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ABSTRACT 

 Even though flood damage cannot be fully controlled, its effect can be minimized 

to some extent by careful planning, flood mitigation measures, and an effective flood 

warning system. Therefore, flood warning systems with flood travel time and inundation 

area information, derived from accurate model prediction, can be very effective to reduce  

potential flood damage. While a one-dimensional (1D) model was developed in the 

former research for the flood warning system, there has not been many comparative 

assessment of model performance among 1D, two-dimensional (2D), and coupled one-

dimensional and two-dimensional (coupled 1D/2D) models particularly in HEC-RAS. 

Therefore, this research is an extension of the prior research and was especially 

conducted to calculate and compare the predictive capability of 1D, 2D, and coupled 

1D/2D HEC-RAS models for the computation of travel time of flood and extent of 

flooded area needed for a flood warning system. The research was carried out in the 

Grand River in Lake County, Ohio. The model performance of 1D, 2D and coupled 

1D/2D models were evaluated and sensitivity analysis was conducted using the same set 

of flow conditions and geometric conditions. The analysis suggested that 2D model could 

incredibly improve the model performance compared to 1D and coupled 1D/2D models, 

which were evaluated through the model evaluation indicators for the observed and 

simulated model outputs. Additionally, sensitivity analysis of input parameters, including 

discharge and Manning’s roughness, revealed that the 2D model was comparatively less 

sensitive to the changes in model inflow and Manning's roughness compared to the 

coupled 1D/2D and 1D models. Furthermore, the flood travel time computed using 1D 

model was more predicted than that of the 2D model, indicating that the 2D model would 
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be most appropriate to provide a safe evacuation time for the community before flood 

events. The 1D model consistently over predicted than that of the 2D model, which was 

also true for the estimation of the inundation flood zone (4.1% higher).  

 In addition, the appropriate assessment of flood damage in the aftermath of major 

flooding is crucial for flood management agencies, emergency responders, and insurance 

companies. Therefore, damage assessment is an important step in the evaluation of the 

flood mitigation measures, vulnerability analysis and flood risk mapping. This is 

particularly true in a context that the damage assessment so far has been primarily relying 

on either the coarse resolution, 30m digital elevation model (DEM), or 1D hydraulic 

model. As this researcher is not aware of any explicit incorporation of 2D HEC-RAS 

model for the damage assessment among the scientific communities, another major 

objective of this analysis is to outline the effects of some of the key factors including the 

mode of hydraulic simulation (1D vs 2D), the effect of inventory data, and the effect of 

topography on the flood loss estimation. This was accomplished using the 1D and 2D 

HEC-RAS models to produce the flood depth grids from the varying degree of 

topographic resolutions including 30m, 10m and LiDAR-derived DEM with and without 

incorporating actual field survey of the river in each case. The flood loss was estimated 

using Hazards United States Multi-Hazards (HAZUS-MH) loss estimation software 

developed by Federal Emergency Management Agency (FEMA) software, for each 

building within study area for flood events of various recurrence intervals from 10 to 

500-year return periods. This was accomplished by updating the default-building 

inventory within Lake County to represent the actual building information in the model. 

The analysis indicated that 1D model consistently overestimated the loss in general by 
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61.48% for the default database and 86.12% for updated inventory. The estimation of the 

1D model was consistently larger compared to the 2D model for different set of 

topographic resolutions and recurrence intervals. These loss estimations significantly 

increased when analyzed using a coarse resolution terrain, which was true regardless of 

selecting 1D or 2D models. Furthermore, the 2D model showed a lesser percentage 

increase (10.45% in 10m DEM, and 25.49% in 30m DEM), whereas the 1D model 

exhibited a larger increment (23.17% in 10m DEM and 76.81% in 30m DEM). This 

analysis suggested that the loss estimation would decrease in general by 76.21% after 

incorporating additional local building data into the HAZUS-MH database. More 

specifically, this analysis concludes that 2D model with high-resolution topographic data, 

including the additional incorporation of local data, in HAZUS-MH database are 

tremendously essential for appropriate flood damage assessment. 

Keywords: Inundation, Simulation, Travel time, Inventory, Sensitivity, LiDAR, 

Resolutions, Models, Recurrence Intervals. 
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Chapter 1.  Introduction 

Flood is one of the severe natural disaster which takes thousands of lives and 

affects millions of people all over the globe (Sarhadi et al., 2012). In the United States 

alone, there has been more than 26 major flood events from 1980 to 2016 causing an 

average loss of 4.3 billion dollars (Smith, 2017). Despite the significant development in 

tools and technique for addressing the problems related with flood hydraulics over the 

last few decades, the damage due to flooding has continued to rise (USGS, 2019). 

Meanwhile, the damage due to floods can be reduced to some extent by providing early 

flood information including, flood travel time and inundation areas to the public through 

an operative flood forecasting system.  

The city of Painesville and Fairport Harbor in northeast Ohio have been 

frequently flooded by the Grand River over the past few years with massive flood events. 

The city of Painesville and nearby areas were flooded due to incessant rain events of July 

2006 resulting in the declaration of a Federal and State disaster area with Disaster 

Declaration Number (DR-1656) in Ohio disaster history (FEMA, 2013). Significant 

damage of property losses of approximately thirty million dollars, including one human 

casualty was reported in Lake County. The damage associated with flooding can be 

minimized using various flood mitigation measures including flood inundation mapping 

and travel time computation (Lamichhane and Sharma, 2016). However, to accomplish 

this, the development of reliable flood model and quantification of flood damage is 

essential for the benefit of communities.  

The development of an appropriate hydraulic model has always been a crucial 

step in flood analysis  because the selection and application of the model depends on the 
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various factors including the availability of the data, user’s knowledge and skills, time, 

resources, and the overall goal of the study. For example, the selection of one-

dimensional (1D), two-dimensional (2D) and coupled one-dimensional and two-

dimensional (coupled 1D/2D) modelling techniques has received  great attention with the 

advancement in flood modeling. Researchers in past evaluated a 1D HEC-RAS model 

with the several 2D models like LISFLOOD-FP (Dimitriadis et al., 2016; Horritt and 

Bates, 2002), TELEMAC 2D (Horritt and Bates, 2002; Gharbi et al., 2016), 2D 

FESWMS (Cook and Merwade, 2009), and 2D MIKEFLOOD (Papaioannou et al., 2016). 

While there are some comparative studies of 1D model with 2D and coupled 1D/2D, 

there are limited studies of comparing 1D or 1D/2D HEC-RAS model with the recently 

developed 2D HEC-RAS modeling techniques especially for the travel time prediction. 

Hence, the current study incorporated the dichotomy of evaluation of modeling 

techniques with 1D, coupled 1D/2D, and 2D modeling feature of HEC-RAS. Since 1D 

HEC-RAS model was already developed, this research is a continuation of the earlier 

work to compare and assess the predictive performance of the earlier developed 1D 

model with the coupled 1D/2D and 2D models for the generation of accurate travel time 

of flood and extent of flooded area. In addition, it is intended to upload the flood maps 

under flood inundation-mapping program of USGS for the potential benefit of the users 

and communities of Lake County, OH. Currently, the 1D HEC-RAS model and necessary 

files have been submitted to United States Geological Service (USGS) for review to 

potentially incorporate in the national portal system once the review process is 

completed. 
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Furthermore, quantifying the damage assessment after a major flood event is 

equally important for the planners, insurance actuaries and other stakeholders. A flood 

damage estimation plays a pivotal role in management of flood  (Merz et al., 2010), 

which is typically utilized for making plans and policies (Wagenaar et al., 2016). 

Nevertheless, developing a flood damage estimation model is a challenging task as it is 

governed by the interaction of multiple factors such as hydrological components, 

hydraulic analysis, and others parameters (Jongman et al., 2012;   Kelman and Spence, 

2004). In the meantime, the availability of input data and computational resources also 

play a crucial role in damage assessment. Banks et al (2013) and Gutenson J. L. et al 

(2015) reviewed several damage assessment models employed in flood damage 

estimation and reported that the Hazard United States Multi-Hazard (HAZUS-MH), a 

damage assessment  program developed by the Federal Emergency Management Agency 

(FEMA), to be the most promising tools for the damage assessment. A damage 

assessment essentially requires the development of floodwater heights during a hydraulic 

model and damage estimation from established depth-damage functions. While the past 

researchers have performed damage assessment with HAZUS-MH and with 1D hydraulic 

modeling techniques such as HEC-RAS for flood grids, it is still unclear how the use of 

more advanced 2D hydraulic modeling techniques relates to accurate damage estimation. 

Based on the author's review, no flood models have fully adopted FEMA’s HAZUS-MH 

with 2D HEC-RAS model for developing flood grids. Furthermore, the damage 

assessment is also influenced by the quality of the input topographic and building 

inventory database. Hence, the current study is intended to quantify the effect of 1D and 
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2D hydraulic modeling techniques, effect of topographic resolution, and building 

inventory data and its impact in damage assessment. 

Scopes and Objectives 

The damage due to flooding can be reduced with prior information of flood travel 

and the coverage of flooded area. The information of flood travel time, flood inundation 

extent, and flood damage estimation are important assets for careful planning, 

preparedness before the flood event, adaptation of flood mitigation measures, flood risk 

analysis, and early response for possible flooding in future.   

The purpose of the research are listed below: 

I) To perform the comprehensive evaluation of 1D, 2D and coupled 1D/2D HEC-

RAS models for predicting the flood travel time and inundation area, 

II) To quantify the effect of topographic data, building inventory database and the 

depth grid prepared in 1D and 2D HEC-RAS on the damage assessment using 

FEMA’s HAZUS-MH model. 

To accomplish the first objective, the following tasks were completed:   

1) Collect input data such as geometric data and hydrologic data from the 

previously developed 1D HEC-RAS-model,  

2) Create the terrain from the cross-section of 1D model, combine it with the 

floodplain terrain using the RAS-Mapper feature to create the geometric input 

for 2D HEC-RAS model,  

3) Prepare the RAS-Mapper land use information in ArcGIS to be used in 2D 

model,  
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4) Calibrate and validate the model using field verified survey data and USGS 

gage station records (city of Painesvilles-04212100 and Harpersfield- 

04211820), 

5) Compute the information of travel time of a flood event and its flooded area 

from HEC-RAS models, 

6) Perform the sensitivity analysis of input variables: Manning’s friction 

coefficient and input discharge, to evaluate the models' performance. 

 Similarly, to accomplish the second objective the following tasks were performed:  

1) Prepare the flood depth grids from 1D and 2D HEC-RAS models, 

2) Prepare the building inventory data compatible to HAZUS-MH’s format using 

FEMA's Comprehensive Data Management System (CDMS) and ArcGIS, 

3) Import the depth grids into HAZUS-MH, and user-defined facilities into the 

study area from the FEMA’s statewide database, 

4) Run the HAZUS-MH analysis for General Building Stocks (GBS) and User-

Defined Facilities (UDF) analysis, 

5) Repeat HAZUS-MH analysis for different topographic resolution including 

30m, 10m and 3m LiDAR DEM and for flood of different recurrence 

intervals. 

