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ii 

It is the purpose of this thesis to consider the 

effect of creep on the stresses in the walls of a pressure 

vessel caused by variations in temperature between the inside 

and outside walls of the vessel. A simple model whose behav­

ior is the same as the wall of the pressure vessel when sub­

jected to the imposed load is developed and equations relating 

to the solution of the problem are presented for the case when 

the material creep law is of the form £ =- K,.,(1-"' o The equa­

tions are then solved for N having values of 1 and 2. While 

the study does not attempt to solve equations for N = 3, 4, 

and 5, due to the mathemat~cal complexity of the resulting 

equations, the author does discuss the determination of the 

initial stress on the model and also develops a formula to 

determine asymptotic values for the stress on the model when 

t-1>~ for all values of No 

YOUNGSlOWN STAi £ UNIVERSITY . 
LIBRARY. 
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CHAPTER I 

INTRODUCTION 

It is the purpose of this thesis to consider the 

effect of creep on the stresses in the walls of a pressure 

vessel caused by variations in temperature between the in­

side and outside walls of the vessel. 

This subject is not a new one. Any railroad workman 

knows that couplers between freight cars will break much more 

quickly on a cold day than on a hot one. Yet this may be a 

temperature differential of approximately only fifty degrees 

centigrade. If variation in performance is so noticeable 

with such a small temperature change, then it is reasonable 

to assume there will be more radical effects on materials 

that are subjected to temperature changes in the hundreds 

of degrees, as for example, a nuclear reactor whose fuel 

elements may have a temperature of seven hundred degrees cen~ " 

tigrade inside the cladding wall. 

A look at a modern jet engine can give more insight 

into the problems of creep. The engine is very hot on the 

inside where turbines are running at a rate of 25,000 rpm 

and at the same time is rather cool on the exterior surfaceo 

As the turbine blades are heated to high temperatures they 

begin to elongate or creep, eventually touching the engine 

casingo Subjecting the engine to repeated heating and 



<;:ooling as the power se.ttings are chan, ied and t 11e engine is 

shut down and started up again reduces engine llfeo 

While the subject of creep is n,it new, it has become 

increasingly important as operating temperatures and pressures 

increase in mechanical and chemical equipment o In turbine 

blades, steam lines, high-pressure boilers, and other similar 

applications failure can result readily from creep unless 

the proper factors are considered in the original design and 

the proper materials are usedo 

Before 1925, little was known regarding the strength 

of metals at high temperatureso Ordinary tensile tests have 

been found to be of little value in determining the effects 

of creep because the problems of creep tend to be associated 

with moderate loads over long periods of time rather than 

those of higher loads, applied rapidly, as in the usual short­

time tensile testo 1 At temperatures higher than 540 C, in 

particular, the discrepancy between short-time and long-time 

tests is very markedo 2 

Worthwhile tests involving creep are very time con-

suming, taking in the neighborhood of 10,000 hours to be 

considered reliable. At the present time no truly succes sful 

method has been found for speeding up the process of creep 

testing, nor is there a method yet known for preclic: t :i. n~: 

1carl H. Samans, Metalli c Materials in Engineering 
(New York, Macmillan Company, 1963), pp. 146-147 

2carl H. Samans, Engineerinj Metals and Their Alloys 
(New York, Macmillan Company, 1949, p. 228 
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results or data ac cura tci ly, although ma t:h enat ic al analysis 

is ~ttempting, with some success, to al leviate the problem.3 

One such attempt was made by Dr . R. Hibbeler, assis­

tant professor at Youngstown State Univ ersity and T. Mura of 

Northwestern in 1968, in their paper entitled, "Viscous Creep 

Ratche tting of Nuclear Reactor Fuel Elements", which was con­

cerned with the analysis of creep ratchetting in nuclear 

reactors under the influence of variable internal pressure 

for ces and long-time cyclic thermal loadin9 0 4 In their study, 

Hibbeler and Mura used a linear creep law of the form 

( 1) 

where Kand ~were assumed known constantso They argued 

that it is possible to correlate the constants KN and N of 

a more general non-linear steady state creep law 

• 

E - KN 0-N (2) -

with those constants K and 0---0 in the linear creep law they 

used by taking a linear approximation within the region 

between the stress bounds as shown in Figo lo 

3samans, Metallic Materials, p. 147 

4R. Hibbeler and T. Mura, "Viscous Creep Ratchetting 
o-i:- Nuclear Reactor Fuel Elements", Nuclear Engi neering and 
~esigrr, (Amsterdam, North-Holland Publishing Company, 1969) 
PPo 13.1 -143 
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• 

