# **LIST OF FIGURES**

| Figure                                                                            | Page   |
|-----------------------------------------------------------------------------------|--------|
| 1 Site location, Warren, north eastern Ohio.                                      | 9      |
| 2 Site map of 734 Mercer, Warren, Ohio on May 10 indicating where the house stru  | icture |
| was located (before demolition) and of locations (Shown as arrows) where soil was |        |
| collected for this study.                                                         | 10     |
| 3 Photograph of the site showing the abandoned house prior to demolition.         | 11     |
| 4 Diagram of Phytoremediation Experimental Design.                                | 17     |
| 5 Selected properties of the initial soil used for this study.                    | 20     |
| 6 Graph indicating available Ba concentration in controls and group B.            | 21     |
| 7 Graph indicating available Ca concentration in controls and group B.            | 21     |
| 8 Graph indicating available Cr concentration in controls and group B.            | 22     |
| 9 Graph indicating available Cu concentration in controls and group B.            | 22     |
| 10 Graph indicating available Fe concentration in controls and group B.           | 23     |
| 11 Graph indicating available K concentration in controls and group B.            | 24     |
| 12 Graph indicating available Mg concentration in controls and group B.           | 24     |
| 13 Graph indicating available Ni concentration in controls and group B.           | 25     |
| 14 Graph indicating available Pb concentration in controls and group B.           | 25     |

| 15 Graph indicating available Zn concentration in controls and group B.                | 26    |
|----------------------------------------------------------------------------------------|-------|
| 16 Plant weight (Averaged stem and root weight in grams) data obtained from Group A    |       |
| Sunflower samples that were harvested at day 30 in the study.                          | 27    |
| 17 Plant weight (Averaged stem and root weight in grams) data obtained from Group A    |       |
| Sunflower samples supplemented with EEDS that were harvested at day 30 in the study.   | 27    |
| 18 Plant weight (Averaged stem and root weight in grams) data obtained from Group A I  | ndian |
| mustard samples that were harvested at day 30 in the study.                            | 28    |
| 19 Plant weight (Averaged stem and root weight in grams) data obtained from Group A I  | ndian |
| mustard samples supplemented with EEDS that were harvested at day 30 in the study.     | 28    |
| 20 Plant weight (Averaged stem root and flower weight in grams) data obtained from Gro | oup B |
| Sunflower samples that were harvested at day 60 in the study.                          | 29    |
| 21 Plant weight (Averaged stem root and flower weight in grams) data obtained from Gro | oup B |
| Sunflower samples supplemented with EEDS that were harvested at day 60 in the study.   | 30    |
| 22 Plant weight (Averaged stem and root weight in grams) data obtained from Group B In | ndian |
| mustard samples that were harvested at day 60 in the study.                            | 30    |
| 23 Plant weight (Averaged stem and root weight in grams) data obtained from Group B In | ndian |
| mustard samples supplemented with EEDS that were harvested at day 60 in the study.     | 31    |
| 24 Plant weight (Averaged stem and root weight in grams) data obtained from Group A    |       |
| Sunflower samples that were harvested at day 60 in the study.                          | 31    |
| 25 Plant weight (Averaged stem and root weight in grams) data obtained from Group A    |       |
| Sunflower samples supplemented with EEDS that were harvested at day 60 in the study.   | 32    |

| 26 Plant weight (Averaged stem and root weight in grams) data obtained from Group A Indian    |
|-----------------------------------------------------------------------------------------------|
| mustard samples supplemented with EEDS that were harvested at day 60 in the study. 32         |
| 27 Soil metal concentration of Pb (ppm) in each of the experimental groups in the study. 33   |
| 28 Soil metal concentration of Ba (ppm) in each of the experimental groups in the study. 34   |
| 29 Soil metal concentration of Ca (ppm) in each of the experimental groups in the study. 35   |
| 30 Soil metal concentration of Cr (ppm) in each of the experimental groups in the study. 36   |
| 31 Soil metal concentration of Cu (ppm) in each of the experimental groups in the study. 37   |
| 32 Soil metal concentration of Fe (ppm) in each of the experimental groups in the study. 38   |
| 33 Soil metal concentration of K (ppm) in each of the experimental groups in the study. 39    |
| 34 Soil metal concentration of Mg (ppm) in each of the experimental groups in the study. 40   |
| 35 Soil metal concentration of Ni (ppm) in each of the experimental groups in the study. 41   |
| 36 Soil metal concentration of Zn (ppm) in each of the experimental groups in the study. 42   |
| 37 Shoots metal concentration of Ba (ppm) in each of the experimental groups in the study. 43 |
| 38 Shoots metal concentration of Pb (ppm) in each of the experimental groups in the study. 44 |
| 39 Shoots metal concentration of Ca (ppm) in each of the experimental groups in the study. 45 |
| 40 Shoots metal concentration of Cr (ppm) in each of the experimental groups in the study. 46 |
| 41 Shoots metal concentration of Cu (ppm) in each of the experimental groups in the study. 47 |
| 42 Shoots metal concentration of Fe (ppm) in each of the experimental groups in the study. 48 |
| 43 Shoots metal concentration of K (ppm) in each of the experimental groups in the study. 49  |
| 44 Shoots metal concentration of Mg (ppm) in each of the experimental groups in the study. 50 |

45 Shoots metal concentration of Ni (ppm) in each of the experimental groups in the study. 51 46 Shoots metal concentration of Zn (ppm) in each of the experimental groups in the study. 52 47 Roots metal concentration of Pb (ppm) in each of the experimental groups in the study. 53 48 Roots metal concentration of Ba (ppm) in each of the experimental groups in the study. 54 49 Roots metal concentration of Ca (ppm) in each of the experimental groups in the study. 55 50 Roots metal concentration of Cr (ppm) in each of the experimental groups in the study. 56 51 Roots metal concentration of Cu (ppm) in each of the experimental groups in the study. 56 52 Roots metal concentration of Fe (ppm) in each of the experimental groups in the study. 57 53 Roots metal concentration of K (ppm) in each of the experimental groups in the study. 58 54 Roots metal concentration of Mg (ppm) in each of the experimental groups in the study. 58 55 Roots metal concentration of Mg (ppm) in each of the experimental groups in the study. 58 56 Roots metal concentration of Ni (ppm) in each of the experimental groups in the study. 59 55 Roots metal concentration of Ni (ppm) in each of the experimental groups in the study. 59 56 Roots metal concentration of Ni (ppm) in each of the experimental groups in the study. 50 56 Roots metal concentration of Ni (ppm) in each of the experimental groups in the study. 50 56 Roots metal concentration of Ni (ppm) in each of the experimental groups in the study. 50 56 Roots metal concentration of Ni (ppm) in each of the experimental groups in the study. 60

# **CHAPTER 1: INTRODUCTION**

# 1.1 Lead pollution in urban soils

Urban soils are subject to metal contamination from point sources of air pollution such as from industrial sites or nonpoint sources, such as highways and roads or from past local land use (Alloway, 2004). Indeed in the U.S. alone there are more than 600,000 ha of documented metal contaminated brown fields, not including smaller urban/suburban sites (Mahar et al, 2016). The most common heavy metal contaminants are Lead (Pb), Mercury (Hg), Cadmium (Cd), Chromium (Cr), Copper (Cu), and Zinc (Zn) which, unlike organic contaminants, are not degraded and require removal or immobilization (Lasat, 2002). Of these, lead is one of the most significant contaminants causing detrimental health hazards. Children under the age of 6 are especially vulnerable to lead poisoning, which can severely affect their mental and physical development including lower IQ, impaired development, and mental deterioration (Alexander et al. 1974; Chamberlain et al. 1978; James et al. 1985; Ziegler et al. 1978 as cited in ATSDR 1999). They are exposed to lead by inhaling lead dust from lead-based paint or leadcontaminated soil, playing with toys that has lead paint, or from food or water that contains lead. Adults who conduct home renovations or are otherwise exposed to lead may also have health risks, and of particular concern is a lead associated problem in fetal bone and organ development when pregnant women are exposed to lead (Baghurst PA et al., 1987).

Many communities across the US have suffered from both deindustrialization and economic divestment leaving huge swaths of suburban impoverishment. Due to the ages

of the homes, it is likely that many homes contain lead (Pb)-based paints, which causes significant contamination of soil around the homes. A recent report found soil Pb levels in Appleton, WI as high as  $32,483 \ \mu g/g$  for homes built before 1960 compared to 755 µg/g for homes built after 1960 which are high compared to US EPA soil limits of 400  $\mu g/g$  for play areas and 1200  $\mu g/g$  for other areas of the yard (Clark and Knudsen, 2013). The effects of soil contamination by Pb in urban areas often have a disproportionate effect on older and low-income neighborhoods and therefore can be seen as an environmental justice issue (McClintock, 2012). A recent demolition program (Moving Ohio Forward) aimed at restoring poverty blighted neighborhoods in Warren, Ohio has left 6 to 12% of the residential lots vacant. Normal productive use of these vacant lots include side yard expansion, community gardens, small parks or rain gardens, however, these options are all impacted by potential soil contamination with lead (Alloway, 2004). Unfortunately, the scope of the neighborhood restoration program did not include resources for Pb analyses nor for implementing lead containment during demolition even though 89% of these homes were constructed before 1978 when lead based paints were commonly used (TNP data). Likely many of these vacant lots had high levels of lead remaining in the soil after demolition, as an unintended consequence.

# **1.2 Phytoremediation**

Phytoremediation is a cost effective sustainable use of plants and their associated microbes, amendments, and agronomic techniques to remediate environmental contaminants (Baker *et al.*, 1994; Cunningham *et al.*, 1996) (Schnoor et al. 1997;

Watanabe, 1997). Mechanisms of soil phytoremediation can include contaminant extraction (phytoextraction), degradation (phytodegradation), volatilization (phytovolatilization) or immobilization (phytostabilization) (Mahar et al., 2016). Phytoextraction leads to the most desirable long-term outcomes for remediating metal contaminated soil, since the contaminant is accumulated by plants and is removed from the site when the plant is harvested. This allows the soil to remain in place with reduced health and environmental risks. The most efficient plants for phytoextraction are hyperaccumulators, which can accumulate high concentrations of metals in their above ground biomass (their shoots), making metal removal feasible upon plant harvest. There are over 450 known hyperaccumulator species (Rascioa and Navari-Izzo, 2011). There are other remediation technologies including solidification, leaching, soil washing and permeable barriers, however, they are expensive and may cause secondary pollution (Jeanna R. Henry, 2000). Two of the most effective hyper accumulators are *Helianthus annuus* (Sunflower) and *Brassica juncea* (Indian mustard).

# 1.3 Indian mustard & Sunflower as hyperaccumulators

Reports of phytoremediation investigations indicate there are several plants that are good candidates for phytoremediation of Pb, including geraniums (Mahdieh et al 2013), corn and peas (Huang et al. 1997), alfalfa (Lopez et al. 2005), indian mustard and sunflowers (Lin et al. 2009, Rahman et al. 2013). The latter two have been used successfully in phytoextraction strategies. In one report, indian mustard was shown to efficiently remove Pb when chelating agents, as soil-additives, were added (Blaylock et al. 1997). A recent review of plants used for phytoremediation of toxic metals reported that Indian mustard and sunflowers can accumulate up to 100  $\mu$ g/g and 60  $\mu$ g/g of Pb, respectively (Tangahu et al. 2011). Although indian mustard is able to accumulate higher plant concentrations of Pb, the use of sunflowers was also effective because the plants produce large amounts of biomass which acts as a reservoir and facilitates removal of the extracted Pb (Adesodun et al 2010). An additional advantage of using sunflowers for phytoremediation is that they most rapidly accumulate lead within the first few weeks of planting, as demonstrated by Adesodun et al., 2009 in soils spiked with 400 ppm lead nitrate.

# **1.4 Chelator effects on phytoremediation**

Many phytoremediation studies have shown the effectiveness of using a chelator to enhance the bioavailability of the metal contaminant leading to enhanced metal uptake by the plant. EDTA is most commonly used chelator in phytoremediation. The use of chelating agents has been reported as a means for increasing the removal efficiency of Pb by phytoremediation approaches (Huang et al. 1997, Blaylock et al. 1997, Liu et al. 2007, Hadi et al. 2010). Chelating agents increase the solubility and mobility of metals in soils making them more available to plants and increases metal transport from the roots into the above ground plant tissues. When the chelating agent EDTA was added to soils containing 600 mg/kg Pb, indian mustard accumulated up to 1.5% of Pb in plant shoots (Blaylock et al. 1997). EDTA also increased Pb mobilization and accumulation of Pb in plant tissues of sunflowers (Lin et al. 2009; Seth et al. 2011). Although EDTA increases

phytoextraction efficiency, it is a synthetic compound that is not biodegradable and can contribute to increased mobilization of other toxic elements that could cause contamination of groundwater or other environmental problems. For this reason, there is interest in identifying other chelating compounds that provide enhancements in phytoextraction efficiency but that are also biodegradable. An alternative compound shown to be an efficient chelating agent is N-(2-Hydroxyethyl)ethylenediamine- N,N',N'triacetic acid trisodium salt (EDDS), which is similar in structure to EDTA but is also biodegradable (Niiane et al. 2008). A recent study with sunflowers in soil showed EDTA increased phytoremediation (30% less Pb remaining) in Pb spiked soils than was found in controls (Chirakkara 2015). These results were supported in another phytoremediation study of soil highly contaminated with Pb (1221 mg Pb/kg); moreover with an additional electrical charge treatment Pb phytoremediation was even greater (Tahmasbian and Sinegani, 2016). One study comparing EDTA and EDDS in phytoremediation of Pb in soils showed that EDTA enhances Pb removal, however EDDS has the advantage of rapid biological degradation with less detrimental environmental impact (Epelde et al, 2008).

# CHAPTER 2: RESEARCH GOALS AND HYPOTHESIS

# 2.1 Research Goals:

The goals of this research are to 1) to assess the potential for phytoremediation to be considered as an option for reducing lead concentrations in an lead paint contaminated urban soil such that the soil could be considered safe to remain on site; 2) to determine which of two known Pb hyperaccumulators, *Helianthus annuus* and *Brassica juncea*, demonstrates better Pb uptake; 3) to determine if a single crop or if two crops grown sequentially within the same total time show better Pb removal; and 4) if addition of a biodegradable chealator (EDDS) enhances Pb removal.

# 2.2 Hypothesis

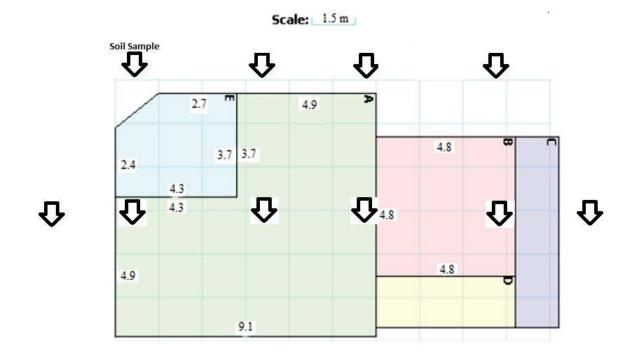
Use of hyperaccumulators and chelators as well as multiple planting and harvesting in same soil would remove more Pb than a single planting and harvesting for the species of Sunflower and Indian mustard.

# **CHAPTER 3: MATERIALS AND METHODS**

# 3.1 Selected plant species

Two plants *Helianthus annuus* L (Family: Asteraceae) (Burpee Sunflower, Elf, Girasol elf) and *Brassica juncea* (Family: Brassicaceae) were chosen for this study based on their classification as hyperaccumulators of Pb, availability of seeds, commonness, and familiarity to neighbors, and are already present and not considered as invasive species to Ohio. Because of its ability to grow fast, having high biomass production, easiness to harvest and accumulation of several toxic heavy metals the *H. annuus* (sunflower) fits efficient phytoremediation easily. (Maite et al. 2004; Sharma et al. 2004; Sinegani and Khaillkhah 2010). *B. juncea* (Indian mustard) transports lead from the roots to the shoots very efficiently which is key factor in phytoextraction (USEPA, 2000).

# **3.2 Planting**


Sunflower and mustard seeds were germinated in seed starter (Percival, Intellus Control System) for 7 days before being transferred to pots (9 cm bottom, 12 cm top, and 14 cm tall) that contain 700 g of lead contaminated soil collected and processed (described below). Plants (Group A and B) were lightly watered daily and each pot was fertilized once on June 20 with 15 ml of diluted fertilizer (Water Soluble All Purpose Plant Food, Miracle GRO; 5 g diluted into 3785 ml) as recommended by the manufacturer. Group A was fertilized again on July 20 following initial harvest and second planting (July 10). The fertilizer was reported by the manufacturer to consist of the following:

# **3.3 Site History**

The study site soil was collected from a suburban property located in Warren, north eastern Ohio. Structures on the property included a two story house built in 1900 with 2 stories and a stand-alone garage constructed in 1956. In 2014 Trumbull County Land Reutilization Corporation (TCLRC), a nonprofit community corporation, bought the property and demolished the structures as part of local revitalization efforts. This site was one of several selected by TCLRC for suitability (likelihood of having soil contamination from lead based paint). Soil samples (how many, when) were tested and found to contain moderate Pb levels (~200 ppm). Soil used in this current study was collected from the site on May 10, 2015.



Figure 1 Site location, Warren, north eastern Ohio. (Google maps, 2016)



**Figure 2** Site map of Warren, Ohio on May 10 indicating where the house structure was located (before demolition) and of locations (Shown as arrows) where soil was collected for this study.



Figure 3 Photograph of the site showing the abandoned house prior to demolition.

# **3.4 Soil Collection**

Surface materials such as twigs, rocks and leaves were removed prior to sampling soil at the Warren site (refer to Figure 3 for soil sample locations). Soil was collected from a depth of 0 - 15 cm using an auger (Basic Soil Sampling Kit, AMS, American Falls, Idaho). Soil was then air dried in a drying oven at 105 °C for 24 hours and sieved through a 2 mm mesh and homogenized.

# 3.5 Removal of organic matter, calibration of hydrometer and soil texture analysis

As determined by Sheldrick and Wang, (1993) soil was pretreated with hydrogen peroxide ( $H_2O_2$ ) to remove organic matter. 40 g of air dried soil was placed in to 600 ml beaker. 100 ml Di water. 5 ml  $H_2O_2$  was added to soil and then mixed and left in the oven at 90 °C for 10 minutes. This procedure was repeated 6 more times.

Sodium – hexametaphosphate (50 g) was added to 1 liter of distilled water and was thoroughly mixed to make the dispersant solution. Dispersant solution (100 ml) was added to 1000 ml a glass graduated cylinder and adjusted up to 1 liter with distill water. After mixing and waiting 30 minutes at room temperature, a hydrometer (brand, model, range of values) was gently lowered in to the solution in order to identify scale reading.

Air dried soil (40 g) was placed in to 600 ml beaker (Duplicate). 100 ml of dispersant solution and 250 ml of distilled water was added in to that beaker and allowed to stay for 24 hours. dispersant treated sample was then transferred in to the mixer and mixed for 5 minutes. Mixed solution then added to 1 L graduated cylinder, Di water was added to a volume of 1 L with distill water (B. H. Sheldrick and C. Wang, 1993).

# 3.6 Soil pH

Soil pH was determined (triplicate) in a 1:1 (V/V) soil/water mixture which composed of 10 gram 10 ml molecular water on a Dual Channel pH meter (XL50, Dual Channel pH/Conductivity Meter, Accumet Excel, Fisher Scientific) Samples were stirred both before and after a 15 minute equilibration period. The pH meter was calibrated using 4.01 (Oakton, Part Number 00654-00), 7.00 (Oakton part Number 00654-04), and 10.01(Oakton, Part Number 00654-08) buffers (G. W. THOMAS, 1996)

# 3.7 Organic matter

Loss on ignition method was used for organic matter determination. (Duplicates) The mass of an empty dry porcelain crucible was determined and then placed into the oven (Isotemp 500 Series, Fisher) for two hours at 105° C. Once crucibles were taken from the oven, they were placed into a desiccator to cool down. After the crucibles, Y1 and Y2 were cool to the touch, they were weighed (Y1 23.95, Y2 24.81)  $\sim$ 3 g of air dried sieved soil was added into the crucible and the weights were recorded. Samples were then placed into the furnace (1400 Furnace, Thermolyne) at 400 °C for 16 hours. After 16 hours the samples were removed and placed into a desiccator. Samples were allowed to cool to room temperature before weighing again and the weights were recorded. Organic Matter = (105°Cweight – 400°Cweight)/105°C (Ben-Dor and Banin 1989).

#### **3.8 Mehlich III Available Metal Extraction**

Soil samples (3g) were weighted and passed through 2 mm sieve and then placed into a 125 ml Erlenmeyer flask. Following 30 ml of Mehlich III extraction solution was added into the flask and shaken immediately for 5 minutes. Eventually, the solution filtered through No. 42 Whatman filter paper and filtrate was saved for the ICP analysis (T. Sen Tran and R. R Simard, 1993)

# **3.9 Metal Extraction by Lithium Metaborate**

Dried soil (0.1 g) was added into graphite crucible then 0.5 g of Lithium Metaborate was added to cover the soil. Crucibles were placed into Furnace (Brand, model) for 15 minutes in 1000 °C to form a molten state. After 15 minutes the melted soil was poured in EPA ICP 50 ml vials which contains 2% Nitric acid and capped.

# 3.10 Plant tissue analysis:

Plant parts were washed gently with distilled water then placed on paper towel. Once the water was soaked by paper towel, plant tissues were placed in to oven at 105°C for overnight. Then plant tissues were separated into roots, flower and stem and leaves and weighted. In order to homogenize the tissues, they were cut into 1 mm pieces and then grind into powder using an acid washed porcelain mortar and pestle. From homogenized plant tissues 0.1 g was taken and added in to the crucibles which was covered with 0.5 g Litium Metaborate and heated at 1000 °C for 15 minutes. The fused soil samples were added in to vials that contain 2% Nitric acid solution to be ready for ICP-MS analysis.

# 3.11 Preparation of standards for standard curve

Standard Solution Preparation for Metal Analysis

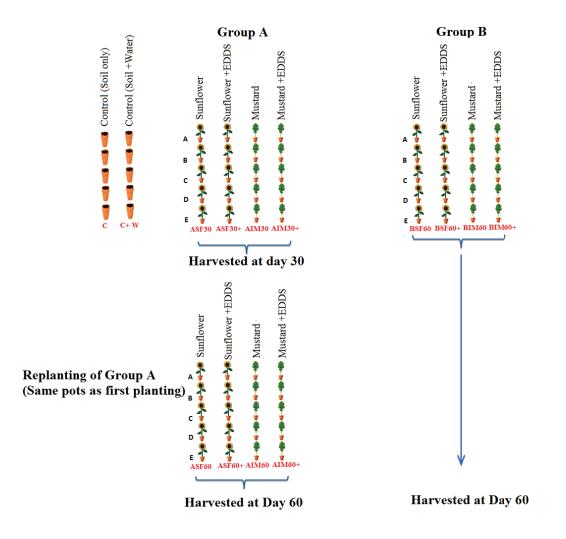
The following steps were performed to produce the standard solutions that were used for all metal analysis for this study.

1. To clean the volumetric flask that would be used for metal analysis, the following procedure was performed. First, approximately 20 ml DI water to a 50 ml volumetric flask. 2 ml of Trace Metal Grade Nitric acid (67 – 70% as HNO<sub>3</sub>, UN2031, Fisher Scientific) were then added and DI water was then added to create a total volume of 50 ml. This solution was then allowed to sit for 1 hour. The flask was then thoroughly rinsed with DI water at least five times to make sure there were no metal contaminants remaining.

2. Once the volumetric flasks were ready, they were numbered from 1 to 5. 20 ml of DI water was added to each flask followed by 1 ml of nitric acid. Then the following steps were performed for each individual flask:

First volumetric flask (20 ml DI water and 1 ml Nitric acid): Add 0.5 ml of stock solution (Instrument Calibration Standard 2, Cat # CL – CAL – 2, SPEX CertiPrep 100ppm) and produce a total volume of 50 ml with DI water (1000 ppb).

Second vol. flask (20 ml DI water and 1 ml Nitric acid): Add 0.25 ml of stock solution and produce a total volume of 50 ml with DI water (500 ppb).


Third vol. flask (20 ml DI water and 1 ml Nitric acid): Add 0.15 ml of stock solution and produce a total volume of 50 ml with DI water (300 ppb).

Fourth vol. flask (20 ml DI water and 1 ml Nitric acid): Add 0.5 ml of stock solution and produce a total volume of 50 ml with DI water (100 ppb).

Fifth vol. flask (20 ml DI water and 1 ml Nitric acid): Add 0.015 ml of stock solution and produce a total volume of 50 ml with DI water (30 ppb).

Initially, each sample run begins with the probe in a 2% nitric acid bath, then the probe is inserted into a blank, followed by a series of standards for initial calibration then enters a quality check (QC). After this, the probe will enter the first sample vile and begin analysis, followed by another 2% nitric acid rinse between samples. Every 20 samples, another QC will be performed and if the machine deems it necessary, another round of calibrations and QC will be run before sample analysis continues.

#### 3.12 EXPERIMNET DESIGN



**Figure 4 Diagram of Phytoremediation Experimental Design.** This study was conducted to determine which treatment provided optimal Pb lead removal (one or two plantings; sunflowers or indian mustard; with or without EDDS). The study consisted of Group A (two crops) and Group B (one crops). which were grown in soil samples taken from the demolished house site in Warren, OH. The control group consisted of unseeded soil in pots (n=5). Both group A and B consisted of 5 pots of *H. annuus* (sunflower), 5 pots of *H. annuus* with EDDS ((S,S)-Ethylenediamine-N,N' – disuccinic acid trisodium salt solution) added 3 days before harvesting, 5 pots of *B. juncea* (Indian mustard), and 5 pots of *B. juncea* also with EDDS added 3 days before harvesting. Group A was planted and harvested at day 30, then the same pots were used for an identical replanting and then subsequently harvested 30 days later (at day 60 of the experiment). Group B was harvested at day 60 and consisted of only one planting.

