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ABSTRACT 

There is a widespread concern that climate change will lead to an increased frequency and 

intensity of extreme weather events in the 21st century. It is essential, from a watershed 

management point of view to understand how these alterations in the hydrologic regime 

would affect the existing water resources. This research, therefore, provides an overview 

of the hydrologic impacts on the Great Miami River Watershed in Ohio, USA due to 

projected climatic changes on both low flows and high flows. An extensively used 

hydrological model, the Soil and Water Assessment Tool (SWAT) was to evaluate the 

hydrological impacts of climate change. The multi-site model calibration and validation 

were performed using the SUFI-2 algorithm within SWAT-CUP. The model was calibrated 

(2005 - 2014) and validated (1995 - 2004) for monthly stream flows at the outlet resulting 

in Nash - Sutcliffe Coefficients of 0.86 and 0.83, respectively. An ensemble of ten 

downscaled and bias-corrected climate models from Fifth Phase Coupled Model 

Intercomparison Project (CMIP5) under two Representative Concentration Pathways 

(RCPs) 4.5 and 8.5 were used to generate a probable set of climate data (precipitation and 

temperature). The climate data were then fed into the SWAT model and hydrological 

changes in the stream in terms of daily discharge were produced for three time-frames: 

(2016 - 2043) as 2035s, (2044 - 2071) as 2055s, and (2072 - 99) as 2085s and compared 

against the baseline period (1988 - 2015). 

The findings from this research showed that low flows using both hydrological and 

biological indices would increase more than 100% in 2035s but eventually decrease 

slightly in the later part of the century (2085s). However, the Max Planck Institute Earth 

System Model (MPI-ESM-LR) used in this study predicted that the biological indices 
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under RCP 8.5 would increase slightly at the beginning but decrease considerably in the 

middle and later part of the century. Analysis showed that the variability of the average 7-

day low flows in each year would increase considerably for both emission scenarios. 

Furthermore, 75th percentile exceedance frequency of monthly low flows was found higher 

in September, October, and November during the study period. 

As for high flow analysis, the hydrological index for high flows (7Q10) from an ensemble 

of 10 climate models predicted to decrease consistently in future. When the results from 

the two RCPs are compared, high flows would decrease maximum by 22% in 2055s under 

RCP 8.5 and 21% in 2085s under RCP 4.5. However, the MIROC5 model in RCP 4.5 

showed 1.2% increase in 7Q10 high flows during 2035s. The frequency of the 75th 

percentile non-exceedance flows was also projected to increase in the future. Under the 

RCP 4.5, the frequency becomes higher in 2055s whereas under the RCP 8.5 most frequent 

75th percentile flow would occur in 2085s. Meanwhile, on a monthly scale, the peak would 

increase more on every month except January and December than that of historical records. 

The variability of peak discharge was also expected to increase in every other month in 

both scenarios. The peak would increase considerably especially in August, September, 

and October when compared to historical months, indicating relatively wetter months in 

the future years. Finally, this study has demonstrated the effects of changing climates 

projected by the climate models on extreme flow condition in the large agricultural 

watershed. The next step of the research will focus on further bias correction on simulated 

climate data and analysis for future. 

Keywords: Climate Change, Greenhouse Gas Emission Scenarios, CMIP5 Climate 

Models, Low flows, High flows, SWAT, and Great Miami River Watershed 
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Chapter 1. Introduction 

Over the past few decades, climate change has emerged as one of the leading global 

concerns for sustainable management of natural resources. The Earth’s average surface 

temperatures are expected to rise continuously that could bring major alteration in 

hydrologic as well as energy cycles (IPCC, 2001). More than 97 percent of climate 

scientists agree that anthropogenic greenhouse gas emissions contribute to climate change 

and global warming (Oreskes, 2004). However, there are still plenty of uncertainties 

regarding the identification of the causes of climate change and especially about its future 

implications (McCarthy et al., 2001). Based on the research conducted by the climate 

scientists involved in the Intergovernmental Panel on Climate Change (IPCC), the key 

impacts of climate change on the hydrologic cycle include changing precipitation patterns, 

increased the occurrence of extreme weather events, frequent flooding, intense droughts, 

and desertification (IPCC, 2007). 

Past studies have suggested that streams would exhibit higher flows during extreme storms 

events and smaller base flows during droughts caused by climate change. This is because 

warmer air can hold more water vapor and tends to accelerate water movement in the 

atmosphere leading to intensification of precipitation and causing increased surface runoff 

and soil saturation (Huntington, 2006). On the other hand, droughts could become more 

severe in regions that may realize an increase in precipitation. In a warmer climate, 

increased evaporation from soils and evapotranspiration from plants can potentially lead to 

rapid drying of existing soil layers and offset any additional rainfall from the surface 

(Sheffield et al., 2012). 
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Climate researchers around the world have attempted to illustrate the connection between 

extreme events and climate change with the help of Global Circulation Models (GCMs). 

These models are constructed based on the physical processes that involve atmosphere, 

ocean, and land surface in order to provide consistent estimates of climate change 

throughout the planet (Cubasch et al., 1990). Thousands of peer-reviewed papers have been 

published about model-based studies. However, due to lack of proper understanding of the 

exact processes within climate models, a number of uncertainties exist in estimating future 

atmospheric conditions (Refsgaard et al., 2007). In order to cope with such uncertainties, a 

new set of GCMs has been generated by the World Climate Research Program (WCRP), 

known as Coupled Model Inter-comparison Project phase five (CMIP5) (Taylor et al., 

2012). The CMIP5 models include simulations of 20th century climate, and projection of 

21st century climate under different greenhouse gas emission scenarios known as 

Representative Concentration Pathways (RCPs) (Moss et al., 2010). 

In addition to climate models, hydrologic models are also important components for 

assessment of climate change effects on water resources. These hydrologic models are 

generally combined with climate models to simulate hydrologic processes. One of the 

widely accepted hydrological models for climate impact analysis is the Soil and Water 

Assessment Tool (SWAT). The SWAT model incorporates different climatic components 

such as precipitation, temperature, CO2 concentration, and relative humidity.  

The overall purpose of this study is to evaluate the impacts of climate change on extreme 

hydrologic regime using downscaled climate models under different greenhouse gas 

emission scenarios. Both the SWAT model and the CMIP5 climate models will be used to 
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examine the effects of climate change on stream flows in the Great Miami River 

Watershed. 

Scope and Objectives 

An intensifying water cycle due to climate change can potentially alter the hydrological 

regime especially during extreme low and peak flow events. Hydrologists and engineers 

should, therefore, have a good understanding of stream flows within a watershed. Stream 

low flows could change the chemical, physical and biological processes within the 

watershed environment, which can degrade the water quality and cause considerable harm 

to aquatic life. Moreover, the National Pollutant Discharge Elimination System (NPDES) 

uses the low flows primarily estimated based on the hydrological and biological design 

flow conditions (7Q10, 1Q10, 4B3, and 4B1) using historical data.  

Almost 40 percent of the streams in the Great Miami River Watershed are below the water 

quality standards even though many of the point sources discharged to a section of the 

rivers meets the water quality standards (MCD, 2017). The pollution problems in these 

streams are primarily nonpoint sources from upstream agricultural runoff. 

Furthermore, intense precipitation would increase the rate of runoff, subsequently cause 

frequent floods and increase the risk of property losses to the affected areas (Pathak, 2016). 

In addition, streams monitoring during the high flows period is essential because of the 

high pollutant concentration from non-point sources that become more predominant during 

these periods.  
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The climate change, streamflow, and water quality in every watershed are interlinked. This 

study focuses on utilizing climate change models to simulate future flows for the 21st 

century to analyze flow patterns specifically during extreme flow events such as low and 

high flows. Although quantitative results from this study may be represented for this 

particular watershed only, the relevant knowledge about the watershed process and its 

response to different climate change models can be shared and compared with other 

watershed studies throughout the world. 

The specific research objectives of this study are: 

1. To assess the potential impact of climate change on low flows during the 21st 

century; 

2. To assess the potential impact of climate change on high flows during the 21st 

century. 

To accomplish these objectives, the following tasks were completed: 1) Delineate land 

catchment, stream segments, and reservoirs for the Great Miami River Watershed; 2) 

Prepare the necessary input data for SWAT simulation, such as meteorological data 

(precipitation and temperature), soil, land use, reservoir and point source data; 3) Simulate 

flow, calibrate and validate the model using United States Geological Survey (USGS) 

streamflow records; 4) Download the bias corrected and fine downscaled CMIP5 climate 

model; 5) Select top 10 models based on the correlation (R2) with the observed 

precipitation in the watershed; 6) Develop future climate scenarios from selected models 

under two emission scenarios from 2016 to 2099; 7) Run the SWAT simulations for three 

allotted future period of 2035s (2016 - 2043), 2055s (2044 - 2071), and 2085s (2072 - 2099) 
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to simulate flow based on downscaled climate scenarios; 8) Analyze future flows from 

each scenario in terms of low flows and high flows; and 9) Compare the simulated results 

with the historical data (1988 - 2015). 