Thesis Structure 

The thesis is structured into three chapters. Chapter one describes the background, 

scope, objective, and thesis structure, whereas chapter two presents the evaluation of 1D, 

2D, and coupled 1D/2D HEC-RAS model to compute the flood travel time and 

inundation maps. Chapter two also provides a detailed insight of theoretical descriptions, 
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overall modeling approach, model inputs, study area, and calibration and validation 

procedure. It also incorporates sensitivity analysis, which is important in understanding 

the response of the model performance towards the uncertainty of the input variables. 

Further, this chapter also summarizes the findings in evaluating the predictive 

performance of different modelling techniques used especially for preparing flood 

inundation maps and predicting travel time. 

Chapter 3 discusses the damage assessment resulting from the major flood event 

using FEMA’s widely used HAZUS-MH tool for flood damage assessment. It includes 

the effect of the hydraulic modeling techniques, topographic data and inventory database 

in estimating the flood damage. It discusses details about updating the building database 

within the study area using the FEMA’s techniques called CDMS. It uses the fully 

functional calibrated and validated 1D and 2D HEC-RAS models to generate the 

floodwater depth. This chapter also quantifies the estimates, provides comparative picture 

and concludes with the finding of HAZUS-MH analysis. 

Because chapter 2 and chapter 3 have been written in journal article format, 

readers may find some degree of redundancy in these chapters as journal article are 

expected to be independent with adequate information. Chapter 2 will be submitted to 

Hydrological Sciences Journal as a full-length article, whereas chapter 3 will be 

submitted as a full-length article in different peer review journal.  
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Chapter 2.    Evaluation of One-Dimensional, Two-Dimensional and Coupled One 

and Two Dimensional HEC-RAS Models to Predict Flood Travel Time 

and Inundation Area for Flood Warning System 

Abstract 

The primary goal of this research is to evaluate the predictive capability of one-

dimensional (1D), two-dimensional (2D), and coupled one-and two-dimensional (coupled 

1D/2D) Hydraulic Engineering Center River Analysis System (HEC-RAS) models for the 

computation of the critical travel time of a flood event and its flooding extent. The 

research was performed in the Grand River of northeast Ohio, USA using the 1D, 2D, 

and coupled 1D/2D modeling features of HEC-RAS. All three hydraulic models were 

analyzed with the same sets of geometric conditions; that is, LiDAR data integrated with 

field-surveyed cross-sections, and the same set of flow conditions were used. The 

analysis suggested that the 2D model consistently outperformed 1D and coupled 1D/2D 

models as revealed by various model evaluation indicators for the simulated outcomes 

compared against their observed counterparts. Furthermore, sensitivity analysis indicated 

that coupled 1D/2D and 1D model are relatively more sensitive than the 2D model to the 

changes in input Manning’s roughness and changes in flow. The 1D model prediction for 

travel time was more conservative than the 2D model, suggesting that travel time from 

2D model would be more appropriate for issuing the evacuation time for a flood warning 

system. Similarly, the inundation area from 1D model was found to be slightly greater 

(4.1%) than that of 2D model.  

Key words: Flooding, Inundation, Travel Time, HEC-RAS, Sensitivity. 
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Introduction 

Flooding is one of the globally occurring natural disaster causing serious damages 

to infrastructures and taking thousands of lives around the world (Alho and Aaltonen, 

2007; Leskens et al., 2014; Alfonso et al., 2016; Teng et al., 2017). In the United States 

alone, there has been more than 26 major flood events from 1980 to 2016 resulting in  an 

average loss of 4.3 billion of dollars (Smith, 2017). The losses due to flood could be 

minimized by circulating timely information about flood risk to the public by the means 

of flood maps and flood travel time (Dutta et al., 2007). For example, flood travel time, 

which is the timing of the flood from the point of stream gage measurement to the 

affected area,  can be useful for issuing early flood warnings to prevent casualties, to 

prevent damage, and to strengthen the perseverance of the society (Cools et al., 2006; 

Pappenberger et al., 2015; Carsell et al., 2004). The typical system to provide early 

information about the flood event (Whitehead and Ostheimer, 2009; Ostheimer, 2012; 

Fang Zheng et al., 2008; Krajewski et al., 2016) involves monitoring stream water levels 

and issuing the alerts with flood map corresponding to river water level. In this context, 

the inundation maps also play a prominent role in flood risk management (Porter and 

Demeritt, 2012; Billa et al 2011). Moreover, the flood travel time is equally important in 

order to announce evacuation times while issuing the flood warning. Therefore, the 

prediction of accurate travel time of a flood event and coverage of flooded area from a 

fully functional flood model is of paramount importance.  

The development of a fully functional flood model requires selecting the best 

hydraulic model structures (1D, 2D, and coupled 1D/2D models), input parameters, and 

boundary conditions. Researchers have different opinions regarding the choice and 
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selection of hydraulic models, which have been a topic of interest over the preceding 

years (Bates and Roob, 2000;  Prestininzi et al., 2011; Papaioannou et al., 2016). The 

performance of 1D and 2D hydraulic models have been evaluated by various scientists  

(Horritt and Bates, 2002; Neal et al., 2012; Dutta et al., 2007; Gharbi et al., 2016)  which 

have received mixed opinions. There have been some instances where 1D approach of 

HEC-RAS has been competent to forecast the flood coverage (M. S. Horritt and Bates, 

2002). For example, M. S. Horritt and Bates (2002) and Merkuryeva et al. (2015) 

compared the 1D HEC-RAS model with 2D models such as TELEMAC and 

LISFLOOD-FP to assess their ability to predict the inundation area. They reported 

similar predicting capability while the differences in performance were credited to their 

difference in response to change in friction parameterization. However, due to the 

limitations of 1D model over the flow in flood plain, some researchers suggested the use 

of 2D models (Cook and Merwade, 2009: M. S Horritt and Bates, 2000). For example, 

Cook and Merwade (2009) carried out the comprehensive assessment of 1D HEC-RAS 

model and 2D FESWMS model, and attributed the difference in model performance to 

the reliability of terrain and other input data. Similarly, Gharbi et al (2016) compared 1D 

HEC-RAS, 1D MIKE 11 and TELEMAC 2D model and reported similar model 

performance, while the validity of the result was based on precision of  model inputs. 

Papaioannou et al (2016) carried out the 1D (HEC-RAS, MIKE 11), 2D (MIKE 21, 

MIKE 21 FM) and coupled 1D/2D models (MIKE 11/MIKE 22) and suggested to use 

precise terrain datasets for flood extent analysis rather than the selection of modelling 

approach for accurate prediction of inundation area. Also, they conveyed a modest hint of 

2D modelling techniques could be slightly better than 1D modeling. Similarly, Vozinaki 
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et al (2017) evaluated the 1D and coupled 1D/2D HEC-RAS models, analyzed them with 

higher quality terrain datasets, and reported that the later model performed comparatively 

better. 

Based on the author's review, past comparisons of 1D HEC-RAS model have 

been limited to other traditional hydraulic models with 2D. It has not been clear yet how 

the 2D HEC-RAS model would perform compared to 1D and coupled 1D/2D within 

HEC-RAS, especially to predict flood travel time required for timely information about 

flood. Thus, the primary objective of this research is to evaluate the relative predictive 

ability of 1D, 2D and coupled 1D/2D HEC-RAS models for accurately predicting the 

flood travel time and inundation area. 

 On the other hand, the output from hydraulic models are subjected to certain 

degree of uncertainties (Merwade et al., 2008) regardless of the modelling techniques, 

such as 1D and 2D. The uncertainties arise from model set up (Costabile and Macchione, 

2015), handling of hydrological data (Bales and Wagner, 2009), and topographic and 

roughness data (Jung Younghun and Merwade Venkatesh, 2012). For example, Teng et 

al. (2017) distinguished the source of uncertainty to be stemming from model parameters 

(friction, conveyance parameters), model inputs (channel and flood plain geometric 

input) and validating data. Similarly, Abily et al. (2015) carried out the sensitivity 

analysis in 2D urban flood modeling and highlighted its importance to rank the 

uncertainty in high-resolution topographic data. Furthermore, C. H. Frey and Patil (2002) 

showed the role of sensitivity analysis in validating the result of a research. Therefore, 

secondary objective of this research is to conduct sensitivity analysis of the input 
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variables (Manning's roughness and discharge) to detect the most sensitive model out of 

1D, 2D and coupled 1D/2D.  

Theoretical Description 

One-Dimensional HEC-RAS Model (1D Model)  

HEC-RAS,  a commonly used hydraulic modeling software, was developed for 

analysis of 1D steady flow, unsteady flow and sediment transport by the U.S Army Corps 

of Engineers for (Brunner,2010). The steady flow analysis is applicable in scenarios 

where flow varies gradually with time and distance and are used for mapping purposes, 

whereas unsteady flow analysis is employed where flow and water level are rapidly 

varying such as in dam break flood waves, flash floods, levee overtopping, and breaching 

(Brunner, 2010). Unsteady flow routing solves the 1D Saint-Venant equation that is 

comprised of a continuity and momentum equation (1) and (2), respectively, are listed as 

below: 

                                                              (1) 

                         (2) 

where, A represents cross-section area;  is time, is water-flow;  is the 

measured distance in the direction of the channel;  is the gravitational acceleration;  is 

the height of water level above the datum; is the slope of the river bed and  is energy 

slope. 

A four-point implicit finite difference technique is utilized for solving the 1D 

unsteady flow equation under which space derivatives and function values are evaluated 

at interior points (Brunner, 2010). 
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Similarly, 1D steady flow (Brunner, 2010) solves the energy equation by an 

iterative standard step method between the two successive cross sections to compute the 

water surface elevation for slowly varying water profiles . The energy equation between 

the consecutive sections is shown in equation (3) as below: 

Z1 + Y1 +   =   Z2 + Y2 +   + he           (3) 

Where Z1   refers the elevation at section 1, Z2 refers the elevations at section 2, 

Y1 and Y2 are height of water at section 1 and section 2 respectively,  

are velocity weighting coefficients at section 1 and section 2 respectively, 

g = gravitational acceleration, 

he = energy loss between upstream and downstream cross-sections. 

Two-Dimensional HEC-RAS Model (2D Model) 

The two-dimensional flowing pattern of flood waves has encouraged the use of 

2D hydraulic models for mapping the flood (Horritt and Bates, 2002). The recent HEC-

RAS's unsteady flow analysis from version 5.0 onwards includes the capability to 

perform 2D flood modeling (Brunner, 2016). The 2D model either uses the full Saint-

Venant equation or uses the diffusion wave equation. The 2D Saint-Venant equation 

solves the problems with greater computational efficiency requirement, whereas the 2D 

diffusion wave equation solves the problems with faster and higher stability. The time 

step for running the model is governed by the Courant condition (equation 4) for the 

Saint-Venant equation (full momentum) and (equation 5) for diffusion wave equation 

(Brunner, 2016). 

C =  ≤ 1.0 (with a max C = 3.0)       (4) 
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C =  ≤ 2.0 (with a max C = 5.0)       (5) 

where C is Courant Number, V is flood wave velocity, ΔT is computational time step and 

ΔX is the average cell size. 

