
Empirical Evaluation of AdaBoost Method in
Detecting Transparent and Occluded Objects

by

Sujan Tamang

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of

Computing and Information Systems

YOUNGSTOWN STATE UNIVERSITY

May, 2018

Empirical Evaluation of AdaBoost Method in
Detecting Transparent and Occluded Objects

Sujan Tamang

I hereby release this thesis to the public. I understand that this thesis will be made
available from the OhioLINK ETD Center and the Maag Library Circulation Desk for
public access. I also authorize the University or other individuals to make copies of this
thesis as needed for scholarly research.

Signature:

Sujan Tamang, Student Date

Approvals:

Dr. Yong Zhang, Thesis Advisor Date

Dr. John Sullins, Committee Member Date

Dr. Feng George Yu, Committee Member Date

Dr. Salvatore A. Sanders, Dean of Graduate Studies Date

iii

DEDICATION

I would dedicate this thesis to my parents and sisters for their unconditional love and all

the pain and sufferings that they willingly endured to secure higher education for me.

iv

ABSTRACT

Detecting and counting nano-particles in the Transmission Electron Microscopy

(TEM) images is a challenging task due to two reasons: (1) The particles are semi-

transparent which means that the backgrounds and objects have similar image

characteristics. As a result, it is extremely difficult to separate the positive samples and

the negative samples with a single or simple image feature; (2) Particles are often

severely occluded (overlapped) and hence it is impossible to select a large number of

clean positive samples to train a good classifier, which in turn significantly affects the

detection outcomes. In this thesis, a series of empirical experiments and data analysis

were conducted to compare the performances of two popular image features: Haar feature

and Local Binary Pattern (LBP), within the framework of Cascade AdaBoost algorithm.

It was found that the two features exhibited complex relationships with respect to several

key training parameters and performance metrics, including the training time, sample

size, true positive rate, false alarm rate and detection window size, etc. The experimental

results and insights gained from this study help build a solid foundation upon which more

detailed investigations can be carried out in the future.

v

ACKNOWLEDGEMENTS

I would like to thank Dr. Yong Zhang for giving me the opportunity to work on

this research project and providing tremendous advisements and insights as how to

approach and solve a challenging problem. He has been a huge resource for the overall

experimental design, testing and thesis writeup.

I would also like to thank the thesis committee members, Dr. John Sullins and Dr.

Feng George Yu, for their encouragement throughout my academic coursework at YSU

and sparing their invaluable time to serve in the committee.

I am forever indebted to my friends whose continuous guidance and support were

instrumental in the completion of this work.