Thesis Structure 

This thesis is divided into four chapters. Chapter 1 covers the background, scope, 

objectives, and overall thesis organization. Next two chapters are organized in journal 

paper format; therefore, readers may find some repetition in the content. 

Chapter 2 documents the process involved during SWAT model development of the Great 

Miami River Watershed, which includes delineation, preparation of input data, calibration 

and validation of the model. In addition, generation of climate data from various general 

climate models, which represents the climate change in the watershed, is also discussed in 

this chapter. Different regulatory low flows criteria including hydrological and biological 

low flows statistics are estimated for future (2016 - 2099) and compared with the 

historically observed flow condition (1988 - 2015). 

In Chapter 3, the SWAT model and climate data from different CMIP5 models developed 

in Chapter 2 are used to assess the potential impact of climate change on the high flows of 

the stream. This chapter simply discusses the possible change in high flow frequency and 

magnitude in the watershed. The study periods established for the low flows analysis are 

also used for the study of high flows and compared with same period of historical records. 

Lastly, Chapter 4 summarizes the project accomplishment against the set objectives. This 

chapter also outlines some recommendation for future exploration.  
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Chapter 2. Impact of Global Climate Change on Low Flows: A Case Study of the 

Great Miami River Watershed 

Abstract 

Several studies have indicated that climate change will profoundly affect hydrological 

processes at various temporal and spatial scales. Since climate has the capacity to change 

stream flow regimes, the regulatory low flows criteria for waste load allocation and point 

source permitting needs to be reviewed. This study aims to assess the alteration of water 

resource availability and low flows frequencies driven by the changing climates in different 

time periods of the 21st century. In addition, this analysis evaluates the adaptability of 

prevailing Global Circulation Models (GCMs) through flow regimes in channels. The 

study was conducted in the Great Miami River Watershed, Ohio by analyzing historical 

and future low flows using climate model outputs and the Soil and Water Assessment Tool 

(SWAT). The climate change scenarios from ten downscaled CMIP5 climate models, each 

one under two emission scenarios, “Representative Concentration Pathways”, RCP 4.5 and 

RCP 8.5, were selected based on the correlation of daily precipitation with the observed 

records and model outputs. The streamflow for three future periods: 2016 - 2043, 2044 - 

2071 and 2072 - 2099 (2035s, 2055s, and 2085s, respectively) were independently 

analyzed using each climate model and compared with a baseline condition (1988 - 2015). 

The output from ten climate models projected that low flows in the Great Miami River 

would increase significantly in the 21st century for both scenarios. The average 7-day low 

flows have a two-fold increase during 2035s but decrease slightly during 2085s. This trend 

was also consistent for both hydrological and biological low flows statistics 7Q10, 1Q10 

and 4B3, 1B3, respectively. The large increase in low flows could be caused by the high 
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variability in precipitation that is projected by GCMs and the inadequacy of climate models 

to represent appropriately the uncertainties associated with extreme weather events. 

However, the MPI-ESM-LR model predicted more reliable and analogous low flows 

conditions. The model suggested that biologically based low flows statistics, 4B3, and 1B3 

would significantly decrease in the later part of the century (-41.6% and -36.1% 

respectively) under RCP 8.5 scenario, meanwhile the majority of the climate models 

showed a consistently increasing pattern. 

Keywords: Climate Change, Low Flows, SWAT, Climate Models, Great Miami River 

Watershed 
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Introduction 

Stream water quality is greatly affected by the low flows conditions in terms of dissolved 

oxygen (Haag et al., 2008), nutrient levels and the quality of aquatic habitat (Gibson et al., 

2000). Moreover, stream low flows might have detrimental implications on water supply, 

power generation, navigation, and waste load allocation (Kundzewicz et al., 2008; Moser 

et al., 2008; Saunders III et al., 2004). Therefore, understanding low flows events and its 

effects on river ecosystem are essential for effective and sustainable water resource 

management (Burn et al., 2008). Many factors including soil infiltration, catchment 

hydraulics, topography, vegetation types, evapotranspiration rates, and local climatic 

conditions have an influence on low flows regimes (Smakhtin, 2001). Likewise, 

anthropogenic activities may alter the above-mentioned factors and potentially influence 

the low flows conditions in a stream.  

The changing climate may lead to a more intensifying hydrological cycle (Lettenmaier et 

al., 2008) including an increase in inconsistent precipitation (Pathak et al., 2016), change 

in evaporation rates (Abtew et al., 2013) and early snowmelt. The Fifth Assessment Report 

(AR5) of the Intergovernmental Panel on Climate Change (IPCC, 2014) has estimated an 

increase in global temperature based on different emission scenarios over the 21st century. 

An increase in global temperature will enhance the rate of evapotranspiration and speed up 

the water cycle process. As a result, an uneven distribution of moisture in the atmosphere 

would take place leading to heavy precipitation in one region and an extreme drought in 

the other (Hayhoe et al., 2007). 
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Many research in the past have been conducted to comprehend streamflow variability due 

to climate change (Huang et al., 2013; Wilby et al., 2006; Vaze et al., 2010; Gain et al., 

2013). Most research scientists around the world have utilized the Global Circulation 

Models (GCMs) for regional climate simulations and their impacts under different global 

warming scenarios (IPCC, 2014). A number of climatic models and versions have been 

developed based on a variety of numerical techniques and parameterizations. However, 

many systematic biases exist in some of the models when compared to actual climatic 

conditions (Takle et al., 1999; Rinke et al., 2006). These biases considerably vary from one 

model to another, which generally limits the strengths and weaknesses of simulation. 

Therefore, it is crucial to validate the applicability of the outputs of these climatic models 

for regional hydrological impact analysis (Mohammed et al., 2015). 

A study by Middelkoop et al., 2001 on the Rhine River in Europe used two GCMs and 

predicted that low flows would occur more frequently and lasted longer during the summer 

period. In the same river, Shabalova et al., 2003 used a single climate model that revealed 

a tendency of increasing winter flows of 30% and decreasing summer flows of 30% in the 

21st century. Gunawardhan et al., 2012, in a study in Italy based on 10 GCMs, estimated 

that the magnitude of 7-day 10 years low flows (7Q10) increased by 25% during the winter 

season in the later part of the 21st century. 

Similarly, in the United States, a study by Small et al., 2006 in the Upper Mississippi and 

the Great Lakes river basins suggested that an increase in precipitation during the fall 

season resulted in an increase in the low flows. Albeit, some researchers have suggested 

that low flows would likely become more severe in the upcoming years due to climate 

change. Schoen et al., 2007, studied 160 watersheds of Mid-Atlantic region, showed a 
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decrease in the 7Q10 low flows during the 21st century. Similarly, Eheart et al., 1999 

estimated low flows such as 7Q10 and 1Q10 would decrease by 63% in a stream of the 

Midwestern United States due to 25% decrease in mean precipitation.  

Most of the studies in the past were based on previously established GCMs, derived from 

phase three of the Coupled Model Inter-comparison Project (CMIP3). Advancing low 

flows science in a changing climate could not be successfully assessed without considering 

recent climate models and emission scenarios (Pal et al., 2015). Therefore, in this study, 

recently published CMIP5 model outputs and updated greenhouse gas emission scenarios 

are used to assess the impacts of climate change on stream low flows in the Great Miami 

River Watershed. In addition, an appropriate hydrologic model is necessary to link climate 

change outputs and water yields (daily discharge) in the watershed (Jothityangkoon et al., 

2001). A widely used Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) were 

prepared and utilized for this analysis. The results from this study would be beneficial for 

policymakers and water resource engineers in developing sustainable management of water 

resources and strategies to combat the hydrological effects of climate change. 

Theoretical Description  

CMIP5 Model 

The impacts of climate change on hydrologic regimes requires inputs from meteorological 

variables such as temperature and precipitation. These variables are mainly generated from 

climatic models, which have been known to provide acceptable results (Wilby et al., 2006) 

despite the existence of uncertainties (Jenkins et al., 2003). In recent years, the fifth phase 

of the Coupled Model Intercomparison Project (CMIP5) has incorporated new GCMs that 
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have been extensively used for impact assessment due to climate change (Taylor et al., 

2012). These newly disseminated models have more comprehensive greenhouse-gas 

emission scenarios and include finer spatial resolution of 1/8° latitude-longitude (12 km by 

12 km) (Meehl et al., 2014). 

Based on the greenhouse gas emissions including mitigation measures, the atmospheric 

concentration of air pollutants and land use, four Representative Concentration Pathways 

(RCPs), which are RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, were developed to assess 

their impacts on climate change (Moss et al., 2010). Among the four scenarios, RCP 2.6 is 

the most stringent mitigation scenario and targets to balance global warming below 2⁰C 

from pre-industrial temperature (before 1750). On the other hand, RCP 8.5 scenario has 

very high greenhouse gas emissions resulting from limited additional efforts to constrain 

emissions, while RCP 4.5 and RCP 6.0 are two intermediate scenarios (IPCC, 2014). 