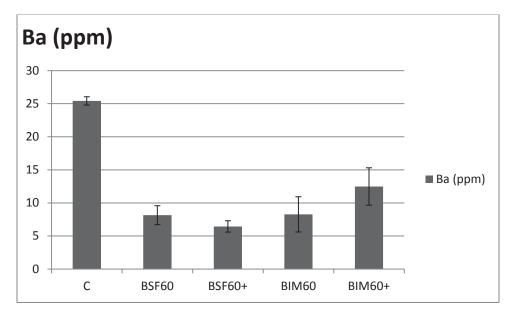
One seedling was planted into each pot containing ~700 gr lead contaminated soil on June 10. Group A consisted of 4 treatments: either Sunflower or Mustard either with or without (S,S)-Ethylenediamine-N,N' – disuccinic acid trisodium salt solution (EDDS), Aldrich, Lot#BCBP8025V, PCode101579573, MW:358.19 g/mol). Each treatment was conducted in replicates of 5. Group A treatments consisted of two crops; the first crop was harvested after 30 days, followed by a new planting of seedlings which were harvested after another 30 days. Group B treatments were set up at the same time and treated the same as Group A, but were left to grow for the full 60 days as a single crop. The temperature of the greenhouse (Youngstown State University) for this study was maintained at  $20 \pm 5^{\circ}$ C.

The final molarity of EDDS used in this experiment was 5 mmol/L which required 1.7 ml of the EDDS reagent that was used (Jae-Min Lim, Arthur L. Salido, David J. Butcher, 2013).

# **CHAPTER 4: RESULTS**

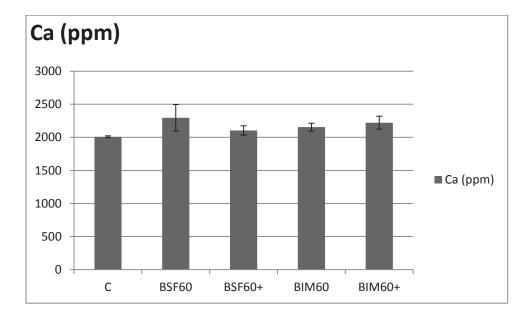
# 4.1 Results summary

The metal (all) concentration analysis of the plant roots (Fig 47 – 56) yielded significance. Two factor ANOVA which was 30 (group A first harvest) versus 60 (Group B) day and Plant type and EDDS combination was used for all metal concentration in root. Both of the treatments were significant (Appendix E). There was a significant difference between the 30 vs 60 days (Appendix E) and significant difference among the

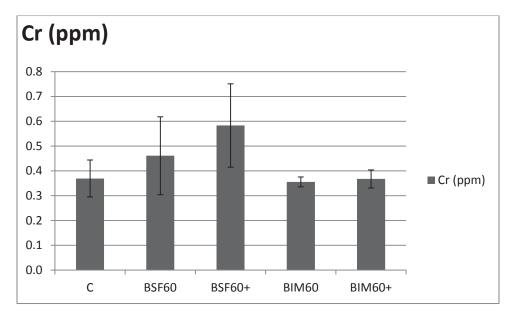

treatments (Appendix). The Post Hoc comparisons in root uptake for all metals showed that the two sunflower treatments were different from one another and the Sunflower EDDS was different from the Indian mustard without EDDS. Indian mustard without EDDS was also different from Indian mustard with EDDS so in both cases, EDDS treatments were higher than non EDDS. There is no reason to run Post Hoc for the time because there are only two levels and there was higher metal accumulation in roots after 60 days than after 30. The second ANOVA is two factors as well where treatment is plant X EDDS combination but Indian mustard alone was not present because the plants died in the 2<sup>nd</sup> 30 days so we have first 30 vs 60 versus 2<sup>nd</sup> 30 days. In this case, it turned out that only the plant X EDDS combination was significant (Appendix).

There was no statistical significance between control (initial soil) and treatments for the lead concentration (Figures from 6 - 15, 27 - 36). By looking at the averages of the lead level of the shoots (Fig 37 - 46), it's shown that there was minimal accumulation in plant shoots. Pb concentration in the group A (First harvest) was lower than group B and group A second harvest. After running SPSS analysis, results showed that there was no significant difference in time or plant type. However, there was a significant difference in EDDS treatment. It should be noted that statistical analyses of this portion of the experiment are not considered reliable due to the presence of negative values in the metal concentrations of the element chromium and nickel (Cr and Ni) that were determined.

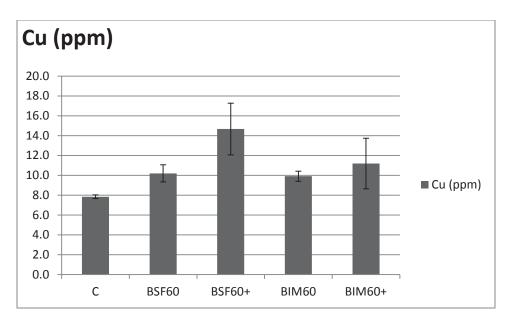
# **Soil Characteristics**


| Parameters              | Units               | Value    |            |            |             |
|-------------------------|---------------------|----------|------------|------------|-------------|
| Conductivity            | micro<br>Siemens/cm | 225      |            |            |             |
| Organic Matter          | %                   | 4.4      |            |            |             |
| Soil pH                 |                     | 6.8      |            |            |             |
| *1Nitrate-N             | ppm                 | 13.4     |            |            |             |
| *2Nitrogen              | %                   | 0.14     |            |            |             |
| *3Carbon                | %                   | 3.16     |            |            |             |
| *4Exchangeable Cations  | ( <u>meq</u> /100g) | K<br>0.2 | Mg<br>1.7  | Ca<br>9.0  | CEC<br>10.9 |
| *5Saturation of the CEC | %                   | K<br>1.6 | Mg<br>15.6 | Ca<br>82.7 |             |

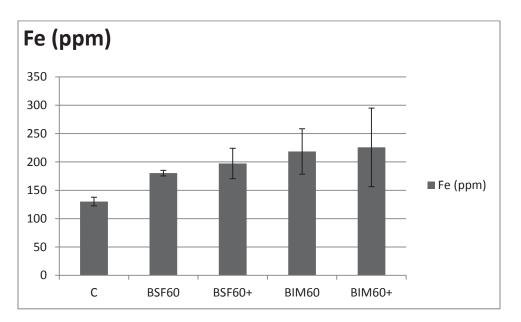
**Figure 5:** Selected properties of the initial soil used for this study. Soil nutrient levels of initial samples taken from demolished house site in Warren, OH detailing pH, phosphate levels, additional exchangeable cations, nitrogen, carbon, percentage saturation of CEC and nitrate levels. Results that were obtained through analysis performed by the Agricultural Analytical Services Laboratory at The Pennsylvania State University are indicated with a \* (University Park, PA).



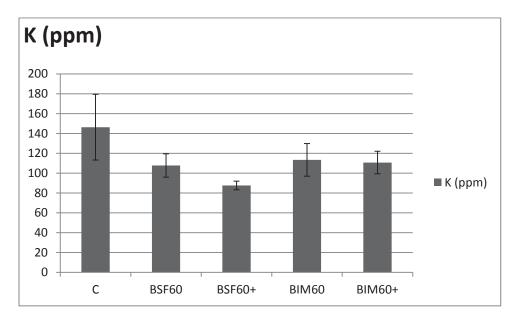

Readily Available Metals in Control and in Group B Samples


**Figure 6:** Graph indicating available Ba concentration (ppm) in initial soil Control (C), Group B Sunflower 60 day harvest, Group B Sunflower 60 day harvest +EDDS, Group B Indian Mustard 60 day harvest, Group B Indian Mustard 60 day harvest +EDDS. Error bars indicate standard deviation.

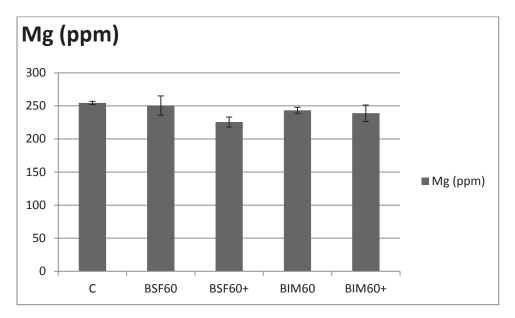



**Figure 7:** Graph indicating available Ca concentration (ppm) in initial soil Control (C), Group B Sunflower 60 day harvest, Group B Sunflower 60 day harvest +EDDS, Group B Indian Mustard 60 day harvest, Group B Indian Mustard 60 day harvest +EDDS. Error bars indicate standard deviation. It should be noted that concentration values over 1000 ppm obtained throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.

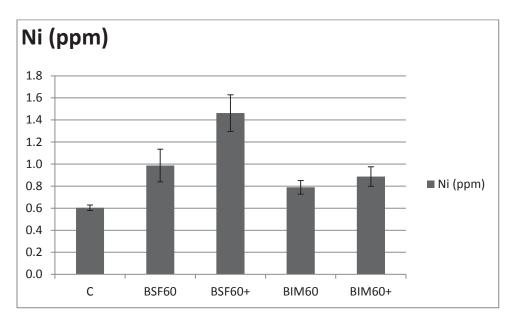



**Figure 8:** Graph indicating available Cr concentration (ppm) in initial soil Control (C), Group B Sunflower 60 day harvest, Group B Sunflower 60 day harvest +EDDS, Group B Indian Mustard 60 day harvest, Group B Indian Mustard 60 day harvest +EDDS. Error bars indicate standard deviation.

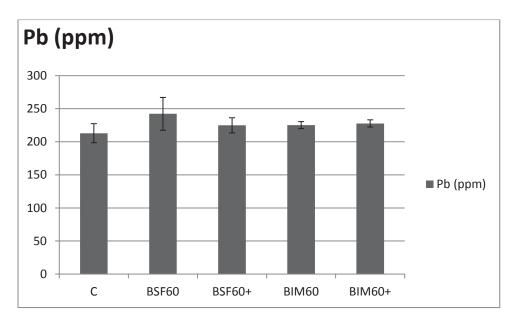



**Figure 9:** Graph indicating availableCu concentration (ppm) in initial soil Control (C), Group B Sunflower 60 day harvest, Group B Sunflower 60 day harvest +EDDS, Group B Indian Mustard 60 day harvest, Group B Indian Mustard 60 day harvest +EDDS. Error bars indicate standard deviation.



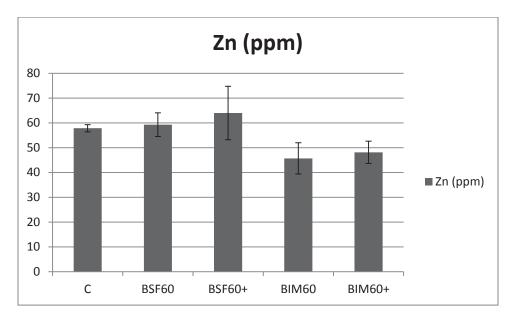

**Figure 10:** Graph indicating available Fe concentration (ppm) in initial soil Control (C), Group B Sunflower 60 day harvest, Group B Sunflower 60 day harvest +EDDS, Group B Indian Mustard 60 day harvest, Group B Indian Mustard 60 day harvest +EDDS. Error bars indicate standard deviation.




**Figure 11:** Graph indicating available K concentration (ppm) in initial soil Control (C), Group B Sunflower 60 day harvest, Group B Sunflower 60 day harvest +EDDS, Group B Indian Mustard 60 day harvest, Group B Indian Mustard 60 day harvest +EDDS. Error bars indicate standard deviation.



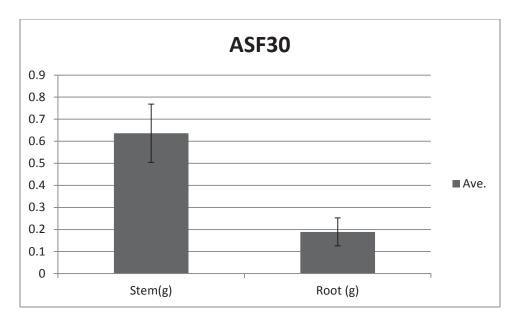
**Figure 12:** Graph indicating available Mg concentration (ppm) in initial soil Control (C), Group B Sunflower 60 day harvest, Group B Sunflower 60 day harvest +EDDS, Group B Indian Mustard 60 day harvest, Group B Indian Mustard 60 day harvest +EDDS. Error bars indicate standard deviation.



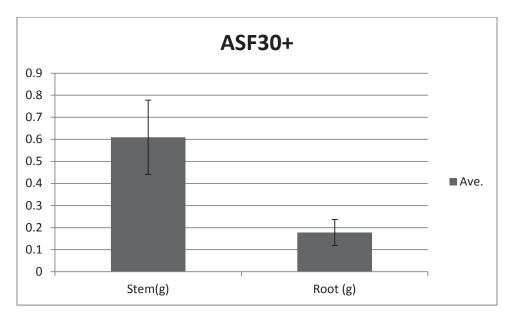

**Figure 13:** Graph indicating available Ni concentration (ppm) in initial soil Control (C), Group B Sunflower 60 day harvest, Group B Sunflower 60 day harvest +EDDS, Group B Indian Mustard 60 day harvest, Group B Indian Mustard 60 day harvest +EDDS. Error bars indicate standard deviation.



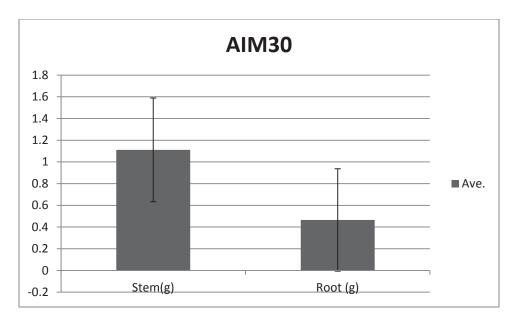
**Figure 14:** Graph indicating available Pb concentration (ppm) in initial soil Control (C), Group B Sunflower 60 day harvest, Group B Sunflower 60 day harvest +EDDS, Group B


Indian Mustard 60 day harvest, Group B Indian Mustard 60 day harvest +EDDS. Error bars indicate standard deviation.

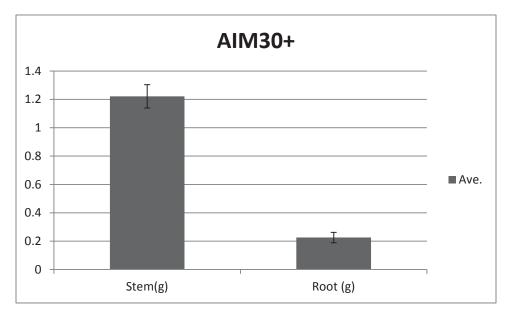



**Figure 15:** Graph indicating available Zn concentration (ppm) in initial soil Control (C), Group B Sunflower 60 day harvest, Group B Sunflower 60 day harvest +EDDS, Group B Indian Mustard 60 day harvest, Group B Indian Mustard 60 day harvest +EDDS. Error bars indicate standard deviation.

# Bar graphs Plant weights (shoots and roots)

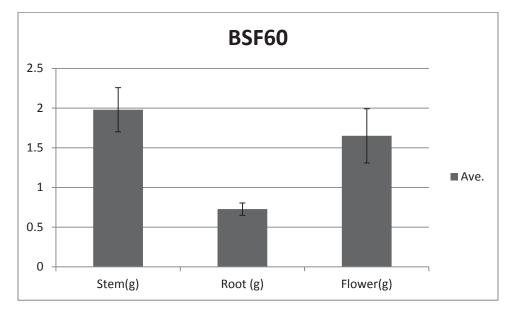

Group A plants (harvested at day 30, Sunflower (ASF30), Sunflower +EDDS (ASF30+), Indian mustard (AIM30), Indian mustard +EDDS (AIM30+)); the average of dried weight of the ASF30, ASF30+, AIM30 and AIM30+ were respectively 0.8, 0.7, 1.5 and 1.4 which shows us Indian mustard grew twice better than Sunflower.



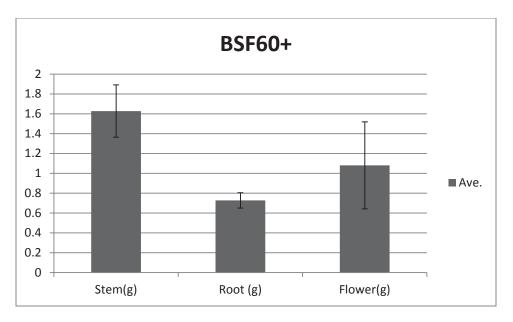

**Figure 16:** Plant weight (Averaged stem and root weight in grams) data obtained from Group A Sunflower samples that were harvested at day 30 in the study. Error bars represent standard deviation.



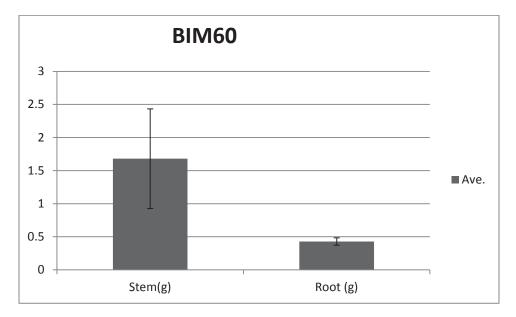
**Figure 17:** Plant weight (Averaged stem and root weight in grams) data obtained from Group A Sunflower samples supplemented with EDDS that were harvested at day 30 in the study. Error bars represent standard deviation.



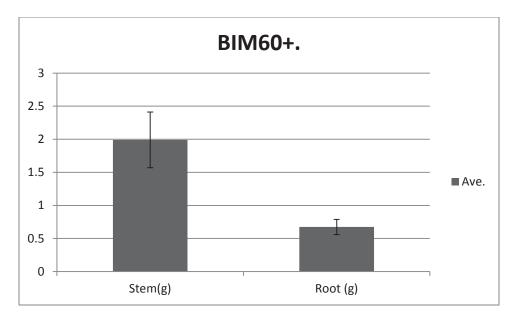

**Figure 18:** Plant weight (Averaged stem and root weight in grams) data obtained from Group A Indian mustard samples that were harvested at day 30 in the study. Error bars represent standard deviation.




**Figure 19:** Plant weight (Averaged stem and root weight in grams) data obtained from Group A Indian mustard samples supplemented with EDDS that were harvested at day 30 in the study. Error bars represent standard deviation.

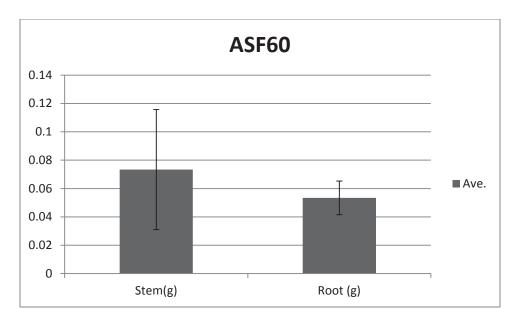

Group B plants (harvested at day 60, Sunflower (BSF30), Sunflower +EDDS (BSF60+), Indian mustard (BIM60), Indian mustard +EDDS (BIM60+)); The average of dried weight of the BSF60, BSF60+, BIM60 and BIM60+ were respectively 4.3, 3.4, 2.1 and 2.6 which shows us Sunflower grew twice better than Indian mustard.



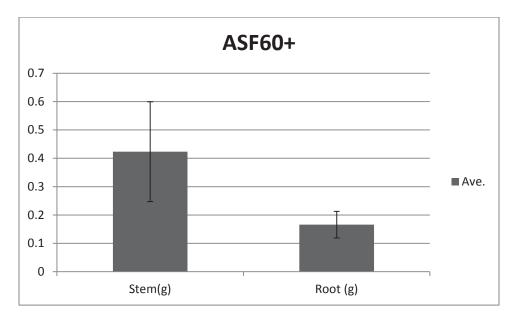

**Figure 20:** Plant weight (Averaged stem, root and flower weight in grams) data obtained from Group B Sunflower samples that were harvested at day 60 in the study. Error bars represent standard deviation.



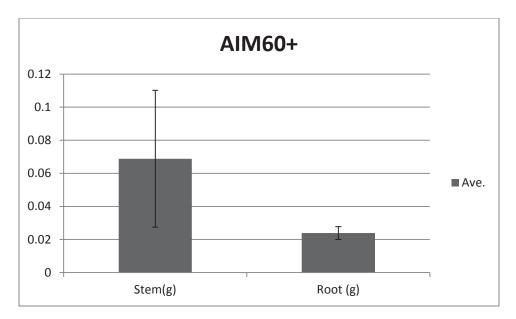
**Figure 21:** Plant weight (Averaged stem, root and flower weight in grams) data obtained from Group B Sunflower samples supplemented with EDDS that were harvested at day 60 in the study. Error bars represent standard deviation.



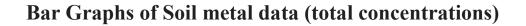

**Figure 22:** Plant weight (Averaged stem, root and flower weight in grams) data obtained from Group B Indian mustard samples that were harvested at day 60 in the study. Error bars represent standard deviation.

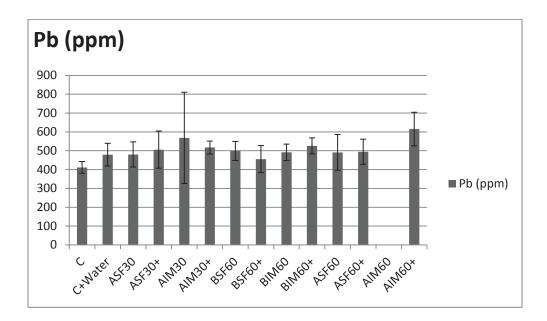



**Figure 23:** Plant weight (Averaged stem, root and flower weight in grams) data obtained from Group B Indian mustard samples supplemented with EDDS that were harvested at day 60 in the study. Error bars represent standard deviation.

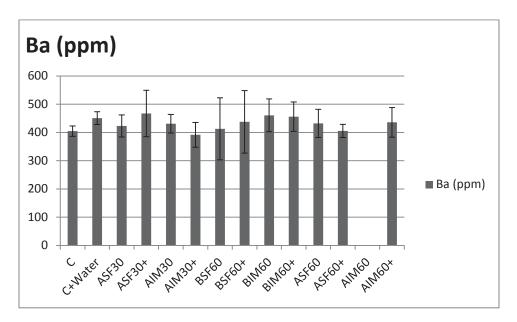

Group A plants (harvested at day 60, Sunflower (ASF60), Sunflower +EDDS (ASF60+), Indian mustard (AIM60), Indian mustard +EDDS (AIM60+)); the average of dried weight of the ASF60, ASF60+, AIM60 and AIM60+ were respectively 0.1, 0.5, died and 0.1 which shows us they all grew very poorly.



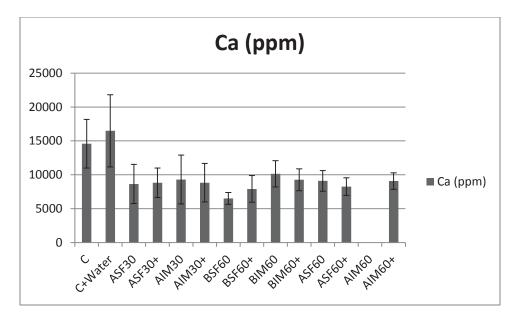

**Figure 24:** Plant weight (Averaged stem and root weight in grams) data obtained from Group A Sunflower samples that were harvested at day 60 in the study. Error bars represent standard deviation.



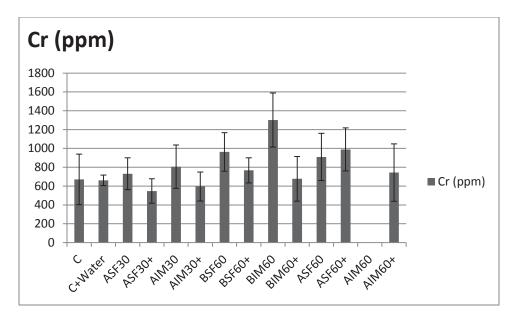

**Figure 25:** Plant weight (Averaged stem and root weight in grams) data obtained from Group A Sunflower samples supplemented with EDDS that were harvested at day 60 in the study. Error bars represent standard deviation.



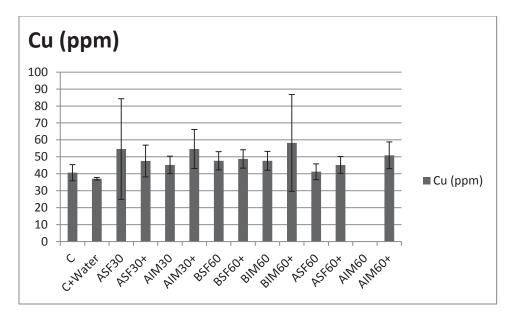

**Figure 26:** Plant weight (Averaged stem and root weight in grams) data obtained from Group A Indian mustard samples supplemented with EDDS that were harvested at day 30 in the study. Error bars represent standard deviation.



