
PREDICTING CLOSED VERSUS OPEN QUESTIONS USING MACHINE LEARNING
FOR IMPROVING COMMUNITY QUESTION ANSWERING WEBSITES

by

Pradeep Kumar Makkena

Submitted in Partial Fulfilment of Requirements

For the Degree of

Master of Computing and Information Systems

YOUNGSTOWN STATE UNIVERSITY

December 2017

Pradeep Kumar Makkena

I hereby release this thesis to the public. I understand that this will be made available from
Ohio LINK ETD Centre and the Maag Library Circulation Desk for public access. I also
authorize the university or other individuals to make copies of this thesis as needed for
scholarly research.

Signature:

Pradeep Kumar Makkena, Student Date

Approvals:

Dr. Alina Lazar, Thesis Advisor Date

Dr. Yong Zhang, Committee Member Date

Dr. Feng Yu, Committee Member Date

Dr. Salvatore A. Sanders, Associate Dean of Graduate Studies Date

iii

ABSTRACT

Community question answer (CQA) websites add great value to the information available on

the Web and they have been gaining popularity in the past few years. Popular CQA websites

have millions of users asking thousands of questions every day. To maintain the quality of

content, site moderators monitor and close the questions which do not follow the community

guidelines. Stack Overflow is a very popular CQA website for programmers with more than 8

million users. Everyday thousands of questions are posted in Stack Overflow and some of

these questions do not follow the community guidelines and they will be closed by the

moderators. Manual moderation of questions is a tedious task because of the sheer volume of

the questions. The main purpose of this thesis is to build a machine learning classifier to

predict whether or not a question will be closed. Using various post features, comment

features and user features from Stack Overflow data, machine learning models were created

using various classification algorithms. Apache Spark machine learning library was used to

train and test these models and we found that model trained with random forest algorithm

gave the best results with an accuracy of 77.60%. We found that features derived from the

body of the post contribute more to the accuracy of the model whereas features derived from

the users table contribute less.

iv

Acknowledgements

Firstly, I would like to express my true thankfulness to my advisor, Dr. Alina Lazar. I

feel very honoured to work with her and I am grateful for her support, patience and

knowledge shared to complete my research. I appreciate her for giving me an opportunity to

work with her and I could not have imagined having a better advisor for my Master’s.

I would like to thank my committee members Dr. Yong Zhang, Dr. Feng Yu for taking

time out of their schedule to share their Knowledge and Insights.

A special thanks to my family and friends for the support they have given to me during

my graduate career. I would also thank the Department of Computer Science and Information

Systems and the College of Graduate Studies for the financial assistance during my graduate

studies.

v

TABLE OF CONTENTS

LIST OF FIGURES……………………………………………………………………………………vi

LIST OF TABLES…………………………………………………………………………………….vii

CHAPTER 1 INTRODUCTION……………………………………………………………………..1

1.1 Motivation……………………………………………………………………………………..2

1.2 Organization…………………………………………………………………………………...3

CHAPTER 2 RELATED WORK…………………………………………………………………….4

CHAPTER 3 DATASET PREPARATION AND FEATURE PROCESSING………………….......7

3.1 Dataset Preparation……………………………………………………………………………..7

3.2 Feature Extraction………………………………………………………………………………9

CHAPTER 4 MACHINE LEARNING ALGORITHMS…………………………………………..12

4.1 Logistic Regression……………………………………………………………………………12

4.2 Random Forest………………………………………………………………………………...14

4.3 Support Vector Machines……………………………………………………………………..15

4.4 Apache Spark Machine Learning Library…………………………………………………….17

CHAPTER 5 EXPERIEMENTS AND RESULTS………………………………………………...18

CHAPTER 6 CONCLUSION………………………………………………………………………21

REFERENCES………………………………………………………………………………………..22

CODE………………………………………………………………………………………………….24

vi

LIST OF FIGURES

Figure 1: Logistic Regression Classification…………………… ……………………...13

Figure 2: Random Forests Simplified……………………………………………………15

Figure 3: Support Vector Machines Classification………………………………………16

vii

LIST OF TABLES

Table 1: User table fields and their description……………………………………………….7

Table 2: Posts table fields and their description………………………………………………8

Table 3: Features derived from the dataset…………………………………………………..10

Table 4: Features taken from dataset………………………………………………………....11

Table 5: Model accuracy…………………………………………………………………......19

Table 6: Model accuracy using different feature sets………………………………………..19

CHAPTER 1

INTRODUCTION

The Internet has changed the way people search and share information. If we want to find

information online, we usually ask search engines what we need with key words and the

search engines provide us relevant webpages. We can browse through these pages and find

what we need. However, sometimes we cannot find exact answer and need to spend lot of

time browsing through all the pages. Community question answer websites (CQA) provide

efficient way to get the answers we want and saves lot of time. CQA websites provide a

platform to exchange and share the knowledge. You ask a question in community question

answer platform and very soon you will get the answer or opinion of the people who know

about that question. More often they will solve your problem and even if they do not solve

your problem you are going to provide lot of information about what you are looking for,

which in turn saves lot of time. We can also share our knowledge and answer questions, to

contribute something back to the community.

The idea of receiving a direct response to a question sounds very appealing, but CQA

websites also involve risk regarding the quality of the information provided. There are large

number of question answering websites, it is important for question answer website to

maintain and provide high-quality content to distinguish itself from other websites. If the

website has high quality content more users are going to use it, which in turn increases the

website popularity. The importance of high-quality content in community question and

answer websites has been recognized and investigated in several studies. CQA sites need to

moderate and remove the low-quality content in order to maintain the quality of content.