SWAT Model 

Soil and Water Assessment Tool (SWAT) is a widely accepted watershed model especially 

suited for forested and agricultural watersheds (Borah et al., 2003). SWAT is a process-

based and semi-distributed hydrologic simulation model developed by United States 

Department of Agriculture (USDA) in the 1990s. The SWAT model uses the following 

water balance equation (1) to simulate the streamflow (Neitsch et al., 2011). 

SWt = SWo+ � �Rday- Qsurf - ETi- Wseepi - Qgw�
t

i =1
    (1) 

SWt and SWo are soil water contents at the end and the start of the day (mm H2O). Rday and 

Qsurf are rainfall amounts and surface runoff in mm H2O. ETi and Wseepi are the amounts of 
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evapotranspiration and water in the vadose zone. Lastly, Qgw represents the return flow 

(mm H2O). 

The SWAT model consists of two hydrological parts: i) land phase of the hydrological 

cycle, and ii) routing of runoff through the reaches. In land phase modeling, the river basin 

is partitioned into multiple sub-basins consisting of one or more Hydrological Response 

Units (HRUs), an area that consists similar amount of land cover, soil types, and slopes. 

Calculation of water balance is subsequently accomplished for additional HRUs within 

each sub-basin. In SWAT, different sub-basin outlets are connected together by stream 

networks and the routing phase determines the flow of water through those networks. 

The SWAT model uses either the Curve Number (CN) method or the Green and Ampt 

infiltration method to calculate the total volume of runoff. While the CN method is lumped 

over time and used when precipitation data is provided in daily time steps (Johnson, 1998), 

the Green and Ampt method require input data at sub-daily time resolution. 

Materials and Methods 

Study Area 

The Great Miami River watershed is one of the major sub-basins of the Ohio River, located 

in southwestern Ohio (Figure 2.1). The watershed covers an area approximately 3,870 

square miles, which includes fifteen counties in Ohio and four counties in Indiana. The 

watershed lies between latitudes 39º8'43.67" N to 40º38'28.27" N and longitudes 

83º33'0.67"W to 84º54'25.77"W. Similarly, the elevation of the watershed ranges from 459 

ft to 1545 ft with an average of 981 ft above the mean sea level. 
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The distribution of land uses in this watershed includes agriculture (70%), residential, 

commercial and industrial (18%), forests (11%), and water bodies and wetlands (1%). 

Major wastewater treatment facilities and industries are located along the downstream 

reaches of the Great Miami River (Figure 2.1), thus compromising the water quality of the 

river during the dry periods. 

The Great Miami River watershed has four major river sub-basins: Upper Great Miami, 

Mad River, Stillwater River, and the Lower Great Miami River. These sub-basins contain 

numerous tributaries that create a number of smaller sub-basins. Highly productive sand 

and gravel aquifers, known as buried valley aquifers, are the main features of the 

watershed. These aquifers are the primary sources of groundwater for adjoining river 

channels. As a result, some of the rivers within the watershed are able to sustain flow even 

during periods of prolonged drought. 

SWAT Model Inputs 

The data required for the SWAT modeling include a Digital Elevation Model (DEM), land 

use, soils, climate data, reservoir and point sources information. A DEM contains all the 

information about watershed terrain and streams networks. Several 30 m resolution DEMs 

were downloaded from the USGS National Elevation Dataset (NED) and mosaicked 

together to cover the entire watershed. This DEM was utilized to delineate the watershed 

and created 144 sub-basins. Similarly, the most recently available land use dataset was 

acquired from the National Land Cover Dataset (NLCD). The distribution of land use in 

the watershed is presented in Table 2.1. As for the soil data, the State Soil Geographic 

(STATSGO) and Soil Survey Geographic (SSURGO) are the two commonly used 
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databases. Since the watershed is relatively large and the SSURGO data is extremely 

detailed, the STATSGO soil data was downloaded from the USDA Geospatial Data 

Gateway to avoid computational complexity. The threshold values for land use (5%), soils 

(15%) and slope (15%) were subsequently used to generate 2676 HRUs. 

The climate data including precipitation, temperature, solar radiation, wind speed and 

relative humidity are essential for hydrological modeling. The SWAT model requires either 

a user defined weather data or simulated data from an inbuilt weather generator function 

(Winchell et al., 2013). In this study, historical weather dataset including precipitation, 

maximum and minimum temperature was downloaded from the National Climatic Data 

Center (NCDC). Nineteen precipitation stations and 10 temperature stations with 

continuous records for 36 years (1980 - 2015) were available within the watershed (Figure 

2.1). However, the remaining climatic datasets were simulated using the weather generator 

function in the SWAT model. Since reservoirs and dams are used for water storage and 

flood control, 3 major reservoirs and 5 relatively large dams were incorporated into the 

model during the watershed delineation process (Figure 2.1). Useful information and data 

related to these reservoirs and dams were obtained from the Miami Conservancy District 

(MCD) and the United States Army Corps of Engineers (USACE) (Table 2.2). In addition, 

28 major point sources including wastewater treatment facilities and industries (Table 2.3) 

that discharge effluents greater than 0.5 million gallons per day were downloaded from the 

Ohio Environmental Protection Agency (OEPA) and incorporated in the modeling process. 

  



 

17 
 

Model Setup, Calibration, and Validation 

The SWAT Model was set up and run from 1988 to 2015 in daily time steps using a 3-year 

warm up period (1985 - 1987).  The model was calibrated by using observed streamflow 

from 2005 to 2014 at 9 USGS gauge stations located within the watershed (Figure 2.1). 

Both manual and automatic parameter optimization procedures were utilized in model 

calibration. The automatic multi-site model calibration and sensitivity analysis were 

performed by the help of Swat Calibration and Uncertainty Program (SWAT-CUP) 

(Abbaspour, 2007). In SWAT-CUP, a semi-automatic inverse modeling procedure 

algorithm known as Sequential Uncertainty Fitting version 2 (SUFI-2) was selected in 

order to find the most favorable model parameters. Manual calibration was also performed 

after automated calibration to fine-tune the calibration parameters. Twenty different 

parameters shown in Table 2.4 were chosen based on the similarity of past studies (Sharma 

et al., 2015). These model parameters were then independently validated using observed 

streamflow data from 1995 to 2004 in the respective locations. 

Model Evaluation Criteria 

The performance of the SWAT model was evaluated through certain statistical criteria such 

as Nash - Sutcliffe Efficiency (NSE), Coefficient of Determination (R2), Percentage Bias 

(PBIAS), and Root Mean Square Error (RMSE) - observations standard deviation ratio 

(RSR). These indicators are mathematically represented by equations (2) through (5). 

NSE = 1- �
� �Yi

obs-Yi
sim�

n

i=1

2

� �Yi
obs-Ymean�

n

i=1

2
 
�        (2) 
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R2 = �
� �Yi

obs-Yobs
mean��Yi

sim-Ysim
mean�

n

i=1

�� �Yi
obs-Yobs

mean�
2n

i=1
� �Yi

sim-Ysim
mean�

2n

i=1
�
0.5�

2

      (3) 

PBIAS = �
 � �Yi

obs-Yi
sim� 

n

i=1
X 100

� �Yi
obs�

n

i=1

�       (4) 

RSR = �
�∑ �Yi

obs-Yi
sim�

2n
i=1

�∑ �Yi
obs-Yobs

mean�
2n

i=1

�        (5) 

Here, “n” is the total number of observations and Yi
obs and Yi

sim  are the ith values of 

observed and simulated flows. Similarly, Yobs
mean and Ysim

mean are the mean of observed and 

simulated flows, respectively. 

NSE is commonly used to test the model performance whose values range from - ∞ to 1. 

A model is considered as good if its values range from 0.5 and 1 (Moriasi et al., 2007). The 

R2 represents the relationship of simulated data with observed. The values of R2 lies 

between 0 to 1 and value nearer to 1 shows a strong relationship. PBIAS indicates whether 

the simulated data is larger or smaller than the observed data. Simulated data having PBIAS 

value 0 is considered perfectly harmonizing with observed data while a positive or negative 

value represents the model underestimation or overestimation respectively. Similarly, RSR 

is defined as the ratio of RMSE and observations standard deviation. An RSR of 0 is 

considered a perfectly simulated model. 
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Future Climate Scenarios 

Precipitation and temperatures dataset from ten climate models under two forced GHGs 

emission scenarios, RCP 4.5 and RCP 8.5, were downloaded from the freely available 

downscaled CMIP5 climate projection archive (Brekke et al., 2013). This archive contains 

high-resolution translations of climate projections based on global climate projections from 

Coupled Model Intercomparison Project for the contiguous United States. Climate 

projections available in the archive were developed by using the daily Bias Correction 

Constructed Analogs (BCCA) downscaled technique (Maurer et al., 2008).  

In order to make a realistic comparison between simulated results versus observed data, 

projected precipitation and temperature dataset were segregated into three time intervals 

which were (2016 - 2043) as 2035s, (2044 - 2071) as 2055s, and (2072 - 2099) as 2085s 

having each of 28 years period. 