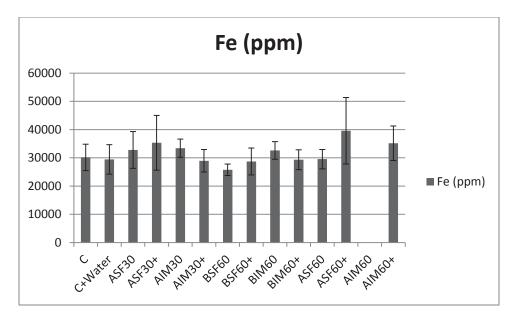




**Figure 27:** Soil metal concentration of Pb (ppm) in each of the experimental groups in the study. The groups include initial soil Control +Water (C+Water), Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.

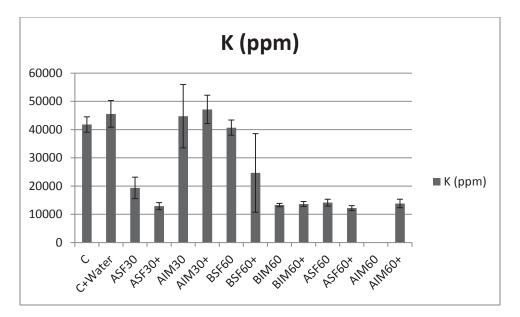



**Figure 28:** Soil metal concentration of Ba (ppm) in each of the experimental groups in the study. The groups include initial soil Control +Water (C+Water), Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.

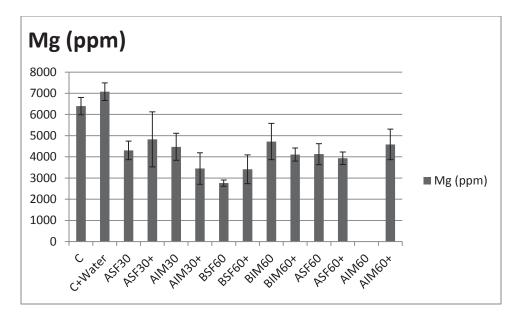



**Figure 29:** Soil metal concentration of Ca (ppm) in each of the experimental groups in the study. The groups include initial soil Control +Water (C+Water), Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60+), Group A Indian Mustard 40 day harvest (AIM60), Group A Indian Mustard 40 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation. It should be noted that concentration values over 1000 ppm obtained throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.

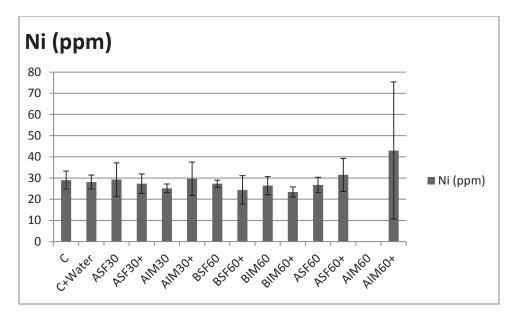



**Figure 30:** Soil metal concentration of Cr (ppm) in each of the experimental groups in the study. The groups include initial soil Control +Water (C+Water), Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60+), Group A Indian Mustard 40 day harvest (AIM60), Group A Indian Mustard 40 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation. It should be noted that concentration values over 1000 ppm obtained throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.

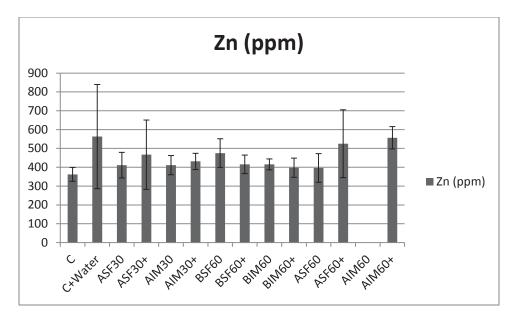



**Figure 31:** Soil metal concentration of Cu (ppm) in each of the experimental groups in the study. The groups include initial soil Control +Water (C+Water), Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.



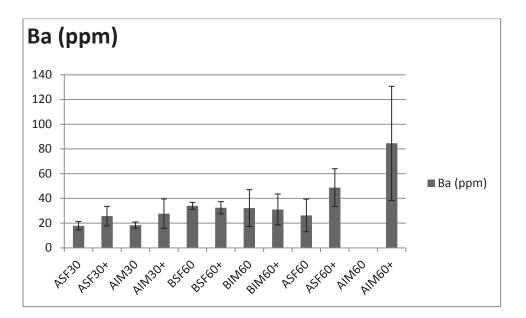

**Figure 32:** Soil metal concentration of Fe (ppm) in each of the experimental groups in the study. The groups include initial soil Control +Water (C+Water), Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60+), Group A Indian Mustard 40 day harvest (AIM60), Group A Indian Mustard 40 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation. It should be noted that concentration values over 1000 ppm obtained throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.



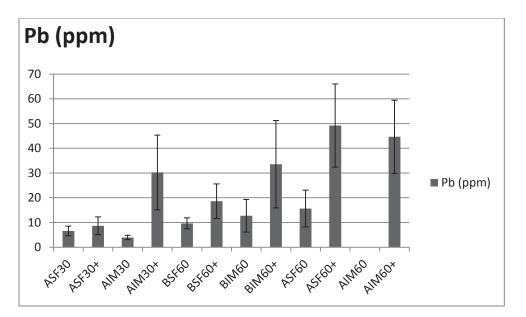

**Figure 33:** Soil metal concentration of K (ppm) in each of the experimental groups in the study. The groups include initial soil Control +Water (C+Water), Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 40 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation. It should be noted that concentration values over 1000 ppm obtained throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.



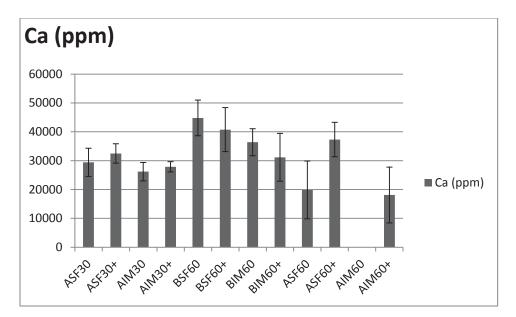
**Figure 34:** Soil metal concentration of Mg (ppm) in each of the experimental groups in the study. The groups include initial soil Control +Water (C+Water), Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard 40 day harvest (AIM60), Group A Indian Mustard 40 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation. It should be noted that concentration values over 1000 ppm obtained throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.



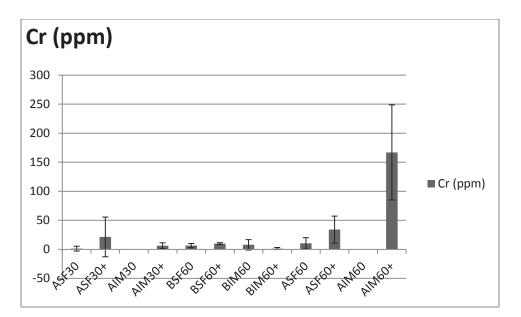

**Figure 35:** Soil metal concentration of Ni (ppm) in each of the experimental groups in the study. The groups include initial soil Control +Water (C+Water), Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (ASF60), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.




**Figure 36:** Soil metal concentration of Zn (ppm) in each of the experimental groups in the study. The groups include initial soil Control +Water (C+Water), Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (ASF60), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.


## Bar Graphs of Plant Shoot's metal data

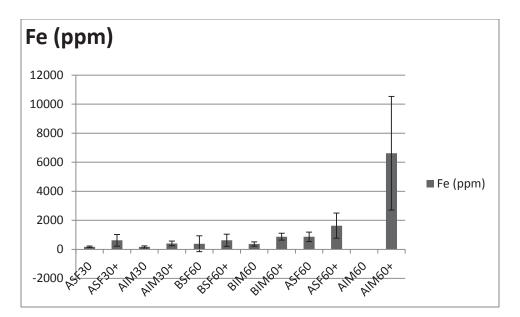



**Figure 37:** Shoots metal concentration of Ba (ppm) in each of the experimental groups in the study. The groups include, Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60+), Group A Indian Mustard 40 day harvest (AIM60), Group A Indian Mustard 4 EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.

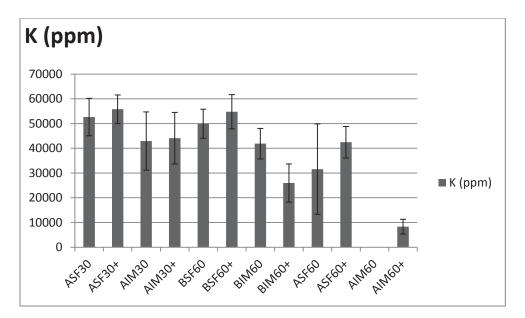


**Figure 38:** Shoots metal concentration of Pb (ppm) in each of the experimental groups in the study. The groups include, Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60+), Group A Sunflower + EDDS 60 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60+), Group A Sunflower 40 day harvest (ASF60+), Group A Sunflower 40 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60+), Group A Sunflower 40 day harvest (ASF60+), Group A Indian Mustard 40 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.

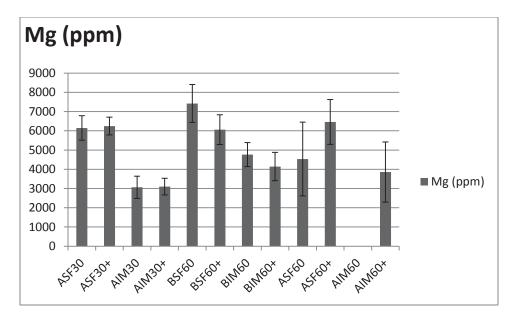



**Figure 39:** Shoots metal concentration of Ca (ppm) in each of the experimental groups in the study. The groups include, Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 40 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation. It should be noted that concentration values over 1000 ppm obtained throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.

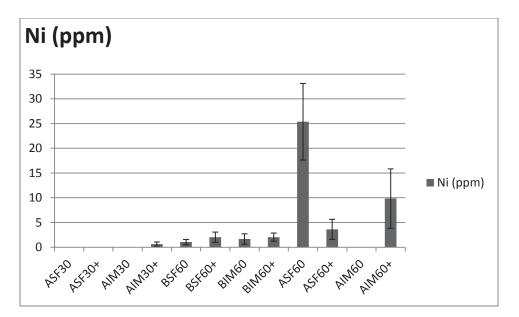



**Figure 40:** Shoots metal concentration of Cr (ppm) in each of the experimental groups in the study. The groups include, Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.

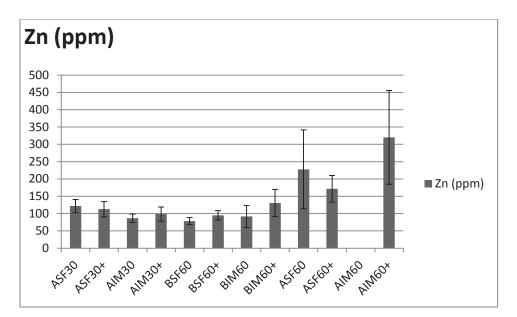



**Figure 41:** Shoots metal concentration of Cu (ppm) in each of the experimental groups in the study. The groups include, Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (ASF60+), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.

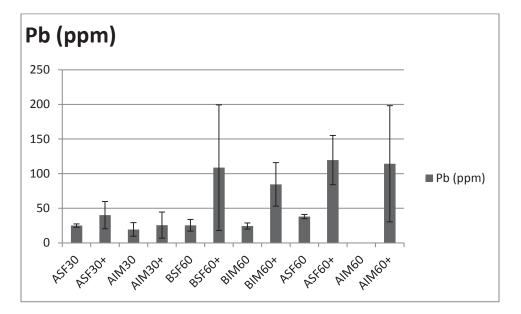



**Figure 42:** Shoots metal concentration of Fe (ppm) in each of the experimental groups in the study. The groups include, Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60+), Group A Sunflower + EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (AIM60+), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Sunflower + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation. It should be noted that concentration values over 1000 ppm obtained throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.



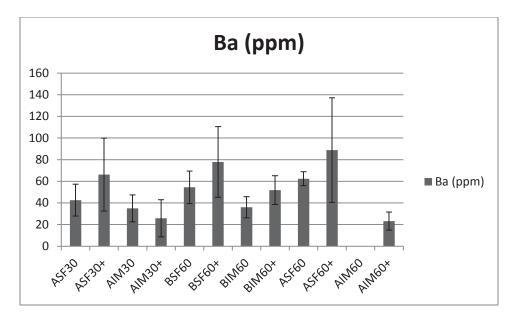

**Figure 43:** Shoots metal concentration of K (ppm) in each of the experimental groups in the study. The groups include, Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60+), Group A Sunflower + EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (AIM60+), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Sunflower + EDDS 60 day harvest (AIM60+), Group A Sunflower + EDDS 60 day harvest (AIM60+), Group A Sunflower + EDDS 60 day harvest (AIM60+), Group A Sunflower + EDDS 60 day harvest (AIM60+), Group A Sunflower + EDDS 60 day harvest (AIM60+), Group A Sunflower + EDDS 60 day harvest (AIM60+), Group A Sunflower + EDDS 60 day harvest (AIM60+), Group A Sunflower + EDDS 60 day harvest (AIM60+), Group A Sunflower + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation. It should be noted that concentration values over 1000 ppm obtained throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.



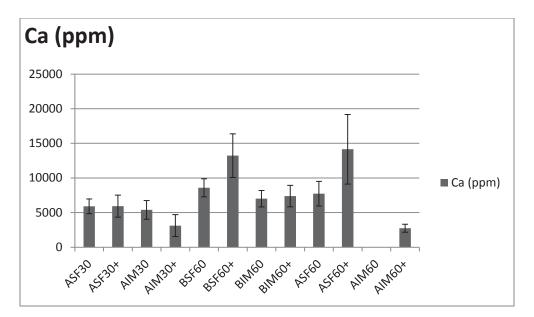

**Figure 44:** Shoots metal concentration of Mg (ppm) in each of the experimental groups in the study. The groups include, Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation. It should be noted that concentration values over 1000 ppm obtained throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.



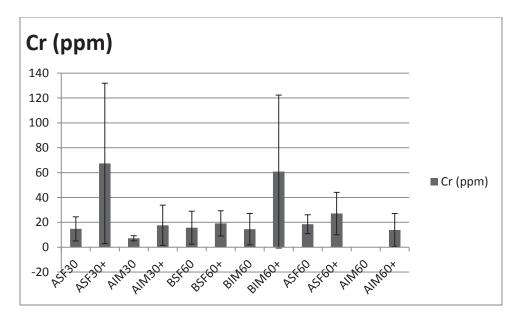
**Figure 45:** Shoots metal concentration of Ni (ppm) in each of the experimental groups in the study. The groups include, Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60+), Group A Sunflower + EDDS 60 day harvest (BIM60+), Group A Sunflower 40 day harvest (ASF60+), Group A Indian Mustard 40 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.



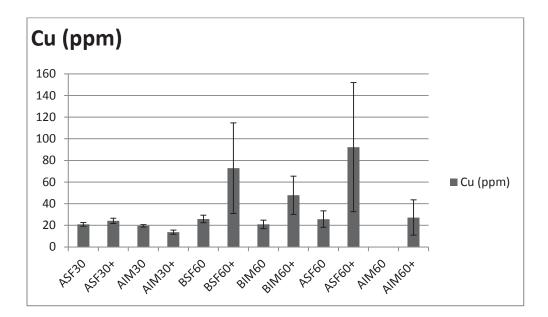

**Figure 46:** Shoots metal concentration of Zn (ppm) in each of the experimental groups in the study. The groups include, Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.



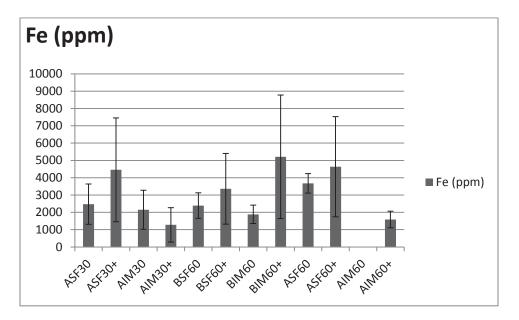

Bar Graphs of Plant Root's metal data


**Figure 47:** Root metal concentration of Pb (ppm) in each of the experimental groups in the study. The groups include Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60+), Group A Sunflower 60 day harvest (ASF60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60+), Group A Indian Mustard 40 day harvest (AIM60), Group A Indian Mustard 4 EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.



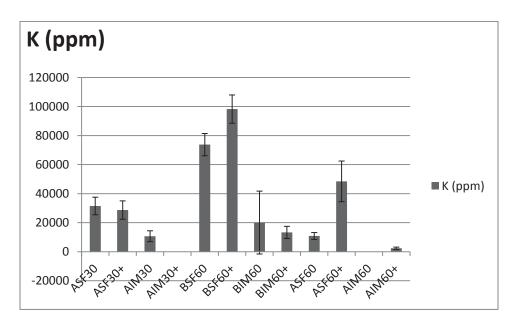

**Figure 48:** Root metal concentration of Ba (ppm) in each of the experimental groups in the study. The groups include Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (BIM60), Group B Indian Mustard 40 day harvest (BIM60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.



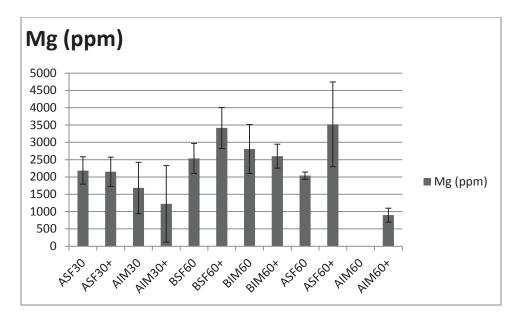

**Figure 49:** Root metal concentration of Ca (ppm) in each of the experimental groups in the study. The groups include Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (AIM60+), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation. It should be noted that concentration values over 1000 ppm obtained throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.



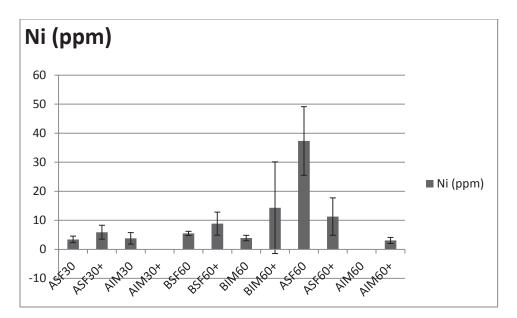
**Figure 50:** Root metal concentration of Cr (ppm) in each of the experimental groups in the study. The groups include Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 40 day harvest (AIM60), Group A Indian Mustard 40 day harves



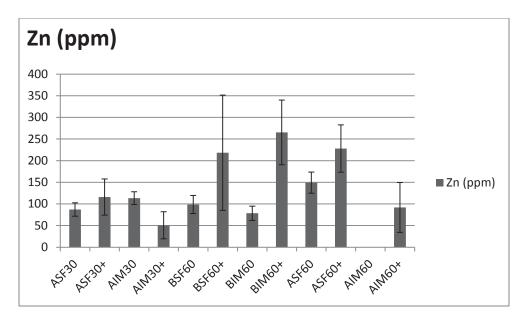

**Figure 51:** Root metal concentration of Cu (ppm) in each of the experimental groups in the study. The groups include Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (AIM60+), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation. It should be noted that concentration values over 1000 ppm obtained throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.




**Figure 52:** Root metal concentration of Fe (ppm) in each of the experimental groups in the study. The groups include Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 4 EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 4 EDDS 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation. . It should be noted that concentration values over 1000 ppm obtained


throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.




**Figure 53:** Root metal concentration of K (ppm) in each of the experimental groups in the study. The groups include Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 40 day harvest (AIM60), Group A Indian Mustard 4 EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation. It should be noted that concentration values over 1000 ppm obtained throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.



**Figure 54:** Root metal concentration of Mg (ppm) in each of the experimental groups in the study. The groups include Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (AIM60+), Group A Indian Mustard + EDDS 60 day harvest (AIM60+), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation. It should be noted that concentration values over 1000 ppm obtained throughout this experiment are considered estimates due to the nature of the standards used for instrument calibration.



**Figure 55:** Root metal concentration of Ni (ppm) in each of the experimental groups in the study. The groups include Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (BIM60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 40 day harvest (AIM60), Group A Indian Mustard 40 day harvest (AIM60), Group A Indian Mustard 40 day harvest (AIM60). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.



**Figure 56:** Root metal concentration of Zn (ppm) in each of the experimental groups in the study. The groups include Group A Sunflower 30 day harvest (ASF30), Group A Sunflower + EDDS 30 day harvest (ASF30+), Group A Indian Mustard 30 day harvest (AIM30), Group A Indian Mustard + EDDS 30 day harvest (AIM30+), Group B Sunflower 60 day harvest (BSF60), Group B Sunflower + EDDS 60 day harvest (BSF60+), Group B Indian Mustard 60 day harvest (BIM60), Group B Indian Mustard + EDDS 60 day harvest (ASF60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 60 day harvest (BIM60), Group B Indian Mustard 40 day harvest (BIM60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Sunflower 60 day harvest (ASF60), Group A Sunflower 40 day harvest (ASF60), Group A Sunflower + EDDS 60 day harvest (ASF60+), Group A Indian Mustard 60 day harvest (AIM60), Group A Indian Mustard + EDDS 60 day harvest (AIM60+). The AIM60 group did not survive the experiment and yielded no data. Error bars represent standard deviation.

## **CHAPTER 5: DISCUSSION**

Statistical analysis of this study's data revealed no significant interactions between soil metal (all) concentration values, treatments, and growth times in the soil and shoot groups. Also, the planting, 30 day growth, harvesting, replanting in the same pots and second 30 day growth that constituted group A did not produce a significant difference in terms of metal concentrations when compared to group B. In the root group, however, significant interactions were found between metal concentrations and the growth times ( $\alpha$ = 0.005) and between the metal concentrations and the different treatments ( $\alpha = 0.004$ ). For the soil metal concentration group, a lack of significance in terms of decreasing metal concentrations (as would be expected through plant uptake) may have been caused by the brevity of the study. Perhaps a longer study, ranging from months to over a year, would yield results indicating significant decreasing metal concentrations in the soil. Putting aside the presence of negative values (which may have influenced the statistical analyses) the resulting data for shoots may have occurred due to, once again, the shortness of the study. These plants may have revealed higher metal concentrations in their shoots with studies ranging in time from 3 months to over 1 year. Additionally, the necessary dilutions and methods used for extracting the metals from the shoots may not have been ideal. The metal concentration data for the roots indicated that both the duration of the experiments and the treatments (the plant types and the presence or absence of EDDS) were significant in terms of metal concentrations in the roots. First, the roots are in the most direct contact with the soil. Metal accumulation would have to begin in the roots and perhaps the plants, as stated earlier, did not have a long enough growth time for the metals to relocate or travel up to the shoots. Within this data, it can be seen that for the 30

62

vs. 60 day comparison, higher metal concentrations were present after 60 days. This is simply a factor of time and providing the plants with a longer opportunity to uptake the metals from the soil. For the metal concentration (within plant tissues) vs. treatments comparison, the plants that were treated with EDDS possessed higher metal concentrations that those without EDDS. The chelating agent EDDS produces higher levels of soluble metals within the soil, allowing the plants to uptake the metals more easily. In terms of which plant species was more capable at the uptake of metals, there was not statically significant difference. The presence or absence of EDDS was more significant.

This study reveals the potential for plants, especially those supplemented with chelating agents like the biodegradable EDDS, to assist in the bioremediation of contaminated soil sites. While the species of plant did not seem to matter, the key aspects of this study that most likely influenced the results was time and the presence or absence of EDDS. It is likely that a longer study would have perhaps produced more significant data for the metal concentrations found in both the soil and shoots of the plants. Also, we thought there would have been a significantly larger uptake of metal contaminants from the soil when the group A method of planting and replanting in the same soil was used. Additionally, other conditions such as greenhouse temperature, plant strains and organic matter must be considered in terms of their effect on metal uptake. This ended up not being the case however, but it should be noted that the plants in group A's second harvesting grew poorly which might be because of the high temperature and deficiency of nutrients and this most likely affected the outcome of the study. If the study were to be repeated, longer growth times, different metal extraction methods, and more plant

samples, perhaps with multiple plants in a single pot or larger plants in general, would be used. Overall, however, this study reveals the significant potential that relatively common plants hold in terms of their ability to aid in the process of bioremediation.

In the future studies, harvesting time can be longer than 60 day in order to absorb more lead from the soil. Also, high biomass hyperaccumulator can be used as well as along with bigger pots.

