
A Novel Index Method for Write Optimization on

Out-of-Core Column-Store Databases

by

Tyler J. Matacic

A thesis submitted to Youngstown State University in partial fulfillment of the

requirements for the degree of

Master of Science

in the

Computer Information Systems

Program

YOUNGSTOWN STATE UNIVERSITY

December, 2016

A Novel Index Method for Write Optimization on Out-of-Core Column-Store

Databases

Tyler J. Matacic

I hereby release this thesis to the public. I understand that this thesis will be made

available from the OhioLINK ETD Center and the Maag Library Circulation Desk

for public access. I also authorize the University or other individuals to make copies

of this thesis as needed for scholarly research.

Signature:

Tyler J. Matacic, Student Date

Approvals:

Dr. Feng Yu, Thesis Advisor Date

Dr. Yong Zhang, Committee Member Date

Dr. Alina Lazar, Committee Member Date

Dr. Salvatore A. Sanders, Dean of Graduate Studies Date

Acknowledgments

I would like to thank my family and friends for supporting me through the process

of this graduate degree program. This has been the most challenging part of my

entire life, and I owe it to them for giving me the strength to make it through. I

want to thank my fiance, Maria, who is the love of my life and has always

encouraged me and gave me the support I needed. I would like to thank the

professors who taught me so much, and the best secretary in the world, Connie who

never tired no matter how many times I needed her to open a door, retrieve papers

from the department mailboxes, or help me register for classes. Lastly, I would like

to thank Dr. Feng Yu, my adviser, who has helped me the entire way through this

challenging learning process.

iii

Abstract

The purpose of this thesis is to extend previous research on write optimization in

out-of-core column storage databases. A new type of storage model titled

Timestamped Binary Association Table (TBAT) will be explored, a new update

entitled Asynchronous Out-of-Core Update (AOC Update) designed to leverage the

TBAT will be explained, and a new type of B-Tree titled Offset B+ Tree (OB-tree)

will be examined. The performance of the OB-tree and TBAT when utilized for

selection tasks will be demonstrated through experiments comparing TBAT

selection with an OB-tree index, TBAT selection without an index, and the

traditional method of binary selection on a Binary Association Table (BAT). The

selection speed of these three methods will be recorded and conclusions will be

drawn.

iv

Contents

1 Introduction 1

2 Background of Column-Store Databases 3

3 Timestamped BAT 11

3.1 AOC Update . 11

3.2 AOC Update Example . 12

4 Selection Speed Degradation after AOC Updates 13

4.1 Data Cleaning . 13

4.2 Offline Data Cleaning . 14

4.3 Online Data Cleaning . 15

4.3.1 Online Eager Data Cleaning 15

4.3.2 Online Progressive Data Cleaning 17

5 Offset B+ Tree 18

5.1 OB-Tree Data Structure . 19

5.2 Bulk Loading OB-Tree . 21

5.3 Bulk-Loading on Cold Data . 22

v

5.4 Bulk-Loading on Hot Data . 22

6 OB-Tree Selection 22

6.1 TBAT Search Using OB-Tree . 23

7 Experiment Results 24

7.1 Creation time OB-Tree . 25

7.2 Tests of Searches on TBAT and BAT 27

8 Conclusion and Future Works 34

List of Figures

1 customer Data in Row-Based (a) and BAT (b) (c) (d) format 4

2 Materialization . 5

3 TBAT Examples . 10

4 TBAT Following AOC Update . 12

5 OB-Tree . 19

6 OB-Tree Creation Time 10000 Record Dataset 25

7 OB-Tree Creation Time 10MB Dataset 26

8 OB-Tree Creation Time 64MB Dataset 26

vi

9 Selection Speed Experiment 10000 Record Dataset 10% Selection . . 27

10 Selection Speed 10000 Record Dataset OB-Tree Index and BAT 10%

Selection . 28

11 Selection Speed 10MB Dataset . 29

12 Selection Speed 10MB Dataset OB-Tree Index and BAT 10% Selection 29

13 Selection Speed 10MB Dataset OB-Tree Index and BAT 20% Selection 30

14 Selection Speed 64MB Dataset . 31

15 Selection Speed 64MB Dataset OB-Tree Index and BAT 10% Selection 32

16 Selection Speed 64MB Dataset OB-Tree Index and BAT 20% Selection 32

List of Tables

1 Mean Selection Times (s) For TBAT, TBAT with OB-Tree and BAT 33

vii

1 Introduction

Column-store databases are databases that vertically partition data and store it in

separate columns. Their history dates back to the 1970’s when transported files were

implemented in the early development of database management systems (DBMS). By

the mid 1980’s the advantages of early column-store databases (titled decomposed

storage model or DSM) were well documented [9, 10]. Although DSM’s advantages

for running queries were apparent, more then three decades ago the market dictated

that traditional row-based systems would remain popular for the years to come. In

recent years column-store systems have attracted renewed attention because of their

unique structure, specific efficiencies, and flexibility in usage. As mentioned previously

Column-stores store each database attribute separately in columns, the attribute

values that belong to the same column are stored contiguously, allowing them to be

densely packed and compressed leading to tremendous space savings on disk. This

runs counter to traditional database systems that store data in rows one after the

other. When a database query is run on a traditional row-based database the entire

row must be read first, and then the specific requested attributes are pulled. This

method of extracting data is costly and uses unneeded resources. The structure of

column-store databases lends themselves perfectly to read heavy tasks because instead

of needing to return entire tables like the row-based database, column-store databases

return only the requested attribute column [1].

The basic architectural design of a column-store is dictated by the columnar

1

data layout. Different column-store databases employ different techniques for data

compression, such as the “projections” utilized by C-Store [17]. In C-Store these pro-

jections are groups of columns that are sorted on the same attribute, this architecture

allows the support of many sort-orders without a large increase in space, and opens

opportunities for optimization. C-store was so successful that it was adapted for wide

commercial use and re-named to Vertica seven years after its original inception [16].