Popular CQA websites have millions of users asking thousands of questions every day, so it

2

will be difficult and tedious task for the moderators to go through each and every post and

remove the posts with low quality.

1.1 Motivation

Stack Overflow is a popular community question answer website for programmers and

millions of programmers use it every day. Stack Overflow has more than 8 million registered

users asking thousands of questions every day. Stack Overflow moderators can close the

questions for various reasons to maintain the quality of content. Moderators can close the

questions for following reasons off topic, not constructive, duplicate, too localized, not a real

question. Any user who has enough site reputation can flag the questions in one of these

categories. The primary responsibility of moderators is go through these flagged posts and

take required action. As of August 2017, Stack Overflow has 24 moderators and it is a

tedious work for them to moderate such a large website. Stack Overflow has more than 15

million posts and it is a very difficult task for the site moderators to maintain the quality of

content and close the posts which do not follow the community guide lines.

We approached this problem by building a machine learning classifier which can

automatically predict the closed questions based on historical data. Stack Exchange data

dump is made available to public and it contains data about the posts, users, comments, votes

and tags in Stack Overflow. This dataset is very big and popular and lot researchers use it for

data mining and machine learning research. The goal of this thesis is to build binary machine

learning classifier for Stack Overflow site which can predict whether or not a question will be

closed. We compute various features from Stack Overflow datasets including text, post, user,

and comments related features. These features are then used to build a machine learning

classifier which can predict the closed questions on stack overflow. We have included the

user features also because user who repeatedly asks good questions is less likely to ask a

3

question which will be closed. Comments features were used because user’s comments

contribute to the question being closed. The Apache Spark Machine Learning Library

(MLlib) was used to train and test the classifier. Apache Spark is a popular distributed cloud

computing platform that can handle large amounts of data very efficiently.

1.2 Organization

This thesis is organized as follows. The next chapter presents the related work and Chapter 3

explains dataset preparation and feature preparation from the dataset. Chapter 4 describes the

machine learning algorithms used to build the classifiers. Chapter 5 presents the experiments

and the results. Finally, Chapter 6 concludes the thesis.

4

CHAPTER 2

RELATED WORK

The popularity of question and answer websites is increasing gradually, and very large

amounts of information is available in these websites. Therefore, the analysis of community

question and answer websites has become the subject for various studies. Stack Overflow

datasets are very large, and they are available to public, so lot of researchers used these

datasets for their research. In this chapter we will briefly explain the work related to

improving quality of question and answer websites, and predicting closed questions on Stack

Overflow.

Bauchuain Li et al analysed the factors of question quality and found that the interaction

between askers and topics results in the differences of question quality. Based on this finding

they proposed a mutual reinforcement based label propagation algorithm to predict quality of

the question. They tried to predict the quality of question before anyone answered the

question. They used various features related to the content of the question and features related

to the user who asked the question. They found that by including user related features the

accuracy improved substantially. They concluded that the proposed algorithm gives better

results than the other popular machine learning algorithms like logistic regression, gradient

boosted tree.

Lezina et al built a classifier for Stack Overflow website to predict if a question will be

closed or not along with the reason the question was closed. They used the dataset and

baseline model provided for the Kaggle’s “Predict Closed Questions on Stack Overflow”

competition. Many different machine learning algorithms, like random forest and support

vector machines and online gradient descent from the open source machine learning library

Vowpal Wabbit to build the classifier. Various features related to the post and features related

5

to user who posted the question were included. They have selected the most important

features by constructing large number of trees for randomly selected subset of features. They

have concluded that text features contribute much more to the result than user features and

the model using online gradient descent algorithm from Vowpal Wabbit provides the best

results.

Correa et al analysed Stack Overflow datasets and built a predictive model to identify closed

question at the time of post creation. They found that despite being marked as closed,

subjective questions contain high information value and are very popular with users. They

also found the decrease in community participation to mark a closed question which led to

increase in moderator’s time to identify low quality questions. They also found that closed

questions marked with off topic and duplicate labels are more prone to reputation gaming.

Using only post and user related features they have built a classifier which can predict closed

questions with an accuracy of 73%. Using feature analysis, they have found that Stack

Overflow urls and code snippet length are the most differentiating features to predict a closed

question on Stack Overflow.

Duijn et al analysed the Stack Overflow dataset and they have tried to improve the

classification of Stack Overflow questions using analysis of code samples, by providing an

insight into most relevant code metrics for determining the quality of a question. They have

found that most important features related to the code quality are length of the code, number

of white spaces in the code and number of formatting errors in the code. They found that

random forest algorithm gives best results to detect low quality questions at the moment they

are posted.

Balatdzhieva et al conducted a survey on question quality in community question answer

websites. They divided the features which have influence on question quality in to two

6

groups. The first group contains question related features like tags, body length, code snippet

and the second group include asker related features like user reputation. They found that

number of answer received, question score are the good measures of question quality. They

found that the influence of question length is mixed on question quality on the other hand, the

presence of an example has a positive effect on question score and number of answers.

In this thesis, we have used features derived from the text, code parts of the question. We

calculated various text features, TF-IDF features from the text part of the question. We have

included the user related features and comment related features. We have trained our dataset

using different machine learning algorithms like logistic regression, random forests and

support vector machines. We have used Apache Spark machine learning library to train our

models using these algorithms.

7

CHAPTER 3

DATASET PREPARATION AND FEATURE EXTRACTION

The dataset we have used for this thesis is downloaded from Stack Exchange data dump.