# **CHAPTER 6: APPENDICES**

## Appendix A: Soil metal concentration

| Controls          | Ba<br>(mg/kg | Ca<br>(mg/kg | Cr<br>(mg/kg | Cu<br>(mg/kg | Fe<br>(mg/kg | K<br>(mg/k | Mg<br>(mg/kg | Ni<br>(mg/k | Pb<br>(mg/kg | Zn<br>(mg/kg |
|-------------------|--------------|--------------|--------------|--------------|--------------|------------|--------------|-------------|--------------|--------------|
|                   | ) )          | )            | )            | )            | )            | g)         | )            | g)          | )            | )            |
| Control           | 398          | 14500        | 947          | 45           | 31230        | 38085      | 6470         | 26          | 445          | 396          |
| Soil A            |              |              |              | 10           |              |            |              |             |              |              |
| Control           | 432          | 16005        | 271          | 48           | 35015        | 45930      | 7120         | 30          | 381          | 415          |
| Soil B<br>Control | 399          | 10210        | 1038         | 35           | 26120        | 42830      | 6275         | 25          | 365          | 303          |
| Soil C            | 577          | 10210        | 1050         | 55           | 20120        | 42030      | 0275         | 23          | 505          | 505          |
| Control           | 373          | 21490        | 588          | 39           | 26205        | 38710      | 5725         | 32          | 442          | 342          |
| Soil D            |              |              |              |              |              |            |              |             |              |              |
| Control           | 407          | 12120        | 445          | 41           | 37225        | 41575      | 6325         | 36          | 434          | 353          |
| Soil E<br>Control | 419          | 13195        | 739          | 35           | 25210        | 43635      | 6470         | 25          | 403          | 364          |
| Soil F            | 417          | 15175        | 137          | 55           | 23210        | 45055      | 0470         | 23          | 405          | 504          |
| Average           | 405          | 14587        | 671          | 41           | 30168        | 41794      | 6398         | 29          | 412          | 362          |
| STDEV             | 19           | 3579         | 269          | 5            | 4674         | 2735       | 409          | 4           | 31           | 37           |
|                   |              |              |              |              |              |            |              |             |              |              |
| С                 | 461          | 12745        | 582          | 36           | 27870        | 51100      | 7545         | 30          | 399          | 360          |
| Soil+Water        |              |              |              |              |              |            |              |             |              |              |
| A<br>C            | 420          | 23995        | 710          | 38           | 24005        | 39535      | 7145         | 23          | 494          | 375          |
| Soil+Water        | 420          | 23993        | /10          | 30           | 24003        | 39333      | /143         | 23          | 494          | 575          |
| B                 |              |              |              |              |              |            |              |             |              |              |
| С                 | 472          | 12715        | 693          | 38           | 36445        | 46015      | 6535         | 31          | 545          | 954          |
| Soil+Water        |              |              |              |              |              |            |              |             |              |              |
| C<br>Average      | 451          | 16485        | 661          | 37           | 29440        | 45550      | 7075         | 28          | 479          | 563          |
| Stdev             | 22           | 5310         | 57           | 1            | 5199         | 4733       | 415          | 3           | 61           | 277          |
| Stuev             | 22           | 5510         | 51           | 1            | 5177         | 4755       | 415          | 5           | 01           | 211          |
| GroupA 1st        | Ba           | Ca           | Cr           | Cu           | Fe           | K          | Mg           | Ni          | Pb           | Zn           |
| hrvst             | (mg/kg       | (mg/kg       | (mg/kg       | (mg/kg       | (mg/kg       | (mg/k      | (mg/kg       | (mg/k       | (mg/kg       | (mg/kg       |
|                   | )            | )            | )            | )            | )            | g)         | )            | <b>g</b> )  | )            | )            |
| ASF30 A1          | 382          | 8610         | 635          | 39           | 38400        | 19060      | 5205         | 25          | 437          | 369          |
| ASF30 A2          | 485          | 7230         | 807          | 56           | 49720        | 26705      | 4240         | 30          | 647          | 598          |
| ASF30 B1          | 406          | 7770         | 831          | 46           | 28265        | 22810      | 4138         | 26          | 467          | 409          |
| ASF30 B2          | 440          | 7345         | 703          | 143          | 34640        | 22360      | 4033         | 27          | 493          | 402          |
| ASF30 C1          | 441          | 7970         | 589          | 47           | 29100        | 21570      | 4080         | 34          | 464          | 387          |
| ASF30 C2          | 424          | 9100         | 987          | 42           | 32475        | 18230      | 4874         | 25          | 503          | 376          |
| ASF30 D1          | 369          | 6740         | 740          | 45           | 28265        | 14590      | 3656         | 51          | 427          | 358          |
| ASF30 D2          | 490          | 8205         | 921          | 46           | 31145        | 18530      | 4647         | 28          | 531          | 459          |
| ASF30 E1          | 390          | 17030        | 362          | 40           | 27040        | 14200      | 4119         | 22          | 413          | 368          |
| ASF30 E2          | 403          | 6495         | 742          | 45           | 28910        | 15645      | 4047         | 25          | 421          | 384          |
| Average           | 423          | 8650         | 732          | 55           | 32796        | 19370      | 4304         | 29          | 480          | 411          |
| Stdev             | 39           | 2896         | 168          | 30           | 6535         | 3807       | 439          | 8           | 66           | 68           |
|                   |              |              |              |              |              |            |              |             |              |              |
| ASF30+<br>A1      | 374          | 12770        | 326          | 37           | 25470        | 12960      | 3654         | 22          | 405          | 334          |
| ASF30+            | 504          | 10125        | 554          | 44           | 33635        | 13285      | 4629         | 31          | 586          | 412          |

| A2                   |         |               |      |          | 1              | 1              |              | 1        | 1           |            |
|----------------------|---------|---------------|------|----------|----------------|----------------|--------------|----------|-------------|------------|
|                      | 388     | 6710          | 486  | 43       | 27655          | 10750          | 3375         | 24       | 467         | 378        |
| ASF30+<br>B1         | 200     | 0/10          | 480  | 45       | 27033          | 10730          | 33/3         | 24       | 407         | 378        |
| ASF30+               | 431     | 7195          | 618  | 47       | 33545          | 13000          | 4280         | 27       | 462         | 388        |
| B2                   |         |               |      |          |                |                |              |          |             |            |
| ASF30+               | 388     | 6020          | 534  | 37       | 24955          | 11210          | 3534         | 21       | 385         | 364        |
| C1<br>ASF30+         | 402     | 8410          | 327  | 38       | 30420          | 12200          | 3787         | 23       | 431         | 388        |
| C2                   | 402     | 0410          | 327  | 30       | 30420          | 12200          | 5/0/         | 23       | 431         | 200        |
| ASF30+               | 633     | 12380         | 669  | 56       | 42555          | 15020          | 7505         | 33       | 556         | 555        |
| D1                   |         |               |      |          |                |                |              |          |             |            |
| ASF30+               | 480     | 8840          | 677  | 47       | 31245          | 12945          | 5775         | 27       | 458         | 425        |
| D2<br>ASF30+         | 507     | 8470          | 569  | 61       | 49555          | 12990          | 5750         | 32       | 583         | 960        |
| E1                   | 507     | 0470          | 507  | 01       | 47555          | 12770          | 5750         | 52       | 565         | 700        |
| ASF30+               | 566     | 7335          | 721  | 65       | 54600          | 14655          | 5975         | 33       | 724         |            |
| E2                   |         |               |      |          |                |                |              |          |             |            |
| Average              | 467     | 8826          | 548  | 48       | 35364          | 12902          | 4826         | 27       | 506         | 467        |
| Stdev                | 82      | 2177          | 130  | 9        | 9677           | 1254           | 1297         | 5        | 99          | 184        |
|                      | A ( 5   | 10245         | 714  | 50       | 25065          | 12005          | 5905         | 26       | 576         | 500        |
| AIM30 A1             | 465     | 19245<br>9465 | 714  | 50<br>40 | 35965          | 12985<br>44240 | 5825<br>4076 | 26       | 576         | 509        |
| AIM30 A2             | 411 386 | 9465<br>7285  | 611  | 40<br>39 | 30050<br>31050 | 44240          | 4076<br>3606 | 28<br>23 | 507<br>1276 | 385<br>351 |
| AIM30 B1             | 442     | 8130          | 460  | 39       | 34630          | 51400          | 4604         | 23       | 454         | 331        |
| AIM30 B2             | 442     | 7690          | 1085 | 49       | 34030          | 50500          | 4004         | 22       | 434         | 414        |
| AIM30 C1             | 463     | 11210         | 708  | 49       | 31975          | 48610          | 4572         | 28       | 575         | 414        |
| AIM30 C2<br>AIM30 D1 | 366     | 5750          | 821  | 41       | 28505          | 44910          | 3900         | 24       | 399         | 333        |
| AIM30 D1<br>AIM30 D2 | 470     | 8685          | 869  | 51       | 34380          | 54350          | 4888         | 27       | 484         | 437        |
| AIM30 D2<br>AIM30 E1 | 432     | 6860          | 1126 | 51       | 32305          | 48740          | 3903         | 25       | 481         | 435        |
| AIM30 E1<br>AIM30 E2 | 447     | 8765          | 542  | 45       | 40400          | 50400          | 5110         | 26       | 508         | 399        |
| Average              | 431     | 9309          | 806  | 45       | 33404          | 44734          | 4473         | 25       | 568         | 411        |
| Stdev                | 33      | 3603          | 231  | 5        | 3223           | 11199          | 636          | 2        | 242         | 51         |
|                      |         |               |      |          |                |                |              |          |             |            |
| AIM30+               | 473     | 9830          | 655  | 79       | 37060          | 58300          | 4765         | 30       | 559         | 453        |
| A1                   |         |               |      |          |                |                |              |          |             |            |
| AIM30+               | 445     | 7995          | 664  | 42       | 33910          | 52200          | 4202         | 25       | 564         | 428        |
| A2<br>AIM30+         | 450     | 9220          | 456  | 73       | 33260          | 53450          | 5035         | 23       | 511         | 395        |
| B1                   | 150     | 1220          | 150  | 15       | 55200          | 55150          | 5055         | 23       | 511         | 575        |
| AIM30+               | 384     | 7720          | 381  | 70       | 27115          | 45445          | 3337         | 22       | 501         | 376        |
| B2                   | 201     | 15055         | 202  | 16       | 20750          | 46200          | 2007         | 2.5      | 520         | 457        |
| AIM30+<br>B3         | 386     | 17075         | 382  | 46       | 28750          | 46200          | 2887         | 25       | 538         | 457        |
| AIM30+               | 411     | 7800          | 843  | 52       | 33035          | 49265          | 3444         | 33       | 559         | 492        |
| C1                   |         |               |      |          |                |                |              |          |             |            |
| AIM30+               | 363     | 6150          | 876  | 57       | 26530          | 45115          | 2987         | 29       | 527         | 482        |
| C2<br>AIM30+         | 372     | 10935         | 547  | 50       | 26025          | 45090          | 2948         | 27       | 539         | 472        |
| D1                   | 512     | 10935         | 347  | 50       | 26025          | 43090          | 2948         | 21       | 539         | 4/2        |
| AIM30+               | 368     | 10730         | 534  | 46       | 25330          | 45430          | 2896         | 26       | 529         | 445        |
| D2                   |         |               |      |          |                |                |              |          |             |            |
| AIM30+               | 315     | 5605          | 535  | 52       | 24605          | 37995          | 2405         | 22       | 483         | 402        |
| D3<br>AIM30+         | 424     | 7195          | 463  | 49       | 30605          | 47915          | 3556         | 30       | 481         | 467        |
| E1                   | 727     | 1175          | -UJ  | 77       | 50005          | 77715          | 5550         | 50       | 101         | 107        |
| AIM30+               | 351     | 7330          | 709  | 49       | 25440          | 42785          | 3184         | 48       | 486         | 389        |
| E2                   |         |               |      |          |                |                |              |          |             |            |

| AIM30+<br>E3       | 352          | 7210         | 699          | 45           | 24875        | 43665            | 3186         | 45                | 449          | 349          |
|--------------------|--------------|--------------|--------------|--------------|--------------|------------------|--------------|-------------------|--------------|--------------|
| Average            | 392          | 8830         | 596          | 55           | 28965        | 47143            | 3448         | 30                | 517          | 431          |
| Stdev              | 44           | 2846         | 154          | 12           | 3991         | 4998             | 742          | 8                 | 34           | 43           |
|                    |              |              |              |              |              |                  |              |                   |              |              |
| Group B            | Ba<br>(mg/kg | Ca<br>(mg/kg | Cr<br>(mg/kg | Cu<br>(mg/kg | Fe<br>(mg/kg | K<br>(mg/k<br>g) | Mg<br>(mg/kg | Ni<br>(mg/k<br>g) | Pb<br>(mg/kg | Zn<br>(mg/kg |
| BSF60 A1           | 369          | 6670         | 1012         | 47           | 26460        | 41565            | 2870         | 29                | 525          | 519          |
| BSF60 A2           | 373          | 6225         | 882          | 46           | 25145        | 39995            | 2694         | 27                | 493          | 434          |
| BSF60 B1           | 359          | 7940         | 862          | 51           | 28280        | 38540            | 2762         | 28                | 458          | 438          |
| BSF60 B2           | 381          | 7800         | 812          | 45           | 24200        | 37095            | 2838         | 26                | 492          | 425          |
| BSF60 C1           | 368          | 6290         | 1059         | 49           | 27005        | 40195            | 2686         | 28                | 527          | 550          |
| BSF60 C2           | 395          | 7145         | 1223         | 53           | 26985        | 44660            | 3059         | 30                | 494          | 492          |
| BSF60 D1           | 334          | 4983         | 1340         | 34           | 22500        | 37525            | 2464         | 23                | 403          | 339          |
| BSF60 D2           | 452          | 6465         | 651          | 50           | 29100        | 45750            | 2822         | 28                | 572          | 586          |
| BSF60 E1           | 731          | 5970         | 735          | 55           | 23740        | 39540            | 2637         | 27                | 574          | 567          |
| BSF60 E2           | 368          | 5605         | 1056         | 45           | 24290        | 42040            | 2780         | 27                | 454          | 403          |
| Average            | 413          | 6509         | 963          | 48           | 25771        | 40691            | 2761         | 27                | 499          | 475          |
| Stdev              | 110          | 878          | 205          | 5            | 2018         | 2712             | 150          | 2                 | 50           | 76           |
|                    |              |              |              |              |              |                  |              |                   |              | 10.1         |
| BSF60+             | 395          | 5625         | 714          | 61           | 25415        | 43020            | 2760         | 41                | 397          | 401          |
| A1<br>BSF60+<br>A2 | 371          | 5750         | 948          | 49           | 37415        | 41095            | 2771         | 28                | 559          | 504          |
| A2<br>BSF60+<br>A3 | 403          | 5550         | 701          | 53           | 25015        | 44035            | 2778         | 37                | 359          | 359          |
| BSF60+<br>A4       | 370          | 5680         | 943          | 50           | 37605        | 41070            | 2707         | 28                | 562          | 511          |
| BSF60+<br>B1       | 334          | 5625         | 616          | 44           | 20525        | 34505            | 2277         | 22                | 403          | 383          |
| BSF60+<br>B2       | 445          | 8055         | 782          | 51           | 24165        | 39660            | 2828         | 27                | 486          | 455          |
| BSF60+<br>B3       | 393          | 7275         | 753          | 36           | 24735        | 11275            | 3473         | 16                | 349          | 331          |
| BSF60+<br>B4       | 521          | 10250        | 954          | 45           | 28995        | 12885            | 4234         | 21                | 419          | 391          |
| BSF60+<br>C1       | 438          | 9715         | 719          | 46           | 27725        | 12815            | 3670         | 20                | 429          | 426          |
| BSF60+<br>C2       | 388          | 7965         | 560          | 46           | 28405        | 12520            | 3838         | 21                | 395          | 414          |
| BSF60+<br>D1       | 414          | 9375         | 944          | 47           | 27885        | 13105            | 4177         | 19                | 458          | 373          |
| BSF60+<br>D2       | 419          | 8350         | 679          | 52           | 33890        | 13715            | 3953         | 21                | 532          | 396          |
| BSF60+<br>E1       | 807          | 11185        | 841          | 50           | 29410        | 13330            | 4463         | 21                | 556          | 432          |
| BSF60+<br>E2       | 431          | 10420        | 595          | 52           | 30865        | 12580            | 3891         | 21                | 476          | 446          |
| Average            | 438          | 7916         | 768          | 49           | 28718        | 24686            | 3415         | 24                | 456          | 416          |
| Stdev              | 111          | 1967         | 133          | 5            | 4756         | 13905            | 682          | 7                 | 72           | 49           |
|                    | 504          | 0270         | 11(2         | 57           | 22205        | 12105            | 4220         | 27                | 550          | 45.0         |
| BIM60 A1           | 504          | 9270         | 1163         | 56           | 33285        | 13105            | 4339         | 27                | 558          | 456          |
| BIM60 A2           | 440          | 8570         | 768.5        | 44           | 33555        | 13205            | 4096         | 22                | 468          | 376          |
| BIM60 B1           | 416          | 13620        | 1166         | 46           | 32220        | 14140            | 6055         | 25                | 474          | 402          |
| BIM60 B2           | 602          | 9695         | 1582         | 59           | 31760        | 13120            | 4138         | 35                | 477          | 449          |

|                     | 507     | 11270         | 1674         | 1             | 35095        | 12600       | 4141                       | 23           | 444           | 426     |
|---------------------|---------|---------------|--------------|---------------|--------------|-------------|----------------------------|--------------|---------------|---------|
| BIM60 C1            | 451     | 8895          | 1461         | 49            | 31975        | 14335       | 4603                       | 23           | 536           | 420     |
| BIM60 C2            | 431     | 8375          | 1176.5       | 49            | 31973        | 13395       | 4332                       | 33           | 564           | 429     |
| BIM60 D1            | 424 409 | 8435          | 170.3        | 42            | 27320        | 12275       | <u>4332</u><br><u>3973</u> | 23           | 451           | 427     |
| BIM60 D2            | 409     | 13235         | 1314         | 44            | 27320        | 13350       | 4932                       | 23           | 503           | 404 425 |
| BIM60 E1            | 448     | 13233         | 1013.5       | 40            | 31590        | 13385       | 6630                       | 25           | 446           | 361     |
| BIM60 E2            | 403     | 10152         | 1302         | 44            | 31390        | 13291       | 4724                       | 25           | 440           | 415     |
| Average<br>Stdev    | 58      | 1942          | 287          | 48<br>6       | 3105         | 584         | 861                        | 4            | 492           | 29      |
| Stuev               | 50      | 1942          | 207          | 0             | 5105         | 364         | 801                        | 4            | 43            | 29      |
| BIM60+<br>A1        | 413     | 10605         | 1112         | 141           | 28535        | 13110       | 4370                       | 21           | 498           | 378     |
| BIM60+<br>A2        | 406     | 10880         | 961          | 42            | 25455        | 12860       | 4050                       | 23           | 477           | 385     |
| BIM60+<br>B1        | 415     | 8215          | 400          | 50            | 25745        | 13120       | 3985                       | 22           | 533           | 389     |
| BIM60+<br>B2        | 414     | 6485          | 499          | 55            | 32650        | 13480       | 3763                       | 25           | 487           | 386     |
| BIM60+<br>C1        | 460     | 11535         | 666          | 52            | 35235        | 13465       | 3988                       | 28           | 520           | 405     |
| BIM60+<br>C2        | 468     | 9635          | 569          | 67            | 34720        | 14635       | 4479                       | 26           | 586           | 455     |
| BIM60+<br>D1        | 493     | 7775          | 418          | 46            | 29590        | 13405       | 3980                       | 23           | 610           | 432     |
| BIM60+<br>D2        | 476     | 10600         | 575          | 47            | 25175        | 12810       | 3837                       | 22           | 527           | 497     |
| BIM60+<br>E1        | 428     | 7420          | 602          | 41            | 27440        | 14040       | 3881                       | 20           | 478           | 307     |
| BIM60+<br>E2        | 586     | 9545          | 977          | 41            | 28790        | 15785       | 4785                       | 25           | 543           | 344     |
| Average             | 456     | 9270          | 678          | 58            | 29334        | 13671       | 4112                       | 23           | 526           | 398     |
| Stdev               | 52      | 1613          | 237          | 29            | 3530         | 878         | 309                        | 2            | 42            | 51      |
| ~ .                 |         |               | ~            | ~             |              |             |                            |              |               |         |
| GroupA<br>2nd hrvst | Ba      | Ca<br>(mg/lsg | Cr<br>(mg/kg | Cu<br>(mg/lig | Fe<br>(mg/kg | K<br>(mg/ly | Mg<br>(mg/kg               | Ni<br>(mg/ly | Pb<br>(mg/lig |         |
| 2nu nrvst           | (mg/kg  | (mg/kg        | (mg/kg       | (mg/kg        | (ing/kg      | (mg/k<br>g) | (mg/kg                     | (mg/k<br>g)  | (mg/kg        | (mg/kg  |
| ASF60 A1            | 470     | 8530          | 936          | 42            | 36655        | 14200       | 4212                       | 22           | 538           | 387     |
| ASF60 A2            | 502     | 8495          | 987          | 39            | 31560        | 15255       | 4587                       | 22           | 562           | 391     |
| ASF60 B1            | 503     | 8460          | 1541         | 45            | 30975        | 15165       | 4526                       | 29           | 620           | 406     |
| ASF60 B2            | 454     | 9225          | 1036         | 43            | 28535        | 15440       | 4875                       | 30           | 533           | 372     |
| ASF60 C1            | 363     | 6470          | 972          | 40            | 25940        | 12270       | 3287                       | 24           | 374           | 352     |
| ASF60 C2            | 442     | 9695          | 671          | 37            | 30700        | 13230       | 3712                       | 25           | 405           | 385     |
| ASF60 D1            | 363     | 9420          | 848          | 39            | 25530        | 12765       | 3951                       | 27           | 398           | 328     |
| ASF60 D2            | 375     | 10820         | 604          | 33            | 25105        | 13085       | 3718                       | 26           | 346           | 298     |
| ASF60 E1            | 419     | 7670          | 780          | 44            | 28340        | 14045       | 3752                       | 29           | 545           | 459     |
| ASF60 E2            | 429     | 12230         | 724          | 51            | 32050        | 15895       | 4657                       | 34           | 594           | 587     |
| Average             | 432     | 9102          | 910          | 41            | 29539        | 14135       | 4128                       | 27           | 491           | 396     |
| Stdev               | 50      | 1526          | 251          | 5             | 3400         | 1200        | 494                        | 4            | 95            | 76      |
| ASF60+<br>A1        | 370     | 6715          | 780          | 43            | 29230        | 10790       | 3347                       | 22           | 403           | 340     |
| ASF60+<br>A2        | 387     | 7815          | 948          | 41            | 65300        | 11565       | 3851                       | 38           | 448           | 387     |
| ASF60+<br>B1        | 428     | 10135         | 940          | 43            | 28585        | 12355       | 3895                       | 25           | 429           | 447     |
| ASF60+              |         |               |              |               |              |             |                            |              |               |         |

|              |     |       |      |    | r     |       |              |     |     | T    |
|--------------|-----|-------|------|----|-------|-------|--------------|-----|-----|------|
| ASF60+<br>C1 | 393 | 7530  | 621  | 52 | 35890 | 10075 | 3852         | 44  | 511 | 584  |
| _            | 393 | /530  | 021  | 52 | 33890 | 12375 | 3832         | 44  | 511 | 384  |
| ASF60+<br>C2 | 391 | 9165  | 884  | 35 | 37570 | 12165 | 3967         | 26  | 405 | 439  |
| ASF60+       | 571 | 7105  | 004  | 55 | 57570 | 12105 | 5707         | 20  | 405 | -137 |
| D1           | 425 | 8335  | 1465 | 45 | 35355 | 12575 | 3985         | 28  | 594 | 443  |
| ASF60+       |     | 0000  | 1100 |    | 50500 | 12070 | 5700         |     |     |      |
| D2           | 431 | 7905  | 1242 | 51 | 34360 | 13485 | 4271         | 32  | 554 | 609  |
| ASF60+       |     |       |      |    |       |       |              |     |     |      |
| D3           | 437 | 7770  | 1234 | 52 | 33570 | 13645 | 4241         | 30  | 521 | 566  |
| ASF60+       |     |       |      |    |       |       |              |     |     |      |
| E1           | 419 | 7520  | 812  | 46 | 56150 | 12225 | 3749         | 27  | 519 |      |
| ASF60+       | 410 | 7400  | 0.07 | 16 | 55250 | 12440 | 2700         | 26  | 516 | 1025 |
| E2           | 418 | 7480  | 807  | 46 | 55350 | 12440 | 3722         | 26  | 516 | 1035 |
| ASF60+<br>E3 | 400 | 7330  | 1036 | 48 | 27605 | 12355 | 3767         | 31  | 603 | 497  |
| Average      | 405 | 8262  | 990  | 45 | 39583 | 12234 | 3932         | 31  | 495 | 525  |
| Stdev        | 23  | 1290  | 228  | 5  | 11789 | 830   | 294          | 8   | 66  | 180  |
| Stucy        | 25  | 1270  | 220  | 5  | 11707 | 050   | 274          | 0   | 00  | 100  |
| AIM60+       |     |       |      |    |       |       |              |     |     |      |
|              | 386 | 10265 | 426  | 53 | 29635 | 12750 | 4834         | 28  | 653 | 520  |
| AIM60+       | 500 | 10205 | 120  | 55 | 27055 | 12750 | 1051         | 20  | 055 | 520  |
| A2           | 459 | 10150 | 648  | 57 | 33995 | 14845 | 4535         | 31  | 680 | 568  |
| AIM60+       |     |       |      |    |       |       |              |     |     |      |
| B1           | 428 | 9185  | 598  | 40 | 31550 | 13385 | 4371         | 28  | 559 | 514  |
| AIM60+       |     |       |      |    |       |       |              |     |     | 10.0 |
| B2           | 423 | 7140  | 589  | 41 | 46665 | 12250 | 3596         | 31  | 538 | 490  |
| AIM60+<br>C1 | 364 | 7560  | 431  | 42 | 30415 | 12545 | 3813         | 28  | 485 | 496  |
| AIM60+       | 304 | 7300  | 431  | 42 | 30413 | 12343 | 3013         | 20  | 465 | 490  |
| C2           | 397 | 10645 | 721  | 43 | 31220 | 13340 | 4893         | 139 | 480 | 532  |
| AIM60+       |     |       | -    | _  |       |       |              |     |     |      |
| D1           | 522 | 9805  | 841  | 59 | 42700 | 16235 | 5700         | 38  | 661 | 663  |
| AIM60+       |     |       |      |    |       |       |              |     |     |      |
| D2           | 531 | 9845  | 850  | 58 | 42885 | 16350 | 5765         | 38  | 657 | 651  |
| AIM60+       | 402 | 7.77  | 707  |    | 00/00 | 10000 | 2711         | 22  | (7) | 522  |
| D3           | 403 | 7575  | 786  | 56 | 28680 | 12020 | 3711         | 32  | 674 | 532  |
| AIM60+<br>E1 | 446 | 8580  | 1552 | 60 | 33840 | 14660 | 4657         | 37  | 765 | 602  |
| Average      | 440 | 9075  | 744  | 51 | 35159 | 13838 | 4037<br>4587 | 43  | 615 | 557  |
| Stdev        | 53  | 1213  | 305  | 8  | 6128  | 15050 | 720          | 32  | 89  | 59   |
| SILLEV       | 55  | 1213  | 505  | 0  | 0120  | 1515  | 720          | 54  | 0)  | 57   |