vi

TABLE OF CONTENTS

ABSTRACT... iv

ACKNOWLEDGEMENTS.. v

LIST OF FIGURES ... viii

LIST OF TABLES.. x

CHAPTER 1 INTRODUCTION .. 1

1.1. TECHNICAL ISSUES ... 1

1.2. CONTRIBUTIONS .. 2

CHAPTER 2 METHODOLOGY ... 3

2.1. CASCADE ADABOOST ALGORITHM .. 3

2.2. FEATURE EXTRACTION.. 5

2.2.1. HAAR FEATURE .. 6

2.2.2. LOCAL BINARY PATTERN.. 8

CHAPTER 3 DATA PROCESSING.. 10

3.1. DATA SET ... 10

3.2. SAMPLE PREPARATION .. 11

3.2.1. POSITIVE SAMPLES.. 11

3.2.2. NEGATIVE SAMPLES ... 13

CHAPTER 4 EXPERIMENT DESIGN ... 14

4.1. TRAINING .. 14

vii

STEP-1: GENERATE A LIST OF NEGATIVE SAMPLES:.................................. 14

STEP-2: GENERATE A LIST OF POSITIVE SAMPLES: 15

STEP-3: MERGE THE VEC FILES OF INDIVIDUAL SAMPLES INTO A

SINGLE ONE: .. 15

STEP-4: TRAIN A CASCADE CLASSIFIER: ... 15

4.2. TESTING... 16

CHAPTER 5 RESULTS AND DISCUSSIONS... 17

5.1. IMPACT OF DETECTION WINDOW SIZE (CUBE-A AS TRAINING).......... 17

5.2. IMPACT OF SAMPLE SIZE (CUBE-A AS TRAINING) 20

5.3. IMPACT OF SAMPLE SIZE (CUBE-C AS TRAINING) 24

5.4. IMPACT OF ROTATED SAMPLE SETS (CUBE-A AS TRAINING) 26

5.5. IMPACT OF KEY TRAINING PARAMETER (CUBE-A AS TRAINING) 28

5.6. VISUALIZATION OF SELECTED HAAR FEATURES.................................... 30

5.7. VISUALIZATION OF SELECTED LBP FEATURES.. 33

CHAPTER 6 CONCLUSIONS .. 36

REFERENCES ... 37

viii

LIST OF FIGURES

Figure 1: The cascade of classifiers with N stages. .. 3

Figure 2: Illustration of the AdaBoost Algorithm.. 4

Figure 3: Illustration of the Cascade AdaBoost Algorithm. ... 5

Figure 4: Basic Haar features.. 6

Figure 5: The value of the integral image at point (x,y) ... 7

Figure 6: Rectangular feature computation using integral image. 7

Figure 7: The basic LBP operator. .. 8

Figure 8: The 9x9 MB-LBP operator.. 9

Figure 9: Cube-a image used for selecting training samples. ... 10

Figure 10: Cube-b image used for testing... 10

Figure 11: Cube-c image used for testing. .. 11

Figure 12: Positive samples cropped from the "cube-a" image. 12

Figure 13: Negative samples... 13

Figure 14: Impact of window size on training time.. 18

Figure 15: Impact of window size on TPR ... 18

Figure 16: Impact of window size on FPR ... 19

Figure 17: Impact of window size on precision.. 19

Figure 18: Detection results with different window sizes. ... 20

Figure 19: Impact of sample size on training time. .. 21

Figure 20: Impact of sample size on TPR... 22

Figure 21: Impact of sample size on FPR... 22

Figure 24: Impact of sample size on training time (cube-c). .. 24

ix

Figure 25: Impact of sample size on TPR (cube-c). ... 25

Figure 26: Impact of sample size on FPR (cube-c)... 25

Figure 27: Impact of sample size on precision (cube-c). .. 25

Figure 28: Impact of rotated sample sets (20) on TPR. .. 26

Figure 29: Impact of rotated sample sets (20) on FPR. .. 26

Figure 30: Impact of rotated sample sets (20) on precision.. 27

Figure 31: Impact of rotated sample sets (60) on TPR. .. 27

Figure 32: Impact of rotated sample sets (60) on FPR. .. 27

Figure 33: Impact of rotated sample sets (60) on precision.. 28

Figure 34: Impact of a key training parameter.. 29

Figure 35: Training parameters for a classifier of good performance. 30

Figure 36: Training parameters for a classifier of poor performance. 30

Figure 37: A classifier of good performance and its selected Haar features. 31

Figure 38: A classifier of poor performance and its selected Haar features. 32

Figure 39: Training parameters for a classifier of good performance (LBP). 33

Figure 40: Training parameters for a classifier of poor performance (LBP). 33

Figure 41: A classifier of good performance and its selected LBP features..................... 34

Figure 42: A classifier of poor performance and its selected LBP features. 35

x

LIST OF TABLES

Table 1: Sets of Positive Samples Cropped From Cube-A... 13

Table 2: Impact of Detection Window Size (Cube-A) ... 18

Table 3: Impact of Sample Size (Cube-A).. 21

Table 4: Impact of Sample Size (Cube-C).. 24

1

CHAPTER 1

INTRODUCTION

With the rapid increase of using TEM imaging technology in both fundamental and

applied nano-research, a large amount of image data measured in Gigabyte and Terabyte

scale has been generated annually. It is not feasible to process this type of information

manually for further investigations. For example, the analysis of complex relationships

among object properties (size, shape, area, growth rate, chemical activities) often requires

accurate accounting of individual crystals. However, detecting nanoparticles in TEM

images is very challenging because of the presence of object occlusion and transparency.

In this study, the Cascade AdaBoost method is used to detect nanoparticle in cube

shapes. AdaBoost is a robust ensemble learning algorithm that has a good generalization

capability and has been widely used in object detections, especially in face detection [1].

The majority of object detection applications used the Haar feature as a weak learner,

mainly because of its simplicity in terms of the feature structure, calculation cost, and

parameter fine tuning.

1.1. TECHNICAL ISSUES

To achieve a satisfactory performance, a classifier must address two technical issues:

1. The objects are severely overlapped and causes class labeling errors, which in

turn complicates the relationships of training and detection parameters.

2. A simple feature is easy to use but a large number of them is needed in training,

while a sophisticated feature can reduce the training time significantly but at a

cost of less accurate detection rate.

2

1.2. CONTRIBUTIONS

This study focuses on the empirical evaluation of the Cascade AdaBoost method

with respect to the performances of two popular image features: Haar and LBP in the

context of detecting overlapped nanoparticles. The primary contributions are: (i)

Determining the impacts of the kernel window size and sample size on the training time,

true positive rate, false positive rate and precision rate with various sample sets; (ii)

Understanding whether the use of rotated sample subsets and the change of key training

parameter would have a significant impacts on detection results; (iii) Comparing the

performances of two image features by the standard metrics under the same or similar

experimental setups and running environments; (iv) Visualizing and assessing the

possible connections among the selected feature sets in each cascade stage and the overall

performances of the classifiers of different weak learners.

3

CHAPTER 2

METHODOLOGY

2.1. CASCADE ADABOOST ALGORITHM

Boosting is an ensemble learning strategy that combines weak classifiers of slightly

better than random guessing rates [2,3] into a strong classifier. Since weak classifiers

only need to be above-average ones, they are often simple to implement and easy to use.

AdaBoost is a boosting algorithm that shows resistance to over-fitting as often observed

in other methods [4, 5, 6, 7]. As a practical method, AdaBoost is considered one of the

most successful learning algorithms [8, 9]. The original AdaBoost can be modified to

solve a specific problem. For example, the Cascade AdaBoost is designed to detect faces

in real-time by rejecting non-face patterns early (Fig. 1). The concise descriptions of the

original AdaBoost and Cascade AdaBoost algorithms are given in Fig. 2 and Fig. 3.

At each stage, a classifier is trained to achieve a hit rate (h) and a false alarm rate (f).

The overall hit rate and false alarm rate can be expected to be the Nth power of h and f.

Given a classifier of 15 stages, with each state eliminating 60% negative samples while

falsely discarding 0.1% true objects, it would have the overall false alarm rate of about

0.415 ≈ 1.07e-06 and hit rate of about 0.99915 ≈ 0.985.

Figure 1: The cascade of classifiers with N stages.