Stack Exchange is a network of question and answer websites consists of 133 question and

answer communities including stack overflow. All user content contributed to the Stack

Exchange network is cc-by-sa 3.0 licensed, intended to be shared and used by the public.

Stack Exchange data dump is an anonymized dump of all user contributed content on the

Stack Exchange network

3.1 Dataset Preparation

All the data about posts, users, tags and all the posts related activities of stack overflow

website are stored in different database tables such as Posts, Tags, Comments, Badges,

PostHistory, PostLinks, Users, Votes. We have downloaded three tables, first table is

posts.xml, users.xml and comments.xml. The Posts table contains data about the all the posts

in Stack Overflow. The second table is users.xml contains data about all the active users of

stack overflow website. Finally, the comments.xml contains data about all the user

comments. All the tables are in xml format. The Posts.xml, Users.xml and Comments.xml

files were loaded in a local MySQL database using the built-in MySQL xml reader. Table 1

gives brief description about all the fields in the users table and table 2 explains all the fields

in posts table.

Posts.xml file is very big with a size of 54GB and it contains data about more than 35 million

posts. Due to the limitations of computing resources we selected to analyse a dataset

containing data about 100,000 posts. Stack Overflow Stack Overflow has 636232 closed

question out of 14.45 million total questions, which means 4.4%. We want our dataset to be

8

balanced so we filtered the posts table so that it contains 70,000 open posts and 30,000 closed

posts. We also made sure that all these posts are questions. Because the posts table contains

both questions and answers as individual records, the answers were filtered out. Finally, we

performed inner join operation on posts, users and comments table to merge the three tables

in one table.

The final table has data about 100,000 questions including the data about the user who asked

the question and comments for that question. The final dataset has all the fields from the

users, posts tables and one field from the comments table with text from all the comments for

that question.

Table 1. User table fields and their Description

Data Field Name Type Description
Id Int UserId of the person
Reputation Int Reputation of the user in the stack the website
CreationDate Int Date and time when the user first signed up
DisplayName Text Display name chosen by the user
LastAccessDate Datetime Date and time when user last opened the

website
websiteURL Text Website url filled by the user
Location Text Location filled by the user
Age Int Age filled by the user
AboutMe Text Brief description about the user filled by the

user
Views Int Number of views received by the user profile
UpVotes Int Total number of upvotes received by the user
DownVotes Int Total number of downvoted received by the

user
AccountId Int Stack Exchange network profile id of the user

Table 2. Posts table fields and their description

Data Field Name Type Description

Id Int Unique Id of the post
PostTypeId Int 1 if the post is a question else 2
ParentId Int If the post is an answer it will give user Id of the

author who posted that answer
AcceptedAnswerId Int postId of the accepted answer for question
CreationDate Datetime Date and time, when the post created
Score Int Score for the given post.

9

ViewCount Int Total number of views for the post
Body Text Content of the post
OwnerUserId Int UserId of the author of the post
OwnerDisplayName Text Display name of the author of the post
LastEditorUserId Int User Id of the person last edited.
LastEditorDisplayName Text Display name of the last edited person
LastEditDate Datetime Data and time when the post last edited
LastActivityDate Datetime Date and time when there is last activity on a

post
CommunityOwnedDate Datetime If the post is owned by the community, then date

and time when that happened
Title Text Title of the post given by the author
Tags Text Tags given for the post by the author
AnswerCount Int Number of answers for the given post
CommentCount Int Number of comments for the post
FavoriteCount Int Number of people marked the post as favourite
ClosedDate Datetime If the post is closed, then it will give date and

time when the post is closed.

3.2 Feature Extraction

Feature extraction is the process of getting derived features from the dataset which gives us

insight in to the dataset and helps us to build a good predictive model. We need to select the

features in the dataset that are most useful or most relevant for predicting closed questions on

Stack Overflow. Feature selection helps us to create a predictive model with good accuracy.

Feature selection removes irrelevant and redundant attributes from the dataset that do not

contribute to the accuracy of the model. Fewer attributes are desirable because it reduces the

complexity of the model, and if the model is simple it is going to be easy to explain and

understand.

From the dataset we have selected the most relevant features leaving out the attributes which

are not helpful for predicting closed question. We have also derived many features using the

data from original dataset which will give good amount of information and helps us to build a

model with good accuracy. Table 3 gives a brief description about the derived features and

table 4 lists the features selected from the original dataset.

10

The goal is to predict closed questions on Stack Overflow and we derive a lot of useful

features from the content of the post. Most of the questions in Stack Overflow have code

associated with them. So, first we parsed the body of the post and divided it in to text and

code components. The text components contain all the sentences from the post and the code

components contain all the code blocks. From the text component we derived features like

length, first sentences, last sentence, number of question marks and punctuation marks. From

the code component we derived the features like number of code blocks, length, and first

code block.