Fig 1.--Two-point Interpolation5 

Comparing results obtained from examples using both 

the linear and non-linear forms of creep analysis for the 

bounded part of the curve, they showed that the linear 

analysis gives a close estimate of the radial strain in a 

pressure vessel. 6 

In their paper the authors suggested that a similar 

study might be conducted involving pressure vessels using, 

however, the non-linear creep law stdted in equation (2)o 

This thesis represents such an attempto 

In order to consider the stresses on the walls of a 

pressure vessel, a simple model whose behavior is the same 

is developed in Chapter IIo 

5Hibbeler, p. 140 

6Hibbeler, p. 141 
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Chapters III and IV give solutions of equation (2) 

when N =land 2. Originally the plan was to solve equa­

tion (2) for N haying Vcilucs of 1, 2, 3, 4, and 5, but this 

was modified due to the mathematical complexity for N = 3, 

4, and 5. 

Chapter V discusses the determination of the initial 

stress on the model together with the development of asymp­

totic values for the stress on the model when :.t ➔~, while 

Chapter VI gives some conclusions drawn from the analysiso 
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CHAPTER I I 

DEVELOPMENT OF THE MODEL 

Creep strain is only one of three types of strain 

which compose the total strain on a body, the other two being 

thermal and elastic str~in. Creep strain is defined as the 

plastic elongation of a material with time and is normally 

temperature-dependent; that is, the higher the temperature, 

the faster the rate of creep strain. 7 Therefore, when the 

interior surface of a pressure vessel is very hot and the 

exterior cool by comparison, the creep rate for t he material 

varies from the inside to the outside and has a much faster 

creep rate on the inside. 

In order to develop the necessary equations needed 

to consider the effect of creep strain on the stresses in 

the walls of a pressure vessel, a simple model must be pro­

duced, whose properties are similar to a section of the 

pressure vessel. Two initial assumptions must be made: 

1. The wall of the pressure vessel is thin compared 

to the diameter of the vessel. 

2. Plane strain holds. 

The stress distribution across the thickness of the 

vessel wall becomes uniform when subjected to a net internal 

7 Jo D. Lubahn and R. P. Felger, Plastic ity and Creep 
.Q.f Metals(New York, John Wiley and Sons, Inc., 1961), p. 129 



pressure and has a magnitude of 

er;. PR --= t 

PR 
2.t 

7 

(3) 

(4) 

in the hoop and axial directions, respectively, where "P" is 

the net difference between the radial contact pressure at 

the inside and outside surfaces of the wall, "t" is the thick­

ness of the wall, and 11 R" represents its mean radius. Noting 

that the value of o-a is always twice that of ~ and, there­

fore a more dominant stress, the influence of rf will be 

ignored in this study. In addition, because the wall of the 

vessel is thin, the effect of tJr can be neglectedo 

c:::J 

Fig~ 2- - Section of the Pressure Vessel 

YOUNGSTOWN STATE UNIVERSITY 
LIBRARY . 290141. 



For a i hin cyli11der having a te 11peraturc drop of A. T 

across its walls, the thermal stress di ::,tributic n is linear, 

and can be represented by the equation 

(5) 

where E, c:,'\ , and V are the modulus of elasticity, the 

coefficient of thermal expansion, and Poisson's ratio, 

respectively, for the material composing the wall of the 

pressure vesseL 

Consider a section of the wall material as shown in 

Fig. 3o The vessel wall will expand uniformly outwards due 

to the symmetry of internal pressure. Therefore, elements 

lying along radial lines through the thickness will exper~ 

ience a constant hoop straino This uniform strain behavior 

can be preserved in the model by requiring that the model 

be atlached to the fixed wall at one end and a weightless 

rigid bar guided by a roller mechanism at the other. 

Again referring to Figo 3, the difference in temper­

ature between the inside and outside surfaces of the wall 

alters the mechanical properti~s of t he wall material and 

makes it possible to divide a cross section of the w.::d l ar :ti 

into two equal pc.1:rts (?ach having a d:i.f Ee.rent coeffj d 'H1 L 'lf 

expansion. Section A, the hotter ins.i.dn part, will l, ·, t, i:: a ted 

c1s a different material, having . a different creep rate, than 

the cooler outside section Bo The correspondence of the 

material behavior in the model is preserved by requiring 



1 
?R 
t 

1 
1-\00P 
Pi< E. SSUR\:. 
STRl!:5'=> 

TfJita:RHA'­
S,1<1:s~ >"1 
McOcL.. 