Stage NStage 2Stage 1

input pattern classified as non-object

h

1-f 1-f 1-f

h h h

4

Terminologies:
hypothesis = learner = classifier
weak learner: better than 0.5 prediction rate.
strong learner: a weighted linear combination of weak learners.
Dt(i): distribution of sample weight for all xi.
αt: learner weight for ht.

Input:
Training set: (x1, y1), (x2, y2), …, (xm, ym), xi X, yi {-1, +1}.
Sample weight distribution: Dt over m examples.
Weak learner or hypothesis: ht.
T: number of iterations/training rounds/ weak learners selected.

Procedure:
Initialize sample weights: Dt(i) = 1/m.
for t = 1 to T

Try many weak learners using sample weights of Dt(i).
Get a weak learner ht(x): X Y = {-1, +1}
Compute its prediction error: t = Pri Dt [ht (xi) ≠ yi]
From all weak learners, select one with the smallest error.
Compute learner weight of the selected one: αt = ½ ln ((1 - t)/ t)

Add the selected weak learner to the final strong learner:
Ht(x) = Ht-1(x) + αt ht(x)

Update sample weights:
for i = 1 to m: () = () (())

= () × exp(), () = () exp(), () ()
end for
Zt is a normalization factor chosen so that Dt+1 will be a distribution.

end for

Output:
The final strong learner: HT (x) = sign (())

Figure 2: Illustration of the AdaBoost Algorithm.

5

Given a data set: (x1, y1), (x2, y2), …, (xm, ym), where xi X, yi Y = {-1, +1},
initialize a distribution (sample weights) over m samples: D1 (i) = 1/m.
m includes both positive (mp) and negative samples (mn): m = mp + mn.

for t = 1 to T
Step1: Find the best learner (ht) that minimizes the error (εt) on Dt:= . []

Step1-a: Get a weak learner ht: X → Y = {-1, +1}
Step1-b: Compute the error of ht:= () [(),], where I = 1, ()0,

Step2: Compute learner weight: αt = ½ ln ((1- εt)/εt)

Step3: Update sample weights:
for i = 1 to m: () = () (())

= () × exp(), () = exp(), ()
end for
Zt is a normalization factor chosen so that Dt+1 will be a distribution.

Step4: Compute the total error using the strong learner up to current t:
CEt = Ht (x)
If CEt < threshold: T = t, break.

end for

Output:
The final hypothesis (strong learner): HT (x) = sign (())

Figure 3: Illustration of the Cascade AdaBoost Algorithm.

2.2. FEATURE EXTRACTION

The main motivation of extracting features rather than using the raw pixels is that,

features can encode domain specific knowledge, which is difficult to learn from raw data.

Moreover, the computational cost of using a feature-based model is far less than that of

using a pixel-based model.

6

2.2.1. HAAR FEATURE

Haar features compute the intensity difference between adjacent rectangles and

have two advantages: they can be computed efficiently with the aid of integral images

and they are visually intuitive as they can be view as simple edge descriptors. Four basic

types of Haar features are often used (Fig. 4) with an optional set of rotated types [10].

The value of the two-rectangle feature is the difference between the sum of pixels within

two rectangular regions. In the similar manner, the value of three-rectangle feature is the

difference between the sum of pixels of two outside rectangle subtracted from the sum in

a center rectangle. Finally, the four-rectangle feature is the difference between diagonal

pairs of rectangles. In Fig. 4, (A) and (B) are two-rectangle feature whereas (C) is a three-

rectangle feature and (D) is a four-rectangle feature.

Figure 4: Basic Haar features.

An integral image is a special representation of the original image that is used to

facilitate image processing work. The integral image at location (x,y) (Fig. 5) is the sum

of the original pixel values above and to the left of (x,y), including the pixel at (x,y).

Mathematically, the integral image at location (x,y) can be represented as:

ii(x, y) = ∑ i(x1, y1) (1)

A B C D

x1≤ x, y1 ≤ y

7

where ii(x,y) is the integral image and i(x,y) is the original image. The integral image can

be computed over the original image in one pas by:

s(x,y) = s(x,y-1) + i(x,y) (2)

ii(x,y) = ii(x-1,y) + s(x,y) (3)

where s(x,y) is the cumulative row sum, s(x,-1)=0 and ii(-1,y) = 0.

Given an integral image below (Fig. 6), the sum of the original pixel values in the

shaded area can be computed in a linear time: ii(4) + ii(1) – ii(2) – ii(3)

Figure 5: The value of the integral image at point (x,y)

Figure 6: Rectangular feature computation using integral image.

8

2.2.2. LOCAL BINARY PATTERN

Local Binary Pattern (LBP) operator is a local descriptor of image microstructures

[11]. LBP describes local properties of an object rather than the whole image as a vector

of high dimension. The local features have low dimensions and reduce the computational

cost during the training. LBP summarizes the local structure by comparing each pixel

with its neighborhood. The operator labels pixels by thresholding the 3x3 neighborhood

of each pixel with the center value and considering the result as a binary number[12]. If

the central pixel value is greater or equal to its neighbor, it is denoted by 1 or 0 otherwise,

resulting a binary number for each pixel. With 8 surrounding pixels, Local Binary

Patterns would have 28 combinations [13]. A LBP example is given in Fig. 7.

Figure 7: The basic LBP operator.