Table 3. Features derived from the dataset

Feature Name Description
FirstCodeLen Length of the first code block. If there is no code block, then 0
FirstSenLen Length of the first sentence
LastCodeLen Last code block length. If there is one or no code block, then 0
LastSenLen Length of the last sentence
CodeTextRatio Ratio of length of code to length of text
FirstCodeSenRatio Ratio of length of first sentence to first code block
LastCodeSenRatio Ratio of length of last sentence to last code block
NoOfTags Total number of tags given to the post by the author
TextLength Length of the text component of the post
CodeLength Length of the code component of the post
IDFfeatures Text features obtained using tf-idf feature extractor
TitleLength Length of the title
NoOfI Number of occurrences of the word “I”
NoOfYou Number of occurrences of the word “you”
NoOfQuestionMark Number of occurrences of the “?”
NoOfExclamationMark Number of occurrences of the word “!”
NoOfHelp Number of occurrences of the word “help”
NoOfPls Number of occurrences of the word “please”
NoOfInternet Number of occurrences of the word “internet”
NoOfFind Number of occurrences of the word “find”
NoOfInterWords Number of interrogative words like when, why, how, what
CodeSente Number of lines of code
TextSente Number of sentences in the text component of the post
AgeFilled If the user filled their age, then 1 otherwise 0
AboutMeFilled If the user filled about me section, then 1 otherwise 0
LocationFilled If the user filled their location, then 1 otherwise 0
NoOfDuplicate Number of occurrences of word “duplicate” in comments
NoOfThanks Number of occurrences of word “thanks” in comments
SOUrl Number of occurrences of word “stack overflow” in comments
NoOfAns Number of occurrences of word “answer” in comments
NoOfIntWords Number of occurrences of interrogative words in comments
NoOfSorry Number of occurrences of word “sorry” in comments

11

NoOfRecc Number of occurrences of word “recommend” in comments
Comments_len Length of the all the comments combined

Table 4. Features taken from the dataset

Feature Name Description
Score Score given for the post
Views Number of profile views received by the author of the post
ViewCount Number of views received by the post
AnswerCount Number of answers received by the post
FavoriteCount Number of people marked this post as their favourite
CommeentCount Number of comments received by the posts
Reputation Reputation of the author in the stack overflow
UpVotes Total Number of upvotes received by the author of the post
DownVotes Total number of downvotes received by the author of the post

12

CHAPTER 4

MACHINE LEARNING ALGORITHMS

This chapter briefly explains the machine learning algorithms and the tools we have used run

these machine learning algorithms on our dataset. We have used logistic regression, random

forest, support vector machine algorithms to train our model and Apache Spark Machine

Learning Library (MLlib) to run these algorithms.

4.1 Logistic Regression

Logistic regression is a form of a regression analysis and it can be used for binary

classification problems in machine learning. Binary logistic regression is applied when the

predicted variable can only have two possible outcomes like closed or open, positive or

negative.

The problem we are dealing with is predicting whether a question is closed or not. The

outcome only has two values, so we have used binary logistic regression. In this thesis we

have used 1 for closed question and 0 for open question. This means if the outcome is 1 then

the model predicted it as a closed question and if the outcome is 0 then the model predicted it

as a closed question.

Logistic regression is robust, popular and widely used in binary classification problems.

Logistic regression uses a statistical function named logistic function. Logistic function is S-

shaped curve which will take real value numbers as an input and constraints the output

probability between 0 and 1. A typical representation of logistical regression is as shown in

the below picture

13

Fig:1 Logistic Regression Classification

From the figure we can see that if the probability P for a post is greater than 0.5 it is

predicted as closed question. If the probability is less than 0.5 then it is being predicted as a

closed question. The probability P is calculated by below equation.

P = e^(b0 + b1*x) / (1 + e^(b0 + b1*x)) 4.1

In the above equation 4.1 P is the predicted output, b0 is the bias or intercept term and b1 is

the coefficient for the input feature. Every input feature has its coefficient and as the number

of features increases the complexity of the model also increases. When we train the model

using training dataset, all these coefficients are calculated to fit the training data. When the

model is finished the training, intercept and all the coefficients are stored, and they will

represent the model. Whenever a test case is given, the model will calculate the probability

using the intercept and coefficients. If the calculated probability is greater than 0.5 then it will

predict the post as a closed question.

14

4.2 Random Forest

Random forest algorithm is a supervised classification algorithm and it can be used for binary

classification problems. Random forest creates many classification trees by taking random

samples from the input training data. In random forest algorithm the accuracy of the model

depends upon the number classification trees in the model. If the number of trees increase the

accuracy of the model also increases. To reduce the error rate in random forest algorithm

there should less correlation between the trees in the forest and the strength of each individual

tree should be higher.

In random forests algorithm If the total number of features we are using are N, then from

those total N features, n features are selected randomly, and a classification tree is built using

these n features. During the whole training process n remains constant. Increasing the value

of n will increase both correlation and strength of the tree and decreasing the value of n will

reduce both correlation and strength. So, we should choose an optimal value for the n.

Random forest and Decision tree algorithms are very similar except that in random forest

algorithm the process of selecting the root node and splitting the feature nodes is random.

The advantage with random forest algorithm is it can handle the missing values and if there

are sufficient number of trees are available then random forest algorithm does not over fit the

model. Random forests algorithm can handle thousands of features and it can handle large

amounts of data effectively.

Random forests algorithm begins with selecting n features out of total N features. After that

using the features it has selected it will choose a root node using best split approach. After

selecting root node, the daughter nodes will be calculated using same best split approach.

Then we repeat the above stages to create other trees in random forests.

15

After the taring finishes the trees are saved for future use. When a test case is given to

random forests model to perform the prediction we need to pass all the test features through

the rules created by every tree. These trees will give different results depending upon the

possible outcome and the result is the one which is predicted by most number of tress.

Fig 2: Random Forests Simplified

4.3 Support Vector Machines

Support vector machines (SVM) are supervised classification algorithm and it can be used for

binary classification problems. The binary classification problems have two possible

outcomes only and SVM model build a hyper plane which can separate the two possible

outcomes. SVM converts all the training examples into mapped points and find the best hyper

plane which separates the two categories with largest margin.