9 

l 
t.fcii<~T 
~) 

1' 
ACTuAI.. 
iHE.RMAt.. STRE.~$ 
HJ PRE. SSURE. 
Vl:S!:.E.L. 

Fig. 3 - Proposed two-bar model showing the internal 

stresses as developed in the wall of the pressure vessel 
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bars A and B to have the same material properties as areas 

A and B, respectively, of the vessel wallo 

To make stress compatible with the idea of two mat­

erials, the linear thermal stress distribution can be replaced 

by an average uniform stress distribution with a value of 

O't (6) 

When comparing the pressure vessel to the model, the 

initial model stress must be equal to the initial pressure 

vessel stress. Therefore, the following equations must be 

satisfied: 

PR + 
t 

PR 
t 

(7) 

w --Z.A (8) 

The behavior of the wall material can now be repre­

sented by the two bar model which will be analyzed to deter­

mine the effects of creep on the stresses in the walls of 

the pressure vessel. 



CHAPTER III 

N = 1 

The creep law which is to be considered in this 

analysis is of the form 

• 

where Kand N a~e known constants for a given material and 

a-, represents the stress. A quick look at the formula 

tells us that the creep rate increases exponentially. 

Therefore, our analysis will be limited to values of N = l 

l.l 

(9) 

and N = 2, becau~e the resulting equations using larger value s 

of N are unreasonably complex to solve by the method used 

here. 

Consideration of our model yields several basic 

equations that are required for a further look into the 

subject: w 
equilibrium equation: -A (10) 

compatibility equation: 

.... 
total strain fo · each member: 

(l ? ) 
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in which o( T represents thermal strain, tc. is the creep 

strain as developed in equation (9), and ~ is the strain 

resulting from the pressure in the vesselo 

The preceding equations (10 through 12) make it 

possible to analyze the trend of stresses on the two sec­

tions of the model and ultimately to determine the initial 

and final stress on the wall of the pressure vessel as a 

result of the effects of creep. 

An equation for stress versus time can be derived 

by taking the derivative of equation (12) 

clE. I dcr-,; + d..lc. - - - a:t.-- E dt dt. 

and substituting equation (9) into (13) 

d.£ I da-
+ K 0-N - - -d.t E clt 

Relating equation (14) to material A,yields 

d.c.& .:: 
d.t 

\ -E 
elf'! + K tJ 
d:t A~ 

Similarly, for material B we get 

d.Es 
::. 

\ -cl.t E 

(13) 

( 14) 

(15) 

(16) 
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The derivative of equation (11) gives 

(17) 

Therefore, substituting (15) and (16) into (17) yields 

\ 

E 
(18) 

Rewriting equation (10) and taking its derivative we get 

--

w - - ~ 
B A 

d. cr-e. 
d.t 

Substitution of these values into (18) produces 

which can be rewritten as 

cl a-'$ -

K"' ( '%. - O'-',a)N - KB er-B N 
-

Taking the integral of equation (22) yields 

-E...t+C 
/- I 

(19) 

(20) 

( 22) 

(23) 
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The following represents t he solution of equation 

(23) when N = lo 

- (25) 

From a table of integrals 

: ~ L -n. (a.i+ b) <26) 

· - ~:+Ke L -n L (K,_ + \<~)~ + ( - ~ I<,_~ 

= \: + Ci 

(27) 

. , . C , -= ( 2s ) 

K~+ Ke, LY\ [cKA + I<~) ~1 - * l<A] 
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:. L 'I\ [(KA+ K )a-: - 11< >.] = 
(29) 

-¥(KA+ k ) + LY\ [ (KA+ l<Ja--;l - X kA] 

Ln Et (K+K) 
~ A ei ( 30) 

1 

(KA+ K~)us - ~ KA _ 
(KA+ KB) d"e1 - ~ K -A A 

(31) 

(32) 



w 
A 

w l<A 
A (KA +Ka ) 

-¥ (K,. +l<s) 

16 

-+ (33) 

Equation (33) gives a value for the stress on 

section B of the model as time varieso To compute simulated 

values for N, substitutions in t he equation can be made 

for the constants as indicated in Table lo 

Elastic Modulus (E) (ksi) 

