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ABSTRACT

DYNAMIC STABILITY OF CYLINDRICALLY
ORTHOTROPIC CIRCULAR PLATES

HASMUKH C. BAROT

MASTER OF SCIENCE IN ENGINEERING

YOUNGSTOWN STATE UNIVERSITY, 1970

THE DIFFERENTIAL EQUATION OF THE DYNAMIC STABILITY
OF CYLINDRICALLY ORTHOTROPIC CIRCULAR PLATES IS PRESENTED.
THE SOLUTION OF THIS EQUATION IS OBTAINED IN INFINITE
SERIES FORM USING THE METHOD OF FROBENIUS. FREQUENCY
EQUATIONS FOR SYMMETRICAL AND ASYMMETRICAL VIBRATIONS FOR

FIXED, AND SIMPLY SUPPORTED SOLID PLATES ARE PROVIDED.
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NOMENCLATURE®

cylindrical polar coordinates

radial, tangential, and shear strains
radial, tangential, and shear stresses
bending and twisting moments per unit
length

shear forces per unit length
mid-plane displacements in the r, 8,z
directions, respectively

Young's moduli for radial and tangen-
tial directions

Poisson's Ratios

shear modulus

structural rigidities

torsional stiffness

thickness of the plate

applied'load per unit area of plate
radius of the plate

second moments of area per unit length
with respect to the tangential and
radial axes respectively

mass density of the plate

frequency of the mode of vibration
integration constants

constants of Frobenius series

indicies of the Frobenius series
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CHAPTER I

INTRODUCTION

A. HISTORICAL REVIEW

The literature contains many analyses of transverse
vibrations of elastic orthotropic circular plates from the
standpoint of small deflection, thin-plate theory. Refer-
ences [1], [2], [3] deal with the free vibration problem
including natural frequencies and mode shapes. The effect
of rotary inertia is included in [4], and the effect of an
elastic foundation is considered in [5]. The forced vibra-
tion problem is presented in [6].

It is the purpose of this thesis to investigate the
dynamic stability of cylindrically orthotropic plates
including in-plane stability forces and the effects of

transverse and rotary inertia.

B. DEFINITION OF A CYLINDRICALLY ORTHOTROPIC MATERIAL

A cylindrically orthotropic material is defined
as one for which the elastic Constants, as referred to a
cylindrical coordinate system, are independent of the
magnitude of the radius r and remain invariant under the
following coordinate transformations: a rotation about
the z axis; a translation along the z axis; a reversal of
the z axis.

With these transformations, and the usual assump-

tions in the development of the theory of bending of thin



plates, the number of elastic constants in the cylindrical

polar coordinate form of Hooke's Law is reduced to four.

C. STATEMENT OF THE PROBLEM

For clarity of presentation, the features of this

thesis are outlined as follows:

1. Solve the equations of motion for the dynamic
stability of cylindrically orthotropic circular
plates considering transverse and rotary inertia.
2. Determine the frequency equations for symmetri-
cal and asymmetrical vibrations for fixed, and
simply supported solid plates.

3. Formulate the complete infinite series solu-
tions of thelfrequency equations for future pro-

gramming on the digital computer.



CHAPTER IT——THEORY

A. EQUATIONS OF MOTION

The equations of motion for a cylindrically ortho-
tropic circular plate, including the in-plane stability

forces and the effects of transverse and rotary inertia,

are:
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*Novozhilov, Foundations of the Nonlinear Theory of Elasticity,
Graylock Press, 1953. Ch. V, § 43, page 156.