16

Fig 3: Support Vector Machines Classification

From the figure 3 we can see that there are many hyper planes that can separate the closed

questions and open questions. However, just by looking at the picture we can say the that the

thick middle line the best hyper plane that separates the two groups with maximum margin.

The goal of the SVM algorithm is to find that hyperplane which will fit the dataset with

maximum margin. Margin is the defined as the maximum distance between the hyper plane

and closest point in the dataset. Maximizing the margin is good because data points near the

hyper plane are more likely to be classified wrongs. So, we want as less data points as

possible nearer to the hyper plane. If the margin high the accuracy of model improves, and

the classifier will make more confident decisions. From this we can say that large margin is

important and once we decided about margin value SVM model will try to find the hyper

plane that will fit the training set with a maximum margin.

17

4.4 Apache Spark Machine Learning Library (MLlib)

We have trained our dataset with logistic regression, random forest, support vector machine

algorithms using Apache Spark Machine Learning Library. Apache Spark is a powerful open

source processing engine built around speed, ease of use, and sophisticated analytics. Apache

Spark is the largest open source project in data processing and it is used by enterprises across

a wide range of industries. Apache Spark proved to out-perform the previously popular big

data platform Hadoop by scale of 10 to 100 times.

Apache Spark has an advanced Directed Acyclic Graph execution engine that supports

acyclic data flow and in-memory computing. Apache Spark supports lazy evaluation. Lazy

evaluation is the method of analysing the data only when the there is a need. The functions in

spark are termed as Actions and Transformations. In Spark because of lazy evaluation,

whenever a transformation is called upon, the data is read and stored. No further processing is

done until an Action is called upon the data. Because of these two features in-memory

computing and Lazy evaluation spark is gaining lot of popularity.

Apache spark powers a stack of libraries including SQL, Data Frames, MLlib for machine

learning, GraphX, and Spark Streaming. You can combine these libraries seamlessly in the

same application. Apache Spark runs on top of Hadoop, Mesos, standalone, or in the cloud. It

can access diverse data sources including HDFS, Cassandra, HBase, and S3. You can use

spark interactively from the Scala, Python and R shells.

In this thesis we have used the Apache spark version 2.2.0 in standalone mode and we have

used JDBC connector to get the data from MySQL. We have used the Scala interface for this

thesis. We used different libraries in Apache Spark like Spark-SQL, Spark MLlib,

DataFrames.

18

CHAPTER 5

EXPERIEMENTS AND RESULTS

The final dataset which is prepared by joining the posts, users, comments table is available in

my local MySQL database. Using JDBC connector we have loaded that dataset into

standalone Apache Spark environment. We have used several user defined function (UDF),

Spark in-built function to compute the derived features. Apache Spark MLlib provides

feature extractors, feature transformers and we have used some of them. We have used TF-

IDF on the text part of the question to get tf-idf features. TF-IDF which is a feature

vectorization method widely used in text mining to reflect the importance of a term to a

document in the corpus.

We also used feature transformers like tokenizer to split the text in to words, and normalizer

to standardize all the features between 0 to1. We also used label indexer to index the output

column which is being predicted. For random forest algorithm we have used string indexer

because we need to index the features also. We have used vector assembler to bring together

all the features and form a feature vector. Vector assembler takes all the input columns and

returns a single vector which contains all the features. We can use the feature vector from

vector assembler to train and test the machine learning algorithms.

After assembling all the features using the vector assembler we have split dataset randomly.

70 percent of dataset is used to train the model using machine learning algorithms and

remaining 30 percent of data is used to test the model. We have trained a binary classification

model using logistic regression, random forest and support vector machines algorithms. We

have tested these models using test data and calculated accuracy using binary classification

evaluator. You can see the results in the table 5.

19

Table 5. Model Accuracy

Algorithm Used Accuracy of the Model using all the features
Logistic Regression 77.40
Random Forest 77.60
Support Vector Machines 66.32

As you can see from the above table model using the random forest algorithm gave the best

results followed by the model using the logistic regression.

We wanted to see how different features like text features, user features, comment features

and TF-IDF features contribute to the model and their effects the accuracy. Table 6 gives the

details of the features used and their corresponding accuracy. We trained all the below

machine learning models using logistic regression algorithm.

Table 6. Model accuracy using different feature sets

Features used for the model Accuracy
pf+tcf+cf+uf+tf-idf (all features) 77.40
pf+ tcf 75.43
pf+tf-idf 71.41
pf+cf 70.34
pf+uf 68.76
Pf 68.73

pf => features taken from the posts table fields

tcf=> text, code features derived from the body of the post

uf=>features taken or derived from the user table fields

cf=>features taken or derived from the comments table fields

tf-idf=> features from TF-IDF feature extractor for the text part of the question

As you can see from the table when we use features taken from posts table fields the accuracy

of the model is 68%. When we added the user features the improvement in the model

20

accuracy is negligible. From this we can conclude that the user features we have added does

not contribute much to the accuracy of the model.

When we added the comment features to the post features the accuracy improved by 1.6%.

When we added the features from tf-idf feature extractor to the post features the accuracy of

the model is improved by 2.6%.

When we added the features derived from body of the post to the post features the accuracy

of the model is improved by 6.7%. From this we can conclude that out of all feature sets, text

features contribute more to the accuracy of the model. When we used all the features model

has an accuracy of 77.40%.

