AN EMPIRICAL STUDY INVESTIGATING SOURCE CODE SUMMARIZATION
USING MULTIPLE SOURCES OF INFORMATION

by

Sanjana Sama

Submitted in Partial Fulfilment of the Requirements
for the Degree of

Master of Computing and Information Systems

YOUNGSTOWN STATE UNIVERSITY

May, 2018

Sanjana Sama

I hereby release this thesis to the public. [understand that this thesis will be made
available from the OhioLINK ETD Centre and the Maag Library Circulation Desk for
public access. I also authorize the University or other individuals to make copies of this
thesis as needed for scholarly research.

Signature:
Sanjana Sama, Student Date
Approvals:
Bonita Sharif, Thesis Advisor Date
Abdu Arslanyilmaz, Committee Member Date
Feng Yu, Committee Member Date

Salvatore A. Sanders, Dean of Graduate Studies Date

Abstract
Software developers depend on good source code documentation to understand existing
source code to perform various tasks such as fixing bugs and implementing new features.
Manual documentation by developers is often missing or outdated. Past research has
suggested automatic code summarization tools to remedy this problem. While several
works on source code summarization leveraged only source code to generate summaries,
very little work exists on using other information sources. A lot of tacit knowledge is
exchanged between developers in discussion forums or bug reporting sites that can be
very useful for summarization. The novelty of our work is that we conducted an
empirical study using eye tracking equipment to investigate the effects of four different
types of information sources namely, source code, Stack Overflow, bug reports and their
combination on code summarization, to understand how developers perform using these
multiple sources of information during code summarization tasks. Each participant is
asked to summarize four code elements in their own words using different contexts. We
evaluate the summaries against a human oracle to find similarities and analyze the
developers’ eye gaze patterns to see what they look for and how they switch between
different contexts. Our results indicate that Stack Overflow and bug reports are as helpful
as source code in supporting code summarization tasks. Participants were more confident
when using Stack Overflow and bug reports when compared to source code. The results
of our study can be useful to researchers and practitioners interested in building context-
aware code summarization tools that can help augment official documentation with the

insightful information extracted from multiple sources.

i1

Acknowledgements

Firstly, I would like to express my true thankfulness to my advisor, Dr. Bonita
Sharif. I feel very honored to work with her whose motivation, understanding, and
patience helped me to complete my research. I appreciate her vast knowledge and skills
in many areas and her assistance in conducting study and writing my thesis report. I could
not have imagined having a better advisor and mentor for my Masters. I will forever be
thankful to her.

I would like to thank the esteemed members of my committee, Dr. Abdu
Arslanyilmaz and Dr. Feng Yu for the assistance they provided in this research project.

A special thanks to my family for all the motivation, support given by them and
the reason being for my graduate career. I would like to thank people who directly or
indirectly helped me to conduct the study. I would also thank the Department of
Computer Science and the STEM College for the financial assistance during my graduate

studies.

v

TABLE OF CONTENTS

LIST OF FIGURES ...cuuuiiiiitinensinsnissaissenssisssissssssssssssssssssssssssassssssssssssssssssssssssssssss VIII
LIST OF TABLESuouuiiiiiuininsensisssisssnsesssssssssssssssssssssssssssssssssssssssassssssssssssssssssssses X
CHAPTER 1 INTRODUCTION....cciivirirruinsenssensanssasssessanssassesssssssssssssasssassssssssssssss 1
1.1 IMIOTIVALION ...ttt ettt et sat e et e st e et esat e e bt e sabeebeesaneans 2
1.2 CONEITDULIONS. ...ttt ettt sttt et e et e bt e st e e b e eae 3
1.3 Research QUESTIONS..........iiiiiiiiiee e e et 4
1.4 L@ o111 221 () | DS RS 4
1.5 ACKNOWIEAZEMENTS....cc.viieeiiiiciieecee e 5
CHAPTER2 BACKGROUND AND RELATED WORK...........ccccevverruenrensensaccnnnes 6
2.1 Code Summarization TeChNIQUEScccvieiiiieriieeie e 6
2.2 Eye Tracking OVEIVIEWcccviieeiiiieeiieeeieeeeieeesteeeveeeieeeeieeesaeeesaeeesnseee e 13
2.2.1 Eye-tracking Studies in Software Engineering..........ccccceevvvveveveerceeencneeennne. 14
2.2.2 Program CompreRensionc.eeecveeerieeeiieeeiieeeiieeeieeeeeieeeeneeesseeesseeennns 16

2.3 Eye Tracking in Code Summarization............cc.eeerveeerieeeieeeseieeseeeeveeesveeenns 18
2.4 DISCUSSION ...ttt ettt ettt ettt ettt ettt e st et e st e bt e e bt ebeesabeebeenaee 21
CHAPTER 3 THE EYE TRACKING STUDY ..cccccevisrersunssunssesssessanssssssesssessassssssns 23
3.1 Experimental DeSi@N........cccvuieeiiieiiiieeieeeiie ettt eee e sree e 23
3.2 Contexts (Treatments) USEdcceeevvuiieiiiiieiiieeriie et 27
3.2.1 SOUICE COC ...ttt et 27

3.2.3 BUZ REPOTT .ottt ettt e et e e et e e e naeeee s 29

33 PartiCIPANTS. ...ccciiiieiiee et e e e e e enrae e 30
34 TASKS ettt et e 33
3.5 Data CollECHION ..ot 39
3.6 Eye-Tracking APParatusccceeecueeeriieeiieeeiieeeiiieesreeeieeeesereesssneesseeesseeesnnes 40
3.7 Conducting the StUAYcccvveieiiieeie e e 41
CHAPTER 4 ANALYSES AND RESULTS .ucioiiiiiiiinninsiicnessnnsssesssscssesssnnenns 43

4.1 RQ1: How do developers perform when using multiple sources of information

for code summarization tasks?.........cocuiiiiiiiiiiiii e 43
1.1 ACCUTACY ..uiiiiieeeiiiie ettt ee e et e ettt e e e ettt e e e et e e e e saataeeseennseeesennsseeeennnsees 43
A.1.2 THIMIC ettt ettt ettt et ettt e e b 49
4.1.3 AccuraCy and TIMEccueeeeuiiieiiiieeiieecie et sree e e e 51
4.1.4 Comparing accuracy of summaries by novices and no-novices.................... 52
4.1.5 Comparing time spent by novices and NON-NOVICEScceevvrveererveerveeennne 54

4.2 RQ2: How do developers navigate between multiple sources of information? 56

4.3 RQ3: What do developers look at when searching for information in source

code, Stack Overflow, and Bug reportS?cecvieeiieeriiieeciie et 59
4.3.1 SOUICE COAE ..ttt et 60
4.3.2 Stack OVETTlOW ..coeiiiiiiiiiiiiee e e 62
4.3.3 BUZ REPOTILS oottt ettt e e e e nara e e e nnees 65

vi

4.4 RQ4: Which source of information is the most preferable for developers while

they are SumMmarizing COAE?........oouiiiiiiiiiiiieeeieeetee et e et e eeereeeteeeeraeessaeeenseeens 68
4.5 Observations and DISCUSSIONccueeiuiiiiiieriiiiierie ettt 73
4.6 Threats to Validityccocvieeciieiiieeeiie ettt saee e 75
4.6.1 Internal Validifyceeeeoieeeiiiieeiieecee ettt 75
4.6.2 External Validity........coovueeeiiiiiiiecie et 76
4.6.3 Construct Validityccoveeiiiieiiieeciie ettt 76
4.6.4 Conclusion Validitycccceieiiiiiiiiiieiiie et 76
CHAPTER S CONCLUSIONS AND FUTURE WORK.........ccoverinrurrrensensarcsenens 77
APPENDIX STUDY MATERIAL ..uucoviiintininsinsainsensenssnssassessanssssssesssssssssssssassssssns 79
AT Study INSTUCHIONS ..veiiiiiieiiie ettt et e e e et e e e taeessraeessneeeenneeens 79
A.2 IRB approval certificate to do the studycccoeevuieeeiiiieiiiieieeeee e, 81
A3 Pre-QUESTIONNAITE.oiiiiiiiieieeiiiee e ettt e ettt e ettt e e e ettt eeeeaae e e e eeatreeeeeenraeeeeeasaeaeas 82
A4 POSt-QUESTIONNAITEcceuiiiieeeiiiiieeeeitie e e ettt e e e eeie e e e e eetaeeeeeeeaaeeeeeeseeeeesensseeeeenaraeaeas 84
A.5 Tasks and CompreRenSIONcecviieiiiieiiie ettt svee e s 91
A.6 Oracle against which summaries are evaluatedcccceeveiieiiiiencieecieee, 100
RETEIEIICES ...ttt et 103

vil

LIST OF FIGURES

Figure 1 Code Summarization study workspace screenshot............ccccceeeeviercieenciieennnnn. 25
Figure 2 Sample of source code used in the study.......c.cceecvveeiiiieiiieeiiieeieeeeeeeeen 28
Figure 3 Sample of Stack Overflow page........cceevvveeeiieeiiieeieeeee e 29
Figure 4 Sample of BUg repOTts PAZE ...oeeevveeeiiieeiieeeiie ettt 30
Figure 5 RQ1: Accuracy of summaries grouped by context..........ccceeevvercieencieencneeennnenn. 46
Figure 6 RQ1: Accuracy of summaries grouped by TasK........c.ccocevveveiienciieniieeciieeee. 47
Figure 7 RQ1: Accuracy of summaries grouped by Task and Context.............ccccuveeneen. 48
Figure 8: RQ1: Average time spent on each task grouped by context............cceevvveenneen. 49
Figure 9 RQ1: Average time spent on each task grouped by task..........c.cccoevevvvercieennnnn. 50
Figure 10 RQ1: Average time spent in secs grouped by task and context 50
Figure 11 RQ1: Accuracy and Time grouped by conteXt........c.cceeeveeeeieeecieencieenieeennneen. 51
Figure 12 RQ1: Accuracy and Time grouped by context, tasK...........ccceeeeveeveieencneeennnnn. 52

Figure 13 RQ1: Accuracy of summaries by novice participants grouped by context...... 53
Figure 14 RQ1: Accuracy of summaries by non-novice participants grouped by context54
Figure 15 RQ1: Average Time spent on task by novices grouped by context 55
Figure 16 RQ1: Average Time spent on task by non-novices grouped by context.......... 55

Figure 17 RQ2: Number of context switches made by each participant while using all

ENTEE SOUICES. ...ttt ettt et e st e e st e bt et e b e sateebeeeeee 57
Figure 18 RQ2: Context switch when using multiple sources..........ccccceeveveercieencieennnenn. 58
Figure 19 RQ3: Different elements focused in Source Codec.eevvveecveencrieenneeennnnn. 61

viil

Figure 20 RQ3:
Figure 21 RQ3:
Figure 22 RQ3:
Figure 23 RQ3:
Figure 24 RQ3:
Figure 25 RQ3:
Figure 26 RQ3:

Figure 27 RQ3:

Novice participant performing Source Code task...........ccccvevrvvernnenne. 61
Non-novice participant performing Source Code task.ccccceveenneee. 62
Different elements focused when performing Stack Overflow task....... 63
Novice participant performing Stack Overflow task...........cccccveevneennnee. 64
Non-novice participant performing Stack Overflow task....................... 65
Different elements focused when performing Bug Reports tasks 66
Novice participant performing Bug Report task..........cccceevveveieennennne. 67
Non-novice participants performing Bug Reports taskccccccuueee.e. 68

X

LIST OF TABLES

Table 1. EXPEriment OVEIVIEWcccuuiieiiieeiieeeiieecieeeeteeesiveeeaveeseseessaeessaeesssaeessseeesnseees 26
Table 2 Systems used in the StUAYcccveieiiiieeiie e 26
Table 3 Characteristics Of PartiCIPantscccveeeiieeriieeiiie e eeiee e 31
Table 4 Participants in Novice and NON-novice group.........cccueeeeuveeerveeeirveeniveeesineeensnnens 32
Table 5 Different tasks used in the Study........ccceeeiiieiiieeiiieeeeeeeeeee e 34
Table 6 Tasks and their difficulty level and LOC..............ccooeviiiiiiieiiieeieeeeeeeeen 35
Table 7 Sequence table With taskscccciiiiiiiiiiiiieiieeeeeee e 35
Table 8 Different sequences and versions table...........cccceccveeeriieeiiieeiiieeiee e 36
Table 9 Sequence number and its version given to each participant............cccceeeeuveennenn. 37
Table 10 Number of tasks in €ach CONteXt.........cevueiiiiiiiiiiiiiiiiiiee e 37
Table 11 Tasks and their Stack Overflow link...........ccoooiiiiiiiiiiee, 38
Table 12 Tasks and BR Linkccccooiiiiiiiiiiiee e 39
Table 13 Rating familiarity with the source code of different projects before study 69
Table 14 Rating usefulness of different contexts when doing summarization tasks........ 70

Table 15 Rating usefulness of different types of contexts in Stack Overflow that helped to
summarize the API elementscccooiiiiiiiiiiiii e 70

Table 16 Rating usefulness of different types of contexts in Source Code that helped to
summarize the API elementscocooiiiiiiiiiiiii e 72

Table 17 Rating usefulness of different types of contexts in Source Code that helped to

SUMMAriZe the AP €lEIMENTS . .cooeeenieee e e e e e e e e 73

CHAPTER 1

INTRODUCTION

Software developers spend a lot of time reading source code and its documentation.
(Paige Rodeghero et al. 2014). They need to understand the existing source code to
perform various tasks such as fixing bugs and implementing new features. When
developers perform tasks like fixing bugs, they typically need to read large amounts of
code. The process is very complex and time consuming. It becomes even more difficult
when the code is not properly documented. When working in teams, project
documentation plays a key role to understand code written by other developers. To
understand the existing code, software developers refer to multiple information sources
including source code, official documentation or informal documentation such as bug
reports, Stack Overflow, discussion forums etc. These sources give the purpose, context,
implementation and usage of source code. Manual documentation of code is very
expensive to develop, is very time consuming and often becomes outdated as soon a new
line of source code is written. To help developers quickly understand the code elements,
past research has suggested automated code summarization tools. But most of the tools
they generate summaries based on the source code, which generates summaries that give
purpose and usage of source code but not the context of code. However, a lot of tacit
knowledge exchanged between developers in discussions that occur in informal settings.
Not much work has been done using those informal settings in code summarization field.

The goal of our study is to investigate the effect of multiple sources of information on

1

code summarization tasks. The results of our study indicate that Stack Overflow (SO) and
bug reports (BR) are as useful as source code in supporting code summarization tasks.
The tools that are built by using the information extracted from these sources may

generate context-aware summaries which may be more helpful for developers.

1.1 Motivation

Programmers spend a considerable amount of time in reading and navigating
through the source code to understand it. It is complex and very time-consuming task.
Manual documentation by developers is usually incomplete because of rapid changes
occuring in software, which is not sufficient to understand the existing source code.
Several works have been done in field of automatic code summarization. Actual research
in this area has initiated a half-century ago. But the urge and need for automatic
document generation is increasing which resulted in many published papers in this area.
In initial stages summaries are generated by applying natural language processing
techniques to source code (the processors which are used to automatically generate
summaries for English text).(Haiduc, Aponte, and Marcus 2010). The generated
document is of simple English statements that explain the functionality of the code. Later
summarization techniques worked based on selected subset of the statements and
keywords from code. The quality of summary is dependent on the selecting the subset.
There are no specific standards followed to generate proper documentation. Various
research works resulted in the relevant description of code by explaining the context in
which different keywords and methods used in source code. Various techniques have

been developed to automatically generate the document. Many tools like Doxygen and

2

Javadoc have been developed to generate automatic summaries. But most of them depend
on specially formatted data which is provided by programmers. Several works on code
summarization they depend on the source code to generate summaries. These summaries
explain the purpose of the code elements and their functionality but not the context in
which they are used. Software developers discuss code elements via various other
forums. By using the information from other sources along with source code to build
automatic code summarization tools may help us generate more context-aware
summaries.

Our goal is to investigate the effect of multiple sources of information during
code summarization tasks. An empirical study was conducted to understand how
developers perform code summarization tasks when using multiple sources of
information, how developers navigate between multiple sources of information while
performing code summarization tasks and what they look at when searching for
information in various resources. By analyzing these various resources, we might find the
sources that are useful and helpful for supporting code summarization tasks. The
insightful information from that resources can be helpful to create better automated tools

that generate more useful documentation.

1.2 Contributions

The main contribution of this thesis is an empirical study conducted to understand
how developers perform when using multiple sources of information during code
summarization tasks. Data collection was done using a Tobii TX-300 eye tracker.