Low Flows Statistics  

Several methods have been developed to assess low flows regimes. The Frequency 

Duration Curve (FDC) is commonly used method to display the low flows (Smakhtin, 

2001). Other specific low flows indices used in the United States are hydrologically based 

low flows such as 7-day 10 years low flows (7Q10) and 1-day 10 year low flows (1Q10), 

which are defined as the lowest flows occurring 7 consecutive days and 1 day respectively 

with a recurrence interval of 10 years. The recurrence interval of a particular consecutive 

day low flows events was calculated by fitting the annual low flows series to a log-Pearson 

Type III distribution (Riggs, 1972). Another method used to examine low flows is a 

biologically based design flow, 1B3 (1-day 3 years) for criterion maximum concentration 
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and 4B3 (4-day 3 years) for criterion continuous concentration. Further literature on 

Criterion Maximum Concentration and Criterion Continuous Concentration can be found 

in Dilks et al., 1992 and Stephan et al., 1985. In this study, we used the DFLOW tool (US 

EPA, 2016) to calculate hydrologically and biologically based low flows indices by 

providing daily discharge simulated from ten climate models and observed records. Some 

other low flows indices used in this study were annual average 7-day low flows and 95th 

percentile low flow (Q95), which are generally used to assess the stream waste-load 

assimilative capacity (US EPA, 2016). 

Results and Discussions 

SWAT Model Performance 

The model performance was assessed based on daily and monthly flows at nine USGS 

gauge stations. Average monthly discharge from simulated vs observed flow during the 

calibration period (2005 - 2014) at the outlet gauge station (USGS 03274000) of the 

watershed are graphically plotted in Figure 2.2. Similarly, a comparison between simulated 

and observed flows during the validation period (1995 - 2004) is shown in Figure 2.3. 

Statistical indicators used to measure the performance of the model at different gauge 

stations in the watershed are given in Table 2.5. The performance indicators NSE, R2, 

PBIAS, and RSR for monthly flows at the outlet were 0.86, 0.89, 2.86%, and 0.38 

respectively during the calibration period. Similarly, the respective model indicators were 

0.83, 0.86, 0.82%, and 0.41 at the outlet during the validation period.  

The simulated peak flows during calibration (Figure 2.2) and validation (Figure 2.3) were 

slightly underestimated by the model perhaps due to the unequal distribution of 
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meteorological stations within the watershed. For example, the amount of precipitation 

simulated from SWAT could be slightly different from the actual precipitation in the basin. 

Nevertheless, according to the values of performance indicators, the calibrated model good 

to use for hydrological analysis (Moriasi et al., 2007). 

Climate Model Evaluation 

Since it was very tedious and time-consuming to utilize all downscaled climate models 

from CMIP5 for hydrologic assessment, we considered only 10 climate models, listed in 

Table 2.6 based on the performance of their daily precipitation with the observed data in 

the past. A continuous precipitation dataset from 1980 to 2015 at Dayton International 

Airport station (00093815) was used to compare the projected precipitation from the 19 

climate models with recorded precipitation for the same time period. Although the 

simulated daily precipitations performed poorly i.e. low R2, the average monthly 

precipitation performed much better. The 10 climate models that performed well in terms 

of R2 are presented in Table 2.7. 

Furthermore, the comparison among projected daily precipitations from the 10 climate 

models from the referenced time period with the observed precipitation of historical period 

was also inspected through box plots as shown in Figure 2.4. In the observed period, the 

variability of daily precipitation in the first two quartiles range (first and second) was found 

very narrow, indicating less variability of rainfall during the observed period. However, 

future precipitation from model simulations was found a comparatively high variability for 

the first and second interquartile range in each time span in future. Moreover, the median 



 

22 
 

of daily precipitation from each climate models for the three periods was projected to 

increase significantly than that of historical precipitation. 

Climate Change Impact on Streamflow 

Figure 2.5 shows the average annual streamflow in the Great Miami River from an 

ensemble of 10 climate models for RCP 4.5 and RCP 8.5. The annual flow was estimated 

to increase throughout the 21st century when compared with the historical data, which was 

true for both scenarios. However, the increasing trends were not consistent within each 

scenario. Under the RCP 4.5, average annual flow was estimated to increase by 21% in the 

first 28 years (2035s), followed by a 2% increase in 2055s and finally decrease by 4% in 

the late century (2085s). On the other hand, under RCP 8.5, the average annual flow was 

projected to increase by 21% in 2035s followed by a 2% decrease in 2055s and again 

increase of 1% in 2085s. 

Similarly, outputs from 10 climate models were aggregated for monthly scale as shown in 

Figure 2.6 (a) and (b) for both scenarios respectively. The flow pattern for each month was 

found to almost similar for both emission scenarios. However, when compared to the 

historical data, monthly flows were predicted to increase in all months except for March 

and April, where average flow decreased by a maximum of 14% in 2085s. A large increase 

in monthly flow during 2035s could be seen in August (114%), September (126%), October 

(80%) and November (65%) under the RCP 4.5 and 113%, 121%, 75%, and 61%, 

respectively for the same months under the RCP 8.5. However, in almost every month in 

the later part of the century, flows are expected to decrease in RCP 4.5 scenario but not in 

RCP 8.5. 
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Impacts on Low Flows 

The 7 consecutive days low flows simulated from an ensemble of 10 climate models under 

two emission scenarios are summarized in box plots (Figure 2.7). The future flows based 

on the average of 7-day low flows showed higher variability in each time span with larger 

interquartile ranges as compared to observed flow. Historical streamflow data suggested 

that the median of 7-day low flows was 641 cfs. While analyzing the output from climate 

models, 7-day low flows during the 21st century were predicted to increase more than 

100% and became 1421 cfs in 2035s. The box plots show that the median value of 7-day 

low flows in future would be the highest in 2055s for the both RCPs. Similarly, box plots 

in Figure 2.8 show the 7-day low flows from 10 individual climate models under both 

emission scenarios to illustrate the variation in low flows predictions from each model. 

Every single model showed a large and sudden increase in the 7-day low flows in the earlier 

part of the century, with a high degree of variability as compared to the historical data. 

However, the trend and the degree of variability was not consistent in all models. 

Furthermore, Figure 2.9 shows the flow duration curve of the average 7-day low flows 

from an ensemble of 10 climate models with the observed low flows data at the outlet of 

the watershed. From the flow duration curve, 95th percentile low flows (Q95) which 

exceeded 95% of the time during 28 years of each study period were found to increase by 

two folds in future simulation period under both emission scenarios.   

Hydrological and Biological Based Low Flows 

Hydrologically and biologically based low flows indices, (7Q10, 1Q10) and (4B3, 1B3) 

respectively are important indices for the water quality analysis. Figure 2.10 shows the 
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7Q10 from 10 different models and their average of each model under RCP 4.5 and RCP 

8.5. In 2035s, 7Q10 under RCP 4.5 was projected to increase by 107%. In the later period 

(2055s), it would again increase by 6% and decrease by 9% in 2085s. Similarly, for RCP 

8.5, 7Q10 was be expected to increase by 112% in 2035s and decrease in 2055s and 2085s 

(5% and 4% respectively). A similar trend was exhibited by 1Q10 shown in Figure 2.11. 

Even though simulated 7Q10 and 1Q10 values decreased in the late century, the low flows 

values were still significantly higher (almost double) when compared to the baseline 

condition. 

Biologically based design flows; 4B3 and 1B3 were also calculated and presented in Figure 

2.12 and Figure 2.13, respectively. The 4B3 and 1B3 from an ensemble of 10 models with 

forced scenario RCP 4.5 and RCP 8.5 followed the same trend as 7Q10 and 1Q10. In 2035s 

under RCP 4.5, 4B3 was expected to increase by 127% (736 cfs) as compared to historical 

4B3 (324 cfs). This trend continued to increase slightly (by 1%) until 2055s and eventually 

decreased (by 4.24%) in 2085s. Under RCP 8.5, 4B3 values increased in 2035 (134%) and 

started to decrease in 2055s and 2085s (8.27% and 37.8% respectively). 

After analyzing the individual model projections, we could see among 10 different models, 

MPI-ESM-LR showed relatively less difference in low flows measured in terms of all 

indices (7Q10, 1Q10, 4B3, and 1B3) when compared with historical records. In fact, 

simulated low flows using climate data from other models were higher when compared to 

the historically observed streamflow records than streamflow simulated using MPI-ESM-

LR climate output. It is interesting to note that the performance of this climate model was 

relatively better than that of other climate models. During 2035s, simulated 4B3 flow from 

the MPI-ESM-LR model under RCP 8.5 was predicted to be 418 cfs in 2035s, which was 
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29% greater than the baseline. In 2055s, its value increased again by 49% (623 cfs), but in 

the late century (2085s) 4B3 surprisingly decreased to 189 cfs, which is 42% lower than 

the baseline condition (324 cfs). A similar trend was predicted in the case of 1B3 as well 

where MPI-ESM-LR showed a 36% reduction in 2085s under RCP 8.5. 

