

Prime Factorization Through Reversible Logic Gates

by

Patrick J. Bollinger

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in the

Electrical and Computer Engineering

Program

YOUNGSTOWN STATE UNIVERSITY

May, 2019

Prime Factorization Through Reversible Logic Gates

Patrick J. Bollinger

I hereby release this thesis to the public. I understand that this thesis will be made
available from the OhioLINK ETD Center and the Maag Library Circulation Desk for
public access. I also authorize the University or other individuals to make copies of this
thesis as needed for scholarly research.

Signature:

 Patrick J. Bollinger, Student Date

Approvals:

 Dr. Frank X. Li, Thesis Advisor Date

 Dr. Jalal Jalali, Committee Member Date

 Dr. Eric W. MacDonald, Committee Member Date

 Dr. Salvatore A. Sanders, Dean of Graduate Studies Date

iii

ABSTRACT

The purpose of this thesis is to determine the feasibility of using hardware to

perform prime factorization of a semiprime number. The application of this research can

primarily impact the field of mathematics as well as cybersecurity. This research dives

into deconstructing the view of digital logic gates being one-way functions and proposes

to reverse the typical flow of information. By using the reversible logic gates developed,

larger reversible digital circuits are constructed until a full array multiplier is ready for

testing. An analysis is performed with a semiprime number of 4 binary digits up to 1024

binary digits long, to see the effectiveness of factorization using this method. This

analysis is to replicate the textbook definition of RSA public key generation; generating

two similar in length prime numbers and then taking the product of them. Although the

reversible logic gates are able to deduce new information, it is not enough information to

perform the prime factorization of a semiprime number. Based on these results, we can

conclude that more information needs to be created in order for reversible logic gates to

be a feasible method of prime factorization. Further research can be performed to develop

more information, such as defining more relationships between bits, and research can be

done to apply the reversible logic gates to other digital circuits.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Jalali, Dr. Li, and the rest of the faculty of the Electrical

and Computer Engineering department for their teachings and support as I pursued this

milestone in my education and life. I would also like to thank my friends and family for

their support and apologize for any absence these past two years. Last, but certainly not

least, I would like to thank my wife, Judy. She is a daily inspiration to me and I could not

have done this without her support.

v

TABLE OF CONTENTS

	

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS .. v

LIST OF FIGURES ... vii

LIST OF TABLES ... vii

LIST OF ABBREVIATIONS ... vii

CHAPTER I: INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Purpose .. 1

1.3 Objectives .. 1

1.4 Organization... 2

CHAPTER II: LITERATURE REVIEW ... 3

2.1 Factorization of Semiprimes ... 3
2.1.1 Semiprime Numbers in Cybersecurity .. 3
2.1.2 An Example of RSA Encryption ... 4
2.1.3 Existing Method for Factoring Large Semiprime Numbers .. 5

2.2 Array Multiplier.. 6
2.2.1 Logic Gates .. 6
2.2.2 Full-Adder Digital Circuit .. 8
2.2.3 Array Multiplier Digital Circuit ... 9

CHAPTER III: DESIGN OF REVERSIBLE ARRAY MULTIPLIER .. 12

3.1 Reversible Logic Gates .. 12
3.1.2 Reversible AND Gate ... 12
3.1.2 Reversible OR Gate .. 17
3.1.3 Reversible XOR Gate .. 20

3.2 Reversible Digital Circuits ... 24
3.2.1 Reversible Half-Adder .. 24
3.2.2 Reversible Full-Adder .. 29
3.2.3 Reversible Array Multiplier Cell.. 31

CHAPTER IV: RESULTS AND DISCUSSIONS ... 32

4.1 Information Generation Study ... 32
4.1.1 Information Impact of Logic Gates ... 32
4.1.2 Information Impact of Digital Circuits .. 34

vi

4.2 Feasibility of Factoring Semiprime Numbers .. 35

CHAPTER V: CONCLUSION... 39

BIBLIOGRAPHY ... 40

APPENDIX: SOURCE CODE ACCESS .. 41

vii

LIST OF FIGURES

Figure 1: Overview of Public-Key Encryption ... 4
Figure 2: AND Gate Graphical Representation .. 8
Figure 3: OR Gate Graphical Representation ... 8
Figure 4: XOR Gate Graphical Representation .. 8
Figure 5: Full-Adder Digital Circuit .. 9
Figure 6: Digital Circuit of Array Multiplier.. 11
Figure 7: Diagram of Reversible AND State Transitions ... 15
Figure 8: Code Snippet of Reversible AND Gate ... 16
Figure 9: Diagram of Reversible OR State Transitions .. 19
Figure 10: Code Snippet for Reversible OR Gate .. 20
Figure 11: Diagram of Reversible XOR State Transitions.. 23
Figure 12: Code Snippet for Reversible XOR Gate .. 24
Figure 13: Formula for the Total Possible States ... 25
Figure 14: Reversible Half-Adder Code .. 27
Figure 15: Code Snippet of Unit Tests for Reversible Half-Adder 29
Figure 16: Code Snippet of Special Cases for Full-Adder .. 30
Figure 17: Code Snippet of Multiplier Array ... 35
Figure 18: Test for Reversible Array Multiplier ... 36
Figure 19: Bits Deduced versus Size of Semiprime ... 37

LIST OF TABLES

Table 1: AND Gate Truth Table .. 7
Table 2: OR Gate Truth Table ... 7
Table 3: XOR Gate Truth Table .. 8
Table 4: Full Adder Truth Table .. 9
Table 5: Reversible AND Gate State Table ... 14
Table 6: Reversible OR Gate State Table .. 18
Table 7: Reversible XOR Gate State Table .. 22
Table 8: Information Generation from Reversible AND/OR Gates 33
Table 9: Information Generation from Reversible XOR Gate .. 33
Table 10: Information Generation of Reversible Digital Circuits 34