Column-store databases work very well with large stores of data. Because

of this fact it is only natural that a column-store would be created to work with one

of the most popular distributed computing frameworks for processing big data, the

Hadoop Distributed File System (HDFS). The column-store build on top of Hadoop

is titled HBase [12] and it was built to integrate perfectly into HDFS utilizing features

such as the ability for fast lookups on large tables, low latency access to single rows,

and the storage of indexed HDFS files for reduced look-up speed [19, 8].

Column based layouts are extremely flexible in their implementation, and

can even be tailored to work with cutting edge technology such as Solid State Drives

(SSDs). The PAX data organization model, originally proposed to improve CPU

cache performance is able to facilitate reading from the SSD only the attributes that

participate in a query. This efficient data reading reduces the data read and saves

time and resources [18, 6, 7].

It is clear that column-store databases are adept and optimized at reading

data efficiently and quickly. Writing optimizations on the other hand are more of a

2

challenge with column-stores, and the data presented in this paper works to alleviate

this challenge.

The methods discussed later in this work highlight the usage of OB-Trees

to quickly search for records within a column-store database, Section 2, Background

of column-store Databases, discuses the history of column-store databases and their

uses. Section 3 Timestamped BAT, examines a new storage method for column-store

databases. Section 4 Selection Speed Degradation after AOC Updates, discusses

methods of cleaning the Timestamped BAT in order to restore its speed. Section

5, Offset B+ Tree, examines a new data structure created to work with the TBAT.

Section 6, OB-tree selection, explains the use of the OB-tree to increase the speed of

selection tasks on the TBAT data structure. Section 7, Experiment Results, showcases

the results of the OB-tree selection tests and compares them to the selection speed

of a traditional BAT and that of a TBAT without an OB-tree index. Section 8,

Conclusion and Future Works, will give a summary of the experiment findings and

detail the direction of future work.

2 Background of Column-Store Databases

Column store databases differentiate themselves from traditional databases by their

unique method of storing data [21]. Instead of storing data on disk as a horizontally

organized table block, column-store databases break tables into individual vertically

partitioned columns. Figure 1(a) depicts an example of a conventional table titled

3

id name fee
1 Maria 100.00
2 Brandon 200.00
3 John 300.00

(a) Row-Based customer

oid int
101 1
102 2
103 3

(b) customer_id

oid varchar
101 Maria
102 Brandon
103 John

(c) customer_name

oid float
101 100.00
102 200.00
103 300.00

(d) customer_fee

Figure 1: customer Data in Row-Based (a) and BAT (b) (c) (d) format

customer, consisting of three attributes, name, fee, and id. In a column-store

database these three attributes would be separated and stored randomly in memory

as three different columns titled BAT’s (binary association tables) shown in Figures

1(b), 1(c), and 1(d). The BAT is a special storage model that is categorized as a

Decomposed Storage Model [9]. Column-store databases have a special method of

retrieving this randomly stored data in the form of an object identifier (OID). The

OID is a numerical value connected to each attribute in the vertical columns. When a

query is run to retrieve an attribute it searches for the OID using a sequential search

and returns the appropriate value. The combination of the OID and attribute value is

titled a BUN (Binary UNits). Modern column-store databases have the advantage of

the latest processes and methods, enabling them to work faster than ever before. Even

if a traditional relational database is modified heavily it still cannot contend with the

reading speed of a column-store [4]. In Abadi’s “The Design and Implementation of

Modern Column-Oriented Database Systems” [2] many of the most notable strategies

implemented by column-stores are discussed. One of the most heavily optimized

database features is materialization. Put simply, materialization is a constructed

tuple, or table, that is the result of a series of database queries.

For the query execution layer of database processing there are two primary

4

(a) Volcano Processing (b) Full Materialization

Figure 2: Materialization

methods to achieve this materialization, the “Volcano-style” iterator model and full

materialization. In volcano processing, shown in Figure 2(a), one tulpe at a time

is pushed through the query plan tree using a method called next(). This method

creates one new tuple at a time because each operator calls next(), this allows each

operator to retain its own state and pass the tuple along to the next operator.

In full materialization, shown in Figure 2(b), instead of each operator work-

ing in tandem to create a tuple, each operator works in isolation to fully consume

an input from disk and writes an output back to disk. The column-store MonetDB

uses full materialization, the reason being is its BAT algebra and the desire to make

interactions with operators simpler.

Although Volcano-processing and full materialization have their uses a column-

store titled VectorWise utilizes a new query execution method titled vectorized execu-

5

tion. The goal of vectorized execution is to strike a balance between volcano-style and

full materialization through the separation of query processing and data processing.

The first step in accomplishing this is the emulation of the next() method with one

important change. Instead of next() only returning a single tuple it has the ability

to return any number of tuples, thus making a significant change to control flow from

volcano-style processing. In regards to data processing, vectorized execution processes

data vector-at-a-time, comparing data values. This hybrid architecture gives the Vec-

torWise column-store multiple advantages such as parallel memory access, profiling,

and adaptive execution highlighting the flexibility of column-store databases. As of

2012 VectorWise was leading in the TPC-H benchmark for non-clustered database

systems [27, 14, 26].

As mentioned earlier data compression is a natural fit for column-store

databases. There are four main attributes that lead to this efficient data compression.

First is the ability to compress one column at a time. Since column-stores store all

similar data in columns, compressing these columns is much simpler than row-stores

that have multiple data types in a row. Moreover, compression algorithms are able to

compress larger amounts of data that have common similarities, since more data of

the same type will fit on a single page [3, 5, 11]. Also assisting in compression is the

fact that the codes for compressing like-data will be smaller, which leads to enhanced

compression. This efficient and effective compression leads to many benefits. In a

business or academic setting less CPU cycles are always preferred, with fewer cycles

data is processed faster. When data is compressed less data is needed to be read into

6

memory leading to faster processing.