Subjects were students at Youngstown State University. The goal is to measure the

3

effects of four different types of information sources namely source code, Stack

Overflow, bug reports, and their combination on code summarization. The contributions

of this study are listed as follows:

e First study to look at how different informal sources play a role in summarization

e First study to use eye-tracking on Stack Overflow and bug reports

e Collection of 10.27 hours of eye tracking data from three different information
sources

e Bug reports and Stack Overflow are important sources for code summarization

1.3 Research Questions

The thesis presents the following research questions.

RQ1: How do developers perform when using multiple sources of information for code
summarization tasks?

RQ2: How do developers navigate between multiple sources of information?

RQ3: What do developers look at when searching for information in source code, Stack
Overflow, and Bug reports?

RQ4: Which source of information is the most preferable for developers while they are

summarizing code?

1.4 Organization
This thesis is organized as follows. The next chapter gives a brief introduction to
source code summarization related works and eye-tracking related work. Chapter 3

presents the details of the experimental design, the process followed, and tasks used for

the study. Chapter 4 discusses observations and results. Chapter 5 concludes the thesis
and presents future work. Parts of this thesis will be submitted to peer-reviewed

conferences and journals.

1.5 Acknowledgements
We would like to thank all the participants who took the time to be part of our study. This
work has been funded in part by the National Science Foundation under Grant Numbers

CCF 1553573 and CNS 17-30307/30181.

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents an overview of various work done on automated code
summarization tools. Next, the chapter presents related work in eye tracking and its use in

the software engineering and other domains.

2.1 Code Summarization Techniques

In initial stages of research, code summarization is a challenging task. In 2010,
Haiduc et.al proposed a technique for automatic code summarization by using lexical and
structural information. (Haiduc, Aponte, and Marcus 2010). Text retrieval techniques
which are commonly used for natural processing languages have been used to extract
most important terms from the source code. The structural information, which describes
the context of different methods and their use, parameters, and type of variables was
used. They considered structural information as important source to generate good
summary. Structural information along with retrieved information (keywords and
description about them) are included to generate final document. Their work even reflects
domain semantics. Methods which are used to generate document are evaluated in two
ways. Internal quality of generated summaries was evaluated using the pyramid method.
Its goal is to determine if generated summary expresses same content as the manual
summary. The second test is done determine the utility and usability of summaries. They
conducted a study with six graduate students on 12 java methods from different classes.

They have methods with different properties. Comparision was done between the

summaries generated by the proposed tool, manual summaries and pyramid score was
given for certain methods. The results stated that by adding more structural information
into the document will increase the quality of summaries. From their work, they learned
TR methods also work for source code and more structural information in summaries
results in a good summary.

There are no specific standards followed to generate good source code
documentation. Different tools use different approaches and contexts for generating the
summaries. There is no clear understanding of which characteristics to be considered to
generate a good summary. McBurney in one of his papers has focused on this issue
(McBurney 2015). He proposed three specific research objectives and approaches to
those objectives to generate a good summary. The first objective is to answer how much
similar should be the text in summaries to the text and keywords in the code. He
answered by testing the textual and semantic similarity of the summary and the source
code. He conducted a study with author (the person who wrote the code) and readers (the
persons other than author who reads the code) he found reader summary is similar to
code than the author summary. After analysis he told that similarity between the
summary and source code is not required for good documentation. The second objective
is to answer whether contextual information about source code inclusion improves the
summary quality. The author has developed a tool which summarizes the java methods
by considering its methods signature, context, and usage. The tool utilizes the call graph
to get all methods, use page rank to prioritize the methods and generate the summary. He

compared sumslice with Sridhara et al’s tool. (G. Sridhara, Pollock, and Vijay-Shanker

2011). (Giriprasad Sridhara et al. 2010). (Giriprasad Sridhara, Pollock, and Vijay-
Shanker 2011). He conducted a study in which programmers were asked to rate the
summaries based on accuracy, content adequacy, and conciseness. Result Metrics stated
summary with context and usage information of methods are better to understand when
compared to plain textual summaries of source code.

The third objective the author proposed is, the problem of similarity in source
code structure and source code summarization. Author has explained the source code
structure and document structure. He used an approach which uses classification
algorithm to generate a hierarchy of methods. More general methods are focused higher
in the tree and specific methods at end of the tree. Conducted a preliminary study to test
the above objective, the results stated that tool developed by the author has helped
programmers in the better understanding of methods.

Another technique related to automatic code summarization which was proposed
by McBurney and McMillan is automatic document generation via source code
summarization of method context. (McBurney and McMillan 2014). Summaries
generated by using automatic source code summarization tools usually help us to
understand the purpose of method, functionality of it. But how interaction occur between
various methods and their usage cannot be understood. The automatic summaries
generated by using proposed technique will help us to understand the purpose of the
method and its functionality, how to use them and how they interact with other methods.
The approach followed to achieve this is first they used PageRank to find the most

important methods in the source code. Later they used Software Word Usage Model

(divides statements into verbs, nouns Etc) and extracted keywords that describe the action
performed by important methods. Finally uses NLG to generate English statements
describing the functionality of method. A case study was conducted to evaluate their
approach and compared it to state-of-the-art. Study was conducted using 12 participants,
each participant was asked to study summaries and answer to what extent both
summaries differ and to what extent they included important information, excluded
unnecessary information. The answers by participants were in favour of authors’
approach.

McBurney et al. worked on to improve Topic model for better code
summarization of Java source code. This was mainly to improve the automatic source
code summarization for Java. They have created a Topic model from java source code as
the graph where methods from source code are nodes and method calls are represented as
edges. (McBurney et al. 2014). Hierarchical Document Topic Model (HDTM) is used
with the graph. Their approach generates a hierarchy which gives us different levels of
details. More generalized method is on the top of the hierarchy. Highest functionality
represented on the top and lowest details at the bottom. A hierarchical structure of topics
generated and displayed in web interface. A study was conducted by three programmers
and asked them to examine the methods randomly picked in source code from various
projects like Siena, nanoXML, jTopas, and jEdit and asked to answer questions how
exactly the given words describe the functionality of methods. Do they agree that they
understood the purpose of the method, and if they were asked to select any five keywords

which one they would choose? The results stated that their approach does not include all

necessary keywords to generate better summaries and suggested to include some
necessary keywords to improve the summary.

Fowkes et al. have proposed TASSAL (Tree-based Auto-folding Software
Summarization Algorithm). The main purpose of this tool is to help developers who read
the unfamiliar code and try to understand and makes it easier for them. It achieves it by
folding away less informative regions of source code and allowing them to focus their
efforts on more informative one. (Fowkes et al. 2016). The input to the tool is set of
source files along with the desired compression ratio. The output will be summary of
each file with uninformative regions being folded. To achieve this first find the suitable
regions to be folded. The tool determines the most informative region to unfold while
achieving the given desired compression ratio. The region which is not important is
folded and represented by the symbol. By doing this reader can spend time on the
important region than the overall project.

TASSAL is evaluated against simple heuristic folding methods such as
Shallowest folding, Javadoc, Largest folding techniques. All four systems were allowed
folding code blocks and comments. 6 experienced developers from the computer science
field were asked to rate brevity, completeness and usefulness of each summary. The
evaluation demonstrates that this method is favored by experienced developers over other
methods currently used in different IDEs.

To automatically generate the code summarization of complex artifacts Moreno
proposed a method by combining natural language processing and static analysis, and

software repository mining. (Moreno 2014). In automatic code summarization of Java

10

classes, the aim of generated summaries to support quick understanding of class by
describing its design and ignoring context. Stereotypes generated for classes and methods
are used along with predefined rules are included in the summary. Final generated
summary consisted of the overview of the class which is obtained from interfaces and
stereotypes, details about the structure of the class, its behaviour, and list of existed inner
classes. A case study was conducted with 22 programmers and was asked to access the
content adequacy, conciseness, and expressiveness. The results are 69% contain
important information and 96% are concise, readable and understandable.

He also proposed ARENA (Automatic Release Notes Generator) it considers
information from different sources like bug tracker, commit logs and generate notes. The
generation of notes done in different stages. (Moreno et al. 2014). In the first stage, the
changes made between two subsequent releases are recorded. In second, the structural
changes are hierarchically organized and prioritized. It next gets information about fixed
bugs, improvements and new features. A case study was conducted with 10 independent
evaluators, they have compared 8 original release notes with the generated one. The
results are 86% of original notes are appeared from the generated one. 88% suggested to
include the additional information generated by ARENA. Another study conducted with
38 professionals and open source developers who accessed the original and generated
release notes and were asked to compare the presence of important information. Results
were most of the information is present in generated one and one case suggested the

increase in the level of granularity of modifications would result in even better summary.

11

Change Scribe tool proposed by Mario Linares-Vasquez et.al aimed at assisting
developers when committing changes by automatically generating commit messages.
(Linares-Vasquez et al. 2015). This tool implements the Summarization based approach.
Delta doc (Buse and Weimer 2010) and Arena (Moreno et al. 2014) are tools similar to
Change Scribe that generates the program changes. It acts as eclipse plugin and works
with Git-based repositories. It describes the source code changes as for each row inserted,
modified and deleted code snippet generates descriptive phrases for
class/method/statement. It also gives the overview of commit changes. The tool uses
Change distiller to get the Fine-grained node modifications. It has changes subset and
fine-grained changes it uses them to generate general descriptions and detail descriptions.
It even uses JStereocode tool. It used to document changes of Java methods. It uses an
elegant heuristic depend on impact analysis. In the description, it includes only the
classes which have a higher impact due to large changes. The threshold value which is
provided to decide which classes to be included whether higher or lower. Change Scribe
able to describe initial commits and descriptions. This tool can be downloaded as eclipse
plugin.

Most of the results in papers, journals, conferences, scientific researches are
depicted in form of document elements, searching those elements always not results in
relevant information. Bhatia et.al in their work proposed method to generate synopsis for
document elements (tables, algorithms, figures) searched. (Bhatia, Lahiri, and Mitra
2009). By generating such synopsis saves end users time to analyze and compare the

results. Scientists they spend most of the time in searching for document elements and

12

comparing the results with others. When they try to search, they may get correct results,
but analysis of elements will be difficult. By generating synopsis analysis and search
becomes easier. To create synopsis initially they pre-processed the document and
proposed a grammar to distinguish the captions of elements from other sentences in the
document. With good writing style, they can find reference document related to the
element. They performed some mathematical calculations and selected sentences based
on content features and context. To maintain the size sentences selection is done. By

selecting generated synopsis for elements in digital documents.

2.2 Eye Tracking Overview

Eye tracking has been studied in computer fields and non-computer fields. It is a
process of measuring the position of eyes where a person is looking at or motion of an
eyes relative to the head. An eye tracker is a device that helps to detect eye positions and
eye movements. We can also know the amount of time spent looking at elements
(duration) and order of gazes too. Eye trackers monitor persons visual attention by
tracking eye movement data. Eye tracker equipment captures various types of eye
movements. Fixation, looking at an element for a certain amount of time, and the
saccade, which is a quick movement of the eyes from one part to another. Saccades and
fixation are the types of eye movements which let us know where the reader is looking at.
(Busjahn et al. 2015). During a saccade, it would be recorded as a blur because the eyes
would be moving very fast across the stable visual stimulus. Visual information is

received from fixations. Eye tracking is a source of valuable information, which cannot

13

be obtained by other methods. For instance, a programming instructor will ask students to
write answers after tracing code or debugging a program code. We can know the final
result after performing a specific task and the amount of time spent doing the task, that
will not help us to get information that is necessary to understand how and why a student
chooses an answer. (Busjahn et al. 2014). This was discussed in their paper. Discussion
of various studies using eye tracking equipment in different fields is presented below.
First sub-section presents eye tracking in software engineering field then next sub-
sections presents eye tracking studies in program comprehension and code summarization

arcas.

2.2.1 Eye-tracking Studies in Software Engineering

Software Engineering is an engineering field that is related with all aspects of
software production. The modern information system is formed by software systems.
Most of these are very complex systems. These software systems concern the
advancement of new, or modification of existing technologies to help software
engineering activities. Let us now discuss some research studies related to this field.

An eye tracking was conducted to study the effect of two layouts schemes for
class diagrams in the context of identifying classes and their roles in design pattern with
respect to effectiveness, efficiency and visual effort. (Sharif and Maletic 2010b). This
study is a replication of an online questionnaire-based study. This was conducted using
students and faculty of Kent state university. Visual effort is determined using eight
measures and provides an objective metric to measure the quality of UML class

diagrams. The results of the study reports that accuracy rate is high for role detection in

14

multi-cluster layout in case of Strategy pattern. With Observer pattern higher accuracy is
for Observation role and less amount of spent on task in the multi-cluster layout.

A plugin called iTrace, an Eclipse plugin that records eye movements of
developers while they work on change tasks. It is the first eye-tracking environment that
makes plugin possible to conduct eye-tracking studies on huge systems. (Sharif, Shaffer,
et al. 2015). An overview and design of iTrace plugin were discussed in the paper. iTrace
design is so flexible to record eye gazes on various types of software artifacts such as
Java code, text/html/xml documents, and diagrams. They have conducted a study with 22
developers using iTrace as Eclipse plugin. It was compared with mylyn interaction
history data and results showed that it captures more contextual information about source
code elements from different aspects of developer’s activity when compared to
interaction data. Their main contributions are an eye-aware eclipse plugin, easy to
comprehend gaze export format for source code and demonstrated usage of iTrace for
software traceability and program comprehension tasks.

A systematic literature review (SLR) was performed covering eye-tracking
studies published from 1990 to end of 2014 in software engineering field. This SLR
investigates the uses of eye-tracking technology in software engineering. (Sharafi, Soh,
and Guéhéneuc 2015). To analyze the studies, they have performed automated search and
found 649 publications, they identified 35 relevant papers related to uses of eye-tracking
in SE. The results of eye-tracking studies determine how participants perform different
software engineering tasks and how they use different models and representations along

with the source code to understand software systems. The analysis was done on eye-

15

tracking studies and they were categorized into model comprehension, debugging,
traceability, code comprehension, and collaborative interactions. They provided general
recommendations for the SE community and suggestions for researchers who are
interested and new to this area.

Investigation about the behavior of developers while doing a change task was
done by Sharif, et al. (Sharif, Kevic, et al. 2015). This is the first study that collects
simultaneously both eye-tracking and interaction data while developers performing tasks.
The study was conducted with 22 developers, they were asked to work on three change
tasks of JabRef open source system. The approach they developed for study
automatically links eye gazes to source code entities in the IDE and supports scrolling
and switching behavior of normal IDE. The analysis shows that the gaze data collected
by the eye tracker contains more data than the interaction data. Developers working on a
real time change tasks look at very few lines within a method when working on single
methods. When comes to switch between methods developers chase variables flows
within the methods, rarely follow call graph links and mostly only switch to the elements

close to the method within the class.

2.2.2 Program Comprehension

When developers working in integrated environments, receive compiler error
messages through a variety of textual and visual mechanisms. Error messages can be used
to communicate the defects with developers. Researchers have very limited knowledge of
how developers use these error messages to resolve the defects in source code. Barik and

et.al conducted an eye tracking study with 56 participants to understand how developers

16

read the error messages and how they use them to resolve the defects . (Barik et al. 2017).
The participants were asked to resolve common yet problematic defects in Java code
within Eclipse environment. A comparison was made between source code reading, error
messages, and prior work on silent reading. They found that participants read error
messages, but they find difficult to read error messages when compared to the source
code. They also found that developers they spend considerable amount time on error
messages even though there is only single error message present in the task. They found
several problematic areas in the way development environments presents the compiler
messages which are making them difficult. By addressing those problems results in
improving the compiler error messages for developers.

Does programming language affect a person ability to read and understand source
code? To investigate about this an eye tracking study was conducted comparing the
languages C++ and Python by Turner et.al. Eye gazes of 38 participants were tracked
while performing overview and find-bug tasks. Results on task accuracy, speed, and
visual effort are reported. (Lazar et al. 2014). They found no statistical difference
between C++ and Python languages with respect to accuracy and speed. But there was a
significant difference between two languages in fixation rate on buggy lines of codes
while performing the find-bugs task.

Program comprehension plays an important role for developers. Understanding
the source code is important for the learners. An empirical study was conducted by Sharif
et.al. to determine if identifier naming conventions such as camelCase and underscore

affect source code comprehension and readability. (Sharif and Maletic 2010a). They have

17

used two main styles of identifiers to determine if one is significantly better than others.
They have used eye tracker to analyze the effect of identifier styles on accuracy, time,
and visual effort with respect to the task of recognizing a correct identifier, when given a
sentence. They have conducted study with 15 participants. They found there is no
significant difference between identifier styles with respect to accuracy, results indicated
that there was a significant improvement and lower visual effort when using underscore
style. Novice developers performed better when using underscore whereas with
experience the no difference in performance between two styles.