LIST OF ABBREVIATIONS

CSV ... Comma-separated values
I/O .. Inputs/Outputs
RSA ... Rivest–Shamir–Adleman
VHDL ... VHSIC Hardware Description Language
VHSIC .. Very High-Speed Integrated Circuit

1

CHAPTER I: INTRODUCTION

1.1 Motivation

The product of two large prime numbers is used in common encryption algorithms,

such as the RSA algorithm [1], as the foundation for public key encryption in

cybersecurity. As a result, the company formerly known as RSA Laboratories created a

monetary challenge for researchers to try and perform the factorization of specific

semiprime numbers [2, 3]. The monetary reward was withdrawn between May and June

of 2007 [4]. Even with the withdrawal, there still exist challenges that have yet to be

solved, based on the number of bits in the semiprime number.

1.2 Purpose

The purpose of this thesis is to investigate a novel approach for performing

factorization of semiprime numbers. This approach investigates the process of hardware

multiplication, using an array multiplier, and determining if the typical one-way

operation can be reversed.

1.3 Objectives

The objectives of this thesis are as follows.

• Develop reversible logic gates using Python

• Develop unit tests for the reversible logic gates using Python

• Assemble the reversible logic gates until a reversible generic multiplier array

is formed.

• Evaluate new information generated when supplying the multiplier array with

a given semiprime for its output.

2

1.4 Organization

This thesis is organized into 5 chapters. Chapter II describes in greater depth the

background for this research. Chapter III discusses the design of this research. Chapter IV

reviews the results of this research. Chapter V provides a conclusion to this research.

3

CHAPTER II: LITERATURE REVIEW

2.1 Factorization of Semiprimes

2.1.1 Semiprime Numbers in Cybersecurity

A semiprime number is a number that is the product of two prime numbers [3].

Given the number 35, it is easy to realize that 5 and 7 are the only factors, other than 1

and itself. Based on this information, we can conclude 35 is a semiprime number. This

example may seem trivial, but what if we needed to determine the prime factors of

113547311?1 This would prove to be difficult by hand since we would have to iterate

through all the prime numbers until we found one that divided evenly into 113547311.

The difficulty in factoring semiprime numbers is a basis of security in the RSA

encryption algorithm. The semiprime number contributes to a public key used to encrypt

a message and the prime factors contribute to the creation of the private key used to

decrypt a message. The sender of a message will use the recipient’s public key to encrypt

a message and the recipient will use their private key to decrypt the message. Figure 1

displays a high-level overview of how information is encrypted and decrypted.

1 The answer is 10601 and 10711, for those who are curious.

4

Figure 1: Overview of Public-Key Encryption

It is important to note that the difficulty of factoring a semiprime number

increases exponentially as the length of the number in bits increases.

2.1.2 An Example of RSA Encryption

 To demonstrate how this method of encryption fully works, the following is an

example.

Let’s start with a sender who wants to send the message “hi”. If we treat “hi” as

an 8-bit ASCII character string, it can be represented as the binary number “01101000

01101001” or the decimal number “26729”. This sender now needs to have the public

key of the recipient, so let us generate it next.

The public key is first generated by generating two prime numbers. We will use

163 and 157 as our prime numbers. We can then take the product of the prime numbers to

generate a semiprime, 𝑛 = 163 ∗ 167 = 27221. Notice that the semiprime is larger than

the decimal value of the message we are sending; this is important for the math to work

out. Next, we subtract 1 from each prime number and multiply them together for the

totient, 𝜙(𝑛) = (163 − 1) ∗ (167 − 1) = 26892. Now, we choose a coprime of the

5

totient, denoted as e. Numbers are coprime if they do not share common factors.

Therefore, we can select 11 as a coprime of 26892 since they do not share common

factors. Thus, 𝑒 = 11. Now that we have a coprime to the totient selected, we have all the

information for the public key. For this example, the public key is (𝑛 = 27221, 𝑒 = 11)

and could be shared over the Internet.

The sender of the message “hi” can now use this public key to encrypt the

message using the following formula, where m is the message being sent and c is the

encrypted message: 𝑐 = 𝑚3	𝑚𝑜𝑑	𝑛 = 2672977	𝑚𝑜𝑑	27221 = 4272. Therefore, our

encrypted message has a decimal value of 4272.

Finally, the recipient needs to be able to decrypt this message. This can be done

by generating the private key. We have to choose a “d” that satisfies the following: 𝑑 ∗

𝑒 ≡ 1	𝑚𝑜𝑑	𝜑(𝑛). Let us choose 𝑑 = 36671 in this example. Now, we have all

information to create a private key, (𝑛 = 27221,𝑑 = 36671). From this private key, we

can decrypt the message with the following formula: 𝑚 = 𝑐;	𝑚𝑜𝑑	𝑛 =

	4272<==>7	𝑚𝑜𝑑	27221 = 26729. Notice that the outcome matches the original

message’s decimal value.

One item to note from this example is how the “n” is shared in both the public

key and the private key. This is why research is being performed on how easily factorable

this semiprime number, because from the semiprime number, you can figure out all other

important information for this encryption methodology.