According to Abadi, et al., the best compression schemes to utilize for

column-store databases are lightweight schemes that value the speed of decompression

over the brute force of higher compression ratios [1]. Even better if these compression

schemes can compress the columns into fixed-width small values, the reasoning behind

this is that the compressed column can be treated as an array which is much easier to

iterate through with modern CPUs. Compression’s positive effects on column-stores

are undeniable but there are even secondary benefits to compression that may not

be immediately apparent, such as using the freed-up storage space on disk to store

database copies.

There are several compression algorithms that have been evaluated for use

with column-stores [2].

• Run Length Encoding (RLE), takes runs of the same value in a column and

compresses it into a single compact representation. Naturally RLE lends its self

well to columns that are sorted, and how it works is with the replacement of

runs with a triple that contains value, start position, and runLength. These

triples are given a fixed number of bits. As an example lets say that we have a

column whose first 20 elements contain the value ’T’. The triple representation

for these elements would be (’T’, 1, 20), T for the element, 1 for where in the

column the element begins and 20 for how many elements are in sequence. It’s

easy to see how RLE would be utilized in column-stores where similar attributes

7

are stored consecutively with similar values [20].

• Dictionary Encoding, works by constructing a separate dictionary table off

of a column-store table and sorts itself based on the frequency of attributes from

the column-store table. Representing these attributes as an integer value in the

dictionary table. These integers are then compressed using an integer specific

compression scheme. The benefit of dictionary encoding is the ability to create

fixed width columns if the system chooses to do so.

• Frame of Reference (FOR), if a column-store has commonality with its val-

ues it can utilize this interesting compression technique. With FOR a common

value is stored as a common "base" and the values that share that base are

organized as simple integers following it. For an example the values: 901, 902,

904, 906, 909 would be represented as: 900, 1, 2, 4, 6, 9.

• The Patching Technique, FOR suffers if data contains outliers that break its

chain of simplified integers, a response to this problem is to allow these outliers

to be exception values that are not compressed. The patching technique creates

a linked list using these exception values and has the ability to patch their

information into decompressed output.

• Operating Directly on Compressed Data, to gain the absolute best perfor-

mance boost compressed data can be operated on directly because the system

saves input and output time by reading less data and doesn’t have to pay the

time cost of decompressing said data. How this is accomplished is through the

8

use of a compression block, which is a representation of the compressed data.

This compression has an application program interface (API), and a buffer of

compressed column data. The API allows the query optimizer to access the

buffer and perform several common methods such as getSize(), isSorted(),

and getFirstValue().

A study conducted by MIT’s computer science and artificial intelligence

laboratory pitted column-store databases against their row-based counterparts. The

column-stores were shown to outperform traditional row-oriented database structures

by a large margin. Their study focused on comparing the performance of column and

row based storage systems according to disk bandwidth, CPU cache latency, and

CPU cycles. To keep their study unbiased they chose not to use techniques such

as run-length-encoding that heavily favor column-store data, instead they used the

compression schemes of Bit Packing, Dictionary Encoding, and Frame of Reference.

The bit packing scheme stores each table attribute using as many bits that

are required to match the maximum value in the domain. The techniques of Dictio-

nary compression and FOR-delta were previously mentioned. Using these compres-

sion techniques the study concluded column-stores to be incredibly efficient beating

row-stores in almost every category, in fact on selecting 10 percent of a line-item table

the column-store never took more than twelve seconds where the row-store took more

than fifty [13].

Column-store databases have an important role in real-world business appli-

9

optime oid float
time1 101 100.00
time1 102 200.00
time1 103 300.00

(a) TBAT customer_fee

optime oid id
time1 101 1
time1 102 2
time1 103 3

(b) TBAT customer_id

optime oid varchar
time1 101 Maria
time1 102 Brandon
time1 103 John
(c) TBAT customer_name

Figure 3: TBAT Examples

cations. In this modern time enterprise database systems have come to be classified

into one of two categories, optimization for online transaction processing (OLTP),

and optimization for online analytical processing (OLAP). Business applications to-

day primarily focus on the day-to-day transaction processing needed for them to

run profitably, understanding the analytical processing needed to run the business

is considered “after the fact”. Heads of companies want to see increases in profit,

not algorithms. Over time these enterprise applications have become more complex

to meet the needs of OLAP and OLTP, at the same time data sets have increased

and the time allotted for processing these sets has decreased. Retrieving data from

this time sensitive large data set environment is where column-stores shine, and with

modern compression techniques more data is able to be stored on disk and accessed

quickly [15].

The background of column-store databases is complex and multifaceted,

from spectacular compression optimization made possible by their column structure

to business applications, column-stores are valuable methods of storing data. Their

dominance in reading tasks is unmatched, but they traditionally fall behind row-store

databases in writing tasks. The creation of a new data structure aims to eliminate

this deficiency.

10

3 Timestamped BAT

Although column-store databases excel at retrieving data, their performance in writ-

ing data has always been a challenge. The random storage nature of BATs are a

primary concern when optimizing write operations is considered. Recent work to al-

leviate this challenge has come in the form of a new way of organizing data titled the

Timestamped Binary Association Table (TBAT) [22]. This TBAT differs from the

BAT in one very important way, the addition of a new value. This new value is a

timestamp, titled optime and it is used to record the time when an insert, update,

or deletion is performed on a BAT tuple. The data type for optime is naturally a 4

byte TIMESTAMP, and it occupies only a small space in memory.

Figure 3 demonstrates created TBATs for customer_fee, customer_id, and

customer_name from the customer table shown earlier. The optime value is the

same for all of the attributes because this example emulates a single bulk loading

performed at the same time. This new TBAT storage model can be leveraged to

create fast updates by utilizing the timestamp value.