# Appendix B: Shoot metal concentration

| Group A 1st<br>Harvest | Ba<br>(mg/kg<br>) | Ca<br>(mg/kg<br>) | Cr<br>(mg/kg<br>) | Cu<br>(mg/kg<br>) | Fe<br>(mg/k<br>g) | K<br>(mg/k<br>g) | Mg<br>(mg/kg<br>) | Ni<br>(mg/k<br>g) | Pb<br>(mg/kg<br>) | Zn<br>(mg/kg<br>) |
|------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|
| ASF30 shoot<br>Pot A1  | 14                | 25480             | 1                 | 32                | 254               | 48680            | 6790              | 1                 | 7                 | 144               |
| ASF30 shoot<br>Pot A2  | 12                | 21565             | 1                 | 27                | 223               | 43910            | 5795              | 0                 | 6                 | 141               |
| ASF30 shoot<br>Pot A3  | 14                | 25355             | 1                 | 35                | 274               | 50900            | 6945              | 1                 | 7                 | 185               |
| ASF30 shoot<br>Pot B1  | 15                | 24415             | 3                 | 30                | 136               | 50250            | 6020              | 0                 | 8                 | 118               |
| ASF30 shoot            | 15                | 24965             | 0                 | 29                | 204               | 50000            | 5900              | 1                 | 6                 | 105               |

| D. ( D2                 |            | <u>г г</u> |     | r   |      | r     |        | r   | r   |     |
|-------------------------|------------|------------|-----|-----|------|-------|--------|-----|-----|-----|
| Pot B2                  | 1.4        | 04525      | 1   | 20  | 100  | 40740 | 5015   | 0   | 0   | 101 |
| ASF30 shoot             | 14         | 24535      | 1   | 29  | 188  | 49740 | 5915   | 0   | 8   | 121 |
| Pot B3<br>ASF30 shoot   | 16         | 24805      | 0   | 30  | 159  | 48855 | 5900   | 0   | 9   | 114 |
| Pot B4                  | 10         | 24003      | 0   | 30  | 139  | 40033 | 3900   | 0   | 9   | 114 |
| ASF30 shoot             | 18         | 27065      | 5   | 27  | 127  | 43710 | 5020   | 0   | 6   | 101 |
| Pot C1                  | 10         | 27005      | 5   | 27  | 127  | 45710 | 5020   | 0   | 0   | 101 |
| ASF30 shoot             | 18         | 29120      | 2   | 28  | 131  | 46695 | 5345   | 1   | 6   | 105 |
| Pot C2                  |            |            |     |     |      |       |        |     |     |     |
| ASF30 shoot             | 19         | 29695      | 0   | 28  | 121  | 49445 | 5545   | 0   | 7   | 113 |
| Pot C3                  |            |            |     |     |      |       |        |     |     |     |
| ASF30 shoot             | 19         | 29840      | -2  | 29  | 111  | 48590 | 5465   | 1   | 7   | 114 |
| Pot C4                  | 10         | 24700      |     | 2.4 | 1.00 | 50700 | (070   | 1   |     | 100 |
| ASF30 shoot             | 19         | 34780      | -3  | 24  | 160  | 52700 | 6970   | -1  | 5   | 120 |
| Pot D2<br>ASF30 shoot   | 20         | 36645      | 0   | 25  | 145  | 56050 | 7200   | 1   | 5   | 124 |
| Pot D3                  | 20         | 50045      | 0   | 25  | 145  | 50050 | 7200   | 1   | 5   | 127 |
| ASF30 shoot             | 17         | 30440      | -3  | 26  | 123  | 46865 | 6045   | 0   | 4   | 106 |
| Pot D4                  |            |            |     |     |      |       |        |     |     |     |
| ASF30 shoot             | 20         | 32980      | 2   | 24  | 174  | 61450 | 5980   | -1  | 5   | 112 |
| Pot E1                  |            |            |     |     |      |       |        |     |     |     |
| ASF30 shoot             | 24         | 38450      | -1  | 28  | 220  | 71050 | 6920   | -1  | 13  | 128 |
| Pot E2                  | 10         | 22470      | 17  | 24  | 209  | (0200 | 5005   | 1   | 5   | 112 |
| ASF30 shoot<br>Pot E3   | 19         | 32470      | 1 / | 24  | 209  | 60300 | 5895   | -1  | 5   | 113 |
| ASF30 shoot             | 26         | 36940      | -2  | 29  | 222  | 68300 | 6985   | -1  | 6   | 128 |
| Pot E4                  | 20         | 50740      | -2  | 2)  | 222  | 00500 | 0785   | -1  | 0   | 120 |
| Average                 | 18         | 29419      | 1   | 28  | 177  | 52638 | 6146   | 0   | 7   | 122 |
| Stdev                   | 3          | 4897       | 4   | 3   | 48   | 7592  | 637    | 1   | 2   | 19  |
| Stucy                   | -          |            | -   | -   |      |       |        | -   | _   |     |
| ASF30+                  | 17         | 30710      | 0   | 26  | 277  | 62600 | 6515   | -1  | 5   | 104 |
| Shoot Pot A1            | 17         | 50/10      | 0   | 20  | 277  | 02000 | 0010   | 1   | 5   | 101 |
| ASF30+                  | 18         | 29585      | 0   | 26  | 249  | 60650 | 6350   | -1  | 5   | 112 |
| Shoot Pot A2            |            |            |     |     |      |       |        |     |     |     |
| ASF30+                  | 17         | 28865      | -1  | 26  | 216  | 59900 | 6280   | -1  | 5   | 107 |
| Shoot Pot A3            | 1.5        |            |     | • • | 44.0 |       | (0.1.5 |     |     | 0.5 |
| ASF30+                  | 17         | 28195      | 125 | 28  | 410  | 57800 | 6245   | 0   | 6   | 95  |
| Shoot Pot A4<br>ASF30+  | 31         | 32690      | 89  | 32  | 1194 | 61450 | 6805   | 1   | 11  | 142 |
| Shoot Pot B1            | 51         | 52070      | 0)  | 52  | 11/4 | 01450 | 0005   | 1   | 11  | 142 |
| ASF30+                  | 26         | 28670      | 23  | 27  | 788  | 54750 | 6020   | 0   | 9   | 128 |
| Shoot Pot B2            | _          |            |     |     |      |       |        |     | -   | -   |
| ASF30+                  | 21         | 27170      | 8   | 27  | 666  | 52050 | 5745   | 1   | 9   | 125 |
| Shoot Pot B3            |            |            |     |     |      |       |        |     |     |     |
| ASF30+                  | 26         | 31860      | 48  | 29  | 1163 | 59550 | 6580   | 0   | 11  | 156 |
| Shoot Pot B4            | <u> 51</u> | 22205      | 20  | 20  | 1110 | 50050 | (155   | 2   | 17  | 12( |
| ASF30+<br>Shoot Pot C1  | 51         | 33385      | 28  | 29  | 1119 | 59050 | 6455   | 2   | 17  | 126 |
| Shoot Pot C1<br>ASF30+  | 32         | 32810      | 33  | 28  | 1090 | 57550 | 6345   | 0   | 15  | 106 |
| Shoot Pot C2            | 52         | 52010      | 55  | 20  | 1070 | 57550 | 0575   | U U | 1.5 | 100 |
| ASF30+                  | 30         | 35315      | 28  | 29  | 1160 | 62300 | 6815   | 0   | 13  | 153 |
| Shoot Pot C3            |            |            |     |     |      |       |        |     |     |     |
| ASF30+                  | 23         | 34980      | -1  | 25  | 281  | 50500 | 6170   | -1  | 5   | 101 |
| Shoot Pot D1            |            |            |     |     |      |       |        |     |     |     |
| ASF30+                  | 24         | 32605      | -4  | 22  | 123  | 43535 | 5350   | -1  | 6   | 79  |
| Shoot Pot D2<br>ASF30+  | 22         | 33130      | 2   | 21  | 165  | 47395 | 5590   | -1  | 6   | 84  |
| ASF 30+<br>Shoot Pot D3 | 22         | 33130      | 2   | 21  | 105  | 4/393 | 5390   | -1  | 0   | 04  |
| ASF30+                  | 22         | 35835      | -1  | 26  | 203  | 51100 | 6185   | -1  | 6   | 98  |
| Shoot Pot D4            |            | 55055      | -1  | 20  | 205  | 51100 | 0105   | -1  | 0   | 70  |
| 5100110104              | 1          | 1          |     | 1   | 1    | I     |        | 1   | 1   |     |

| ASF30+                 | 25 | 31110 | 0  | 25 | 1110 | 46260 | 5400 | 0  | 8  | 82  |
|------------------------|----|-------|----|----|------|-------|------|----|----|-----|
| Shoot Pot E1           | 25 | 51110 | 0  | 23 | 1110 | 40200 | 5400 | 0  | 0  | 02  |
| ASF30+<br>Shoot Pot E2 | 33 | 40105 | 13 | 31 | 501  | 61000 | 6990 | 0  | 11 | 116 |
| ASF30+<br>Shoot Pot E3 | 27 | 37925 | -2 | 29 | 502  | 56550 | 6610 | 0  | 9  | 119 |
| Average                | 26 | 32497 | 22 | 27 | 623  | 55777 | 6247 | 0  | 9  | 113 |
| Stdev                  | 8  | 3355  | 34 | 3  | 401  | 5761  | 461  | 1  | 4  | 22  |
|                        |    |       |    |    |      |       |      |    |    |     |
| AIM30 Shoot<br>Pot A1  | 24 | 32770 | 0  | 22 | 289  | 49810 | 3761 | 0  | 6  | 102 |
| AIM30 Shoot<br>Pot A2  | 19 | 28205 | -3 | 19 | 194  | 41695 | 3119 | -1 | 4  | 90  |
| AIM30 Shoot<br>Pot A3  | 17 | 26095 | 1  | 14 | 126  | 41745 | 2890 | -1 | 6  | 88  |
| AIM30 Shoot<br>Pot A4  | 19 | 28525 | -1 | 18 | 158  | 45200 | 3216 | -1 | 4  | 94  |
| AIM30 Shoot<br>Pot B1  | 16 | 22820 |    | 18 | 416  | 41015 | 3051 | 0  | 3  | 93  |
| AIM30 Shoot<br>Pot B2  | 16 | 23355 | 2  | 19 | 132  | 41750 | 3030 | -1 | 4  | 91  |
| AIM30 Shoot<br>Pot B3  | 15 | 22200 | -1 | 19 | 121  | 39645 | 2766 | -1 | 3  | 84  |
| AIM30 Shoot<br>Pot B4  | 17 | 24290 | 1  | 20 | 166  | 45495 | 3172 | -1 | 4  | 91  |
| AIM30 Shoot<br>Pot C1  | 20 | 25475 | -4 | 22 | 169  | 48950 | 3370 | -1 | 5  | 86  |
| AIM30 Shoot<br>Pot C2  | 18 | 25235 | -8 | 20 | 178  | 47950 | 3552 | -1 | 4  | 82  |
| AIM30 Shoot<br>Pot C3  | 18 | 24725 | -1 | 22 | 170  | 47340 | 3361 | -1 | 4  | 81  |
| AIM30 Shoot<br>Pot C4  | 18 | 22590 | -3 | 20 | 174  | 43995 | 3056 | -1 | 3  | 75  |
| AIM30 Shoot<br>Pot D1  | 22 | 33395 | 1  | 26 | 209  | 62400 | 4089 | 0  | 5  | 105 |
| AIM30 Shoot<br>Pot D2  | 20 | 30170 | -2 | 24 | 149  | 60000 | 3651 | -1 | 4  | 104 |
| AIM30 Shoot<br>Pot D3  | 16 | 26320 | -1 | 22 | 141  | 52700 | 3261 | -1 | 3  | 91  |
| AIM30 Shoot<br>Pot D4  | 15 | 24450 | -2 | 20 | 125  | 47920 | 2982 | -1 | 4  | 83  |
| AIM30 Shoot<br>Pot E1  | 23 | 28430 | -5 | 18 | 103  | 19255 | 2134 | -1 | 4  | 87  |
| AIM30 Shoot<br>Pot E3  | 19 | 25035 | 3  | 11 | 110  | 18870 | 1908 | 0  | 4  | 60  |
| AIM30 Shoot<br>Pot E4  | 19 | 23580 | 5  | 12 | 92   | 19675 | 1815 | 0  | 4  | 58  |
| Average                | 18 | 26193 | -1 | 19 | 169  | 42916 | 3062 | -1 | 4  | 87  |
| Stdev                  | 2  | 3181  | 3  | 4  | 73   | 11767 | 574  | 0  | 1  | 12  |
| AIM30+<br>Shoot Pot A1 | 25 | 28365 | 4  | 24 | 578  | 45705 | 3144 | 2  | 30 | 130 |
| AIM30+<br>Shoot Pot A2 | 22 | 27770 | 3  | 29 | 444  | 45390 | 3116 | 1  | 33 |     |
| AIM30+<br>Shoot Pot A3 | 22 | 26760 | 6  | 28 | 331  | 46080 | 3024 | 0  | 32 |     |
| AIM30+<br>Shoot Pot A4 | 22 | 27000 | 5  | 25 | 282  | 46765 | 3058 | 0  | 31 | 99  |
| AIM30+<br>Shoot Pot B1 | 30 | 30900 | 6  | 27 | 639  | 56950 | 4037 | 1  | 19 | 136 |
| SHOULI OL DI           |    | 1     |    | l  | L    |       |      | L  | 1  |     |

| AIM30+                 | 27     | 29600  |        | 28     | 804            | 53750     | 3519    | 1     | 63     | 110        |
|------------------------|--------|--------|--------|--------|----------------|-----------|---------|-------|--------|------------|
| Shoot Pot B2           |        |        |        | •      | 470            | - 4 - 0 0 | 2 4 7 4 |       |        | ^ <b>-</b> |
| AIM30+                 | 24     | 29385  | 6      | 28     | 470            | 54500     | 3474    | 0     | 22     | 97         |
| Shoot Pot B3           | 22     | 275.05 | 4      | 20     | 451            | 51250     | 2200    | 1     | 21     | 112        |
| AIM30+                 | 22     | 27505  | 4      | 28     | 451            | 51250     | 3288    | 1     | 21     | 113        |
| Shoot Pot B4<br>AIM30+ | 28     | 25175  | 7      | 28     | 453            | 26750     | 2432    | 1     | 61     | 109        |
| Shoot Pot C1           | 28     | 23173  | /      | 28     | 433            | 20730     | 2432    | 1     | 01     | 109        |
| AIM30+                 | 27     | 27340  | 5      | 30     | 234            | 29000     | 2624    | 1     | 35     | 76         |
| Shoot Pot C2           | 21     | 27340  | 5      | 50     | 234            | 29000     | 2024    | 1     | 55     | 70         |
| AIM30+                 | 25     | 24785  | 0      | 29     | 263            | 26900     | 2420    | 0     | 37     | 63         |
| Shoot Pot C3           | 25     | 21705  | Ŭ      | 2)     | 205            | 20700     | 2120    | Ŭ     | 51     | 05         |
| AIM30+                 | 25     | 26175  | 8      | 28     | 236            | 27730     | 2550    | 1     | 33     | 99         |
| Shoot Pot C4           |        |        | _      | -      |                |           |         |       |        |            |
| AIM30+                 | 71     | 30980  | 22     | 32     | 358            | 51800     | 3463    | 0     | 11     | 85         |
| Shoot Pot D1           |        |        |        |        |                |           |         |       |        |            |
| AIM30+                 | 24     | 27575  | 8      | 28     | 266            | 48220     | 3086    | 0     | 12     | 77         |
| Shoot Pot D2           |        |        |        |        |                |           |         |       |        |            |
| AIM30+                 | 22     | 28805  | 6      | 29     | 328            | 50300     | 3279    | 1     | 13     | 87         |
| Shoot Pot D3           |        |        |        |        |                |           |         |       |        |            |
| Average                | 28     | 27875  | 6      | 28     | 409            | 44073     | 3101    | 1     | 30     | 98         |
| Stdev                  | 12     | 1778   | 5      | 2      | 159            | 10457     | 435     | 0     | 15     | 20         |
|                        |        |        | -      |        |                |           |         |       | -      |            |
|                        | Ba     | Ca     | Cr     | Cu     | Fe             | K         | Mg      | Ni    | Pb     | Zn         |
|                        | (mg/kg | (mg/kg | (mg/kg | (mg/kg | (mg/k          | (mg/k     | (mg/kg  | (mg/k | (mg/kg | (mg/kg     |
| Group B                | )      | )      | )      | )      | (ing) ii<br>g) | g)        | )       | g)    | )      | )          |
| BSF60 Shoot            | 31     | 47935  | 7      | 19     | 301            | 43985     | 7515    | 1     | 8      | 74         |
| Pot A1                 |        |        |        |        |                |           |         |       |        |            |
| BSF60 Shoot            | 31     | 47620  | 9      | 20     | 325            | 44620     | 7875    | 1     | 10     | 83         |
| Pot A2                 |        |        |        |        |                |           |         |       |        |            |
| BSF60 Shoot            | 35     | 57000  | 5      | 19     | 364            | 50400     | 8780    | 1     | 9      | 86         |
| Pot A3                 |        |        |        |        |                |           |         |       |        |            |
| BSF60 Shoot            | 31     | 47495  | 7      | 19     | 335            | 45825     | 7785    | 1     | 9      | 78         |
| Pot A4                 |        |        |        |        |                |           |         |       |        |            |
| BSF60 Shoot            | 32     | 36230  | 4      | 19     | 449            | 39845     | 6755    | 0     | 12     | 69         |
| Pot B1                 | 2.5    | 41700  | 2      | 10     | 50.6           | 10705     | 7505    |       | 0      | 07         |
| BSF60 Shoot            | 35     | 41780  | 3      | 19     | 596            | 42735     | 7595    |       | 9      | 87         |
| Pot B2                 | 24     | 45545  | 2      | 22     | 401            | 52100     | 0220    | 1     | 0      | 75         |
| BSF60 Shoot<br>Pot B3  | 34     | 45545  | 2      | 23     | 401            | 52100     | 8320    | 1     | 9      | 75         |
| BSF60 Shoot            | 36     | 49305  | 7      | 21     | 707            | 56100     | 8400    | 1     | 13     | 71         |
| Pot B4                 | 50     | 49303  | /      | 21     | /0/            | 50100     | 0400    | 1     | 15     | / 1        |
| BSF60 Shoot            | 35     | 48180  | 7      | 19     | 391            | 54900     | 8380    | 1     | 9      | 68         |
| Pot C1                 | 55     | 10100  | ,      | 17     | 571            | 51500     | 0500    | 1     | Í      | 00         |
| BSF60 Shoot            | 35     | 46110  | 5      | 20     | 432            | 54050     | 8010    | 2     | 10     | 93         |
| Pot C2                 |        |        | -      |        |                |           |         |       |        |            |
| BSF60 Shoot            | 38     | 46230  | 18     | 21     | 650            | 45645     | 7635    | 1     | 10     |            |
| Pot C3                 |        |        |        |        |                |           |         |       |        |            |
| BSF60 Shoot            | 41     | 51450  |        | 23     | 949            | 50350     | 7935    | 2     | 12     | 96         |
| Pot C4                 |        |        |        |        |                |           |         |       |        |            |
| BSF60 Shoot            | 30     | 41530  | 3      | 18     | 284            | 47650     | 7190    | 2     | 7      | 66         |
| Pot D1                 |        |        |        |        |                |           |         |       |        |            |
| BSF60 Shoot            | 30     | 38185  | 3      | 18     | 267            | 43575     | 6785    | 1     | 7      | 72         |
| Pot D2                 |        |        |        |        |                |           |         |       |        |            |
| BSF60 Shoot            | 32     | 42725  | 3      | 19     | 310            | 48675     | 7605    | 1     | 7      | 70         |
| Pot D3                 | 25     | 54000  |        | 20     | 207            | 40/00     | 7000    |       |        |            |
| BSF60 Shoot            | 35     | 54900  | 8      | 20     | 387            | 49690     | 7980    | 0     | 9      | 76         |
| Pot D4                 | 22     | 22100  | ~      | 20     | E 4 77         | 50250     | 5075    | 1     | ~      | (0         |
| BSF60 Shoot            | 33     | 33100  | 7      | 20     | 547            | 59350     | 5275    | 1     | 7      | 69         |
| Pot E1                 |        |        |        |        |                |           |         |       |        |            |

| ·                      |    | ,     |     |    |      |       |               |   |     |     |
|------------------------|----|-------|-----|----|------|-------|---------------|---|-----|-----|
| BSF60 Shoot<br>Pot E2  | 37 | 39440 | 12  | 23 |      | 61000 | 5720          | 2 | 14  |     |
| BSF60 Shoot            | 35 | 36620 | 6   | 21 |      | 57700 | 5385          | 1 | 13  | 99  |
| Pot E3                 |    |       |     |    |      |       |               |   | _   |     |
| Average                | 34 | 44809 | 6   | 20 | 453  | 49905 | 7417          | 1 | 10  | 78  |
| Stdev                  | 3  | 6198  | 4   | 2  | 177  | 5876  | 986           | 1 | 2   | 10  |
|                        |    |       |     |    |      |       |               |   |     |     |
| BSF60+                 | 44 | 34320 | 9   | 32 |      | 61450 | 6150          | 4 | 27  | 98  |
| Shoot Pot A2           |    |       |     |    |      |       |               |   |     |     |
| BSF60+                 | 32 | 30100 | 5   | 31 | 800  | 53450 | 4893          | 2 | 29  | 82  |
| Shoot Pot A3           | 20 |       |     | •  |      |       |               |   |     |     |
| BSF60+                 | 38 | 36020 | 4   | 29 |      | 59950 | 5650          | 2 | 25  | 93  |
| Shoot Pot A4<br>BSF60+ | 33 | 56000 | 3   | 26 | 310  | 55200 | 7560          | 1 | 14  | 105 |
| Shoot Pot B1           | 55 | 50000 | 5   | 20 | 510  | 55200 | 7500          | 1 | 17  | 105 |
| BSF60+                 | 32 | 50950 | 0   | 26 | 267  | 54450 | 7015          | 2 | 14  | 82  |
| Shoot Pot B2           |    |       |     |    |      |       |               |   |     |     |
| BSF60+                 | 36 | 58900 | 5   | 29 | 574  | 59800 | 7985          | 2 | 16  | 98  |
| Shoot Pot B3           |    |       |     |    |      | 1001- | - 10 <b>-</b> |   |     |     |
| BSF60+                 | 28 | 42925 | 7   | 25 | 246  | 49015 | 6495          | 1 | 13  | 87  |
| Shoot Pot B4<br>BSF60+ | 30 | 45940 |     | 24 | 590  | 47730 | 6550          | 2 | 10  | 113 |
| BSF00+<br>Shoot Pot C1 | 30 | 43940 |     | 24 | 590  | 47730 | 0550          | 2 | 10  | 115 |
| BSF60+                 | 25 | 35880 | 1   | 23 | 159  | 43030 | 5720          | 1 | 10  | 86  |
| Shoot Pot C2           |    |       |     | _  |      |       |               |   |     |     |
| BSF60+                 | 26 | 40060 | 1   | 24 | 197  | 42315 | 5645          | 1 | 13  | 73  |
| Shoot Pot C3           |    |       |     |    |      |       |               |   |     |     |
| BSF60+                 | 24 | 33215 | 3   | 23 | 191  | 41480 | 5440          | 1 | 10  | 82  |
| Shoot Pot C4<br>BSF60+ | 33 | 40115 | 20  | 32 | 546  | 59100 | 6210          | 2 | 15  | 104 |
| Shoot Pot D1           | 33 | 40113 | 20  | 32 | 540  | 39100 | 0210          | 2 | 15  | 104 |
| BSF60+                 | 31 | 37755 | 7   | 30 | 432  | 56550 | 5500          | 2 | 14  | 131 |
| Shoot Pot D2           | -  |       |     |    |      |       |               |   |     | _   |
| BSF60+                 | 34 | 42910 | 22  | 32 | 584  | 61450 | 5910          | 3 | 20  | 98  |
| Shoot Pot D3           |    |       |     |    |      |       |               |   |     |     |
| BSF60+                 | 34 | 41740 | 12  | 32 | 608  | 60200 | 5775          | 2 | 17  | 94  |
| Shoot Pot D4<br>BSF60+ | 30 | 32030 | 7   | 27 | 417  | 54500 | 5245          | 2 | 24  | 78  |
| Shoot Pot E1           | 50 | 52050 | /   | 27 | 417  | 54500 | 5245          | 2 | 24  | 70  |
| BSF60+                 | 40 | 43205 | 10  | 29 | 718  | 66150 | 6345          | 3 | 25  | 107 |
| Shoot Pot E2           |    |       |     |    |      |       |               |   |     |     |
| BSF60+                 | 32 | 33580 | 2   | 26 | 716  | 54900 | 5330          | 3 | 35  | 98  |
| Shoot Pot E3           | 25 | 20(00 |     | 20 | 70.6 | 50050 |               |   | 2.4 |     |
| BSF60+<br>Shoot Pot E4 | 35 | 38690 |     | 29 | 706  | 59950 | 5770          | 5 | 24  | 99  |
|                        | 22 | 40754 | 7   | 20 | 474  | 54772 | 6062          | 2 | 10  | 05  |
| Average                | 32 | 40754 | 7   | 28 | 474  | 54772 | 6063          | 2 | 19  | 95  |
| Stdev                  | 5  | 7638  | 6   | 3  | 206  | 6896  | 772           | 1 | 7   | 13  |
| BIM60 Shoot            | 33 | 41920 | 1   | 26 | 340  | 51900 | 4076          | 1 | 16  | 147 |
| Pot A1                 | 33 | 41920 | 1   | 20 | 340  | 51900 | 4070          | 1 | 10  | 14/ |
| BIM60 Shoot            | 75 | 40785 | 7   | 24 | 485  | 47900 | 3837          | 0 | 32  | 122 |
| Pot A2                 |    |       |     |    |      |       |               |   |     | _   |
| BIM60 Shoot            | 35 | 41860 | 3   | 25 | 309  | 52250 | 4139          | 1 | 13  | 137 |
| Pot A3                 |    |       | • • |    |      |       |               |   |     |     |
| BIM60 Shoot            | 26 | 33705 | 28  | 29 | 549  | 46100 | 5065          | 2 | 13  | 111 |
| Pot B1<br>BIM60 Shoot  | 28 | 37800 |     | 29 | 675  | 51000 | 5625          | 2 | 14  | 108 |
| Pot B2                 | 20 | 57800 |     | 27 | 0/5  | 51000 | 5025          | 4 | 14  | 100 |
| BIM60 Shoot            | 31 | 35825 | 9   | 27 | 628  | 47530 | 5245          | 2 | 15  | 88  |
| Pot B3                 | -  |       | -   |    |      |       | -             |   | -   |     |
| -                      |    | • 1   |     | •  | •    | •     |               | • |     |     |

