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ABSTRACT

The goal of this thesis is to construct the principal series representations of GL (2).

We do this in three parts. The aim of Part II is to become acquinted with representation

theory. We observe rudimentary results and examples using prerequisite knowledge from

linear algebra and group theory. We begin Part III by inducing new representations from

old ones. A key component in the classification of induced representations is Mackey’s

theorem. A generous portion of this thesis is dedicated to the proof of Mackey’s theorem.

At last is Part IV where we construct the principal series representations. This constuction

is motivated by the Bruhat decomposition of GL (2) into the Borel subgroup and is achieved

by counting the conjugacy classes of GL2 (Fq).

.
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Part I

Introduction

Representation theory studies the ways in which groups act on vector spaces. By studying

actions on vector spaces, we obtain further information about a group by means of linear

transformations and various properties of matrices. In general, the subject of representation

theory is significant because it reduces a probem in abstract algebra to a problem in linear

algebra.

One of the problems in representation theory is to construct and classify all irreducible

representations. This problem is welcomed by Theorem 3. The eventual goal of this thesis is

to partially solve this problem. We do this by constructing principal series representations

of GL (2).

Part II comprises of the building blocks of representation theory and is heavily based

on [2]. We are formally introduced to the concept of construction in Example 2.8 where we

construct all irreducible representations of Zn. We complete this part of this thesis with a

brief encounter of character theory which is essential in the study of representation theory.

Part III details the way in which we construct representations of a group by the repre-

sentations of its subgroup. An important component in induced representations is Mackey’s

theorem 7.2. We will see that an induced irreducible representation need not be irreducible;

we employ Mackey’s theorem to determine its irreducibility. The proof of Mackey’s theorem

provided in this thesis is based on exercises in the published lecture notes [1].

Part IV concludes this thesis. Based on [1], we constuct the principal series representa-

tions of GL2 (Fq). We do this by the Bruhat decomposition of GL2 (Fq), the Borel subgroup,

and our knowledge of double cosets. Lastly, we will illustrate that the classification the con-

jugacy classes of GL2 (Fq) is the indeed the classification of irreducible representations of

GL2 (Fq).
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Part II

Preliminaries of Representation Theory

1 Review of Linear Algebra

In this section, we review the linear algebra which shall be assumed or needed for future

reference.

Definition 1.1. Let V be a complex vector space. An inner product on V is a function

⟨⋅, ⋅⟩ ∶ V × V → C

satisfying that for each u,v,w ∈ V and λ ∈ C,

1. ⟨v,v⟩ ≥ 0 and ⟨v,v⟩ = 0 if and only if v = 0,

i.e., ⟨⋅, ⋅⟩ is positive definite;

2. ⟨v,w⟩ = ⟨w,v⟩,

i.e., ⟨⋅, ⋅⟩ is conjugate symmetric;

3. ⟨v +w,u⟩ = ⟨v,u⟩ + ⟨w,u⟩,

i.e., ⟨⋅, ⋅⟩ is additive in the first argument;

4. ⟨λv,w⟩ = λ ⟨v,w⟩,

i.e., ⟨⋅, ⋅⟩ is homogeneous in the first argument.

The pair (V, ⟨⋅, ⋅⟩) is an inner product space.

Definition 1.2. For [v1, . . . , vn]
T

, [w1, . . . ,wn]
T

∈ Cn, the standard inner product on Cn is

⟨[v1, . . . , vn]
T

, [w1, . . . ,wn]
T

⟩ =
n

∑
k=1

vkwk.

Definition 1.3. Let (V, ⟨⋅, ⋅⟩) be an inner product space. If u,v ∈ V with ⟨u,v⟩ = 0, then

u,v are orthogonal and we write u ⊥ v. For any w ∈ V , the orthogonal complement to w is
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the set w⊥ = {v ∈ V ∣ ⟨v,w⟩ = 0}. If W is a subspace of V , then the orthogonal complement

of W is the subspace W ⊥ = {v ∈ V ∣ ⟨v,w⟩ = 0 ∀w ∈W}.

Definition 1.4. Amatrix A ∈Mn (C) is orthogonal if the column vectors of A = {a1, . . . ,an}

are orthonormal, that is, if

aj ⋅ ak = aj
Tak = δjk,

where

δjk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 j = k

0 j ≠ k.

The right-most equality says that AT = A−1. Therefore, the orthogonal group is the collection

of orthogonal matrices On (C) = {A ∈ GLn (C) ∶ AT = A−1} and is a subgroup of GLn (C).

Definition 1.5. A matrix A ∈ GLn (C) is unitary if A∗ = A−1. Here, A∗ is the ad-

joint, or conjugate-transpose, of A, defined by A∗ = AT . The unitary group is Un (C) =

{A ∈ GLn (C) ∶ A∗ = A−1}.

Proposition 1.6. Let ⟨⋅, ⋅⟩ be the standard inner product on Cn. Then A ∈ Un (C) exactly

when ⟨Av,Aw⟩ = ⟨v,w⟩.

Proof. Let ⟨⋅, ⋅⟩ be the usual inner product on Cn and let A ∈ Un (C). For x,y ∈ Cn,

⟨x,Ay⟩ =
n

∑
j=1

xj
n

∑
k=1

ajkyk

=
n

∑
j=1

n

∑
k=1

ajkxjyk

=
n

∑
j=1

n

∑
k=1

a∗kjxjyk

= ⟨A∗x,y⟩ .

So for each A ∈Mn (C), the adjoint A∗ of A has the property that ⟨x,Ay⟩ = ⟨A∗x,y⟩ for all

x,y ∈ Cn.

Suppose A ∈ Un (C) and v,w ∈ Cn. Then

⟨Av,Aw⟩ = ⟨A∗Av,w⟩ = ⟨v,w⟩ .
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Thus, ⟨Av,Aw⟩ = ⟨v,w⟩ for each A ∈ Un (C) and v,w ∈ Cn.

Now, let A ∈ GLn (C). For each v,w ∈ Cn, suppose ⟨Av,Aw⟩ = ⟨v,w⟩. Let B ∈ GLn (C)

such that B = A∗A. Considering the standard basis {e1, . . . ,en} of Cn,

⟨Aei,Aej⟩ = ⟨A∗Aei,ej⟩ = ⟨Bei,ej⟩

where

⟨ei,ej⟩ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 i = j

0 i ≠ j.

If i = j, then

1 = ⟨ei,ei⟩ = ⟨Bei,ei⟩ = ⟨[b1i, . . . , bii, . . . , bni]
T

, [0, . . . ,1, . . . ,0]
T

⟩ = bii.

If i ≠ j,

0 = ⟨Bei,ej⟩ = ⟨[b1i, . . . , bji, . . . , bni]
T

, [0, . . . ,1, . . . ,0]
T

⟩ = bji.

We have that A∗A = B = I since

bij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 i = j

0 i ≠ j.

So for A ∈ GLn (C) and every v,w ∈ Cn, if ⟨Av,Aw⟩ = ⟨v,w⟩, then A ∈ Un (C).

Hence, A ∈ Un (C) exactly when ⟨Av,Aw⟩ = ⟨v,w⟩.

2 Basic Definitions and Examples

Assume G to be a finite group, and V to be a complex vector space.

Definition 2.1. The pair (ϕ,V ) is a representation of G on V if ϕ ∶ G → GL (V ) is a

homomorphism. The degree of ϕ is the dimension of V .

Rather than having a map from a group to the set of invertible linear transformations,

we often have examples of a map from a group into the general linear group. The following

lemma enables this abuse of notation.
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Lemma 2.2. GL (Cn) ≃ GLn (C) (as groups).

Proof. Define φ ∶ GLn (C) → GL (Cn) by φ (A) = TA, where TA ∶ Cn → Cn is given by

TA (v) = Av for every A ∈ GLn (C) and v ∈ Cn. Here, we note that TA is linear and bijective.

To show that GL (Cn) ≃ GLn (C), we will show that φ is a bijective homomorphism. To

begin, let A, B ∈ GLn (C) and v ∈ Cn. Because TA, TB ∈ GL (Cn), we have

φ (A)φ (B) (v) = TA (v)TB (v) = TAB (v) = φ (AB) (v) .

Therefore, φ (A)φ (B) = φ (AB) and φ is a group homomorphism.

By way of definition, φ is surjective. To see that φ is injective, suppose φ (A) = φ (B).

So φ (A) (v) = φ (B) (v) for each v ∈ Cn. Then TA (v) = TB (v). So Av = Bv for each

v ∈ Cn. Thus, A = B and φ is injective.

Hence, since φ is a bijective homomorphism, GL (Cn) ≃ GLn (C).

Definition 2.3. Define ϕ ∶ Sn → GLn (C) on the standard basis by ϕ (σ) (ei) = eσ(i). This

is the standard representation of Sn. The matrix for ϕ (σ) is obtained by permuting the

rows of the identity matrix according to σ.

Example 2.4. Consider ϕ ∶ S3 → GL(C3). By Lemma 2.2, GL(C3) ≅ GL3(C) and so we

have the standard representation ϕ ∶ S3 → GL3(C). Because the pair of cycles (1 2) and
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(1 2 ⋯ n) generate Sn, we have that (1 2) and (1 2 3) generate S3. Thus,

ϕ(1 2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ϕ(1 2)2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ϕ(e)

ϕ(1 2 3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ϕ(1 2 3)2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

0 0 1

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ϕ(1 3 2)

ϕ(1 2)ϕ(1 2 3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ϕ(2 3)

ϕ(1 2)ϕ(1 2 3)2 = ϕ(1 2)ϕ(1 3 2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

0 0 1

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1

0 1 0

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ϕ(1 3)

Definition 2.5. Let (ϕ,V ) be a representation of G. A subspace W of V is G-invariant if

ϕ (g) (w) ∈W for all g ∈ G and w ∈W .

More precisely, if W is a G-invariant subspace of V , then W is a subrepresentation of V .

In this thesis, the two terms will be used interchangeably.

Definition 2.6. A representation is irreducible if it contains no proper and nontrivial sub-

representations.

Example 2.7. Define ϕ ∶ GL2 (C) → GL (C2) by ϕ (A) (v) = Av. Let W be a nontrivial

GL2 (C)-invariant subspace of C2 and let w ∈ W . We will show that ϕ is irreducible by
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showing that W = C2. We have three possible cases for w.

Case 1. Say w =
⎡⎢⎢⎢⎢⎢⎣

a

0

⎤⎥⎥⎥⎥⎥⎦
, a ≠ 0. Then

1

a
w =

⎡⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎦
∈ W . Because W is GL2 (C)-invariant,

ϕ (A)
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
= A

⎡⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎦
∈ W for every A ∈ GL2 (C). As

⎡⎢⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎥⎦
is a basis element of GL2 (C),

we have that

⎡⎢⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎦
∈ W . Therefore,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

are two linearly independent

vectors in W . Since dim (W ) ≤ dim (C2) = 2,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

is a basis for W . Hence, W = C2.

Case 2. Say w =
⎡⎢⎢⎢⎢⎢⎣

0

b

⎤⎥⎥⎥⎥⎥⎦
, b ≠ 0. Then

1

b
w =

⎡⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎦
∈ W . Since W is GL2 (C)-invariant,

ϕ (A)
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
= A

⎡⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎦
∈ W for every A ∈ GL2 (C). And because

⎡⎢⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎥⎦
is a basis element

of GL2 (C), we have that

⎡⎢⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎦
∈ W . Thus

⎡⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎦
∈ W . But

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

are

two linearly independent vectors in W and therefore

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1

0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

is a basis for W . Hence

W = C2.

Case 3. Say w =
⎡⎢⎢⎢⎢⎢⎣

a

b

⎤⎥⎥⎥⎥⎥⎦
, a, b ≠ 0 and consider

⎡⎢⎢⎢⎢⎢⎣

b −a

0 1

⎤⎥⎥⎥⎥⎥⎦
∈ GL2 (C). We have that

⎡⎢⎢⎢⎢⎢⎣

b −a

0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a

b

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

0

b

⎤⎥⎥⎥⎥⎥⎦
∈ W and thus

⎡⎢⎢⎢⎢⎢⎣

a

b

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0

b

⎤⎥⎥⎥⎥⎥⎦
∈ W . Since

⎡⎢⎢⎢⎢⎢⎣

0

b

⎤⎥⎥⎥⎥⎥⎦
∈ W , then by the second case,

W = C2.

Thus if W is a nontrivial GL2 (C)-invariant subspace of C2, then W = C2. Because C2

contains no proper and nontrivial GL2 (C)-invariant subspaces, ϕ is irreducible.

We will now find all irreducible representations of Zn.

Example 2.8. Suppose φ ∶ Zn → GL (V ) is an irreducible representation of Zn. We will

prove in Corollary 3.8 that the degree of an irreducible representation of an abelian group

is one. So, since Zn is an abelian group, deg (φ) = 1, and by the definition of degree,
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dim (V ) = 1. Since GL1 (V ) ≃ C×, we will find all irreducible representations of Zn by

finding all homomorphisms of φ ∶ Zn → C×.