3.1 AOC Update

With a traditional BAT an update on a tuple involves two phases. First the oid

is sought out using a sequential search according to the given target value. The

second phase is to update the target value according to the oid found in phase one,

11

optime oid float
time1 101 100.00
time1 102 200.00
time1 103 300.00
time2 103 301.00

body

appendix

Figure 4: TBAT Following AOC Update

generating random I/O on out-of-core storage (OOC). If these tasks are needed to be

performed on large sets of data, the seeking of the oid and the changing of the values

associated with it is time consuming because of the cost associated with data block

seeking and writing. A data block is an interface of randomly held values compressed

in memory, and its random nature takes time to seek.

Based off of the TBAT a new method of updating tuples was created called

Asynchronous Out-of-core Update (AOC update) [23]. This update leverages the

timestamp value of the TBAT to increase update speed significantly. The principle

behind the AOC update is the avoidance of OID seeking and writing completely, and

instead uses the timestamp field of the TBAT to label the newly updated data that

has been directly appended to the end of the TBAT.

3.2 AOC Update Example

Figure 4, depicts an example of an update to the value balance where customer id

equals 3. A SQL query used to accomplish this would appear as follows.

UPDATE customer SET balance = 301.00 WHERE id = 3

12

The target tuple for the update is the record with oid equal to 103. Instead

of searching for the OID for every customer id that equals 3 the AOC update will

instead append and the end of the TBAT a new tuple with the updated value and

the latest timestamp, time2, effectively saving tremendous time. The oid remains the

same, but the updated value is inserted and accompanied by the newest timestamp,

in this case time2.

4 Selection Speed Degradation after AOC Updates

The AOC update is an extremely fast update method when used on column-store

databases. Although its method of appending new data to the bottom of the TBAT

appendix increasingly creates new data and increases the TBAT’s size over time. For

a small TBAT this has no noticeable effect, but for a large TBAT with many AOC

updates the decrease in selection speed must be alleviated [25].

4.1 Data Cleaning

In order to restore the selection speed of the TBAT after AOC updates data cleaning

methods must be used. The intention behind these cleaning methods is to detect the

latest version of the updated data and merge it back into the body of the TBAT, the

methods are split into two groups, offline data cleaning and online data cleaning.

13

Algorithm 1 merge_update . offline data cleaning
Input: tbat: the TBAT file to perform data cleaning on
1: tbat = merge_sort(tbat, oid) . merge sort tbat on oid in ascending order
2: tbat_output = new tbat_file . empty TBAT file
3: line1 = tbat.read() . read a line from input TBAT file
4: if tbat_output or line1 is NULL then
5: exit(FILE_ERROR)
6: while TRUE do
7: line2 = tbat.read() . read next line
8: if line2 is NULL then
9: tbat_output.write(line1)
10: break
11: if line2.oid>line1.oid then
12: . the tuple with next oid is read in
13: tbat_output.write(line1)
14: line1=line2 . line1 moves forward
15: else if line2.timestamp>line1.timestamp then
16: . oids are the same, but line2 is newer
17: line1=line2 . only keep the newer record
18: tbat_output.close() . cleaned TBAT file produced
19: return SUCCESS

4.2 Offline Data Cleaning

Offline data cleaning, shown in Algorithm 1, is performed after the database is locked

from use in order to avoid inconsistent data during the cleaning process. Offline data

cleaning first employs a merge sort on the entire TBAT file including the body and

appendix, and then deletes the duplicated TBUNs in a sequential manner. This is an

effective method but it is not optimized, the challenge is that it takes a large amount

of time if many AOC updates have been performed. A more time efficient method is

preferred.

14

4.3 Online Data Cleaning

Online data cleaning fundamentally differs from offline data cleaning in its central

idea. This central idea of online data cleaning is to enable employees to continue

querying the TBAT while the data cleaning procedure is being performed. The al-

lowance of a continual data stream while the cleaning is being processed is made

possible of a data structure called a snapshot.

First the online approach takes a snapshot of the body and create a new

appendix file linked to the TBAT. The older non-snapshot version of the appendix will

be merged into the snapshot of the body using merge sorting and binary searching.

At the same time, the TBUN’s in the appendix will be written back to the body in the

same method as a traditional update on a BAT. Finally after merging is complete the

snapshot of the body will replace the original TBAT body and the outdated appendix

will be deleted.

In a data restricted environment though the updated data might be to large

to fit into main memory, the solution to this is to split the online data cleaning process

into two different approaches, the eager approach and the progressive approach.

4.3.1 Online Eager Data Cleaning

The primary idea behind online eager data cleaning, shown in Algorithm 2, is to

increase the merging speed by reading the entire appendix of the TBAT into memory.

15

Algorithm 2 MERGE_EAGER . online eager data cleaning
Input: tbat: the TBAT file after AOC updates
1: function MERGE_EAGER(tbat)
2: appendix = tbat.appendix . get the current appendix
3: if appendix is empty then
4: exit(NO_NEED_TO_MERGE)
5: tbat.appendix=new_appendix . create a new empty appendix linked to

TBAT
6: appendix = MERGE_SORT(appendix, oid, ascending, timestamp, descending) .

merge sorting the appendix by oid in ascending order and timestamp in descending
order

7: body = snapshot(tbat.body) . make a snapshot of the current body part of
TBAT

8: line1 = appendix.read() . read a line from appendix
9: while TRUE do
10: line2=appendix.read()
11: if line2 is NULL then . end of appendix
12: BINARY_UPDATE(body, line1)
13: break
14: else if line2.oid > line1.oid then
15: BINARY_UPDATE(body, line1) . only merge the line with the latest

timestamp
16: line1=line2
17: temp_body=tbat.body . the original body of TBAT
18: tbat.body=body . TBAT links to the updated body snapshot
19: delete(temp_body) . purge the original body
20: delete(appendix) . purge the original appendix
21: return SUCCESS
1: function BINARY_UPDATE(body, line) . update line to mirror of body using

binary search by line.oid
2: rownum=BINARY_SEARCH(body, line.oid) . search the row number in body

containing line.oid
3: if rownum is NULL then
4: body.append(line) . append line to the end of body
5: else
6: body.update(rownum, line) . update line to the body at the rownum-th

line

16

Algorithm 3 MERGE_PROGRESSIVE . online progressive data cleaning
Input: tbat: the TBAT file after AOC updates; appendix_queue: the queue of the

split appendixes; streaming_update: streaming update input; block_size: the
block size of an individual split appendix