The LBP operator can be described as below:

LBP (xc, yc) = 2 ()
where (xc, yc) is the central pixel with intensity ic and in is the intensity of the neighbor

pixel. S is the sign function defined as:

S(x) = 1 if x ≥ 0, and 0 otherwise

This description enables us to capture fine-grained details of an object. Although

the basic LBP has been proved to be effective for image representation, it is too local to

be robust [14]. A number of variants have been developed, including Multi-scale Block

7 5 4
2 5 8
6 5 9

Thresholding 1 1 0
0 1
1 1 1

Binary: 11011110
Decimal: 222

9

Local Binary Pattern (MB-LBP) that is more robust because it encodes both the

microstructures and macrostructures of an image. The MB-LBP is computed based on the

average values of block sub-regions instead of individual pixels (Fig. 8). The average

sum of image intensity is computed for each sub-region with each sub-region being

thresholded against the central block.

Figure 8: The 9x9 MB-LBP operator.

10

CHAPTER 3

DATA PROCESSING

3.1. DATA SET

Three sets of TEM images were used in the experiments. The training dataset

includes the cropped cubes from the “cube-a” image which is of 20nm scale (Fig. 9) and

from the “cube-c” image which is of 50nm scale (Fig. 11). On the other hand, “cube-b”

was used to carry out the cross- validation tests that are acquired on 50nm scale (Fig. 10).

 Figure 9: Cube-a image used for selecting training samples.

Figure 10: Cube-b image used for testing.

11

Figure 11: Cube-c image used for testing.

3.2.SAMPLE PREPARATION

Two sets of training samples were collected: positive samples and negative

samples. Positive samples refer to the cube-shaped particles that we are interested in

detecting whereas negative samples are selected from random background images.

3.2.1. POSITIVE SAMPLES

The positive samples used in the training of a cascade classifier were cropped

manually from the “cube-a” image, with a total of 80 positive samples being collected.

Cropping was done using a GIMP image editing software package. Before cropping, the

image was rotated to match the vertical and horizontal edge alignments of each actual

particle. For severely overlapped cubes with potentially more than two or three objects

involved, only the shape and boundary of the primary one is considered in cropping. A

few positive samples are shown in Fig. 12 and Table 1.

12

Set I Set II Set III Set IV Set V Set VI Set VII Set VIII

Figure 12: Positive samples cropped from the "cube-a" image.

13

TABLE 1: SETS OF POSITIVE SAMPLES CROPPED FROM CUBE-A

Set Number of samples
I 10
II 10
III 10
IV 10
V 10
VI 10
VII 10
VIII 10

3.2.2. NEGATIVE SAMPLES

The negative sample consists of 600 background images generated by slicing a

few random images including a few with similar intensity distribution as TEM images.

The diverse nature of negative samples will enable the classifier to reduce the false alarm

rate thereby making the classifier more robust for unseen test images. Several negative

samples are shown in Fig. 13.

Figure 13: Negative samples.

14

CHAPTER 4

EXPERIMENT DESIGN

This section describes the experimental details during the training/testing phases

with various parameter setups. All experiments were carried out using the OpenCV

packages installed under the Linux environment on a desktop machine of Intel® Core™

i5-5200U CPU at 2.2GHz and with an 8 GB of RAM. The training phase uses the

positive and negative samples to create a classifier in the xml format while the testing

phase makes use of the trained model to detect objects in a test image. The following

training and testing pairs were conducted: (i) Training and testing by changing the kernel

window size; (ii) Training and testing by changing the sample size; (iii) Training and

testing with different rotated sample sets of two sample size (20 and 60); (iv) Training

and testing with different maxFalseAlarmRate values.

4.1. TRAINING

The training phase has four steps:

STEP-1: GENERATE A LIST OF NEGATIVE SAMPLES:

find ./posImgDir -name "*.jpg" | sort -V -f > posImgList.txt
echo "" >> posImgList.txt
find ./negImgDir -name "*.jpg" | sort -V -f > allNegImgList.txt
echo "" >> allNegImgList.txt

numNeg=300
k=0
while read varLine
do

echo "$varLine" >> negImgList.txt
((k++))
if [$k -ge $numNeg]

then
break

fi
done < allNegImgList.txt
echo "" >> negImgList.txt

15

STEP-2: GENERATE A LIST OF POSITIVE SAMPLES:

The following script generates positive samples with “opencv_createsamples”

utility. In case that the number of positive samples is not sufficient, more samples can be

generated by randomly rotating the samples and adding noise to the original ones. A total

of 400 samples was obtained by rotating samples along its z-axis with a maximum

rotation angle of 180 degrees.

perl ./bin/step2.pl\
posImgList.txt\
negImgList.txt\
vecSampleDir\
400\
"opencv_createsamples\
-bgcolor 0\
-bgthresh 0\
-maxxangle 0.00\
-maxyangle 0.00\
-maxzangle 3.14\
-maxidev 0\
-w 20\
-h 20"

STEP-3: MERGE THE VEC FILES OF INDIVIDUAL SAMPLES INTO A SINGLE
ONE:

find ./vecSampleDir/posImgDir -name '*.vec' | sort -V -f >
./vecSampleDir/vecList.txt

./bin/mergevec ./vecSampleDir/vecList.txt

./vecSampleDir/allPositiveSamples.vec

STEP-4: TRAIN A CASCADE CLASSIFIER:

A cascade classifier was trained with the merged vec data and negative samples.