Let φ ∶ Zn → C× be the homomorphism given by φ (0) = 1. Put φ (1) = λ ∈ C×. Then

1 = φ (0) = φ (n) = φ (1 + 1 +⋯ + 1) = φ (1) + φ (1) +⋯ + φ (1) = φ (1)n = λn,

and thus 1 = λn. However, since 1 = e2πi, then λn = e2πi and so λ = exp(2πi

n
). Let

λ0 = exp(2πi

n
). Following the above list of equalities, φ (1) is an nth root of unity and thus

we get n solutions: λ1
0, λ

2
0, λ

3
0, . . . , λ

n−1
0 ,1. Therefore, for m = 1,2, . . . , n− 1, n, we may define

φm ∶ Zn → C× by φm (1) = φ (1)m = λm where λm = exp(2πim

n
). Hence, φ1, φ2, . . . , φn−1, φn

are all of the irreducible representations of Zn.

Definition 2.9. An intertwiner (intertwining operator) between two representations (ϕ,V )

and (ψ,W ) is a linear map T ∶ V → W such that ψ (g) (T (v)) = T (ϕ (g) (v)). The set of

all intertwining operators is the subset HomG (V,W ) ⊆ Hom (V,W ).

In other words, the linear map T commutes with the group action on G and we have the

following commutative diagram.

V V

W W

ϕ(g)

T T

ψ(g)

Proposition 2.10. Let T ∈ HomG (V,W ). Then Ker (T ) is a subrepresentation of V and

T (V ) = Im (T ) is a subrepresentation of W .

Proof. Let (ϕ,V ) and (ψ,W ) be representations of G and let T ∈ HomG (V,W ). For each

v ∈ Ker (T ) and g ∈ G,

T (ϕ (g) (v)) = ψ (g) (T (v)) = ψ (g) (0) = 0.

So ϕ (g) (v) ∈ Ker (T ) and Ker (T ) is G-invariant.
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Now, say w ∈ Im (T ) such that w = T (v) for some v ∈ V . Then

ψ (g) (w) = ψ (g) (T (v)) = T (ϕ (g) (v)) ,

and so T (ϕ (g) (v)) = ψ (g) (w) ∈ Im (T ). Thus Im (T ) is G-invariant, and furthermore,

T (V ) = Im (T ).

Although HomG (V,W ) is a subset of Hom (V,W ) by definition, we have yet to describe

HomG (V,W ) as a vector space. We do this in the proposition below.

Proposition 2.11. Let (ϕ,V ) and (ψ,W ) be representations of G. Then HomG (V,W ) is

a subspace of Hom (V,W ).

Proof. Let (ϕ,V ) and (ψ,W ) be representations ofG. For each g ∈ G, T1, T2 ∈ HomG (V,W ),

and α1, α2 ∈ C,

(α1T1 + α2T2)ϕ (g) = α1T1ϕ (g)+α2T2ϕ (g) = α1ψ (g)T1+α2ψ (g)T2 = ψ (g) (α1T1 + α2T2) .

Thus (α1T1 + α2T2)ϕ (g) = ψ (g) (α1T1 + α2T2) and so α1T1 + α2T2 ∈ HomG (V,W ). That

is, HomG (V,W ) has the additional structure of a vector space and hence HomG (V,W ) is

a subspace of Hom (V,W ).

Definition 2.12. Two representations (ϕ,V ) and (ψ,W ) are equivalent, and we write ϕ ∼ ψ,

if there exists T ∈ HomG (V,W ) such that T is invertible.

Definition 2.13. Let (ϕ1, V1) and (ϕ2, V2) be representations of G. Then their direct sum

ϕ1 ⊕ ϕ2 ∶ G→ GL (V1 ⊕ V2)

is given by

(ϕ1 ⊕ ϕ2) (g) (v1,v2) = (ϕ1 (g) (v1) , ϕ2 (g) (v2)) .

Table 1 briefly summarizes our current understanding of representation theory. In other

words, the information we have obtained by studying group actions on a vector space are

disguised in the following manner.
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Table 1: Analogies between groups, vector spaces, and representations

Groups Vector spaces Representations

subgroup subspace G-invariant subspace

simple group one-dimensional subspace irreducible representation

direct product direct sum direct sum

isomorphism isomorphism equivalence

Definition 2.14. A representation (ϕ,V ) of G is completely reducible if V = V1⊕V2⊕⋅ ⋅ ⋅⊕Vn,

where each Vi is a nontrivial G-invariant subspace and ϕVi is irreducible for all i = 1, . . . , n.

Equivalently, ϕ is completely reducible if ϕ ∼ ϕ1 ⊕ ϕ2 ⊕ ⋅ ⋅ ⋅ ⊕ ϕn, where each ϕi is an

irreducible representation.

Definition 2.15. A representation (ϕ,V ) of G is decomposable if V =W1 ⊕W2 where W1

and W2 are nontrivial G-invariant subspaces. Otherwise, V is indecomposable.

Lemma 2.16. Let (ϕ,V ) be equivalent to a decomposable representation. Then ϕ is decom-

posable.

Proof. Let ϕ ∶ G → GL (V ) and ψ ∶ G → GL (W ) be two representations of G such that

ϕ ∼ ψ. Then there exists an isomorphism T ∶ V → W such that ψ (g) = Tϕ (g)T −1 for

every g ∈ G. Assume W1,W2 are nontrivial G-invariant subspaces of W , and let V1, V2 be

subspaces of V . Suppose ψ is decomposable. Thus, W = W1 ⊕W2. Define T (Vi) = Wi for

i = 1,2.

Let v ∈ V . Since T ∶ V →W , there existsw ∈W such that T (v) =w. SinceW =W1⊕W2,

let w1 ∈ W1 and w2 ∈ W2 with w = w1 +w2. Therefore, T (v) = w1 +w2. Recall that for

i = 1,2, the preimage ofWi is T −1 (Wi) = {x ∈ Vi ∶ T (x) ∈Wi}. Moreover, Vi = T−1 (Wi). So,

since T (v) = w1 +w2, we have that v = T−1 (w1) + T−1 (w2) ∈ V1 + V2. Thus, v ∈ V1 + V2.

Because v ∈ V was arbitrary, it follows that V = V1 + V2.

Now, suppose v ∈ V1 ∩ V2. By definition of T , T (V1 ∩ V2) = W1 ∩W2, and so T (v) ∈

W1 ∩W2. But W1 ∩W2 = {0} since W =W1 ⊕W2. So, T (v) = 0 and v ∈ ker (T ). Because

T ∶ V → W is injective, ker (T ) = {0}. Thus, v = 0. Because v ∈ V1 ∩ V2 was arbitrary, it

follows that V1 ∩ V2 = {0}. Therefore, V = V1 + V2 and V1 ∩ V2 = {0} and hence V = V1 ⊕ V2.
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Let v ∈ Vi. Because ϕ ∼ ψ, we have that ϕ (g) (v) = T−1ψ (g)T (v) for every g ∈ G.

Recall that for i = 1,2, T (Vi) = Wi, and thus T (v) ∈ Wi. Say T (v) = w for some w ∈ Wi.

So, ϕ (g) (v) = T −1ψ (g)T (v) = T−1ψ (g) (w). Since Wi is G-invariant, ψ (g) (w) ∈Wi. Say

ψ (g) (w) = x for some x ∈Wi. So, ϕ (g) (v) = T −1ψ (g) (w) = T −1 (x). Because T (Vi) =Wi,

T−1 (x) ∈ Vi. Therefore, ϕ (g) (v) = T−1(x) ∈ Vi, and thus ϕ (g) (v) ∈ Vi for every v ∈ Vi.

Hence, V1 and V2 are nontrivial G-invariant subspaces of V . Since V = V1 ⊕ V2 and V1 and

V2 are nontrivial G-invariant subspaces of V , it follows that ϕ is decomposable.

Hence, if ϕ ∶ G → GL (V ) is equivalent to a decomposable representation, then ϕ itself

must be decomposable.

Other types of representations generate similar results. For this reason, the following

two proofs have been omitted.

Lemma 2.17. Let (ϕ,V ) be equivalent to an irreducible representation. Then ϕ is irre-

ducible.

Lemma 2.18. Let (ϕ,V ) be equivalent to a completely reducible representation. Then ϕ is

completely reducible.

3 Maschke’s Theorem

An alternative approach when studying finite groups is to consider the classification of

groups. With this in mind, it is natural to inspect the decomposition of representations.

This objective is put forth and met by Maschke’s Theorem.

Recall the definition of inner product in Definition 1.1 and the result of Proposition 1.6.

Definition 3.1. A representation (ϕ,V ) of G is unitary if for each g ∈ G and v,w ∈ V ,

⟨ϕ (g)v, ϕ (g)w⟩ = ⟨v,w⟩.

We are interested in unitary representations for the reason brought to light in the fol-

lowing lemma. That is, every indecomposable unitary representation is irreducible.

Proposition 3.2. Let (ϕ,V ) be a unitary representation of a group. Then ϕ is either

irreducible or decomposable.
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Proof. Suppose (ϕ,V ) is a reducible unitary representation of G. LetW be a subspace of V

such that W is a nontrivial proper subrepresentation of V . Because W is a proper subspace

of V , then W ⊥ is a proper subspace of V as well, and V =W ⊕W ⊥.

The definition of orthogonal complement ensures that for each w ∈ W and w′ ∈ W ⊥,

⟨w′,w⟩ = 0. And since ϕ is unitary,

⟨ϕ (g) (w′) , ϕ (g) (w)⟩ = ⟨w′,w⟩ = 0,

for all g ∈ G.

As W is a subrepresentation of V , ϕ (g) (w) ∈W for every g ∈ G. Thus, for the sake of

simplicity, denote ϕ (g) (w) as the arbitrary vector u in W . Substituting u into ϕ (g) (w)

yields ⟨ϕ (g) (w′) ,u⟩ = 0 for each g ∈ G, w′ ∈W ⊥, and u ∈W . It follows that ϕ (g) (w′) ∈W ⊥

for all g ∈ G, and so W ⊥ is a subrepresentation of V . Therefore, V decomposes into two

nontrivial subrepresentations, particularly V =W ⊕W ⊥. Hence, V is decomposable.

Proposition 3.3. Every representation of a finite group is equivalent to a unitary represen-

tation.

Proof. Let ϕ ∶ G → GL (V ) be a representation of G where dim (V ) = n. For some basis B

of V , let T ∶ V → Cn be the isomorphism taking coordinates with respect to B. Then setting

ψ (g) = Tϕ (g)T −1 for each g ∈ G yields a representation ψ ∶ G→ GLn (C) equivalent to ϕ.

Let ⟨⋅, ⋅⟩ be the standard inner product on Cn. For every v,w ∈ V , define

(v,w) = ∑
g∈G

⟨ψ (g) (v) , ψ (g) (w)⟩

as a new inner product product on Cn, denoted by (⋅, ⋅). Note that the above summation

requires G to be finite.

Since for each v ∈ V , ⟨ψ (g) (v) , ψ (g) (v)⟩ ≥ 0, then clearly

(v,v) = ∑
g∈G

⟨ψ (g) (v) , ψ (g) (v)⟩ ≥ 0.
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Also, for every v ∈ V , ⟨v,v⟩ ≥ 0 and ⟨v,v⟩ = 0 if and only if v = 0. Say

0 = (v,v) = ∑
g∈G

⟨ψ (g) (v) , ψ (g) (v)⟩ .

Since we are summing over all ofG and ⟨ψ (g) (v) , ψ (g) (v)⟩ ≥ 0, then ⟨ψ (g) (v) , ψ (g) (v)⟩ =

0 for every g ∈ G. Hence, ⟨ψ (1) (v) , ψ (1) (v)⟩ = ⟨v,v⟩ and so v = 0. Thus, (⋅, ⋅) is positive

definite.

Let v,w ∈ V . Then

(v,w) = ∑
g∈G

⟨ψ (g) (v) , ψ (g) (w)⟩

= ∑
g∈G

⟨ψ (g) (w) , ψ (g) (v)⟩

= (w,v).

Thus, (⋅, ⋅) is conjugate symmetric.

Let v,w,x ∈ V and α,β ∈ C. Then

(αv + βw,u) = ∑
g∈G

⟨ψ (g) (αv + βw) , ψ (g) (u)⟩

= ∑
g∈G

[α ⟨ψ (g) (v) , ψ (g) (u)⟩ + β ⟨ψ (g) (w) , ψ (g) (u)⟩]

= α∑
g∈G

⟨ψ (g) (v) , ψ (g) (u)⟩ + β ∑
g∈G

⟨ψ (g) (w) , ψ (g) (u)⟩

= α (v,u) + β (w,u) .

Thus, (⋅, ⋅) is linear. Therefore, (⋅, ⋅) is indeed an inner product on Cn.

We must now show that ϕ is unitary. Let h ∈ G and v,w ∈ V . As ψ ∶ G→ GLn (C) ≃ Cn,

ψ (h) (v) , ψ (h) (w) ∈ Cn, and thus by the definition of (⋅, ⋅),

(ψ (h) (v) , ψ (h) (w)) = ∑
g∈G

⟨ψ (g)ψ (h) (v) , ψ (g)ψ (h) (w)⟩ = ∑
g∈G

⟨ψ (gh) (v) , ψ (gh) (w)⟩ .

Take x ∈ G such that x = gh. Let k ∈ G. Since g ranges over all of G, then when g = kh−1,
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x = k. So x ranges over all of G and thus,

(ψ (h) (v) , ψ (h) (w)) = ∑
g∈G

⟨ψ (gh) (v) , ψ (gh) (w)⟩ = ∑
x∈G

⟨ψ (x) (v) , ψ (x) (w)⟩ = (v,w) .