2.1.3 Existing Method for Factoring Large Semiprime Numbers

When it comes to factoring semiprime numbers, there are many approaches that

can be taken. The most obvious, and naïve, would be to iterate through the primes one-

6

by-one and checking if the prime divides evenly into the semiprime number. This method

would take an extremely long time. For instance, if a semiprime for RSA-768 was

chosen, a person would have to go through ~10116 numbers, at most, before finding the

factors.

The most common method for factoring large semiprime numbers to date is using

the General Number Field Sieve algorithm. [5] This algorithm is quite complex in nature

and requires a heavy understanding of mathematics to complete. At the time of writing

this thesis, the current largest RSA number factored is RSA-768, a 232 decimal digits

(768 bits) semiprime number. [6] This factorization was completed using a Number Field

Sieve algorithm.

2.2 Array Multiplier

 In order to understand how we can take a semiprime number and factor it, we first

need to understand how numbers are multiplied. At a young age, we are taught how to

perform multiplication by hand. The act of multiplication involves iterating through each

of the digits being multiplied, multiplying the pairs together, and then carrying over any

product to the next column. For computers and other electronic devices, the process can

be very similar. Whereas we use a base 10 numbering, electronics use a base 2

numbering system (binary) in order to perform arithmetic. With binary numbers, these

arithmetic operations are performed by logic gates.

2.2.1 Logic Gates

 Logic gates are an electronic implementation of binary functions. There are a

number of different logic gates that are used to build electronics. For multiplication, we

will focus on the following three logic gates: AND, OR, and XOR.

7

 Logic gates can be represented as a truth table, where you list all possible inputs

to the binary function and the corresponding output. Below are truth tables for the three

logic gates that we will investigate in this thesis.

Input A Input B
Output Y

(Input A AND Input B)

0 0 0

0 1 0

1 0 0

1 1 1

Table 1: AND Gate Truth Table

Input A Input B
Output Y

(Input A OR Input B)

0 0 0

0 1 1

1 0 1

1 1 1

Table 2: OR Gate Truth Table

Input A Input B
Output Y

(Input A XOR Input B)

0 0 0

0 1 1

1 0 1

8

1 1 0

Table 3: XOR Gate Truth Table

 When an engineer is designing a circuit using these logic gates, the logic gates

have an associated graphical representation. There are various standards of graphical

representation, but this thesis will utilize IEEE Std 91/91a-1991. Following are the

graphical representations of the same three gates, with inputs being on the left side of the

gates and a single output being on the right side of the gates.

Figure 2: AND Gate Graphical

Representation

Figure 3: OR Gate Graphical

Representation

Figure 4: XOR Gate Graphical

Representation

2.2.2 Full-Adder Digital Circuit

 With logic gates, many different types of digital circuits can be constructed for

different purposes. It is known that multiplying is the repeated operation of addition,

therefore the circuit that will perform multiplication will be composed of sub-circuits that

can perform addition.

 The most fully featured digital circuit for adding binary numbers is called the full

adder. It consists of 3 inputs (Input A, Input B, and Carry-In) and 2 outputs (Sum and

Carry-Out). With the full adder, you can cascade them to add any size binary number.

9

 Following is a truth table that describes the relationship between the inputs of the

full adder and its outputs. In addition, there is a circuit diagram to show how the logic

gates discussed previously create this full adder.

Inputs Outputs

A B Carry-In Sum Carry-Out

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 4: Full Adder Truth Table

Figure 5: Full-Adder Digital Circuit

2.2.3 Array Multiplier Digital Circuit

 Just like there are multiple methods to perform multiplication by hand, such as the

standard algorithm or the partial product algorithm, there are multiple methods for

10

implementing a digital circuit to perform multiplication. The main method this thesis will

focus on is the array multiplier. The array multiplier is a digital circuit that is composed

of an array of full adders. This thesis will focus on one implementation, the ripple-carry

multiplier array.

The ripple-carry multiplier array is similar to how we perform the standard

multiplying algorithm on paper; you take the first digit, multiply it through (while

carrying-over as necessary) and then move to the next digit after shifting by a power of

ten. Following is a diagram that shows the construction of a 4-by-4 multiplier array. In

the diagram, the inputs are denoted by x# and y#, where x and y are the inputs and #

represents the index of the bit, starting at 0. For example, if we looked at the product of

11 and 13, 11 is represented by 1011 in binary and 13 is represented as 1101 in binary. If

we treat 11 as our x term, then x3 would equal 1, x2 would equal 0, x1 would equal 1, and

x0 would equal 1. Continuing, 13 would be our y term, so y3 would equal 1, y2 would

equal 1, y1 would equal 0, and y0 would equal 1. After the multiplier cells have

processed their inputs, the final product would be given at the bottom. Since the product

of 11 and 13 is 143 and 143 can be represented in binary as 10001111; p7, p6, p5, p4, p3,

p2, p1, and p0 would equal 1, 0, 0, 0, 1, 1, 1, and 1, respectively.

11

Figure 6: Digital Circuit of Array Multiplier

12

CHAPTER III: DESIGN OF REVERSIBLE ARRAY MULTIPLIER

3.1 Reversible Logic Gates

For clarification, this section will be defining reversible, for logic gates and the

digital circuits created with them, as the ability to deduce what the inputs and outputs

should be based on the given state of the inputs and outputs. There exists terminology in

the community for reversible logic gates, or computing, to create models that would

conserve energy, such as the Fredkin gate. [7] There is previous research on creating an

array multiplier using the quantum reversible logic gates, but this research focuses on the

conservation of energy rather than the ability to deduce information. [8]

In this section, we will step through the construction of an array multiplier, much

like Chapter II, and define what the reversible logic gates/circuits are and the impact they

have on the factorization of semiprime numbers.