One thing to be noted is that the number of positives (numPos) and negatives (numNeg)

should be more or less the same and should be 80-90% of the number of training samples

generated in step-2. Other parameters include the number of cascade stages, type of

stages, type of feature, size of detection window, type of boosted classifiers, minimal

16

desired hit rate for each stage of the classifier, maximal desired false alarm rate for each

stage of the classifier, maximal depth of a weak tree, maximal count of weak trees for

each stage, type of Haar features used in training, etc. All of these parameters can be fine-

tuned to achieve a better performance.

opencv_traincascade -data trainedClassifier\
-vec

./vecSampleDir/allPositiveSamples.vec\
-bg negImgList.txt\
-numPos 300\
-numNeg 300\
-numStages 15\
-precalcValBufSize 512\
-precalcIdxBufSize 512\
-stageType BOOST\
-featureType HAAR\
-w 20\
-h 20\
-bt GAB\
-minHitRate 0.985\
-maxFalseAlarmRate 0.500\
-weightTrimRate 0.950\
-maxDepth 1\
-maxWeakCount 100\
-mode ALL

4.2. TESTING

A testing was done by running the final classifier (cascade.xml) on a test image

with several parameters specifying the sizes of objects to be detected as well as the

number of hits in a neighborhood window to confirm a detection.

echo "test ..."

exe classifier image scale min-nbr min-obj-size max-obj-size equalizer

./cascadeAdaBoost ./cascade.xml ./cube_b.jpg 1.1 3 70 160 0

echo "test is done."

17

CHAPTER 5

RESULTS AND DISCUSSIONS

5.1. IMPACT OF DETECTION WINDOW SIZE (CUBE-A AS TRAINING)

The detection window size is one of the most important parameters that could

have a significant impact on a classifier’s performance. It is generally believed that a

larger window size can result in a better performance at the cost of a longer training time.

Experimental results of using different window sizes for both Haar and LBP features are

given in Table 2 and plotted in Fig. 14 to Fig. 18. It is clear that LBP reduces the training

time drastically, by almost 2 to 4 orders of magnitude. The second noticeable outcome is

that the three performance metrics (TPR, FPR, Precision) exhibit much more complex

variations as the detection window size gradually increases. It is generally believed that

the true positive rate would show a positive correlation with the detection window size at

the early stage and then level off as window size continues to increase. The explanation is

that larger window sizes provide more information to enhance the detection rate, but after

certain point, the benefits of large window size drops due to the saturation of new image

information. The same logic and reasoning can be applied to the curves of FPR and

precision. However, LBP display almost opposite trends as compared to these of Haar.

As can be seen in Fig. 18, TPR of Haar improves as window sizes grows at the cost of

slightly large false positive rate. But the LBP generate a large number of false positive

cases regardless of the window size used. Based on these experimental results, it can be

said that the window size is a significant factor for a detection project using the Haar

features, whereas the influence of window size on LBP is more complicated and more

research is needed.

18

TABLE 2: IMPACT OF DETECTION WINDOW SIZE (CUBE-A)

Training Time
(s) TPR FPR Precision

Window size Haar LBP Haar LBP Haar LBP Haar LBP
20 492 08 0.49 0.81 0.0003 0.0157 0.97 0.52
24 782 22 0.62 0.76 0.0007 0.0257 0.95 0.38
28 1912 34 0.63 0.57 0.0000 0.0197 1.00 0.38
32 4523 50 0.71 0.33 0.0003 0.0160 0.98 0.30
36 10814 80 0.62 0.43 0.0057 0.0090 0.696 0.5

Figure 14: Impact of window size on training time

Figure 15: Impact of window size on TPR

00
1728
3456
5184
6912
8640

10368
12096

16 20 24 28 32 36

Tr
ai

ni
ng

 T
Im

e
(s

ec
)

Window Size (w=h)

Training time vs Window size

Haar

LBP

0.00

0.20

0.40

0.60

0.80

1.00

16 20 24 28 32 36

TP
R

Window Size (W=H)

TPR vs Window Size

Haar
LBP

19

Figure 16: Impact of window size on FPR

Figure 17: Impact of window size on precision

0.000

0.005

0.010

0.015

0.020

0.025

0.030

16 20 24 28 32 36

FP
R

Window Size (W=H)

FPR vs window Size

Haar
LBP

0.00

0.20

0.40

0.60

0.80

1.00

1.20

16 20 24 28 32 36

Pr
ec

is
io

n

Window Size (W=H)

Precision vs Window Size

Haar
LBP

20

Window Size Haar LBP
20

28

32

Figure 18: Detection results with different window sizes.

5.2. IMPACT OF SAMPLE SIZE (CUBE-A AS TRAINING)

Depending upon the application domain, the number of samples used in a test

varies widely, from less than one hundred to over one million. It is a critical issue to

understand the mechanism by which the sample size affects a classifier’s performance. In

this test, sample size increases from 20 to 160 with a step size of 20. Since the number of

actual positive samples is 80 from cube-a image, another 80 samples were generated by

adding white noise and random rotation along the z-axis. The test results are listed in

21

Table 3 and plotted in Fig. 19 to Fig. 23. As expected, the training time of Haar feature

grows linearly as the sample size increases whereas the training time of LBP is more

stabilized. Although Haar shows better performance than LBP as measured by TPR, FPR

and precision, no clear pattern is observed with respect to the change of sample size. In

other words, sample size carries more weight on the training time but its influence on the

detection outcomes seems unpredictable, which can also be seen in Fig. 23.

TABLE 3: IMPACT OF SAMPLE SIZE (CUBE-A).