Therefore, (ψ (h) (v) , ψ (h) (w)) = (v,w) for all h ∈ G and v,w ∈ V , and so ψ is unitary.

Hence, every representation of a finite group G is equivalent to a unitary representation.

Corollary 3.4. Let ϕ ∶ G → GL (V ) be a nontrivial representation. Then ϕ is either

irreducible or decomposable.

Proof. Let ϕ ∶ G → GL (V ) be a nontrivial representation of G. By Proposition 3.3, ϕ

is equivalent to a unitary representation, say ψ. And by Proposition 3.2, ψ is either irre-

ducible or decomposable. If ψ is irreducible, then by Lemma 2.17, ϕ is irreducible. If ψ is

decomposable, then by Lemma 2.16, ϕ is decomposable.

Therefore, every nontrivial representation is either irreducible or decomposable.

This corollary is applicable so long as the indicated group is finite. In other words, for

some nontrivial representation (ϕ,V ) of an infinite group G, ϕ may be both reducible and

indecomposable.

Example 3.5. Define ϕ ∶ Z→ GL2 (C) by

ϕ (n) =
⎡⎢⎢⎢⎢⎢⎣

1 n

0 1

⎤⎥⎥⎥⎥⎥⎦
.

Show that ϕ is neither irreducible nor decomposable.

Proof. Let ϕ ∶ Z→ GL2 (C) ≃ GL (C2) be as defined above. Then (ϕ,C2) is a representation

of Z since for each a, b ∈ Z,

ϕ (a)ϕ (b) =
⎡⎢⎢⎢⎢⎢⎣

1 a

0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 b

0 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 a + b

0 1

⎤⎥⎥⎥⎥⎥⎦
= ϕ (a + b) .

14



Consider the standard basis {e1,e2} of C2. Since ϕ (n) (e1) = e1, ⟨e1⟩ is a Z-invariant

subspace of C2. Because ⟨e1⟩ is a proper nontrivial subrepresentation of Z, then (ϕ,C2) is

not irreducible. Note that ϕ (n) (e2) =
⎡⎢⎢⎢⎢⎢⎣

n

1

⎤⎥⎥⎥⎥⎥⎦
∉ ⟨e2⟩, and so ⟨e2⟩ is not a Z-invariant subspace

of C2.

Assume (ϕ,C2) is decomposable. Then there exists a nontrivial subrepresentation V of

C2 such that C2 = ⟨e1⟩⊕ V . Suppose vectors in V are of the form v = ae1 + be2 ∈ V , b ≠ 0.

So,

ϕ (1) (v) = ϕ (1) (ae1 + be2)

=
⎡⎢⎢⎢⎢⎢⎣

1 1

0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a

b

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

a + b

b

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

a

0

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

b

0

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0

b

⎤⎥⎥⎥⎥⎥⎦
,

and

ϕ (1) (v) − v =
⎡⎢⎢⎢⎢⎢⎣

a

0

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

b

0

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0

b

⎤⎥⎥⎥⎥⎥⎦
−
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

a

0

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

0

b

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
=
⎡⎢⎢⎢⎢⎢⎣

b

0

⎤⎥⎥⎥⎥⎥⎦
= be1 + 0e2 = be1 ∈ V.

Therefore, e1 ∈ V and e2 = v−ae1
b ∈ V , or in other words, V = C2. It follows that ⟨e1⟩ is the

only nontrivial subrepresentation of C2. Hence, ϕ is not decomposable.

We are now ready to prove our first fundamental result, Maschke’s theorem, which

enables us to reduce all finite representations into irreducible representations. The proof

of this theorem is by induction and is parallel to the proof of the existence of a prime

factorization of an integer or of a factorization of polynomials into irreducibles.

Theorem 3.6 (Maschke’s). Every representation is completely reducible.

Proof. Let (ϕ,V ) be a representation of G.

Base Case. Suppose dim (V ) = 1. Then V has no nontrivial proper subspaces. So ϕ is

15



irreducible.

Inductive Hypothesis. Assume every representation of degree less than or equal to n of

a finite group is completely reducible.

Inductive Step. Suppose dim V = n + 1. If ϕ is irreducible, then we are done. If ϕ is

not irreducible, then ϕ is decomposable by Corollary 3.4. That is, there exists nontrivial

G-invariant subspaces V1, V2 of V such that V = V1 ⊕ V2. Because the degrees of ϕV1 and

ϕV2 are strictly less than the degree of ϕ, then by our inductive hypothesis, ϕV1 and ϕV2 are

completely reducible. Therefore, V1 = U1 ⊕⋯⊕ Us and V2 =W1 ⊕⋯⊕Wr where Ui,Wj are

G-invariant subspaces of V1 and V2, respectively, and the subrepresentations ϕUi , ϕWj are

irreducible for each i ∈ {1, . . . , s} and j ∈ {1, . . . , r}. Therefore,

V = V1 ⊕ V2 = U1 ⊕⋯⊕Us ⊕W1 ⊕⋯⊕Wr,

and so V is completely reducible. Hence, every representation of a finite group is completely

reducible.

Lemma 3.7 (Schur’s lemma). Let (ϕ,V ) and (ψ,W ) be irreducible representations of G

and let T ∈ HomG (V,W ). Then either T is invertible or T = 0. Consequently:

(a) If ϕ ≁ ψ, then HomG (V,W ) = 0,

i.e., if ϕ ≁ ψ, then there exists no intertwining operator;

(b) If ϕ = ψ, then T = λI for some λ ∈ C,

i.e., if ϕ ∼ ψ, then T is multiplication by a scalar.

Proof. Let (ϕ,V ) and (ψ,W ) be irreducible representations of G and T ∶ V → W be in

HomG (V,W ).

If T = 0, we are done. Assume that T ≠ 0. By Proposition 2.10, Ker (T ) is a G-invariant

subspace of V , and so either Ker (T ) = V or Ker (T ) = 0. As Ker (T ) = {v ∈ V ∶ T (v) = 0W },

then Ker (T ) = V implies that T = 0. But T ≠ 0 and so Ker (T ) ≠ V . Thus, Ker (T ) = 0 and

hence T is injective.

By the same proposition, Im(T ) is aG-invariant subspace ofW , and so either Im (T ) =W

or Im (T ) = 0. As Im (T ) = {w ∈W ∶ T (v) =w for some v ∈ V }, then Im (T ) = 0 implies that
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T = 0. But T ≠ 0 and so Im(T ) ≠ 0. Thus, Im (T ) =W and hence T is surjective. Therefore,

T is bijective and thus, T is invertible.

(a) Assume HomG (V,W ) ≠ 0. Then there exists T ≠ 0 in HomG (V,W ). Because T ∈

HomG (V,W ) and T ≠ 0, then as proven above, T is invertible. Since T ∈ HomG (V,W )

is invertible, it follows that T is an isomorphism, i.e., ϕ ∼ ψ. Hence, if HomG (V,W ) ≠ 0,

then ϕ ∼ ψ. By the contrapositive, if ϕ ≁ ψ, then HomG (V,W ) = 0.

(b) Suppose ϕ = ψ. Then T ∶ V → V . Since we are working over the algebraically closed

field C, T must have at least one eigenvalue. So, let λ ∈ C such that λ is an eigenvalue of

T . But λ is an eigenvalue of T if and only if det (T − λI) = 0. Because det (T − λI) = 0,

then T − λI is not invertible. As I ∶ V → V is always an element of HomG (V,V ), we

have that T, I ∈ HomG (V,V ). Now, using Proposition 2.11, set α1 = 1 and α2 = −λ.

Then T − λI ∈ HomG (ϕ,ϕ). And because T − λI ∈ HomG (V,V ), then by the initial

statement, either T − λI is invertible or T − λI = 0. Since the former is not true by the

definition of eigenvalue, we have that T − λI = 0. Therefore, T = λI.

It follows from Schur’s lemma that if (ϕ,V ) and (ψ,W ) are equivalent irreducible rep-

resentations of G, then dimHomG (V,W ) = 1.

Corollary 3.8. Let G be an abelian group. Then any irreducible representation of G has

degree one.

Proof. Suppose G is an abelian group and let (ϕ,V ) be an irreducible representation of G.

Fix h ∈ G and set T = ϕ (h). Then for all g ∈ G,

Tϕ (g) = ϕ (h)ϕ (g) = ϕ (hg) = ϕ (gh) = ϕ (g)ϕ (h) = ϕ (g)T.

So T = ϕ (h) is an intertwining operator. Because T is a nontrivial intertwiner, Schur’s

lemma implies that ϕ (h) = λhI, where λh ∈ C depends on h ∈ G. If W is a subspace of V ,

then for every w ∈W ,

ϕ (h) (w) = λhIw = λw ∈W.
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Therefore, every subspace of V is G-invariant. Because ϕ is irreducible, the only G-invariant

subspaces of V are {0} and V itself. Therefore dim (V ) = 1.

Hence, any irreducible representation of an abelian group has degree one.

4 Characters

We’ve established that the significance of representation theory is being able to study ab-

stract groups more clearly by representing their elements as linear transformations of vector

spaces, which we may view as matrices. By representing a group in such a way, we obtain

concrete information about its abstract structure. Now, we will take this idea one step

further. The character function will muster this information, thereby allowing us to study

the group in an even more compact and understandable way.

Definition 4.1. The character of a representation (ϕ,V ) of G is the function χϕ ∶ G → C

defined by setting χϕ (g) = Tr (ϕ (g)). The character of an irreducible representation is

called an irreducible character.

Recall the definition of the standard representation of Sn in Definition 2.3.

Example 4.2. Let ϕ ∶ Sn → GL(Cn) be the standard representation of Sn. We will first

find the conjugacy classes of Sn, and then find the character χϕ ∶ Sn → C.

We begin by finding the conjugacy classes of S3.

σ−1 σ(1)σ−1 σ(1 2)σ−1 σ(1 2 3)σ−1

(1) (1) (1) (1 2) (1 2 3)

(1 2) (1 2) (1) (1 2) (1 3 2)

(1 3) (1 3) (1) (2 3) (1 3 2)

(2 3) (2 3) (1) (1 3) (1 3 2)

(1 2 3) (1 3 2) (1) (2 3) (1 2 3)

(1 3 2) (1 2 3) (1) (1 3) (1 2 3)

The three conjugacy classes of S3 are {(1)}, {(1 2), (1 3), (2 3)}, and {(1 2 3), (1 3 2)}. No-

tice that each conjugacy class consists of one type of cycle. Lets see if this is true for the

conjugacy classes of S4.
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σ−1 σ(1)σ−1 σ(1 2)σ−1 σ(1 2 3)σ−1 σ(1 2 3 4)σ−1 σ(1 2)(3 4)σ−1

(1) (1) (1) (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)

(1 2) (1 2) (1) (1 2) (1 3 2) (1 3 4 2) (1 2)(3 4)

(1 3) (1 3) (1) (2 3) (1 3 2) (1 4 3 2) (1 4)(3 2)

(1 4) (1 4) (1) (2 4) (2 3 4) (1 4 2 3) (1 3)(2 4)

(2 3) (2 3) (1) (1 3) (1 3 2) (1 3 2 4) (1 3)(2 4)

(2 4) (2 4) (1) (1 4) (1 4 3) (1 4 3 2) (1 4)(2 3)

(3 4) (3 4) (1) (1 2) (1 2 4) (1 2 4 3) (1 2)(3 4)

(1 2 3) (1 3 2) (1) (2 3) (1 2 3) (1 4 2 3) (1 4)(2 3)

(1 3 2) (1 2 3) (1) (1 3) (1 2 3) (1 2 4 3) (1 3)(2 4)

(2 3 4) (2 4 3) (1) (1 3) (1 3 4) (1 3 4 2) (1 3)(2 4)

(2 4 3) (2 3 4) (1) (1 4) (1 4 2) (1 4 2 3) (1 4)(2 3)

(1 3 4) (1 4 3) (1) (2 3) (2 4 3) (1 3 2 4) (1 4)(2 3)

(1 4 3) (1 3 4) (1) (2 4) (1 4 2) (1 3 4 2) (1 3)(2 4)

(1 2 4) (1 4 2) (1) (2 4) (2 4 3) (1 2 4 3) (1 3)(2 4)

(1 4 2) (1 2 4) (1) (1 4) (1 3 4) (1 3 2 4) (1 4)(2 3)

(1 2 3 4) (1 4 3 2) (1) (2 3) (2 3 4) (1 2 3 4) (1 4)(2 3)

(1 2 4 3) (1 3 4 2) (1) (2 4) (1 2 4) (1 3 2 4) (1 3)(2 4)

(1 3 2 4) (1 4 2 3) (1) (3 4) (2 3 4) (1 3 4 2) (1 2)(3 4)

(1 3 4 2) (1 2 4 3) (1) (1 3) (1 4 3) (1 4 2 3) (1 3)(2 4)

(1 4 2 3) (1 3 2 4) (1) (3 4) (1 4 3) (1 2 4 3) (1 2)(3 4)

(1 4 3 2) (1 2 3 4) (1) (1 4) (1 2 4) (1 2 3 4) (1 4)(2 3)

(1 2)(3 4) (1 2)(3 4) (1) (1 2) (1 4 2) (1 4 3 2) (1 2)(3 4)

(1 3)(2 4) (1 3)(2 4) (1) (3 4) (1 3 4) (1 2 3 4) (1 2)(3 4)

(1 4)(2 3) (1 4)(2 3) (1) (3 4) (2 4 3) (1 4 3 2) (1 2)(3 4)

The five conjugacy classes of S4 are {(1)}, {(1 2), (1 3), (1 4), (2 3), (2 4), (3 4)},

{(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, {(1 2 3), (1 3 2), (2 3 4), (2 4 3), (3 4 1), (3 1 4), (4 1 2), (4 2 1)},

and {(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)}. Again, each conjugacy class
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of S4 consists of one type of cycle.