Substituting Equations (3) and (4) into- (5) and eli-

minating the shear forces, yields
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Using the definition of cylindrically orthotropic

material, and neglecting the effects of shear stresses

‘t'-yz,,v\‘ef_, and normal stress Tii . The generalized

Hooke's Law in cylindrical polar coordinates is written as
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By matrix operations and proper integration of Equa-

tions (7), it is readily shown that,

sz':-:—‘:‘xxl"_\f‘_ +Ve(‘—?&l_+l 25w &)
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(9), (10), into Equation

Substituting Equations (8),

(6) , and assuming free vibrations (that is, g = 0), it

follows that:
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Assuming N+» + Nee - N76 + Ly , and Le are inde-

pendent of ¥ and O , Equation (11) reduces to
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B. SOLUTION OF THE EQUATION OF FREE VIBRATION

Equation (12) is solved using the method of separation
of variables. For the special case of N ¥p = 0, space and

time variables are separated in the form

b AMe AWt
WO B. %) = 5 }'u).e.)m. o 3)
: m-0

where U is the circular frequency and where n = 0,1,2,3,...
corresponds to the number of nodal diameters. Substitution
of .Equation (13) into (12) yields the following ordinary

differential equation:




4 G
d.V+%cL3Y_\3 Ay B dy
d¥3

g e
¥TArE gt gy

F LRS-y = BL}Y

d~4 5 F

¥

XY DT L (vt ) - TR mEITY (14
¥ A ¥ - g

For convenience, the change of variable, R\ = \«-x L

made. It follows then, that
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The latter differential equation is solved in infinite

series form using the method of Frobenius. Let

AxC

Y(Rj = io Bt U-@)

where (k) are the undetermined coefficients of the series,
and ¢ are the indicial roots associated with the differen-
tial equation. Substituting Equation (16) into (15)

yields the following equation:
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Assuming @o # 0, the indicial equation reads:
i
{u-n‘*- Ay Y- 1) % W™= 1) } dgh (18)

The indicial roots, of Egquation (18), are:
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The recurrence formula is:
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The four values of the index C of the indicial equation

are written
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WHERE
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The following restrictions are placed on the coeffi-

cients Qo: A4, Ay, and Q3 in order to satisfy Equation (17):
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The recurrence relationship is rewritten in terms of

6 and T as
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CHAPTER III

SOLUTIONS FOR THE CASE OF SYMMETRICAL VIBRATIONS

A. SOLUTION OF THE EQUATION OF MOTION

For symmetrical vibrations the differential equation
is independent of variable @B , thus all terms containing
N vanish. The parameter f) then equals l& , and Equa-

tion (15) reduces to
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Substituting 15 = l'\ and 7 = 0 into Equations (22)
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The recurrence formula, Equation (23), then reduces to
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The four solutions corresponding to the indicies

Casr L%, 1-%r +. 0% are respectively:
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The complete solution of Equation (24) then reads,

We, t) = irf.l\li_(.—vj-\-Cz.\lz_u)*—Cx_,\l-su)-\-(:q.\lq-(x;l sn Qﬁt}
For the special case of solid plates, Yo ¥) is inad-
missible since it yields an infinite slope at ¥ = 0.
Also for symmetrical vibrations it can be shown that
C3== 0 by using the following argument: For a section
of the solid plate of arbitrary radius < , the vertical
shear force sz_ must balance the inertial forces, since

Newton's Second Law must be satisfied; that is,
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Substituting Equations (27), (29), (30), (33), and

(34) into Equation (32), yields
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For W >0, ana k # 1, Equation (35) is satisfied by let-

ting C5 = 0. Therefore, the solution for a solid plate
becomes:

: ; 1wk

WU’,\:) = ‘ C—l\[‘]_(.xj x C.A.\[q. U)‘X e @6)

B. FREQUENCY EQUATIONS

1. Clamped Plate

The boundary conditions for a ciamped plate are:

Weca) =0 dW oy | o | 37)
AY

Inserting these conditions into Equation (36) yields

Vi coy . Ya Fci o
dN1 oy AN a o C i
¥ A 4 O
_ obrfeal (3%)

For nontrivial solutions of the constants C1 and c:4 .
the determinant of the 2 x 2 matrix must equal zero. This

leads to the frequency equation
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or, in series representation:
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in i o EEEN
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3=\
The roots of Equation (40), Yy CW)=0, give the
values of K , which when inserted into the 'frequency'
equation,

‘L/L

z
g AE

(&1)

yield values of the natural frequencies in cycles per

second for the clamped plate.