3.1.2 Reversible AND Gate

As mentioned earlier, the core of this thesis is the ability to deduce information

based on what is given. For instance, if the output of a AND gate is 1 and the inputs are

unknown (herein referred to as X), what can we deduce about the AND gate? We can

deduce that both inputs for the AND gate are 1, resulting in a fully defined state of the

AND gate. Following is a table that breaks down the various states the AND gate can be

in and the corresponding state that we can deduce. As we design the reversible AND

gate, we have to track erroneous states that would be impossible for a traditional AND

gate.

13

State and Information at a given time Deduced State and Information

State #
Input

A

Input

B

Output

A AND B
State #

Input

A

Input

B

Output

A AND B

1 X X X 1 X X X

2 X X 0 2 X X 0

3 X X 1 27 1 1 1

4 X 0 X 5 X 0 0

5 X 0 0 5 X 0 0

6 X 0 1 Error X X X

7 X 1 X 7 X 1 X

8 X 1 0 17 0 1 0

9 X 1 1 27 1 1 1

10 0 X X 11 0 X 0

11 0 X 0 11 0 X 0

12 0 X 1 Error X X X

13 0 0 X 14 0 0 0

14 0 0 0 14 0 0 0

15 0 0 1 Error X X X

16 0 1 X 17 0 1 0

17 0 1 0 17 0 1 0

18 0 1 1 Error X X X

19 1 X X 19 1 X X

14

State and Information at a given time Deduced State and Information

State #
Input

A

Input

B

Output

A AND B
State #

Input

A

Input

B

Output

A AND B

20 1 X 0 23 1 0 0

21 1 X 1 27 1 1 1

22 1 0 X 23 1 0 0

23 1 0 0 23 1 0 0

24 1 0 1 Error X X X

25 1 1 X 27 1 1 1

26 1 1 0 Error X X X

27 1 1 1 27 1 1 1

Table 5: Reversible AND Gate State Table

 Following is a graphical representation of the reversible AND gate state table.

15

Figure 7: Diagram of Reversible AND State Transitions

 With this information, we can begin programmatically implementing the logic of

the reversible AND gate. This thesis utilizes Python as the primary programming

language for implementation. The code is written in such a way so that this can be ported

to a hardware implementation language, such as VHDL, with relative ease. Following is a

snippet of Python code for how this reversible AND gate was implemented.

16

def and_gate(a, b, z):
 if (a, b, z) == ('X', 'X', 'X'):
 return {
 "gates": ('X', 'X', 'X'),
 "error": '0',
 "change": '0',
 }
 elif (a, b, z) == ('X', 'X', '0'):
 return {
 "gates": ('X', 'X', '0'),
 "error": '0',
 "change": '0',
 }
 # .
 # . The other 24 possible states would be here.
 # .
 elif (a, b, z) == ('1', '1', '1'):
 return {
 "gates": ('1', '1', '1'),
 "error": '0',
 "change": '0',
 }
 else:
 return {
 "gates": ('X', 'X', 'X'),
 "error": '1',
 "change": '1',
 }

Figure 8: Code Snippet of Reversible AND Gate

 As it may be noticeable from the snippet, the reversible AND gate is treated as a

function with three input arguments, a and b are the inputs to the AND gate and z is the

output of the AND gate. The code will match the three arguments to a given state in the

table and return the new state of the AND gate. Also returned are two flags. One flag is

for announcing any errors and the other flag is for announcing if the bits have changed.

These additional pieces of information will be useful when constructing larger digital

circuits.

 Now that we have an implementation of the reversible AND gate; the OR gate

and XOR gate will follow suit.

17

3.1.2 Reversible OR Gate

The same process that was used for the reversible AND gate will be used for the

reversible OR gate. Following is a state table for the reversible OR gate, where X is an

unknown value.

State and Information at a given time Deduced State and Information

State #
Input

A

Input

B

Output

A OR B
State #

Input

A

Input

B

Output

A OR B

1 X X X 1 X X X

2 X X 0 14 0 0 0

3 X X 1 3 X X 1

4 X 0 X 4 X 0 X

5 X 0 0 14 0 0 0

6 X 0 1 24 1 0 1

7 X 1 X 9 X 1 1

8 X 1 0 Error X X X

9 X 1 1 9 X 1 1

10 0 X X 10 0 X X

11 0 X 0 14 0 0 0

12 0 X 1 18 0 1 1

13 0 0 X 14 0 0 0

14 0 0 0 14 0 0 0

15 0 0 1 Error X X X

18

State and Information at a given time Deduced State and Information

State #
Input

A

Input

B

Output

A OR B
State #

Input

A

Input

B

Output

A OR B

16 0 1 X 18 0 1 1

17 0 1 0 Error X X X

18 0 1 1 18 0 1 1

19 1 X X 21 1 X 1

20 1 X 0 Error X X X

21 1 X 1 21 1 X 1

22 1 0 X 24 1 0 1

23 1 0 0 Error X X X

24 1 0 1 24 1 0 1

25 1 1 X 27 1 1 1

26 1 1 0 Error X X X

27 1 1 1 27 1 1 1

Table 6: Reversible OR Gate State Table

 Following is a graphical representation of the reversible OR gate state table.

19

Figure 9: Diagram of Reversible OR State Transitions

 With the various states defined, we can programmatically implement the

reversible OR gate in Python. Following is a snippet of code for how the reversible OR

gate is implemented.