| BIM60 Shoot            | 24       | 31545         | 15       | 25      | 415        | 47520         | 4668        | 3     | 14       | 68        |
|------------------------|----------|---------------|----------|---------|------------|---------------|-------------|-------|----------|-----------|
| Pot B4<br>BIM60 Shoot  | 49       | 37025         | 5        | 27      |            | 38670         | 5155        | 4     | 17       | 95        |
| Pot C1                 |          |               |          |         |            | 20070         |             |       | 17       | ,,,       |
| BIM60 Shoot            | 48       | 36640         | 6        | 28      |            | 36955         | 5370        | 3     | 14       | 86        |
| Pot C2<br>BIM60 Shoot  | 46       | 35645         | 8        | 27      |            | 37535         | 4892        | 3     | 16       | 91        |
| Pot C3                 | 10       | 55015         | Ű        | 27      |            | 57555         | 1052        |       | 10       | 71        |
| BIM60 Shoot            | 46       | 36865         | 34       | 25      |            | 36505         | 5495        | 3     | 13       | 84        |
| Pot C4<br>BIM60 Shoot  | 20       | 37575         | 1        | 21      | 256        | 38440         | 4952        | 2     | 5        | 75        |
| Pot D1                 |          |               |          |         |            |               |             |       |          |           |
| BIM60 Shoot<br>Pot D2  | 39       | 44770         | 7        | 25      | 303        | 42750         | 5595        | 2     | 5        | 165       |
| BIM60 Shoot            | 24       | 42470         | 2        | 22      | 421        | 41795         | 5360        | 1     |          | 68        |
| Pot D3                 |          |               |          |         |            |               |             |       |          |           |
| BIM60 Shoot            | 21       | 38835         | 4        | 23      | 240        | 40340         | 4988        | 1     | 6        | 56        |
| Pot D4<br>BIM60 Shoot  | 17       | 29985         | 4        | 24      | 213        | 34460         | 3945        | 1     | 5        | 48        |
| Pot E1                 |          |               |          |         |            |               |             |       |          |           |
| BIM60 Shoot            | 17       | 30625         | 6        | 24      | 275        | 35410         | 4172        | 1     | 21       | 74        |
| Pot E2<br>BIM60 Shoot  | 16       | 28480         | 2        | 26      | 200        | 35100         | 3838        | 0     | 6        | 63        |
| Pot E3                 |          |               |          |         |            |               |             |       | _        |           |
| BIM60 Shoot            | 17       | 29265         | -1       | 25      | 228        | 33315         | 4088        | 0     | 5        | 58        |
| Pot E4<br>Average      | 32       | 36401         | 8        | 25      | 369        | 41867         | 4763        | 2     | 13       | 92        |
| Stdev                  | 15       | 4680          | 9        | 2       | 149        | 6166          | 621         | 1     | 7        | 32        |
| Stuct                  |          |               |          |         |            |               |             |       |          |           |
| BIM60+                 |          |               |          |         |            |               |             |       |          |           |
| Shoot Pot A1           | 36       | 31385         | 4        | 52      | 657        | 32455         | 4771        | 3     | 76       | 160       |
| BIM60+<br>Shoot Pot B1 | 49       | 42890         |          | 29      | 844        | 36500         | 4873        | 1     | 33       | 157       |
| BIM60+                 |          |               |          |         |            |               |             |       |          |           |
| Shoot Pot B2           | 56       | 48300         |          | 34      | 1211       | 38450         | 5275        | 1     | 40       | 193       |
| BIM60+<br>Shoot Pot C1 | 21       | 27190         | -1       | 28      | 998        | 22015         | 3830        | 4     | 41       | 143       |
| BIM60+                 |          |               |          |         |            |               |             |       |          |           |
| Shoot Pot C2           | 26       | 30750         | 1        | 23      | 944        | 26410         | 4504        | 2     | 31       | 96        |
| BIM60+<br>Shoot Pot D1 | 27       | 23245         | 1        | 36      | 513        | 21030         | 2993        | 2     | 28       | 139       |
| BIM60+                 |          |               |          |         |            |               |             |       |          |           |
| Shoot Pot D2<br>BIM60+ | 26       | 24795         | 1        | 35      | 554        | 23980         | 3240        | 2     | 27       | 142       |
| Shoot Pot E1           | 18       | 23580         | 0        | 20      | 984        | 15300         | 3597        | 2     | 12       | 67        |
| BIM60+                 |          |               |          |         |            |               |             |       |          |           |
| Shoot Pot E2           | 21       | 28375         | 4        | 24      | 1139       | 17535         | 4178        | 2     | 14       | 80        |
| Average<br>Stdev       | 31<br>13 | 31168<br>8271 | 1 2      | 31<br>9 | 871<br>235 | 25964<br>7731 | 4140<br>736 | 2     | 34<br>18 | 131<br>39 |
| Suev                   | 15       | 02/1          | <u> </u> | 7       | 233        | 1131          | 750         | 1     | 10       | 37        |
|                        | Ba       | Ca            | Cr       | Cu      | Fe         | К             | Mg          | Ni    | Pb       | Zn        |
| Group A 2nd            | (mg/kg   | (mg/kg        | (mg/kg   | (mg/kg  | (mg/k      | (mg/k         | (mg/kg      | (mg/k | (mg/kg   | (mg/kg    |
| Harvest<br>ASF60 shoot | )        | )             | )        | )       | g)         | g)            | )           | g)    | )        | )         |
| Pot D1                 | 11       | 11835         | 24       | 16      | 398        | 11440         | 2909        | 36    | 6        | 100       |
| ASF60 shoot            | 25       | 12700         | 2        | 21      | 1104       | 27545         | 24/2        | 10    | 16       | 207       |
| Pot E1 ASF60 shoot     | 25       | 13780         | 2        | 31      | 1104       | 27545         | 3462        | 18    | 16       | 207       |
| Pot F1                 | 43       | 33940         | 5        | 94      | 1090       | 55700         | 7225        | 23    | 25       | 377       |
| -                      |          |               | •        |         |            |               |             |       |          |           |

|                        | -    |         |     |    |       |       | r    |    |     |       |
|------------------------|------|---------|-----|----|-------|-------|------|----|-----|-------|
| Average                | 26   | 19852   | 10  | 47 | 864   | 31562 | 4532 | 25 | 16  | 228   |
| Stdev                  | 13   | 9994    | 10  | 34 | 330   | 18291 | 1918 | 8  | 7   | 114   |
|                        |      |         |     |    |       |       |      |    |     |       |
| ASF60+ shoot           | 42   | 35105   | 73  | 29 | 1537  | 31840 | 5705 | 6  | 36  | 117   |
| Pot A1                 |      |         |     |    |       |       |      |    |     |       |
| ASF60+ shoot           | 51   | 39435   | 8   | 32 | 2060  | 35295 | 6175 | 4  | 48  | 142   |
| Pot A2                 |      |         |     |    |       |       |      |    |     |       |
| ASF60+ shoot           | 43   | 48965   | 42  | 31 | 1239  | 45125 | 8895 | 2  | 31  | 184   |
| Pot B1                 | 40   | 42705   | 24  | 20 | 1204  | 41510 | 77(0 | 2  | 4.1 | 1(0   |
| ASF60+ shoot<br>Pot B2 | 40   | 43785   | 34  | 30 | 1384  | 41510 | 7760 | 2  | 41  | 160   |
| ASF60+ shoot           | 62   | 29795   |     | 44 | 2731  | 42030 | 4956 | 6  | 70  | 191   |
| Pot C1                 | 02   | 29195   |     | 44 | 2731  | 42030 | 4950 | 0  | 70  | 191   |
| ASF60+ shoot           | 89   | 41325   | 11  | 57 | 3520  | 55400 | 6790 | 7  | 89  | 259   |
| Pot C2                 | 0)   | 11525   |     | 57 | 5520  | 55100 | 0790 | ,  | 0)  | 209   |
| ASF60+ shoot           | 41   | 38065   |     | 35 | 753   | 49685 | 7335 | 1  | 54  | 179   |
| Pot D1                 |      |         |     |    |       |       |      |    |     |       |
| ASF60+ shoot           | 33   | 29325   |     | 25 | 515   | 43840 | 5980 | 1  | 35  | 123   |
| Pot D2                 |      |         |     |    |       |       |      |    |     |       |
| ASF60+ shoot           | 40   | 32030   | 57  | 60 | 1234  | 40320 | 5335 | 3  | 44  | 171   |
| Pot E1                 | 17   | 0.50.50 | 10  |    | 10.54 | 20115 |      |    | 4.7 | 101   |
| ASF60+ shoot           | 47   | 35350   | 13  | 65 | 1356  | 39665 | 5660 | 4  | 45  | 191   |
| Pot E2                 | 49   | 37318   | 34  | 41 | 1633  | 42471 | 6459 | 4  | 49  | 172   |
| Average                |      |         |     | 14 |       |       |      | 2  |     |       |
| Stdev                  | 15   | 5965    | 23  | 14 | 862   | 6374  | 1164 | Z  | 17  | 39    |
|                        |      |         |     |    |       |       |      |    |     |       |
| AIM60 shoot            | DIED |         |     |    |       |       |      |    |     |       |
| Pot A1                 | DIED |         |     |    |       |       |      |    |     |       |
|                        | 102  | 20005   | 0.0 |    | (405  | 0210  | 4074 | 16 | ((  | 524   |
| AIM60+<br>shoot Pot A1 | 123  | 30885   | 88  |    | 6495  | 8210  | 4974 | 16 | 66  | 524   |
| AIM60+                 | 25   | 26025   |     | 42 |       | 12850 | 4906 | 5  | 44  | 147   |
| shoot Pot B1           | 23   | 20025   |     | 72 |       | 12050 | 7700 | 5  | 77  | 1-17/ |
| AIM60+                 | 100  | 9895    | 279 | 73 | 6345  | 6440  | 2878 | 11 | L   | 331   |
| shoot Pot C1           |      |         |     |    |       |       |      |    |     |       |
| AIM60+                 | 139  | 18785   | 134 | 32 | 12340 | 9990  | 5290 | 16 | 46  | 278   |
| shoot Pot D1           |      |         |     |    |       |       |      |    |     |       |
| AIM60+                 | 35   | 4916    |     | 17 | 1302  | 4143  | 1228 | 1  | 24  |       |
| shoot Pot E1           |      |         |     |    |       |       |      |    |     |       |
| Average                | 85   | 18101   | 167 | 41 | 6620  | 8327  | 3855 | 10 | 45  | 320   |
| Stdev                  | 46   | 9673    | 82  | 21 | 3908  | 2977  | 1567 | 6  | 15  | 135   |
|                        |      |         |     |    |       |       |      |    |     |       |

#### Appendix C: Root metal concentration

| Group A 1st | Ba<br>(mg/kg | Ca<br>(mg/kg | Cr<br>(mg/kg | Cu<br>(mg/kg | Fe<br>(mg/k | K<br>(mg/k | Mg<br>(mg/kg | Ni<br>(mg/k | Pb<br>(mg/kg | Zn<br>(mg/kg |
|-------------|--------------|--------------|--------------|--------------|-------------|------------|--------------|-------------|--------------|--------------|
| Harvest     | )            | )            | )            | )            | g)          | <b>g</b> ) | )            | g)          | )            | )            |
| ASF30 root  |              |              |              |              |             |            |              |             |              |              |
| Pot A1      | 25           | 4706         | 4            | 20           | 928         | 20945      | 1776         | 2           | 22           | 74           |
| ASF30 root  |              |              |              |              |             |            |              |             |              |              |
| Pot B1      | 25           | 4395         | 6            | 19           | 943         | 29185      | 1895         | 2           | 24           | 63           |
| ASF30 root  |              |              |              |              |             |            |              |             |              |              |
| Pot C1      | 67           | 6705         | 28           | 19           | 3708        | 29550      | 2454         | 5           | 24           | 98           |
| ASF30 root  |              |              |              |              |             |            |              |             |              |              |
| Pot D1      | 43           | 7045         | 7            | 23           | 2871        | 39565      | 2557         | 4           | 27           | 99           |

|                        |     | 1       |     |    |       |            |         |    |     |      |
|------------------------|-----|---------|-----|----|-------|------------|---------|----|-----|------|
| ASF30 root<br>Pot D2   | 50  | 6885    | 21  | 23 | 3787  | 37325      | 2705    | 5  | 30  | 107  |
| ASF30 root             |     | 0005    | 21  | 23 | 5/8/  | 37323      | 2703    | 5  | 30  | 107  |
| Pot E1                 | 46  | 5710    | 24  | 21 | 2602  | 32430      | 1731    | 4  | 24  | 82   |
| Average                | 43  | 5908    | 15  | 21 | 2473  | 31500      | 2186    | 3  | 25  | 87   |
| Stdev                  | 15  | 1053    | 10  | 2  | 1166  | 6061       | 396     | 1  | 2   | 15   |
|                        |     |         |     |    |       |            |         |    |     |      |
| ASF30+ root            |     |         |     |    |       |            |         |    |     |      |
| Pot A1                 | 97  | 5685    | 105 | 27 | 6680  | 32440      | 2831    | 9  | 33  | 204  |
| ASF30+ root            | 72  | 5525    | 22  | 23 | 5550  | 21545      | 2527    | 0  | 22  | 96   |
| Pot A2<br>ASF30+ root  | 73  | 5535    |     | 23 | 5550  | 31545      | 2527    | 8  | 22  | 90   |
| Pot B1                 | 35  | 3747    | 26  | 22 | 2641  | 31300      | 1696    | 4  | 28  | 94   |
| ASF30+ root            |     |         |     |    |       |            |         |    |     |      |
| Pot B2                 | 43  | 4722    | 18  | 23 | 2372  | 37535      | 2037    | 5  | 23  | 98   |
| ASF30+ root            | 10( | 0220    | 100 | 27 | 10220 | 07755      | 2244    | 0  | 00  | 1.40 |
| Pot C1<br>ASF30+ root  | 126 | 8330    | 196 | 27 | 10320 | 27755      | 2344    | 9  | 82  | 140  |
| ASF 50+ root<br>Pot D1 | 66  | 8230    | 38  | 20 | 2489  | 23445      | 2093    | 4  | 44  | 65   |
| ASF30+ root            |     |         |     |    |       |            |         |    | -   |      |
| Pot E1                 | 24  | 5310    |     | 25 | 1141  | 16785      | 1526    | 3  | 50  | 115  |
| Average                | 66  | 5937    | 67  | 24 | 4456  | 28686      | 2150    | 6  | 40  | 116  |
| Stdev                  | 34  | 1598    | 64  | 2  | 3001  | 6295       | 423     | 2  | 20  | 42   |
|                        |     |         |     |    |       |            |         |    |     |      |
| AIM30 root             | 20  | 4104    | 0   | 10 | 20.44 | (700       | 1 4 2 2 |    | 20  | 112  |
| Pot A1<br>AIM30 root   | 32  | 4124    | 8   | 19 | 2044  | 6790       | 1423    | 4  | 28  | 113  |
| Pot A2                 | 60  | 7785    | 11  | 21 | 3902  | 10820      | 3131    | 7  | 34  | 127  |
| AIM30 root             |     | ,,,,,,, |     |    |       |            |         |    |     |      |
| Pot B1                 | 29  | 5735    | 6   | 20 | 968   | 15540      | 1182    | 3  | 8   | 90   |
| AIM30 root             | 20  | 4100    |     | 20 | 20.40 | 1.41.50    | 1.555   |    | 1.5 | 100  |
| Pot C1<br>AIM30 root   | 28  | 4132    | 6   | 20 | 2849  | 14170      | 1577    | 4  | 15  | 106  |
| Pot E1                 | 26  | 5170    | 6   | 18 | 975   | 6180       | 1112    | 1  | 13  | 131  |
| Average                | 35  | 5389    | 7   | 20 | 2148  | 10700      | 1685    | 4  | 19  | 113  |
| Stdev                  | 12  | 1348    | 2   | 1  | 1127  | 3774       | 742     | 2  | 10  | 15   |
|                        |     |         |     |    |       |            |         |    |     |      |
| AIM30+ root            |     |         |     |    |       | -          |         |    |     |      |
| Pot A1                 | 47  | 5675    | 10  | 15 | 2656  | 17755      | 2977    | 2  | 58  | 76   |
| AIM30+ root            | ((  | (0.45   | 15  | 16 | 2550  | -          | 25(5    | 2  | ()  | 122  |
| Pot A2<br>AIM30+ root  | 66  | 6045    | 45  | 16 | 3559  | 19270      | 3565    | 3  | 64  | 133  |
| Pot B1                 | 27  | 3452    | 14  | 14 | 1097  | 18280      | 1190    | 0  | 25  | 38   |
| AIM30+ root            |     |         |     |    |       | -          |         |    |     |      |
| Pot B2                 | 31  | 3427    | 45  | 16 | 1326  | 18740      | 1565    | 1  | 30  | 49   |
| AIM30+ root<br>Pot C1  | 19  | 3065    | 6   | 15 | 1183  | -<br>17335 | 749     | -1 | 16  | 45   |
| AIM30+ root            | 19  | 3003    | 0   | 13 | 1103  | -          | /47     | -1 | 10  | 43   |
| Pot C2                 | 17  | 2813    | 6   | 14 | 1131  | 15190      | 766     | -1 | 15  | 43   |
| AIM30+ root            |     |         |     |    |       | -          |         |    |     |      |
| Pot D1                 | 18  | 2611    | 4   | 14 | 648   | 16965      | 589     | -1 | 15  | 48   |
| AIM30+ root<br>Pot D2  | 8   | 1500    | 2   | 11 | 343   | -8800      | 267     | -2 | 16  | 28   |
| AIM30+ root            | 0   | 1300    | ۷   | 11 | 343   | -0000      | 207     | -2 | 10  | 20   |
| Pot E1                 | 11  | 894     | 33  | 10 | 345   | -4312      | 197     | -1 | 9   | 18   |
| AIM30+ root            |     |         |     |    |       | -          |         |    |     |      |
| Pot E2                 | 14  | 1725    | 13  | 12 | 513   | 10065      | 365     | -1 | 9   | 27   |
| Auguaga                | 24  | 2121    | 10  | 14 | 1200  | -          | 1222    | 0  | 24  | 51   |
| Average                | 26  | 3121    | 18  | 14 | 1280  | 14671      | 1223    | 0  | 26  | 51   |

| Stdev                 | 17           | 1587                                    | 16           | 2            | 995         | 4857       | 1105         | 1           | 19           | 31           |
|-----------------------|--------------|-----------------------------------------|--------------|--------------|-------------|------------|--------------|-------------|--------------|--------------|
|                       |              | 4                                       | 4            | 4            |             |            |              | <b>N</b>    | DI           | 7            |
| Group B               | Ba<br>(mg/kg | Ca<br>(mg/kg                            | Cr<br>(mg/kg | Cu<br>(mg/kg | Fe<br>(mg/k | K<br>(mg/k | Mg<br>(mg/kg | Ni<br>(mg/k | Pb<br>(mg/kg | Zn<br>(mg/kg |
| BSF60 root            | )            | )                                       | )            | )            | g)          | <u>g</u> ) | )            | g)          | )            | )            |
| Pot A1                | 36           | 7705                                    | 10           | 21           | 1569        | 70200      | 1837         | 5           | 15           | 77           |
| BSF60 root            | 50           | 1105                                    | 10           | 21           | 1009        | 10200      | 1057         |             | 10           | ,,,          |
| Pot A2                | 48           | 9475                                    | 11           | 28           | 2129        | 70300      | 2292         | 6           | 24           | 83           |
| BSF60 root            |              |                                         | 0            |              |             | <0.5.50    | 10/1         | -           | •            |              |
| Pot A3<br>BSF60 root  | 36           | 7525                                    | 8            | 22           | 1447        | 69550      | 1864         | 5           | 20           | 83           |
| Pot A4                | 46           | 9245                                    | 7            | 25           | 1820        | 73800      | 2326         | 5           | 18           | 78           |
| BSF60 root            |              |                                         |              |              |             |            |              |             |              |              |
| Pot B1                | 41           | 6000                                    | 10           | 23           | 1677        | 67100      | 1829         | 6           | 28           | 119          |
| BSF60 root<br>Pot B2  | 55           | 8755                                    | 10           | 23           | 2250        | 71600      | 2711         | 6           | 22           | 90           |
| BSF60 root            | 55           | 8755                                    | 10           | 23           | 2230        | /1000      | 2/11         | 0           | 22           | 90           |
| Pot B3                | 56           | 8865                                    | 15           | 23           | 2326        | 70650      | 2793         | 5           | 26           | 83           |
| BSF60 root            | 92           | 10275                                   | 13           | 26           | 3309        | 66850      | 3291         | 6           | 42           | 117          |
| Pot B4<br>BSF60 root  | 92           | 10273                                   | 15           | 20           | 3309        | 00830      | 5291         | 0           | 42           | 11/          |
| Pot C1                | 71           | 8530                                    | 15           | 33           | 3272        | 67550      | 2848         | 6           | 38           | 144          |
| BSF60 root<br>Pot C2  | 66           | 8065                                    | 10           | 32           | 3004        | 62500      | 2671         | 6           | 31           | 107          |
| BSF60 root            | 00           | 8005                                    | 10           | 32           | 3004        | 62500      | 20/1         | 0           | 51           | 107          |
| Pot C3                | 63           | 8140                                    | 10           | 28           | 2947        | 63200      | 2638         | 6           | 33           | 114          |
| BSF60 root            | 40           | 52(5                                    | 0            | 20           | 1(79        | (1900      | 1700         | 5           | 20           | 104          |
| Pot C4<br>BSF60 root  | 40           | 5365                                    | 9            | 28           | 1678        | 64800      | 1790         | 5           | 28           | 104          |
| Pot D1                | 46           | 9210                                    | 23           | 23           | 1997        | 80200      | 2894         | 6           | 15           | 73           |
| BSF60 root            |              |                                         |              |              |             |            |              |             |              |              |
| Pot D2<br>BSF60 root  | 46           | 8850                                    | 11           | 23           | 2001        | 79150      | 2732         | 5           | 16           | 76           |
| Pot D3                | 42           | 8185                                    | 12           | 22           | 1717        | 76200      | 2585         | 5           | 15           | 79           |
| BSF60 root            |              |                                         |              |              |             |            |              |             |              |              |
| Pot D4                | 51           | 9190                                    | 10           | 24           | 2111        | 82550      | 2939         | 5           | 19           | 92           |
| BSF60 root<br>Pot E1  | 63           | 9655                                    | 48           | 27           | 3086        | 80950      | 2633         | 6           | 26           | 115          |
| BSF60 root            | 02           | , , , , , , , , , , , , , , , , , , , , |              |              | 2000        | 00700      | 2000         |             | 20           | 110          |
| Pot E2                | 55           | 8100                                    | 13           | 29           | 2764        | 83400      | 2238         | 5           | 30           | 119          |
| BSF60 root<br>Pot E3  | 86           | 11315                                   | 59           | 30           | 4433        | 84950      | 3204         | 7           | 42           | 137          |
| BSF60 root            | 00           | 11515                                   |              | 50           | 1155        | 01990      | 5201         | ,           | 12           | 157          |
| Pot E4                | 51           | 9120                                    | 8            | 28           | 2330        | 89700      | 2575         | 5           | 19           | 85           |
| Average               | 54           | 8579                                    | 16           | 26           | 2393        | 73760      | 2534         | 6           | 25           | 99           |
| Stdev                 | 15           | 1298                                    | 13           | 3            | 740         | 7693       | 434          | 1           | 8            | 21           |
| BSF60+ root           |              |                                         |              |              |             |            |              |             |              |              |
| Pot A1                | 94           | 19520                                   | 13           | 66           | 3767        | 94000      | 4515         | 10          | 137          | 216          |
| BSF60+ root           | _            |                                         |              |              |             |            |              |             |              |              |
| Pot A2<br>BSF60+ root | 61           | 15420                                   | 8            | 55           | 2022        | 85350      | 3388         | 6           | 98           | 173          |
| Pot A3                | 71           | 16845                                   | 13           | 55           | 2683        | 87350      | 3822         | 8           | 132          | 182          |
| BSF60+ root           |              |                                         |              |              |             |            |              |             |              |              |
| Pot A4                | 96           | 18600                                   | 24           | 52           | 3895        | 87150      | 4376         | 7           | 120          | 187          |
| BSF60+ root<br>Pot B1 | 43           | 10360                                   | 12           | 29           | 1254        | 89950      | 3099         | 5           | 33           | 119          |
| BSF60+ root           |              |                                         |              |              |             |            |              |             |              |              |
| Pot B2                | 49           | 10470                                   | 11           | 33           | 1669        | 89750      | 3181         | 6           | 33           | 108          |