Identifiers play an important role in program comprehension and code readability.
A study was conducted to investigate the impact of gender on the performance of
developers during code reading and program understanding activities. (Sharafi et al.
2012). This is done based on subject’s visual effort, time and ability to recall identifiers
in source code reading. They did not find any significant difference in terms of accuracy,
time and effort. They found male and female subjects follow different plan while reading.
Female are more focused on the options that are given to them than male. Female
subjects spent more effort on the wrong answers than male subjects. Female subjects
carefully examine all options and ruled out wrong options, which lead to higher accuracy

rate. whereas male they quickly made up their minds and answered possibly wrong ones.

2.3 Eye Tracking in Code Summarization
Several researches have been done in code summarization field but there are no
studies on how programmers read and understand source code especially in case of

summarizing that source code. Rodeghero et.al has conducted an eye-tracking study

18

using 10 professional java programmers in which programmers were asked to read Java
methods and to write English summaries of those methods (Paige Rodeghero et al. 2014).
The goal of their study is to find which keywords are important from source code to be
included in summary and to develop tool that generates summary using the selected
keywords. They tried to answer four research questions related to areas of code that are
helpful to derive important keywords. And tried to answer research questions by using
various approaches. Their work contributed to program comprehension literature with the
evidence from the study about the programmer’s behavior during code summarization.
They found programmers they tend to read certain areas of code over others and control
flows which are suggested as critical to program comprehension are not read as
frequently as another part of the code. Method signatures and invocations are
concentrated more often. Proposed a tool to generate based on the keywords selected
using eye tracking study.

An eye-tracking study was conducted to understand the patterns of eye movement
during summarization tasks. The order of eye movements that people use to read are the
patterns of eye movement. This study with the help of eye tracker examines where people
focus when they are looking at text or images. (P. Rodeghero and McMillan 2015). They
tried to answer some the research questions through their study. Do programmers read the
source code from top to bottom and from left to right, similar to English text? Do
programmers tend to skim or thoroughly read the code? And some other questions. They
presented a qualitative and quantitative study of eye movement patterns of programmers

during source code summarization. They showed that programmers read source code a

19

little differently when compared to natural language text, programmers prefer to read
source code by skimming and jumping around but not depth and sectional reading.
Programmers they tend to read and summarize source code following specific patterns.
Programmers also use similar patterns when compared to each other.

Rodeghero et.al conducted an eye tracking study with 10 professional Java
developers to understand what developers look at when performing code summarization
tasks. (P. Rodeghero et al. 2015). Source code summarization is an emerging area of
research. Current research techniques they depend on the subset of statements and
keywords from the source code and then include the information about that keywords and
statements in the summary. The quality of the summary it depends on the subset of words
selected. A subset is a high quality when it matches with the keywords and statements
that are chosen by programmers while performing code summarization tasks. Not much
has been done to know about the keywords and statements that programmers view as
important while they are summarizing source code. The study conducted by authors gives
us information about the developers’ view, the findings from the study are applied to
build a novel summarization tool. They evaluated this novel tool against other existing
tools. They are working on the summaries by programmers to explore specific keyword
usage and provide evidence to support the development of source code summarization
systems.

Program comprehension is task of interpreting a program’s behavior usually by
reading its source code. blind programmers usually use a screen reader when reading the

source code, programmers with sight can skim the code with their eyes. This difference is

20

important that can impact the generalizability of software engineering studies and
approaches. (Armaly and McMillan 2016). Authors they have investigated how code
comprehension of blind programmers differs from that of programmers with sight. They
have conducted a comprehension study with both sighted and non-sighted programmers.
Both groups were asked to summarize the given five methods. Sighted programmers
were tracked using cursor script. It records all cursor movements and commands. Blind
programmers they used screen reader to read the code. they found that no statistical
significant differences between the areas of code that both groups found to be important.
Sighted and blind programmers both spent considerable amount of time on method
signatures. The similarity between two groups suggest that productivity-enhancing tools
and software engineering studies are applicable to both sighted and blind programmers,

provided that any newly-developed tools are accessible.

2.4 Discussion

Software developers spend most of the time in reading and browsing the existing
source code to perform various tasks, which is complex and time-consuming with
improper documentation. Proper documentation helps developers to understand code
elements easily and they can invest their time in devising new solutions. Manual
documentation is costly and often missing or outdated. There was need to generate
documentation without human intervention. Past research has suggested automatic code
summarization. As stated above, most of the work they depend on the subset selected
from source code to generate summaries and there are no specific standards to be

followed to generate better summaries. Several tools either they depend on developers’

21

comments about source code or selected subset of keywords from code to generate
summaries. These summaries they explain about purpose and functionality of code
elements used in code. But they are not completely context-aware. It means summaries
do not explain in detail the context in which that code elements are used. Besides source
code developers they use Stack Overflow and Bug reports to discuss the code elements.
A lot of tacit knowledge is exchanged between the developers during discussions that
happen in informal settings. Not much work has been done using these various resources
in code summarization. My study is to investigate the effect of these multiple sources of
information on code summarization. Our emerging results and findings can be useful to
researchers and practitioners interested in building context-aware code summarization
tools that can help augment official documentation with the insightful information
extracted from various kinds of informal documentation. Students and professional
developers benefit from good source code documentation for program comprehension.
The next chapter covers the details of the eye tracking study including the

experimental design and task selection.

22

CHAPTER 3

The Eye Tracking Study

This chapter presents the details of the empirical study conducted as part of this
thesis. It gives details on the experimental design, contexts used, participants data, data

collection methods, tasks, and how the study was instrumented.

3.1 Experimental Design

To wunderstand how developers, perform when using multiple sources of
information during code summarization tasks. The goal is to measure the effects of four
different types of information sources namely source code, Stack Overflow, bug reports,
and their combination on code summarization. For this, a user study was designed to
summarize API elements in given context. Each participant is asked to summarize in their
own words four code elements, which include two methods and two classes. Four
different contexts based on the four information sources presented above are used. We
have investigated whether code summarization can leverage on other information sources
rather than source code. In the study, participants were given a pre-questionnaire where
demographic data is collected. Responses were collected based on five-point Likert scale.
Each participant was given four code elements two methods and two classes and was
asked to summarize in their own words using given context.
Participants were asked to summarize the code elements using following contexts:

e Only source code (which method or class should be referred will be mentioned)

e Only Stack Overflow (link to Stack Overflow will be provided in the question)

23

e Only bug reports (link to Bug report will be provided in the question)
e Using ALL (source code project, link to Stack Overflow and Bug reports will be
provided)

Participants were instructed to understand the code in given context and
summarize their view. They were also asked to answer difficulty level, the confidence
level in their own degree of understanding about the given code elements after each task.
After finishing the given four tasks the they will be given a post-questionnaire to answer.

A plugin called iTrace was developed in the Software Engineering Research and
Empirical Studies lab. This plugin gives us eye tracking information at word level and
supports scrolling. We have integrated this plugin with eclipse workspace. We have set
up different systems used and task files under one eclipse project. Figure 1 shows the
snapshot of code summarization study workspace. The left section contains four systems
used for the study. All task files are opened in the bottom section. When using SO and
BR context participants can open the link provided to them using the Eclipse internal

browser.

24

S runfime-ECh i pp b o140 - Brace - CodESUm et on Sty s Sequence 1TT-ALLst - Ecfipse Flatiem
Fis it Mavgsm Sesch Promct Aun Window Hep

- =R] L - - - -
Frogect Explonss © L

& 12 Codufurmmanston S,
i RE Syrtem Lisran

1 survedD o TZ-Codesst | | T3-500tet o -8R bt TP-ALLtet =2
Blease summarbze the sethod: arg.netbesns.sol, progress Frogressimils o unOr fEventhlspatoihresd using 5

VOLR SURMARY

[rundtfEventiispatchTheead) Ln the petheans profect
w o tha msthod.

Ehe 11 to et aclk 1 Lo by T e S, Fenad chTh s

Figure 1 Code Summarization study workspace screenshot

An overview of the experiment is given in Table 1. The experiment seeks to
analyze summaries and eye tracking data using different contexts for purpose of
evaluating their impact on code summarization tasks. Participants doing the study are
instructed to read, understand the task, and the context using which they need to
summarize the method/class. They need to summarize the method/class in their own
words. Based on the accuracy of summary and other analysis, the usefulness of different
contexts for code summarization can be understood. The independent variables for the
study are different information sources such as source code, Stack Overflow, Bug reports,
and ALL. Dependent variables are accuracy score, time, confidence level, level of

Difficulty and Visual Effort (characterized by fixations and saccades).

25

Table 1. Experiment overview

Goal Impact of multiple sources (source code, Stack Overflow, Bug
reports, the combination of all) on code summarization

Independent variables Information source (source code, Stack Overflow, Bug reports,
all)

Dependent variables Score, Time, Confidence level, Level of Difficulty, Visual Effort

Code elements that are given to participants to summarize are chosen from four

different systems such as Eclipse, JMeter, Tomcat, and Netbeans. Two API elements, one

method and one class are chosen from each of above mentioned systems. In total 8 code

elements are selected. These code elements are selected based on their difficulty level,

which is calculated by considering Lines of code (LOC) and other factors. Table 2 gives

the overview of systems used, version of system, and link redirects to download system’s

source code.

Table 2 Systems used in the study

System Version Source code (link)
http://archive.eclipse.org/eclipse/downloads/drops4/R-4.2-
Eclipse 4.2 201206081400/download.php?dropFile=eclipse-SDK-4.2-win32-
x86_64.zip
IJmeter 3.2 http://imeter.apache.org/download jmeter.cgi
Tomcat 7 http://tomcat.apache.org/download-70.cgi
https://netbeans.org/downloads/7.4/start.html?filename=zip/netbeans-

NetBeans 7.4

7.4-201310111528-src.zip&pagelang=

26

3.2 Contexts (Treatments) Used

Four contexts were used in our study. They are Source code, Stack Overflow, Bug
reports and combination of all three sources. To complete the task given to them,
participants they need to use the context stated in the task file and gather information
related to code element and write the summary in their own words. By investigating the
effect of these multiple sources of information on code summarization, we can find the
usefulness of sources besides source code in supporting code summarization tasks. If they
are as helpful as source code, the information from other sources can also be used to

generate more context-aware summaries.

3.2.1 Source Code

Source Code is the code written by developers. Four open source Java projects -
Eclipse, JMeter, Tomcat, and NetBeans - are used in the study. Projects are imported into
Eclipse workspace. Participants when performing summarization task using CODE
context. They can find the project from which code element is taken in the task file and
can operate on the entire source code of that project that is placed in eclipse workspace.
They can navigate through entire project to gather the required information to summarize
the code element. Their access will be limited to only source code, which means they
cannot use any other sources except source code to complete the task. Figure 2 It shows
the sample source code file. The projects which are given to participants does not contain
any type of comments in them. By looking at only source code they need to summarize

the code element given to them.

27

[—

package org.eclipse.swt.custom;

import
impert
import
import

publie

static final int SLEEP =

crg.eclipsa.

org.eclipse.

SwWt.* 3

.swt._graphics.*;
-swt widgets.*;

Swt_oavents.=;

class AnimatedProgress extends Canvas {

7a;

static final int DEFAULT_WIDTH = 168;

static final int DEFAULT_HEIGHT =

boolean active

boolean showStripes =

int valua;

int crisntatien
boolean showBorder =

18;
= false;
false;

= SWT.HORIZONTAL;
false;

public AnimatedProgress(Composite parent, int style) {
super(parent, checkStyle(stylal);
if ((style & SWT.VERTICAL) != @)} {
orientation = SWT.VERTICAL;
¥
showBorder = (style & SWT.BORDER) != &;

addControllistenar[fnew Contreladapter() {
public veid centrelResized(ContrelEvent o) {

radraw(
Y

I H

Figure 2 Sample of source code used in the study

3.2.2 Stack Overflow

Developers they discuss code elements via various information

sources, Stack

Overflow is one of them. It is one of the largest and most trusted online community for

developers to learn and share knowledge. It is a question and answer site used a lot by

developers to discuss issues. Besides source code, this is also an important platform

which developers use to discuss the code elements. Participants when asked to perform

summarization task using SO context, they need to follow the instructions given to them

in task file. They are provided with a link to Stack Overflow posts mentioning the given

code element they can open the link using eclipse internal browser and can navigate

through different pages in Stack Overflow to gather necessary information required to

complete the task. When performing the task using SO context, participants will have

access only to Stack Overflow and not to any other sources. Figure 3 shows the sample

file of Stack Overflow site.

28

3.2.3

a site where developers usually post the bugs, then fixes them. Thereby unofficially
documenting the usage of code elements. Example Bugzilla is one of the famous bug
reporting sites used by developers. These sites are used to keep track of bugs and
generate bug report forms. The goal of my study is to find the effect of bug reports in
code summarization. How developers perform when using only bug reports and

combination all resources while doing code summarization tasks. These questions are

E\\ stack overflow Questions Developer Jobs Tags Users SWTError

sverere ===

56 resuits relevance newest votes active

o Q: NoClassDefFoundError orgf/eclipse/swi/SWTError

\five-serveridistimain=java —jar five-server jar Exception in thread "main” java.lang NoClassDefFoundError
orgleclipse/swi/ SWTErmor Caused by: java.lang.ClassMotFoundException: org.eclipse.swt.SWTErmor ..

E = = N e asked Aug 14 12 by Vihaan Verma

2 Q: SWTError: Not implemented [multiple displays]
I am trying to open a SWT-file-browser in on button click event. tnAddFiles addSelectionListener(new
SelectionAdapter() { @Override public void widgetSelected(Selectio ...

1 java swit asked Feb 8 "13 by HDdeveloper
answer

0 Q: InvocationTargetException caused by SWTError (“no more handles”™)?

| am experiencing a strange error. | have an Eclipse 3.7 2-based RCP application. When starting it from my
run configuration, it throws an InvocationTargetException which is caused by an SWTEror ...

0 java swt eclipse-rcp runtime-error handie asked Apr 1114 by s.d

1 Q: Eclipse Unhandled event loop exception with SWTerror
My os is win7 64bit | installed jdk for 64bit after that, set the path and extracted eclipse and excute. I've done
nothing but i have a weird error popup like Unhandled event loop exception o _

0 eclipse asked Oct 4 "13 by Canna

Figure 3 Sample of Stack Overflow page

Bug Report

It is another platform where developers discuss the code elements. Bug reports is

answered in our research questions.

They can follow the general steps in the task file to complete the task. They are provided

Participants when asked to summarize the given code element using BR context.

with a link to bug reports discussing the code elements.

29

They can open the link using eclipse internal browser and gather the necessary
information to summarize the given code element. They can navigate through various

pages in bug reports, but their access is limited to only bug reports. Figure 4 shows the

sample bug report
Hiem | b | Brovisd | Search | ﬁiilﬁlﬁmuﬁl:w Pt Accsunt | Lag In | Forget Pagiviord
Tue Mar 13 2018 14:45:49 UTC
[pnge hearg the yoips of G, [s Vrremmmmme, - Unkaes it e gt 8 dawn mowen

Higge Bmarch Desrription

Contant: ValiBaa

20 brags found

¢ Product Comp Assignee Ststus Resolution Summary Changed
1033 Tameat 4 Cataling dav RESO INVA Clasatar Eacaption vhin ksdiog a surelsd 1004-11-18
411 Tomcatd Cataling dev RESD Dy Caneinaded b Verifier seror {foliow yp Bugs 604 and 8AR] BugRat Reporte 734 2004-11-1%
457 Tomcat 4 Jasper dev RESD WORK i) with an himl fysh= - l i a7 2004-11-18
i Tomeatd Unknown dev RESD DA JaSang.HullPuintarExcaesion with Akart-emeat-4.0-n4 BugRat Aqpert=2p] H04-11-18

1 | b L h I h imfr

413 Tomtd Comesto dey RESD PDE foalliel ' L : & : : 2004-11-18
447 Tomeatd Cataling dew RESD FIXE H04-11-18
818 Tomeat4 Jasper dev RESD FIXE 2004-11-18
188 Tomeatd Unkaown dev RESO FIXE 2004-11-16
15 Tomeatd Cataling dev RESD WORK = m FrRETES B = 5 2004-11-1%
E2009 Tamgat 7 Connacte dav RESD FIXE MPE gt In oeg. apachi Citalina.conesctor, CovteAdantar s ice 2070731
6075 Tomcat 6 Cataling e RESO WONT ConnectionManageryalye: son i n inn Imig HI Ipn sl 204-02-17
Sid0s Tomeat? Conndite diw RESO FIXE ek pvarllw B Connasir 2012-06-13
41020 Tomeat 5 Cataling dev BESO FIXE Eanr srror vy when using arrarfepertalvaCls In Hoat alamant 20e-11-23
S1810 Tomcat 7 Cataling dev RESD FIXE HPE i romet proressing mh ng fomn Toms #011-10-0

EREST Tomeat? Cataling dew RES0 FIME Claaslagacantion sily removing Yali 2013-03-21

Figure 4 Sample of Bug reports page

3.3 Participants

We recruited graduate and undergraduate students at YSU. The minimum
requirement of a participant is to have knowledge of Java programming. There were 12
undergraduate students and 3 graduate students.