2. Simply Supported Plate

For the simply supported plate the boundary conditions

axe

7 % =
Weay =0 Mvyrca) = -D¢| dW s Vo dweny| = o LA-Z)
d~* &  ax



Conditions (42) together with Equations (36) give

- -1 A T W
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which yields the frequency equation in series form as:

3 - m
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The roots of ffequency Equation (44) are substituted
into Equation (41) and the natural frequencies (in units of
cycles/second) are then obtained for a simply supported

plate.



CHAPTER IV

SOLUTIONS FOR THE CASE OF ASYMMETRICAL VIBRATIONS

A. EQUATIONS OF MOTION

For asymmetrical vibrations the four values of the
index C are given by Equations (21) and (22). The recur-
LS 2!
rence relations by Equations (23) and P = 2mbe KT

The equations corresponding to the indicies 1+5 ;

1"5 . 1+7T , and 1-7 are respectively:
ob 23-1 +\
CiVi ¥y = Qo Z_ Yoy (K¥) (45)
=1
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where
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The solution is written

AWt

The solutions Yic¥), Yacx) - Y3 v), and VYaw) hold for values

of n=2,3,4,... . For a solid plate the deflection and
the slope must be bounded at +«=¢ . This condition is
satisfied only if Cy.=Csq =0 . For the special
case n = 1, Ly 5 L~ . ) , that is, the indicial roots

are repeated. The solution \/5(.’4) is valid but the solution
of Yaq() must be altered. The new solution \/4 (¥) contains
logarithmic terms which are unbounded at =0 . There-
fore Co=Cq = 0 must again be zero to satisfy .the

condition of finite slope and finite deflection at =0 ,

@9)



respectively. The solution reduces to

imo awt
WL'X,G,h) = [% (Cl\ll(_g)-\-C:l,Ys(Y))e ]e QSO)

B. FREQUENCY EQUATIONS

1. Clamped Plate

The boundary conditions for a clamped plate at ¥ =0

are

W) = 0 dw ca) = 0
A L (51)

Inserting these conditions into Equation (50) gives

B R
Y1 o) Ys ca) Cq 0
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¥ AY
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For nontrivial solution of constants C4 and Cls the

following .frequency equation must hold.
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2. Simply Supported Plate

The boundary conditions for a simply Shpported plate

are:

W(a) =° Marr o = —'D-r\:aW(“)*Veawcoo % a_vIco.)} O &55)

Q aY V'v aez

E
but since W()=0 then ai‘\g';.(l)"‘ o Ay Moy~
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Using these boundary conditions one obtains
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which yields
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dv*

which in turn yields the frequency equation
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SUMMARY
The solution of the differential equation for the free
vibration of a cylindrically orthotropic circular plate with
consideration of in-plane stability forces and the effect of
transverse and rotary inertia is determined. The effect of

transverse shear and normal is neglected. It is assumed

that N+ NeoN»p: L+ , and T o are independent of

¥Yand @ . The method of separation of variables is used

to solve the differential equation for the special case of
Nye= 0. The solution of the differential equation is
determined in infinite series form using the method of
Frobenius. Frequency equations for symmetrical and asym-
metrical vibrations for the special cases of fixed and sim-

ply supported solid plates are provided.



CONCLUSION

The solution of differential equation of motion in

closed form is obtained by the technique of separation of

p
\Z-
variables only if Nyp= 0. For a given value of M~ = Dg;i)
-3
the frequency equation Y (K)= 0 is solved for the roots
of K, i.e. Kl : K2 " K3 i Km . The dynamic stability

criterion states that the instability load is that value of
in-plane load at which the natural frequency of vibration
of the plate is identically equal to zero. Therefore in
order to obtain the critical load one must increment the
value of until .the value of K, = 0. This yields the
lowest critical load |y The higher order critical

loads are obtained in the same manner. The value of M«
is incremented beyond the lowest critical buckling load

until K2 =0 R =0 ., | ien P
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