Training Time (s) TPR FPR Precision
Sample Size Haar LBP Haar LBP Haar LBP Haar LBP

20 26 01 0.349 0.032 0.000 0.001 1.000 0.400
40 90 02 0.302 0.746 0.000 0.025 0.950 0.388
60 96 03 0.810 0.079 0.005 0.004 0.785 0.278
80 149 04 0.825 0.159 0.004 0.004 0.800 0.435
100 197 05 0.540 0.063 0.007 0.004 0.607 0.250
120 263 08 0.571 0.079 0.004 0.002 0.766 0.455
140 281 09 0.492 0.016 0.002 0.001 0.816 0.250
160 345 09 0.413 0.079 0.011 0.003 0.448 0.385

Figure 19: Impact of sample size on training time.

00

86

173

259

346

432

0 20 40 60 80 100 120 140 160 180

Tr
ai

ni
ng

 T
im

e
(S

ec
)

Sample Size

Training Time vs Sample Size

Haar
LBP

22

Figure 20: Impact of sample size on TPR.

Figure 21: Impact of sample size on FPR.

Figure 22: Impact of sample size on precision.

0.000

0.200

0.400

0.600

0.800

1.000

0 20 40 60 80 100 120 140 160 180

TP
R

Sample Size

TPR vs Sample Size

Haar
LBP

0.000
0.005
0.010
0.015
0.020
0.025
0.030

0 20 40 60 80 100 120 140 160 180

FP
R

Sample Size

FPR vs Sample Size

Haar
LBP

0.000
0.200
0.400
0.600
0.800
1.000
1.200

0 20 40 60 80 100 120 140 160 180

Pr
ec

is
io

n

Sample Size

Precision vs Sample Size

Haar
LBP

23

Sample Size Haar LBP
20

40

80

160

Figure 23: Detection results with different sample sizes.

24

5.3. IMPACT OF SAMPLE SIZE (CUBE-C AS TRAINING)

To further verify the observations of the previous tests with cube-a, experiments

were repeated using positive samples extracted from cub-c image. The test results are

listed in Table 4 and plotted in Fig. 24 to Fig. 27. Similar patterns were observed

regarding the relationships among samples size, training time, TPR, FPR and precision.

TABLE 4: IMPACT OF SAMPLE SIZE (CUBE-C)

Training Time (s) TPR FPR Precision
Sample Size Haar LBP Haar LBP Haar LBP Haar LBP

40 62 01 0.4444 0.5079 0.0003 0.0283 0.97 0.27
80 171 04 0.5714 0.0159 0.0000 0.0017 1.00 0.17

120 328 08 0.6508 0.4127 0.0000 0.0193 1.00 0.31
160 534 10 0.7143 0.3651 0.0010 0.0133 0.94 0.37
200 691 16 0.6984 0.6508 0.0027 0.0253 0.85 0.35
240 998 20 0.7143 0.6825 0.0017 0.0117 0.90 0.55
280 1307 23 0.746 0.6508 0.0040 0.0243 0.80 0.36
320 1593 26 0.6984 0.7143 0.0010 0.0240 0.94 0.38
360 2213 32 0.4921 0.7143 0.0017 0.0193 0.86 0.44
400 3744 42 0.6984 0.7778 0.0047 0.0217 0.76 0.43
440 3929 39 0.6984 0.4921 0.0040 0.0253 0.79 0.29
480 6049 40 0.5714 0.6825 0.0023 0.0243 0.84 0.37
520 7697 47 0.7143 0.6032 0.0037 0.0230 0.80 0.36

Figure 22: Impact of sample size on training time (cube-c).

00

1728

3456

5184

6912

8640

0 40 80 120 160 200 240 280 320 360 400 440 480 520

Tr
ai

ni
ng

 T
im

e(
se

c)

Sample Size

Training Time Vs Sample Size

Haar
LBP

25

Figure 23: Impact of sample size on TPR (cube-c).

Figure 24: Impact of sample size on FPR (cube-c).

Figure 25: Impact of sample size on precision (cube-c).

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200 240 280 320 360 400 440 480 520

TP
R

Sample Size

TPR vs Sample Size

Haar
LBP

0.0000
0.0050
0.0100
0.0150
0.0200
0.0250
0.0300

0 40 80 120 160 200 240 280 320 360 400 440 480 520

FP
R

Sample Size

FPR vs Sample Size

Haar
LBP

0.00
0.20
0.40
0.60
0.80
1.00
1.20

0 40 80 120 160 200 240 280 320 360 400 440 480 520

Pr
ec

is
io

n

Sample Size

Precision vs Sample Size

Haar
LBP

26

5.4. IMPACT OF ROTATED SAMPLE SETS (CUBE-A AS TRAINING)

In testing phase, a sample subset may have more influences on the results than

others and hence could skews the prediction. So, a series of tests with different subsets

(subset size of 20 and 60) were conducted using Haar feature. The test results are plotted

in Fig. 28 to Fig. 33. Although variations were observed with respect to TPR, FPR and

precision, they are just random fluctuations. It can be concluded that no single subset has

a stronger impact than others. In other words, the distribution of the original data set is

relatively uniform.

Figure 26: Impact of rotated sample sets (20) on TPR.

Figure 27: Impact of rotated sample sets (20) on FPR.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

TP
R

Rotated sample set of fixed sample size 20

TPR vs Rotated sample set of fixed sample
size 20

0.0000

0.0010

0.0020

0.0030

0.0040

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

FP
R

Rotated sample set of fixed sample size 20

FPR vs Rotated sample set of fixed sample
size 20

27

Figure 28: Impact of rotated sample sets (20) on precision.