All the code elements given to participants to summarize are selected from four

different open source Java projects. In pre-questionnaire, participants were asked to self-

30

assess their skills in Java programming, industrial experience in years and the IDE which
they are familiar with. In the post questionnaire, they were asked questions related to
their experience in the study. See the appendix for details on the questionnaire materials.

All participants were compensated with a $25 gift card.

Table 3 Characteristics of Participants

Characteristics Level # ?f
Participants
Study program Bachelor 12
Master 3
Between 6 & 10)
years
Active programming Between 3 & 5 7
experience years
Between 1 & 2 5
years
Poor 1
) Fair 8
Knowledge in Java Good 1
Very Good 2
Familiarity with Stack Yes 14
Overflow No 1
Familiarity with Bug Yes 10
repositories No 5

From the above Table 3 one can understand that there are 12 bachelor students 3
graduate students in participants. More than half of the students have greater than two
years of active programming experience. Only one participant have poor knowlegde in
Java programming, rest all the participants have fair to very good knowledge in Java. 14
out of 15 participants used Stack Overflow to find solutions to their coding problems
when working on projects. 10 out of 15 participants use/read bug reports to find solutions

to their issues encountered while coding.
31

Participants in our study are divided into two groups Novice and Non-novice based
on certain criteria. Each of our research questions were answered by using data of overall
participants and also by comparing the novice and non-novice group data.

The criteria used to divide into groups is based on the pre-questionnaire data by
participants and accuracy of summaries given by participants. The participants with Fair
to Very Good Java programming knowledge and having more than one year of active
programming experience and whose summaries does not consists of more than one
incorrect summary are considered to be Non-novice. Participants who do not follow at
least one of the rules from above criteria fall into Novice group. Out of 15 participants we
have 6 in Novice group and 9 in Non-novice group. The table below shows the

participants ID and the group they fall into.

Table 4 Participants in Novice and Non-novice group

ID number Accuracy of summaries Expertise
IDY1 2F,2P Non-novice
IDY2 3P,1N Non-novice
IDY3 2P,2N Novice
IDY4 2F,1P,1N Non-novice
IDY5 1F,1P,2N Novice
IDY6 1F,1P,2N Novice
IDY7 3P,1N Novice
IDY8 1P,3N Novice
IDY9 3F,1P Non-novice
IDY10 2P,2N Novice
IDY11 2F,2P Non-novice
IDY12 1F,2P,1N Non-novice
IDY13 3P, 1N Non-novice
IDY14 1F,3P Non-novice
IDY15 2F,2P Non-novice

32

In Accuracy of summaries column, the F, P, and N denote F- Fully Correct, P-
Partially Correct, N-Not Correct. In Table 4, the greyed cells represent participants fall in
novice group and while cells represent the participants in the non-novice group.

Participants they are divided into groups in order to understand the difference in

their approach to analyze their performance when using different contexts.

3.4 Tasks

Code elements used in the study are chosen from four different open source
projects named Eclipse, Tomcat, Netbeans, Jmeter. Selection of API elements, methods
and classes are done by considering the level of difficulty, lines of code and other factors.
The experiments are divided into four tasks. In each task, the participant will be asked to
summarize the given method or class from any of the four projects using the context
mentioned in task. One method and one class are selected from four Java projects. We
have generated 8 sequences and in each sequence 3 versions (by changing the order of
tasks given to participants). Each sequence contains four tasks T-SO, T-BR, T-CODE,
and T-ALL. Task T-SO implies the participant needs to summarize the given
method/class using only Stack Overflow context. They will not have access to either
source code or any other sources except Stack Overflow. Link to Stack Overflow related
to that method/class will be provided in the task file. Task T-BR implies that the
participant needs to summarize the given method/class using only Bug reports context.
They will not have access to either source code or any other sources except Bug reports.
Link to Bug reports related to that method/class will be provided in the task file. Task T-

CODE implies that the participant needs to summarize the given method/class using only

33

source code. They can search for method/class in the related project in Eclipse project.
They will not have access to either Stack Overflow or any other sources except source
code. Task T-CODE implies that the participant can summarize the given method/class
using the source code, Stack Overflow, and Bug reports. They can access all three
sources to summarize the code elements. They will provide with source code project,
links to Stack Overflow and Bug reports related to the method/class. Table 5 below

shows different code elements used in the study. 8 code elements were chosen from four

systems.
Table S Different tasks used in the study

Task ID Projects Version Package API Level
T1 Eclipse 4.2 org.eclipse.core.databinding Method
T2 Eclipse 4.2 org.eclipse.swt Class
T3 JMeter 3.2 org.apache.jmeter Method
T4 JMeter 32 org.apache.jmeter.samplers Class
TS5 Tomcat 7 org.apache.catalina.realm Method
T6 Tomcat 7 org.apache.catalina.valves Class
T7 Netbeans 7.4 org.netbeans.api.progress Method
T8 Netbeans 7.4 org.openide.nodes Class

Different API elements from various systems are selected based on difficulty
level and Lines of code. Table 6 below shows different tasks used in the study, their API

Level, difficulty level and LOC.

34

Table 6 Tasks and their difficulty level and LOC

Task ID Projects API Level Difficulty LOC
T1 Eclipse Method Difficult 18
T2 Eclipse Class Medium 123
T3 JMeter Method Medium 58
T4 JMeter Class Medium 1523
T5 Tomcat Method Difficult 59
T6 Tomcat Class Difficult 245
T7 Netbeans ~ Method Difficult 42
T8 Netbeans Class Difficult 27

Different sequences used in the study are shown in Table 7. We have a total of 8
sequences. Each sequence contains 4 tasks one in each context. Note that the same
method/class are not given to the same participant for all three contexts (source code,
Stack Overflow, Bug reports, and a combination) due to learning effects. In each

sequence, we have different tasks for every context.

Table 7 Sequence table with tasks

Sequences API1 API2 API3 API4
Seq1 T3-SO T6-BR T7-All T2-Code
Seq2 T4-BR T1-All T6-SO T7-Code
Seq3 T5-Code T4-SO T1-BR T8-All
Seq4 T6-All T3-Code T2-BR T1-SO
Seq5 T5-SO T2-All T1-Code T8-BR
Seq6 T2-Code T5-BR T8-SO T3-All
Seq7 T5-All T8-Code T7-BR T2-SO
Seq8 T6-Code T7-SO T2-All T3-BR

35

Table 8 Different sequences and versions table

API1 API2 API3 API4
Seq 1 Version 1 T6-BR T7-ALL T3-SO T2-Code
Version 2 T6-BR T3-SO T7-ALL T2-Code
Version 3 T3-SO T2-Code T6-BR T7-ALL
Seq 2 Version 1 T6-SO T4-BR T7-Code T1-ALL
Version 2 T1-ALL T4-BR T6-SO T7-Code
Version 3 T4-BR T6-SO T1-ALL T7-Code
Seq 3 Version 1 T4-SO T1-BR T5-Code T8-ALL
Version 2 T1-BR T4-SO T5-Code T8-ALL
Version 3 T4-SO T1-BR T8-ALL T5-Code
Seq 4 Version 1 T1-SO T6-ALL T2-BR T3-Code
Version 2 T6-ALL T2-BR T1-SO T3-Code
Version 3 T6-ALL T3-Code T1-SO T2-BR
Seq 5 Version 1 T1-Code T4-ALL T8-BR T5-SO
Version 2 T5-SO T8-BR T1-Code T4-ALL
Version 3 T5-SO T4-ALL T1-Code T8-BR
Seq 6 Version 1 T3-ALL T4-Code T8-SO T5-BR
Version 2 T5-BR T3-ALL T4-Code T8-SO
Version 3 T3-ALL T5-BR T4-Code T8-SO
Seq 7 Version 1 T8-Code T5-ALL T2-SO T7-BR
Version 2 T7-BR T2-SO T8-Code T5-ALL
Version 3 T8-Code T2-SO T5-ALL T7-BR
Seq 8 Version 1 T6-Code T3-BR T7-SO T2-ALL
Version 2 T2-ALL T7-SO T6-Code T3-BR
Version 3 T2-ALL T3-BR T7-SO T6-Code

See Table 8 for various sequences and their versions which are used in the study.
The tasks in each sequence are rearranged in their order to generate different versions.
This was done randomly. Versions in any sequence they differ only in order of tasks. We
have total 8 sequences, for each sequence we have three versions. In total, we have 24
versions for our study. We randomly choose anyone version and give it to the participant.
We have make sure to cover all sequences in order to cover all tasks using different

contexts.

36

List of different sequences and versions given to each participant during the study
are shown in Table 9. Study was conducted using 15 participants and almost all the

sequences repeated twice in the study.

Table 9 Sequence number and its version given to each participant

ID of participant sequence used version used
IDY1 sequence 1 version 1
IDY2 sequence 2 version 1
IDY3 sequence 7 version 1
IDY4 sequence 3 version 1
IDY5 sequence 6 version 1
IDY6 sequence 5 version 1
IDY7 sequence 4 version 1
IDY8 sequence 8 version 1
IDY9 sequence 3 version 3
IDY10 sequence 5 version 2
IDY11 sequence 1 version 2
IDY12 sequence 4 version 2
IDY13 sequence 8 version 2
IDY14 sequence 2 version 2
IDY15 sequence 1 version 3

We make sure that we cover all sequences to cover tasks in all contexts. Table 10
lists various tasks and contexts that were used during the study. The numbers indicate

how many people were assigne to each of these treatments.

Table 10 Number of tasks in each context

Task Number
Context T1 T2 T3 T4 T5 Te T7 T8
Stack Overflow 2 1 3 2 2 2 2 1
Code 2 3 2 1 2 2 2 1
Bug Report 2 2 2 2 1 3 1 2
Code+SO+BR 2 2 1 2 1 2 3 2

37

Table 11 Tasks and their Stack Overflow link

IT; sk Projects SO

T1 Eclipse https://stackoverflow.com/search?q=databinding+dispose+

T2 Eclipse http://stackoverflow.com/search?q=SWTError

T3 JMeter https://stackoverflow.com/search?g=Jmeter+convertSubTree
T4 JMeter https://stackoverflow.com/search?g=SampleResult

T5 Tomcat http://stackoverflow.com/search?q=DeltaSession.setAttribute
T6 Tomcat http://stackoverflow.com/search?q=ValveBase

T7 Netbeans http://stackoverflow.com/search?q=runOffEventDispatchThread
T8 Netbeans http://stackoverflow.com/search?q=ChildFactory.Detachable

asked in the task. This links related to the code element is provided to the participants
when performing the task using SO context. If the participant, they are performing T2-SO

task, they are provided with the SO link related to that element, they can open the link

Table 11 lists the tasks with links to Stack Overflow posts related to code element

using eclipse internal browser to complete the task.

38

Table 12 Tasks and BR Link

Task Project BRLink
_ . . o _hinding .
1 Eclipse https://bugs.eclipse.org/bugs/buglist.cgi?quicksearch=binding%20dis
pose
T2 Eclipse https://bugs.eclipse.org/bugs/buglist.cgi?quicksearch=SWTError
) . . o _ 0
3 IMeter https://bz.apache.org/bugzilla/buglist.cgi?quicksearch=Jmeter%20co
nvertSubTree
T4 JMeter https://bz.apache.org/bugzilla/buglist.cgi?quicksearch=SampleResult
) . . o _ .
TS Tomcat https./(bz.apache.org/bugznIa/bugllst.cgl.qmcksearch DeltaSession.
setAttribute
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__all__&conte
T6 Tomcat nt=ValveBase&no_redirect=1&order=Importance&query_format=sp
ecific
https://netbeans.org/bugzilla/buglist.cgi?bug_status=__all__&conte
T7 Netbeans nt=runOffEventDispatchThread&no_redirect=1&order=Importance&
product=&query_format=specific
) . . o —Chi
8 Netbeans https://netbeans.org/bugzilla/buglist.cgi?quicksearch=ChildFactory.D
etachable

The above Table 12 shows the link to bug reports discussing the code element.

These links are used in BR and ALL contexts.

3.5 Data Collection

google forms. Pre-questionnaire gives us the demographic data related to participants.
post-questionnaire that helped us gain insights and feedback about the usefulness of
different context when performing summarization tasks. The summaries of API elements

written by participants were collected from the task files given to them. The responses of

The responses from pre-questionnaire and post-questionnaire are collected using

39

confidence level and difficulty level questions after each task were also collected from
task files. There was no time constraint while performing the tasks. Each task was timed,
the participants’ eyes were tracked using eye tracker. TX-300 eye tracker was used to
collect data for our study. It can generate up to 300 samples per second, we used 60 Hz
frequency thereby generated 60 samples per second. Responses from eye tracker are
collected in the form of JSON and XML files. In addition to the above, Camtasia was
used to record the screen while participants performing the tasks. External video
recording of participants’ screen was done for each task. We obtained IRB approval (155-

2017) and training before we began the study.

3.6 Eye-Tracking Apparatus

The TX-300 eye tracker was used in this study which is present in the Software
Engineering and Empirical Studies Lab at the Computer Science and Information
Systems Department at Youngstown State University. This is an integrated eye tracker
which comes with 23" inch TFT removable monitor. Removing the TFT monitor
transforms the integrated eye tracker into stand alone eye tracker. This can generate 300
samples of eye data per second and the user does not require to wear any headgear. We
used sample as 60Hz per second for our study. Its large head movement box allows the
subject to move during tracking while maintaining the accuracy and precision of recorded
data. A dual monitor extended desktop setting was used for the study. The monitor with
integrated eye tracker was used to by participant to do the study. The second monitor is
used by moderator to monitor the eye movements of the subject using Tobii pro manager.

The eye tracker specifications Sampling rate (binocular) is 300 Hz, Latency Processing

40

latency is 1.0 - 3.3 ms, Total system latency <10 ms, Timestamp precision Via sync-out
port is <0.1 ms, Time to tracking recovery For blinks is Immediate, Head movement
Freedom of head movement at 65 cm (width x height) 37 x 17 cm (15 x 7°’), Operating
distance (eye tracker to subject) 50-80 cm (20-31°’), Max head movement speed is 50
cm/s (20°°/s), Max gaze angle is 35°, Tracking technique is Dark pupil tracking. We have
developed a plugin called iTrace in Seresl lab which can record gazes at word level and

supports scrolling. We used this plugin with eclipse workspace to conduct the study.

3.7 Conducting the Study

The test was conducted in the Software Engineering Research and Empirical
Studies Lab (SERESL). Participants are asked to fill the sign-in sheet. Then they are
provided with the consent form and study instructions sheet. When they finish reading the
instructions, they will decide whether to participate in the study or not. They can
withdraw themselves if they have any concerns. After that participant are requested to
sign the consent form and were asked to fill out the pre-questionnaire that include their
background details, their active experience in programming, level of expertise in Java,
their familiar IDE and other questions. The test can be attempted by one student at a time
as the lab can have one student in at a time. Before starting the actual study, participants
are shown sample tutorial which contains sample tasks one in each context. Moderator
will explain how participant needs to complete the study in using different contexts. In
sample tasks they were not expected to write summaries it is just to make them familiar
with the environment. After showing sample tutorial, calibrations will be done to make

sure that the eyes of subject are in sync with the eye tracker.

41

The participants are asked to maintain a position in the chair during the study so
that we do not lose the tracking of their eyes. Subjects will see a red circle on the screen
when the calibration is started, they need to follow the circle. Once we get good
calibration results, Moderator can start the session. A good calibration appears with the
green vector in the circle and not too far away from the circle. If the researcher does not
find a good calibration, the re-calibration must be done. Subjects can ask questions to
make sure they understand the study instructions and what was expected out of them.

Moderator is always present with the subject during the study to make sure that
the eyes are always tracked which is determined by the track status in the Tobii Pro
Manager keeping it on the left screen. The subjects are encouraged to think out loud
while reading the methods and look at the screen all the time except when they need to
type an answer keeping the head movement limited. Moderator fills the session info and
then starts Camtasia screen recording, external video recording (which records the
screen) and eye-tracking recording after that subject can continue and complete the task
in given sequence which is opened at the bottom tab of Eclipse. We do not pause or end
the session once the recording starts unless they want to withdraw themselves due to
emergency and start a new session if they wish to continue. After completion of each
task, moderator stops all recordings. The subject can fill the confidence level and
difficulty level related to that task. A similar procedure is repeated for all the four tasks.