| DODGO                                                                                                                                                                                                                                                                                                                                        |                                                                      | , ,                                                                                                                                                                       |                                                                 | 1                                                                          | 1                                                                                            |                                                                                                                                                                                |                                                                                                                                                     |                                                          |                                                                      | т <u>т</u>                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| BSF60+ root<br>Pot B3                                                                                                                                                                                                                                                                                                                        | 40                                                                   | 8930                                                                                                                                                                      | 8                                                               | 32                                                                         | 1320                                                                                         | 81900                                                                                                                                                                          | 2712                                                                                                                                                | 5                                                        | 41                                                                   | 98                                                                                                                                                 |
| BSF60+ root                                                                                                                                                                                                                                                                                                                                  | 40                                                                   | 8930                                                                                                                                                                      | 0                                                               | 52                                                                         | 1520                                                                                         | 81900                                                                                                                                                                          | 2/12                                                                                                                                                | 3                                                        | 41                                                                   | 98                                                                                                                                                 |
| Pot B4                                                                                                                                                                                                                                                                                                                                       | 35                                                                   | 8785                                                                                                                                                                      | 9                                                               | 36                                                                         | 1123                                                                                         | 86800                                                                                                                                                                          | 2570                                                                                                                                                | 4                                                        | 36                                                                   | 105                                                                                                                                                |
| BSF60+ root                                                                                                                                                                                                                                                                                                                                  | 55                                                                   | 0705                                                                                                                                                                      | ,                                                               | 50                                                                         | 1125                                                                                         | 10040                                                                                                                                                                          | 2010                                                                                                                                                |                                                          | 50                                                                   | 100                                                                                                                                                |
| Pot C1                                                                                                                                                                                                                                                                                                                                       | 83                                                                   | 10570                                                                                                                                                                     | 22                                                              | 31                                                                         | 3608                                                                                         | 0                                                                                                                                                                              | 3074                                                                                                                                                | 9                                                        | 32                                                                   | 114                                                                                                                                                |
| BSF60+ root                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                                                                                                                                                           |                                                                 |                                                                            |                                                                                              | 10445                                                                                                                                                                          |                                                                                                                                                     |                                                          |                                                                      |                                                                                                                                                    |
| Pot C2                                                                                                                                                                                                                                                                                                                                       | 79                                                                   | 10130                                                                                                                                                                     | 19                                                              | 31                                                                         | 3402                                                                                         | 0                                                                                                                                                                              | 2962                                                                                                                                                | 8                                                        | 33                                                                   | 120                                                                                                                                                |
| BSF60+ root                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                                                                                                                                                           |                                                                 |                                                                            |                                                                                              | 10260                                                                                                                                                                          |                                                                                                                                                     |                                                          |                                                                      |                                                                                                                                                    |
| Pot C3                                                                                                                                                                                                                                                                                                                                       | 73                                                                   | 10405                                                                                                                                                                     | 11                                                              | 30                                                                         | 2988                                                                                         | 0                                                                                                                                                                              | 2959                                                                                                                                                | 8                                                        | 41                                                                   | 115                                                                                                                                                |
| BSF60+ root<br>Pot C4                                                                                                                                                                                                                                                                                                                        | 92                                                                   | 9035                                                                                                                                                                      | 41                                                              | 31                                                                         | 4704                                                                                         | 97150                                                                                                                                                                          | 2930                                                                                                                                                | 9                                                        | 55                                                                   | 146                                                                                                                                                |
| BSF60+ root                                                                                                                                                                                                                                                                                                                                  | 92                                                                   | 9033                                                                                                                                                                      | 41                                                              | 51                                                                         | 4/04                                                                                         | 10830                                                                                                                                                                          | 2930                                                                                                                                                | 9                                                        | 55                                                                   | 140                                                                                                                                                |
| Pot D1                                                                                                                                                                                                                                                                                                                                       | 45                                                                   | 12635                                                                                                                                                                     | 9                                                               | 138                                                                        | 1432                                                                                         | 0                                                                                                                                                                              | 2765                                                                                                                                                | 7                                                        | 63                                                                   | 205                                                                                                                                                |
| BSF60+ root                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                                                                                                                                                           |                                                                 |                                                                            |                                                                                              | 10880                                                                                                                                                                          |                                                                                                                                                     |                                                          |                                                                      |                                                                                                                                                    |
| Pot D2                                                                                                                                                                                                                                                                                                                                       | 59                                                                   | 14265                                                                                                                                                                     | 18                                                              | 137                                                                        | 2096                                                                                         | 0                                                                                                                                                                              | 3178                                                                                                                                                | 7                                                        | 36                                                                   | 197                                                                                                                                                |
| BSF60+ root                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                                                                                                                                                           |                                                                 |                                                                            |                                                                                              | 11065                                                                                                                                                                          |                                                                                                                                                     |                                                          |                                                                      |                                                                                                                                                    |
| Pot D3                                                                                                                                                                                                                                                                                                                                       | 58                                                                   | 14685                                                                                                                                                                     | 14                                                              | 135                                                                        | 2002                                                                                         | 0                                                                                                                                                                              | 3203                                                                                                                                                | 7                                                        | 87                                                                   | 205                                                                                                                                                |
| BSF60+ root                                                                                                                                                                                                                                                                                                                                  | 62                                                                   | 14660                                                                                                                                                                     | 20                                                              | 110                                                                        | 2202                                                                                         | 11825                                                                                                                                                                          | 2201                                                                                                                                                | 7                                                        | 02                                                                   | 212                                                                                                                                                |
| Pot D4<br>BSF60+ root                                                                                                                                                                                                                                                                                                                        | 63                                                                   | 14660                                                                                                                                                                     | 30                                                              | 119                                                                        | 2283                                                                                         | 0 10235                                                                                                                                                                        | 3301                                                                                                                                                | /                                                        | 93                                                                   | 213                                                                                                                                                |
| Pot E1                                                                                                                                                                                                                                                                                                                                       | 114                                                                  | 14285                                                                                                                                                                     | 24                                                              | 114                                                                        | 5845                                                                                         | 0                                                                                                                                                                              | 3875                                                                                                                                                | 16                                                       | 279                                                                  | 424                                                                                                                                                |
| BSF60+ root                                                                                                                                                                                                                                                                                                                                  |                                                                      | 1.200                                                                                                                                                                     | 2.                                                              |                                                                            | 00.0                                                                                         | 10565                                                                                                                                                                          | 0070                                                                                                                                                | 10                                                       |                                                                      |                                                                                                                                                    |
| Pot E2                                                                                                                                                                                                                                                                                                                                       | 147                                                                  | 15530                                                                                                                                                                     | 34                                                              | 110                                                                        | 7795                                                                                         | 0                                                                                                                                                                              | 4340                                                                                                                                                | 17                                                       | 267                                                                  | 583                                                                                                                                                |
| BSF60+ root                                                                                                                                                                                                                                                                                                                                  |                                                                      |                                                                                                                                                                           |                                                                 |                                                                            |                                                                                              | 10110                                                                                                                                                                          |                                                                                                                                                     |                                                          |                                                                      |                                                                                                                                                    |
| Pot E3                                                                                                                                                                                                                                                                                                                                       | 100                                                                  | 13830                                                                                                                                                                     | 21                                                              | 112                                                                        | 4929                                                                                         | 0                                                                                                                                                                              | 3706                                                                                                                                                | 15                                                       | 244                                                                  | 417                                                                                                                                                |
| BSF60+ root                                                                                                                                                                                                                                                                                                                                  | 157                                                                  | 15475                                                                                                                                                                     | 40                                                              | 110                                                                        | 0.420                                                                                        | 10295                                                                                                                                                                          | 4201                                                                                                                                                | 10                                                       | 212                                                                  | 140                                                                                                                                                |
| Pot E4                                                                                                                                                                                                                                                                                                                                       | 157                                                                  | 15475                                                                                                                                                                     | 40                                                              | 110                                                                        | 8420                                                                                         | 0                                                                                                                                                                              | 4391                                                                                                                                                | 18                                                       | 313                                                                  | 440                                                                                                                                                |
| Average                                                                                                                                                                                                                                                                                                                                      | 78                                                                   | 13222                                                                                                                                                                     | 19                                                              | 73                                                                         | 3362                                                                                         | 98245                                                                                                                                                                          | 3417                                                                                                                                                | 9                                                        | 109                                                                  | 218                                                                                                                                                |
| Stdev                                                                                                                                                                                                                                                                                                                                        | 33                                                                   | 3162                                                                                                                                                                      | 10                                                              | 42                                                                         | 2042                                                                                         | 9739                                                                                                                                                                           | 595                                                                                                                                                 | 4                                                        | 91                                                                   | 133                                                                                                                                                |
| 1                                                                                                                                                                                                                                                                                                                                            |                                                                      |                                                                                                                                                                           |                                                                 |                                                                            |                                                                                              |                                                                                                                                                                                |                                                                                                                                                     |                                                          |                                                                      |                                                                                                                                                    |
| DIM(0 most                                                                                                                                                                                                                                                                                                                                   |                                                                      |                                                                                                                                                                           |                                                                 |                                                                            |                                                                                              |                                                                                                                                                                                |                                                                                                                                                     |                                                          |                                                                      |                                                                                                                                                    |
| BIM60 root<br>Pot A1                                                                                                                                                                                                                                                                                                                         | 31                                                                   | 6775                                                                                                                                                                      | 0                                                               | 31                                                                         | 1/11                                                                                         | 64000                                                                                                                                                                          | 3287                                                                                                                                                | 6                                                        | 25                                                                   | 03                                                                                                                                                 |
| Pot A1                                                                                                                                                                                                                                                                                                                                       | 31                                                                   | 6775                                                                                                                                                                      | 9                                                               | 31                                                                         | 1411                                                                                         | 64000                                                                                                                                                                          | 3287                                                                                                                                                | 6                                                        | 25                                                                   | 93                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                              | 31<br>28                                                             | 6775<br>6045                                                                                                                                                              | 9                                                               | 31                                                                         | 1411                                                                                         | 64000<br>60500                                                                                                                                                                 | 3287<br>3297                                                                                                                                        | 6                                                        | 25<br>23                                                             | 93<br>95                                                                                                                                           |
| Pot A1<br>BIM60 root                                                                                                                                                                                                                                                                                                                         |                                                                      |                                                                                                                                                                           | 11                                                              |                                                                            |                                                                                              |                                                                                                                                                                                |                                                                                                                                                     |                                                          |                                                                      |                                                                                                                                                    |
| Pot A1<br>BIM60 root<br>Pot A2<br>BIM60 root<br>Pot A3                                                                                                                                                                                                                                                                                       |                                                                      |                                                                                                                                                                           | -                                                               |                                                                            |                                                                                              |                                                                                                                                                                                |                                                                                                                                                     |                                                          |                                                                      |                                                                                                                                                    |
| Pot A1<br>BIM60 root<br>Pot A2<br>BIM60 root<br>Pot A3<br>BIM60 root                                                                                                                                                                                                                                                                         | 28<br>28                                                             | 6045<br>6200                                                                                                                                                              | 11<br>8                                                         | 23<br>20                                                                   | 1229<br>1247                                                                                 | 60500<br>58850                                                                                                                                                                 | 3297<br>3191                                                                                                                                        | 6<br>5                                                   | 23<br>23                                                             | 95<br>84                                                                                                                                           |
| Pot A1<br>BIM60 root<br>Pot A2<br>BIM60 root<br>Pot A3<br>BIM60 root<br>Pot A4                                                                                                                                                                                                                                                               | 28                                                                   | 6045                                                                                                                                                                      | 11                                                              | 23                                                                         | 1229                                                                                         | 60500                                                                                                                                                                          | 3297                                                                                                                                                | 6                                                        | 23                                                                   | 95                                                                                                                                                 |
| Pot A1<br>BIM60 root<br>Pot A2<br>BIM60 root<br>Pot A3<br>BIM60 root<br>Pot A4<br>BIM60 root                                                                                                                                                                                                                                                 | 28<br>28<br>29                                                       | 6045<br>6200<br>5315                                                                                                                                                      | 11<br>8<br>6                                                    | 23<br>20<br>16                                                             | 1229<br>1247<br>1616                                                                         | 60500<br>58850<br>17970                                                                                                                                                        | 3297<br>3191<br>1945                                                                                                                                | 6<br>5<br>4                                              | 23<br>23<br>29                                                       | 95<br>84<br>84                                                                                                                                     |
| Pot A1<br>BIM60 root<br>Pot A2<br>BIM60 root<br>Pot A3<br>BIM60 root<br>Pot A4<br>BIM60 root<br>Pot B1                                                                                                                                                                                                                                       | 28<br>28                                                             | 6045<br>6200                                                                                                                                                              | 11<br>8                                                         | 23<br>20                                                                   | 1229<br>1247                                                                                 | 60500<br>58850                                                                                                                                                                 | 3297<br>3191                                                                                                                                        | 6<br>5                                                   | 23<br>23                                                             | 95<br>84                                                                                                                                           |
| Pot A1<br>BIM60 root<br>Pot A2<br>BIM60 root<br>Pot A3<br>BIM60 root<br>Pot A4<br>BIM60 root                                                                                                                                                                                                                                                 | 28<br>28<br>29                                                       | 6045<br>6200<br>5315                                                                                                                                                      | 11<br>8<br>6                                                    | 23<br>20<br>16                                                             | 1229<br>1247<br>1616                                                                         | 60500<br>58850<br>17970                                                                                                                                                        | 3297<br>3191<br>1945                                                                                                                                | 6<br>5<br>4                                              | 23<br>23<br>29                                                       | 95<br>84<br>84                                                                                                                                     |
| Pot A1<br>BIM60 root<br>Pot A2<br>BIM60 root<br>Pot A3<br>BIM60 root<br>Pot A4<br>BIM60 root<br>Pot B1<br>BIM60 root<br>Pot B3<br>BIM60 root                                                                                                                                                                                                 | 28<br>28<br>29<br>32<br>35                                           | 6045<br>6200<br>5315<br>6040<br>6785                                                                                                                                      | 11<br>8<br>6<br>14<br>50                                        | 23<br>20<br>16<br>17<br>18                                                 | 1229<br>1247<br>1616<br>1767<br>2028                                                         | 60500<br>58850<br>17970<br>10980<br>11045                                                                                                                                      | 3297<br>3191<br>1945<br>2605<br>2873                                                                                                                | 6<br>5<br>4<br>3<br>4                                    | 23<br>23<br>29<br>27<br>29                                           | 95<br>84<br>84<br>70<br>67                                                                                                                         |
| Pot A1<br>BIM60 root<br>Pot A2<br>BIM60 root<br>Pot A3<br>BIM60 root<br>Pot A4<br>BIM60 root<br>Pot B1<br>BIM60 root<br>Pot B3<br>BIM60 root<br>Pot C1                                                                                                                                                                                       | 28<br>28<br>29<br>32                                                 | 6045<br>6200<br>5315<br>6040                                                                                                                                              | 11<br>8<br>6<br>14                                              | 23<br>20<br>16<br>17                                                       | 1229<br>1247<br>1616<br>1767                                                                 | 60500<br>58850<br>17970<br>10980                                                                                                                                               | 3297<br>3191<br>1945<br>2605                                                                                                                        | 6<br>5<br>4<br>3                                         | 23<br>23<br>29<br>27                                                 | 95<br>84<br>84<br>70                                                                                                                               |
| Pot A1BIM60 rootPot A2BIM60 rootPot A3BIM60 rootPot A4BIM60 rootPot B1BIM60 rootPot B3BIM60 rootPot C1BIM60 root                                                                                                                                                                                                                             | 28<br>28<br>29<br>32<br>35<br>39                                     | 6045<br>6200<br>5315<br>6040<br>6785<br>6265                                                                                                                              | 11<br>8<br>6<br>14<br>50<br>5                                   | 23<br>20<br>16<br>17<br>18<br>20                                           | 1229<br>1247<br>1616<br>1767<br>2028<br>1887                                                 | 60500<br>58850<br>17970<br>10980<br>11045<br>7295                                                                                                                              | 3297<br>3191<br>1945<br>2605<br>2873<br>2585                                                                                                        | 6<br>5<br>4<br>3<br>4<br>3                               | 23<br>23<br>29<br>27<br>29<br>23                                     | 95<br>84<br>84<br>70<br>67<br>61                                                                                                                   |
| Pot A1BIM60 rootPot A2BIM60 rootPot A3BIM60 rootPot A4BIM60 rootPot B1BIM60 rootPot B3BIM60 rootPot C1BIM60 rootPot C2                                                                                                                                                                                                                       | 28<br>28<br>29<br>32<br>35                                           | 6045<br>6200<br>5315<br>6040<br>6785                                                                                                                                      | 11<br>8<br>6<br>14<br>50                                        | 23<br>20<br>16<br>17<br>18                                                 | 1229<br>1247<br>1616<br>1767<br>2028                                                         | 60500<br>58850<br>17970<br>10980<br>11045                                                                                                                                      | 3297<br>3191<br>1945<br>2605<br>2873                                                                                                                | 6<br>5<br>4<br>3<br>4                                    | 23<br>23<br>29<br>27<br>29                                           | 95<br>84<br>84<br>70<br>67                                                                                                                         |
| Pot A1BIM60 rootPot A2BIM60 rootPot A3BIM60 rootPot A4BIM60 rootPot B1BIM60 rootPot B3BIM60 rootPot C1BIM60 rootPot C2BIM60 root                                                                                                                                                                                                             | 28<br>28<br>29<br>32<br>35<br>39<br>60                               | 6045           6200           5315           6040           6785           6265           7690                                                                            | 11<br>8<br>6<br>14<br>50<br>5<br>6                              | 23<br>20<br>16<br>17<br>18<br>20<br>21                                     | 1229<br>1247<br>1616<br>1767<br>2028<br>1887<br>2656                                         | 60500<br>58850<br>17970<br>10980<br>11045<br>7295<br>9040                                                                                                                      | 3297<br>3191<br>1945<br>2605<br>2873<br>2585<br>3738                                                                                                | 6<br>5<br>4<br>3<br>4<br>3<br>5                          | 23<br>23<br>29<br>27<br>29<br>23<br>30                               | 95<br>84<br>84<br>70<br>67<br>61                                                                                                                   |
| Pot A1BIM60 rootPot A2BIM60 rootPot A3BIM60 rootPot A4BIM60 rootPot B1BIM60 rootPot B3BIM60 rootPot C1BIM60 rootPot C2                                                                                                                                                                                                                       | 28<br>28<br>29<br>32<br>35<br>39                                     | 6045<br>6200<br>5315<br>6040<br>6785<br>6265                                                                                                                              | 11<br>8<br>6<br>14<br>50<br>5                                   | 23<br>20<br>16<br>17<br>18<br>20                                           | 1229<br>1247<br>1616<br>1767<br>2028<br>1887                                                 | 60500<br>58850<br>17970<br>10980<br>11045<br>7295                                                                                                                              | 3297<br>3191<br>1945<br>2605<br>2873<br>2585                                                                                                        | 6<br>5<br>4<br>3<br>4<br>3                               | 23<br>23<br>29<br>27<br>29<br>23                                     | 95<br>84<br>84<br>70<br>67<br>61<br>105                                                                                                            |
| Pot A1BIM60 rootPot A2BIM60 rootPot A3BIM60 rootPot A4BIM60 rootPot B1BIM60 rootPot B3BIM60 rootPot C1BIM60 rootPot C2BIM60 rootPot C3                                                                                                                                                                                                       | 28<br>28<br>29<br>32<br>35<br>39<br>60                               | 6045           6200           5315           6040           6785           6265           7690                                                                            | 11<br>8<br>6<br>14<br>50<br>5<br>6                              | 23<br>20<br>16<br>17<br>18<br>20<br>21                                     | 1229<br>1247<br>1616<br>1767<br>2028<br>1887<br>2656                                         | 60500<br>58850<br>17970<br>10980<br>11045<br>7295<br>9040                                                                                                                      | 3297<br>3191<br>1945<br>2605<br>2873<br>2585<br>3738                                                                                                | 6<br>5<br>4<br>3<br>4<br>3<br>5                          | 23<br>23<br>29<br>27<br>29<br>23<br>30                               | 95<br>84<br>84<br>70<br>67<br>61<br>105                                                                                                            |
| Pot A1BIM60 rootPot A2BIM60 rootPot A3BIM60 rootPot A4BIM60 rootPot B1BIM60 rootPot B3BIM60 rootPot C1BIM60 rootPot C2BIM60 rootPot C3BIM60 rootPot C3BIM60 rootPot D1BIM60 root                                                                                                                                                             | 28<br>28<br>29<br>32<br>35<br>39<br>60<br>57<br>31                   | 6045           6200           5315           6040           6785           6265           7690           7580           6285                                              | 11<br>8<br>6<br>14<br>50<br>5<br>6<br>13<br>18                  | 23<br>20<br>16<br>17<br>18<br>20<br>21<br>21<br>21<br>24                   | 1229<br>1247<br>1616<br>1767<br>2028<br>1887<br>2656<br>3106<br>1596                         | 60500           58850           17970           10980           11045           7295           9040           8795           4415                                              | 3297         3191         1945         2605         2873         2585         3738         3704         1492                                        | 6<br>5<br>4<br>3<br>4<br>3<br>5<br>4<br>3                | 23<br>23<br>29<br>27<br>29<br>23<br>30<br>30<br>27                   | 95<br>84<br>84<br>70<br>67<br>61<br>105<br>90<br>49                                                                                                |
| Pot A1BIM60 rootPot A2BIM60 rootPot A3BIM60 rootPot A4BIM60 rootPot B1BIM60 rootPot B3BIM60 rootPot C1BIM60 rootPot C2BIM60 rootPot C3BIM60 rootPot C1BIM60 rootPot C2BIM60 rootPot C3BIM60 rootPot D1BIM60 rootPot D2                                                                                                                       | 28<br>28<br>29<br>32<br>35<br>39<br>60<br>57                         | 6045           6200           5315           6040           6785           6265           7690           7580                                                             | 11<br>8<br>6<br>14<br>50<br>5<br>6<br>13                        | 23<br>20<br>16<br>17<br>18<br>20<br>21<br>21                               | 1229<br>1247<br>1616<br>1767<br>2028<br>1887<br>2656<br>3106                                 | 60500<br>58850<br>17970<br>10980<br>11045<br>7295<br>9040<br>8795                                                                                                              | 3297         3191         1945         2605         2873         2585         3738         3704                                                     | 6<br>5<br>4<br>3<br>4<br>3<br>5<br>4                     | 23<br>23<br>29<br>27<br>29<br>23<br>30<br>30                         | 95<br>84<br>84<br>70<br>67<br>61<br>105<br>90                                                                                                      |
| Pot A1BIM60 rootPot A2BIM60 rootPot A3BIM60 rootPot A4BIM60 rootPot B1BIM60 rootPot B3BIM60 rootPot C1BIM60 rootPot C2BIM60 rootPot C3BIM60 rootPot D1BIM60 rootPot D2BIM60 root                                                                                                                                                             | 28<br>28<br>29<br>32<br>35<br>39<br>60<br>57<br>31<br>33             | 6045           6200           5315           6040           6785           6265           7690           7580           6285           6385                               | 11<br>8<br>6<br>14<br>50<br>5<br>6<br>13<br>18<br>20            | 23<br>20<br>16<br>17<br>18<br>20<br>21<br>21<br>21<br>24<br>26             | 1229<br>1247<br>1616<br>1767<br>2028<br>1887<br>2656<br>3106<br>1596<br>1871                 | 60500           58850           17970           10980           11045           7295           9040           8795           4415           4260                               | 3297         3191         1945         2605         2873         2585         3738         3704         1492         1557                           | 6<br>5<br>4<br>3<br>4<br>3<br>5<br>4<br>3<br>3           | 23<br>23<br>29<br>27<br>29<br>23<br>30<br>30<br>27<br>23             | 95<br>84<br>84<br>70<br>67<br>61<br>105<br>90<br>49<br>59                                                                                          |
| Pot A1BIM60 rootPot A2BIM60 rootPot A3BIM60 rootPot A4BIM60 rootPot B1BIM60 rootPot B3BIM60 rootPot C1BIM60 rootPot C2BIM60 rootPot C3BIM60 rootPot D1BIM60 rootPot D2BIM60 rootPot C1                                                                                                                                                       | 28<br>28<br>29<br>32<br>35<br>39<br>60<br>57<br>31                   | 6045           6200           5315           6040           6785           6265           7690           7580           6285                                              | 11<br>8<br>6<br>14<br>50<br>5<br>6<br>13<br>18                  | 23<br>20<br>16<br>17<br>18<br>20<br>21<br>21<br>21<br>24                   | 1229<br>1247<br>1616<br>1767<br>2028<br>1887<br>2656<br>3106<br>1596                         | 60500           58850           17970           10980           11045           7295           9040           8795           4415                                              | 3297         3191         1945         2605         2873         2585         3738         3704         1492                                        | 6<br>5<br>4<br>3<br>4<br>3<br>5<br>4<br>3                | 23<br>23<br>29<br>27<br>29<br>23<br>30<br>30<br>27                   | 95<br>84<br>84<br>70<br>67<br>61<br>105<br>90<br>49                                                                                                |
| Pot A1<br>BIM60 root<br>Pot A2<br>BIM60 root<br>Pot A3<br>BIM60 root<br>Pot A4<br>BIM60 root<br>Pot B1<br>BIM60 root<br>Pot B3<br>BIM60 root<br>Pot C1<br>BIM60 root<br>Pot C2<br>BIM60 root<br>Pot C3<br>BIM60 root<br>Pot D1<br>BIM60 root<br>Pot D2<br>BIM60 root<br>Pot E1<br>BIM60 root                                                 | 28<br>28<br>29<br>32<br>35<br>39<br>60<br>57<br>31<br>33<br>29       | 6045         6200         5315         6040         6785         6265         7690         7580         6285         6385         8060                                    | 11<br>8<br>6<br>14<br>50<br>5<br>6<br>13<br>18<br>20<br>34      | 23<br>20<br>16<br>17<br>18<br>20<br>21<br>21<br>21<br>24<br>26<br>17       | 1229<br>1247<br>1616<br>1767<br>2028<br>1887<br>2656<br>3106<br>1596<br>1871<br>1389         | 60500           58850           17970           10980           11045           7295           9040           8795           4415           4260           7190                | 3297         3191         1945         2605         2873         2585         3738         3704         1492         1557         2500              | 6<br>5<br>4<br>3<br>4<br>3<br>5<br>4<br>3<br>3<br>2      | 23<br>23<br>29<br>27<br>29<br>23<br>30<br>30<br>27<br>23             | 95<br>84<br>84<br>70<br>67<br>61<br>105<br>90<br>49<br>59                                                                                          |
| Pot A1BIM60 rootPot A2BIM60 rootPot A3BIM60 rootPot A4BIM60 rootPot B1BIM60 rootPot B3BIM60 rootPot C1BIM60 rootPot C2BIM60 rootPot C3BIM60 rootPot D1BIM60 rootPot D2BIM60 rootPot E1BIM60 root                                                                                                                                             | 28<br>28<br>29<br>32<br>35<br>39<br>60<br>57<br>31<br>33             | 6045           6200           5315           6040           6785           6265           7690           7580           6285           6385                               | 11<br>8<br>6<br>14<br>50<br>5<br>6<br>13<br>18<br>20            | 23<br>20<br>16<br>17<br>18<br>20<br>21<br>21<br>21<br>24<br>26             | 1229<br>1247<br>1616<br>1767<br>2028<br>1887<br>2656<br>3106<br>1596<br>1871                 | 60500           58850           17970           10980           11045           7295           9040           8795           4415           4260                               | 3297         3191         1945         2605         2873         2585         3738         3704         1492         1557                           | 6<br>5<br>4<br>3<br>4<br>3<br>5<br>4<br>3<br>3           | 23<br>23<br>29<br>27<br>29<br>23<br>30<br>30<br>27<br>23<br>17       | 95         84         84         70         67         61         105         90         49         59         68                                  |
| Pot A1BIM60 rootPot A2BIM60 rootPot A3BIM60 rootPot A4BIM60 rootPot B1BIM60 rootPot B3BIM60 rootPot C1BIM60 rootPot C2BIM60 rootPot C3BIM60 rootPot D1BIM60 rootPot D2BIM60 rootPot E1BIM60 root                                                                                                                                             | 28<br>28<br>29<br>32<br>35<br>39<br>60<br>57<br>31<br>33<br>29       | 6045         6200         5315         6040         6785         6265         7690         7580         6285         6385         8060                                    | 11<br>8<br>6<br>14<br>50<br>5<br>6<br>13<br>18<br>20<br>34      | 23<br>20<br>16<br>17<br>18<br>20<br>21<br>21<br>21<br>24<br>26<br>17       | 1229<br>1247<br>1616<br>1767<br>2028<br>1887<br>2656<br>3106<br>1596<br>1871<br>1389         | 60500           58850           17970           10980           11045           7295           9040           8795           4415           4260           7190                | 3297         3191         1945         2605         2873         2585         3738         3704         1492         1557         2500              | 6<br>5<br>4<br>3<br>4<br>3<br>5<br>4<br>3<br>3<br>2      | 23<br>23<br>29<br>27<br>29<br>23<br>30<br>30<br>27<br>23<br>17       | 95         84         84         70         67         61         105         90         49         59         68                                  |
| Pot A1<br>BIM60 root<br>Pot A2<br>BIM60 root<br>Pot A3<br>BIM60 root<br>Pot A4<br>BIM60 root<br>Pot B1<br>BIM60 root<br>Pot B3<br>BIM60 root<br>Pot C1<br>BIM60 root<br>Pot C2<br>BIM60 root<br>Pot C3<br>BIM60 root<br>Pot D1<br>BIM60 root<br>Pot D1<br>BIM60 root<br>Pot E1<br>BIM60 root<br>Pot E1<br>BIM60 root<br>Pot E2<br>BIM60 root | 28<br>28<br>29<br>32<br>35<br>39<br>60<br>57<br>31<br>33<br>29<br>37 | 6045           6200           5315           6040           6785           6265           7690           7580           6285           6385           8060           9635 | 11<br>8<br>6<br>14<br>50<br>5<br>6<br>13<br>18<br>20<br>34<br>2 | 23<br>20<br>16<br>17<br>18<br>20<br>21<br>21<br>21<br>24<br>26<br>17<br>20 | 1229<br>1247<br>1616<br>1767<br>2028<br>1887<br>2656<br>3106<br>1596<br>1871<br>1389<br>2141 | 60500           58850           17970           10980           11045           7295           9040           8795           4415           4260           7190           8685 | 3297         3191         1945         2605         2873         2585         3738         3704         1492         1557         2500         3055 | 6<br>5<br>4<br>3<br>4<br>3<br>5<br>4<br>3<br>3<br>2<br>3 | 23<br>23<br>29<br>27<br>29<br>23<br>30<br>30<br>27<br>23<br>17<br>19 | 95           84           84           70           67           61           105           90           49           59           68           99 |