20

def or_gate(a, b, z):
 if (a, b, z) == ('X', 'X', 'X'):
 return {
 "gates": ('X', 'X', 'X'),
 "error": '0',
 "change": '0',
 }
 elif (a, b, z) == ('X', 'X', '0'):
 return {
 "gates": ('0', '0', '0'),
 "error": '0',
 "change": '1',
 }
 # .
 # . The other 24 possible states would be here.
 # .
 elif (a, b, z) == ('1', '1', '1'):
 return {
 "gates": ('1', '1', '1'),
 "error": '0',
 "change": '0',
 }
 else:
 return {
 "gates": ('X', 'X', 'X'),
 "error": '1',
 "change": '1',
 }

Figure 10: Code Snippet for Reversible OR Gate

3.1.3 Reversible XOR Gate

Continuing the same process for the XOR gate, we can formulate the various

states of inputs/output and how they relate to each other.

State and Information at a given time Deduced State and Information

State #
Input

A

Input

B

Output

A XOR B
State #

Input

A

Input

B

Output

A XOR B

1 X X X 1 X X X

2 X X 0 2 X X 0

3 X X 1 3 X X 1

21

State and Information at a given time Deduced State and Information

State #
Input

A

Input

B

Output

A XOR B
State #

Input

A

Input

B

Output

A XOR B

4 X 0 X 4 X 0 X

5 X 0 0 14 0 0 0

6 X 0 1 24 1 0 1

7 X 1 X 7 X 1 X

8 X 1 0 26 1 1 0

9 X 1 1 18 0 1 1

10 0 X X 10 0 X X

11 0 X 0 14 0 0 0

12 0 X 1 18 0 1 1

13 0 0 X 14 0 0 0

14 0 0 0 14 0 0 0

15 0 0 1 Error X X X

16 0 1 X 18 0 1 1

17 0 1 0 Error X X X

18 0 1 1 18 0 1 1

19 1 X X 19 1 X X

20 1 X 0 26 1 1 0

21 1 X 1 24 1 0 1

22 1 0 X 24 1 0 1

22

State and Information at a given time Deduced State and Information

State #
Input

A

Input

B

Output

A XOR B
State #

Input

A

Input

B

Output

A XOR B

23 1 0 0 Error X X X

24 1 0 1 24 1 0 1

25 1 1 X 26 1 1 0

26 1 1 0 26 1 1 0

27 1 1 1 Error X X X

Table 7: Reversible XOR Gate State Table

 Following is the graphical representation of the reversible XOR gate state table.

23

Figure 11: Diagram of Reversible XOR State Transitions

 Much like the previous two gates, these state transitions can be represented

programmatically. Following is a code snippet on how the XOR gate is implemented.

24

def xor_gate(a, b, z):
 if (a, b, z) == ('X', 'X', 'X'):
 return {
 "gates": ('X', 'X', 'X'),
 "error": '0',
 "change": '0',
 }
 elif (a, b, z) == ('X', 'X', '0'):
 return {
 "gates": ('X', 'X', '0'),
 "error": '0',
 "change": '0',
 }
 # .
 # . The other 24 possible states would be here.
 # .
 elif (a, b, z) == ('1', '1', '1'):
 return {
 "gates": ('X', 'X', 'X'),
 "error": '1',
 "change": '1',
 }
 else:
 return {
 "gates": ('X', 'X', 'X'),
 "error": '1',
 "change": '1',
 }

Figure 12: Code Snippet for Reversible XOR Gate

3.2 Reversible Digital Circuits

With the AND gate, OR gate, and XOR gate fully defined to deduce inputs/output

based on any given state of the gate, we can proceed to develop more complex digital

circuits that utilize these reversible logic gates. Like developing any complex system, it is

best to try and tackle smaller problems and build up until the system goals are achieved.

We will take this approach in developing the reversible array multiplier.

3.2.1 Reversible Half-Adder

The most fundamental digital circuit that we can build using the reversible logic

gates is the half-adder. The half-adder is nearly identical to the full-adder, except that it

does not have a Carry-In bit. This reduces the complexity of the full-adder down to two

25

inputs and two outputs, which results in a total of 81 possible states. The number of

possible states is calculated by the following formula:

3((?@AB3C	DE	F?G@HI)J(?@AB3C	DE	D@HG@HI)

Figure 13: Formula for the Total Possible States

 Since the number of states will grow exponentially as more inputs and outputs are

identified, we will want to start with smaller circuits. Part of the exercise for this thesis is

to determine how much information in digital circuits can be resolved with only using the

heavily defined reversible logic gates. Therefore, we will programmatically develop

instances of digital circuits that reference the reversible logic gates or other digital

circuits. By using Python, we can use object-oriented programming practices for

structuring the system. Then, we can use unit testing to verify that the digital circuits are

behaving properly.

Since this is the first digital circuit to design, this thesis will go into more detail

on the implementation of the reversible half-adder. Future sections will have fewer

details since the method for implementation will be similar.

First, we will have to import the reversible logic gates that were defined in the

previous section. Then, we will create a class to represent the reversible full-adder. Upon

initialization, we will store the various bits that compose the reversible full-adder in an

array (list) called bits. After initialization, we will declare a solve function that all

reversible digital circuits will have. When called upon, the solve function will iterate

through each logic gate and digital circuit that make up the new digital circuit and

attempt to deduce information. Once all information has been deduced and there are no

26

further changes, the solve function will return the final deduced information. Following is

the majority of the Python code that was used to create the reversible half-adder.