In the next chapter, analyses and results of our study are presented.

42

CHAPTER 4

Analyses and Results

This chapter presents analyses and results of our controlled experiment. We have
conducted the study with 15 participants and collected a total of 60 data points across all
the tasks. Each of these data points was analyzed to answer our research questions. Each

of the research questions and their results are presented.

4.1 RQI1: How do developers perform when using multiple sources of information
for code summarization tasks?
This question is answered based on the accuracy of the summaries given by
participants and the time taken to finish the task. The summaries which are written by
participants are taken from task files and the total time spent in seconds to finish the task

is calculated from eye tracking data.

4.1.1 Accuracy

This sub-section presents the results of participants based on accuracy. The
accuracy of summaries by participants was obtained by manually evaluating the
summaries given by participants against the human-generated oracle and marking them
as fully correct, partially- correct and not correct.

We initially had three sets oracles of summaries for each task given by YSU,
Carlton University, and ETS. After analyzing all three possible summaries, three
organizations they have agreed upon one final oracle. We have used that final oracle and

evaluated summaries given by participants against them and marked into three categories

43

such as fully correct, partially correct and not correct summaries. The final oracle for
each task is mentioned in the appendix study material section.

The evaluation of summaries given by participants is done is illustrated with an
example. Let us consider Task-T1 used in the study. It is to summarize the method:
org.eclipse.core.databinding.Binding.dispose.

Task-T1 is chosen from Eclipse open source project. Participants need to summarize
dispose method form Binding class in their own words using given context. Below are
the three summaries given by three different participants performing Task-T1 using
different contexts. Final oracle is the summary given by human annotators for Task-T1
against which the summaries of participants are evaluated. Oracle used for all the tasks is
given in Appendix section A.6. The three different cases mentioned below are three
summaries by different participants.

Case 1: In the method dispose, the if condition is used. The first if condition is used to
check the context and then assign the null value it. Secondly, disposeListener is checked
and within it, target and model is checked and then assign the null value to
disposeListener, target and model. Super function is imposed at the end.

Case 2: The Binding.dispose method is a method use by DataBinding classes to remove
the event listener on the data.

Case 3: Dispose is a method that removes the binding with the context. For instance, in a
UI thread, a dispose would destroy a widget at the termination of a program, if it's not

null yet.

44

Final Oracle: Disposes of the Binding object this method is called from. A call of this
method usually results in the binding stopping to observe its dependencies by
unregistering its listener(s).

Summaries by participants are evaluated manually to improve the accuracy of
grading. Human evaluation generates better results than just comparing the summary to a
bag of words which in itself is a threat since sentence meaning and context is lost.

Case 1 example: Given a summmary by some participant A, we evaluate it against the

Final oracle. It was observed that participant A has explained about the variables and
conditional statements in the source code of that method instead of explaining its
functionality and purpose. We felt that the summary does not explain the intent of what
code element does and marked as Not Correct.

Case 2 example: If the summary implies the almost same meaning as in final oracle, even

if it was not answered using same words as in final oracle, it was marked as Fully
Correct.

Case 3 example: If the summary only partially explained the intent but did not cover all

important aspects of the code, it is marked as Partially Correct.

There are total of 60 summaries given by 15 participants. There are 15 tasks
performed (15 summaries collected) using each context. The figure below (Figure 5)
shows accuracy of summaries given by participants which are grouped by four different

contexts.

45

Context Accuracy

S0 Fullycorrect [
partially correct [s
Mot correct _ 3
code fulycorrect [
partially correct [s
Notcorrect | G
br Fully correct | -

partially correct [, s
Notcorrect [N
all Fully correct | NEEERIDDDIN 2

partially correct I
Notcorrect | 2

0 1 2 3 4 5 3] 7 8 a 10 11 12 13
Number of Records

Figure 5 RQ1: Accuracy of summaries grouped by context.

From the above Figure 5, one can infer that there is no one such context using which
participants were able to give better summaries. All the contexts they are equally
important. Using Bug reports(BR) participants they were able to get the highest number
of correct summaries when compared to other contexts. Almost all the participants were
able to give at least partially correct summaries when using ALL context. From this we
can understand that using all the sources they are able to gather information to understand
the code elements in a better way when compared to performing tasks using individual
sources. Using CODE participants, they got highest incorrect summaries when compared
to others. Figure 6 shows accuracy of summaries grouped by tasks. We have 8 tasks in

total that we used in our study. We almost divided evenly tasks to all participants.

46

Tasks Accuracy

T1 Fully correct |, 1,
partially correct I 1
Notcorrect [N 3

T2 Fully correct I
partially correct I 5
MNot correct . 1

T3 Fully correct P
partially correct I 3
Not correct I

T4 Fully correct] 1
partially correct I 3
Notcorrect [N 3

TS5 Fully correct I
partially correct I 2
MNot correct . 1

T6 Fully correct | 3
partially correct I 4
Mot correct K

T7 Fully correct o
partially correct I 7
Mot correct .

T8 Fully correct 0
partially correct IE—" 4
not correct I 2

0 1 2 3 4 5 5] 7 g

Number of records

Figure 6 RQ1: Accuracy of summaries grouped by Task

The accuracy of summaries grouped by tasks they depend on the context using which the
task is performed, difficulty level of task, participants expertise in using the context given
to them. These various tasks are chosen from four different open source projects based on
their difficulty level and it varied for all tasks. We have created sequences given to
participants in a way that all the participants they receive equal standard of questions.
Each sequence contains 4 tasks taken form above 8 tasks. Though different participants
they summarized same code elements they used different contexts to summarize them.
By considering above things we cannot really say anything just based on above graph.
But we can observe participants answered 5 correct summaries when performing Task-
T1. When performing Task 7, 7 out of 8 participants answered summaries as Partially

Correct.

47

Tasks
T1

T2

IE

T4

TS

TG

T7

Te

Accuracy
Fully correct .
partially correct
Not correct Ll
Fully correct
partially correct 1
Mot correct
Fully correct I 4
partially correct
Not correct
Fully correct N 1
partially correct
Not correct .
Fully correct NN 1
partially correct 1
Not correct
Fully correct
partially correct 1
Not correct 1
Fully correct
partially correct
Not correct
Fully correct
partially correct 1
not correct

0 1

Number of records

S0 code

—— 2

— -

K

- 1
I

2 3 40 1 2

Number of records

Contexts

br all
I .
1
2 1
a1
I
I
2 1
.
1
. 1
I
2
3
I 1
1 2
a1

3 40 1 2

MNumber of records

3 40 1 2 3 4

MNumber of records

Figure 7 RQ1: Accuracy of summaries grouped by Task and Context

Above figure shows that when participants were given the same tasks using different

contexts, they have performed in different ways. Task-T1 was given to a total eight

participants using different contexts. Each context was given to two participants. Two

participants performed task using Stack Overflow, one of the participants summary was

fully correct and another participant summary was incorrect. Another two participants

they have given incorrect summaries when using source code context for the same task

T1. When using BR both participants they answered correctly. Using ALL context one

summary was correct and other was partially correct. If we observe all the tasks and

contexts by using ALL context, participants they were able to write summaries in a better

way. 2 out of 15 participants have given incorrect summaries which are low when

compared to other contexts.

48

Performance of developers in terms of accuracy, there is no one such context by
using which participants they were able to give better summaries. All the four contexts

have their own importance.

4.1.2 Time

This section presents the results of participants based on the Time spent to write
the summaries. Time spent on each task by the participant is calculated from eye tracking
data. We got responses recorded from eye tracker in the form of XML and JSON files.
By looking at the Timestamp attribute from XML data we got the start and stop time of
task from the first and last record. By calculating the difference of two Timestamps we
have calculated the duration in secs. Eye tracker it records the time in milliseconds. The
figure below (Figure 8) shows the average time spent in seconds by participants on each

task grouped by contexts.

Context

S0 4939
CODE (5) 6814

B3 555.1
S+50-+ER | — 7 34.5

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Average Time In Secs

Figure 8: RQ1: Average time spent on each task grouped by context.

Using Stack Overflow(SO) context participants they spent less amount of time to finish
the tasks. Whereas using the combination of all three sources they have spent more
amount of time when compared to other contexts to finish the tasks. This is expected

because using ALL context they have more things to look at.
49

Tasks
T1 607.4
T2 387.5
T3 663.9
T4 738.3
15 567.8
T6 803.6
17 598.4
T8 504.8

0 100 200 300 400 500 600 700 800

Average Time spent in Secs

Figure 9 RQ1: Average time spent on each task grouped by task
The above figure shows the average time spent in seconds by participants on each task

grouped by tasks. Participants they finished Task-T2 in less amount of time when
compared to other tasks. T2 is medium level difficulty task. They spent more amount of
time while performing Task-T6. T6 is a difficult task. Figure 10 below shows the average

time spent in seconds by participants on each task grouped by context and tasks.

Tasks
Context T1 T2 T3 T4 T3 T6 T7 T8
SO 5215 404.0 474.3 866.5 3725 637.0 1725 441.0
CODE (S) 538.5 298.3 1,125.0 742.0 5415 928.0 822.0 666.0

BR 5255 [Jaoss Pazo Jess Peoo Jsss: Passo s
s+s0+BR [s220 520 oo 720 oo s0 o0 [sees

Avg Time In Secs Avg Time In Secs Avg Time In Secs Avg Time In Secs Avg Time In Secs Avg Time In Secs Avg Time In Secs Avg Time In Secs

Figure 10 RQ1: Average time spent in secs grouped by task and context
While performing Task-T2 participants they have spent less amount of time. To

complete task T6 participants they have spent more amount of time. Performance of
participants in terms of time, average amount of time spent to complete the task when
grouped by context, participants they have spent less amount of time when using Stack

Overflow and highest amount of time when using combination of all three sources.

50

Average amount of time spent when grouped by task, highest amount of time spent on
Task-T6. Almost all the participants have no knowledge of the source code for the
Tomcat Project. It might have affected the performance of participants when doing Task-

Té.

4.1.3 Accuracy and Time

There is no proportionality between Accuracy of summaries and amount of time
spent to write the summaries. If you consider Figure 11, it gives us the overall view of the
average amount of time spent on task using given context and accuracy of summaries
grouped by context. The amount of time spent on task using SO is less when compared to
others, its accuracy is good. Using SO participants, they were able to give 4 fully correct
summaries and 8 partially correct summaries. Whereas if you consider ALL context the
average amount of time spent to complete the task using ALL is more (this is expected
because using all they have more things to look at), the accuracy of summaries given by
participants is good. 2 summaries were fully correct and 11 are partially correct.

Accuracy
Context Fully correct partially correct Mot correct

CODE (S) - 4

0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000
Avgl Time In Secs Avgl Time In Secs Avgl Time In Secs

8 3

11 2

Figure 11 RQ1: Accuracy and Time grouped by context

51

The below Figure 12 shows the accuracy of summaries, the average amount of

time spent in seconds to complete the task are grouped by contexts and tasks.

Context
Tasks Accuracy 50 CODE (5) ER S+50+4BR
T1 Fully correct . I I |
partially correct I 1
Not correct I 1 I
T2 Fully correct I -
partially correct I 1 I 1 I 2 I 1
Not correct I 1
13 Fully correct NN - I |
partially correct I 2 I 1
Not correct I 1 . 2
T4 Fully correct I |
Partially correct I 2 I 1
Not correct I I 1 I 1
T5 Fullycorrect NN 1 I
partially correct I 1 I 1
Not correct I 1
T6 Fully correct I -
partially correct I 1 I 1 I 2
Not correct I 1 I 1
17 Fully correct
partially correct lll 2 I 2 K
Not correct I 1
T8 Fully correct
partially correct [N 1 . 1 I 2
not correct I 1 . 1
0 500 1000 0 500 1000 0 500 1000 0 500 1000
Avg Time In Secs Avg Time In Secs Avg Time In Secs Aug Time In Secs

Figure 12 RQ1: Accuracy and Time grouped by context, task

There is no specific pattern followed to perform the tasks in terms of accuracy and
time. Performance of participants varied from task to task as well as context to context.
Using ALL context participants, they were able to perform all tasks well. Next, by using
Stack Overflow context, they performed well. Participants they did not give correct

summaries to T7 and T8 tasks using any of the contexts.

4.1.4 Comparing accuracy of summaries by novices and no-novices
To find whether there is a difference in performance of novice and non-novice
participants we have compared their accuracy of summaries given by them, amount of

time spent to complete the tasks. There are 6 participants in novice group and 9

52

participants in non-novice group. Below Figure 13 shows the accuracy of summaries
given by participants grouped by context. Since each participant, they perform tasks
using all four contexts, in each context we have 6 summaries given by different
participants. We can observe that by using SO and SO+BR+Code participants they were
able to give good summaries when compared to Code and BR contexts. Novices they did
not perform well when using Source Code. 5 out 6 summaries given by them using Code
context are marked as Incorrect. The same case with BR 4 out of 6 summaries given by

them is marked as incorrect.

Novice participants 6

Context Accuracy

50 Fully correct I
partially correct |—"
Not correct _ 1

Code Fully correct 0

partially correct _ 1
Notcorrect |

ER Fully correct 0

partially correct [N

Notcorrect | 4
s0+BR+Code Fullycorrect [1

partially correct N 3

Notcorrect [N -

0 1 2 3 4 5 i}
Number of Records

Figure 13 RQ1: Accuracy of summaries by novice participants grouped by context

Non-novices they performed well using all the four contexts un like novice
participants. Using SO+BR+Code, all the summaries given by 9 participants are either

partially correct or fully correct (See Figure 14). They were able to perform in a better

53

way when using all three sources when compared to their performance using individual

sources.

Non-novice participants 9

Context
50

Code

BR

SO+BR+Code

Accuracy

Fully correct | NN

partially correct [I— 4

Not correct _ 2

Fullycorrect [N

partially correct [N—— 4

Not correct _ 1

Fully correct | -
partially correct [N :

Not correct B

Fullycorrect | 1

partially correct | ——

Mot correct 0
0 1 2 3 4 5 5] 7 8 9

Number of Records

Figure 14 RQ1: Accuracy of summaries by non-novice participants grouped by

context

If considered novice and non-novice groups, two groups they have given better

summaries when using SO and SO+BR+Code when compared to other two contexts.

Overall non-novices their summaries are more accurate when compared to novice

participants. There is a significant difference between the accuracy of summaries by both

groups.

4.1.5 Comparing time spent by novices and non-novices

Time spent to complete each task was calculated from eye tracking data. The

average amount of time spent by novice participants to write summaries grouped by

context. Figure 13 shows novices have spent more amount of time to complete the tasks

54

using source code context. Both novices and non-novices have spent almost same amount

of time when using SO and BR context.

Novice average amount of time spent grouped by context

Context
50 416.8

code I 823 3
br I - c
so+br-+cod e | NN, 7.2

0 100 200 300 400 500 600 700 800 900

Average Time In Secs

Figure 15 RQ1: Average Time spent on task by novices grouped by context

Figure 16 shows the average amount of time spent on each task in seconds by non-novice
participants grouped by context. Using combination of all three sources they have spent

more amount of time to finish the task which is expected.

Non-novice average amount of time spent grouped by context

Context
50 | |5452
code | 5ss 8
e L=k
so+br+code | I, 0.0

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Average Time In Secs

Figure 16 RQ1: Average Time spent on task by non-novices grouped by context

By comparing novices and non-novices in terms of amount of time spent, we see that
novices they have spent more amount of time to complete the task using source code

context, when compared to the non-novice group. Average time spent on task when using

55

SO and BR context are less for the novice group when compared to the non-novice

group.

4.2 RQ2: How do developers navigate between multiple sources of information?
This research question is answered based on visual effort data collected from eye
tracker. We have tried to find when given various sources, which information source does
participant prefer to use. How subject navigates between multiple sources and amount of
time spent on each source.
How many times does subject switches between multiple contexts to finish the
given task? The eye tracker records responses in milliseconds.

Context switch term here implies moving from one source to another source while
perfoming task. For instance, if a participant was asked to summarize the given code
element using all the three sources. Initially, participant may look at source code after
some time he might switch to Stack Overflow or Bug reports and so on. While
performing the task, navigating from one source to another is treated as a context switch.
We have considered three different contexts (text file, source code, and browser) and
calculated the number of context switches made by each participant shown in Figure 17.
The number of context switches are calculated by analysing eye tracking data of each
participant performing the task using SO+BR+Code context. To weed out small gazes
that involved mainly stray glances, we discard context switches with less than two
seconds duration because when all three sources were opened, in the process of

navigating from one source to another they are chances of participant looking at another

56

source. After discarding these short gazes, we calculated the number of times context
switches done by each participant.