Surprisingly, the every simulated low flow for the periods 2035s, 2055s and 2085s almost 

doubled suddenly when compared to the historical data. Such large changes in flows, 

therefore, can only be justified by the different pattern and variability of temperature and 

precipitation projected from climate models (Small et al., 2011; Douglas et al., 2000). The 

low flows indicators including 7-day low flows are directly linked with daily streamflow. 

If the intensity of daily precipitation increases, an excessive amount of surface runoff will 

be produced as a result daily streamflow in the channel increases. 

In this study, the SWAT model was setup for an equal number of 28 years and used 3 years 

of warm up period in each simulation in order to avoid any discrepancy from the model. 

Additionally, the model performance indicators suggested that the model was able to 

follow the trend of the observed streamflow with reasonable accuracy in the watershed. 

Therefore, after careful inspection of precipitation data in each study period, increased 

interquartile range and median values of daily projected precipitation data along with high 

variability as shown in Figure 2.4 could be the result of uncorrected biases present in the 

downscaled CMIP5 climate models that might be responsible for the increased low flows 

condition in the watershed. 
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Conclusion 

There is no doubt that climate change has potential to change the hydrologic cycle and 

affect water resources. Therefore, this study was aimed at investigating the impacts of 

climate change, especially on low flows regime. In this regard, we prepared a hydrological 

model to generate daily streamflow from the Great Miami River Watershed with the help 

of the SWAT tool. Projected climate change from 10 recently published CMIP5 climate 

models under two scenarios RCP 4.5 and RCP 8.5 were deployed in the SWAT model to 

estimate future low flows in the watershed. 

Low flows analysis was conducted in the watershed outlet, where a maximum number of 

point source discharging facilities were located. The results indicated that low flows in the 

Great Miami River in the 21st century would likely increase by more than 100%. In 

addition, the pattern of future monthly flows depicted the likelihood of increasing flows 

during the months of August, September, October, and November. Furthermore, the 

average 7-day low flows in the beginning of 21st century would likely to increase two-fold 

compared to the observed data.  

The assessment of hydrological and biological low flows indices reinforced the results of 

the 7-day low flows and predicted an increase in future under both emission scenarios. The 

reason for such increases in low flows could be from increased precipitation intensity 

projected by the climate models. All models predicted that the trend of low flows would 

increase during 2035s and may remain constant or decline slightly based on the emission 

scenarios in the middle of the century. Both hydrologically and biologically based low 
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flows were expected to increase in the first half of the century but decrease in the late 

century. 

Interestingly, the predicted low flows from all climate models were significantly higher 

compared to the historical data. This indicates that the BCCA downscaling of CMIP5 

models in terms of precipitation in the watershed still need to be reviewed during the study 

of extreme flows at the watershed. However, the MPI-ESM-LR model, which showed 

superior correlation with observed precipitation, showed a convincing projection of future 

low flows. Thus, besides MPI-ESM-LR, other CMIP5 models do not seem to be adequately 

representing the local behavior to reproduce the daily distribution of climate variables.  

Outwardly, assimilating capacity of the stream seems to be increasing due to increase in 

low flows although there are other factors such as temperature, available dissolved oxygen, 

and characteristics of waste load and microorganisms that could affect the assimilative 

power of the stream. Besides, the assessment of low flows based on the MPI-ESM-LR 

model showed a decrease in the biological low flows under the RCP 8.5 in the later part of 

the century. These indices must be satisfied while developing the necessary modification 

in the permit limits. 

 Even though the CMIP5 data products are widely used for impact analysis of regional 

climate change, the uncertainty associated with future climate predictions are inevitable 

especially extreme flow events. Moreover, all climate models could have a lot of biases, 

using such datasets to develop water resource management, policy-making and formulation 

of rules and regulations may not be appropriate if not properly rectified. Therefore, further 

analyses are necessary to understand the hydrological influences due to climate changes. 
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Figure 2.1 Study area of the Great Miami River watershed consisting sub-basins, gauge 
stations, climate stations, location of point sources and reservoirs 
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Figure 2.4 Comparison of precipitation data from 10 climate models at three time spans 
(2016-2043, 2044-2071, and 2072-2099) with observed precipitation (1988-
2015) at station 0093815 under RCP 4.5 
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Table 2.1 Percentage of land cover in the GMR watershed 
Land Cover Percentage (%) 
Open Water 1.37 
Developed, Open Space 6.04 
Developed, Low Intensity 3.08 
Developed, Medium Intensity 1.18 
Developed, High Intensity 0.51 
Barren Land 0.11 
Deciduous Forest 21.87 
Evergreen Forest 0.56 
Mixed Forest 0.04 
Shrub/Scrub 0.33 
Herbaceous 1.52 
Hay/Pasture 7.31 
Cultivated Crops 54.55 
Woody Wetlands 1.30 
Emergent Herbaceous Wetlands 0.23 

 
 

Table 2.2 Reservoirs and dams in the watershed 

Name County River 
Max Design 
Discharge 
(cfs) 

Max Design 
Storage 
(Acre-ft) 

Drainage 
Area 
(mi2) 

Clarence J 
Brown Lake Clark Buck Creek 50000 63700 82 

Englewood 
Dam Montgomery Stillwater 

River 41250 413000 651 

Germantown 
Dam Montgomery Twin Creek 22294 142000 275 

Huffman Dam Greene Mad River 204186 297000 671 

Indian Lake Logan Great Miami 
River 18015 69900 98 

Lockington 
Dam Shelby Loramie 

Creek 25000 165000 255 

Loramie Lake Shelby Loramie 
Creek 8548 12900 78 

Taylorsville 
Dam Montgomery Great Miami 

River 112381 386000 1133 
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Table 2.3 Point sources in the watershed  
Point Sources Sub-basin 
Bellefontaine WWTP       13 
Versailles WWTP       36 
Urbana WTP       42 
Piqua WWTP       53 
Pleasant Hill WWTP      64 
Union WWTP       84 
Tri-cities North Regional WW Authority    93 
Dayton WWTP       104 
Eaton WWTP       105 
West Carrollton WWTP      111 
Dayton Power & Light Co 116 
Miamisburg Water Reclamation Facility     116 
US Department of Energy OU-1    116 
Franklin Regional WWTP      125 
Magellan Aerospace       126 
Sorg Paper Co.     126 
Wausau Paper Towel and Tissue LLC   126 
Middletown WWTP       129 
AK Steel Corporation      130 
Oxford WWTP       132 
Lesourdsville Water Reclamation Facility     134 
New Miami WWTP      135 
Miller Brewing Co.      136 
Hamilton Municipal Electric Pl     137 
Hamilton Water Reclamation Facility     138 
Fairfield WWTP       139 
Rumpke Sanitary Landfill      141 
Hamilton Co Taylor CRK Treatment    142 
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Table 2.4 Model parameters used in the SWAT calibration  
Parameters Calibrated value 
Available water capacity of the soil layer (relative) 0.0002 
Base flow alpha factor (days) 0.8600 
Base flow alpha factor for bank storage 0.9700 
Deep aquifer percolation fraction 0.4300 
Effective hydraulic conductivity in main channel alluvium 127.6300 
Groundwater "revap" coefficient 0.0400 
Groundwater delay (days) 74.0400 
Manning's "n" value for the main channel 0.0600 
Maximum melt rate for snow during year  0.7100 
Minimum melt rate for snow during the year  0.8100 
Plant uptake compensation factor 0.8600 
Saturated hydraulic conductivity (relative) 0.0015 
SCS runoff curve number (relative) 0.0003 
Snow melt base temperature 0.1300 
Snow pack temperature lag factor 0.7800 
Snowfall temperature 0.0500 
Soil evaporation compensation factor 0.8100 
Surface runoff lag time 2.0000 
Threshold depth of water in shallow aquifer for return flow to occur  1004.4000 
Threshold depth of water in the shallow aquifer for revap to occur  285.0000 
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Table 2.5 The statistical criteria measuring the performance of the SWAT model 
USGS 
Gauge 