27

from .gates import and_gate, xor_gate
class HalfAdder:
 def __init__(self, bits=list("XXXX")):
 self.bits = bits
 # Default "XXXX"
 # |||└ output Carry
 # ||└- output Sum
 # |└-- input B
 # └--- input A

 def solve(self, change='0'):
 error = '0'

 if self.bits == ['X', 'X', '0', '0']:
 # Special Case 1
 return {
 "bits": ('0', '0', '0', '0'),
 "error": '0', "change": '1',
 }
 elif self.bits == ['X', 'X', '1', 'X']:
 # Special Case 2
 return {
 "bits": ('X', 'X', '1', '0'),
 "error": '0', "change": '1',
 }

 result = and_gate(
 self.bits[0], self.bits[1], self.bits[3]
)
 if result["error"] == '0':
 if result["change"] == '1':
 self.bits[0] = result["gates"][0]
 self.bits[1] = result["gates"][1]
 self.bits[3] = result["gates"][2]
 change = '1'
 else:
 error = '1'
 # .
 # . Repeat for xor_gate
 # .
 return {
 "bits": tuple(self.bits),
 "error": error,
 "change": change,
 }

Figure 14: Reversible Half-Adder Code

28

 It may be noticeable when reading the code snippet, but there are two special

cases that are covered in the solve function. The first case is when both inputs are

unknown (X) and the outputs are 0. This is a special case because, when the output of the

AND gate is 0 we know that one of the inputs are 0, we just don’t know which one. We

also know that when the output of the XOR is 0, then both of the inputs are equal.

Therefore, we can deduce that both inputs are 0. The second case is when both inputs are

unknown and only the sum bit is known and the sum bit is 1. We can deduce that the

carry-out bit is 0 because no combination of inputs would result in both sum bit and

carry-out bits to be 1 at the same time.

 With the solve function created, we can use unit testing to perform checks that the

function is performing as expected. Following is a code snippet of the unit tests.

29

from .HalfAdder import HalfAdder

def test_ha_case_XXXX():
 assert HalfAdder(['X', 'X', 'X', 'X']).solve() == (
 {
 "bits": ('X', 'X', 'X', 'X'),
 "error": '0',
 "change": "0",
 }
)

def test_ha_case_XXX0():
 assert HalfAdder(['X', 'X', 'X', '0']).solve() == (
 {
 "bits": ('X', 'X', 'X', '0'),
 "error": '0',
 "change": "0",
 }
)

.
. The other 78 unit tests would go here
.

def test_ha_case_1111():
 assert HalfAdder(['1', '1', '1', '1']).solve() == (
 {
 "bits": ('X', 'X', 'X', 'X'),
 "error": '1',
 "change": "1",
 }
)

Figure 15: Code Snippet of Unit Tests for Reversible Half-Adder

3.2.2 Reversible Full-Adder

With the reversible half-adder defined, we will build on top of it in order to create

the reversible full-adder. The same organizational structure is used for programming the

reversible full-adder. Since most of the Python code is very similar to the half-adder but

tailored to the full-adder, we will focus on the special cases that arose when developing

the full-adder.

30

.
. Rest of code to handle initialization
.
def solve(self, change='0'):
 if (
 self.bits[0] == 'X' and self.bits[1] == '1'
 and self.bits[2] == 'X' and self.bits[6] == '0'
 and self.bits[7] == 'X'
):
 # Special case 1
 self.bits[7] = '1'
 return {...}
 elif (
 self.bits[0] == 'X' and self.bits[1] == '1'
 and self.bits[2] == '1' and self.bits[6] == 'X'
 and self.bits[7] == 'X'
):
 # Special case 2
 self.bits[7] = '1'
 return {...}
 elif (
 self.bits[0] == '1' and self.bits[1] == 'X'
 and self.bits[2] == 'X' and self.bits[6] == '0'
 and self.bits[7] == 'X'
):
 # Special case 3
 self.bits[7] = '1'
 return {...}
 elif (
 self.bits[0] == '1' and self.bits[1] == 'X'
 and self.bits[2] == '1' and self.bits[6] == 'X'
 and self.bits[7] == 'X'
):
 # Special case 4
 self.bits[7] = '1'
 return {...}
.
. Rest of code to handle solving
.

Figure 16: Code Snippet of Special Cases for Full-Adder

 Interestingly enough, all four special cases for the full-adder has the full-adder’s

carry-out bit resolving to 1. In the first case and third case, one of the inputs is 1, the sum

output is 0, and the rest are unknown (X). With this information, we can deduce that the

31

carry-out bit must be 1 since at least one of the inputs is 1. In the second case and fourth

case, two of the inputs are 1 and the rest are unknown (X). With this information, we can

deduce that we will have a carry-out bit of 1, since the sum of the inputs will at least be

of decimal value 2 or greater.

 To verify everything is working correctly, unit tests were created, similar to that

of the half-adder, to account for all 243 possible combinations of inputs and outputs and

the ability to deduce information.

3.2.3 Reversible Array Multiplier Cell

With the full-adder designed and implemented, the reversible array multiplier cell

followed suit. Based on how everything has been implemented thus far, the reversible

array multiplier cell experienced no special cases when performing the solve function.

Therefore, the implementation of the reversible array multiplier cell was very straight-

forward and had no exceptions to the standard procedure performed in prior sections.

Similar to before, unit tests were created to verify that all 729 possible

combinations of inputs and outputs were able to deduce information properly. This

reversible array multiplier cell will be used in the construction of the array multipliers

mentioned in Chapter II and the results of the implementation will be reviewed in

Chapter IV.

All Python code for this chapter and other chapters of the thesis will be available,

via a link, in the Appendix.

32

CHAPTER IV: RESULTS AND DISCUSSIONS

 In this chapter, we will analyze the results of the reversible logic gates and

reversible digital circuits. First, we will analyze the ability of these systems to generate

new information. Then, we will analyze the ability of an assembled system to factor a

semiprime number. Throughout the analysis, there will be a discussion of the results.