Number of context switches
120

100 104
80
60

40 49 46
35 33 36

42

20

N
o
[
00
[
~
N
B
©
N
o
[
)
N
B

non-novice
non-novice
novice
non-novice
novice
novice
novice
novice
non-novice
novice
non-novice
non-novice
non-novice
non-novice
non-novice

IDY1 IDY2 IDY3 IDY4 IDY5 IDY6 IDY7 IDY8 IDY9 IDY10 IDY11 IDY12 IDY13 IDY14 IDY15

Figure 17 RQ2: Number of context switches made by each participant while using
all three sources

The number of times a participant switched between sources it varied from person
to person. In above figure bars in blue represent non-novice participants and bars in grey
represent novice participants. There is no pattern followed for novice group and non-
novice group. There were many individual differences between participants. IDY 14 has
made the highest number of context switches between sources. There is a relation
between the number of switches made by participant and accuracy of summary given by

them.

See Figure 18 for the data of one of the participants performing a task using ALL

context. It shows how the subject navigated between multiple sources when performing

57

task. The amount of time spent on each source in seconds. This data differs from

participant to participant.

=T 2 .
vy Context
150
. browser
Java
task file
100 . task file

Seconds

50

Java
Java
browser |3
Java
Java
Java
taskfile [l 8

Java 2
task file |2
Java

Java
task file {5
Java
task file [5

[=]
task file [111
27
44
task file § 4
21
task file I 13
browser || 4
7
taskfile |2
Java 83
browser l7
Java. 13
browser [l 11
task file [21
browser [24
75
taskfile |3
18
21

Context

Figure 18 RQ2: Context switch when using multiple sources.

From the above figure we can observe that participant initially looked at text file
then switched to Java file, then spent time looking at source code in between switched to
the browser (so or br). Overall participant has spent more amount of time looking at
source code. One might understand participants preferable source of information when
given all three sources is source code from the data.

By analyzing the navigation patterns of all participants, we may know their

preferable context when given all three sources to them.

58

4.3 RQ3: What do developers look at when searching for information in source
code, Stack Overflow, and Bug reports?

The elements developers look at when searching for information varies from
context to context. When searching for source code they look at elements like if
statements, method declarations, variable declarations any other conditional statements in
code etc. Whereas when they search in Stack Overflow they look different questions,
answers, and their comments, tags, and images. Similarly with bug reports, they look at
different questions, answers and comments related to the code elements.

By knowing different elements focused, participants if they spent more amount of
time looking at certain elements it implies those elements are important and we may need
to consider them to include in the summary.

A plugin called iTrace was developed in our SERESL lab (Sharif, Shaffer, et al.
2015) at YSU, it gives us eye-tracking information at word level and support scrolling.
iTrace plugin with Eclipse IDE was used to conduct the study. When using this plugin
with Eclipse it shows iTrace perspective. It provides us iTrace controller window from
which we can control our eye tracker. The eye tracker records gazes at word level it will
give us the words/tokens we looked at, its coordinates, its type, corresponding file and
other book keeping information. It supports collection of data at the word level in source
code, Stack Overflow, and Bug Report pages.

In next subsections presents each context and what are the different elements

usually developers look at when searching for information in those contexts. We also

59

compared the different elements focused by a novice participant and non-novice

participant when performing the same task using the same context.

4.3.1 Source Code

Developers when searching for information in the source code there are many
elements they focus on. In the past, many researches have been done to find the elements
focused by developers when reading source code and pattern followed to read the source
code. In our study, we focused to find various elements that developer has focused on
when searching for information using different contexts.

Different elements focused by developers when performing source code was
shown in Figure 19. It shows the data of one of the participants performing the task using
source code context. Participant has focused on if statement method body, declaration,
variables and amount of time spent on each element was given in seconds. From our data,
we can find the different elements looked at the word level. Here we have presented the
outer most view. We are also able to tell different elements participant have focused on

that type.

60

Name Type Type3 How

JDBCRealmjava java IFSTATEMENT DECLARE [N -

IMPORT DECLARE |2

METHOD oeclARe [7
vt [

TYPE DECLARE |1
VARIABLE peclARE [3+
USE E
wHILESTATEMENT DECLARE [¢
T5-code.txt xt Null Null _ 96

o
(A8
o
B
o
o
o

80 100 120

Seconds

Figure 19 RQ3: Different elements focused in Source Code

Below Figure 20 and Figure 21 illustrates what novice participant and the non-novice
participant have looked at when searching for information in the source code to perform
the same task.

Novice Source Code task

Name Type
ValuesBean.java METHOD | K
TYPE N
VARIABLE I -
ValveBase.java FORSTATEMENT [l 12
IFSTATEMENT D -
IMPORT M iz
METHOD Y =12
TYPE I -2
VARIABLE I =
0 50 100 150 200 250 300 350
Seconds

Figure 20 RQ3: Novice participant performing Source Code task

Novice participant has opened two Java files and focused on method, type, variables and
conditional statements to gather information whereas non-novice participant see Figure

21 has looked at multiple Java files to gather information.
61

MNon-novice Source Code task

MName
Benchmarks.java

TesterAccesslLogValve.java

TestErrorReportValve java

TestRemotelpValve. java

TestRequestFilterValve java

Valve java

ValveBase.java

Type
IFSTATEMENT
IMPORT
java.lang.Runnable[])
METHOD

TYPE

VARIABLE
CONDITIONAL_EXPRESSION
FORSTATEMENT
IMPORT

int

METHOD

TYPE

VARIABLE
IMPORT
METHOD

TYPE

IMPORT
METHOD

TYPE
COMDITIONAL_EXPRESSION
IFSTATEMENT
IMPORT
java.lang String
METHOD

TYPE

VARIABLE
METHOD

TYPE
FORSTATEMENT
IFSTATEMENT
IMPORT
METHOD

TYPE

VARIABLE

[
=

= »—-II»—-
|

o b [| B
[%:] U'I'b' W
=
P
ma
(=]

F

=
[

0 20 40 60 80 100 120 140

Figure 21 RQ3: Non-novice participant performing Source Code task.

Stack Overflow is a platform which is widely used by software developers to

4.3.2 Stack Overflow

Both participants they have spent more amount of time looking at method body,
declarations and if statements. By looking into individual participant data, we can find
the commonly focused elements by developers when using source code context, which

may help to be included in the summaries.

disuss the issues. Developers they post their issues related to code, other developers they

help by writing answers and comments to the questions. By viewing at vote tag, one can

62

know how many people have supported the answer. We can also green tick mark for

correct solutions. One can look timestamp to know when the question was posted.

Name Part Type2 Part Number Type Number
json - JMeter ANSWER CODE 1 il Il
Assertion IMAGE 1 T |
faﬂuremgf1 . 2 ll2
roovy - ac
i W TEXT 1 1 0
8 0
QUESTION CODE 1 1 s
2 H:
COMMENT 1 1 0
TAG 1 2 0
3 0
TEXT 1 a I 10
2 H:
4 0
0 5 10 15 20 25 30

Seconds

Figure 22 RQ3: Different elements focused when performing Stack Overflow task

The above Figure 22 shows various elements that are focused by developers when
searching for information in Stack Overflow. It is from one of the participants’ data
performing the task using Stack Overflow context. Name in figure represents the name of
the page which is opened, part indicates whether they looked at question or answer, type
indicates the type of element they focused in that part, part number indicates the question
or answer number that participant has focused on and type number indicates different
comments looked at.

Consider the first row from Figure 22 it shows participant has looked at that Stack
Overflow page, answer number 1 and first comment which is code in it for 1 second. One
can interpret the figure in this way. Participant has spent highest amount of time looking

at code element in questionl.

63

For some elements time spent is shown as 0 seconds it does not mean that
participant has not looked at that element. Eye tracker it records data in milliseconds,
participant might have spent less than second on it might have glanced at it. Since time in
figure shown in seconds, so it is represented as 0. Less than a second is enough to give a
glance and to know the information is relevant or not to what we are searching for.

Below Figure 23 and Figure 24 illustrates what novice participant and the non-novice
participant have looked at when searching for information in Stack Overflow while

performing the same task.

Novice Stack Overflow task

MName Part Type Partnumber Typenumber
b'user ANSWER COMMENT 1 1 . E
interface - How TEXT 1 1 I -
todisablethe QUESTION TAG 1 1 0
GUlofa 2 0
Netbeans TEXT 1 1 I
Platform 2 I 1
Application - 3 Bl
Stack 4
Overflow’ TITLE 1 1 | N
0 2 4 6

Seconds

Figure 23 RQ3: Novice participant performing Stack Overflow task

64

Mon-novice Stack Overflow task

Name Part Type Partnumber Typenumber
b'userinterface- ANSWER COMMENT 1 1 I -
How to disable the TEXT 1 1 I,
GUI of a Netbeans VOTE 1 i 0
Al QuesTioN TE 1 1 [
Application - Stack 2 0
Overflow’

TITLE 1 1 [E

0 2 4 6 8
Seconds

Figure 24 RQ3: Non-novice participant performing Stack Overflow task

Above Figure 23 and Figure 24 show that novice participant and the non-novice
participant both focused on similar elements when performing the same task using Stack
Overflow. The amount of time spent by them looking at different elements is also similar.
There is no huge difference. The summary given by two participants are partially correct.
As mentioned above time duration ‘0 seconds’ does not imply that they have not looked
at that element, they might have focused on them for less than a second. They have spent

more amount of time looking at the textual description of question and answers.

4.3.3 Bug Reports

A bug reporting site is where developers usually post bugs and then fixes for
them. There are many bug reporting sites exists in market. Which help developers not
only to solve bugs but also keep track of all the bugs and helps in generating reports. This
is also one of the famous platform used by developers to discuss code elements.
Developers when searching for information in Bug Reports they mainly focus on three

elements questions, attachments, and answers. Different comment numbers related to
65

each of them. Figure 25 shows data of one of the participants performing summarization
task using Bug Reports. One can observe that participant has looked at two bug report
pages and different attachments and questions in each page. We can interpret the image
in this way, name attribute gives the name of the page which is opened, part tells us
which elements participant has looked at the question, answer or attachment and type

number give detail about which question, or attachment participant has looked at.

Name Part Partnumber Typenumber

146162 - ATTACHMENT 1 1 0
DataBinding

[Datainding] . I
Debug view for

0

509926 - ATTACHMENT 1 1 I
DataBinding]
ViewerObservable. QUESTION 1 1 -5

Seconds

Figure 25 RQ3: Different elements focused when performing Bug Reports tasks

Above figure shows participant has spent more amount of time looking at
question 1 for 20 seconds. Below Figure 26, Figure 27 shows on which elements novice
participant and the non-novice participant have focused when searching for information

in Bug Reports while performing the same task.

66

Novice Bug report task

Name Part Partnumber Typenumber

42248 € Undo-redo ANSWER 1
support on Test Plan tree 2
modification ATTACHMENT 1

QUESTION 1
55375¢ ANSWER 1
StackOverflowError with 2
ModuleController in 3
Non-GUI mode if its 4
name is the same as the 6
target node ATTACHMENT 1

QUESTION 1
60756 € Module ATTACHMENT 1

Controllerincluded ina
Thread Group withthe ~ QUESTION 1
same name as linked Te..

1

R I R e e Y R R i Lt L et e L Ll A - I e

5 10 15 20 25 30 35 40

Seconds

Figure 26 RQ3: Novice participant performing Bug Report task

Novice participant has gathered information by looking at three different pages in

the bug report. He has spent more amount of time looking questions and attachments.

Below Figure 27 shows non-novice participant performing the task using Bug Reports.

Non-novice participant has looked at two Bug Report pages to summarize the code

element. He has spent more amount of time looking at answer and attachment in Bug

Reports.

67

MNon-novice Bug report task

Name Part Partnumber Typenumber
55375 € ANSWER i 1 I 10
StackOverflowError with 2 1 - 3
ModuleController in 3 1 0
Non-G_UI mode if its a 1 0
name is the same as the TACIET 1 " Bl
target node
QUESTION 1 1 I

2 B
60756 € Module ATTACHMENT 1 1 I 1 S
Controller includedin a 2 0
Thread GI’BUP with the QUESTION 1 1 _ 5
same name as linked Te.. 3 B

0 5 10 15

Seconds

Figure 27 RQ3: Non-novice participants performing Bug Reports task

When we compare the different elements focused by novice and non-novice
participant in Bug Reports to perform the same task, one can observe novice participant
has spent more amount of time, looked at more Bug Reports when compared to the non-
novice participant. The elements they focused were similar, the amount of time spent

looking at them varied.

4.4 RQ4: Which source of information is the most preferable for developers while
they are summarizing code?

This was answered based on the post-questionnaire data given by participants.

After completion of the study participants were given post questionnaire to fill, which

contained questions related to study. In this subsection presents responses given by

participants to various questions which were asked in post-questionnaire. Most of the

answers are based on Likert scale. The numbers in the table indicate the count of
68

participants. Participants have answered their familiarity with the code of the projects or
parts of these projects which are used in tasks before this study. By familiar, we mean
that have they seen or worked with this code, bug report, Stack Overflow document
before and does that knowledge helped them in answers to the study. Table 13 shows the

response of participants to this question.

Table 13 Rating familiarity with the source code of different projects before study

Not at
Extremely Moderately SomeWhat Slightly all
Familiarity Familiar Familiar Familiar Familiar Familiar
Eclipse 0 2 1 6 6
Netbeans 1 1 2 3 8
JMeter 0 0 1 1 13
Tomcat 0 0 0 1 14

Before doing the study not many participants were familiar with the source code
of projects which are used in our study. Only a few participants are familiar with
Netbeans and Eclipse projects source code. Almost all the participants they were not
familiar with Tomcat project. From above responses, we may assume that their previous
knowledge about code elements might not have affected their performance.

Participants were asked to rate the usefulness of each type of information with
respect to how helpful they were to summarize the API elements in the study. Table 14
shows the responses given by participant to that question. Almost all the participants felt
Stack Overflow + Bug Reports + Source Code context as extremely helpful when
performing summarization task. They have also rated Source Code and Stack Overflow
as Very helpful. Most of the participants felt Bug Reports as Somewhat helpful while

performing summarization tasks.

69

Table 14 Rating usefulness of different contexts when doing summarization tasks

+ Bug Reports +
Source Code

Extremely Very SomeWhat Slightly Notatall
Usefulness helpful helpful helpful helpful helpful
Stack Overflow 2 7 4 2 0
Bug Reports 0 2 9 3 1
Source Code 0 8 3 4 0
Stack Overflow
11 3 1 0 0

Next participants were asked to rate the usefulness of the different types of

contexts present in Stack Overflow (SO) documents that helped them to summarize the

API elements. Below Table 15 shows different types of contexts in Stack Overflow in the

second column and their usefulness in the first row.

Table 15 Rating usefulness of different types of contexts in Stack Overflow that
helped to summarize the API elements

s Not at | do not
Extremely Very v\c;::: Slightly c;"a know None
Stack Overflow helpful helpful ' helpful | SL - what given
Elements elptu elptu this is
1 Code examples 5 6 2 0 0 0 2
Comments by 5 9 5) 0 0 0
2 users
3 Stack traces 0 3 2 5 0 3 2
Textual
descriptions
(other than code 2 9 2 2 0 0 0
examples and
4 stack traces)
5 Votes 1 2 0
6 Tags of questions 0 4 1
User
7 reputation/profile 0 0 3 ! 10 0 1
Date of a 1 0 2 1 10 0 1
8 comment/answer

70

The cell value gives us the count of participants who chose that response. Out of
all the elements, participants they rated code examples, comments by users, and textual
descriptions as very helpful elements in Stack Overflow when summarizing API
elements. User reputation/profile and date of a comment/answer as Not at all helpful
elements when using Stack Overflow. 5 out of 15 participants rated stack traces and votes
as slightly helpful.

Participants were asked to rate the usefulness of the different types of contexts
present in the source code that helped them to summarize the API elements. Table 16
shows the different source code elements and the rating giving to them based on their
usefulness by participants. Source code contexts such as Comments, identifier names,
good indentation were rated as Very helpful to summarize API elements by participants.
They felt Javadoc comments and lines of code as helpful. Almost all the elements were

useful when summarizng API elements.

71

Table 16 Rating usefulness of different types of contexts in Source Code that helped
to summarize the API elements

Not at I do not
Extremely Very SomeWhat Slightly all know
Source Code helpful helpful helpful helpful what
helpful . .
elements this is

Comments (line
and block 3 7 2 3 0 0

1 comments)

Javadoc comments

(e.g., @return, 1 4 4 2 4 0
2 @param)
3 Identifier names 3 5 5 2 0 0
4 Lines of code 2 1 6 2 4 0

General readability

of the code (e.g.,

good indentation,
5 structure, etc...)

Participants were asked to rate the usefulness of the different types of contexts
present in bug reports that helped them to summarize the API elements. The responses to

this question were presented in below table.