Stations 
Station Name Sub-

basin 
Time 
Scale 

Calibration Validation 

NSE R2 PBIAS RSR NSE R2 PBIAS RSR 

3274000 
Great Miami River, 

137 
Monthly 0.86 0.89 2.86 0.38 0.83 0.86 0.82 0.41 

Hamilton Daily 0.81 0.81 2.86 0.44 0.78 0.78 0.80 0.47 

3272100 
Great Miami River, 

126 
Monthly 0.86 0.89 4.22 0.38 0.82 0.84 0.96 0.42 

Middletown Daily 0.80 0.81 4.22 0.44 0.77 0.77 0.93 0.48 

3271601 
Great Miami River,  

116 
Monthly 0.87 0.89 1.45 0.35 0.85 0.87 -0.58 0.39 

Miamisburg Daily 0.80 0.80 1.47 0.45 0.77 0.77 -0.61 0.48 

3272000 
Twin Creek, 

112 
Monthly 0.79 0.83 0.87 0.45 0.77 0.81 0.80 0.48 

Germantown Daily 0.66 0.68 0.94 0.58 0.63 0.65 0.76 0.61 

3270500 
Great Miami River, 

98 
Monthly 0.88 0.89 -4.43 0.35 0.85 0.87 -5.39 0.39 

Dayton Daily 0.79 0.79 -4.40 0.46 0.77 0.77 -5.41 0.48 

3266000 
Stillwater River, 

84 
Monthly 0.81 0.84 4.15 0.43 0.83 0.87 5.78 0.42 

Englewood Daily 0.69 0.69 4.18 0.56 0.71 0.72 5.80 0.54 

3263000 
Great Miami River, 

83 
Monthly 0.86 0.89 -8.47 0.38 0.83 0.85 -8.24 0.42 

Taylorsville Daily 0.75 0.76 -8.46 0.50 0.74 0.74 -8.24 0.51 

3262700 
Great Miami River, 

56 
Monthly 0.84 0.87 -13.95 0.40 0.80 0.85 -16.93 0.45 

Troy Daily 0.75 0.75 -13.98 0.50 0.74 0.75 -16.91 0.51 

3261500 
Great Miami River, 

23 
Monthly 0.80 0.84 -17.48 0.45 0.77 0.81 -16.69 0.48 

Sidney Daily 0.71 0.72 -17.53 0.54 0.73 0.74 -16.72 0.52 
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Table 2.6 Top 10 climate models selected for the analysis of low flows 
Institute Model 
Canadian Centre for Climate Modelling and Analysis, Canada CanESM2 
National Center for Atmospheric Research, USA CCSM4 
Centre National de Recherches Meteorologiques, Meteo-France CNRM-CM5 
Commonwealth Scientific and Industrial Research Organization, Aus. CSIRO-Mk3.6.0 
NOAA Geophysical Fluid Dynamics Laboratory, USA GFDL-ESM2M 
Model for Interdisciplinary Research On Climate, Japan MIROC5 
Model for Interdisciplinary Research On Climate, Japan MIROC-ESM 
Max Planck Institute for Meteorology, Germany MPI-ESM-LR 
Max Planck Institute for Meteorology, Germany MPI-ESM-MR 
Norwegian Climate Center's Earth System Model NorESM1-M 

 
 
 
Table 2.7 R2 of observed vs model predicted precipitation in weather station 00093815 
Climate Models Daily Average Monthly Average Annually Monthly 
CanESM2 0.00001 0.002 0.001 0.782 
CCSM4 0.00001 0.025 0.028 0.826 
CNRM-CM5 0.00013 0.018 0.020 0.760 
CSIRO-Mk3.6.0 0.00017 0.014 0.016 0.775 
GFDL-ESM2M 0.00006 0.010 0.012 0.759 
MIROC-ESM 0.00003 0.017 0.008 0.735 
MIROC5 0.00017 0.017 0.019 0.864 
MPI-ESM-LR 0.00005 0.027 0.029 0.767 
MPI-ESM-MR 0.00009 0.007 0.008 0.662 
NorESM1-M 0.00057 0.037 0.040 0.742 
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Chapter 3. Impact of Global Climate Change on High Flows: A Case Study of the 

Great Miami River Watershed 

Abstract 

A climate-induced extreme flow event such as flooding is one of the major natural 

calamities, which can significantly damage human lives and properties. This study uses 

watershed level hydrologic modeling and analysis to examine the effects of climate change 

on the high flows conditions at Great Miami River Watershed under two RCPs 4.5 and 

RCP 8.5. The 21st century streamflow was simulated by utilizing widely used SWAT 

model and 10 different climate data from the Coupled Model Intercomparison Project 

phase 5 (CMIP5). The future streamflow was divided into three equal periods: 2016 - 2043 

(2035s), 2044 - 2071 (2055s) and 2072 - 2099 (2085s) and independently analyzed to 

compare with high flows of baseline condition (1988 - 2015). The results of this analysis 

predicted that 7-day high flows in each simulation period would likely to decrease by 25% 

than historical records. A similar trend was demonstrated by 7Q10 high flows. However, 

the MIROC5 model in RCP 4.5 showed 1.2% increase in 7Q10 high flows in 2035s 

followed by a slight decrease in 2055s and 2085s. The projected future 50-year and 100-

year flood for the study area were most likely to decrease by 29% and 36% respectively. 

Similarly, the peak flows for each year were predicted to decrease by 21% and 16% under 

RCP 8.5 and RCP 4.5 respectively in the future. The analysis suggested that peak on 

monthly basis would increase more during the months of August, September, and October 

compared to the historical period. 

Keywords: Climate Change, High flows, SWAT, and Great Miami River Watershed  
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Introduction 

Human activities have been responsible for modifying the global atmospheric composition 

including greenhouse gases sufficiently that anthropogenic climate change is already being 

experienced (Bernstein et al., 2007). Due to an increase in greenhouse gas concentrations 

in the atmosphere and subsequent global warming, the Earth's hydrologic cycle is being 

altered in multiple ways over different geographic regions at various temporal scales 

(Vitousek et al., 1997). These changes in the hydrological cycle eventually lead to more 

precipitation and extreme rainfall which results in increased water runoff and flood risks 

(Graham et al., 2010).  

Extreme rainfall events and flooding in the Midwest have increased during the last century 

up to 20% in some locations, and these trends are expected to continue in the future (Pathak 

et al., 2016). The 2008 flooding in the Midwest caused 24 deaths and losses of billions of 

dollars in terms of reduced agricultural yields and disrupting some key transportation 

routes (Pryor et al., 2013). Therefore, it is essential to assess the impact of extreme storm 

events and flows due to climate change in order to mitigate its impacts and build a resilient 

society. 

Projected climate dataset, developed from the Global Circulation Models (GCMs) are 

being used been utilized to investigate the impacts associated with climate change on 

extreme events (Kharin et al., 2005; Wang et al., 2008). However, uncertainties within the 

GCM models are known to affect future hydrological simulations (Xu et al., 2013). 

Moreover, some biases might be present in these climate models, which have to be adjusted 

before using in the simulation process. In the United States, different downscaling 
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techniques have been used to generate unbiased climate data (Hayhoe et al., 2007; 

Christensen et al., 2007). Recently published Coupled Model Intercomparison Projects 

(CMIP) multi-model ensemble data are projected with the downscaling technique of daily 

bias correction and constructed analogs (BCCA) (Taylor et al., 2012, Meehl et al., 2014).  

In Midwestern United States, scientists have analyzed the impact of climate change and 

projected risk of flooding as well as increasing trend of water yield in different watersheds 

(Pathak et al., 2016). An experiment by Milly et al., 2005, based on 12 GCMs, showed that 

total runoff is expected to increase by 10 - 25% in Midwestern United States by the end of 

2050. Similarly, in the Upper Great Miami River Watershed, Shuang-Ye Wu, 2010 used 

14 GCMs and Monte Carlo simulation technique to estimate the flood risk due to climate 

change. The study depicted that the aggregated 100-year peak flow was expected to 

increase by 13% and concluded. 

As a case study, we selected the Great Miami River Watershed to explore the responses of 

climate change on high flows. Even though the impact of climate change in this watershed 

has been explored in a previous research, there were several limitations such as: 

i) the study was based on the former set of CMIP3 data which needs to be revised 

as CMIP5 datasets are currently available;  

ii) the study was simply based on regression equations although distributed 

watershed models are needed for appropriate analysis;  

iii) the study was focused only on the Upper part of the Great Miami River but not 

on the entire Great Miami River;  
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iv) the study did not make a comprehensive climate change assessment in various 

aspects of water resources. 

Therefore, the major focus of this chapter is to predict the impact of climate change based 

on 10 climate models from CMIP5 dataset and two GHG emission scenarios RCP 4.5 and 

RCP 8.5 using a widely accepted hydrological model SWAT. The RCP 4.5 scenario 

assumes that global annual GHGs emission measured in terms of CO2 equivalents becomes 

maximum at the 2040s and then starts to reduce, whereas, in the RCP 8.5, the emission is 

expected to rise continuously throughout the 21st century (Meinshausen et al., 2011).   

Methodology 

Study Area 

The Great Miami River Watershed is situated mostly in the southwestern part of Ohio 

(Figure 2.1). Details about the study area are presented in chapter 2. The watershed is 

primarily dominated by agricultural land and has been experienced a hydrologic drought 

(1930-1936) and severe destructive floods from time to time. A catastrophic flood of 1913 

was attributed to a combination of snowmelt and intense precipitation leading to overflows 

in the Great Miami River, the Mad River, and the Stillwater River. Over 300 lives were 

lost and property damages exceeding $2 billion in today’s currency (MCD, 2016). As a 

result, flooding is still considered one of the biggest challenges in this watershed. 
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SWAT Model Inputs 

Temperature data from 10 different stations for the period 1980 to 2015 and precipitation 

data for the same period were incorporated from 19 meteorological stations. Other input 

parameters such as DEM, Land use, Soil data were described in chapter 2. 

Model Calibration and Validation 

The SWAT model calibration and validation procedure using the SUFI-2 program has 

already been discussed in Chapter 2 under the heading “Model Calibration and Validation”. 