Poisson's ratio ( J) 
Constant Kin cree) law 

(ino/ino-hr-ksi 
KA 

KB 

Load (W) (kips) 

Area (A) (in2 ) 

Table l 

5o2 'f... 10-S 

6.4 'I. 10-9 

10 

1.0 

In actual computation, the initial stress on section 

B (0'1il, was varied from 7 psi o to 12 psi. As "t 11 became 
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large for each value of q--Sl' o--'a was found to reach a 

final value of 8.904 psi. (See Figure 4. ) This indicates 

that section B of the model takes a stress of approximately 

9 psi. or .9 of the load placed on the wall of the cylindero 

It must be emphasized that these results do not 

correspond to any actual case, but merely indicate that the 

stress on section B will eventually reach some constant 

valueo 
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Time cr-ei-=1 ~ :z. .:.t 0-ai'!J,Cf ""'ts1"' \0 (f'-ei ~ 11. 

o.o 7.00 8.00 90000 10.00 12.00 

5.0 7.00 8.00 9.000 10.00 12.00 

10.0 7.01 8.00 9.000 10.00 12.98 

50.0 7.o5 8.03 8.997 9.97 12 .. 91 

100.0 7.11 8.05 8.995 9.94 11.82 

200.0 7.,21 8.10 8.989 9.88 11.66 

250.0 7.26 8.12 8.987 9.85 11.58 

300.0 7.31 8.15 8.985 9.82 11 .. 50 

4 00.0 7.40 8.19 8.980 9.77 ll.,36 

500.0 7.48 8023 8 .. 976 9.72 11 .. 22 

750.0 7.68 8.32 8.966 9 .. 61 10.90 

1000. 7.84 8.40 8.958 9.52 10.63 

1250. 7.9,9 8.47 8.950 9o43 10.39 

1500. 8.11 &.53 8.944 9.36 10.10 

20000 8.30 8.62 8.934 9.34 9.87 

2500. 8.46 8.69 8.926 9.16 9.62 

3000. 8.57 8.48 8.921 9.09 9.44 

5000. 8.80 8.86 8.909 8.96 9.07 

7500 • . 8.88 8.89 8.905 8.92 8.94 

10000. 8.90 8.90 8.904 8.91 8.91 

Table 2 , - Values of ~e using the constants from 
Table l 
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t1'a 
,,.t--------,---------,--------1"------

1 Sooo hr. 1sooh'(" 

Fig. , 4 - Graph of o-6 versus time for N =' l 



CHAPTER IV 

N = 2 

The following pages show the development of an 

equation for N = 2. 

Beginning with the basic equation (23) 

Let N = 2 and simplify 

2(.) 

(35) 
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Because section A of the model is hotter than section B, 

we may conclude that KA'> K5. 

(37) 

and KA) KA - KB. 

Relating the general formula ax 2 +bx+ c to equa~ 

tion (36), we can see that b2> 4ac by equation (37)o From 

mathematical tables the general equation for integrating an 

equation like ( 36), in which b2 '> 4ac, is 

o,_)l - \ ----------
Cl.)li + 'c )L or- c. i b a - L--1 a.. c. 

(38) 

2. Cl \l + b ~ f b' - y a. C 

The left side of equation (36) then becomes 



which simplifies as 

2 ~ i K~ Ka 

2. (KA-\.< g )oi - 2 K,., * -2. ~~s 
2 (KA -Kl) )rs - 2.KA * + 2.. ~~ KAK 

and the total equation is 

Ln 

C 

Ln 

KA rs - Ks oa - KA~ - :Jt1 KA Ka 
KAo-s - K~~-K"* ·+*iK~Ks 

l 
X 

2- *~ KA Ka 
--

(K~- \<i)as-1-KA~ - f~\.<~Ks 
(~A - \<i) o-r1. - KA* + ~i KA\'(~ 

22 

(39) 

. (40) 



L 

: . Et _ -=----:-;-;;;==- -1 

2-2-~iKA 

(KA-\<)~ - KA~ - ~ i KAKe 

( KA - \< ) o-; - A '.±1.. * , KA K 

23 

- (41) 

and 

__,;..__ ,___ = L [(KA-Kg)cr---a - KAW -i~ ] ~ 
KAK [(KA-K) -KA*+~~] 

(42) 

~KA-Ksloa1- KA Yi -\- -i~ J 
~K~K )r.:-1-KA ~- f ~ J 

-- KKcKa)~ - Ki.~- '16] x 
[(KA-\< )o: - l<A * -\-*~~~K J 

(43) 