| Stdev                  | 10     | 1190   | 13     | 4      | 533         | 21683       | 707         | 1           | 4      | 16     |
|------------------------|--------|--------|--------|--------|-------------|-------------|-------------|-------------|--------|--------|
| Stuev                  | 10     | 1190   | 15     | 4      | 555         | 21085       | /0/         | 1           | 4      | 10     |
| BIM60+ root            |        |        |        |        |             |             |             |             |        |        |
| Pot A1                 | 53     | 6645   | 65     | 51     | 4242        | 11560       | 2663        | 5           | 96     | 204    |
| BIM60+ root            |        |        |        |        |             |             |             |             |        |        |
| Pot A2                 | 60     | 7445   | 25     | 69     | 3509        | 12460       | 3079        | 7           | 112    | 234    |
| BIM60+ root<br>Pot B1  | 42     | 6960   | 47     | 41     | 2627        | 21455       | 2509        | 10          | 93     | 315    |
| BIM60+ root            | 72     | 0700   | - + /  | 71     | 2027        | 21433       | 2307        | 10          | 75     | 515    |
| Pot B2                 | 34     | 6095   | 29     | 37     | 2809        | 21090       | 2439        | 8           | 75     | 245    |
| BIM60+ root            |        |        |        |        |             |             |             |             |        |        |
| Pot C1                 | 56     | 9755   | 39     | 71     | 3735        | 12385       | 2763        | 15          | 118    | 374    |
| BIM60+ root<br>Pot C2  | 62     | 10065  | 23     | 76     | 4317        | 12465       | 2848        | 16          | 133    | 379    |
| BIM60+ root            | 02     | 10005  | 25     | 70     | 1517        | 12105       | 2010        | 10          | 155    | 517    |
| Pot D1                 | 69     | 5630   | 236    | 35     | 12325       | 10545       | 2040        | 58          | 79     | 243    |
| BIM60+ root            |        |        |        |        |             |             |             |             |        |        |
| Pot D2                 | 68     | 7440   | 81     | 42     | 12150       | 11410       | 2754        |             | 67     | 218    |
| BIM60+ root<br>Pot E1  | 27     | 5255   | 15     | 20     | 2421        | 8120        | 1964        | 3           | 25     | 130    |
| BIM60+ root            | _,     | 0200   |        |        | <u> </u>    | 0120        | 1,01        | 5           |        | 100    |
| Pot E2                 | 48     | 8535   | 47     | 36     | 3975        | 11255       | 2934        | 7           | 47     | 311    |
| Average                | 52     | 7383   | 61     | 48     | 5211        | 13275       | 2599        | 14          | 84     | 265    |
| Stdev                  | 13     | 1554   | 61     | 18     | 3568        | 4179        | 348         | 16          | 31     | 75     |
|                        |        |        |        |        |             |             |             |             |        |        |
|                        | Ba     | Ca     | Cr     | Cu     | Fe          | K           | Mg          | Ni          | Pb     | Zn     |
| Group B 2nd<br>Harvest | (mg/kg | (mg/kg | (mg/kg | (mg/kg | (mg/k<br>g) | (mg/k<br>g) | (mg/kg<br>) | (mg/k<br>g) | (mg/kg | (mg/kg |
| ASF60 root             | )      | )      | )      | )      | 5/          | 5/          | )           | 5/          | )      | )      |
| Pot D1                 | 66     | 5240   | 29     | 20     | 4014        | 8335        | 1994        | 39          | 41     | 115    |
| ASF60 root             | 60     |        |        | •      | 1100        | 100-00      |             |             | 20     | 1.00   |
| Pot E1<br>ASF60 root   | 68     | 9210   | 14     | 20     | 4133        | 10270       | 2182        | 51          | 39     | 166    |
| Pot F1                 | 53     | 8760   | 12     | 36     | 2883        | 13980       | 1942        | 22          | 34     | 167    |
| Average                | 62     | 7737   | 19     | 26     | 3677        | 10862       | 2039        | 37          | 38     | 149    |
| Stdev                  | 6      | 1775   | 8      | 8      | 564         | 2342        | 103         | 12          | 3      | 24     |
|                        |        |        |        |        |             |             |             |             |        |        |
| ASF60+ root            |        |        |        |        |             |             |             |             |        |        |
| Pot A1                 | 77     | 18870  | 23     | 82     | 3730        | 35055       | 4026        | 11          | 122    | 276    |
| ASF60+ root            | 57     | 12105  | 25     | 56     | 2756        | 50200       | 3495        | 0           | 127    | 211    |
| Pot B1<br>ASF60+ root  | 57     | 12105  | 25     | 56     | 2756        | 30200       | 5495        | 8           | 137    | 211    |
| Pot C1                 | 84     | 11575  | 54     | 80     | 4684        | 31950       | 2738        | 11          | 133    | 279    |
| ASF60+ root            |        |        |        |        |             |             |             |             |        |        |
| Pot D1                 | 45     | 7265   | 6      | 36     | 1903        | 54450       | 1857        | 4           | 51     | 146    |
| ASF60+ root<br>Pot E1  | 181    | 20910  |        | 207    | 10115       | 70650       | 5485        | 23          | 154    |        |
| Average                | 89     | 14145  | 27     | 92     | 4638        | 48461       | 3520        | 11          | 120    | 228    |
| Stdev                  | 48     | 5024   | 17     | 60     | 2893        | 14026       | 1224        | 6           | 36     | 55     |
|                        |        |        |        |        |             |             |             | -           |        |        |
| AIM60+ root            | İ      |        |        |        |             |             |             |             | İ      |        |
| Pot A1                 | 12     | 3603   | 5      | 55     | 930         | 1343        | 720         | 4           | 259    | 187    |
| AIM60+ root            | 22     | 21/9   | Α      | 20     | 1204        | 20/0        | 600         | 2           | 70     | 57     |
| Pot B1<br>AIM60+ root  | 22     | 2168   | 4      | 20     | 1384        | 2869        | 680         | 2           | 70     | 57     |
| Pot D1                 | 36     | 2897   | 33     | 20     | 2220        | 3332        | 1058        | 4           | 72     | 86     |
| AIM60+ root            |        |        |        |        |             |             |             |             |        |        |
| Pot E1                 | 23     | 2285   |        | 13     | 1800        | 2112        | 1137        | 2           | 57     | 38     |

| Average | 23 | 2738 | 14 | 27 | 1584 | 2414 | 899 | 3 | 114 | 92 |
|---------|----|------|----|----|------|------|-----|---|-----|----|
| Stdev   | 8  | 571  | 13 | 16 | 479  | 756  | 201 | 1 | 84  | 58 |

## Appendix D: Soil available metal concentration for Group B

|              | Ba<br>(mg/kg<br>) | Ca<br>(mg/kg      | Cr<br>(mg/kg      | Cu<br>(mg/kg<br>) | Fe<br>(mg/kg      | K<br>(mg/k<br>g) | Mg<br>(mg/kg) | Ni<br>(mg/kg      | Pb<br>(mg/kg      | Zn<br>(mg/kg<br>) |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|---------------|-------------------|-------------------|-------------------|
| C1           | 25                | 1993              | 0                 | 8                 | 130               | 116              | 254           | 1                 | 207               | 58                |
| C2           | 25                | 1996              | 0                 | 8                 | 127               | 141              | 251           | 1                 | 206               | 57                |
| C3           | 27                | 2017              | 0                 | 8                 | 123               | 190              | 257           | 1                 | 211               | 57                |
| C4           | 26                | 2030              | 0                 | 8                 | 127               | 178              | 253           | 1                 | 201               | 57                |
| C5           | 25                | 2006              | 1                 | 8                 | 145               | 107              | 258           | 1                 | 241               | 61                |
| Average      | 25                | 2008              | 0                 | 8                 | 130               | 146              | 255           | 1                 | 213               | 58                |
| Stdev        | 1                 | 14                | 0                 | 0                 | 8                 | 33               | 2             | 0                 | 14                | 1                 |
|              |                   |                   |                   |                   |                   |                  |               |                   |                   |                   |
|              | Ba<br>(mg/kg<br>) | Ca<br>(mg/kg<br>) | Cr<br>(mg/kg<br>) | Cu<br>(mg/kg<br>) | Fe<br>(mg/kg<br>) | K<br>(mg/k<br>g) | Mg<br>(mg/kg) | Ni<br>(mg/kg<br>) | Pb<br>(mg/kg<br>) | Zn<br>(mg/kg<br>) |
| BSF60        | 7                 | 2232              | 0                 | 10                | 187               | 108              | 251           | 1                 | 246               | 61                |
| A1<br>BSF60  | 9                 | 2126              | 0                 | 10                | 184               | 100              | 232           | 1                 | 224               | 57                |
| B3F00<br>B1  | 9                 | 2120              | 0                 | 10                | 104               | 100              | 232           | 1                 | 224               | 57                |
| BSF60<br>C1  | 10                | 2281              | 0                 | 10                | 177               | 110              | 249           | 1                 | 230               | 58                |
| BSF60<br>D1  | 9                 | 2682              | 1                 | 12                | 181               | 128              | 277           | 1                 | 289               | 67                |
| BSF60<br>E1  | 6                 | 2160              | 0                 | 9                 | 172               | 93               | 244           | 1                 | 222               | 53                |
| Average      | 8                 | 2296              | 0                 | 10                | 180               | 108              | 250           | 1                 | 242               | 59                |
| Stdev        | 1                 | 200               | 0                 | 1                 | 5                 | 12               | 15            | 0                 | 25                | 5                 |
| BSF60+<br>A1 | 6                 | 2168              | 0                 | 10                | 162               | 91               | 217           | 1                 | 215               | 47                |
| BSF60+<br>B1 | 7                 | 2029              | 1                 | 16                | 238               | 86               | 223           | 2                 | 225               | 70                |
| BSF60+<br>C1 | 8                 | 2017              | 1                 | 15                | 207               | 80               | 224           | 2                 | 232               | 67                |
| BSF60+<br>D1 | 6                 | 2189              | 1                 | 18                | 204               | 89               | 240           | 1                 | 242               | 78                |
| BSF60+<br>E1 | 6                 | 2121              | 0                 | 14                | 175               | 92               | 224           | 1                 | 211               | 58                |
| Average      | 6                 | 2105              | 1                 | 15                | 197               | 88               | 226           | 1                 | 225               | 64                |
| Stdev        | 1                 | 70                | 0                 | 3                 | 27                | 4                | 8             | 0                 | 11                | 11                |
| BIM60<br>A1  | 13                | 2249              | 0                 | 9                 | 173               | 92               | 245           | 1                 | 230               | 58                |
| BIM60<br>B1  | 6                 | 2167              | 0                 | 9                 | 180               | 107              | 250           | 1                 | 228               | 46                |
| BIM60<br>C1  | 7                 | 2073              | 0                 | 10                | 223               | 109              | 236           | 1                 | 225               | 42                |
| BIM60<br>D1  | 8                 | 2163              | 0                 | 11                | 232               | 117              | 246           | 1                 | 229               | 43                |
| BIM60        | 6                 | 2119              | 0                 | 10                | 284               | 142              | 240           | 1                 | 215               | 40                |

| E1      |    |      |   |    |     |     |     |   |     |    |
|---------|----|------|---|----|-----|-----|-----|---|-----|----|
| Average | 8  | 2154 | 0 | 10 | 218 | 113 | 243 | 1 | 225 | 46 |
| Stdev   | 3  | 58   | 0 | 1  | 40  | 16  | 5   | 0 | 5   | 6  |
|         |    |      |   |    |     |     |     |   |     |    |
| BIM60+  | 8  | 2056 | 0 | 9  | 181 | 115 | 222 | 1 | 221 | 46 |
| A1      |    |      |   |    |     |     |     |   |     |    |
| BIM60+  | 13 | 2331 | 0 | 10 | 175 | 104 | 239 | 1 | 225 | 57 |
| B1      |    |      |   |    |     |     |     |   |     |    |
| BIM60+  | 15 | 2197 | 0 | 15 | 247 | 105 | 236 | 1 | 230 | 44 |
| C1      |    |      |   |    |     |     |     |   |     |    |
| BIM60+  | 10 | 2217 | 0 | 9  | 173 | 99  | 237 | 1 | 237 | 48 |
| D1      |    |      |   |    |     |     |     |   |     |    |
| BIM60+  | 16 | 2306 | 0 | 13 | 353 | 131 | 261 | 1 | 226 | 46 |
| E1      |    |      |   |    |     |     |     |   |     |    |
| Average | 12 | 2221 | 0 | 11 | 226 | 111 | 239 | 1 | 228 | 48 |
| Stdev   | 3  | 97   | 0 | 3  | 69  | 11  | 12  | 0 | 5   | 5  |

Appendix E: Statistical analysis for the all metal concentration of the plant roots

| Dependent Variable: REGR factor score 1 for analysis 1 |                            |    |             |       |      |  |  |  |  |  |  |  |
|--------------------------------------------------------|----------------------------|----|-------------|-------|------|--|--|--|--|--|--|--|
| Source                                                 | Type III Sum<br>of Squares | df | Mean Square | F     | Sig. |  |  |  |  |  |  |  |
| Corrected Model                                        | 10.856 <sup>a</sup>        | 7  | 1.551       | 4.348 | .002 |  |  |  |  |  |  |  |
| Intercept                                              | .957                       | 1  | .957        | 2.683 | .113 |  |  |  |  |  |  |  |
| t30vs60days                                            | 3.368                      | 1  | 3.368       | 9.443 | .005 |  |  |  |  |  |  |  |
| treatment2                                             | 6.062                      | 3  | 2.021       | 5.665 | .004 |  |  |  |  |  |  |  |
| t30vs60days * treatment2                               | .978                       | 3  | .326        | .914  | .447 |  |  |  |  |  |  |  |
| Error                                                  | 9.987                      | 28 | .357        |       |      |  |  |  |  |  |  |  |
| Total                                                  | 21.365                     | 36 |             |       |      |  |  |  |  |  |  |  |
| Corrected Total                                        | 20.842                     | 35 |             |       |      |  |  |  |  |  |  |  |

Tests of Between-Subjects Effects

a. R Squared = .521 (Adjusted R Squared = .401)

## **CHAPTER 7: REFERENCES**

1. M. Mahdieh, M. Yazdani, S. Mahdieh, Environ. Monitor. Assess. 185, 7877-7881, 2013, the high potential of pelargonium roseum plant for phytoremediation of heavy metals.

J. Kayode Adesodun, M. O. Atayese, T.A. Agbaje, B.A. Osadiaye, O.F. Mafe,
 A.A. Soretire, Water Air Soil Pollution 207, 195-201, 2010, Phytoremediation potential
 of sunflowers for metals in soils contaminated with zinc and lead nitrates.

3. D. Liu, T. Li, X. Yang, E. Islam, X. Jin, Q. Mahmood, Bull. Environ. Contam. Toxicol. 78, 280-283, 2007, Enhancement of lead uptake by hyper accumulator plant species edum alfredii Hance using EDTA and IAA.

M.J. Blaylock, D.E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik,
B.D. Ensley, I. Raskin, Environ. Sci. Tech. 31, 860-865, 1997, Enhanced accumulation of
Pb in Indian mustard by soil-applied chelating agents.

5. F. Hadi, A. Bano, M.P. Fuller, Chemosphere 80, 457-462, 2010, The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): the role of plant growth regulators (GA<sub>3</sub> and IAA) and EDTA alone and in combinations.

 US EPA method 3051A, Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils, Revision 1, February, 2007.

M. Niiane, K. Nishigaki, K. Aoki, Materials Transactions 49 (10), 2377-2382,
 2008. Removal of lead from contaminated soils with chelating agents.

J.W. Huang, J. Chen, W.R. Berti, S.D. Cunningham; Environ. Sci. Technol.,
 1997, 31 (3), pp 800–805, Phytoremediation of Lead-Contaminated Soils: Role of
 Synthetic Chelates in Lead Phytoextraction.

M.M. Rahman, S.M. Azirun, A.N. Boyce, PLOS One 8(5), e62941, May, 2013.
 Enhanced accumulation of copper and lead in Amaranth (Amaranthus paniculatus),
 Indian mustard (brassica juncea) and Sunflower (Helianthus annuus).

10. C.S. Seth, V. Misra, R.R. Singh, L. Zolla, Plant Soil 347, 231-242, 2011. EDTA enhanced lead phytoremediation in sunflower (Helianthus annuus) hydroponic culture.

J.L. Schnoor, L.A. Licht, S.C. McCutcheon, N.L. Wolfe, L.H. Carreira, Environ.
 Sci. Tech. 29(7), 318A-323A, 1997; Phytoremediation of organic and nutrient contaminants.

12. M.E. Watanabe, Environ. Sci. Tech. 31(4), 182A-186A, 1997; Phytoremediation on the brink of commercialization.

 J.J. Clark, A.C. Knudsen, J. Environ. Quality 42, 1498-1506, 2013. Extent, Characterization and Sources of Soil Lead Contamination in Small-Urban Residential Neighborhoods.

M.L. Lopez, J.R. Peralta-Videa, T. Benitez, J.L. Gardea-Torresday, Chemosphere
61, 595-598, 2005; Enhancement of lead uptake by alfalfa (Medicago sativa)using EDTA
and a plant growth promoter.

15. C. Lin, J. Liu, L. Liu, T. Zhu, L. Sheng, D. Wang, Environ. Exp. Botany 65, 410-416, 2009; Soil amendment application frequency contributes to phytoextraction of lead by sunflower at different nutrient levels.

16. N. McClintock, Appl. Geography 35, 460-473, 2012; Assessing soil lead contamination for urban agriculture and environmental justice.

17. Alexander FW, Clayton BE, Delves HT. 1974. Mineral and trace-metal balances in children receiving normal and synthetic diets. QJ Med 43:89-11.

18. Alkorta I, Hernandez-Allica J, Becerril J. M, Amezaga I, Albizu I, Garbisu C: 2004, 'Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic', reviews in Environmental Science and Bio/Technology 3, 71-90.

19. Baker, A.J.M., McGrath, S.P., Sidoli, C.M.D., & Reeves, R.D. (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling, 11, 41- 49.

20. Baghurst PA, Robertson EF, McMichael AJ, et al. 1987. The Port Pirie cohort study:
lead effects on pregnancy outcome and early childhood development. Neurotoxicology
8:395- 401.

21. Cunningham, S. D., Anderson, T. A., Schwab, A.P. and Hsu, F. C.: 1996, 'Phytoremediation of soils contaminated with organic pollutants', Adv. Agron. 56, 55-114.

22. Jeanna R. Henry, National Network of Environmental Management Studies (NNEMS) Fellow, May - August 2000

 Lasat, M. M. (2002) phytoextraction of metals from contaminated soil: A review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal

of Hazardous Substance Research, 3, 1-25.

24. Maite RK, Pinero JLH, Oreja JAG, Santiago DL (2004) Plant based bioremediationand mechanism of heavy metal tolerance of plants. A review. Proc Ind Nat Sci Acad70:1–12

25. U.S Environmental Protection Agency (March 1984), "Summary report: Remedial response at hazardous waste site", EPA-540/2-84-002a, Washington, DC.

26. United States Protection Agency (USEPA). 2000. *Introduction to Phytoremediation*. EPA 600/R-99/107. U.S. Environmental Protection Agency, Office of Research andDevelopment, Cincinnati, OH.