Scenario Analysis 

Out of the 20 GCMs in CMIP5, 10 models were used for RCP 4.5 and RCP 8.5. Selected 

GCMs are tabulated in Chapter 2. The output from each model includes daily precipitation 

and maximum and minimum temperature for the baseline period 1988 - 2015 and the future 

period 2016 - 2099. The observation dataset of monthly precipitation at station 0093815 

was used to validate the model performance with the help of coefficient of correlation (R2). 

Future period (2016 - 2099) was subdivided into three time frames as follows: 2035s as 

(2016 - 2043), 2055s as (2044 - 2071) and 2085s as (2072 - 2099) and compared to that of 

the baseline period. 

High flows Analysis 

The SWAT model provides a long-term daily streamflow from each sub-basin. We 

analyzed high flows from the simulated and observed discharge at outlet station of the 

watershed (USGS 03274000). For climate change impacts assessment on high flows, we 



 

53 
 

examined five high flows variables based on the ensemble of 10 climate models and 2 

scenarios. High flows variables incorporated in our analysis includes 7-day high flows, 

7Q10 high flows, annual and monthly peak discharges, 75th percentile flow, and flood 

frequency analysis. The 7-day high flows are the maximum flow from the average of 7 

days consecutive flows in a year. Similarly, 7Q10 high flows are defined the maximum 7 

days high flows that have a probability of occurring once in every 10 years (EPA, 1991). 

In addition, peak discharges from each year as well as months were also estimated to 

capture the extreme high flow events. For the flood frequency analysis of streamflow data 

PeakFQ program (Flynn et al., 2006) was used. PeakFQ uses the Bulletin 17B and 

Expected Moments Algorithm to estimate flood magnitudes with different recurrence 

intervals. The streamflow series simulated by SWAT model for 2035s, 2055s, and 2085s 

were separately fed into the program and results were compared against historical records. 

Results 

Model Simulation 

As described in the earlier chapter, the SWAT model calibration and validation were 

performed on a daily and monthly time step. The model performance was satisfactory 

during calibration and validation period with reasonable accuracy, which was assessed 

through a visual inspection and statistical criteria. Figure 3.1 shows scatter plots and R2 

values of the observed vs simulated discharges for the Great Miami River at (USGS 

03274000) to verify the robustness of model performance. The statistical criteria NSE, R2, 

PBIAS, and RSR on a daily and monthly scale from different stations throughout the 

watershed were described in chapter 2. 
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Model Prediction 

Since data from climate model need to be validated before regional hydrological impacts 

analysis, the variability of each CMIP5 outputs under RCP 4.5 was compared with the 

observed precipitation data at the same station. The extreme precipitations represented by 

the dots in the box-plots in Figure 3.2, which are the daily precipitation greater than the 

90th percentile are more frequent for the observed period compared to climate model 

outputs. The coefficient of correlation (R2) in terms of daily precipitation output, when 

compared to observe data, was relatively very less (discussed in chapter 2). This indicates 

that data from the climate models have issues in capturing the general trend of observed 

precipitation and variabilities that might persist when applied in a smaller region. 

Change in Streamflow 

The primary outputs of the above-mentioned modeling runs were daily streamflow for 

2016-2099 at subbasin outlets (USGS 03274000). Table 3.1 presents the results of average 

annual streamflow from 10 climate models and two emission scenarios for three reference 

periods. The annual streamflow recorded from baseline condition was 4166 cfs. The 

simulation from the nine models projected a future increase in annual flow under both 

scenarios, but MPI-ESM-LR model during 2035s projected a decrease of annual flow under 

RCP 8.5 by 2.2%. The trend in annual flow drastically increases at the beginning of the 

century and subsequently decreases in a mid and late century. In addition, the increment 

under RCP 4.5 scenario was the largest compared to RCP 8.5. The maximum increase in 

annual flow was projected from CSIRO-Mk3.6.0 model under RCP 4.5 (41.5%). The 

annual stream flows predicted from the climate models showed an increase of 21%, 23%, 
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and 18% for the 2035s, 2055s, and 2085s, respectively under RCP 4.5, and an increase of 

21%, 19%, and 20% for the 2035s, 2055s, and 2085s, respectively under RCP 8.5.   

Impact of Climate Change on High Flows 

Even though the annual flow was predicted to increase in each period, both emission 

scenarios showed a decrease in 7-day maximum flow in all periods (Figure 3.3). The 

median value of 7-day maximum flow from an ensemble of 10 models in three time periods 

reduced significantly (25%) than an observed period. Under RCP 4.5, the median decreased 

gradually from 2035s to 2085s while in RCP 8.5 the median decreased in 2055s and 

increased in 2085s. Similarly, annual peak also decreased in projected periods compared 

to the historical condition. The pattern of peak flows in each time-period were found similar 

in both scenarios as shown in Figure 3.4. The median of annual peak flow decreased from 

14% to 21% in RCP 4.5 and 13% to 16% in RCP 8.5.  

Peak flow was also calculated on monthly basis for both emission scenarios, which are 

presented in Figure 3.5 for RCP 4.5 and Figure 3.6 for RCP 8.5. The model outputs 

predicted that peak flow would increase from February to November in general. The 

maximum increase in monthly peaks was found in August, September, and October for 

both RCPs. 

In order to see the 10 years recurrence of high flows, the calculated 7Q10 for high flows 

from each model was compared to the historical data. The graph in Figure 3.7 showed that 

the 7Q10 high flows from model ensemble would decrease in the 21st century; however, 

some climate models predicted an increase in a certain period. For example, the MIROC5 

model during 2035s showed 1.2% increase in 7Q10 under RCP 4.5 and then decreasing 
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trend was predicted. Similarly, CanESM2 and CSIRO-Mk3.6 showed higher values of 

7Q10 in different periods of the 21st century. The decreasing pattern from two different 

emission scenarios had some changes in 7Q10 high flows. Under RCP 4.5, 7Q10 high 

flows were expected to be the least on 2085s, while it was expected to be the least in 2055s 

for RCP 8.5. 

Furthermore, the frequency of future flows having greater value than the 75th percentile 

threshold of observed flow was analyzed separately in Figure 3.8. The median of 

frequencies for RCP 4.5was found 135 times in 2035s, whereas it was 146 and 135 during 

2055s and 2085s, respectively. In RCP 8.5, the median value followed the similar trend but 

during 2055s, its value was decreased to 134 (lower than RCP 4.5). 

Changes in flood magnitude from an ensemble of 10 climate models in the Great Miami 

River with different recurrence intervals are shown in Figure 3.9 for RCP 4.5 and Figure 

3.10 RCP 8.5 respectively. The 2, 5, 10, 25, 50, and 100 years flood frequencies in the 21st 

century were estimated to decrease rapidly from observed frequency. Box plots showed 

that as recurrence interval increased, the change in flood frequency also increased in both 

scenarios. One of the reasons of such relationship could be the limited number of flow data 

for calculating each flood frequency. Similarly, the reduction in 50 years recurrence flood 

would become maximum during 2035s (median value of -33%) and gradually increase in 

subsequent period for both RCPs. The 100 years flood under RCP 4.5 were predicted to 

reduce greatly in 2035s by -36% (median value), however, the variability of the reduction 

in the flood was found larger in 2085s (from -43% to -10%). Unlike RCP 4.5, interquartile 

range of the box plot in 100 years floods did not vary significantly for future. The flood 

frequency of 2 years flood was predicted to change less than that of other flood frequencies. 
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It would reduce from -10 % to -29% in RCP 4.5 and -8% to -29% in RCP 8.5 in future 

periods. 

Flood protection system in the Great Miami River Watershed comprises several dams and 

levees, which might be vulnerable during the time of high flows. Therefore, the high flows 

analysis in four major reservoirs is shown in Figure 3.11 - Figure 3.18. Since it was very 

difficult to analyze the results using all models, only two climate models namely MPI-

ESM-LR and NorESM1-M, which had good correlation with observed data, were 

considered for monthly peak flows analysis. Results showed that all dams in August, 

September, October, and November are vulnerable in terms of high flows as peak flow in 

these months from both scenarios were expected to exceed the observed peak flow. In 

addition, peak flow from MPI-ESM-LR in February was also predicted to exceed the 

observed peak value except for Germantown dam. The NorESM1-M model under both 

scenarios also followed a similar trend of peak flows. The results from two climate models 

showed that among the four major dams, the peak flows in Huffman dam are expected to 

cross the historical peak limits in almost all months. 

Conclusion 

The climate scenarios generated from the 10 CMIP5 climate models under two emission 

scenarios became very helpful to illustrate the impact of climate change on streamflow 

regime, especially during high flows periods in Great Miami River Watershed. The 

watershed model, SWAT, was chosen to simulate stream flows after calibration and 

validation at different locations of the watershed.  
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The average annual stream flows for both emission scenarios were projected to increase 

for all simulation periods. The significant increase in peak flow as compared to historical 

period was expected to occur in the months of July, August, September. However, flood 

frequency from all climate models suggested that major flood events in future such as the 

50-year and the 100-year flood would decrease. 7-day high flows from an ensemble of 10 

models were estimated to decrease in the future but the variability of flow in each period 

of study remained similar under both emission scenarios. Similarly, 7Q10 high flows 

showed a dramatic decrease from 1988-2015 to consecutive periods. Under RCP 4.5, 7Q10 

value was expected to be the lowest in 2085s but in RCP 8.5, the lowest 7Q10 was 

estimated in 2055s.  