We (prematurely) conclude that for all n ∈ N, each type of cycle of Sn has its own

conjugacy class.

Next, we find the character of the standard representation of Sn. First consider S3, then

consider S4.

χϕ ((1)) = Tr

⎛
⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟
⎠

= 3 χϕ ((1)) = Tr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 4

χϕ ((1 2)) = Tr

⎛
⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

1 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟
⎠

= 1 χϕ ((1 2)) = Tr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 2

χϕ ((1 3)) = Tr

⎛
⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1

0 1 0

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟
⎠

= 1 χϕ ((1 2 3)) = Tr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 1

χϕ ((2 3)) = Tr

⎛
⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟
⎠

= 1 χϕ ((1 2 3 4)) = Tr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0

χϕ ((1 2 3)) = Tr

⎛
⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

0 0 1

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟
⎠

= 0 χϕ ((1 2)(3 4)) = Tr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0

χϕ ((1 3 2)) = Tr

⎛
⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟
⎠

= 0

We conclude that the character χϕ ∶ Sn → C is defined by χϕ (σ) = ∣Fix (σ) ∣ for each σ ∈ Sn.
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Proposition 4.3. Let (ϕ,V ) be a representation of G. Then χϕ (1) = deg (ϕ).

Proof. Suppose (ϕ,V ) is a representation of G. Then

χϕ (1) = Tr (ϕ (1)) = Tr (I) = dim (V ) = deg (ϕ) .

Therefore, χϕ (1) = deg (ϕ).

Proposition 4.4. If ϕ and ψ are equivalent representations, then χϕ = χψ.

Proof. Assume ϕ,ψ ∶ G → GLn (C) such that ϕ ∼ ψ. Then there exists an invertible matrix

T ∈ GLn (C) such that ϕ (g) = Tψ (g)T −1 for all g ∈ G. Since Tr (AB) = Tr (BA),

χϕ (g) = Tr (ϕ (g)) = Tr (Tψ (g)T−1) = Tr (TT−1ψ (g)) = Tr (ψ (g)) = χψ (g) .

Therefore, if ϕ and ψ are equivalent representations, then χϕ = χψ.

Proposition 4.5. For all g, h ∈ G, the equality χϕ (g) = χϕ (hgh−1) holds.

Proof. For all g, h ∈ G,

χϕ (hgh−1) = Tr (ϕ (hgh−1)) = Tr (ϕ (h)ϕ (g)ϕ (h−1))

= Tr (ϕ (h)ϕ (h−1)ϕ (g)) = Tr (ϕ (g)) = χϕ (g) .

Hence, characters are constant on conjugacy classes.

Definition 4.6. The group algebra of a group G is the set

L (G) = {f ∣ f ∶ G→ C} .

where L (G) is an inner product space with addition and scalar multiplication given by

(f1 + f2) (g) = f1 (g) + f2 (g)

(αf) (g) = α ⋅ f (g)
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and with the innder product defined by

⟨f1, f2⟩ =
1

∣G∣ ∑g∈G
f1 (g) f2 (g).

Definition 4.7. A class function is a function f ∶ G → C where f (g) = f (hgh−1) for all

g, h ∈ G. We denote by Z (L (G)) the space of class functions.

Proposition 4.8. Let G be a group of order n and define δi ∶ G → C by δi (gj) = 1 if i = j

and δi (gj) = 0 if i ≠ j. Then {δ1, . . . , δn} is a basis for L (G).

Proof. Let G is a group of order n with G = {g1, . . . , gn}, and define δi ∶ G→ C by

δi (gj) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if i = j

0 if i ≠ j.

Let α1, . . . , αn be scalars. Assume f ∈ L (G) such that f (gi) = αi, and h ∈ L (G) with

h = α1δ1 +⋯ + αnδn. Then

h (gj) = α1δ1 (gj) +⋯ + αnδn (gj)

= f (g1) δ1 (gj) +⋯ + f (gn) δn (gj)

= f (gj) δj (gj)

= f (gj) .

Therefore, h = f and so f = α1δ1 +⋯ + αnδn. Thus, L (G) = Span{δ1, . . . , δn}.

Now, let α1, . . . , αn be scalars such that α1δ1 +⋯+αnδn = 0, and let f = α1δ1 +⋯+αnδn.

Therefore, f (g) = 0 for every g ∈ G. Then for every j = 1, . . . , n,

f (gj) = α1δ1 (gj) +⋯ + αnδn (gj) = αjδj (gj) = αj = 0.

Therefore, α1 = ⋯ = αn = 0 and so {δ1, . . . , δn} is linearly independent.

Hence, {δ1, . . . , δn} is a basis of L (G).
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Theorem 4.9 (Schur orthogonality relations). Let ϕ ∶ G → Un (C) and ψ ∶ G → Um (C) be

inequivalent irreducible unitary representations. Then

1. ⟨ϕij , ψkl⟩ = 0,

2. ⟨ϕij , ψkl⟩ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
n if i = k and j = l

0 else

With this result, we are able to prove the following fundamental theorem.

Theorem 4.10 (First orthogonality relations). Let ϕ,ψ be irreducible representations of G.

Then

⟨χϕ, χψ⟩ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 ϕ ∼ ψ

0 ϕ ≁ ψ
.

Thus the irreducible characters of G form an orthonormal set of class functions.

Proof. Let ϕ,ψ be irreducible representations of G. From Proposition 3.3, every representa-

tion is equivalent to a unitary representation. So, assume ϕ ∶ G→ Un (C) and ψ ∶ G→ Um (C)

are unitary. We have

⟨χϕ, χψ⟩ =
1

∣G∣ ∑g∈G
χϕ (g)χψ (g)

= 1

∣G∣ ∑g∈G

n

∑
i=1

ϕii (g)
m

∑
j=1

ψjj (g)

=
n

∑
i=1

m

∑
j=1

1

∣G∣
ϕii (g)ψjj (g)

=
n

∑
i=1

m

∑
j=1

⟨ϕii (g) , ψjj (g)⟩ .

Following from Theorem 4.9, ⟨χϕ, χψ⟩ = 0 if ϕ ≁ ψ. And following from Proposition 4.4, if

ϕ and ψ are equivalent representations, then χϕ = χψ. Thus, if ϕ ∼ ψ, then we may assume

that ϕ = ψ. So by Theorem 4.9,

⟨ϕii, ϕii⟩ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
n i = j

0 i ≠ j,
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and thus

⟨χϕ, χϕ⟩ =
n

∑
i=1

⟨ϕii, ϕii⟩ =
n

∑
i=1

1

n
= 1.

Hence, the irreducible characters of G form an orthonormal set of class functions.

Note that Theorem 4.10 implies inequivalent irreducible repesentations have distinct

characters.

Corollary 4.11. There are at most ∣cl (G) ∣ equivalence classes of irreducible representations

of G.

If V is a vector space, ϕ is a representation and m > 0, then

mV = V ⊕⋯⊕ V
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m times

and mϕ = ϕ⊕⋯⊕ ϕ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m times

.

Let ϕ1, . . . , ϕs be a complete set of irreducible unitary representations of G, up to equiva-

lence. Set di = deg (ϕi).

Definition 4.12. If ψ ∼m1ϕ1⊕m2ϕ2⊕⋯⊕msϕs, then mi is the multiplicity of ϕi in ψ. If

mi > 0, then ϕi is an irreducible constituent of ψ.

If ψ ∼m1ϕ1 ⊕m2ϕ2 ⊕⋯⊕msϕs, then

deg (ψ) =m1d1 +⋯ +msds.

The following lemma is as short as it is important. Because of this lemma, we have that

each character is an integral linear combination of irreducible characters.

Lemma 4.13. Let φ ∼ ϕ⊕ ψ. Then χφ = χϕ + χψ.

Proof. Suppose ϕ ∶ G → GLn (C) and ψ ∶ G → GLm (C) are irreducible representations of

G. Then φ ∶ G→ GLn+m (C) and

φ (g) =
⎡⎢⎢⎢⎢⎢⎣

ϕ (g) 0

0 ψ (g)

⎤⎥⎥⎥⎥⎥⎦
.
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Therefore, for each g ∈ G,

χφ (g) = Tr (φ (g)) = Tr (ϕ (g)) +Tr (ψ (g)) = χϕ (g) + χψ (g) .

Hence, χφ = χϕ + χψ.

Theorem 4.14. Let ϕ1, . . . , ϕs be a complete set of representatives of the equivalence classes

of irreducible representations of G and let

ψ ∼m1ϕ1 ⊕m2ϕ2 ⊕⋯⊕msϕs.

Then mi = ⟨χψ, χϕi
⟩. Consequently, the decomposition of ψ into irreducible constituents is

unique and ψ is determined up to equivalence by its character.

Example 4.15. Let ϕ ∶ S4 → GL4 (C) be the standard representation of S4. As shown in

Example 4.2, χϕ ∶ S4 → C is given by χϕ (σ) = the number of fixed points of σ.

(1) (12) (123) (1234) (12)(34)

χϕ 4 2 1 0 0

Conjugacy Class Size

(1) 1

(12) 6

(123) 8

(1234) 6

(12)(34) 3

Because S4 has five conjugacy classes, then S4 has five irreducible representations. The

character table of S4 is below.

Table 2: Character Table of S4
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S4 (1) (12) (123) (1234) (12)(34)

χ1 1 1 1 1 1

χ2 1 -1 1 -1 1

χ3 3 1 0 -1 -1

χ4 3 -1 0 1 -1

χ5 2 0 -1 0 2

Per usual, we know that χ1 is the trivial character and χ2 the sign character.

That is, χ1 ∶ S4 → C× is defined to be χ1 (σ) = 1 for every σ ∈ S4, and χ2 ∶ S4 → C× is

defined to be

χ2 (σ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if σ even

−1 if σ odd

for every σ ∈ S4.

Since

⟨χϕ, χ1⟩ =
1

24
(1 ⋅ 4 ⋅ 1 + 6 ⋅ 2 ⋅ 1 + 8 ⋅ 1 ⋅ 1 + 6 ⋅ 0 ⋅ 1 + 3 ⋅ 0 ⋅ 1)

= 1

24
(4 + 12 + 8)

= 1

⟨χϕ, χ2⟩ =
1

24
(1 ⋅ 4 ⋅ 1 + 6 ⋅ 2 ⋅ −1 + 8 ⋅ 1 ⋅ 1 + 6 ⋅ 0 ⋅ −1 + 3 ⋅ 0 ⋅ 1)

= 1

24
(4 − 12 + 8)

= 0,

then by Theorem 4.10, ϕ ∼ χ1 and ϕ ≁ χ2. So ϕ contains one copy of the trivial representation

and zero copies of the sign representation. Thus, to find the third irreducible representation

of S4, we subtract χ1 from χϕ. Define ϕ3 ∶ S4 → GL3 (C) by ϕ3 (σ) = ϕ (σ)−1. So χ3 ∶ S4 → C

is given by χ3 (σ) = χϕ (σ) − χ1 (σ) = χϕ (σ) − 1.

(1) (12) (123) (1234) (12)(34)

χ3 3 1 0 -1 -1
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Moreover,

⟨χ3, χ3⟩ =
1

24
(1 ⋅ 3 ⋅ 3 + 6 ⋅ 1 ⋅ 1 + 8 ⋅ 0 ⋅ 0 + 6 ⋅ −1 ⋅ −1 + 3 ⋅ −1 ⋅ −1)

= 1

24
(9 + 6 + 6 + 3)

= 1,

and so ϕ3 is indeed irreducible.

We obtain the fourth irreducible representation by taking the tensor product of ϕ2 and

ϕ3. So the map ϕ4 ∶ S4 → GL3 (C) is given by ϕ4 = ϕ2 ⊗ ϕ3. Define χ4 ∶ S4 → C by

χ4 (σ) = χ2 (σ)⊗ χ3 (σ).

(1) (12) (123) (1234) (12)(34)

χ4 3 -1 0 1 -1

Since

⟨χ4, χ4⟩ =
1

24
(1 ⋅ 3 ⋅ 3 + 6 ⋅ −1 ⋅ −1 + 8 ⋅ 0 ⋅ 0 + 6 ⋅ 1 ⋅ 1 + 3 ⋅ −1 ⋅ −1)

= 1

24
(9 + 6 + 6 + 3)

= 1,

ϕ4 is indeed an irreducible representation of S4.

Our characte is nearly complete, with the exception of the last irreducible representation,

ϕ5.

Since the sum of the first column of the character table is ∣S4∣ = 24,

24 = 12 + 12 + 32 + 32 + deg (ϕ5)2

24 = 20 + deg (ϕ5)2

4 = deg (ϕ5)2

2 = deg (ϕ5) .

Therefore, ϕ5 is an irreducible representation of degree two. So we have some mapping from
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S4 to GL2 (C). To complete the table, we apply Theorem 4.10 to each column.