The basic concept of this model is to discretize the river and the flood plain into 

individual 2D cells. The 2D model takes a sub-grid bathymetry approach (Casulli, 2008), 

that extracts the hydraulic and geometric property table, to represent the cell and cell 

faces, from the sub-grid terrain. The 2D feature of HEC-RAS pre-processes each cells to 

create the detailed property table. For instance, if a model is built with computational grid 

cell size of 50x50 ft. with detailed terrain of 3x3 ft. resolution, the 2D model pre-

processes to calculate the relationship between elevation and volume based on the 

detailed terrain within each cells. Similarly, the detailed relationship of area, wetted 

perimeters and roughness with elevation is also established for each grid cell.  

The unsteady flow equations in 2D models utilizes implicit finite volume 

algorithm. This algorithm allows bigger time intervals compared to the explicit method, 

making the model more stable and robust regarding traditional finite element techniques 

(Brunner, 2016). The unsteady flow routing solves the continuity and momentum 

equation in space and time, which are presented in the following equations. 

 +   +  + q = 0                  (6) 

+   +   = -  +                   (7) 

                  (8) 

Where t is time, u is velocity component in x-direction, v is velocity component in y 

directions, h(x,y,t) is height of water, H is total head, and q is the flux term's source,  is 



16 
 

gravitational acceleration,  is horizontal eddy velocity,  is the bottom friction 

coefficient,  represent Coriolis coefficient, and  R is the hydraulic radius. The left side 

of the equation has terms representing acceleration, while the right side of the equations 

has terms representing forces (internal and/or external) affecting the fluid. The program's 

documentation manual (USACE, 2016) provides additional information on HEC-RAS's 

theoretical background.  

Coupled One-/Two-Dimensional HEC-RAS Model (Coupled 1D/2D Model) 

The 2D model has the ability to run all three modes of simulation including 1D, 

2D and coupled 1D/2D modelling using a unsteady flow analysis. The coupled model 

allows users to work in large river system involving 1D modeling for river system with 

dominant unidirectional flow and 2D model for wider flood plain, which requires higher 

level of hydrodynamic precision. The 2D areas can be connected to 1D model directly as 

upstream end or downstream end or using lateral structure (Brunner, 2016). Based on the 

time intervals, a strong connection between the 1D and 2D model solutions (Brunner et 

al, 2015) with an option to repeat the calculation back and forth between 1D and 2D flow 

elements to calculate the water surface elevation. 

Nominal Range Sensitivity Analysis Method 

 The nominal range sensitivity method or local sensitivity analysis uses a 

probabilistic approach that filters vital inputs in the model  (Frey and Patil, 2002). This 

analysis evaluates the effects of model output observed by varying the particular input 

through its whole range of possible values (Cullen and Frey, 1999). Any variation in the 

results due to variation in input variable is called model sensitivity or also referred as 
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swing weight for the specific input within a model (Morgan and Henrion, 1990) which 

can be measured as either positive or negative percentage change(Frey et al, 2003). The 

following equation (9) is used to compute the sensitivity index.  

Sensitivity = 
Output max input – Outputmin input

Outputnominal input
                                                                             (9) 

While various sensitivity analysis approaches are presented in the literatures (Frey 

and Patil, 2002), a local, nominal range sensitivity method has been widely used for 

simplicity. For example, Delenne et al (2012) used local sensitivity analysis to perform 

uncertainty analysis  to identify the risks of dam failure and river flooding. They found 

out that the local sensitivity analysis, which requires simpler computational efforts, can 

be successfully applied in place of a computationally demanding global method involving 

thousands of simulations in complex flow problems with the same flow. Similarly, this 

sensitivity analysis has been successfully applied in hydraulic modeling to study the 

uncertainty in a model (Wohl Ellen E,  1998 and Tsubaki and Kawahara, 2013). This 

method is especially useful when users are interested to evaluate the model output by 

changing particular model input at a time, while the base value of the remaining inputs 

constant (Cullen and Frey, 1999). The uncertainty of the flood inundation is originated 

mainly from the channel and floodplain Manning’s roughness, input discharge 

(Dimitriadis et al., 2016; Bozzi et al., 2015; Jung Younghun and Merwade Venkatesh, 

2012), model calibration, and boundary conditions (Hall J. W. et al., 2005) etc.  

Materials and Methodology  

Study Area  



18 
 

The research is conducted in the Grand River watershed in northeast Ohio (Figure 

2-1). The watershed extends spatially from latitude 41  50’ N to 41  17’ N and longitude 

81  19’ W to 80  36’ W covering five counties of northern Ohio, namely Ashtabula, 

Lake, Geauga, Portage and Trumbull Counties. It has a length of about 103 miles, 

catchment area of 705 square miles, and elevation ranging from 564 ft. to 1309 ft. The 

river section modeled in this study is 32 miles extending from Harpersfield to Fairport 

Harbor and consists of three major tributaries including Big creek, Paine creek and Mill 

creek. The USGS gage station is located at Harpersfield and Painesville.  

The City of Painesville has been flooded by disastrous flood events over the past 

years in 2006, 2008, 2011 and 2013. The meandering river close to the city of Painesville 

has some urbanized area with commercial and residential buildings within the flood 

extent, which is susceptible to high flood damage. The city of Painesville was severely 

damaged by disastrous flood of nearly 500-year return period in July 2006 following 

incessant rainfall of more than 11 inches. This  incurred an estimated damage of $30 

million and one fatality (Ebner et al.,  2007). More than 600 people were evacuated 

during this catastrophic flood, which not only damaged more than 912 homes and 

business, but also destroyed 5 bridges and closed 13 roads (Ebner et al., 2007). During 

this event, the Lake county , Geauga county, and Ashtabula county were announced as 

disaster area with Disaster Declararion Number (DR-1656) in Ohio disaster history 

(FEMA, 2013).   

Overall Modelling Approach 

The 1D, 2D and coupled 1D/2D models (Figure 2-2) were compared by setting all 

three models to the same set of geometric and boundary conditions. The 1D model 
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assumes all water flow in a longitudinal direction, models terrain as a series of river 

cross-sections, and simulates an average velocity and water surface elevations at 

individual cross section. While the 2D model allows water flow considering the flow 

along (longitudinal direction) and across (transverse direction) the river sections, 

represent terrain a continuous grid cells, and simulates the continuous distribution of 

velocity and water surface throughout the grid. In this analysis, the 1D model was 

developed by importing the input data after preprocessing from HEC-GeoRAS. The pre-

processing in HEC-GeoRAS, an ArcGIS extension, is carried out to prepare input 

geometry data. The flood analysis is conducted in HEC-RAS and its result are post-

processed to create inundation maps. The unsteady model was adopted to calibrate the 

input parameter and to validate HEC-RAS model using the flow data from 1996 to 1998, 

which was downloaded from two USGS gage stations. The model parameters were 

calibrated and the same calibrated model were utilized for simulating 2006 flood events 

to calculate the travel time of flood and to generate flood maps in steady state scenarios. 

Steady state velocity profile was used to compute the flood travel time between the 

consecutive cross sections, and to create the flood maps by post-processing the results 

with HEC-GeoRAS. 

The 2D model was developed using terrain formed by LiDAR data and field 

verified cross-sections. The geometric data for representing the river was same for both 

1D and 2D models. Similarly, the computational mesh size of 50ft x 50ft was chosen due 

to reasonable computational time. Since the 2D model does not require additional post- 

processing outside the software, mapping of inundation area and calculation of travel 

time was accomplished in RAS-Mapper within the 2D model itself. The calibration and 
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validation of the models were accomplished with same set of input flow data for all 

models. The coupled 1D/2D model was developed by connecting the upstream 1D 

riverine model (12 miles of river), where river is relatively narrow with the downstream 

2D flow area to represent the flood plain (20.2 miles of river). It was expected that 

combined modeling approach would help to get the reasonable trade-off amid the 

accuracy of the flood model and the efforts required for its computation. 

HEC-RAS Model Inputs 

Elevation Data 

The elevation dataset required to build the model was the high-resolution LiDAR 

data obtained from Ohio Geographically Referenced Information Program (ORGIP) 

portal. The use of highly accurate, LiDAR is advantageous in creating accurate 

inundation maps (Cook and Merwade, 2008). The 1D model input features such as cross 

sections and geometric features (bridges, culverts, etc.) were generated from HEC-

GeoRAS using LiDAR dataset. Even though LiDAR can accurately represent the terrain, 

it cannot appropriately characterize the channel bathymetry. It is mainly because LiDAR 

waves cannot penetrate into subsurface terrain along river leading inaccuracies in 

modeling (Podhoranyi and Fedorcak, 2014). Thus, to incorporate the true river geometry 

in flood analysis, a field survey was carried out at 77 cross-sections. The various river 

cross-sections were generated by interpolating the field verified cross-sections.  

For the 2D model, terrain from LiDAR data and cross-section interpolation 

surface were combined to form a single terrain (Figure 2-3) in RAS-mapper to include 

actual terrain underneath the water surface in the channel.  

Land use Data  
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The land cover dataset were extracted from National Land Cover Dataset (NLCD, 

2011). The river basin has 41.81% of forest, 24.54% cultivated, 10.31% developed, 

9.258% hay/pasture, 7.67% water/wetland, 4.19% emergent herbaceous, 2.12% 

Shrub/scrub and 0.08% barren land area as shown in Figure 2-4. The Manning's 

roughness value for the 2D model was used based on the each land use characteristic. 

Flow and Boundary Conditions 

The flow data required for the boundary condition for 1D and 2D models were 

obtained from USGS at Harpersfield (04211820) and Painesville Stations (04212100). 

The flow hydrographs were used at upstream section at Harpersfield, whereas the flow 

values at ungagged tributaries (Mill Creek, Paine Creek and Big Creek) were computed 

as the percentage contribution of catchment area using catchment area method as 

discussed in Whitehead and Ostheimer (2009). The downstream condition was used as a 

normal depth using the average slope of channel at the downstream station. 

Model Evaluation Criteria 

Four statistical indicators, namely Nash-Sutcliffe Efficiency (NSE), coefficient of 

determination (R2), and Root Mean Square Error (RMSE) to standard deviation (RSR) 

and percentage Bias (PBIAS), were utilized to ensure the agreement between the 

modeled and the observed values. The main goal is to reduce the error while comparing 

the modeled outcomes with their observed counterparts. 

                                   (10) 
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                                                  (11) 

                               (12) 

        (13) 

where   is the ith value in observed value,  is the ith value of modeled 

data,  is the average value of observed value,  is the average of modeled 

data, and n represents total observations number. 

NSE is a measure model quality in the form of representation of variance (Nash 

and Sutcliffe, 1970). The NSE shows the degree of fit in 1:1 line. The range of NSE lies 

from -∞ to 1, where value of 1 shows the best fit and the values between 0.5 and 1 

indicates the acceptable level of performance (Moriasi et al., 2015). 