4.1 Information Generation Study

The purpose of this section is to dive into each of the reversible logic gates and

each type of reversible digital circuits. The outcome will be an understanding of what

new information will be generated by the various systems.

4.1.1 Information Impact of Logic Gates

When analyzing the logic gates, we can analyze the AND gate and OR gate

together. The reason being is the information generated by them is nearly identical. The

similarities can be seen when comparing Figure 7 and Figure 9. Both gates have the same

types of transitions, ignoring the specific state identifiers.

With that, the AND gate and OR gate experience interesting results for generating

information. For any given state of them, there is a 22% chance that the state could be an

error. This would only happen if at least two I/O’s are defined at the same time. If all I/O

is unknown, the AND gate and OR gate will remain in that state. If one of the I/O is

defined, there is a 50% chance that at least one more I/O will be deduced. If two of the

I/O are defined, and we ignore the states that are errors due to misconfiguration, there is

an 80% chance that the gate will be fully defined. Lastly, there is a 62% chance that the

gate is fully defined or can be fully defined, given a gate with random inputs that does not

33

produce an error. With this information, we can generate a table to have a better view of

the results.

Chance of… Percentage (%)

Error, given random input 22

Deducing at least 1 I/O, given 1 I/O 50

Deducing all I/O, given 2 I/O, ignore errors 80

Deducing all I/O, given random, ignore errors 62

Table 8: Information Generation from Reversible AND/OR Gates

 Now that we have gone through the exercise of analyzing the AND gate and OR

gate, we can perform the same analysis on the XOR gate. The analysis will result in the

following table.

Chance of… Percentage (%)

Error, given random input 15

Deducing at least 1 I/O, given 1 I/O 0

Deducing all I/O, given 2 I/O, ignore errors 100

Deducing all I/O, given random, ignore errors 70

Table 9: Information Generation from Reversible XOR Gate

 It is interesting to compare the results of these reversible logic gates. We can see

that the AND/OR gates are better at producing some form of information regardless of

the number of I/O defined. However, the XOR gate cannot deduce any information if

only one I/O is defined. If more than one I/O is defined, the XOR will generate all I/O.

34

4.1.2 Information Impact of Digital Circuits

In this section, we will dive into the information generated by the various

reversible circuits discussed in Section 3.2. In addition, we will look at the effectiveness

when implementing them and how effective they are at deducing information.

Following is a table that breaks down the reversible digital circuits. The chance of

error considers random values being assigned to all I/O of the digital circuit and

determining the likelihood of the digital circuit being in an erroneous state. The chance of

generating new information is calculated by dividing the following quantity, the number

of possible states minus the number of error states minus the fully solved states, into the

number of states that result in a change that is not an error. I/O states faulting without

intervention was mentioned previously in Section 3.2, where we look at how many

special cases were needed for the digital circuit to behave as expected.

Reversible
Digital Circuit

Type

I/O
Count

Chance
of

Error

Chance of
Generating

New
Information

I/O States
Faulting
without

Intervention
Half-Adder 4 38.3% 82.6% 97.5%

Full-Adder 5 31.3% 73.0% 98.4%

Array Multiplier Cell 6 31.3% 70.1% 100%

Table 10: Information Generation of Reversible Digital Circuits

 It is interesting to note how the chance of error does not change when going from

the Full-Adder to Array Multiplier Cell. Also, as the I/O count increases the ability to

generate new information decreases. This will be important for the ability to factorize the

semiprime numbers because as the semiprime number grows, the complexity and I/O

35

count of the array multiplier will grow, likely resulting in less information being able to

generate.

4.2 Feasibility of Factoring Semiprime Numbers

In this section, we will study how feasible it is to perform factoring of semiprimes

numbers using the method described in this thesis. We will cover how the ability to

generate information changes with the size of the semiprime number.

In order to perform the deduction of information, the reversible multiplier array

has to be constructed. Following is a snippet of the Python code used to generate the

multiplier array and solve each multiplier cell.

def solve(self, change='0'):
 error = '0'
 for row in range(len(self.input_b)):
 for column in range(len(self.input_a)):
 if row == 0 and column == 0:
 # Top Right Corner
 result = MultiplierCell(
 [
 self.input_a[column], self.input_b[row], '0', '0',
 self.output[row + column], self.carry[row][column],
]
).solve()
 if (
 result["error"] == '0'
 and self.output[row + column]
 == result["bits"][4]
):
 if result["change"] == '1':
 self.input_a[column] = result["bits"][0]
 self.input_b[row] = result["bits"][1]
 self.carry[row][column] = result["bits"][5]
 change = '1'
 else:
 error = '1'
 self.sum[row][column] = None
 elif row > 0 and column == 0:
 # First Column
 # . . .