Figure 29: Impact of rotated sample sets (60) on TPR.

Figure 30: Impact of rotated sample sets (60) on FPR.

0.0000

0.5000

1.0000

1.5000

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

Pr
ec

is
io

n

Rotated sample set of fixed sample size 20

Precision vs Rotated sample set of fixed
sample size 20

0.000

0.200

0.400

0.600

0.800

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

TP
R

Rotated sample set of fixed sample size 60

TPR vs Rotated sample set of fixed sample
size 60

0.000

0.005

0.010

0.015

0.020

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

FP
R

Rotated sample set of fixed sample size 60

FPR vs Rotated sample set of fixed sample
size 60

28

Figure 31: Impact of rotated sample sets (60) on precision.

5.5. IMPACT OF KEY TRAINING PARAMETER (CUBE-A AS TRAINING)

Even though AdaBoost algorithm requires much less number of parameter during

the training than other algorithm, it still has a few key parameters that could potentially

affect the performance of a classifier. One of such parameters is “maxFalseAlarmRate”.

Several experiments were carried out by varying the value of “maxFalseAlarmRate” with

four different window sizes and the results are presented in Fig. 34. For a given window

size, TPR increases as the parameter value grows and then drops as it approaches 0.5.

This is probably due to the elimination of “bad” Haar features at the very early stages

caused by demanding parameter thresholds. FPR shows opposite trends, at least in the

cases of Haar features. FPR results in the tests of using LBP features are more

complicated as they displayed an inversed “U-shape” curves, except the case with a

window size of 20. In most studies, the value of “maxFalseAlarmRate” is set to 0.5 or

slightly larger. The results from this experiment suggests that an optimal parameter value

might exist and more investigations on this issue is needed.

0.000
0.200
0.400
0.600
0.800
1.000
1.200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

A
xi

s
Ti

tle

Rotated sample set of fixed sample size 60

Precision vs Rotated sample set of fixed sample
size 60

29

Figure 32: Impact of a key training parameter.

0
0.2
0.4
0.6
0.8

1

0 0.1 0.2 0.3 0.4 0.5

TP
R

maxFalseAlarmRate [w=h=20]

TPR vs maxFalseAlarmRate

Haar

LBP
0

0.005
0.01

0.015
0.02

0.025

0 0.1 0.2 0.3 0.4 0.5

FP
R

maxFalseAlarmRate [w=h=20]

FPR vs maxFalseAlarmRate

Haar

LBP

0
0.2
0.4
0.6
0.8

1

0 0.1 0.2 0.3 0.4 0.5

TP
R

maxFalseAlarmRate [w=h=24]

TPR vs maxFalseAlarmRate

Haar

LBP
0

0.01

0.02

0.03

0.04

0 0.1 0.2 0.3 0.4 0.5

FP
R

maxFalseAlarmRate [w=h=24]

FPR vs maxFalseAlarmRate

Haar

LBP

0
0.2
0.4
0.6
0.8

1

0 0.1 0.2 0.3 0.4 0.5

TP
R

maxFalseAlarmRate [w=h=28]

TPR vs maxFalseAlarmRate

Haar

LBP
0

0.005
0.01

0.015
0.02

0.025

0 0.1 0.2 0.3 0.4 0.5

FP
R

maxFalseAlarmRate [w=h=28]

FPR vs maxFalseAlarmRate

Haar

LBP

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5

TP
R

maxFalseAlarmRate [w=h=32]

TPR vs maxFalseAlarmRate

Haar

LBP
0

0.005

0.01

0.015

0.02

0 0.1 0.2 0.3 0.4 0.5

FA
R

maxFalseAlarmRate [w=h=32]

FPR vs maxFalseAlarmRate

Haar

LBP

30

5.6. VISUALIZATION OF SELECTED HAAR FEATURES

Sometimes the selected Haar features can provide insights to the performance of a

classifier, especially those in early stages. In Fig. 35 to Fig. 38, the training parameters of

two classifiers and their selected Haar features in three stages are listed and plotted. It

seems that a good model tends to select larger Haar features along the object’s boundary

while a poor model includes more random and small features.

opencv_traincascade -data trainedClassifier\
-vec ./vecSampleDir/allPositiveSamples.vec\
-bg negImgList.txt\
-numPos 300\
-numNeg 300\
-numStages 15\
-precalcValBufSize 1024\
-precalcIdxBufSize 1024\
-stageType BOOST\
-featureType HAAR\
-w 32\
-h 32\
-bt GAB\
-minHitRate 0.999\
-maxFalseAlarmRate 0.2\
-weightTrimRate 0.950\
-maxDepth 1\
-maxWeakCount 100\
-mode ALL

Figure 33: Training parameters for a classifier of good performance.

opencv_traincascade -data trainedClassifier\
-vec ./vecSampleDir/allPositiveSamples.vec\
-bg negImgList.txt\
-numPos 300\
-numNeg 300\
-numStages 15\
-precalcValBufSize 1024\
-precalcIdxBufSize 1024\
-stageType BOOST\
-featureType HAAR\
-w 32\
-h 32\
-bt GAB\
-minHitRate 0.999\
-maxFalseAlarmRate 0.500\
-weightTrimRate 0.950\
-maxDepth 1\
-maxWeakCount 100\
-mode ALL

Figure 34: Training parameters for a classifier of poor performance.

31

Detection results

Haar features at
stage-1

Haar features at
stage-2

Haar features at
stage-3

Figure 35: A classifier of good performance and its selected Haar features.