The determination coefficient (R2) represent the collinear relationship between the 

simulated output and observed values (Moriasi et al., 2015). The value R2 lies from zero 

to one showing the proportion of variance in measured data. The value close to greater 

than 0.5 is considered acceptable, whereas the value close to one indicates the perfect 

model. 

  The RSR, which is the ratio of RMSE to standard deviation, shows residual 

model error where values closer of zero is optimal condition showing least RMSE with 

least residual variation. Better model prediction is characterized by the lower values of 

RSR. 
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PBIAS shows the trend of the modeled output data being higher or lower than the 

observed value (Gupta et al., 1999). The lower value of PBAIS (close to zero) shows the 

better model performance with best value being zero. The PBIAS value greater than zero 

shows underestimation, whereas value less than zero shows the overestimation of the 

observed counterparts (Gupta et al., 1999). 

Model Calibration and Validation 

All three hydraulic models were calibrated to get an optimum Manning’s 

coefficient by relating the model predicted flood stage and flood flow values with the 

observed counterparts. The initial trial values of friction coefficient were selected based 

upon the visual inspection of the channel at several locations and review of the existing 

literatures. For example, M. S. Horritt and Bates (2000) showed that the Manning's 

coefficient for the main channel roughness ranged from 0.01 to 0.05 and for flood plain it 

ranged from 0.01 to 0.02. Chow et al (1998) provided the working range of friction 

coefficient between 0.035 to 0.065 for river section and between 0.08 to 0.15 for 

overflow area. Similarly, Brunner (2016) and Arcement and Schneider (1989) provided 

the suggested range of roughness values for 2D model. In order to make the calibration 

parameter tractable, single friction value for river section and flood plain was adopted for 

1D model. Each of the hydraulic models was calibrated and validated using series of 

flood scenarios that were measured between 1996 to 1998 for different sets of Manning’s 

values. The optimum roughness valued obtained from the calibration were used later on 

to create the flood maps and calculate the travel time from each model. 

Sensitivity Analysis for Model Evaluation  
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Most of the hydraulic models need to be calibrated due to uncertainty involved in 

model structures and available data (Dottori et al., 2013). The calibration of a HEC-RAS 

model is particularly sensitive to a Manning’s roughness (Parhi, 2012). In this study, 

sensitivity analysis for two input variables, Manning’s roughness and input discharge, 

were carried out for all models. The sensitivity of Manning’s roughness and input 

discharge were conducted varying one parameter at a time.  

Result and Discussion 

Simulation of Hydraulic Model 

The performance of 1D, 2D and coupled 1D/2D models were evaluated using 

various statistical indicators. The statistical indicators measuring the performance of the 

model were above the suggested values  (NSE > 0.5, PBAIS ± 25% and RSR ≤ 0.7) as 

suggested by Moraisi et al. (2015). The results of all three hydraulic models for stage 

calibration/validation at Harpersfield gage station is reported in Table 2-1. Likewise, the 

results of flow calibration and validation at Painesville gage station is shown in Table 2-

2. Similarly, the comparison of simulated water level with its observed counterpart at 

upstream gage station from 1D, 2D and coupled 1D/2D models is visualized with graphs 

presented in Figure 2-5. In the same way, Figure 2-6 presented the graphical plot of 

observed and simulated flow rate measured at downstream gage station using 1D, 2D, 

and coupled 1D/2D models. The graphical plot shows that the 2D model is consistently 

performing better in calibration, which is further confirmed by the statistical model 

evaluation indicators. Additionally, the graphical plot of a model validation is shown in 

Figure 2-7. The analysis in terms of statistical indicators and graphical comparison 

suggested that 2D model exhibited improved performance compared to 1D and coupled 
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1D/2D models. Even though coupled 1D/2D model  are found to be improving the model 

accuracy (Vozinaki et al., 2017), this analysis showed only the modest improvement in 

terms of percent bias, especially for discharge calibration. In fact, this study did not 

detect significant improvement of the model performance in coupled 1D/2D model 

compared to 1D model which is in agreement with the  Papaioannou et al. (2016). They 

conducted a study to compare 1D, 2D with coupled 1D/2D in Mike 11/Mike 21 model 

and reported that the accuracy of input data is more crucial compared to model structure. 

Regardless, 2D model is found to be better in urban flood modeling after successful 

model calibration (Mignot et al., 2006; Ernst et al., 2010). In this study, 2D model 

demonstrated better result than coupled 1D/2D and 1D model in model evaluations, 

which was also revealed by sensitivity analysis indicating 2D model was less sensitive to 

the input parameters. 

Travel Time Comparison 

Flood travel time was calculated from Harpersfield station to the City of 

Painesville and to the Fairport Harbor during major flooding events of 2006, 2008 and 

2011. Since a single velocity for entire cross section in 1D model represented the flow, 

we computed the travel time using this velocity and the length between the two adjacent 

river cross sections. However, the velocity is expected to vary across the longitudinal and 

transverse direction of river. As a result, this might not predict the appropriate flood 

travel time while using a single velocity value in 1D model. Since 2D model can 

effectively represent the velocity variation across the cross sections, the travel time was 

also computed using 2D model. It is worthwhile to report that 2D unsteady model 

computes different velocity in longitudinal and transverse direction as velocity is 
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anticipated to vary at each locations of the channel. In fact, each quartile ranges of 

velocity variation and longitudinal distance between the cross sections were measured to 

compute the travel time between these sections. The various ranges of velocity profile 

from 2D model and peak velocity from 1D model is presented in Figure 2-8. The travel 

time for flood wave from Harpersfield to the city of Painesville for 1D model were found 

to be 4.37hr, 5.48hr, and 5.49hr for 2006, 2008 and 2011 flood, respectively, whereas 

corresponding travel time using 2D model were 3.66hr, 4.55hr and 4.46hr, respectively. 

Presumably, the travel time predicted from 1D model, which computed the average 

velocity for each cross-section, ranged somewhere between the quartile ranges of 2D 

model. In this analysis, travel times from coupled 1D/2D model were not calculated as 

coupled model did not show significant improvement over 1D model. More importantly, 

travel time of 1D model were within the range of 2D models, and hence possibility of 

getting different results from coupled 1D/2D model was not expected. Crucially, the 2D 

model predicted more conservative (less) travel time than was predicted from 1D model, 

which could be more beneficial for the early warning system from the perspective of 

safety and protection.  

Inundation Area comparison 

The major flood event of 2006 and 2008 were used to compute the inundation 

area and generate flood maps using calibrated and validated 1D and 2D models. Area 

calculations from coupled 1D/2D model was not performed as it could not exhibit 

improved performance in calibration. Further, the sensitivity analysis of the coupled 

1D/2D model was also not different from the 1D model. Results from 1D HEC-RAS 

model were post-processed in HEC-GeoRAS to create the inundation map, whereas 2D 
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model had its advantage of RAS-mapper feature for result post-processing. The flooded 

area predicted from 1D model was 4.33 sq. miles and 3.45 sq. miles, whereas the 

predicted inundation area from 2D model was 4.19 sq. miles and 3.24 sq. miles for 2006 

and 2008 flood, respectively as reported in Figure 2-9. The geographical exposure 

(Figure 2-10) of the inundation maps overlaid with google map showed that larger 

inundation areas were predicted from 1D model. This was not surprising as the 2D model 

was better calibrated and validated (as explained in model calibration and validation), and 

showed least sensitivity to change in input parameter, which will be discussed in the next 

section. The better performance of 2D model in inundation area prediction was also 

detected by Cook and Merwede (2009), where they recommended the use of  more 

detailed 2D model for developing more accurate and realistic estimation of the inundation 

area. 

Sensitivity Analysis 

Manning’s Roughness 

 To perform the sensitivity analysis, Manning’s friction factor was varied from -

40% to +100% of the best-calibrated nominal or base value. The base value of friction 

coefficient for 1D model was 0.035 for river channel, which was varied from 0.0035 to 

0.07. The model simulation was performed at each 10% increment from -40% to +100%, 

during which stage and discharge were measured at upstream and downstream stations, 

respectively. Similarly, the base Manning's  roughness value from calibration were found 

to be 0.045 and 0.022 for coupled 1D/2D and 2D models, respectively, which were varied 

at same percentage increment during each simulation. The output results from the HEC-

RAS models including stage and discharge were measured at corresponding stations. The 
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1D simulation analysis were not successful for all Manning’s roughness value, especially 

when the roughness value was decreased in the range from -90% to -60%, due to model 

instability, whereas the coupled 1D/2D and the 2D model were operational in all ranges 

of Manning’s roughness value. The graphical result of sensitivity analysis (Figure 2-11) 

shows that both the outputs (stage and output flow rate) from the 1D and the coupled 

1D/2D models’ prediction are more sensitive than from the 2D model. The statistical 

calculations (Table 2-3) shows that 1D and coupled 1D/2D model exhibited higher 

standard deviations of simulated stage and discharge compared to 2D model. The 

consistently higher standard deviation for the same mean values of stage and discharge 

suggested that 1D and coupled 1D/2D models are relatively more sensitive to the friction 

coefficient compared to 2D model, which is also supported by the sensitivity index of 

corresponding models (Table 2-3). The analysis from graphical and statistical 

computations suggested that 1D and coupled 1D/2D models are more sensitive than 2D 

model. This result is similar to previous finding (Dimitriadis et al., 2016), where they 

reported that 1D HEC-RAS exhibited larger sensitivity to the change of channel 

roughness compared to 2D model such as LISFLOOD and FlO-2D. 

Sensitivity with Input Discharge 

 The base discharge value needed for sensitivity analysis was selected from the 

flood event of 4/10/1998 to 4/30/1998, which exhibited the best fit between the observed 

and simulated value for both 1D, coupled 1D/2D, and 2D models. The base value was 

varied from -50% to +100% of the selected nominal value (7250 cfs). The simulation was 

run for each hydraulic model at every 10% increment of base value ranging from 1450 

cfs to 14500 cfs while remaining parameters were constant. For each of the model 
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execution, modeled stage and discharge were recorded at upstream and downstream 

stations, respectively. The graphical result of sensitivity analysis of input discharge 

(Figure 2-12) showed that the output stage for 1D and coupled 1D/2D model were more 

sensitive than 2D model. This result is also supported by the statistical comparison (Table 

2-3) including the standard deviation and sensitivity index of simulated stage from each 

of model. However, the effect on output discharge were strikingly similar for 1D, coupled 

1D/2D and 2D models indicating that the 1D and coupled 1D/2D models were no longer 

more sensitive than 2D model while considering the effect of output discharge.  

Conclusion 

Flood inundation information are crucial to provide reliable information to public 

for flood risks analysis, planners, insurance companies, and other stakeholders. 

Calculation of flood travel time and prediction of extent of flooded area are essential for 

flood warning system to issue evacuation time for the protection of lives and property. 