Table 17 shows that more than half of the participants they rated code samples,
comments by users, and the textual description of the bug report as very helpful, Test
cases and proposed patch as somewhat helpful to summarize the API elements using Bug
Reports.

Based on above questions and responses, participants they felt the combination of
all three sources as extremely helpful when compared to individual sources when

performing summarization tasks. From their responses, we can also say that Stack

72

Overflow and Bug reports are helpful as source code in supporting code summarization
tasks. From the responses of rating usefulness of different types of elements in each
source, we can understand the elements that are helpful and can extract information from

those elements to generate better summaries.

Table 17 Rating usefulness of different types of contexts in Source Code that helped
to summarize the API elements

Not at I do not
Extremely Very SomeWhat Slightly know None
Bug reports helpful helpful helpful helpful what this given
helpful .
Elements
Code 1 7 5 1 0 0 1
1 examples
Comments by 1 6 7 1 0 0 0
2 users
3 Stack traces 0 2 3 4 1 3 2
Proposed 1 1 7 3 2 1 0
patch
5 Test cases 0 5 5 1 1 0 3
Textual
description of
the bug report
(other than 2 9 4 0 0 0 0
stack traces or
code

6 examples)

4.5 Observations and Discussion

In previous sections, we have discussed our experiment design and results in detail.
In this section some observations that are found during the study are discussed. Amount
of time spent on task using source code may be affected by partitcipants’ familiarity with
Eclipse IDE. Participants who are familiar working with eclipse IDE were able to search

and find required code elements in project given to them in less amount of time when

73

performing tasks using Code and ALL contexts. Whereas the participants who are not
familiar with Eclipse spent almost half of the time in searching code elements while
performing the task.

Participants who are familiar with Stack Overflow and bug reports were more
comfortable when completing the tasks given to them than others. When subjects are
performing the tasks using ALL context, the order of the tasks given to them may affect
performance. For instance, consider a participant who is not familiar to Stack Overflow,
Bug reports. Case 1 if the participant was given task using ALL context before
performing tasks using BR and SO context. Case 2 if the participant was given task using
ALL context after performing the tasks using SO and BR context. In both cases the
approach of participants may differ.

Number of incorrect summaries using ALL context is low, participants they were
able to give at least partially correct summaries when using all three sources. Above data
shows by using information from all the three sources, we may generate better
summaries. Novice and Non-novice groups they were able to give good summaries when
using Stack Overflow and combination of sources. Novice group they were not able to
perform well when using source code context. Most of the novices they are not familiar
with the source code projects used in our study.

From post questionnaire data we can say that both groups rated Stack Overflow +
Bug Reports + source code as extremely helpful context and Stack Overflow as Very
helpful. Novices and the non-novices are somewhat familiar with Eclipse project source

code before the study. They were not at all fmilar with Tomcat and Jmeter projects code.

74

While performing tasks using source code participants have rated comments, identifier
names, good indentation as Very helpful contexts to summarize API elements. When
using Stack Overflow to summarize API elements participants they felt code examples,
comments by users, and textual descriptions as very helpful elements. Participants stated
that when using bug reports code samples, comments by users, and the textual description

are very helpful to them to summarize API elements.

4.6 Threats to Validity
Every experiment is subjected to various threats to validities. This section

presents some of them.

4.6.1 Internal Validity

Randomly generated sequences of treatments and assigned to participants making
sure that each task is assigned to same number of participants and with the same
proportion of various contexts used in the study. Participants they do not know the actual
hypothesis of the research this may affect their approach during the study. They just
know that they are doing the summarization study by reading code elements using
different contexts. Each participant was given with only four summarization tasks to limit
participants fatigue effect. There is no time constraint for participant to complete the task
because it may affect their performance. Participants when they feel they gathered
sufficient information related to code elements they can write the summary. Same
method/class was not given to same participant for all tasks in different contexts because

of learning effect. Different code elements for different contexts were given.

75

4.6.2 External Validity

Results from our study may be applied to various group of people because we
make sure to select the participants with different backgrounds. We have participants
range who have above 6 years of programming experience and having very good
knowledge in Java to the participants who are novice and have fair amount of knowledge
in Java. This allowed us to understand the performance of novice and non-novice in

different aspects. Representative tasks taken from four open source projects are used.

4.6.3 Construct Validity

During study tasks given to participants were designed in a way that participants
get to summarize the given code elements using individual sources in three tasks as well
as combination of all sources in one task. In this way the effect of each individual source
and their combination in supporting code summarization tasks can be known. Since
visual attention while performing tasks is related to mental processing of the information,

(Just and Carpenter 1980) the measures derived from the fixations and durations should

be valid.

4.6.4 Conclusion Validity

To ensure conclusion validity, we use appropriate methods for analysis of our
results. We make sure all assumptions are met for the statistical tests used. Since we used
qualitative methods based on pure observation of navigation strategies, we do not have

any threats with respect to this.

76

CHAPTER S

Conclusions and Future Work

Source code summarization is important for developers to keep up to speed with
what the code does. To investigate the effect of multiple sources of information on code
summarization we have conducted an empirical study using an eye tracker, with 15
participants performing summarization tasks using different contexts. This is the first eye
tracking study to look at role of various informal sources on code summarization. After
analyzing the data from our empirical study, we conclude that Stack Overflow and bug
reports are as helpful as source code in supporting code summarization tasks. Participants
felt more confident when using Stack Overflow and bug reports when compared to the
source code. When we look at the performance of participants using different contexts in
terms of accuracy there is no one context that stood out to produce better summaries; all
the contexts have their own importance. In terms of time, average amount of time spent
to complete the task using Stack Overflow context is less and when using all three
sources of information they have spent more amount of time to complete the task.
Participants rated Stack Overflow + Bug Reports + Source Code as extremely helpful
context to summarize API elements. Novice and non-novice groups performed the given
task well when using Stack Overflow and Stack Overflow + Bug Reports + source code
sources. The average amount of time spent to complete the task using source code by
novices is high and they were not able to accurate summaries when using the source

code. The results of our study can be useful to researchers and practitioners interested in

77

building context-aware code summarization tools that can help augment official

documentation with the insightful information extracted from multiple sources.

As part of our future work, we are planning to conduct the study with
professionals from industry. The goal is to compare students method of summarization
with industry professionals. Another future goal is to develop high-level strategies used
in Stack Overflow vs bug reports vs source code in trying to summarize code elements.
We noted that there are many individual differences between our subjects however, we

would like to find some common thread to link the main strategies used.

78

APPENDIX Study Material

This section it contains the IRB approval certificate to conduct the study, the
study instructions given for participants, pre-questionnaire, post questionnaire used in the
study, tasks used in the study and the oracle against which the summaries given by

participants are evaluated.

A.1 Study Instructions
This study is concerned with summarizing methods and classes (i.e., API
elements)

e In order to understand what your task is and what you need to do, please carefully
read the printed document titled “A tutorial on the summarization tasks for API
classes or methods” given to you. A sample task has been provided in the Eclipse
workspace for you.

¢ You will need to work on four summarization tasks i.e., your task is:

Summarize in a very concise and brief way the API Method or Class in your
own words.

e After reading the task, you will follow the instructions given to you in the tutorial
depending on what context you are asked to use. Please pay attention to what
context the task is asking you to use. For e.g., if it asks to check Stack Overflow

then please do not use the source code to summarize the task.

79

You will be using the Eclipse built-in browser to browse Stack Overflow and Bug
reports. Please do not use Chrome or anything outside of Eclipse to finish this
task.

You will type in your answers in the task text file that is shown at the bottom of
the Eclipse window where it says, “YOUR SUMMARY:” Please do not close
these text files. Save the files by hitting <CtrlI>+S at regular intervals.

Please do not guess the answers.

Let the moderator know when you are done with a task. She will stop eye
recording, so you can complete confidence and difficulty ratings.

For each question, you will be asked to rate your confidence level of the summary
and to rate the difficulty level you faced while doing the summary. Check the
appropriate box.

Please try to maintain your position in the chair while you do the study so that we
do not lose the tracking of your eyes. Moving the chair back or moving yourself
back in the chair will cause the eye tracker to stop tracking. Small head
movements such as looking at the keyboard to type should be fine.

Find a comfortable position so we can begin. We will first begin with calibrating
your eyes. Look at the black dot in the center of the red circle and follow it around

on the screen.

80

A.2 IRB approval certificate to do the study

Youngstown

STAT EUU MIYERSITY Cne Linivarsicy Plazs, Taungsoswn, Ohio 44585
Office af Research
1300941.2377
wear sl iedu
April 3, 20017

Dr. Bonita Sharif, Principal Investigatos

Ms, Sunjana Sama, Co-investigator

Mr. Benjamin Clark, Co-investigator

Department of Computer Science & Information Systems
UNIVERSITY

RE: HSRC ROTOCOL MUMBER: 155-2017
TITLE: Summarization of Classes and Methods in Dilerent Contexis

Dhear Dr. Sharif, Ms. Sama, and Mr, Clark:

The Institutional Review Board has reviewed the abovementioned protoce] and determined that
il is exempt from full committes review based on a DHHS Category 3 exempdion.

Any changes in your research activity should be promptly reported to the Institutional Review
Board and may not be initisted without TRB approval excepl whese necessary 1o eliminate hazard
1o human subjecis. Any unanticipated problems involving risks to subjects should also b
promply reported to the IRB.

The TRB would like to extend its best wishas 1o vou in the conduct of this study.

Sinceraly,

Mr. Michael A, Hripko
Associnte Vice President for Research
Authorized Institutional Official

MAH: oo

- Dr. Krizs Schueller, Acting Chair
Department of Computer Seience and Information Systems

Vemwgsnirens §iape Uarersrp does ra) deariesaaie gn 1he fosic of o coler rankaeal orpn, 98, s 53l Srees Egaon,
greder ideatity sndiar exproison. dasbliy gt rekpon oF whinETIIIENY ME1ES B progiees of it Pieise sl

WA L ad albai-aocemibiiiey lar conmct mlarmeation for poroes despnsied (o laedls quennom shaut thin iy

81

A.3 Pre-Questionnaire

1.

2.

ID: *

Gender *
a. Female
b. Male

. Your age range is: *

a. < 18 years

b. 18 - 25 years
c. 26 - 30 years
d. 31 - 35 years
e. 36 - 40 years
f. 41 - 45 years
g. 46 - 50 years
h. > 50 years

. How many years of active programming experience do you have? *

a. <1 year

b. Between 1 and 2 years
c. Between 3 and 5 years
d. Between 6 and 10 years
e. > 10 years

. What is your level of expertise in the Java programming language? *

a. Poor

b. Fair

c. Good

d. Very Good
e. Excellent

. Please select all the degrees you have and are currently enrolled in. *

Check all that apply
[] Bachelors

[] Masters

[]Ph.D.

[] Other

. Current Positions - Select all that apply *

Check all that apply

[]I currently work in industry
[]I currently work in academia
[] Tam currently a student

82

[1T am currently a faculty member
[] Tam currently a post doc

8. How many years of work experience do you have in industry? *
a. None
b. <1 year
c. Between 1 and 2 years
d. Between 3 and 5 years
e. Between 6 and 10 years
f. > 10 years
9. Do you use Stack Overflow to find solutions to your coding problems? *
a. Yes
b. No

10. Do you use/read bug reports to find solutions to issues while coding? *
a. Yes
b. No

11. Have you contributed (code and/or documentation) to an *
a. Yes
b. No

12. Which of the following IDEs are you familiar with? (By familiar we mean you are
able to work in fairly well). *

Check all that apply
[] Eclipse

[] Visual Studio

[] Netbeans

[] Intelli]

[] Other

83

A.4 Post-Questionnaire

1. ID: *

2. Were you familiar with the code of the following projects or parts of these projects
before this study? *

(By familiar, we mean you have seen or worked with this code, bug report, Stack
Overflow document before and that knowledge helped you in your answers to the study.)

1. Eclipse
a. Extremely familiar
b. Moderately familiar
c. Somewhat familiar
d. Slightly familiar
e. Not at all familiar

2. Netbeans
a. Extremely familiar
b. Moderately familiar
c. Somewhat familiar
d. Slightly familiar
e. Not at all familiar

3. JMeter
a. Extremely familiar
b. Moderately familiar
c. Somewhat familiar
d. Slightly familiar
e. Not at all familiar

4. Tomcat
a. Extremely familiar
b. Moderately familiar
c. Somewhat familiar
d. Slightly familiar
e. Not at all familiar

84

2. Rate the usefulness of each type of information with respect to how helpful they were
to summarize the API elements in the study. *

1. Stack Overflow
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful

2. Bug Reports
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful

3. Source Code
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful

4. Stack Overflow + Bug Reports + Source Code
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful

3. Rate the usefulness of the different types of contexts present in **source code** that
helped you to summarize the API elements. *

1. Comments (line and block comments)
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is

85

2. Javadoc comments (e.g., @return, (@param)
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is

3. Identifier names
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is

4. Lines of code
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is

5. General readability of the code (e.g., good indentation, structure, etc...)
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is

4. Rate the usefulness of the different types of contexts present in **Stack Overflow (SO)
documents** that helped you to summarize the API elements *

1. Code examples
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is
g. None given

86

2. Comments by users
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is
g. None given

3. Stack traces
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is
g. None given

4. Textual descriptions (other than code examples and stack traces)
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is
g. None given

5. Votes
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is
g. None given

6. Tags of questions
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful

87

f. I do not know what this is
g. None given

7. User reputation/profile
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is
g. None given

8. Date of a comment/answer
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is
g. None given

5. Rate the usefulness of the different types of contexts present in **bug reports** that
helped you to summarize the API elements *

1. Code examples
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is
g. None given

2. Comments by users
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is
g. None given

88

3. Stack traces
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is
g. None given

4. Proposed patch
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is
g. None given

5. Test cases
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is
g. None given

6. Textual description of the bug report (other than stack traces or code examples)
a. Extremely helpful
b. Very helpful
c. Somewhat helpful
d. Slightly helpful
e. Not at all helpful
f. I do not know what this is
g. None given

6. Overall, how difficult did you find the study? *

7. Overall, do you feel you spent sufficient time to summarize the *

8. Comments

89

(Please list any comments you had on the study. We value your feedback in this
research.)

90

A.5 Tasks and Comprehension
There are total eight API elements selected from four different open source
projects such as Eclipse, JMeter, Tomcat, and Netbeans. Participants were asked to
summarize the above code elements using given context such as Source Code, Stack
Overflow, Bug report and Source Code+ Stack overflow + Bug report. We have created
eight sequences by randomly choosing 4 code elements in each.
Task T1
Please summarize the method:
org.eclipse.core.databinding.Binding.dispose
YOUR SUMMARY: : <participant writes summary here>
Using Source Code:
1- Search the method (dispose) in the Eclipse project.
2- Open the source code of the method.
3- Read the source code.
4- Summarize in a very concise and brief way the given method.
Using Stack Overflow:
1- Open the link: https://stackoverflow.com/search?q=databinding+dispose+
2- Search the method (dispose) in Stack Overflow, while considering the context
(org.eclipse.core.databinding.Binding).
3- Summarize in a very concise and brief way the given method.
Using Bug Report:

1- Open the link:

91

https://bugs.eclipse.org/bugs/buglist.cgi?quicksearch=binding%?20dispose
2- Search the method (dispose) in Bug reports, while considering the context
(org.eclipse.core.databinding.Binding).

3- Summarize in a very concise and brief way the given method.

Please note that if the participant was instructed to use all contexts, they would need to

check all the links given including source code.

Task T2

Please summarize the class:
org.eclipse.swt.SWTError

YOUR SUMMARY:: <participant writes summary here>
Using Source Code:

1- Search the class (SWTError) in the Eclipse project.

2- Open the source code of the class.

3- Read the source code.

4- Summarize in a very concise and brief way the given class.
Using Stack Overflow:

1- Open the link:
http://stackoverflow.com/search?q=SWTError

2- Search the class (SWTError) in Stack Overflow, while considering the context

(org.eclipse.swt).

92

3- Summarize in a very concise and brief way the given class.

Using Bug Report:

1- Open the link:

https://bugs.eclipse.org/bugs/buglist.cgi?quicksearch=SWTError

2- Search the class (SWTError) in Bug reports, while considering the context
(org.eclipse.swt).

3- Summarize in a very concise and brief way the given class.

Please note that if the participant was instructed to use all contexts, they would need to

check all the links given including source code.

Task T3

Please summarize the method:
org.apache.jmeter.Jmeter.convertSubTree
YOUR SUMMARY: <participant writes summary here>

Using Source Code:

1- Search the method (convertSubTree) in the JMeter Project.

2- Open the source code of the method.

3- Read the source code.