We first find that χ5 ((12)) = 0:

0 = χ1 ((1))χ1 ((12)) + χ2 ((1))χ2 ((12)) + χ3 ((1))χ3 ((12)) + χ4 ((1))χ4 ((12))

+ χ5 ((1))χ5 ((12))

= 1 ⋅ 1 + 1 ⋅ −1 + 3 ⋅ 1 + 3 ⋅ −1 + 2 ⋅ χ5 ((12))

= 2 ⋅ χ5 ((12)) .

Next, χ5 ((123)) = 0:

0 = χ1 ((1))χ1 ((123)) + χ2 ((1))χ2 ((123)) + χ3 ((1))χ3 ((123)) + χ4 ((1))χ4 ((123))

+ χ5 ((1))χ5 ((123))

= 1 ⋅ 1 + 1 ⋅ 1 + 3 ⋅ 0 + 3 ⋅ 0 + 2 ⋅ χ5 ((123))

= 2 + 2 ⋅ χ5 ((123)) .

Next, χ5 ((1234)) = 0:

0 = χ1 ((1))χ1 ((1234)) + χ2 ((1))χ2 ((1234)) + χ3 ((1))χ3 ((1234)) + χ4 ((1))χ4 ((1234))

+ χ5 ((1))χ5 ((1234))

= 1 ⋅ 1 + 1 ⋅ −1 + 3 ⋅ −1 + 3 ⋅ 1 + 2 ⋅ χ5 ((1234))

= 2 ⋅ χ5 ((1234)) .

Lastly, χ5 ((12) (34)) = 0:

0 = χ1 ((1))χ1 ((12) (34)) + χ2 ((1))χ2 ((12) (34)) + χ3 ((1))χ3 ((12) (34)) + χ4 ((1))χ4 ((12) (34))

+ χ5 ((1))χ5 ((12) (34))

= 1 ⋅ 1 + 1 ⋅ 1 + 3 ⋅ −1 + 3 ⋅ −1 + 2 ⋅ χ5 ((12) (34))

= −4 + 2 ⋅ χ5 ((12) (34)) .
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(1) (12) (123) (1234) (12)(34)

χ5 2 0 -1 0 2
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Part III

Induced Representation

Definition 4.16. Let H be a subgroup of G. If π ∶ G → GL (U) is a representation of G,

then we can restrict π to H to obtain a map ResGHπ ∶ H → GL (U) called the restriction of

π. So ResGHπ (h) = π (h) for all h ∈H.

Definition 4.17. Let H be a subgroup of G and let (φ,V ) be a representation of H. The

induced representation of G is the representation (π, IndGH (φ)) where

IndGH (φ) = {f ∶ G→ V ∣ f (hg) = φ (h) f (g) for all h ∈H, g ∈ G} .

The action of G on IndGH (φ) is given by

(π (g) f) (g′) = f (g′g) .

In this thesis, we also write (πG, V G) to mean the representation (π, IndGH (φ)).

The induced representation is indeed a vector space under the usual addition and scalar

multiplication. For example, let f1, f2 ∈ IndGH (φ), g ∈ G, and h ∈H. Then

(f1 + f2) (hg) = f1 (hg) + f2 (hg)

= φ (h) f1 (g) + φ (h) f2 (g)

= φ (h) [f1 (g) + f2 (g)]

= φ (h) (f1 + f2) (g) .

Since (f1 + f2) (hg) = φ (h) (f1 + f2) (g) for each f1, f2 ∈ IndGH (φ), g ∈ G, h ∈ H, we have

that f1 + f2 ∈ IndGH (φ). Therefore, IndGH (φ) is closed under addition. The remaining seven

axioms can be checked in a similar way.

Theorem 4.18. Let π (g) ∶ IndGH (φ) → IndGH (φ) be given by (π (g) f) (g′) = f (g′g). Then

(π, IndGH (φ)) is a representation of G induced by φ.
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Proof. Let π (g) be defined as above. To show that (π, IndGH (φ)) is a representation of G

induced by φ, we must verify the action of G onto IndGH (φ). Suppose g, g′, x ∈ G, h ∈ H,

and f ∈ IndGH (φ). Then π is a homomorphism since

π (gg′) f (x) = f (xgg′) = π (g′) f (xg) = π (g)π (g′) f (x) ,

and π (g) f ∈ IndGH (φ) since

π (g) f (hg′) = f (hg′g) = φ (h) f (g′g) = φ (h)π (g) f (g′) .

Therefore, (π, IndGH (φ)) is the representation of G induced by φ.

Proposition 4.19. Let H be a subgroup of G and χ be the character of a representation of

H. Define χ̇ ∶ G→ C by

χ̇(g) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

χ(g) if g ∈H

0 if g ∉H
.

Then the character of the induced representation is

IndGH (χ) = 1

∣H ∣ ∑x∈G
χ̇(x−1gx).

Proof. Let H be a subgroup of G and φ ∶ H → GLn(C). Say [G ∶ H] = d with G =

Hg1⊍Hg2⊍⋯⊍Hgd. Then we have the induced representation IndGH(φ) ∶ G → GLdn(C).

For g ∈ G, denote the matrix representation of IndGH (φ (g)) as φG (g). Define φG (g) as the

d × d block matrix with n × n blocks by setting [φG (g)]ij = φ̇ (g−1
i ggj) for 1 ≤ i, j ≤ d and

where

φ̇ (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ (x) if x ∈H

0 if x ∉H
.
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Recall that the character χϕ ∶ G→ C of φ is defined by setting χφ(g) = Tr (φ (g)). Set

χ̇φ (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

χφ (x) if x ∈H

0 if x ∉H
.

Denote the character of IndGH(φ) as IndGH(χφ). Then

IndGH (χφ) (g) = Tr (φG (g))

= Tr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ̇ (g−1
1 gg1) φ̇ (g−1

1 gg2) ⋯ φ̇ (g−1
1 ggd)

φ̇ (g−1
2 gg1) φ̇ (g−1

2 gg2) ⋯ φ̇ (g−1
2 ggd)

⋮ ⋮ ⋯ ⋮

φ̇ (g−1
d gg1) φ̇ (g−1

d gg2) ⋯ φ̇ (g−1
d ggd)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
d

∑
i=1

Tr (φ̇ (g−1
i ggi))

=
d

∑
i=1

χ̇φ (g−1
i ggi) .

So IndGH(χφ) (g) =
d

∑
i=1

χ̇φ (g−1
i ggi).and since χ is a class function on H, it follows that

χ̇φ (g−1
i ggi) = χ̇φ (g−1

i h
−1ghgi) for all h ∈ H. So, by summing χ̇φ (g−1

i h
−1ghgi) for 1 ≤ i ≤ d,

we have ∣H ∣ copies of each {gi} and thus to maintain equality of IndGH(χφ)(g) we must divide

by ∣H ∣. That is,

IndGH(χφ)(g) =
d

∑
i=1

χ̇φ(g−1
i ggi)

= 1

∣H ∣ ∑h∈H

d

∑
i=1

χ̇φ(g−1
i h

−1ghgi)

= 1

∣H ∣ ∑h∈H

d

∑
i=1

χ̇φ((hgi)−1g(hgi)).
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Since G =Hg1⊍Hg2⊍⋯⊍Hgd,

IndGH(χφ)(g) =
1

∣H ∣ ∑h∈H

d

∑
i=1

χ̇φ((hgi)−1g(hgi))

= 1

∣H ∣ ∑x∈G
χ̇φ(x−1gx).

5 Basis of Induced Representation

Theorem 5.1. Let G be a group and let H be a subgroup of G such that ∣G/H ∣ = d, where

{g1, g2, . . . , gd} are the coset representatives of H in G. Also, let (ϕ,W ) be a representation

of H and let {e1,e2, . . . ,en} be a basis of W . Then for 1 ≤ i, k ≤m and 1 ≤ j ≤ n,

fij(gk) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ej if k = i

0 if k ≠ i

is a basis of IndGH (ϕ).

Proof. Let H be a subgroup of G, W be a vector space with W = {e1,e2, . . . ,en}, (ϕ,W )

be a representation of H, and {g1, g2, . . . , gd} be coset representatives of H in G. Then

G = Hg1⊍Hg2⊍⋯⊍Hgd, and so every g ∈ G can be written uniquely as g = hgi for some

gi ∈ {g1, . . . , gd} and h ∈H. Note that if f ∈ IndGH(ϕ) and g = hgi in G is fixed, then we have

that

f(g) = f(hgi) = ϕ (h) f(gi).

Because the group action of H on W extends each d coset representatives to its entire coset,

each f ∈ IndGH(ϕ) is determined by its value of {f(gi)}di=1. Therefore, we need only consider

the representatives {g1, g2, . . . , gd} of the transversals of H in G.

Consider gk ∈ G such that gk is a coset representative of H in G. Let f ∈ IndGH(ϕ). So

f ∶ G→W and so f(gk) ∈W . Therefore f(gk) ∈ Span{e1,e2, . . . ,en}. Say

f(gk) = αk1e1 + αk2e2 +⋯ + αknen
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for some scalars αk1, αk2, . . . , αkn. By definition of fij ,

e1 = fk1(gk), e2 = fk2(gk), . . . , en = fkn(gk)

and therefore

f(gk) = αk1e1 + αk2e2 +⋯ + αknen

= αk1fk1(gk) + αk2fk2(gk) +⋯ + αknfkn(gk)

=
d

∑
i=1

n

∑
j=1

αijfij(gk),

(1)

where the last equality holds by definition of fij . Thus for each gk ∈ {g1, g2, . . . , gd}, f(gk) =

∑di=1∑nj=1 αijfij(gk).

Now consider g ∈ G where g need not be a coset representative of H in G. Because

G = Hg1⊍Hg2⊍⋯⊍Hgd, then for some unique 1 ≤ k ≤ d, g ∈ Hgk. Hence for some unique

h ∈H, g = hgk. Thus,

f(g) = f(hgk) = ϕ (h) f(gk) = ϕ (h)
⎛
⎝

n

∑
j=1

αkjej
⎞
⎠
∈W.

Therefore ϕ (h) (∑nj=1 αkjej) ∈ Span{e1,e2, . . . ,en}. Thus there exist unique scalars

βk1, βk2, . . . , βkn such that

ϕ (h)
⎛
⎝

n

∑
j=1

αkjej
⎞
⎠
= βk1e1 + βk2e2 +⋯ + βknen. (2)

As before, by applying the definition of fij , we have

f(g) = ϕ (h)
⎛
⎝

n

∑
j=1

αkjej
⎞
⎠

= βk1e1 + βk2e2 +⋯ + βknen

= βk1fk1(gk) + βk2fk2(gk) +⋯ + βknfkn(gk)

=
d

∑
i=1

n

∑
j=1

βijfij(g).
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Therefore for every g ∈ G, f(g) = ∑di=1∑nj=1 βijfij(g), i.e., f = ∑di=1∑nj=1 βijfij . Hence

IndGH(ϕ) = Span{fij}1≤i≤d
1≤j≤n

.

Now, let f(gk) and f(g) be defined as in (1) and (2), respectively. Suppose f = 0.

Therefore

f(gk) = αk1e1 + αk2e2 +⋯ + αknen

= αk1fk1(gk) + αk2fk2(gk) +⋯ + αknfkn(gk)

=
d

∑
i=1

n

∑
j=1

αijfij(gk)

= 0,

and

f(g) = ϕ (h)
⎛
⎝

n

∑
j=1

αkjej
⎞
⎠

= βk1e1 + βk2e2 +⋯ + βknen

= βk1fk1(gk) + βk2fk2(gk) +⋯ + βknfkn(gk)

=
d

∑
i=1

n

∑
j=1

βijfij(g)

= 0.

Because W = {e1,e2, . . . ,en} and

f(gk) =
d

∑
i=1

n

∑
j=1

αijfij(gk) = f(g) =
d

∑
i=1

n

∑
j=1

βijfij(g) = 0,

it follows that each αij , βij = 0. Therefore, if f = 0, then each scalar of every fij must be

equal to 0. Hence {fij}1≤i≤d
1≤j≤n

is linearly independent.

Hence, for 1 ≤ i, k ≤ d and 1 ≤ j ≤ n,

fij(gk) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ej if k = i

0 if k ≠ i
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is a basis of IndGH(ϕ).

6 Frobenius Reciprocity

Theorem 6.1 (Frobenius reciprocity). Suppose that H is a subgroup of G and let α be a

class function on H and β be a class function on G. Then the formula

⟨IndGH (α) , β⟩ = ⟨α,ResGH (β)⟩

holds.

Proof. We have

⟨IndGH (α) , β⟩ = 1

∣G∣ ∑g∈G
IndGHα (g)β (g) definition of group algebra

= 1

∣G∣ ∑g∈G
1

∣H ∣ ∑x∈G
α̇(x−1gx)β (g) definition of IndGHα (g)

= 1

∣G∣
1

∣H ∣ ∑x∈G
∑
g∈G

α̇(x−1gx)β (g).

Recall that

α̇(x−1gx) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α(x−1gx) if x−1gx ∈H

0 if x−1gx ∉H

and x−1gx ∈H if and only if x−1gx = h for some h ∈H, i.e., g = xhx−1. By substituting such
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g and h, we have

⟨IndGH (α) , β⟩ = 1

∣G∣
1

∣H ∣ ∑x∈G
∑
g∈G

α̇(x−1gx)β (g)

= 1

∣G∣
1

∣H ∣ ∑x∈G
∑
h∈H

α (h)β(xhx−1)

= 1

∣G∣
1

∣H ∣ ∑x∈G
∑
h∈H

α (h)β (h)

= 1

∣G∣ ∑x∈G
⟨α,ResGH (β)⟩

= ⟨α,ResGH (β)⟩ .