However, the computation of these parameters are subjected to the quality of the 

topographic data, geometric configuration, input parameters, and the selection of 

hydraulic model structure. While there has been significant progress in the flood 

modeling, the selection of the 1D, the 2D and the coupled 1D/2D models have not been 

explored considerably within HEC-RAS itself, especially for predictive capability in 

terms of flood wave travel time and inundation area. Therefore, the principal objective of 

this study is to compare the ability of hydraulic models to predict the flood wave travel 

time and inundation area using the 1D, the 2D and the coupled 1D/2D features of HEC-

RAS. All three models were set up with the same topographical data and same boundary 

conditions for the flow and the stage. These hydraulic models were calibrated to optimum 
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Manning’s roughness value to ensure the optimal fit between the modeled result and 

observed values. The modeled results from all three models were considerable agreement 

with their measured counterparts. The statistical indicators did not show any significant 

evidence that the coupled model was better than the 1D model. However, the 2D model 

exhibited better performance than coupled 1D/2D and 1D models measured with respect 

to the statistical indicators as well as graphical comparison. 

From the sensitivity analysis of these hydraulic models with 40 simulations, the 

1D and the coupled 1D/2D models were found to be more sensitive than 2D model to the 

variation in input Manning’s roughness as well as to the input discharge. This was 

analyzed from the graphical comparison as well as and statistical indicators. Modeling a 

floodplain with the 2D feature and main river channel with the 1D feature is a common 

practice in a coupled model because of considerable reduction of the computational cost 

and simulation time. However, coupling between the model components could also be 

responsible for carrying over model uncertainty making it more sensitive to input 

parameters.   

Furthermore, the flood travel time predicted from 2D model was shorter than 

from 1D model making the 2D model a more conservative prediction for travel time 

estimation. Furthermore, the 2D model predicted smaller inundation area compared to 1D 

model. Even though, the 1D model had the advantage of shorter computational time (2-4 

minutes) compared with computational time for 2D model (1 to 10 hours), the better 

accuracy was exhibited using 2D model. Additionally, it is safe to decide based on worst 

possible condition, and hence smaller travel time predicted from the 2D model will be 

reasonable for planning early evacuations and possible flood hazards. Moreover, there 
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may be other factors contributing uncertainties in prediction of flood travel time and 

flooded area, which should be investigated in depth with global sensitivity techniques 

along with the use of probabilistic approaches for accounting the uncertainties while 

using hydraulic models in flood warning and flood mitigation measures. 

Nevertheless, it is cardinal to treat the result with great caution because the 

extension of this approach over other study area for different flood events may exhibit 

different behavior. The assumption of single valued friction coefficient used in the 

calibration/validation of this model could not always describe the channel and floodplains 

property. Furthermore, the flow/discharge value at the ungagged creeks provided by 

catchment area ratio method may not always be the true representation of the flow 

condition during the flood events. Regardless, this research concludes that application of 

a 2D model is preferred than coupled 1D/2D or 1D model for travel time and flooded 

area prediction, which are essential for safe evacuation of the people while issuing the 

flood warning system. 
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Figures and Tables: 

 

 
Figure 2-1: Grand River watershed with the modelled river section 
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(a)  

 
(b)  

 
 

(c)  
Figure 2-2: Set up of 1D model (a), 2D model (b), and coupled 1D/2D model (c) 
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(a)                                                                        (b) 
Figure 2-3: Generation of combined terrain for 2D model from surveyed cross section 

and LiDAR derived DEM (a), combined terrain (b) 

 

 
Figure 2-4: Land use of Grand River watershed (NLCD 2011) 
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(a)  

 
(b)  

 
(c)  

 
Figure 2-5: Stage calibration of 1D model (a), 2D model (b) and coupled 1D/2D (c) 
model, from 03/01/1996 to 03/31/1996 at upstream station (Harpesfield -04211820) 
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(a) 

 (b)        

 
(c) 

Figure 2-6: Discharge calibration of 1D model (a), 2D model (b) and coupled 1D/2D 
model (c), from 04/15/1996 to 05/12/1996 at downstream station (Painesville -04212100) 
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(a)  

 
(b)  

 
(c)  

Figure 2-7: Validation of 1D model (a), 2D model (b), and coupled 1D/2D model 
(c), from 04/10/1998to 04/30/1998 
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Figure 2-8: Flood travel time comparison of 1D and 2D models for 2006 and 2008 flood 
events from Harpersfield to Painesville station, and to Fairport Harbor 

 

 
 

Figure 2-9: Comparison of inundation area of 1D and 2D model for 2006, 2008 and 2011 
flood events 
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(a)  

 
 

 
(b)  

View (a) 

View (a) 
( )
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(c)  

  

 
(d)  

Figure 2-10: Inundation maps of 2006 flood (a), 2008 flood (b), detailed view 
near Fairport Harbor (c), and detailed view near city of Painesville (d) 
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(a)  

 
 

 
 

(b) 

Figure 2-11: Sensitivity of Manning’s roughness with discharge measured 
downstream station (a), and with stage measured on upstream station (b) 
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(a)  

 

 
(b)  

Figure 2-12: Sensitivity of input discharge with stage measured downstream 
station (a), and with discharge measured on upstream station (b) 

Note: Stage is measured at upstream station (Harpersfield) while discharge is measured in 
downstream station (Painesville). 
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Table 2-1: Stage calibration/ validation of the upstream station (04211820) from 1996 to 

1998 
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Table 2-2: Discharge calibration/validation of the upstream station (04212100) from 1996 

to 1998 
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Table 2-3: Statistical computations of sensitivity analysis of hydraulic models 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Sensitivity of input Manning's roughness 
  Discharge (cfs) Stage (ft) 

Model 1D 1D/2D  2D 1D 1D/2D 2D  
Mean 7969.22 742.49 

Standard deviation 36.28 35.30 15.30 1.26 1.47 0.60 
Sensitivity index 0.013 0.013 0.005 0.005 0.006 0.002 

Sensitivity of input  discharge 
  Discharge (cfs) Stage (ft) 

Model 1D  1D/2D 2D 1D 1D/2D 2D 
Mean 9987.92 742.57 

Standard deviation 3763.67 3795.01 3828.73 1.83 1.88 0.43 
Sensitivity index 1.470 1.505 1.520 0.008 0.008 0.006 
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Chapter 3.   Comprehensive Analysis of Flood Damage Assessment Using Various 

Input Data in HEC-RAS One Dimensional (1D) and Two-Dimensional 

(2D) Models 

Abstract 

The assessment of flood damage in the aftermath of a major flooding is one of the 

crucial steps that the planners, emergency responders and insurance companies are 

expected to undertake. Assessing the flood damage is very important for the assessing the 

flood prevention methods, studying flood vulnerability, risk mapping and comparative 

risk analysis. However, the accuracy of prediction of flood damage model is not only 

affected by numerous model inputs but also associated with certain degree of 

uncertainties. Therefore, the overarching goal of this research is to explore how the 

damage estimation is affected by the selection one-dimensional (1D) and two-

dimensional (2D) hydraulic simulation, inventory, and topographic data. The analysis 

was carried out in the Grand River, near the City of Painesville, northeast Ohio, which 

encountered frequent flooding over the last several years. The 1D and 2D Hydrologic 

Engineering Center River Analysis System (HEC-RAS) models were utilized to perform 

the hydraulic analysis to produce the flood depths. HEC-RAS models were set up for 

different topographic resolutions including various Digital Elevation Model (DEM) i.e. 

30m DEM, 10m DEM and Light Detection and Ranging (LiDAR) derived 3m DEM, 

which were combined with the filed surveyed river cross-sections data to obtain the flood 

depths. In order to calibrate and validate the HEC-RAS models, the flow and stage 

information were obtained from the gaging stations of United States Geological Survey 

(USGS). Flood loss were estimated by United States Multi-Hazards (HAZUS-MH) 
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developed by Federal Emergency Management Agency (FEMA) for individual building 

within study region for flood events of different recurrence interval from 10 to 500-year 

return period. This was accomplished running the analysis by updating the default-

building inventory within Lake County from the building data available from Lake 

county GIS department to represent the realistic building information. The analysis 

indicated that the 1D model consistently overestimated the loss than the 2D model by an 

average of 61.48% for the default database and, 86.12% for updated inventory. 

Moreover, the estimation of the 1D model was consistently higher than that of the 2D 

model for different sets of topographic resolution and different recurrence interval. The 

estimation increased with the coarser resolution terrain regardless of modeling 

techniques. Furthermore, the 2D model revealed lesser percentage increase i.e. to 10.45% 

in 10m DEM, and to 25.49% in 30m DEM, whereas 1D model exhibited larger increment 

i.e.to 23.17% in 10m DEM and 76.81% in 30m DEM. Additionally, this analysis 

suggested that the estimate in an average would decrease by 76.21% after incorporating 

local building information into the HAZUS-MH database. Additionally, it was found that 

the higher resolution topographic data is essential for appropriate flood damage 

assessment. 

Keywords: simulation, calibration, validation, inventory, uncertainty, DEM, LiDAR, 

FEMA 
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Introduction 

Flooding is one commonly recurrent natural disaster resulting in losses of human 

lives and economic damages (Arrighi et al., 2013; McGrath et al., 2015; Teng et al., 

2017). The frequency of flooding events has increased over the last decades (Kreibich et 

al., 2015). For instance, in the United States alone, federally declared disaster related to 

flood has exceeded more than 75 percent, and has caused an average loss of  8 billion  

USD with over 90 deaths per year (USGS, 2019). The damage due to flooding can be 

reduced through the implementation of flood mitigation measures, assessment of flood 

vulnerability, comparative risk analysis and risk mapping (Merz et al., 2010). Moreover, 

damage estimation can be beneficial for creating the flood policies (Wagenaar et al., 

2016), making investment decisions (Jongejan and Maaskant, 2013), evaluating risks due 

to flooding (Kind et al., 2014). However, competent models for flood damage assessment 

are essential (Dushmanta et al., 2003) in order to assist the stakeholders for the 

restoration of the floodplains and mitigate the damage caused by the flood. 

  The development of a fully functional flood damage model is a delicate job as the 

estimation result are sensitive to interaction of hydrologic and hydraulic analysis, and 

also to other socioeconomic factors (Jongman et al., 2012; Kriebich et al, 2009; Kelman 

and Spence, 2004). While the choice appropriate flood model is governed not only by the  

obtainability of model input data and efforts in computation (Arrighi et al., 2013), also by 

the objective of the analysis (Jongman et al., 2012). For example, insurance companies 

are interested to estimate insured damage, whereas the government and academics apply 

models to estimate the total economic loss (Jongman et al., 2012). There are various 

flood modeling tools available for damage estimation (Banks et al., 2013; Jongman et al., 
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2012; Gutenson J. L. et al., 2015). Different countries have different flood assessment 

tools such as HAZUS-MH in USA (Scawthorn, et al., 2006), FLEMO in Germany 

(Thieken et al., 2008), SDC in Italy (Amadio et al., 2016), and many more over the 

world. Jongman et al (2012) carried out the comparative analysis of flood assessment 

tools used in UK and Germany and attributed the uncertainties in their estimates towards 

depth-damage curves. Similarly, Banks et al (2013) carried out the review of available 

tools for flood damage models such as MIKE flood, water RIDE, HEC-FIA and HAZUS-

MH, where they  identified HAZUS-MH as the best tools for the flood damage 

assessment. These models were evaluated based on the various factors including 

affordability, required technical skills, technical supports, capability to conduct hydraulic 

modeling, and capacity to calculate the damage estimation. Furthermore, Gutenson J. L. 

et al (2015) also selected HAZUS-MH to be a promising tool among commonly used and 

freely available flood damage assessment tools including HEC-FDA, HECFIA, and 

FEMA’s HAZUS-MH, in terms of its capability of modeling indirect economic damages 

and its comprehensive database of predefined structures.  