4- Summarize in a very concise and brief way the given method.
Using Stack Overflow:

1- Open the link:

93

https://stackoverflow.com/search?q=Jmeter+convertSubTree

2- Search the method (convertSubTree) in Stack Overflow, while considering the context
(org.apache.jmeter.Jmeter).

3- Summarize in a very concise and brief way the given method.

Using Bug Report:

1- Open the link:
https://bz.apache.org/bugzilla/buglist.cgi?quicksearch=Jmeter%20convertSubTree

2- Search the method (convertSubTree) in Bug reports, while considering the context
(org.apache.jmeter.Jmeter).

3- Summarize in a very concise and brief way the given method.

Please note that if the participant was instructed to use all contexts, they would need to

check all the links given including source code.

Task T4

Please summarize the class:
org.apache.jmeter.samplers.SampleResult
YOUR SUMMARY:: <participant writes summary here>
Using Source Code:

1- Search the class (SampleResult) in the JMeter Project.
2- Open the source code of the class.

3- Read the source code.

94

4- Summarize in a very concise and brief way the given class.

Using Stack Overflow:

1- Open the link: https://stackoverflow.com/search?q=SampleResult

2- Search the class (SampleResult) in Stack Overflow, while considering the context
(org.apache.jmeter.samplers).

3- Summarize in a very concise and brief way the given class.

Using Bug Report:

1- Open the link:

https://bz.apache.org/bugzilla/buglist.cgi?quicksearch=SampleResult

2- Search the class (SampleResult) in Bug reports, while considering the context
(org.apache.jmeter.samplers).

3- Summarize in a very concise and brief way the given class.

Please note that if the participant was instructed to use all contexts, they would need to

check all the links given including source code.

Task T5
Please summarize the method:

org.apache.catalina.realm.JDBCRealm.getRoles
YOUR SUMMARY:: <participant writes summary here>
Using Source Code:

1- Search the method (getRoles) in Tomcat project.

95

2- Open the source code of the method.

3- Read the source code

4- Summarize in a very concise and brief way the given method.

Using Stack Overflow:

1- Open the link: https://stackoverflow.com/search?q=JDBCRealm+getRoles

2- Search the method (getRoles) in Stack Overflow, while considering the context
(org.apache.catalina.realm.JDBCRealm).

3- Summarize in a very concise and brief way the given method.

Using Bug Report:

1- Open the link:

https://bz.apache.org/bugzilla/buglist.cgi?bug status=UNCONFIRMED&bug status=NE
Wé&bug status=ASSIGNED&bug status=REOPENED&bug status=NEEDINFO&bug
status=RESOLVED&bug_status=VERIFIED&bug status=CLOSED&query format=adv
anced&short _desc=JDBCRealm%?20getRoles&short desc type=allwordssubstr

2- Search the method (getRoles) in Bug reports, while considering the context
(org.apache.catalina.realm.JDBCRealm).

3- Summarize in a very concise and brief way the given method.

Please note that if the participant was instructed to use all contexts, they would need to

check all the links given including source code.

96

Task T6

Please summarize the class:

org.apache.catalina.valves.ValveBase

YOUR SUMMARY: <participant writes summary here>

Using Source Code:

1- Search the class (ValveBase) in the Tomcat project.

2- Open the source code of the class.

3- Read the source code.

4- Summarize in a very concise and brief way the given class.

Using Stack Overflow:

1- Open the link: http://stackoverflow.com/search?q=ValveBase

2- Search the class (ValveBase) in Stack Overflow, while considering the context
(org.apache.catalina.valves).

3- Summarize in a very concise and brief way the given class.

Using Bug Report:

1- Open the link:
https://bz.apache.org/bugzilla/buglist.cgi?bug_status= all &content=ValveBase&no r
edirect=1&order=Importance&query format=specific

2- Search the class (ValveBase) in Bug reports, while considering the context
(org.apache.catalina.valves).

3- Summarize in a very concise and brief way the given class.

97

Please note that if the participant was instructed to use all contexts, they would need to

check all the links given including source code.

Task T7

Please summarize the method:
org.netbeans.api.progress.ProgressUtils.runOffEventDispatch
Thread

YOUR SUMMARY: <participant writes summary here>

Using Source Code:

1- Search the method (runOffEventDispatchThread) in the netbeans project.

2- Open the source code of the method.

3- Read the source code.

4- Summarize in a very concise and brief way the given method.

Using Stack Overflow:

1- Open the link: http://stackoverflow.com/search?q=runOffEventDispatchThread

2- Search the method (runOffEventDispatchThread) in Stack Overflow, while
considering the context (org.netbeans.api.progress.ProgressUtils).

3- Summarize in a very concise and brief way the given method.

Using Bug Report:

1- Open the link:
https://netbeans.org/bugzilla/buglist.cgi?bug_status= all &content=runOffEventDispa

tchThread&no_redirect=1&order=Importance&product=&query format=specific

98

2- Search the method (runOffEventDispatchThread) in Bug reports, while considering the
context (org.netbeans.api.progress.ProgressUtils).

3- Summarize in a very concise and brief way the given method.

Please note that if the participant was instructed to use all contexts, they would need to

check all the links given including source code.

Task T8

Please summarize the class:
org.openide.nodes.CHildFactory.Detachable

YOUR SUMMARY:: <participant writes summary here>

Using Source Code:

1- Search the class (Detachable) in the NetBeans project

2- Open the source code of the class.

3- Read the source code.

4- Summarize in a very concise and brief way the given class.

Using Stack Overflow:

1- Open the link: http://stackoverflow.com/search?q=ChildFactory.Detachable
2- - Search the class (Detachable) in Stack Overflow, while considering the context
(org.openide.nodes.CHildFactory).

3- Summarize in a very concise and brief way the given class.

Using Bug Report:

99

1- Open the link:
https://netbeans.org/bugzilla/buglist.cgi?quicksearch=ChildFactory.Detachable

2- Search the class (Detachable) in Bug reports, while considering the context
(org.openide.nodes.CHildFactory).

3- Summarize in a very concise and brief way the given class.

Please note that if the participant was instructed to use all contexts, they would need to

check all the links given including source code.

A.6 Oracle against which summaries are evaluated

Task T1

Please summarize the method:
org.eclipse.core.databinding.Binding.dispose

Final Oracle

Disposes of the Binding object this method is called from. A call of this method usually
results in the binding stopping to observe its dependencies by unregistering its listener(s).
Task T2

Please summarize the class:

org.eclipse.swt.SWTError

Final Oracle

A class representing an error internal to the SWT module. It contains a integer code and a

throwable object.

100

SWTErrors are thrown when something fails internally which either leaves SWT in an
unknown state or when SWT is left in a known-to-be-unrecoverable state.

Indicates that an internal error occurred in SWT, displaying the error code and a
description of the problem.

Task T3

Please summarize the method:

org.apache.jmeter.Jmeter.convertSubTree

Final Oracle

Remove disabled elements. Replace the ReplaceableController with the target subtree.
Task T4

Please summarize the class:

org.apache.jmeter.samplers.SampleResult

Final Oracle

This is a nice packaging for the various information returned from taking a sample of an
entry. Several helper methods are available for timing.

Task TS

Please summarize the method:
org.apache.catalina.realm.JDBCRealm.getRoles

Final Oracle

Returns a set of strings describing the roles associated with the user name. If no role store
is defined and an authentication only configuration is used, it returns null.

Task T6

101

Please summarize the class:

org.apache.catalina.valves.ValveBase

Final Oracle

Convenience base class for implementations of the Valve interface. Handles the flow of
requests between components in a container.

Task T7

Please summarize the method:
org.netbeans.api.progress.ProgressUtils.runOffEventDispatch
Thread

Final Oracle

Runs operation out of event dispatch thread, blocks Ul while operation is in progress.
This method is supposed to be used by user invoked foreground actions, that are expected
to run very fast in vast majority of cases.

Task T8

Please summarize the class:

org.openide.nodes.CHildFactory.Detachable

Final Oracle

Extension of child factory class providing methods for when the object is first used and

last used

102

References

Armaly, Ameer, and Collin McMillan. 2016. “An Empirical Study of Blindness and
Program Comprehension.” In Proceedings of the 38th International Conference
on Software Engineering Companion, 683—685. ICSE 16. New York, NY, USA:
ACM. https://doi.org/10.1145/2889160.2891041.

Barik, Titus, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson
Murphy-Hill, and Chris Parnin. 2017. “Do Developers Read Compiler Error
Messages?” In Proceedings of the 39th International Conference on Software
Engineering, 575-585. ICSE °’17. Piscataway, NJ, USA: IEEE Press.
https://doi.org/10.1109/ICSE.2017.59.

Bhatia, Sumit, Shibamouli Lahiri, and Prasenjit Mitra. 2009. “Generating Synopses for
Document-Element Search.” In Proceedings of the 18th ACM Conference on
Information and Knowledge Management, 2003-2006. CIKM ’09. New York,
NY, USA: ACM. https://doi.org/10.1145/1645953.1646287.

Buse, Raymond P.L., and Westley R. Weimer. 2010. “Automatically Documenting
Program Changes.” In Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering, 33—42. ASE °10. New York, NY, USA:
ACM. https://doi.org/10.1145/1858996.1859005.

Busjahn, Teresa, Roman Bednarik, Andrew Begel, Martha Crosby, James Paterson,
Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. “Eye Movements in

Code Reading: Relaxing the Linear Order.” In International Conference on

103

Program Comprehension, 255-65. IEEE.
http://dl.acm.org/citation.cfm?1d=2820320.

Busjahn, Teresa, Carsten Schulte, Bonita Sharif, Simon, Andrew Begel, Michael Hansen,
Roman Bednarik, et al. 2014. “Eye Tracking in Computing Education.” In
Proceedings of the Tenth Annual Conference on International Computing
Education Research, 3-10. New York, NY, USA: ACM.
https://doi.org/10.1145/2632320.2632344.

Fowkes, Jaroslav, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Allamanis,
Mirella Lapata, and Charles Sutton. 2016. “TASSAL: Autofolding for Source
Code Summarization.” In Proceedings of the 38th International Conference on
Software Engineering Companion, 649—652. ICSE ’16. New York, NY, USA:
ACM. https://doi.org/10.1145/2889160.2889171.

Haiduc, S., J. Aponte, and A. Marcus. 2010. “Supporting Program Comprehension with
Source Code Summarization.” In Software Engineering, 2010 ACM/IEEE 32nd
International Conference On, 223-26.

Just, M., and P. Carpenter. 1980. “A Theory of Reading: From Eye Fixations to
Comprehension.” Psychological Review 87: 329-354.

Lazar, Alina, Rachel Turner, Michael Falcone, and Bonita Sharif. 2014. “An Eye-
Tracking Study Assessing the Comprehension of C++ and Python Source Code.”
In Proceedings of the Symposium on Eye Tracking Research and Applications,
231-234. ETRA ’14. New York, NY, USA: ACM.

https://doi.org/10.1145/2578153.2578218.

104

Linares-Vasquez, Mario, Luis Fernando Cortés-Coy, Jairo Aponte, and Denys
Poshyvanyk. 2015. “ChangeScribe: A Tool for Automatically Generating Commit
Messages.” In Proceedings of the 37th International Conference on Software
Engineering - Volume 2, 709-712. ICSE °15. Piscataway, NJ, USA: IEEE Press.
http://dl.acm.org/citation.cfm?1d=2819009.2819144.

McBurney, Paul W. 2015. “Automatic Documentation Generation via Source Code
Summarization.” In Proceedings of the 37th International Conference on
Software Engineering - Volume 2, 903-906. ICSE ’15. Piscataway, NJ, USA:
IEEE Press. http://dl.acm.org/citation.cfm?id=2819009.2819210.

McBurney, Paul W., Cheng Liu, Collin McMillan, and Tim Weninger. 2014. “Improving
Topic Model Source Code Summarization.” In Proceedings of the 22Nd
International Conference on Program Comprehension, 291-294. ICPC 2014.
New York, NY, USA: ACM. https://doi.org/10.1145/2597008.2597793.

McBurney, Paul W., and Collin McMillan. 2014. “Automatic Documentation Generation
via Source Code Summarization of Method Context.” In Proceedings of the 22Nd
International Conference on Program Comprehension, 279-290. ICPC 2014.
New York, NY, USA: ACM. https://doi.org/10.1145/2597008.2597149.

Moreno, Laura. 2014. “Summarization of Complex Software Artifacts.” In Companion
Proceedings of the 36th International Conference on Software Engineering, 654—
657. ICSE Companion 2014. New York, NY, USA: ACM.

https://doi.org/10.1145/2591062.2591096.

105

Moreno, Laura, Gabricle Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian
Marcus, and Gerardo Canfora. 2014. “Automatic Generation of Release Notes.”
In Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 484—495. FSE 2014. New York, NY, USA:
ACM. https://doi.org/10.1145/2635868.2635870.

Rodeghero, P., C. Liu, P. W. McBurney, and C. McMillan. 2015. “An Eye-Tracking
Study of Java Programmers and Application to Source Code Summarization.”
IEEE Transactions on Software Engineering 41 (11): 1038-54.
https://doi.org/10.1109/TSE.2015.2442238.

Rodeghero, P., and C. McMillan. 2015. “An Empirical Study on the Patterns of Eye
Movement during Summarization Tasks.” In 2015 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), 1-10.
https://doi.org/10.1109/ESEM.2015.7321188.

Rodeghero, Paige, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sidney
D’Mello. 2014. “Improving Automated Source Code Summarization via an Eye-
Tracking Study of Programmers.” In Proceedings of the 36th International
Conference on Software Engineering, 390-401. New York, NY, USA: ACM.
https://doi.org/10.1145/2568225.2568247.

Sharafi, Zohreh, Zéphyrin Soh, and Yann-Gaél Guéhéneuc. 2015. “A Systematic
Literature Review on the Usage of Eye-Tracking in Software Engineering.” Inf.

Softw. Technol. 67 (C): 79-107. https://doi.org/10.1016/.infsof.2015.06.008.

106

Sharafi, Zohreh, Z¢éphyrin Soh, Yann-Gael Gueheneuc, and Giuliano Antoniol. 2012.
“Women and Men - Different but Equal: On the Impact of Identifier Style on
Source Code Reading.” Program Comprehension (ICPC), 2012 IEEE 20th
International Conference On, 27-36.
https://doi.org/10.1109/ICPC.2012.6240505.

Sharif, Bonita, Katja Kevic, Braden M. Walters, Timothy R. Shaffer, David C. Shepherd,
and Thomas Fritz. 2015. “Tracing Software Developers’ Eyes and Interactions for
Change Tasks.” In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, 202-213. ESEC/FSE 2015. New York, NY, USA: ACM.
https://doi.org/10.1145/2786805.2786864.

Sharif, Bonita, and Jonathan 1. Maletic. 2010a. “An Eye Tracking Study on CamelCase
and Under Score Identifier Styles.” In Proceedings of the 2010 IEEE 18th
International Conference on Program Comprehension, 196-205. ICPC ’10.
Washington, DC, USA: IEEE Computer Society.
https://doi.org/10.1109/ICPC.2010.41.

Sharif, Bonita, and Jonathan I Maletic. 2010b. “An Eye Tracking Study on the Effects of
Layout in Understanding the Role of Design Patterns.” Software Maintenance
(ICSM), 2010 IEEE International Conference On, 1-10.
https://doi.org/10.1109/ICSM.2010.5609582.

Sharif, Bonita, Timothy R. Shaffer, Jenna L. Wise, Braden M. Walters, Sebastian C.
Miiller, and Michael Falcone. 2015. “ITrace: Enabling Eye Tracking on Software

Artifacts Within the IDE to Support Software Engineering Tasks.” In Proceedings

107

of the 2015 10th Joint Meeting on Foundations of Software Engineering, 954—
957. ESEC/FSE 2015. New York, NY, USA: ACM.
https://doi.org/10.1145/2786805.2803188.

Sridhara, G., L. Pollock, and K. Vijay-Shanker. 2011. “Generating Parameter Comments
and Integrating with Method Summaries.” In Program Comprehension (ICPC),
2011 IEEE 19th International Conference On, 71-80.
https://doi.org/10.1109/ICPC.2011.28.

Sridhara, Giriprasad, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-Shanker.
2010. “Towards Automatically Generating Summary Comments for Java
Methods.” In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, 43-52. New York, NY, USA: ACM.
https://doi.org/10.1145/1858996.1859006.

Sridhara, Giriprasad, Lori Pollock, and K. Vijay-Shanker. 2011. ‘“Automatically
Detecting and Describing High Level Actions Within Methods.” In Proceedings
of the 33rd International Conference on Software Engineering, 101-110. ICSE

"11. New York, NY, USA: ACM. https://doi.org/10.1145/1985793.1985808.

108

		2018-05-21T13:03:16-0400
	Electronic Theses and Dissertations Program