Therefore, ⟨IndGH (α) , β⟩ = ⟨α,ResGH (β)⟩.

We also have an analogous theorem of Frobenius, but in terms of vector spaces.

Theorem 6.2 (Frobenius Reciprocity). Let H be a subgroup of G, (π,V ) be a representation

of H, and (τ,U) be a representation of G. Then

HomH (ResGH (U) , V ) ≃ HomG (U, IndGH (V )) .

Proof. Suppose φ ∈ HomG (U, IndGH (V )) and let φ̃ ∶ ResGH (U) → V be given by φ̃ (u) =

φ (u) (1) for each u ∈ U . For every h ∈H,

φ̃ (τ (h)u) = φ (τ (h)u) (1)

= (πG (h)φ (u)) (1) ∵ φ ∈ HomG (U, IndGH (V ))

= φ (u) (h)

= π (h)φ (u) (1) . ∵ φ (u) ∈ IndGH (V )

Therefore, φ̃ ∈ HomH (ResGH (U) , V ).

Suppose ψ ∈ HomH (ResGH (U) , V ) and ψ̃ ∶ U → IndGH (V ) by ψ̃ (u) (x) = ψ (τ (x)u) for
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each u ∈ U and x ∈ G. For every h ∈H, x ∈ G, u ∈ U ,

ψ̃ (u) (hx) = ψ (τ (hx)u)

= ψ (τ (h) τ (x)u)

= π (h)ψ (τ (x)u)

= π (h) ψ̃ (u) (x) .

Thus ψ̃ (u) ∈ IndGH (V ). And for every g, x ∈ G, u ∈ U ,

ψ̃ (τ (g)u) (x) = ψ (τ (x) τ (g)u)

= ψ (τ (xg)u)

= ψ̃ (u) (xg)

= (πG (g) ψ̃ (u)) (x) . ∵ ψ̃ (u) ∈ IndGH (V )

Therefore, ψ̃ ∈ HomG (U, IndGH (V )).

Now, define Ψ ∶ HomG (U, IndGH (V ))→ HomH (ResGH (U) , V ) by Ψ (φ) = φ̃. Also, define

Φ ∶ HomH (ResGH (U) , V )→ HomG (U, IndGH (V )) by Φ (ψ) = ψ̃.

Suppose φ ∈ HomG (U, IndGH (V )), u ∈ U , and x ∈ G. Then

Φ (Ψ (φ)) (u) (x) = Ψ (φ) (τ (x) (u))

= φ (τ (x)u) (1)

= (π (x)φ (u)) (1)

= φ (u) (x) .

Therefore, Φ (Ψ (φ)) = φ.

In a similar manner, Ψ (Φ (ψ)) = ψ. We have thus shown that the maps φ ↦ φ̃ and

psi↦ ψ̃ are inverses.

Hence, HomH (ResGH (U) , V ) ≃ HomG (U, IndGH (V )).
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7 Mackey’s Theorem

If H is a subgroup of G and χ is an irreducible character of H, then IndGHχ need not be

an irreducible character of G. We thus employ Mackey’s theorem, which describes when an

induced character is irreducible.

Example 7.1. The character table for the induced representation of S4 from S3 is shown

below.

Table 3: Character Table of the Induced Representation of S4

(1) (12) (123) (1234) (12)(34)

IndS4
S3

(χ1) 4 2 1 0 0

IndS4
S3

(χ2) 4 -2 1 0 0

IndS4
S3

(χ3) 8 0 -1 0 0

To constuct this character table for IndS4
S3

(χϕ), we use the proven formula from Proposition

4.19.

We have that

(1) (1) (1) = (1) ∈ S3

(14) (1) (14) = (1) ∈ S3

(24) (1) (24) = (1) ∈ S3

(34) (1) (34) = (1) ∈ S3

and so IndS4
S3

(χ1) ((1)) = 4, IndS4
S3

(χ2) ((1)) = 4, and IndS4
S3

(χ3) ((1)) = 8. Next,

(1) (12) (1) = (12) ∈ S3

(14) (12) (14) = (24) ∉ S3

(24) (12) (24) = (14) ∉ S3

(34) (12) (34) = (12) ∈ S3
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and so IndS4
S3

(χ1) ((12)) = 2, IndS4
S3

(χ2) ((12)) = −2, and IndS4
S3

(χ3) ((12)) = 0. Lastly,

(1) (123) (1) = (123) ∈ S3

(14) (123) (14) = (234) ∉ S3

(24) (123) (24) = (143) ∉ S3

(34) (123) (34) = (124) ∉ S3

and so IndS4
S3

(χ1) ((123)) = 1, IndS4
S3

(χ2) ((123)) = 1, and IndS4
S3

(χ3) ((123)) = −1.

Here, IndS4
S3

(χ1) (1) = 4. Because there is no irreducible representation of degree 4, this

induced representation is not irreducible.

The statement and proof of Mackey’s theorem are largely outlined in [1] by exercises left

for the reader. In accordance with Prasad’s lecture notes, a successful proof of Mackey’s

theorem has been constructed and provided in this section. The exercises provided by Prasad

have been revised into a string of lemmas from which the proof follows.

Let H1 and H2 be subgroups of G. Let (π1, V1) and (π2, V2) be representations of H1

and H2, respectively. For f ∶ G → V1 and ∆ ∶ G → HomC (V1, V2), define a convolution

∆ ∗ f ∶ G→ V2 by

(∆ ∗ f) (x) = 1

∣G∣ ∑g∈G
∆ (xg−1) (f(g)) .

Define the set of functions

D =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∆ ∶ G→ HomC (V1, V2)

RRRRRRRRRRRRRRR

∆ (h2gh1) = π2(h2) ○∆(g) ○ π1(h1)

for all g ∈ G, h1 ∈H1, h2 ∈H2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

We now have the necessary definitions to make sense of Mackey’s theorem.

Theorem 7.2 (Mackey’s Theorem). The map ∆ ↦ L∆ is an isomorphism from D →

HomG (V G
1 , V G

2 ).

Providing that we have each of the following lemmas, the proof of Mackey’s theorem is

straightforward.
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Lemma 7.3. If ∆ ∈D and f1 ∈ V G
1 , then ∆ ∗ f1 ∈ V G

2 .

Proof. Suppose ∆ ∈ D and f1 ∈ V G
1 . For each g ∈ G and h2 ∈ H, our goal is to show that

(∆ ∗ f1) (h2g) = (π2 (h2) (∆ ∗ f1)) (g). Indeed,

(∆ ∗ f1) (h2g) =
1

∣G∣ ∑x∈G
∆ (h2gx

−1) f1(x) by definition of ∆ ∗ f1

= 1

∣G∣ ∑x∈G
π2(h2) ○∆ (gx−1) f1(x) by definition of ∆

= π2(h2) ○
1

∣G∣ ∑x∈G
∆ (gx−1) f1(x) since π2 is linear

= π2 (h2) ○ (∆ ∗ f1) (g) by definition of ∆ ∗ f1

= (π2 (h2) (∆ ∗ f1)) (g) . by definition of function composition

Therefore, ∆ ∗ f1 ∶ G → V2 such that for each h2 ∈ H2 and g ∈ G, (∆ ∗ f1) (h2g) =

(π2 (h2) (∆ ∗ f1)) (g). Hence ∆ ∗ f1 ∈ V G
2 .

Lemma 7.4. Let L∆ ∶ V G
1 → V G

2 be given by L∆ (f1) = ∆∗ f1. Then L∆ ∈ HomG (V G
1 , V G

2 ).

Proof. Define L∆ ∶ V G
1 → V G

2 by L∆ (f1) = ∆ ∗ f1. Then for each g, g′ ∈ G and f1 ∈ V G
1 ,

πG2 (g) (L∆ (f1)) (g′) = (L∆ (f1)) (g′g)

= (∆ ∗ f1) (g′g)

= 1

∣G∣ ∑x∈G
∆ (g′gx−1) f1 (x) definition of ∆ ∗ f1

= 1

∣G∣ ∑y∈G
∆ (g′y−1) f1(yg) change of variables x = yg

= 1

∣G∣ ∑y∈G
∆ (g′y−1) (πG1 (g) f1) (y) action of G since f1 ∈ V G

1

= (∆ ∗ πG1 (g) f1) (g′) definition of ∆ ∗ πG1 (g) f1

= L∆ (πG1 (g) f1) (g′) .

Therefore, πG2 (g) (L∆f1) = L∆ (πG1 (g) f1) and so L∆ ∈ HomG (V G
1 , V G

2 ).

Define L ∶D → HomG (V G
1 , V G

2 ) by L (∆) = L∆.
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Lemma 7.5. The map L is a linear transformation.

Proof. Let g ∈ G,∆1,∆2 ∈D, f ∈ V G
1 , α ∈ C. Then L is linear since

L (∆1 +∆2) (f) (g) = L∆1+∆2 (f) (g)

= ((∆1 +∆2) ∗ f) (g) by definition of L∆

= 1

∣G∣ ∑x∈G
(∆1 +∆2) (gx−1) f (x) by definition of ∆ ∗ f1

= 1

∣G∣ ∑x∈G
(∆1 (gx−1) +∆2 (gx−1)) f (x)

= 1

∣G∣ ∑x∈G
∆1 (gx−1) f (x) +∆2 (gx−1) f (x)

= 1

∣G∣ ∑x∈G
∆1 (gx−1) f (x) + 1

∣G∣ ∑x∈G
∆2 (gx−1) f (x)

= (∆1 ∗ f) (g) + (∆2 ∗ f) (g) by definition of ∆ ∗ f

= L∆1 (f) (g) +L∆2 (f) (g) by definition of L∆

= L (∆1) (f) (g) +L (∆2) (f) (g) ,

and

αL (∆) (f) (g) = αL∆ (f) (g)

= α (∆ ∗ f) (g)

= α 1

∣G∣ ∑x∈G
∆ (gx−1) f (x)

= 1

∣G∣ ∑x∈G
α∆ (gx−1) f (x)

= (α∆ ∗ f) (g)

= Lα∆ (f) (g)

= L (α∆) (f) (g) .
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For any g ∈ G and v ∈ V1, define a collection fg,v of elements in V G
1 as

fg,v (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

π1 (h)v if x = hg, h ∈H1

0 if x ∉H1g

.

Lemma 7.6. Let J ∈ HomG (V G
1 , V G

2 ). Define ∆J ∶ G→ HomC (V1, V2) by

∆J (g) (v) = ∣G∣
∣H1∣

J (fg−1,v) (1)

for every g ∈ G, v ∈ V1. Then ∆J ∈D.

Lemma 7.7. The map L is a bijection.

Proof. We will first show that L is injective. Suppose L (∆) = 0 for some ∆ ∈D. Let x ∈ G.

Then

0 = (L (∆) (fg,v)) (x) = (L∆ (fg,v)) (x) = (∆ ∗ fg,v) (x) =
1

∣G∣ ∑y∈G
∆ (xy−1) fg,v (y) .

Notice that if y ∉H1g, then fg,v (y) = 0. Thus, we need only consider y ∈ G such that y = hg

for some unique h ∈H1. Continuing from above, we have

0 = 1

∣G∣ ∑y∈G
∆ (xy−1) fg,v (y)

= 1

∣G∣ ∑h∈H1g

∆ (x (hg)−1)π1 (h)v

= 1

∣G∣ ∑h∈H1g

∆ (xg−1h−1)π1 (h)v

= 1

∣G∣ ∑h∈H1g

∆ (xg−1h−1h)v

= 1

∣G∣ ∑h∈H1g

∆ (xg−1)v

= ∣H1∣
∣G∣

∆ (xg−1)v.

Because ∣H1∣
∣G∣ ∆ (xg−1)v = 0 for each g, x ∈ G and v ∈ V1, it follows that L (∆) = 0 if and only

if ∆ = 0. That is, Ker L = {0} and L is injective.
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We will now show that L is surjective. Let J be as defined in Lemma 7.6. Then for

f ∈ V G
1 ,

(L (∆J) f) (g) = (∆J ∗ f) (g) =
1

∣G∣ ∑x∈G
∆J (gx−1) f (x) = 1

∣G∣ ∑x∈G
∆J (gx−1)v,

where f (x) = v ∈ V1.

Then continuing from above,

(L (∆J) f) (g) =
1

∣G∣ ∑x∈G
∆J (gx−1)v

= 1

∣G∣ ∑x∈G
∣G∣
∣H1∣

J (f(gx−1)−1,v) (1)

= 1

∣H1∣
∑
x∈G

J (f(gx−1)−1,v) (1)

= J ( 1

∣H1∣
∑
x∈G

f(gx−1)−1,v)(1) J linear

= J
⎛
⎝

1

∣H1∣
∑

x∈H1g

π1 (gx−1) (v)
⎞
⎠

1 ∈H1(gx−1)→ xg−1 ∈H1

= J
⎛
⎝

1

∣H1∣
∑

x∈H1g

π1 (gx−1) f (x)
⎞
⎠

∵ f(x) = v

= J
⎛
⎝

1

∣H1∣
∑

x∈H1g

f (gx−1x)
⎞
⎠

∵ f = V G
1

= J
⎛
⎝

1

∣H1∣
∑

x∈H1g

f (g)
⎞
⎠

= J ( 1

∣H1∣
∣H1∣f (g))

= J (f (g)) .