21

CHAPTER 6

CONCLUSION

Stack Overflow is very popular question and answer website used by millions of

programmers asking thousands of questions every day. To maintain the quality of content,

Stack Overflow has some guide lines and the posts which do not follow those guide lines will

be closed. A study was conducted to build a machine learning classifier which can predict

whether a question will be closed or not. Model trained with random forest algorithm gave

the best results with an accuracy of 77.60%.

We also tested for importance of different feature groups like text, code features, user

features, comment features, TF-IDF features. We found that features derived from the body

of the post contribute more to the accuracy of the model whereas features derived from the

users table contribute less. We obtained best accuracy for the model when we used all the

features.

From the manual analysis of Stack Overflow website, we found that some of the closed

questions are were very popular and receiving lot of attention from the community even

though they are closed whereas some of the open questions should actually be closed. This is

where user comments, user interaction features will be helpful. We have used some features

related to the user, comments but it is possible to improve the model by including the more

features.

22

REFERENCES

[1] E. L. cG Galina and A. M. Kuznetsov, “Predict Closed Questions on StackOverflow.”

[2] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and G. Mishne, “Finding high-quality

content in social media,” in Proceedings of the 2008 international conference on web search

and data mining, 2008, pp. 1

[3] L. GALINA, K. ARTEM, and B. PAVEL, “Learning to predict closed questions on stack

overflow,” Ученые записки Казанского университета. Серия Физико-математические

науки, vol. 155, no. 4, 2013.83–194.

[4] C. Treude and M. P. Robillard, “Understanding Stack Overflow Code Fragments,” in

Software Maintenance and Evolution (ICSME), 2017 IEEE International Conference on,

2017, pp. 509–513.

[5] B. Li, T. Jin, M. R. Lyu, I. King, and B. Mak, “Analyzing and predicting question quality

in community question answering services,” in Proceedings of the 21st International

Conference on World Wide Web, 2012, pp. 775–782.

[6] A. Baltadzhieva and G. Chrupala, “Question quality in community question answering

forums: a survey,” Acm Sigkdd Explorations Newsletter, vol. 17, no. 1, pp. 8–13, 2015.

[7] D. Correa and A. Sureka, “Fit or unfit: analysis and prediction of ‘closed questions’ on

stack overflow,” 2013, pp. 201–212.

[8] M. Duijn, A. Kučera, and A. Bacchelli, “Quality questions need quality code: Classifying

code fragments on stack overflow,” in Proceedings of the 12th Working Conference on

Mining Software Repositories, 2015, pp. 410–413.

23

[9] Kaggle Stack Overflow competition ranked 10th on leader board.

https://github.com/saffsd/kaggle-stackoverflow2012

[10] What is a day in life of a stack overflow moderator?

http://meta.stackoverflow.com/a/166630/214223, February 2013

[11] Stack exchange data dump. http://www.clearbits.net/torrents/2076-aug-2012, August

2012.

[12] Working of Random Forest Algorithm

https://medium.com/@Synced/how-random-forest-algorithm-works-in-machine-learning-

3c0fe15b6674.

[13] C.-Y. J. Peng, K. L. Lee, and G. M. Ingersoll, “An introduction to logistic regression

analysis and reporting,” The journal of educational research, vol. 96, no. 1, pp. 3–14, 2002.

[14] J. Ali, R. Khan, N. Ahmad, and I. Maqsood, “Random forests and decision trees,” IJCSI

International Journal of Computer Science Issues, vol. 9, no. 5, pp. 272–278, 2012.

24

CODE

import org.apache.spark.ml
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.feature.Normalizer
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.StringIndexer
import scala.xml._
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{RandomForestClassificationModel,
RandomForestClassifier}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer,
VectorIndexer}
import org.apache.spark.ml.classification.LinearSVC
//imported the table from mysql
val posts = spark.read.format("jdbc").option("driver",
"com.mysql.jdbc.Driver").option("url","jdbc:mysql://localhost:3307/posts?ve
rifyServerCertificate=true&useSSL=true").option("dbtable",
"postsuserscomments").option("user", "root").option("password",
"deepu.555$").load()
//filled the null values with 0 in integer fields
val posts1=posts.na.fill(0)
//filled the null values string fields with 0
val posts2= posts1.na.fill("0")
//user defined functions to create a label based on closed date
val label:java.sql.Timestamp=>Int=(arg:java.sql.Timestamp)=>{if(arg==null)
0 else 1}
val labeludf = udf(label)
// udf to check wheteher age, locaton, aboutme filled or not
val filled:String=>Int=(arg:String)=>{if(arg==null) 0 else 1}
val filledudf = udf(filled)
//UDF to seperate code and text
case class
bodyresults(text:String,code:String,codeblocks:Int,FirstSen:String,LastSen:
String,FirstCode:String,LastCode:String)
val bodyudf = udf{ (body: String) => try {

val xmlElems = xml.XML.loadString(s"""<?xml version="1.0"
encoding="utf-8"?> <!DOCTYPE body [<!ENTITY nbsp " "> <!ENTITY ndash
"–"><!ENTITY mdash "—">]><body>${body}></body>""")

val code = (xmlElems\\"body"\\"code").text
val text = (xmlElems \\ "body").text.replace(s"$code" ,"")
val codeblocks = body.count(_=="<code");
var FirstSen = "0"
var LastSen = "0"
var FirstCode = "0"
var LastCode = "0"
if(text!=null){
val textsen = text.split("\n")
FirstSen = textsen(0)
LastSen = textsen.last