1: function MERGE_PROGRESSIVE(tbat, appendix_queue)
2: while appendix_queue is not NULL do
3: appendix=appendix_queue.dequeue()
4: MERGE_EAGER(tbat, appendix)
5: return SUCCESS

Once the TBAT is read, online merging is performed into a snapshot of the body. In

short, this approach merges the appendix in its entirety at once, and then the merged

snapshot replaces the original body in the TABT file.

4.3.2 Online Progressive Data Cleaning

Online progressive data cleaning, shown in Algorithm 3, is tailored for data intensive

scenarios where the entire appendix can not fit into memory. Naturally, in these

cases the eager approach cannot apply. The primary concept in the progressive data

cleaning approach is the appendix queue, each TBAT can contain more than one

appendix in this queue. The size of each appendix is titled the block size and the

administrator for the database must define each of these blocks. He/she must be

careful not to exceed the available memory on the system. The original appendix of

the TBAT file will be split into separate appendixes according to this specified block

size and this appendix que will be attached to the TBAT instead of a single appendix

like the eager approach.

In practice the progressive approach leverages the eager approach. During

17

the progressive data cleaning procedure each time an appendix is retrieved from the

appendix queue, in order to merge the split appendix with the snapshot of the body

the eager data cleaning approach is performed.

5 Offset B+ Tree

In “Hastening data retrieval on out-of-core column-store databases using offset B+

Tree” a new data structure was introduced. This new data structure is known as

the Offset B+ Tree or by its shorter title OB-tree and is a variant of a B+ Tree. The

OB-tree was developed specifically to work with the TBAT data structure and has

several unique and notable features that leverage the TBAT. Firstly the OB-tree has

a succinct data structure, this means that it can be easily adopted by existing column-

store databases. Secondly, the OB-tree’s index is sparse and only holds the updated

TBAT records, moreover the OB-tree can be stored in main memory or serialized on

the hard disk to be retrieved later. When the OB-tree is stored in main memory the

retrieval speed is orders of magnitude faster. Lastly, and most unique, the OB-tree

permits the storage of duplicated keys. Specifically the key in the OB-tree is the oid

in the TBAT [24].

18

5

3 7 9

1 2

21

3 4

43

5 6

65

7 8

87

9 10

N
U
L
L

1
09

(a) A Simplified OB-Tree Example

5

3 7 9

1 2

21
1

3 4

43

5 6

65

7 8

87

9 10

N
U
L
L

1
09

(1, 11)

(b) OB-Tree with Duplicate Keys Inserted

Figure 5: OB-Tree

5.1 OB-Tree Data Structure

In the OB-tree structure, shown in Figure 5(a) there are two categories of nodes,

internal and leaf nodes. The topmost node is the root node, but it is considered a

leaf node if the OB-tree has only one layer and an internal node if the OB-tree has

multiple layers. Every OB-tree has a parameter that determines the layout of each

and every node inside, this parameter is labeled n and is integrated in a few key ways.

• Each internal node will have space for n search keys, these search keys are the

oids from the TBAT. Moreover n + 1 pointers will be used to point to other

nodes in the tree to aid in quick traversal to adjacent nodes. At a minimum [(n

+ 1)/2] of the pointers are used. If the internal node is a root node it is only

required that at least 2 pointers are used regardless of n’s value.

• Each leaf node has enough space allocated for n search keys. Although among

the n + 1 node space only a single allocation is used to point to the next leaf

node in the sequence. This pointer allocation is the right-most node and all of

19

the other n unites to the left of this pointer are reserved space for the OB-tree’s

special offset value, which is used to point to the location of the updated record

in the TBAT’s appendix.

• The method of assignment of each oid to each node is the same as in a B+

Tree. First a search is performed to determine the node that the oid should be

inserted into, if the node is not full add the oid, if the node is full split the node

and allocate a new leaf node filling it with half of the previous node’s oids. The

final step is the insertion of the new oid.

An offset in the OB-tree is a scalar recording of the relative location of an

updated record inside an appendix that has been appended to the end of the body

of the TBAT. Safely, we can assume that the number of lines of the body is lb and

the number of lines of the appendix is la. For any given record located at the kth

line, 1 ≤ k ≤ la of the appendix, the offset associated with this updated record is k.

Naturally the updated record with offset k is located at the offset plus the length of

the TBAT body, in other words (la + k)th line of the TBAT.

It is important to note that the space cost of the offset is relatively smaller

than that of a pointer in a traditional operating system, think of the offset as a

simplified method of eliminating pointers. Since pointers can occupy additional spaces

inside any B+ Tree, we use this scalar offset to replace most of the pointers at the

leaf nodes. The actual location of a record is calculated by the definition of offset

mentioned earlier, that is the length of the body plus the offset. The offset’s data

20

Algorithm 4 OB-Tree Loading on Cold Data
Input: tbat: TBAT file
Output: obtree: OB-tree
1: procedure OB-Tree-Load-Cold(tbat)
2: obtree = new root() . create a root node
3: file = tbat.open() . open the TBAT file
4: file.seekToAppendix() . seek to the appendix
5: offset=1
6: while file.next != EOF do
7: line = file.read_next_line()
8: oid = line.OID;
9: obtree.insert(oid, offset++)
10: file.close()
11: return obtree

type is user selectable, typically it’s chosen to be the same data type as the oid, that

is a 4 byte or 8 byte integer. With computing, space is always a concern, and in the

case of the offset this is taken into account. In order to save more space smaller bytes

of the integer data type may be used for the offset.