The HAZUS-MH flood model requires the development of flood depth grids to 

estimate the damage based on the available depth-depth curves developed by FEMA. The 

HAZUS-MH, on demand, has the ability to generate the stream network and carry out the 

hydraulic analysis with given topographic data to develop the flood water depth 

(Gutenson J. L. et al., 2015). However, the result of this default hydraulic analysis are 

suitable only for the regional analysis and are deemed to be imprecise (Tate et al., 2014). 

Therefore, researchers in the past (Banks J.C et al., 2014; Dierrauer et al., 2012; Arrighi 

et al., 2013; Remo et al., 2012; Luke et al., 2015) carried out separate hydraulic analysis 
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to enhance the prediction of the flood impact and imported its result to the HAZUS-MH 

analysis. Arrighi et al (2013) suggested that the 1D numerical methods are adequate for 

the estimation of the floodwater depths with unidirectional river flow and well recognized 

overflow area. However, for the more complex river geometrics and precise flood 

mapping, 2D model become unavoidable (Apel et al., 2008; Büchele et al., 2006; Ernst et 

al., 2010). Researchers, Luke et al (2015) and Arrighi et al (2013) have performed quasi-

2D hydraulic model-LISFLOOD-FP, adopting the 1D modeling feature in the 

mainstream river section and 2D modeling feature in wider flood plain for computing 

flood depths. Since flood propagation in the riverine flood is a two-dimensional 

phenomenon, the advanced 2D hydraulic model will be more advantageous in flood 

modeling (Papaioannou et al., 2013). However, based on the author’s review, no flood 

damage models have adopted a fully functional HAZUS-MH model using flood depth 

grids generated by 2D HEC-RAS. 

In addition to the modeling techniques such as 1D versus 2D, the topographic 

dataset portrays a vital part in the accuracy of damage assessment of a flood model 

(Koicumaki et al., 2010; Ding et al., 2008; Banks James  C. et al., 2014). Banks James C. 

et al (2014) performed flood analysis to carry out damage estimation using HAZUS-MH 

with 30m and 10m DEM and suggested that the higher resolution DEM produced better 

damage estimation. Saksena and Merwade (2015) studied the impact of vertical precision 

and horizontal scale of  DEM on flood inundation and found that higher resolution DEM 

produced more accurate flood maps and water surface depths. Since HAZUS-MH flood 

estimation are based on the available stage-damage curves, the overall effect of terrain 

resolution in flood grid computation gets propagated in loss estimation (de Moel and 
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Aerts, 2011). Hence, the major goal of this study is to carry damage assessment in 

HAZUS-MH using both 1D and 2D HEC-RAS model using various topographical 

resolutions and flood frequency to analyze the effect of mode of simulation and quality of 

input data over damage assessment. For this, a fully functional HEC-RAS and HAZUS-

MH models were developed with different topographic dataset and flood magnitude of 

different return periods. Furthermore, the difference in damage estimation were analyzed 

with the updated inventory database. For this, the building inventory data from Lake 

county office were digitized and imported to HAZUS-MH inventory via FEMA’s 

Comprehensive Data Management System (CDMS). 

Theoretical Description 

HAZUS-MH 

HAZUS-MH is a tool supported by the FEMA originally for USA and currently 

utilized across the globe, for computing the damage caused by the natural hazards such as 

wind, flooding, and earthquake at a regional scale (FEMA, 2013). The HAZUS-MH 

flood model is an ArcGIS based tool, which employs state of art in flood damage 

assessment based on depth-damage curves developed by FEMA as well by United States 

Army Corps of Engineers (USACE) (Schneider Philip J. and Schauer Barbara A, 2006). 

The model is aimed at economic loss (McGrath et al., 2015), quantifying shelter 

requirement (Vecere et al., 2017), evaluating effect of the flood on society, and helping 

the mitigation (Blais et al., 2006). This damage estimation model can perform riverine, 

coastal and riverine/coastal flood hazards at three levels (level 1, level 2 and level 3) of 

analysis (FEMA, 2013). 
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The level one analysis requires minimal input from the user and operates based on 

the default national building inventory database and depth-damage function developed by 

FEMA and USACE. It utilizes DEM from United Stated Geological Survey (USGS) 

website, perform hydrologic and hydraulic analysis based on USGS regression equation 

developed by FEMA to produce depth grid and finally perform the damage assessment 

with default USGS depth-damage function with default inventory dataset. The level 2 and 

level 3 analysis enhance the accuracy of the estimation with more detailed information 

about the terrain and the located building inventory (FEMA, 2013). It allows users to use 

depth grids developed by hydraulic and hydrologic analysis from the external model such 

as HEC-RAS, depth grids, Flood Information Tool (FIT). Furthermore, level 2 and level 

3 analysis uses more specific/updated information of the building inventory and modified 

depth-damage curves to develop a more accurate hazard assessment. The quality of 

details and sophistication of model analysis advances with the increase in the level of 

analysis in HAZUS-MH model (FEMA, 2013). 

Riverine Flood Hazard  

Riverine flood hazard analysis is performed in order to develop flood depth-grids 

to be used in the damage estimation. The hydrologic and hydraulic analysis involved in 

riverine flood hazard are discussed below: 

Hydrologic Analysis 

Regression equations has been established at the regional level by USGS for 

every states which are utilized by HAZUS-MH to carry out the hydrological calculations 

for the selected stream reaches in the default method of analysis (Jennings et al., 1994). 

The equation (1) present the form of regression equation formulated by USGS.  
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QT = C f1 (P1)  f2 (P2) ………….. fn (Pn)                         (1)  

Where, 

 QT represent the flow value of specific return period of T; C refer to a constant; fi (Pi) 

represent the the function of the ith parameter in regression equations. The value and 

category of parameter differs with each equation. The detailed theoretical description of 

the hydrological analysis can be found on HAZUS-MH flood technical manual. 

Hydraulic Analysis 

The hydraulic analysis is carried out to calculate flood depth grids along the river 

section (FEMA, 2013).The level one hydraulic analysis uses Manning's equation and bed 

slope of the reach to perform the hydraulic analysis. The flow value is interpolated in 

floodplain using power functions of basin area. Flood depth with default method are 

developed by subtracting the ground elevation water surface at each cell in DEM to form 

a floodplain. There are other options available in HAZUS-MH to import the pre-

processed depth grids such as from Flood Information Tool (FIT), user-developed depth 

grids and depth grids from HEC-RAS.  

HEC-RAS  

 The hydraulic modeling have been performed with 1D and 2D HEC-RAS for the 

generation of flood depth grids. Both HEC-RAS models have been described in detail in 

Chapter 2 under heading "Theoretical Description". 

Flood Loss Estimation 

Inventory Database 
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The HAZUS-MH model works on default aggregate database at national level 

that contains the information including general building stocks (as per square footings, 

occupancy type, building counts etc.), essential services (police station, schools, hospitals 

,fire stations), potential loss facilities (nuclear plants), conveyance systems (roads and 

bridges), and utility services (electricity, drinking water, gas). The inventory also keep 

the records of hazardous materials, agriculture data, population data and vehicle 

information (FEMA, 2013). These inventory databases are aggregated at census block 

level based on US census data of 2010. Quality of default data varies depending upon the 

source of data and effort expended on it (Muthukumar, 2005). Nevertheless, the accuracy 

of the estimation of the HAZUS-MH model can be enhanced by updating the inventory 

data in the specific flood hazard area using a GIS interface tool (CDMS), a tool 

developed by FEMA (Cutrell et al., 2018). 

 CDMS 

The CDMS is a complimentary tool developed along with HAZUS-MH that 

provide user a flexibility to update the database at their study area (FEMA, 2019). The 

CDMS streamlines and automate raw data processing from the external data sources 

(parcel-level data, tax accessory data) into HAZUS-MH compliant data and transfer it 

into and out of statewide dataset. It allows user to update aggregated data (square footage, 

building count, content, and demographics), capture various transportation and utilities 

facilities data, and User-Defined Facilities (UDF). It supports processing the site-specific 

level and aggregate level information at census block and census tract level.  

Damage Functions 
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 Flood damage functions used in HAZUS-MH are essentially the set of stage-

damage curves that relates the height of floodwater to corresponding amount of damage 

in terms of total replacement cost. The depth-damage curves used in HAZUS-MH flood 

loos estimation are developed by different sources such as Federal Insurance 

Administration’s (FIA), USACE, USACE Institute for water resources (USACE IWR) 

depending on the study area (Scawthorn Charles et al., 2006). For the loss estimation, 

depth-damage curves are chosen by HAZUS-MH from the library based on the type and 

its content (FEMA, 2013). The damage curves depend on numerous factors such as 

occupancy class, type of building, type of foundation, building age, first-floor elevation, 

and depth of flooding.  

Materials and Methodology 

Study Area 

This analysis was performed in the Grand River (Figure 3-1), in northeast Ohio 

including Lake and Ashtabula County. The two counties taken in the study area includes 

7470 census blocks. HAZUS-MH aggregated at census block level includes 137,318 

buildings (91.9% residential) with estimated 42,817 million total replacement cost 

(excluding content). The study region has total estimated population of 331,158 residents, 

spread over 134 thousands homes (Census Bureau, 2010). Further description of study 

area can be found in Chapter 2 under heading "Study Area". 

Overall Modelling Approach 

In order to perform the flood damage estimation on Grand River, HAZUS-MH 

flood model was set up at level 1 and level 2 analysis at census block level including 
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Lake and Ashtabula County. At first, level 1 analysis was carried out with default 

HAZUS-MH procedure using 30m DEM from USGS to calculate the damage 

assessment. In the next step, level 2 analysis was conducted with updated building 

inventory available from Lake County to increase the correctness of estimation. For 

performing the damage analysis, the flood depth grids were imported from the separate 

hydraulic model (HEC-RAS analysis). The brief overview of running HAZUS-MH 

analysis with imported HEC-RAS depth grids is presented in Figure 3-2. The flood 

depths generated by the default HAZUS-MH methodology are deemed to be imprecise 

and suitable for regional analysis (Tate et al., 2014). More accurate flood depth grids 

were prepared using 1D and 2D HEC-RAS for the comparative loss estimation. The 

HEC-RAS models were successfully calibrated and validated using a series of flood 

events from 1996 to 1998 obtained from the USGS gage station at Painesville and 

Harpersfield. For the loss estimation, HEC-RAS depth grids generated from various 

sources of elevation data including 30m, 10m, 3m LiDAR derived DEM from 1D and 2D 

models for various flood event including from 10 years to 500 years return period flood 

were used in analysis. 