Therefore, for all g ∈ G and f ∈ V G
1 , (L (∆J) f) (g) = J (f (g)). That is, for each J ∈

HomG (V G
1 , V G

2 ), there exists ∆J ∈D such that L (∆J) = J . Hence L is surjective.

Finally, we have the proof of Mackey’s theorem.

Theorem 7.8 (Mackey’s Theorem). The map ∆ ↦ L∆ is an isomorphism from D into

HomG (V G
1 , V G

2 ).
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Proof. We begin with an arbitrary map ∆ ↦ L∆. As we previously defined, L∆ ∶ V G
1 → V G

2

such that L∆ (f1) = ∆ ∗ f1. It was shown by Lemma 7.4 that L∆ ∈ HomG (V G
1 , V G

2 ). Also

recall that L ∶ D → HomG (V G
1 , V G

2 ) where L (∆) = L∆. By Lemma 7.5 and 7.7, L is linear

and bijective, respectively. Hence L is an isomorphism from D into HomG (V G
1 , V G

2 ).

Part IV

Representations of GL2 (Fq)
Assume G to be the group GL2 (Fq).

Definition 7.9. The Borel subgroup of G is the group B =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

α β

0 δ

⎤⎥⎥⎥⎥⎥⎦
∶ α, δ ∈ F×q , β ∈ Fq

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

A subgroup of B is the group T =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

α 0

0 δ

⎤⎥⎥⎥⎥⎥⎦
∶ α, δ ∈ F×q

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

. Another subgroup of B is the

group N =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1 β

0 1

⎤⎥⎥⎥⎥⎥⎦
∶ β ∈ Fq

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

8 The Borel Subgroup

Proposition 8.1. 1. Every b ∈ B can be written uniquely as b = tn, where t ∈ T and n ∈ N ;

2. N is a normal subgroup of B;

3. B/N ≃ T .

Proof. 1. Let t ∈ T and n ∈ N such that t =
⎡⎢⎢⎢⎢⎢⎣

α 0

0 δ

⎤⎥⎥⎥⎥⎥⎦
and n =

⎡⎢⎢⎢⎢⎢⎣

1 β

0 1

⎤⎥⎥⎥⎥⎥⎦
. The product t ⋅ n is

⎡⎢⎢⎢⎢⎢⎣

α 0

0 δ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 β

0 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

α αβ

0 δ

⎤⎥⎥⎥⎥⎥⎦

and so t ⋅n ∈ B. Setting t ⋅n equal to an arbitrary element of B, say

⎡⎢⎢⎢⎢⎢⎣

α′ β′

0 δ′

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

α αβ

0 δ

⎤⎥⎥⎥⎥⎥⎦
,

45



yields α′ = α, β′ = αβ, and δ′ = δ. It is now clear that each matrix in B is unique with

respect to its factor from T .

2. For some

⎡⎢⎢⎢⎢⎢⎣

α11 α12

0 α22

⎤⎥⎥⎥⎥⎥⎦
∈ B with α12 ≠ 0 and

⎡⎢⎢⎢⎢⎢⎣

1 β12

0 1

⎤⎥⎥⎥⎥⎥⎦
∈ N , we have

⎡⎢⎢⎢⎢⎢⎣

α11 α12

0 α22

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 β12

0 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

α11 α11β12 + α12

0 α22

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 β12

0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

α11 α12

0 α22

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

α11 α22β12 + α12

0 α22

⎤⎥⎥⎥⎥⎥⎦
.

Since bN = Nb for all b ∈ B, N is a normal subgroup of B.

Alternatively, we can show that N is a normal subgroup of B merely using the properties

of determinants. That is, for every b ∈ B and n ∈ N ,

det (bnb−1) = det (b)det (n)det (b−1) = det (b)det (b−1)det (n) = det (n) = 1.

Now, since bnb−1 ∈ N for each b ∈ B and n ∈ N , we have that N is a normal subgroup of

B.

3. Define ϕ ∶ B → T by ϕ
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

α β

0 δ

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
=
⎡⎢⎢⎢⎢⎢⎣

α 0

0 δ

⎤⎥⎥⎥⎥⎥⎦
. For each

⎡⎢⎢⎢⎢⎢⎣

α β

0 δ

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

α′ β′

0 δ′

⎤⎥⎥⎥⎥⎥⎦
∈ B,

ϕ

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

α β

0 δ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

α′ β′

0 δ′

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
= ϕ

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

αα′ αβ′ + βγ′

0 δδ′

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
=
⎡⎢⎢⎢⎢⎢⎣

αα′ 0

0 δδ′

⎤⎥⎥⎥⎥⎥⎦

and

ϕ

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

α β

0 δ

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
ϕ

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

α′ β′

0 δ′

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
=
⎡⎢⎢⎢⎢⎢⎣

α 0

0 δ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

α′ 0

0 δ′

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

αα′ 0

0 δδ′

⎤⎥⎥⎥⎥⎥⎦
.

So ϕ is a homomorphism. And since N = Ker (ϕ), then by the First Isomorphism Theo-

rem, B/N ≃ ϕ (B). Moreover, for each

⎡⎢⎢⎢⎢⎢⎣

t1 0

0 t2

⎤⎥⎥⎥⎥⎥⎦
∈ T there exists

⎡⎢⎢⎢⎢⎢⎣

t1 ∗

0 t2

⎤⎥⎥⎥⎥⎥⎦
∈ B such that
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ϕ

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

t1 ∗

0 t2

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
=
⎡⎢⎢⎢⎢⎢⎣

t1 0

0 t2

⎤⎥⎥⎥⎥⎥⎦
. So ϕ is surjective and hence B/N ≃ T .

Proposition 8.2. The order of the group GLn (Fq) is defined to be

∣GLn (Fq) ∣ =
n−1

∏
i=0

(qn − qi) .

Proof. Let A ∈ GLn (Fq) such that A = [a1 a2 ⋯ an]. Consider first the column vector.

There are q possible choices for each of the n entries. As a column vector, however, at least

one entry must be non-zero. Therefore there are qn − 1 choices for a1.

Now consider the second column vector, a2. We begin with qn − 1 possibilities for a2.

However, A is invertible and so each column vector of A must be linearly independent. That

is, a2 ≠ λa1. Thus we have that at least one entry in a2 not equivalent to its corresponding

entry in a1. Thus there are qn = q choices for a2.

We may begin with having qn − q choices for a3, but because each column vector is

linearly independent, at least one more entry in a3 is distinct. Thus there are qn = q2

choices for a3.

Continuing this way, there are qn − qn−1 choices for an.

Hence there are ∏n−1
i=0 (qn − qi) possible matrices for some A ∈ GLn (Fq). That is,

∣GLn (Fq) ∣ =∏n−1
i=0 (qn − qi).

Fix s =
⎡⎢⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎥⎦
.

Proposition 8.3 (Bruhat decomposition). The (disjoint) union of B/G/B is all of G. That

is, G = B⊍BsB.

Proof. Consider

⎡⎢⎢⎢⎢⎢⎣

γ11 γ12

γ21 γ22

⎤⎥⎥⎥⎥⎥⎦
∈ G. If γ21 = 0, then

⎡⎢⎢⎢⎢⎢⎣

γ11 γ12

γ21 γ22

⎤⎥⎥⎥⎥⎥⎦
∈ B. So, assume γ21 ≠ 0 and let
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⎡⎢⎢⎢⎢⎢⎣

α11 α12

0 α22

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

β11 β12

0 β22

⎤⎥⎥⎥⎥⎥⎦
∈ B. Then

BsB ∋
⎡⎢⎢⎢⎢⎢⎣

α11 α12

0 α22

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

β11 β12

0 β22

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

α11 α12

0 α22

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0 −β22

β11 β12

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

α12β11 α12β12 − α11β22

α22β11 α22β12

⎤⎥⎥⎥⎥⎥⎦
.

As

⎡⎢⎢⎢⎢⎢⎣

α12β11 α12β12 − α11β22

α22β11 α22β12

⎤⎥⎥⎥⎥⎥⎦
∈ G, its determinant is nonzero. That is,

α12β11α22β12 − α12β11α22β12 + α11β22α22β12 = α11β22α22β12 ≠ 0

and thus α11 ≠ 0, α22 ≠ 0, β12 ≠ 0, and β22 ≠ 0. We now have that the entry α22β11 is

nonzero and so we may put

⎡⎢⎢⎢⎢⎢⎣

γ11 γ12

γ21 γ22

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

α12β11 α12β12 − α11β22

α22β11 α22β12

⎤⎥⎥⎥⎥⎥⎦
. This illustrates that

whenever g ∈ G but g ∉ B, then g ∈ BsB. Hence G = B⊍BsB.

9 The Main Result

For characters χ1 and χ2 of F×q , define the character χ of T by

χ

⎡⎢⎢⎢⎢⎢⎣

α 0

0 δ

⎤⎥⎥⎥⎥⎥⎦
= χ1 (α)χ2 (δ) .

We extend χ to a character of B by letting N lie in the kernel. Thus,

χ

⎡⎢⎢⎢⎢⎢⎣

α β

0 δ

⎤⎥⎥⎥⎥⎥⎦
= χ1 (α)χ2 (δ) .

The representation of G induced from this character χ of B is

I (χ1, χ2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ∶ G→ C

RRRRRRRRRRRRRRRRRRRRRRR

f

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

α β

0 δ

⎤⎥⎥⎥⎥⎥⎦
g

⎞
⎟⎟
⎠
= χ1 (α)χ2 (δ)χ (g)

for all α, δ ∈ F×q , β ∈ Fq, g ∈ G

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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Theorem 9.1. Let χ1, χ2, µ1, µ2 be characters of F×q . Then

dim HomG (I (χ1, χ2) , I (µ1, µ2)) = e1 + es,

where

e1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if χ1 = µ1 and χ2 = µ2

0 otherwise,

and

es =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if χ1 = µ2 and χ2 = µ1

0 otherwise.

Proof. Suppose χ1, χ2, µ1, µ2 are characters of F×p and ∆ ∈ D. Then for each g ∈ G and

b1, b2 ∈ B, ∆ (b2gb1) = χ (b2)∆ (g)µ (b1). Following from the Bruhat decomposition, each

g ∈ G is of the form Bs′B where s′ ∈ {1, s}. So each function ∆ in the set D is determined

by its values at 1 and s, and moreover, the dimension of D is no more than two.

To begin, let g = 1 and t =
⎡⎢⎢⎢⎢⎢⎣

α 0

0 δ

⎤⎥⎥⎥⎥⎥⎦
. Note ∆ (t) = ∆ (t ⋅ 1) = χ (t)∆ (1) and ∆ (t) =

∆ (1 ⋅ t) = ∆ (1)µ (t). Therefore, ∆ (1)µ (t) = χ (t)∆ (1) and we have

∆ (1)µ1 (α)µ2 (β) = χ1 (α)χ2 (β)∆ (1) .

If µ ≠ χ and t =
⎡⎢⎢⎢⎢⎢⎣

α 0

0 1

⎤⎥⎥⎥⎥⎥⎦
,

∆ (1)µ1 (α)µ2 (1) = χ1 (α)χ2 (1)∆ (1) .

So µ1 ≠ χ1 and ∆ (1) = 0. Similarly, if t =
⎡⎢⎢⎢⎢⎢⎣

1 0

0 δ

⎤⎥⎥⎥⎥⎥⎦
then µ2 ≠ χ2 and ∆ (1) = 0. Therefore, if

µ ≠ χ then ∆ (1) = 0. In the case that µ = χ, define the function

∆1 (b) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

χ (b) if b ∈ B

0 if b ∈ BsB,

49



and take ∆1 ≡ 0 whenever e1 = 0.

Now, let g = s and t =
⎡⎢⎢⎢⎢⎢⎣

α 0

0 δ

⎤⎥⎥⎥⎥⎥⎦
. So we have

µ (t)∆ (s) = ∆ (ts) = ∆ (s (s−1ts)) = ∆ (s)χ (s−1ts) .

Since

s−1ts =
⎡⎢⎢⎢⎢⎢⎣

0 1

−1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

α 0

0 δ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0 −1

1 0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 1

−1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0 −α

δ 0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

δ 0

0 α

⎤⎥⎥⎥⎥⎥⎦
,

we can write µ (t)∆ (s) = ∆ (s)χ (s−1ts) as

µ1 (α)µ2 (δ)∆ (s) = ∆ (s)χ1 (δ)χ2 (α) .

Therefore, if µ ≠ χ then ∆ (s) = 0. However, if µ = χ, then let the function ∆s be given by

∆s (b2sb1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

χ (b1)µ (b2) for all b1, b2 ∈ B

0 otherwise,

and define ∆s ≡ 0 whenever es = 0.

Notice that any ∆ ∈ D, ∆ = λ1∆1 + λ2∆2. We have thus constructed a basis for D,

namely {∆1,∆s}, and hence dim HomG (I (χ1, χ2) , I (µ1, µ2)) = e1 + es.