5.2 Bulk Loading OB-Tree

In order to load the TBAT appendix into the OB-tree bulk loading is necessary.

Bulk loading takes the oids and offsets from the TBAT appendix and loads them

into the OB-tree. Before this loading can occur the current state of the TBAT must

be determined, this will decide if the data is in “cold”, or “hot” condition, and will

determine the appropriate method of loading the data[24].

21

5.3 Bulk-Loading on Cold Data

If the appendix of the TBAT is not currently in use it is considered to be in “cold”

condition, at this point Algorithm 4 is used to load the OB-tree with the updated

records. Algorithm 4 reads from the appendix of the TBAT (remember, the appendix

of the TBAT starts from the first updated record directly under the TBAT body) and

it loads the oids and offsets into the OB-tree starting at one for the offset. Naturally

the offset increases by one for every oid insertion.

5.4 Bulk-Loading on Hot Data

Now that the procedure for loading a “cold” appendix has been explained, the next

procedure to examine is the loading of the OB-tree when the TBAT is currently in use,

or in “hot” condition. In this condition there is a high probability that a new update

will be inserted into the TBAT appendix. The loading solution for this instance is

the use of a hot-data buffer that acts as a temporary appendix for the new records

being loaded into the TBAT. In this hot condition the existing already loaded TBAT

appendix is considered to be “cold” and is loaded using Algorithm 4.

6 OB-Tree Selection

The OB-tree has the ability to perform two kinds of searching, ad-hoc and range

searching. Ad-hoc searching is when a single oid is given and the intention is to

22

Algorithm 5 TBAT Search with OB-Tree Index
Input: tbat: TBAT file, obtree: OB-tree, oid: OID
1: procedure TBAT-Search-OB(tbat, oid)
2: tbat.open()
3: offset = obtree.searchOffset(oid)
4: if offset != NOT_FOUND then
5: tbat.seek(num_of_lines_body+offset-1)
6: return tbat.readLine()
7: else
8: return tbat.binarySearchBody(offset)

return to the user the corresponding offset. With Range searching a range of oids

are given and the intention is to return the range of offsets corresponding to the oids.

It is important to note that for both searching types the OB-tree follows the same

methods, exactly like how a B+ Tree handles ad-hoc and range searches [24]. For

the best result with range searches it’s recommended that the oids are arranges into

ranges, this reduces search time on the OB-tree and read time on the TBAT file.

6.1 TBAT Search Using OB-Tree

Once an OB-tree is created it can be utilized to quickly search the corresponding

TBAT file, the procedure for doing so is straight forward. First a oid is selected, the

algorithm shown in Algorithm 5 searches the OB-tree to determine if the record with

the selected oid has been updated previously. If the oid is found in the OB-tree, then

an offset can be retrieved enabling the direct reading of the record in the appendix.

The calculation of the line number of the updated record in the appendix is calculated

as

23

target_line_number = num_of_lines_body + offset

num_of_lines_body is the representation of the total number of lines in the body of

the TBAT file, and the offset is used to determine how far into the appendix must be

searched to insert the record. It’s important to note that if the oid is found in the

OB-tree it means that it has already been updated. In this case the procedure is a

simple binary search conducted on the body of the TBAT.

7 Experiment Results

The architecture of the OB-tree allows it to be used as an index to increase selection

speeds when paired with the TBAT. It is expected that searching with an OB-Tree will

be more efficient than standard linear search through the appendix of the TBAT. The

experiments simulate three different selection techniques in order to compare selection

on a TBAT file’s appendix using a linear search, selection on a TBAT utilizing an

OB-tree and traditional selection on a BAT after it’s been updated. The experiments

were executed using Java code and shell script, and the log files of all of the data

presented in this work can be found in my BitBucket repository 1.

1https://bitbucket.org/tjmatacic/column-store-tbat-2016

24

https://bitbucket.org/tjmatacic/column-store-tbat-2016

Figure 6: OB-Tree Creation Time 10000 Record Dataset

7.1 Creation time OB-Tree

Before examining the results of the selection experiments, it would be appropriate

to showcase the impressively fast creation time of the OB-trees themselves. Figure 6

depicts the OB-tree creation time on the 10000 record dataset. The fastest creation

time is an incredible 0.002 seconds occurring on 2%, 3%, 4% and 5% updates. The

slowest creation time is 0.021 seconds and the mean creation time is 0.0048 seconds.

Figure 7 depicts the OB-tree creation time on the 10MB dataset. The fastest

creation time was on the 1% update and it clocked in at a mere 0.066 seconds, the

mean creation time is 0.7282 seconds, and the slowest time is 1.743 seconds.

Figure 8, the final figure for OB-tree creation time, depicts creation time

on a 64MB dataset. Even though this dataset is significantly larger than the 10MB

dataset its OB-tree creation time is impressive. The fastest being 2.582 seconds, the

25

Figure 7: OB-Tree Creation Time 10MB Dataset

Figure 8: OB-Tree Creation Time 64MB Dataset

26

Figure 9: Selection Speed Experiment 10000 Record Dataset 10% Selection

slowest being 21.657 seconds and the mean is 11.70702 seconds.

7.2 Tests of Searches on TBAT and BAT

The selection experiment is conducted on a Ubuntu Linux 16.04 release virtual ma-

chine created on a Dell PowerEdge T630 in the “Sarah Cloud” of the YSU Data

Lab. The experiment times are recorded in wall time for accuracy. The preliminary

experiment is conducted on a 10,000 record dataset, and tested the selection time

on 10% of the original created records. Figure 9 shows the results of these selection

types. The figure is grouped by selection type and update percentage from 1% to

5%. The mean selection time for the TBAT with OB-tree index is 0.17008 seconds,

the mean selection time for the TBAT without an OB-tree index is 0.61288 seconds,

and the mean time for the fully updated BAT using the traditional method is 0.12172

27

Figure 10: Selection Speed 10000 Record Dataset OB-Tree Index and BAT 10%
Selection

seconds. This result clearly shows that the TBAT utilizing the OB-tree index is more

than three times as fast as the TBAT utilizing the traditional oid search.