The default inventory database being aggregated at census block level can 

introduce more errors (Walls and Kousky, 2014). Therefore, I included Parcel-level data 

from the Lake County to update the inventory. The parcel level data was obtained from 

the GIS department of Lake County office. The parcel data was digitized and successfully 

imported into HAZUS-MH database after making them compatible with HAZUS-MH 

data inventory using ArcGIS and CDMS techniques. The loss estimation was performed 
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with 1D HEC-RAS depth grids, 2D HEC-RAS depth grids and the depth grids of the 

default HAZUS-MH methodology.  

Data Sources 

Hydraulic Data 

Though several studies were conducted in the past, it has not been clear yet 

whether 2D model is better for flood damage assessment compared to 1D model. 

Therefore, both HEC-RAS models were used for flood modeling in order to compare 

effects of the modeling techniques in damage assessment. The elevation data required to 

set the hydraulic models were the LiDAR data obtained from Ohio Geographically 

Referenced Information Program (ORGIP). Similarly, the 30m and 10m DEM were taken 

from National Elevation Dataset (NED) data, which were available at USGS. Likewise, 

the land cover data were extracted from National Land Cover Dataset (NLCD 2011). The 

land use characteristics used during flood modeling consists of 41.81% of forest, 24.54% 

cultivated, 10.31% developed, 9.258% hay/pasture, 7.67% water/wetland, 4.19%  

emergent herbaceous, 2.12% Shrub/scrub and 0.08% barren land area. The land use types 

were used to select the Manning's friction coefficient for the development of 2D model. 

The hydraulic models were calibrated changing Manning’s roughness to suitable 

values using the series of flow data. The flow and water surface elevation information 

used in the models were taken from USGS gage stations at Harpersfield (04211820) and 

at Painesville (04212100) from the various event from 1996 to 1998. After the successful 

model calibration and validation, the hydraulic model were used to generate the flood 

heights, which were imported in the HAZUS-MH for loss estimation. 

Hydraulic Model Calibration and Validation 
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The HEC-RAS models were calibrated up to optimum values of Manning’s 

coefficient by relating the observed river flow and flood height with their modeled 

counterparts. The values for starting Manning’s coefficient used in the model were based 

on the visual inspection of the channel at several locations. For example, M. S. Horritt 

and Bates (2000) showed that the Manning's coefficient for the main river channel ranged 

from 0.01 to 0.05 and for flood plain it ranged from 0.01 to 0.02. Chow et al (1998) 

provided the working range of friction coefficient between 0.035 to 0.065 for river 

section and between 0.08 to 0.15 for overflow area. Similarly, Brunner (2016) and 

Arcement and Schneider (1989) provided the suggested range of roughness values for 2D 

model. In order to make the calibration parameter tractable, single friction value for river 

section and flood plain was adopted for 1D model. Each of the hydraulic models was 

calibrated and validated using series of flood scenarios that were measured between 1996 

to 1998 for different sets of Manning’s values. The optimum roughness valued obtained 

from the calibration were used later on to create the flood  grids for performing the 

damage estimation. 

Evaluation Criteria for Hydraulic Models 

The criteria for evaluating hydraulic models is explained in detail in chapter 2 

under heading "Model Evaluation Criteria". 

Building Inventory Data 

The default HAZUS-MH analysis uses the inventory data from the HAZUS-MH 

database aggregated at a census block level. In order to update the building inventory, the 

building parcel data obtained from the Lake County GIS department were brought into 

HAZUS-MH database via CDMS and ArcGIS. The parcel data for the Lake County 
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contained information about the market value of the building (replacement cost), an area 

of building, basement type, and the number of stories. The parcel data was digitized in 

ArcGIS to represent their existing location. The CDMS essentially requires GIS dataset 

to the contain the information about building location (longitude& latitude), foundation 

type, first floor height, building value, content value, occupancy type and number of 

stories. To bring the parcel data into the format accepted in HAZUS-MH analysis through 

CDMS, some of the attributes needed to be populated using the guidelines provided by 

FEMA (Cutrell et al., 2018). The occupancy type was assigned as RES1 (single family 

dwelling-residential building), foundation type for missing values was populated as 7 

(ID), the number of story was 1 for missing values and the first floor for missing values 

was adjusted using the guidelines of FEMA. The area of building was populated in 

square feet along with the building replacement cost corresponding to each building from 

the parcel data. The building content value, which was not present in parcel data, was 

populated by CDMS itself to be 50% for single-family dwelling (RES1) building type 

adopted for the missing value. 

Effect of River Hydraulic Modelling Techniques 

The default hydraulic model in HAZUS-MH uses USGS regional regression 

equation for hydrological analysis and compute the flood depth surface based on the 

input terrain. However more accurate user-supplied hydraulic model such as HEC-RAS 

can create substantial difference (Tate et al., 2014) while creating height of flood water as 

well as estimating the flooded area. In many cases when flow pattern are uniform and 

unidirectional, 1D model are taken satisfactory enough for computing of flood water 

heights and  creating the flooding arteea (Büchele et al., 2006). However, for more 
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accurate analysis in complex river geometrics and wider flood plain, 2D model is 

essential (Büchele et al., 2006). Regardless, the selection of model depends upon the 

available resources, complexity and computational cost. In this analysis, 1D and 2D 

HEC-RAS models are compared to see the quantitative differences in riverine flood 

modeling technique used in loss estimation.  

Effect of Inventory Data 

The FEMA maintains the national building inventory database aggregated at a 

census block level. The default method of analysis uses an aggregated approach, which 

considers building structures to be evenly distributed across a census block (Cutrell et al., 

2018). The aggregated approach can be suitable for understanding the flood risk as this 

approach may overestimate loss in some areas, while underestimate in some others (walls 

and kousky, 2014; Shultz Steven, 2017). For the smaller geographic area, aggregate 

approach can induce large error (Walls and Kousky, 2014). The HAZUS-MH model 

output with default data can have bigger margin of error (FEMA, 2013). Therefore, in 

order to increase the accuracy of estimation, prior researchers have updated the inventory 

database in the their study area (Dierrauer et al., 2012 ;Remo et al., 2012 ;Luke, 2015 

;Walls and Kousky, 2014). The inventory database is primarily updated based on the 

parcel-level data available from local sources including tax assessor data, revenue 

department, and county office etc. In this study, building data have been updated from 

data the available from Lake county GIS department and various analysis have been 

performed to see the effect of the inventory data on estimation. 

Effect of Topography 
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The use of reliable elevation data is essential for accurate flood map preparation 

and loss estimation. The DEM describes the stream bathymetry and flood plain 

topography. The elevation model is a key component because it affects the calculations of 

river flow in a hydrological model, and flood heights and flood plain boundary in  

hydraulic model (Cook and Merwade, 2008). Since HAZUS-MH estimation are based on 

the depth grid generated from a hydraulic model, the overall effect of terrain resolution is 

also propagated from depth-damage functions in resulting estimates. Banks James C. et al 

(2015) has shown the improvement in HAZUS-MH model prediction with increase in 

DEM resolutions. In this study, 30m, 10m and 3m LiDAR derived DEMs have been 

chosen along with field verified river cross-sections, which ensures the channel 

bathymetry.  

Result and Discussion 

Simulation of Hydraulic Model 

Both 1D and 2D HEC-RAS model demonstrated good performance, which were 

evaluated using various statistical indicators. The statistical indicators computed for the 

observed and simulated model outputs were greater than the suggested values (NSE>0.5, 

PBAIS ± 25% and RSR ≤0.7) from Moraisi et al (2015). The statistical indicators to 

evaluate the model performance for both the hydraulic models for stage 

calibration/validation at Harpersfield station is reported in Table 3-1. Likewise, the model 

performance for flow calibration/validation at downstream Painesville station is reported 

in Table 3-2. The coefficient of determination for both the models were 1.0 in most cases. 

Similarly, the agreement between the measured and modeled water surface elevation at 

upstream station was observed through the graphical plot for 1D and 2D model as shown 
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in Figure 3-3. The graphical plot of observed and simulated flow measured at Painesville 

station is shown in Figure 3-4. Even though the graphical and statistical model evaluation 

indicators were found to be satisfactory for both models, 2D model showed consistently 

better result than that of 1D model, which was revealed in terms of statistical indicator 

and visual inspection. Similarly, the model validation was inspected through the 

graphical plot (Figure 3-5). 

Effect of Riverine Hydraulic Modeling Techniques 

The effect of modeling technique on damage assessment was evaluated by 

running HAZUS-MH model importing separate depth grid from 1D and 2D HEC-RAS 

models. Since there has not been any quantification of the differences in estimated cost 

using varying degree of topographic data in HAZUS-MH, its output in terms of total 

replacement cost of building was analyzed for different topographic resolutions including 

30m, 10m and 3m LiDAR DEM. The estimated total damage (Figure 3-6) predicted by 

2D model was 71.51 million USD for 3m LiDAR DEM with surveyed data, which 

increased in 1D model to 98.3 million USD with default inventory. The similar increment 

was observed in 10m and 30m resolutions DEM as reported in Figure 6. Additionally, 

this damage estimation was substantially reduced after incorporating the local level 

building inventory data in the model. The estimated total damage reduced to 15.59 

million USD by 2D model and 31.8 million USD by 1D model with 3m LiDAR DEM. 

For various terrain resolutions, the total estimated loss by 1D model was 61.48% more 

than 2D model for default set of inventory database and 86.12% more in case of updated 

inventory data . Further, in the analysis refined using only 3m LiDAR DEM with 

surveyed cross-section and updated inventory data for 100-year and 500-year flood, 1D 
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model continued to show a higher estimation than 2D model (Figure 3-7), both in default 

as well as updated database. The larger estimation from 1D compared to 2D model could 

be due to the comparatively poor calibration and less realistic prediction of flood. The 

difference in 1D and 2D HEC-RAS modeling technique was further supported by Figure 

3-8, which showed larger estimate for higher return period event which is in agreement 

with previous finding of  Walls and Kousky (2014) in terms of damage versus return 

period curves.  

Effect of Inventory Data 

Since the default sets of inventory data may not represent the actual site 

conditions, parcel level data was updated in HAZUS-MH database. More importantly, I 

wanted to see the effect of the quality of the inventory data in flood damage estimation. 

Since performance of the 2D model was incredibly better than 1D model, the analysis 

was carried out with 2D HEC-RAS with various resolutions of DEM as input in the 

HAZUS-MH model one at a time. The DEM resolutions considered for analysis were 

30m, 10m, LiDAR, 30m with survey (30m DEM combined with river survey data), 10m 

with survey, and 3m LiDAR with survey (Figure 3-9). On average, the damage cost 

estimated with default database was 76.21% higher than that of the cost estimated while 

incorporating inventory data. This result is consistent with the finding of the earlier 

research (Ding et al., 2008, Carlson, 2010).  Ding et al (2008) found that the default 

aggregate estimated 65% higher than that of the updated building inventory, whereas 

Carlson (2010) found that the default analysis overestimated the damage by 51% than 

that of the actual assessor data. The updated inventory data consistently demonstrated 

decreased estimation regardless of the resolution of the DEM chosen. The result is 
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promising in the sense that the default inventory considers the uniform distribution of 

building throughout the census blocks in the analysis (Cutrell et al., 2018) resulting in the 

overestimation of the number of actual building present. This fact was further supported 

by this analysis presented in terms of number of damaged building with and without 

updated database (Figure 3-10). The number of damaged building has decreased from 

307 to 144, when estimate was performed with updated data in case of 3m LiDAR DEM. 