((KA-Ks)as1 - k'A ~ ~~] 
(K"- l<g) 0"11 -K ... ~ -!fi KA K] 
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Therefore 

and 

[(KA-KJ'a - kA ~ + ~ K,.K X 

[
(i ~ _ ':!J.. r.;-:-:-J ¥El~ KAl<a _ 
\! A - I-< ) d"":-1 - KA A A 1 K.., Ka e -

(44) 

[(K,.-K8)~ - KA¥ -~ iK11Ka] x 

[(K11-K )~i -K,. * +tf: i~K~] 

{ (KA-Ke.)
2

~r-:1 - KA(K11-Ke.} ~ 01'1 + 

¥ (K,.-KB)1KAKe. N~ - K,. (KA-K) *r;; 
z. w2. w2. -- w -- ) 

KA A 2. - --;;:2. KA 1 K,.J<s - ~ i K, . .\<s (KA-Kr> ~ + 

w 1.. · _ w1.. ] Y:!. Et TT<AK& 
p::i. KA -fi<A K~ - A2 \.<A Ks e. A = (4s) 

t (KA-K)~~1 - K"'(\<11 -Ke)f1To1 -

A (KA -K~)i K,. K5 °Bi - KA ( k,. - K6 ) ~ ~ + 
'l.. w,._ w-i.. 

KA p;,-.. + ~ l<A·h(AKe. + ~iK,_Ks(l<,--\<s)<,,;-
W 2.. ,___ W-a. 1 
A.,_ \<. A { \< " K s - ----;;,.. Kl\ ks _) 



[ (KA -KB)\si - KA (kA - Ka)* -

*-fK" I< a ( K ... - Ka)} G's e ~ id . .,rK,-1<°11 -

t( K ... - KS) \B1 -:" KA ( KA - KlY~ -t 

~--JK ... K11 (Kt.-K 11)}6s = 

25 

- {- K ... (K11-ke fl a"e1 +~(KA - Ki},( 
(46) 



Therefore 

To sj_mplify, let c2 = KA - Kn; c3 = KA; C4 = ~~ 
Substituting, we get: 



0a = [ [ - ci. C3 ~ 1 -:- c 2. t: c <\ 6'ii + 

c/ - f C3 K } - {.- C/~~ a'si -

C w C . C t C w 1 ~ Et C. 
~ A ~a---;~ + s - 3 X Ks j e A ~ 

. [[ a fl 'w 1 ~E.t c't 
7 c2. <Tai - Ci 1....3 - A C ~ cl. J e A . 

[ c/~s1 - c 2. cs + * c4 c. it }] 

27 

J (48) 

Just as in Chapter III, the constants from Table 1 

1 were substituted in equation (48). For all values ofd'g1 , 

as "t" became large, O's gradually reached a constant value. 

(See T:able 3.) Figure 4 illustrates a graph of °B versus 

time. As was anticipated, the curve reaches an asymptote 

more rapidly for N = 2o 
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Time O"i.1. ~1 ~1=1 611=<:t ~=10 G"-31 ~ ,i 

o.o 7.00 8.00 9.00 10000 12.00 
v 

5o0 7.01 8.00 8.98 9o97 11.96 

10.0 7.02 7.98 8.95 9.94 11.93 

100 .. 0 7.13 7.82 8.58 9.40 11.27 

200.0 7.21 7.70 8.26 8.91 10.56 

250.0 7.25 7.65 8.13 8.70 10.22 

300.0 7.27 7.61 8.02 8.51 9.89 

400.0 7.31 7.55 7.84 8.21 9.31 

500.0 7.34 7.51 7.71 7.98 8.83 

750.0 7.38 7.44 7.53 7.64 8.05 

1000. 7.39 7.42 7.45 7.50 7.67 

1250. 7.40 7.41 7.42 7.44 7.51 

5000. 7.-:J-O 7.40 7.40 7.40 7.40 

10000. 7.40 7.40 7.40 7.40 7.40 

Table 3 - Values of ~B using the constants from . 