If we look closely at Figure 10 we can clearly see that the range from the

upper quartile to the lower quartile is very small for the OB-tree search. Moreover

as the selection percentages increase the performance of the OB-tree indexed TBAT

stays consistent. Mean time for 1% selection is 0.194, for 2% is 0.171, for 3% is 0.163

seconds, for 4% is 0.161 seconds and finally for 5% is 0.160 seconds. This demonstrates

the reliability and consistency of the OB-tree search. What performance does the OB-

tree demonstrate when a larger dataset with the addition of a 20% selection percentage

is experimented on?

In Figure 11 the selection experiment is conducted on a 10MB dataset, to

retain consistency the update percentages were 1%, 2%, 3%, 4%, and 5% the same as

28

Figure 11: Selection Speed 10MB Dataset

Figure 12: Selection Speed 10MB Dataset OB-Tree Index and BAT 10% Selection

29

Figure 13: Selection Speed 10MB Dataset OB-Tree Index and BAT 20% Selection

the 10,000 record experiment. Both 10% and 20% selection percentage results were

aggregated together for readability (the next figures examine both update percentages

separately and in greater detail). The performance gap between the TBAT with an

OB-tree index and a TBAT without an index becomes apparent with this larger

dataset. The mean selection time for the TBAT with OB-tree index is 15.32 seconds,

the mean selection time for the TBAT without an OB-tree index is 1002.58 seconds,

and the mean time for the updated BAT is 9.94 seconds. This clearly demonstrates

how quickly the performance gap widens between the TBAT using the OB-tree index

and the TBAT without the index.

For greater clarity on the 10MB selection experiment Figures 12 and 13 are

included to show the separate performance of the OB-tree indexed TBAT on 10%

selection and 20% selection. The slowest search with the TBAT utilizing the OB-tree

index is a mere 23.257 seconds, and the fastest search is 9.442 seconds. In great

30

Figure 14: Selection Speed 64MB Dataset

contrast, the fastest search on the un-indexed TBAT utilizing the traditional linear

search is 546.248 seconds, this means that the OB-tree indexed TBAT is more than

50 times faster than the un-indexed linear search.

In Figure 14 the final selection experiment is conducted on a 64MB dataset.

This dataset size was chosen in order to mimic a data block in the Hadoop framework,

the gold standard for processing large stores of data. Like the previous tests, this

figure shows the aggregated selection percentages for 10% and 20%, and the update

percentages were 1%, 2%, 3%, 4%, and 5%, the results are impressive. The aggregated

mean selection time for the TBAT with OB-tree index is 121.8882 seconds, the mean

selection time for the TBAT without an OB-tree index is 39968.18 seconds, and

the mean selection time for the fully updated BAT using the traditional method is

72.27496 seconds. This impressive performance shows that the TBAT utilizing the

OB-tree index is exponentially faster than the TBAT without the index, moreover

31

Figure 15: Selection Speed 64MB Dataset OB-Tree Index and BAT 10% Selection

Figure 16: Selection Speed 64MB Dataset OB-Tree Index and BAT 20% Selection

32

Table 1: Mean Selection Times (s) For TBAT, TBAT with OB-Tree and BAT

Dataset Selection (%) TBAT TBAT with OB-Tree BAT
10000 Records 10% 0.61288 0.17088 0.12172
10MB 10% 670.0837 10.12456 6.59756
10MB 20% 1335.094 20.53524 13.2966
64MB 10% 26671.67 82.41064 48.16828
64MB 20% 53264.7 161.3658 96.38164

the OB-tree indexed TBAT retains the impressive consistency that it showed in the

previous 10000 record test with mean selection times ranging from 128.30 to 116.54,

a range of no more than 8 seconds.

A closer look at Figures 15 and 16 demonstrates the continued impressive

performance of the OB-tree index. Between 10% and 20% selection percentages the

fastest OB-tree indexed selection time is 78.611 seconds and the slowest is 170.722

seconds. These results are striking considering the volume of data the OB-tree suc-

cessfully searched. In continuing the consistency trend of the OB-tree, the 20% selec-

tion results showed no outliers. This final experiment truly shows the lightning fast

selection speed of the OB-tree indexed TBAT, the fastest TBAT search without the

OB-tree index on the 64MB dataset is 22169.63 seconds, meaning that the OB-tree

indexed TBAT is an incredible 282.01 times faster than the un-indexed sequential

search.

As a summary all of the mean selection times of the selection experiments

have been included in Table 1 and separated by dataset, selection percentage, and

selection type. By examining the table we can clearly see that the OB-tree indexed

TBAT is orders of magnitude faster than the un-indexed TBAT. Even though the

33

BAT was sorted and searched using a binary search, it was only marginally faster

than the OB-tree, an amazing feat considering the unsorted nature of the data the

OB-tree was tasked to search.

8 Conclusion and Future Works

In this work, we proposed a novel index, called Offset B+ Tree (OB-Tree), on column-

store databases based on the Timestamped Binary Association Table (TBAT) storage

model. OB-tree is a succinct index structure that works well on TBAT data with many

updated records. It was shown that the selection speed on a TBAT with an OB-tree

index is significantly improved to exponentially faster than TBAT selection without

an OB-tree index. In addition, without the need of time-consuming data cleaning

process, the selection speed on TBAT with an OB-tree index is nearly the same as

the selection speed on a cleaned Binary Association Table (BAT). Future work will

expand upon the generalization of OB-tree for more functionalists on TBAT, such

their use with data cleaning. We will also investigate the application of the OB-tree

on big data and methodologies to increase in the speed of OB-tree creation.