25

}
if(code!=null){
val codesen = code.split("\n")
FirstCode = codesen(0)
LastCode = codesen.last
}

bodyresults(text,code,codeblocks,FirstSen,LastSen,FirstCode,LastCode)
}catch{

case e: Exception => bodyresults("0","0",0,"0","0","0","0")
}

}

// udf to get text features
case class textresults(NoOfI:Int, NoOfYou:Int, NoOfQuestionMark:Int,
NoOfExclamationMark:Int, NoOfInterWords:Int, NoOfFind:Int, NoOfRecc:Int,
NoOfPls:Int, NoOfHelp:Int, NoOfInternet:Int)
val wordcount:String=>textresults = (text:String)=>{
var NoOfI = 0;
var NoOfYou = 0;
var NoOfQuestionMark = 0;
var NoOfExclamationMark =0;
var NoOfInterWords =0;
var NoOfFind = 0;
var NoOfRecc = 0;
var NoOfPls = 0;
var NoOfInternet = 0;
var NoOfHelp = 0;
for(rawWord <- text.split(" "))

{
val word = rawWord.toLowerCase
if(word.contains("recommend"))
NoOfRecc = NoOfRecc+1
if(word=="find"||word=="looking")

NoOfFind = NoOfFind+1
if(word=="i")
NoOfI= NoOfI+1
if(word=="you")
NoOfYou= NoOfYou+1
if(word.contains("?"))
NoOfQuestionMark= NoOfQuestionMark+1
if(word.contains("!"))
NoOfExclamationMark = NoOfExclamationMark+1

if(word=="what"|| word=="when" || word=="how" || word
=="where" || word == "why" || word =="whom")

NoOfInterWords = NoOfInterWords+1
if(word=="please")
NoOfPls = NoOfPls+1;

if(word=="help")
NoOfHelp = NoOfHelp+1;
if(word=="internet")
NoOfInternet = NoOfInternet+1;
}
textresults(NoOfI,NoOfYou,NoOfQuestionMark,NoOfExclamationMark,NoOfInterWor
ds,NoOfFind,NoOfRecc,NoOfPls,NoOfHelp,NoOfInternet)
}
val wordcountudf = udf(wordcount)
// udf to get features from the comments text

26

case class commentsresults(NoOfDuplicate:Int, SOUrl:Int, NoOfThanks:Int,
NoOfAns:Int, NoOfIntWords:Int, NoOfSorry:Int)
val comments:String=>commentsresults=(text:String)=>{

var NoOfDuplicate = 0;
var SOUrl = 0;
var NoOfThanks = 0;
var NoOfAns =0;
var NoOfIntWords = 0;

var NoOfSorry = 0;
for(rawWord <- text.split("[.\n?:]+"))

{
val word = rawWord.toLowerCase
if(word=="duplicate")
NoOfDuplicate = NoOfDuplicate+1
if(word=="stackoverflow"||word=="overflow")
SOUrl = SOUrl+1

if(word=="thanks"||word=="thank")
NoOfThanks= NoOfThanks+1
if(word=="answer"||word=="answers")
NoOfAns = NoOfAns+1
if(word=="what"|| word=="when" || word=="how" || word =="where" ||

word == "why" || word =="whom")
NoOfIntWords = NoOfIntWords+1

if(word=="sorry")
NoOfSorry = NoOfSorry+1

}

commentsresults(NoOfDuplicate,SOUrl,NoOfThanks,NoOfAns,NoOfIntWords,NoOfSor
ry)

}
val commentsudf = udf(comments)
// udf to get no.of tags
val tagcount = udf{(tags:String)=>

var NoOfTags = tags.count(_=='<');
NoOfTags
}

// udf to get no of sentences in code and text
val NoOfSent = udf{(arg:String)=>{

var NoOfSent = arg.split("[!?.:]+").length;
NoOfSent
}

}
//udf for reputation
val reputationudf = udf{(Reputation:Int)=> if(Reputation<1000) 0 else 1}
val posts3 = posts2.withColumn("codetext",
bodyudf($"Body")).withColumn("days",
coalesce(col("ClosedDate"),current_timestamp())).withColumn("labels",labelu
df(col("ClosedDate"))).withColumn("AgeFilled",filledudf(col("Age"))).withCo
lumn("AboutMeFilled",filledudf(col("AboutMe"))).withColumn("LocationFilled"
,filledudf(col("Location"))).withColumn("WebsiteUrlFilled",filledudf(col("W
ebsiteUrl"))).withColumn("NoOfTags",tagcount($"Tags"))
val posts4 = posts3.filter($"codetext.text" =!= "0")
val posts5 =
posts4.withColumn("all_text",concat($"codetext.text",$"Title",$"comments_te
xt")).withColumn("commentslen",length(col("comments_text"))).withColumn("co
mmentsresl",commentsudf($"comments_text")).withColumn("reputation",reputati
onudf($"Reputation")).withColumn("firstsenlen",length(col("codetext.FirstSe
n"))).withColumn("lastsenlen",length(col("codetext.LastSen"))).withColumn("
lastcodelen",length(col("codetext.LastCode"))).withColumn("firstcodelen",le
ngth(col("codetext.FirstCode"))).withColumn("codelength",length(col("codete