This analysis was also conducted to see the difference in the flood frequency of 2, 5, 10, 

50 and 100 years to get a better idea about the upcoming major flood events. All models 

predicted the flood values would be smaller than the observed flood magnitude in a future 

period. Furthermore, the results from the high flows analysis concluded that peak flow 

from August to November would exceed the recorded peaks near major dams of Great 

Miami River watershed. While high flows were estimated to be critical in the months of 

February for RCP 4.5, the months of February and May would be critical for RCP 8.5. 

Among four major dams, the high flows in Huffman dam were significantly influenced by 

climate change under both scenarios and climate models especially during the month of 

February. 

Even though the model projected the decrease in the high flows in the 21st century, the 

projected streamflow presented in this analysis are inherently uncertain. It is clear from the 

analysis that CMIP5 climate data may not be adequate for the extreme flow analysis of the 
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watershed. We demonstrated that the outputs from the 10 climate models might result in a 

large difference in high flows. The failure of CMIP5 data to capture the trend of extreme 

events could be due to lack of extreme precipitation events in the model outputs. Since 

precipitation is the major component of the hydrologic cycle, the hydrologic flow regime 

resulting from such flat precipitation input could have produced unrealistic output. This 

uncertainty of CMIP5 climate output cast a doubt over the projected datasets and careful 

validation of new climate data should be carried out prior to being used. 
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Figure 3.2 Comparison of extreme storm events from 10 climate models at three time 
spans for future with observed precipitation at station 0093815 
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Figure 3.3 7-day high flows from ensemble of 10 climate models and observed records in 
both RCPs 

 

Figure 3.4 Annual peak flow from ensemble of 10 climate models and historical flows 

 
 
 
 
 
 
 
 
 
 
 



 

65 
 

 
 
 
 

 

 

Figure 3.5 Monthly peak from ensemble of 10 climate models under RCP 4.5 and 
historical flows 
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Figure 3.13 Monthly peak flow near Huffman dam from MPI-ESM-LR model 

 

Figure 3.14 Monthly peak flow near Germantown dam from MPI-ESM-LR model 

 

Figure 3.15 Monthly peak flow near Taylorsville dam from NorESM1-M model 

 
Figure 3.16 Monthly peak flow near Englewood dam from NorESM1-M model 
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Figure 3.17 Monthly peak flow near Huffman dam from NorESM1-M model 

 

Figure 3.18 Monthly peak flow near Germantown dam from NorESM1-M model 
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Table 3.1 Change in annual streamflow from 10 climate models and under 2 RCPs 
compared to observed annual flows 

Emission Scenarios RCP 4.5 RCP 8.5 

Models Period Flows 
(cfs) 

% 
Change 

Flows  
(cfs) 

% 
 Change 

Observed (Baseline) 1988 - 2015 4166.20 - 4166.20 - 

MPI-ESM-LR 
2016 - 2043 4939.60 18.60 4074.60 -2.20 
2044 - 2071 4707.70 13.00 4691.90 12.60 
2072 - 2099 4493.80 7.90 4613.40 10.70 

NorESM1-M 
2016 - 2043 4887.10 17.30 5139.20 23.40 
2044 - 2071 4349.40 4.40 4834.90 16.00 
2072 - 2099 4497.60 8.00 5062.40 21.50 

CSIRO-Mk3.6.0 
2016 - 2043 5048.40 21.20 5055.80 21.40 
2044 - 2071 5896.50 41.50 4758.20 14.20 
2072 - 2099 5805.70 39.40 5227.90 25.50 

MIROC5 
2016 - 2043 5237.90 25.70 5134.20 23.20 
2044 - 2071 4850.40 16.40 5037.20 20.90 
2072 - 2099 4293.40 3.10 4341.60 4.20 

CanESM2 
2016 - 2043 5014.10 20.40 4955.00 18.90 
2044 - 2071 5533.40 32.80 5396.20 29.50 
2072 - 2099 5103.10 22.50 5594.10 34.30 

MPI-ESM-MR 
2016 - 2043 4728.90 13.50 5442.00 30.60 
2044 - 2071 5097.90 22.40 5089.20 22.20 
2072 - 2099 4953.00 18.90 5621.90 34.90 

GFDL-ESM2M 
2016 - 2043 4892.50 17.40 5215.80 25.20 
2044 - 2071 5564.30 33.60 5432.50 30.40 
2072 - 2099 5535.90 32.90 5087.80 22.10 

CNRM-CM5 
2016 - 2043 5250.00 26.00 5371.60 28.90 
2044 - 2071 5688.40 36.50 5088.50 22.10 
2072 - 2099 5300.60 27.20 5065.20 21.60 

MIROC-ESM 
2016 - 2043 5597.70 34.40 5166.60 24.00 
2044 - 2071 4943.30 18.70 4453.30 6.90 
2072 - 2099 4851.90 16.50 4465.70 7.20 

CCSM4 
2016 - 2043 4768.10 14.40 4648.70 11.60 
2044 - 2071 4818.50 15.70 4613.70 10.70 
2072 - 2099 4476.90 7.50 4932.20 18.40 
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Chapter 4. Conclusions and Recommendations 

Over the 21st century, it is likely to expect that climate change will affect water resources 

mainly through affecting the process of watershed hydrology and water resource cycles. 

The aim of this study was to investigate the effects of climate change in the context of 

extreme events in a large agricultural watershed. The key question in this study was to see 

how and at what degree these hydrological variations due to climate change would affect 

high flows and low flows in the river basin.  

The Soil and Water Assessment Tool (SWAT) model was employed to the Great Miami 

River Watershed, which covers approximately 4000 square miles area in Southwest Ohio. 

The model offers a high level of spatial detail, continuous-time simulation and efficient 

appraisal of hydrological changes in the watershed. To evaluate the model performance in 

simulating watershed hydrology, multi-site model calibration and validation were 

conducted using the SUFI-2 algorithm in SWAT-CUP program. Flow calibration and 

validation were performed for 2005 - 2014 and 1995 - 2004, respectively at nine different 

USGS gauge stations throughout the watershed. Model performance was evaluated by 

using four statistical measures: NSE, R2, RSR, and PBAIS, which were found within the 

range recommended by Moriasi et al., 2007. Calibration and validation provided a good 

insight on model input parameters and enabled the model to simulate hydrological 

processes very well. 

The SWAT model was next utilized for the climate change study. The projected climate 

data from 10 different climate models under two emission scenarios were generated from 

downscaled CMIP5 model dataset. Each dataset containing future precipitation, maximum 
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temperature, and minimum temperature were provided to the SWAT model to simulate the 

daily discharge from the outlets. The simulated flows at the outlet (USGS 03274000) were 

then analyzed separately for three future periods comprising an equal number of years. 

Subsequently, potential impacts of climate change on extreme flow regimes in terms of 

different flow parameters were calculated and compared with historical data.  

The analysis projected that the climate change will significantly affect most of the low 

flows indices in Great Miami River. Significant differences were observed on the future 

scenarios for hydrological and biological low flows when compared to historical data. The 

average 7-day low flows were expected to increase by two folds during 2035s. However, 

results from different models were not consistent and the magnitude of low flows varied 

within each scenario. 

Furthermore, the analysis indicated that September, October, and November would have a 

high number of low flows events. In general, simulation under high emission scenario 

(RCP 8.5) demonstrates a reduction in 7-day low flows after 2035s, whereas, under 

medium emission scenario (RCP 4.5), low flows increase slightly after 2035s until 2055s 

but eventually decrease around 2085s. From all climate models, there was slight fluctuation 

in low flows within the three periods, however, the difference in low flows with respect to 

historical data was substantially higher. 

Results from this study indicate that some elements of climate including precipitation, 

which are provided by the CMIP5 models, are not enough to capture extreme weather 

events in a watershed scale because the spatial resolution of each climate projection model 

is 12km by 12km. It is also evident from the box plot of precipitation that the minimum 
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precipitations in model outputs are comparatively higher than that of actual precipitations 

recorded in the historical time. This could be the main reason for increased simulated low 

flows in the river while using climate model output.  

Similarly, the impact of climate change was assessed for high flows for the same periods. 

Results indicate an increase in the magnitude of the 50-year and the 100-year in the later 

part of the 21st century. However, peak flows are projected to reduce significantly in future 

when compared to the historical data. Both 7-day high flows and annual peak flow from 

an ensemble of 10 models in each period are projected to decrease. The analysis also shows 

that monthly peak flows from the months of July to October will increase. This reduction 

in high flows is probably due to the lack of a large number of extreme storm events in the 

downscaled climate output. 

This study provides the foundation for the calculation of low flows and high flows and the 

awareness towards climate change models. However, extensive assessment of potential 

impacts due to climate change should be performed based on further bias corrected and 

downscaled climate models along with improved land use and soil data. 
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