34

References

[1] Abadi, D., Boncz, P., and Harizopoulos, S. Column-oriented database

systems. Proceedings of the VLDB Endowment (2009), 1664–1665.

[2] Abadi, D., Boncz, P., Harizopoulos, S., Idreos, S., and Madden, S.

The design and implementation of modern column-oriented database systems.

Foundations and Trends Vol. 5, No. 3 (2012), 197–280.

[3] Abadi, D., Madden, S., and Ferreira, M. Integrating compression and

execution in column-oriented database systems. SIGMOD ’06 (2006), 671–682.

[4] Abadi, D., Madden, S., and Hachem, N. Column-stores vs. row-stores:

how different are they really? SIGMOD ’08 (2008), 967–980.

[5] Abadi, D. J. Query execution in column-oriented database systems. PhD thesis,

Massachusetts Institute of Technology, 2008.

[6] Ailamaki, A., DeWitt, D., and Hill, M. Data page layouts for relational

databases on deep memory hierarchies. VLDB Best papers (2001).

[7] Ailamaki, A., DeWitt, D. J., Hill, M. D., and Skounakis, M. Weaving

relations for cache performance. In VLDB (2001), vol. 1, pp. 169–180.

[8] Carstoiu, D., Lepadatu, E., and Gaspar, M. Hbase-non sql database,

performances evaluation. In in Computer Science (1986), Master in Computer

Science (1990), and PhD in Computer Science (2010), Citeseer.

35

[9] Copeland, G., and Khoshafian, S. A decomposition storage model. SIG-

MOD ’85 Proceedings of the 1985 ACM SIGMOD international conference on

Management of data (1985), 268–279.

[10] Copeland, G., Khoshafian, S., Jagodits, T., Boral, H., and Val-

duriez, P. A query processing strategy for the decomposed storage model.

IEEE (1987).

[11] Ferreira, M. C. Compression and query execution within column oriented

databases. PhD thesis, Massachusetts Institute of Technology, 2005.

[12] George, L. HBase: The Definitive Guide. O’Reilly Media Inc., 2011.

[13] Harizopoulos, S., Liang, V., Abadi, D., and Madden, S. Performance

tradeoffs in read-optimized databases. VLDB ’06 Proceedings of the 32nd inter-

national conference on Very large data bases (2006).

[14] Inkster, D., Zukowski, M., and Boncz, P. Integration of vectorwise with

ingres. ACM SIGMOD Record 40, 3 (2011), 45–53.

[15] Krueger, J., Grund, M., Tinnefeld, C., Plattner, H., and Zeier,

Alexander Faerber, F. Optimizing write performance for read optimized

databases. Lecture Notes in Computer Science (2010), 291–305.

[16] Lamb, A., Fuller, M., Varadarajan, R., Tran, N., Vandiver, B.,

Doshi, L., and Bear, C. The vertica analytic database: C-store 7 years later.

Proceedings of the VLDB Endowment 5, 12 (2012), 1790–1801.

36

[17] StoneBracker, M., Abadi, D., Batkin, A., Chen, X., Cherniack, M.,

Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P.,

Rasin, A., Tran, N., and Zdonik, S. C-store: a column-oriented dbms.

VLDB (2005), 553–564.

[18] Tsirogiannis, D., Harizopoulos, S., Shah, M., Wiener, J., and

Graefe, G. Query processing techniques for solid state drives. SIGMOD (2009),

59–72.

[19] Vora, M. N. Hadoop-hbase for large-scale data. In Computer science and

network technology (ICCSNT), 2011 international conference on (2011), vol. 1,

IEEE, pp. 601–605.

[20] Watson, V. Run-length encoding, May 10 2002. US Patent App. 10/143,542.

[21] Yaman, S. Introduction to column-oriented database systems (nov 2012).

[22] Yu, F., and Hou, W.-C. A framework of write optimization on read-optimized

out-of-core column-store databases. 6th International Conference, DEXA 2015

(2015), 155–169.

[23] Yu, F., Hou, W.-C., Luo, C., and Jones, E. Asynchronous update on

out-of-core column-store databases utilizing the timestamped binary association

table. CAINE-2014 (2014), 215–221.

[24] Yu, F., and Jones, E. Hastening data retrieval on out-of-core column-store

databases using offset b+-tree. Proc. CAINE’15 (2015), 313–318.

37

[25] Yu, F., Matacic, T., Xiong, W., Hamdi, M. A., and Hou, W.-C. Data

cleaning in out-of-core column-store databases: An index-based approach. IKE

(2016), 16–22.

[26] Zukowski, M., and Boncz, P. From x100 to vectorwise: Opportunities,

challenges and things most researchers do not think about. In Proceedings of the

2012 ACM SIGMOD International Conference on Management of Data (2012),

ACM, pp. 861–862.

[27] Zukowski, M., van de Wiel, M., and Boncz, P. Vectorwise: A vector-

ized analytical dbms. Data Engineering (ICDE), 2012 IEEE 28th International

Conference (2012).

38

	Introduction
	Background of Column-Store Databases
	Timestamped BAT
	AOC Update
	AOC Update Example

	Selection Speed Degradation after AOC Updates
	Data Cleaning
	Offline Data Cleaning
	Online Data Cleaning
	Online Eager Data Cleaning
	Online Progressive Data Cleaning

	Offset B+ Tree
	OB-Tree Data Structure
	Bulk Loading OB-Tree
	Bulk-Loading on Cold Data
	Bulk-Loading on Hot Data

	OB-Tree Selection
	TBAT Search Using OB-Tree

	Experiment Results
	Creation time OB-Tree
	Tests of Searches on TBAT and BAT

	Conclusion and Future Works

		2017-01-11T13:36:22-0500
	College of Graduate Studies