27

xt.code"))).withColumn("textlength",length(col("codetext.text"))).withColum
n("titlelength",length(col("Title"))).withColumn("textfeatures",wordcountud
f($"codetext.text")).withColumn("codesente",NoOfSent($"codetext.code")).wit
hColumn("textsente",NoOfSent($"codetext.text"))
val columns =
List("pid","all_text","comments_text","firstsenlen","commentslen","lastsenl
en","firstcodelen","lastcodelen","Score","ViewCount","NoOfTags","commentsre
sl.NoOfDuplicate","commentsresl.SOUrl","commentsresl.NoOfSorry","commentsre
sl.NoOfAns","commentsresl.NoOfThanks","commentsresl.NoOfIntWords","codetext
.code","codetext.FirstSen","codetext.LastSen","codetext.FirstCode","codetex
t.LastCode","codelength","textlength","titlelength","codetext.text","textfe
atures.NoOfI","textfeatures.NoOfYou","textfeatures.NoOfQuestionMark",
"textfeatures.NoOfInterWords","textfeatures.NoOfRecc","textfeatures.NoOfFin
d","textfeatures.NoOfHelp","textfeatures.NoOfPls","textfeatures.NoOfInterne
t","codesente", "textsente",
"textfeatures.NoOfExclamationMark","Title","Tags","ClosedDate","AnswerCount
","FavoriteCount","CommentCount","reputation","WebsiteUrlFilled","LocationF
illed","AgeFilled","AboutMeFilled","Views","UpVotes","DownVotes","labels")
val posts6 = posts5.select(columns.head,columns.tail:_*);
val posts7 =
posts6.withColumn("alltextlen",length(col("all_text"))).withColumn("codetex
tratio",$"codelength"/$"textlength").withColumn("firstcodesenratio",$"first
codelen"/$"firstsenlen").withColumn("lastcodesenratio",$"lastcodelen"/$"las
tsenlen").na.fill(0)
val tokenizer = new
Tokenizer().setInputCol("all_text").setOutputCol("words")
val Tokenized = tokenizer.transform(posts7)
val hashingTF = new
HashingTF().setInputCol("words").setOutputCol("TFfeatures").setNumFeatures(
10)
val tfModel = hashingTF.transform(Tokenized)
val idf = new IDF().setInputCol("TFfeatures").setOutputCol("IDFfeatures")
val idfModel = idf.fit(tfModel)
val posts8 = idfModel.transform(tfModel)
//all features
val assembler = new
VectorAssembler().setInputCols(Array("NoOfDuplicate","NoOfThanks","SOUrl","
NoOfAns","NoOfIntWords","NoOfSorry","NoOfHelp","NoOfPls","NoOfInternet","No
OfRecc","NoOfFind","Score","commentslen","firstcodelen","firstsenlen","last
codelen","lastsenlen","codetextratio","firstcodesenratio","lastcodesenratio
","NoOfTags","Views","codelength","IDFfeatures","textlength","titlelength",
"NoOfI", "NoOfYou", "NoOfQuestionMark", "NoOfExclamationMark",
"NoOfInterWords", "ViewCount", "AnswerCount","codesente", "textsente",
"FavoriteCount","CommentCount", "reputation", "UpVotes", "DownVotes",
"AgeFilled", "LocationFilled",
"AboutMeFilled")).setOutputCol("features_temp")
val df1 = assembler.transform(posts8)
val normalizer = new
Normalizer().setInputCol("features_temp").setOutputCol("features").setP(1.0
)
val df2 = normalizer.transform(df1)
val labelIndexer = new
StringIndexer().setInputCol("labels").setOutputCol("label")
val df3 = labelIndexer.fit(df2).transform(df2)
val featureslabel = List("features","label")
val df4 = df3.select(featureslabel.head,featureslabel.tail:_*)

// logistic regression
val Array(training,test) = df4.randomSplit(Array(0.7,0.3), seed = 234)

28

val lr = new
LogisticRegression().setMaxIter(10).setFeaturesCol("features").setLabelCol(
"label")
val model = lr.fit(training)
val predictions = model.transform(test);
println(s"Coefficients: ${model.coefficients} Intercept:
${model.intercept}")
val evaluator = new
BinaryClassificationEvaluator().setLabelCol("label").setRawPredictionCol("r
awPrediction").setMetricName("areaUnderROC")
val accuracy = evaluator.evaluate(predictions)
//random forest
val labelIndexer = new
StringIndexer().setInputCol("labels").setOutputCol("indexedLabel").fit(df2)
val featureIndexer = new
VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").set
MaxCategories(4).fit(df2)
val Array(trainingData, testData) = df2.randomSplit(Array(0.7, 0.3))
val rf = new
RandomForestClassifier().setLabelCol("indexedLabel").setFeaturesCol("indexe
dFeatures").setNumTrees(10)
val labelConverter = new
IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").se
tLabels(labelIndexer.labels)
val pipeline = new Pipeline().setStages(Array(labelIndexer, featureIndexer,
rf, labelConverter))
val model = pipeline.fit(trainingData)
val predictions = model.transform(testData)
val evaluator = new
BinaryClassificationEvaluator().setLabelCol("labels").setRawPredictionCol("
rawPrediction").setMetricName("areaUnderROC")
val accuracy = evaluator.evaluate(predictions)
//svm
val lsvc = new LinearSVC().setMaxIter(2)
val lsvcModel = lsvc.fit(training)
println(s"Coefficients: ${lsvcModel.coefficients} Intercept:
${lsvcModel.intercept}")
val predictions = lsvcModel.transform(test);
val evaluator = new
BinaryClassificationEvaluator().setLabelCol("label").setRawPredictionCol("r
awPrediction").setMetricName("areaUnderROC")
val accuracy = evaluator.evaluate(predictions)

		2018-01-19T11:22:13-0500
	Electronic Theses and Dissertations Program