32

Detection results

Haar features at
stage-1

Haar features at
stage-2

Haar features at
stage-3

Figure 36: A classifier of poor performance and its selected Haar features.

33

5.7. VISUALIZATION OF SELECTED LBP FEATURES

Similar tests as described in the section of 5.6 were conducted by replacing Haar

features with LBP features. The training scripts and test results are given and plotted in

Fig. 39 to Fig. 42. The good classifier seemed to have more medium-sized LBP features

that are more evenly distributed inside the object, while the poor classifier tends to have

LBP features of either very large or very smaller sizes.

opencv_traincascade -data trainedClassifier\
-vec ./vecSampleDir/allPositiveSamples.vec\
-bg negImgList.txt\
-numPos 300\
-numNeg 300\
-numStages 15\
-precalcValBufSize 1024\
-precalcIdxBufSize 1024\
-stageType BOOST\
-featureType HAAR\
-w 20\
-h 20\
-bt GAB\
-minHitRate 0.999\
-maxFalseAlarmRate 0.100\
-weightTrimRate 0.950\
-maxDepth 1\
-maxWeakCount 100\
-mode ALL

Figure 37: Training parameters for a classifier of good performance (LBP).

opencv_traincascade -data trainedClassifier\
-vec ./vecSampleDir/allPositiveSamples.vec\
-bg negImgList.txt\
-numPos 300\
-numNeg 300\
-numStages 15\
-precalcValBufSize 1024\
-precalcIdxBufSize 1024\
-stageType BOOST\
-featureType HAAR\
-w 24\
-h 24\
-bt GAB\
-minHitRate 0.999\
-maxFalseAlarmRate 0.400\
-weightTrimRate 0.950\
-maxDepth 1\
-maxWeakCount 100\
-mode ALL

Figure 38: Training parameters for a classifier of poor performance (LBP).

34

Detection results

LBP features at
stage-1

LBP features at
stage-2

LBP features at
stage-3

Figure 39: A classifier of good performance and its selected LBP features.

35

Detection results

LBP features at
stage-1

LBP features at
stage-2

LBP features at
stage-3

Figure 40: A classifier of poor performance and its selected LBP features.

36

CHAPTER 6

CONCLUSIONS

Due to the presence of object occlusions (overlapping) and the semi-transparent

photographic characteristics of nano-particles in TEM images, it is extremely challenging

to automatically count the number of particles accurately. There is no clear guideline

regarding the optimal training/testing parameters for a Cascade AdaBoost algorithm in

detecting nano-particles. This thesis investigates the impacts of several key parameters by

conducting a series of empirical evaluation tests using Haar features and LBP features.

The primary findings are summarized as below:

1. LBP features is superior to Haar features as they reduce the training time by several

orders of magnitude, even though the detection rate of LBP is less competitive than

that of Haar features in some cases.

2. Kernel window size has a large impact on the detection outcomes, especially when

Haar features are used. Larger window sizes can increase the detection rate, but also

comes with a higher training cost and its benefit can level off after a saturation point.

3. No clear pattern was observed as to how the sample size affect the detection results.

4. Sample subset seems not a major factor in determining the detection quality.

5. A smaller value for a key training parameter might lead to a better detection rate as

compared to the commonly used default value.

6. The visualization of selected feature might shed lights on the feature selection

mechanism and could potentially explain the performance of a classifier and more

future work is need in this direction.

37

REFERENCES

[1] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple

features,” in Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings

of the 2001 IEEE Computer Society Conference on, 2001, vol. 1, pp. I–I.

[2] Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,” in

Icml, 1996, vol. 96, pp. 148–156.

[3] Y. Freund, R. Schapire, and N. Abe, “A short introduction to boosting,” J.-Jpn.

Soc. Artif. Intell., vol. 14, no. 771–780, p. 1612, 1999.

[4] L. G. Valiant, “A theory of the learnable,” Commun. ACM, vol. 27, no. 11, pp.

1134–1142, 1984.

[5] L. Breiman, “Arcing classifier (with discussion and a rejoinder by the author),”

Ann. Stat., vol. 26, no. 3, pp. 801–849, 1998.

[6] H. Drucker and C. Cortes, “Boosting decision trees,” in Advances in neural

information processing systems, 1996, pp. 479–485.

[7] J. R. Quinlan, “Bagging, boosting, and C4. 5,” in AAAI/IAAI, Vol. 1, 1996, pp.

725–730.

[8] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line

learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–

139, 1997.

[9] R. Lienhart, A. Kuranov, and V. Pisarevsky, “Empirical analysis of detection

cascades of boosted classifiers for rapid object detection,” Pattern Recognit., pp. 297–

304, 2003.

38

[10] R. Lienhart and J. Maydt, “An extended set of haar-like features for rapid object

detection,” in Image Processing. 2002. Proceedings. 2002 International Conference on,

2002, vol. 1, pp. I–I.

[11] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of texture

measures with classification based on featured distributions,” Pattern Recognit., vol. 29,

no. 1, pp. 51–59, 1996.

[12] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face recognition with local binary

patterns,” in European conference on computer vision, 2004, pp. 469–481.

[13] “Face Recognition with OpenCV — OpenCV 2.4.13.5 documentation.”

https://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html

[14] S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Z. Li, “Learning multi-scale block local

binary patterns for face recognition,” in International Conference on Biometrics, 2007,

pp. 828–837.

		2018-05-22T16:17:08-0400
	Electronic Theses and Dissertations Program