Table l 

._, 
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~ 

,1--------,--------,.-------------
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Fig. 5 - Graph of O"s versus time for N = 2 
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CHAPTER V 

INITIAL VALUE OF c: - 81 

The initial value of o-,. 1 can be determined by relat­

ing t he basic equations of equilibrium (10) and compatibil­

ity (11) t o the total strain relation (equation (12)) when 

t = 0 o At t = O, we know that te = 0 and the following 

equation Gan be obtainedo 

(49) 

(50) 

( 51 ) 

Rewriting the equilibrium equation yields 
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Substituting equation (52) into equation (51), we get 

- o-a'l \,J -,- -- - (53) 
E. A e. 

which when solved for "'ll yields 

w -A (54) 

Equation (54) can now be used to obtain an initial 

value ford"-81 o Ifc:I\~ =die and TA= TB, it follows from 

· equation ( 53) that Q"'-/81 = i o Since ,:I..A. increases with A. TA, 

we may conclude that ""I-TA. ~o<iA T ?>, . or using the constants in 

Table 1, o~A IJ, 1"'A ~ S. Values of o-g1 from seven to twelve were 

then substitutedo 

DETERMINING THE ASYMPTOTIC VALUES 

OF r-~ FOR VARIOUS , VALUES OF N 

Even though this paper does not solve equations for 

N ') 2, it is possible to conclude on the basis of the 1:HhTv,,, 

ior of the material for N = 1 and N = 2 that er··•~ will r:iven.,, 

tually reach an asymptote for each value of N. The following 

equation can be used to compute these asymptotic values 
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of 0--: (See Table 4) using the constants from Table 1. 

J -As A (55) 

I 

It appears from the values given for tr-:. in Table 4 

that the asymptotic values of~ decrease but at a decreasing 

rate as N increaseso We might also conclude from the indi­

cated values, that a material following the creep law con­

sidered in this paper will tend to let<T-s reach an asymptote 

of value just above 5 ksio for large values of N; that is, 

as N--> OQ , ~ will have a value only slightly greater 

than~ o 

Observing equation (55), if W = O, then ~sb = O, 

indicating that at t = infinity, the vessel would not have 

any stress in ;ts walls. Sections A and B of the vessel 

would creep in such a manner that fr-1. =~= O, or both would 

return to the conditions that existed before the temperature 

difference was applied. 
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N As3 

loOO 8090 

2o00 7.40 

3.00 6.68 

4.00 6.28 

5.00 6.03 

6.00 5.86 

7.00 5.74 

8.00 5. 65 

9.00 5.58 

10.00 5.52 

11.00 5.47 

12.00 5.44 

13.00 5.40 

14.00 5.,38 

15.00 5.35 

Table 4 - Asymptotes for Various Values of N 
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CHAPTER IV 

CONCLUSION 

It was the purpose of this thesis to solve the gen­

eral creep equation 

• 
K O'-'N 

N 

( 2) 

and fin~ the stress in the walls of a pressure vessel by 

means of mathematical analysis in an attempt to analyze in 

a general way the effects of creep strain on the walls of 

a pressure vesselo Useful insight into the problems of 

creep can be gained from the consideration of a practical 

situation. For example, consider a pressure vessel made of 

stainless steel which uses a value of N = 5 in the general 

creep equation considered here. Consulting Table 4 on page 

33, we find that Os, the stress on the outer section of the 

model, reaches a value of 6. 03 ksi. as t--) oo , thus deter­

mining a stress on the inner section of the wall of 3.97 ksi. 

This information can be interpreted to mean that sixty per 

cent of the stress falls in the outer one-half of the vessel 

wall. 

Because stress is actually linear across the wall 

and not a rectangular approximation as was assumed in order 

to use a model, it can be seen that the outermost part of 

the outer skin of the vessel carries the highest stress. It 

.i 
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is therefore evident th :1t flaws, nicks 1 OJ' scra ';ches in the 

materials used in construction the pre! s 1Jre ves ;el will have 

a profound effect on its performanceo 

Because this analysis solved the general creep 

equation using only values of N = 1 or N = 2, stress values 

for arbitrary times can be determined for those materials 

having a value of N = 1 or N = 2 in the creep equationo 

However, by applying equations (54) and (55) respectively, 

the initial and final stresses in the model can be estab­

lished for any value of N. Values of 0--c, as t-. oo which 

are shown in Table 4, page 33, give indications of the stress 

distribution in the walls of the vessel after long periods 

of use. The initial values are the result of the difference 

in temperature from the inside to the outside wall of the 

vessel as the hotter inside expands and stretches the out­

sideo 

The pressure in the vessel also contributes to the 

hoop stresses (equation (3), page 7). Since stresses from 

the internal pressure and the stress caused by temperature 

differences must be added together we see a higher stress 

created in the outside wall of the vesselo 
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