The reduction of the building count was consistent in 10m and 30m resolution, indicating 

that the coarse resolution would predict more damage count. Furthermore, using updated 

inventory, the variation of estimated total building damage and number of damaged 

buildings were calculated to see the damages in relation to flood depths (Figure 3-11). 

Similarly, the damage estimation relationship with water flow was studied in (Figure 3-

12). Presumably, increase in flood depth and flow would damage more buildings and 

increase the likelihood of the higher damage cost, which was clearly revealed from both 

these analysis. 

Effect of Topography  

The influence of the spatial data resolution on the damage assessment was studied 

by changing the terrain resolution in loss analysis particularly in 2D model. The 

difference in estimation increased to 10.45% while using 10m DEM, which increased to 

25.49 % in 30m DEM. The analyses were also performed in 1D model and the estimated 

cost further increased. For example, the estimated cost increased to 23.17% while using 

10m DEM and 76.81% while using 30m DEM indicating that the estimated cost can be 

expected to increase with the coarse resolution of DEM. This finding was not surprising 

because the coarse resolution data cannot be expected to represent the exact river 
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bathymetry and surface features resulting in over prediction in inundation and flood 

depths and overestimation of the damage cost. In fact, it was expected that the course 

resolution DEM would overestimate the damage cost as it had a tendency to over predict 

the inundation of flood plain area (Cook and Merwade, 2009). This result was consistent 

with the previous finding of Banks J.C. et al (2014), where better spatial resolution data 

resulted in greater predictability of the flood event. Additionally, the relationship between 

the flows versus damage estimation was also established the (Figure 3-13). Moreover, the 

relationship between damage and inundation area as the total increase in percentage 

damage and inundation area seemed to be positively correlated (Figure 3-14). This 

finding is also congruent with Gutenson J. L. et al (2014), where the researcher attribute 

the terrain resolution to play a key role in damage assessment. Additionally, hazard 

mapping for 2006 flood event presented in Figure 3-15 can be very useful in quantifying 

spatial distribution of the damage associated during the flooding. 

Uncertainties in HAZUS-MH Loss Estimation  

Cost assessment model like HAZUS-MH are always subjected to certain degree 

of uncertainties due to lack of refined data sources, and information about the process 

causing the damage (Meyer et al., 2013). There are several parameters in flood loss 

estimation leading to uncertainties in model prediction (Merz et al., 2004 ) which 

increases further with the complexity of model (Schröter et al., 2014). Some studies 

shows these uncertainties stem from hydrological component (de Moel and Aerts, 2010), 

modeling techniques (Horritt and Bates, 2002) and depth-damage curves (Merz et al., 

2011). The HAZUS-MH model estimate involves uncertainties mainly resulting from 

quality of DEM, calculation of flood depths, accuracy of building database and 
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estimation of a damage model (Tate et al., 2014). In this study, the estimated value of 

2006 flood event was 15.6 million USD using 2D model. This analysis included only 

residential building while commercial, industrial and others were not included. Further, 

the essential facilities and transportation facilities (roads and bridge) also could not be 

included. 

Conclusion 

Quantification of accurate flood damage is essential for flood planning, 

preparedness of flood hazard, insurance actuaries, emergency response and assessment of 

flood mitigation measures. While the past research have been limited to HAZUS-MH 

estimation relying on flood depth calculation from 1D model, this research explores the 

use of more advanced 2D flood model for flood depth production and to quantify the 

effect of input topographic dataset and quality of inventory data on the resulting damage 

estimate. The damage analysis was performed in HAZUS-MH with separate depth grids 

from 1D and 2D HEC-RAS models for various terrain resolutions including 30m, 10m, 

and 3m LiDAR derived DEM combined with surveyed river cross-sections for the flood 

event of different recurring interval including 5 year, 25 year, 50 year, 100 year, 200 year 

and 500 year. The analysis suggested that 1D and 2D HEC-RAS modeling have a crucial 

effect in damage assessment. The difference in estimation between 1D and 2D model was 

larger while using 30m DEM or 10m DEM (coarse resolution) as compared to 3m 

LiDAR data (fine resolution). The 1D model consistently over predicted the damage than 

that of the 2D model regardless of the DEM resolutions. The analysis indicated that the 

selection of the hydraulic model is an inevitable when performing a flood damage 

assessment. This analysis safely concludes that the use of 2D model to predict the flood 
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depth is more realistic and precise than the use of 1D model because of smaller variation 

during damage estimation. 

Furthermore, the analysis with varying topographic resolutions revealed that the 

fine resolution LiDAR data showed less inundation area as well as less estimated damage 

than that of coarser resolution terrain. The damage estimation and the inundation area 

increased in 10m DEM, which further increased while using 30m DEM indicating that 

the flood damage assessment is, by and large, depends on the quality of the terrain. The 

analysis also indicated that high-resolution terrain would be an appropriate selection for 

the realistic prediction of flood damage. 

Moreover, the building database within its study region were updated using the 

parcel data from the Lake County office GIS department to include the actual 

representation of building in the model. The estimation of 1D model was consistently 

higher than that of 2D model in both the default inventory and the updated inventory 

database.  On average, HAZUS-MH analysis with default database had 76.21 percent 

higher estimation than the updated the database. Additionally, the number of damaged 

building was also reduced with the use of updated database. The over estimation with 

default inventory continued to be prevalent in all the topographic resolutions. The 

analysis showed that incorporating building data within the study area enhanced the 

damage assessment regardless of modeling technique and terrain resolution suggesting 

that updating the inventory database leads to the more accurate flood damage assessment 

compared to default analysis. 

While this research tried to explore some of the principal elements for accurate 

and realistic quantification of flood damage, there might be several other factors 
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contributing uncertainty in model prediction. It could be noted that the HAZUS-MH 

model estimation could be affected due to the propagation of error in hydrological and 

hydraulic pre-processing to generate depth grids. Therefore, it is recommended to utilize 

the probabilistic method of flood frequency study to account the uncertainties and 

conduct in-depth global sensitivity analysis to quantify the uncertainty before using the 

result.  
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 Figures and Tables: 

 
(a)  

 
(b)  

Figure 3-1: Study area with Grand River watershed boundary (a), HAZUS-MH 
model boundary region (b) 
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Figure 3-2: Flowchart of overall modelling approach 
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(a)  

 
(b)  

Figure 3-3: Stage calibration of 1D model (a), 2D model (b), from 1996(3-01 to 3-31) at 
upstream station (Harpersfield-04211820) 
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(b) 

Figure 3-4: Discharge calibration of 1D model (a), 2D model (b), from 1996(4-15 to 05-
12) at downstream station (Painesville -04212100)) 

 
(a)  

 
(b) 

Figure 3-5: Validation of the 1D model (a), 2D model (b), from 1998(04-10 to 04-30) 
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(a)  

 
(b)  

 
Figure 3-6: Estimation variation with 1D and 2D modeling techniques with updated 

inventory (a), with default inventory (b), performed in different topographic resolutions 
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Figure 3-7: Variation in modelling technique within fine resolution LiDAR data 

   
 

 
Figure 3-8: Damage versus return period curves for various terrain resolution 
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Figure 3-9: Effect of updating inventory data in estimation with 2D model 

 

 

 
Figure 3-10: Effect of updating inventory data in terms of building damage count in 2D 

model 
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Figure 3-11: Variation of total estimated damage and building count with flood depth 

 
 

 
Figure 3-12: Variation of total estimated damage and building count with flow 
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Figure 3-13: Relationship between changes in flow and change in damage estimation 

 
 
 
 

 
 Figure 3-14: Effect of topographic data on inundation area and damage estimation  
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(a)  

 
(b)  

Figure 3-15: Flood depth grid (a), and damage map (b), of 2006 flood with total 
replacement cost of building using 2D HEC-RAS and HAZUS-MH 
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Table 3-1: Stage calibration/validation of the upstream station (04211820) from 1996 to 
1998 

Stage calibration at 04211820 

SN Date 
Statistical parameter 
NSE R2 PBIAS RSR 

  From To 1D 2D 1D 2D 1D 2D 1D 2D 
1 3/1/1996 0:00 3/30/1996 0:00 0.74 0.90 1.00 1.00 0.05 0.01 0.51 0.31 
2 4/15/1996 0:00 5/12/1996 23:00 0.84 0.92 1.00 1.00 0.00 -0.02 0.39 0.28 
3 10/20/1996 0:00 11/28/1996 23:00 0.84 0.92 1.00 1.00 0.03 -0.01 0.40 0.29 
4 2/4/1997 0:00 2/10/1997 23:30 0.83 0.91 1.00 1.00 0.02 -0.02 0.41 0.30 

Stage validation at 04211820 
5 2/26/1997 0:00 3/3/1997 23:30 0.81 0.92 1.00 0.99 -0.07 -0.05 0.43 0.28 
6 3/5/1997 0:00 3/19/1997 23:30 0.82 0.84 1.00 1.00 0.00 -0.03 0.43 0.40 
7 5/15/1997 0:00 6/6/1997 23:00 0.85 0.94 0.99 0.98 0.02 0.01 0.39 0.25 
8 4/10/1998 0:00 4/30/1998 0:00 0.89 0.96 1.00 1.00 0.02 -0.01 0.33 0.21  

 
 

Table 3-2: Discharge calibration/validation of the downstream station (04212100) from 
1996 to 1998 

Discharge calibration at 04212100 
SN Date Statistical parameter 

NSE R2 PBIAS RSR 
 From To 1D 2D 1D 2D 1D 2D 1D 2D 

1 3/1/1996 0:00 3/30/1996 0:00 0.74 0.75 0.88 0.89 11.04 11.01 0.51 0.5 
2 4/15/1996 0:00 5/12/1996 23:00 0.72 0.74 0.86 0.88 9.18 9 0.53 0.51 
3 10/20/1996 0:00 11/28/1996 23:00 0.9 0.91 0.96 0.96 8.85 9.02 0.31 0.29 
4 2/4/1997 0:00 2/10/1997 23:30 0.84 0.87 0.92 0.94 1.26 1.33 0.4 0.36 

Discharge validation at 04212100 
5 2/26/1997 0:00 3/3/1997 23:30 0.33 0.4 0.7 0.73 5.2 4.97 0.82 0.78 
6 3/5/1997 0:00 3/19/1997 23:30 0.69 0.74 0.85 0.88 7.37 7.45 0.56 0.51 
7 5/15/1997 0:00 6/6/1997 23:00 0.8 0.81 0.92 0.92 -3.34 -3.68 0.45 0.44 
8 4/10/1998 0:00 4/30/1998 0:00 0.83 0.86 0.92 0.93 3.24 3.21 0.41 0.38 

 
 
 
 
 
 