Corollary 9.2. Let χ1, χ2, µ1, µ2 be characters of F×q . Then I (χ1, χ2) is an irreducible

representation of degree q + 1 of GL2 (Fp) unless χ1 = χ2, in which case it is a direct sum of

two irreducible representations having degrees 1 and q. We have

I (χ1, χ2) ≃ I (µ1, µ2)

if and only if either

χ1 = µ1 and χ2 = µ2

or else

χ1 = µ2 and χ2 = µ1.
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Proof. Following Theorem 9.1, I (χ1, χ2) is an irreducible representation if and only if χ1 ≠

χ2. By Proposition 8.2, ∣G∣ = (q2 − 1) (q2 − q). Observing some arbitrary matrix in B gives

us ∣B∣ = q (q − 1)2. So [G ∶H] = q + 1. Thus, dim I (χ1, χ2) = [G ∶H]dimχ = q + 1 since the

dimension of χ is one.

We now concern ourselves with the case χ1 = χ2. We have by Theorem 9.1 that

dim EndGI (χ1, χ2) = 2. Recall that if I (χ1, χ2) ∼ π1 ⊕ ⋯ ⊕ πd where each πi is an irre-

ducible representation, then dim EndGI (χ1, χ2) = ∑di=1mid
2
i where mi is the multiplicaticy

of πi and di is the degree of πi. Applying this definition gives us 2 = ∑di=1mid
2
i . Because

2 = 12 + 12 is the only way to satisy the former equation, we conclude that I (χ1, χ2) is the

direct sum of two irreducible representations.

Courtesy of Prasad [1], let f ∶ G → C be defined by f (g) = χ1 (det (g)). For any g ∈ G

and

⎡⎢⎢⎢⎢⎢⎣

α β

0 δ

⎤⎥⎥⎥⎥⎥⎦
∈ B,

f

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

α β

0 δ

⎤⎥⎥⎥⎥⎥⎦
g

⎞
⎟⎟
⎠
= χ1

⎛
⎜⎜
⎝
det

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

α β

0 δ

⎤⎥⎥⎥⎥⎥⎦
g

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

= χ1

⎛
⎜⎜
⎝
det

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

α β

0 δ

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
det (g)

⎞
⎟⎟
⎠

= χ1

⎛
⎜⎜
⎝
det

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

α β

0 δ

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
χ1 (det (g))

= χ1 (αβ) f (g)

= χ1 (α)χ1 (β) f (g)

= χ1 (α)χ2 (β) f (g) .

Thus f
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

α β

0 δ

⎤⎥⎥⎥⎥⎥⎦
g

⎞
⎟⎟
⎠
= χ1 (α)χ2 (β) f (g) and so f ∈ I (χ1, χ2).
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Also, for each g, g′ ∈ G,

(g.f) (g′) = f (g′g)

= χ1 (det (g′g))

= χ1 (det (g′)det (g))

= χ1 (det (g′)det (g))

= χ1 (det (g′))χ1 (det (g))

= f (g′)χ1 (det (g))

and so the subspace ⟨f⟩ is G-invariant.

Without loss of generality, let π1 = ⟨f⟩ and note the degree of π1 is thus one. By process

of elimination, the irreducible representation π2 must be of degree q.

Last but not least, we now establish the explicit cases in which I (χ1, χ2) ≃ I (µ1, µ2).

Clearly, if χ1 = µ1 and χ2 = µ2, then I (χ1, χ2) ≃ I (µ1, µ2). Also, I (χ1, χ2) ≃ I (µ1, µ2) if

and only if dim HomG (I (χ1, χ2) , I (µ1, µ2)) = 1. If dim HomG (I (χ1, χ2) , I (µ1, µ2)) = 1,

then either e1 = 1 or es = 1, but not both due to the functions’ conditions. Because e1 = 1

is parallel to this paragraph’s first scenerio, take es = 1 and recall es = 1 only when χ1 = µ2

and χ2 = µ1. Thus if I (χ1, χ2) ≃ I (µ1, µ2), then either χ1 = µ1 and χ2 = µ2 or χ1 = µ2

and χ2 = µ1. On the contrary, if either χ1 = µ1 and χ2 = µ2 or χ1 = µ2 and χ2 = µ1, then

I (χ1, χ2) ≃ I (µ1, µ2)

This completes the corollary.

10 Conjugacy Classes of GL2 (Fq)

To count the number of conjugacy classes in a group, we first recall several results from

linear algebra.

Theorem 10.1 (Orbit-Stabilizer Theorem). Let G be a group and let X be a set on which G

acts. Let x ∈X. Then the number of cosets of the stabilizers of x is the number of elements

in the orbit of x.
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Corollary 10.2. Let x ∈ G and Z (x) be the centralizer of x. The number of conjugates of

x is ∣ G ∶ Z (x) ∣.

Proof. Let G be a group and denote the conjugacy class of x ∈ G as

cl (x) = {gxg−1 ∶ g ∈ G} ,

and the centralizer of x in G as

Z (x) = {g ∈ G ∶ gxg−1 = x}

= {g ∈ G ∶ gx = xg} .

Define ϕ ∶ G/Z (x)→ cl (x) by ϕ (gZ (x)) = gxg−1.

Let g1Z (x) , g2Z (x) ∈ G/Z (x) such that g1Z (x) = g2Z (x). Then

g1Z (x) = g2Z (x)⇔ g−1
2 g1 ∈ Z (x)

⇔ g−1
2 g1x(g−1

2 g1)−1 = x

⇔ g−1
2 g1xg

−1
1 g2 = x

⇔ g2g
−1
2 g1xg

−1
1 g2g

−1
2 = g2xg

−1
2

⇔ g1xg
−1
1 = g2xg

−1
2

⇔ ϕ (g1Z (x)) = ϕ (g2Z (x)) .

Therefore if g1Z (x) = g2Z (x) then ϕ (g1Z (x)) = ϕ (g2Z (x)) and if ϕ (g1Z (x)) =

ϕ (g2Z (x)) then g1Z (x) = g2Z (x). Hence ϕ is well-defined and injective, respectively.

Suppose k ∈ cl (x). Then there exists g ∈ G such that gxg−1 = k. By definition of ϕ,

ϕ (gZ (x)) = gxg−1 = k. Thus ϕ is surjective.

Because ϕ is bijective, it follows that ∣ cl (x) ∣=∣ G/Z (x) ∣. Using Lagrange’s Theorem,

∣ G/Z (x) ∣=∣ G ∶ Z (x) ∣. Thus ∣ cl (x) ∣=∣ G ∶ Z (x) ∣.

Definition 10.3. Two matrices A,B ∈ Mn (C) are similar if there is an invertible matrix

C such that A = CBC−1. A matrix A ∈Mn (C) is diagonalizable if and only if there exist n
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linearly independent eigenvectors for A. Specifically, if v1, . . . ,vn are linearly independent

eigenvectors, let C be the matrix whose k th column is vk. Then C is invertible and we

have

A = C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

⋱

λn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C−1,

where λ1, . . . , λn are the eigenvalues associated to the eigenvectors v1, . . . ,vn, respectively.

Proposition 10.4. If A,B ∈Mn (C) are similar, then the characteristic polynomial of A is

the characteristic polynomial of B.

Proof. Suppose A,B ∈Mn (C) are similar matrices. Let C ∈ GLn (C) such that A = CBC−1.

We know that the characteristic polynomial of A is pA (λ) = det (A − λI), and that the

characteristic polynomial of B is pB (λ) = det (B − λI). Therefore,

pA (λ) = det (A − λI)

= det (CBC−1 − λI)

= det (CBC−1 −CλIC−1)

= det (C (B − λI)C−1)

= det (C)det (B − λI)det (C−1)

= det (C)det (C−1)det (B − λI)

= det (C)det (C)−1 det (B − λI)

= det (B − λI)

= pB (λ) .

Hence, similar matrices have the same characteristic polynomials.

We are now ready to count the number of conjugacy classes in G, i.e., the number of

irreducible representations. We will find the distinct conjugacy classes of G by finding all of

the possible roots of a characteristic polynomial over Fq.
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1. Consider matrices g1 ∈ G of the form g1 =
⎡⎢⎢⎢⎢⎢⎣

λ1 0

0 λ2

⎤⎥⎥⎥⎥⎥⎦
, λ1 ≠ λ2. As λ1, λ2 ∈ F×q and

λ1 ≠ λ2, there are (q − 1) (q − 2) such matrices. And since

⎡⎢⎢⎢⎢⎢⎣

λ1 0

0 λ2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

λ2 0

0 λ1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

λ2 0

0 λ1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

λ1 0

0 λ2

⎤⎥⎥⎥⎥⎥⎦
,

there are (q−1)(q−2)
2 (distinct) such conjugacy classes.

If

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦
is conjugate to g1, then

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

λ1 0

0 λ2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

aλ1 bλ2

cλ1 dλ2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

aλ1 bλ1

cλ2 dλ2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

λ1 0

0 λ2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦
.

Therefore, b = c = 0 and every matrix in G of the form

⎡⎢⎢⎢⎢⎢⎣

a 0

0 d

⎤⎥⎥⎥⎥⎥⎦
is conjugate to g1. As

a, d ∈ F×q ,

∣ Z (g1) ∣= (q − 1)2

and

∣ cl (g1) ∣= ∣ G ∣
∣ Z (g1) ∣

=
q (q − 1) (q2 − 1)

(q − 1)2
= q (q − 1) (q − 1) (q + 1)

(q − 1)2
= q (q + 1) .

2. Consider matrices g2 ∈ G of the form g2 =
⎡⎢⎢⎢⎢⎢⎣

λ1 0

0 λ1

⎤⎥⎥⎥⎥⎥⎦
. Because λ1 ∈ F×q , there are (q − 1)

such conjugacy classes.

If

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦
is conjugate to g2, then

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

λ1 0

0 λ1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

aλ1 bλ1

cλ1 dλ1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

aλ1 bλ1

cλ1 dλ1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

λ1 0

0 λ1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦
.
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Therefore, every matrix in G is conjugate to g2. So

∣ Z (g2) ∣=∣ G ∣

and

∣ cl (g2) ∣= ∣ G ∣
∣ G ∣

= 1.

3. Consider matrices g3 ∈ G of the form g3 =
⎡⎢⎢⎢⎢⎢⎣

λ1 1

0 λ1

⎤⎥⎥⎥⎥⎥⎦
. Because λ1 ∈ F×q , there are (q − 1)

such conjugacy classes.

If

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦
is conjugate to g3, then

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

λ1 1

0 λ1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

aλ1 a + bλ1

cλ1 c + dλ1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

aλ1 + c bλ1 + d

cλ1 dλ1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

λ1 1

0 λ1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a b

c d

⎤⎥⎥⎥⎥⎥⎦
.

Therefore, a = d and c = 0, and every matrix in G of the form

⎡⎢⎢⎢⎢⎢⎣

a b

0 a

⎤⎥⎥⎥⎥⎥⎦
is conjugate to

g3. As a ∈ F×q and b ∈ Fq,

∣ Z (g3) ∣= q (q − 1)

and

∣ cl (g2) ∣= ∣ G ∣
∣ Z (g3) ∣

=
q (q − 1) (q2 − 1)

q (q − 1)
= (q + 1)2 .

4. Consider matrices g4 ∈ G of the form g4 =
⎡⎢⎢⎢⎢⎢⎣

0 −a0

1 a1

⎤⎥⎥⎥⎥⎥⎦
. The characteristic polynomial of

g4 is pg4 (λ) = λ2 −a1λ+a0. Note that the cardinality of Fq is q, and the total number

of quadratic monic polynomials over Fq is q2. If pg4 (λ) is reducible in Fq [λ], then

either pg4 (λ) = (λ − p)2 or pg4 (λ) = (λ − p1) (λ − p2). As there are q ways of choosing
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p and
⎛
⎜⎜
⎝

q

2

⎞
⎟⎟
⎠
ways of choosing {p1, p2}, the number of reducible polynomials over Fq is

q +
⎛
⎜⎜
⎝

q

2

⎞
⎟⎟
⎠
= q + q!

2! (q − 2)!
= 2q

2
+ q (q − 1)

2
= 2q + q2 − q

2
= q

2 + q
2

.

Therefore, the number of irreducible polynomials over Fq is

q2 − q
2 + q
2

= 2q2

2
− q

2 + q
2

= 2q2 − q2 − q
2

= q
2 − q
2

.

Equivalently, there are q2−q
2 (distinct) conjugacy classes.

It can be shown that ∣ Z (g4) ∣= (q − 1) (q + 1) and ∣ cl (g4) ∣= q (q − 1).

We claim to have found all of the conjugacy classes of G. To check, we add the number

in each case times the order of the conjugacy class of that type. By doing so, we have

(q − 1) ⋅ 1 + (q − 1) ⋅ (q − 1) (q + 1) + (q − 1) (q − 2)
2

⋅ q (q + 1) + q
2 − q
2

⋅ q (q − 1)

= q − 1 + (q − 1) (q2 − 1) +
(q2 − 3q + 2) (q2 + q)

2
+

(q2 − q) (q2 − q)
2

= q − 1 + q3 − q − q2 + 1 + q
4 + q3 − 3q3 − 3q2 + 2q2 + 2q

2
+ q

4 − q3 − q3 + q2

2

= 2q3 − 2q2 + q4 − 2q3 − q2 + 2q + q4 − 2q3 + q2

2

= 2q4 − 2q3 − 2q2 + 2q

2

= q4 − q3 − q2 + q

= (q2 − 1) (q2 − q)

=∣ G ∣ .

Therefore, we have found all of the conjugacy classes of GL2 (Fq).
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