Figure 17: Code Snippet of Multiplier Array

36

 Now that we have the ability to generate the multiplier array, we want to make

sure it behaves as expected. Therefore, much like the previous digital circuits, we can

create unit tests to ensure correct behavior. Following is an example of a test that was

created to test the factorization of 143. In order to create these tests, the array multiplier

was deduced by hand and the test case was created based on the deduction.

def test_143():
 # 13 - '1101'
 # 11 - '1011'
 test = SemiPrimeFactorization(143)
 expected_result = {
 "input_a": "XXX1",
 "input_b": "XXX1",
 "error": '0'
 }
 expected_internals = {
 "input_a": ['1', 'X', 'X', 'X'],
 "input_b": ['1', 'X', 'X', 'X'],
 "sum": [
 [None, 'X', 'X', 'X'],
 [None, 'X', 'X', 'X'],
 [None, 'X', 'X', 'X'],
 [None, None, None, None]
],
 "carry": [
 ['0', '0', '0', '0'],
 ['0', 'X', 'X', 'X'],
 ['0', 'X', 'X', 'X'],
 ['0', 'X', 'X', None]
],
 "output": "11110001"
 }
 actual_result = test.solve()
 actual_internals = test.internals()
 assert expected_result == actual_result
 assert expected_internals == actual_internals

Figure 18: Test for Reversible Array Multiplier

 With a fully functioning reversible array multiplier, we can test a vast amount of

possibilities for the semiprime number and perform data analysis on how much

37

information is generated. To generate a wide range of test cases, Python code was used to

generate prime numbers for various binary lengths, from 2 bits to 512 bits. The prime

numbers were then multiplied and fed into the output of the reversible array multiplier.

After the reversible array multiplier deduced all possible information, the results of how

much information was deduced were saved into a CSV file. Following is a graph that

depicts the information deduced as a function of the size of the semiprime number. The

information was generated by sweeping semiprimes of binary length starting at 4 and up

to 1024 bits long. When generating the semiprime, two prime numbers of equal binary

length were created to ensure symmetry in the array multiplier.

Figure 19: Bits Deduced versus Size of Semiprime

38

 As we can see in the graph trend, the amount of information deduced decreases as

the size of the semiprime number increases. Since only one sample was taken for any n-

bit semiprime number, there is some jaggedness to the graph. However, the trend is very

clear. If we were to approximate this trend, it would take the form of the following

function, 𝐵𝑖𝑡𝑠	𝐷𝑒𝑑𝑢𝑐𝑒𝑑	(%) = 	213.62 ∗ (𝑆𝑖𝑧𝑒	𝑜𝑓	𝑆𝑒𝑚𝑖𝑝𝑟𝑖𝑚𝑒)X7.YZ<. According to

the National Institute of Standards and Technology, the recommended. RSA key length is

2048. [9] Given this information, using the standard RSA-2048, the reversible array

multiplier would only generate ~0.07% of the bits in the digital circuit. Based on this,

more research can be completed to determine how truly viable reversible logic gates can

be.

39

CHAPTER V: CONCLUSION

Although information can be deduced using reversible logic gates, the approach

taken does not appear to be a viable method for factoring semiprime numbers. We tested

semiprime numbers of the binary length 4 to 1024. As the binary length of the semiprime

increased, the amount of information deduced decreased. Since the amount of

information generated diminishes as the size of the semiprime number grows, a different

approach must be developed for reversible logic gates to be feasible. One such approach,

that may grant a wider depth of information, is developing relationships between bits. As

an example, if the output of an XOR gate is 0, we know that the inputs are either both 1’s

or both 0’s. Knowing this fact about XOR gates, we can incorporate a new level of

information by applying a relationship to the inputs. If enough of these relationships can

be developed, this approach of using reversible logic gates may still be feasible. In

addition to more approaches being developed, future research can include analyzing

different types of systems and digital circuits to determine various outcomes. Another

point of future research is to implement the reversible array multiplier into a more

complex factoring algorithm. All of this research can be applied to cybersecurity and the

various encryption methodologies. Since all encryption could be implemented in

hardware, hardware should be analyzed to the fullest to ensure there are no obscure

methods to uncovering the secrets used in encryption.

40

BIBLIOGRAPHY

[1] R. L. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems," Commun. ACM, vol. 21, no. 2, pp. 120-
126, February 1978.

[2] E. W. Weisstein, "RSA Number," [Online]. Available:
http://mathworld.wolfram.com/RSANumber.html. [Accessed 10 November 2018].

[3] "Sequence A001358," [Online]. Available: https://oeis.org/A001358. [Accessed 10
November 2018].

[4] Internet Archive WaybackMachine, "RSA Laboratories - The RSA Factoring
Challenge," 2 May 2007. [Online]. Available:
https://web.archive.org/web/20070502031806/
http://www.rsa.com:80/rsalabs/node.asp?id=2092. [Accessed 10 November 2018].

[5] M. Case, "A Beginner’s Guide to the General Number Field Sieve," 2003. [Online].
Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.219.2389&rep=rep1&typ
e=pdf. [Accessed 31 March 2019].

[6] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé, J. Bos, P. Gaudry, A.
Kruppa, P. Montgomery, D. A. Osvik, H. t. Riele, A. Timofeev and P.
Zimmermann, "Factorization of a 768-bit RSA modulus," Cryptology ePrint
Archive, Report 2010/006, 2010.

[7] R. Garipelly, P. Kiran and A. Kumar, "A Review on Reversible Logic Gates and
their Implementation," International Journal of Emerging Technology and
Advanced Engineering, vol. 3, no. 3, pp. 417-423, March 2013.

[8] H. R. Bhagyalakshmi and M. K. Venkatesha, "An Improved Design of a Multiplier
Using Reversible Logic Gates," International Journal of Engineering Science and
Technology, vol. 2, no. 8, pp. 3838-3845, 2010.

[9] E. B. Barker and Q. H. Dang, "Recommendation for Key Management Part 3:
Application-Specific Key Management Guidance," National Institute of Standards
and Technology, 2015.

41

APPENDIX: SOURCE CODE ACCESS

 Upon completion of this thesis, all source code will be made available at the

following URL: https://github.com/pjbollinger/master-thesis

		2019-05-21T11:26:42-0400
	College of Graduate Studies

