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ABSTRACT

THE 'ERBECT OF CREEP
ON THE STRESSES
IN THE WALLS OF A PRESSURE VESSEL
Thomas L. Orr
Master of Science in Engineering

Youngstown State University, 1972

It is the purpose of this thesis to consider the
effect of creep on the stresses in the walls of a pressure
vessel caused by variations in temperature between the inside
and outside walls of the vessel. A simple model whose behav-
ior is the same as the wall of the pressure vessel when sub=-
jected to the imposed load is developed and equations relating
to the solution of the problem are presented for the case when
the material creep law is of the form &£ = K,,,O"N . The equa=
tions are then solved for N having values of 1 and 2, While
the study does not attempt to solve equations for N = 3, 4,
and 5, due to the mathematical compléxity of the resulting
equations, the author does discuss the determination of the
initial stress on the model and also develops a formula to
determine asymptotic values for the stress on the model when

t=e for all values of N,

YOUNGSTOWN STATE UNIVERSITY 2
LIBRARY 1 EROITY ©90141
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CHAPTER I
INTRODUCTICN

It is the purpose of this thesis to consider the
effect of creep on the stresses in the walls of a pressure
vessel caused by variations in temperature between the in-
side and outside walls of the vessel,

This subject is not a new one. Any railroad workman
knows that couplers between freight cars will break much more
quickly on a cold day than on a hot one. Yet this may be a
temperature differential of approximately only fifty degrees
centigrade., If variation in performance is so noticeable
with such a small temperature change, then it is reasonable
to assume there will be more radical effects on materials
that are subjected to temperature changes in the hundreds
of degrees, as for example, a nuclear reactor whose fuel
elements may have a temperature of seven hundred degrees cen=-
tigrade inside the cladding wall.

A look at a modern jet engine can give more insight
into the problems of creep. The engine is very hot on the
inside where turbines are running at a rate of 25,000 rpm
and at the same time is rather cool on the exterior surface.
As the turbine blades are heated to high temperatures they
begin to elondate or creep, eventually touching the engine

casing. Subjecting the engine to repeated heating and



- cooling as the power settings are chanved and the engine is
shut down and started up again reduces engine life,

While the subject of creep is not new, it has become
increasingly important as operating temperatures and pressures
increase in mechanical and chemical equipment. In turbine
blades, steam lines, high-pressure boilers, and other similar
applications failure can result readily from creep unless
the proper factors are considered in the original design and
the proper materials are used,

Before 1925, little was known regarding the strength
of metals at high temperatures. Ordinary tensile tests have
been found to be of little value in determining the effects
of creep because the problems of creep tend to be associated
with moderate loads over long periods of time rather than
those of higher loads, applied rapidly, as in the usual short=-
time tensile test,l At temperatures higher than 540 C, in
particular, the discrepancy between short-time and long-time

tests is very marked, 2

Worthwhile tests involving creep are very time con-
suming, taking in the neighborhood of 10,000 hours to be
considered reliable, At the present time no tfuly successful
method has been found for speeding up the process of creep

testing, nor is there a method yet known for predicting

lCarl H. Samans, Metallic Materials in Engineering
(New York, Macmillan Company, 1963), pp. 146-147

2Carl H. Samans, Engineering Metals and Their Alloys
(New York, Macmillan Company, 1949), p. 228




results or data accurately, although mathematical analysis

is attempting, with some success, to alleviate the problem.3

One such attempt was made by Dr, R. Hibbeler, assis~
tant professor at Youngstown State University and T. Mura of
Northwestern in 1968, in their paper entitled, "Viscous Creep
Ratchetting of Nuclear Reactor Fuel Elements", which was con=
cerned with the analysis of creep ratchetting in nuclear
reactors under the influence of variable internal pressure
forces and long-time cyclic thermal loading.? In their study,

Hibbeler and Mura used a linear creep law of the form

E—c.:: K(av"avo) -(1)

where K and ¢~ were assumed known constants. They argued
that it is possible to correlate the constants Ky and N of

a more general non-linear steady state creep law

8 - KN N (2)

with those constants K and @™ in the linear creep law they
used by taking a linear approximation within the region

between the stress bounds as shown in Fig. 1.

3Samans, Metallic Matexrials, p. 147

4R, Hibbeler and T. Mura, "Viscous Creep Ratchetting
0f Nuclear Reactor Fuel Elements", Nuclear Engineering and
Design, (Amsterdam, North-Holland Publishing Company, 1969)
PPp. 131-143
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Fig l.~-Two=-point Interpolation5

Comparing results obtained from examples using both
the linear and non-linear forms of creep analysis for the
bounded part of the curve, they showed that thé linear
analysis gives a close estimate of the radial strain in a
pressure vessel.6

In their paper the authors suggested that a similar
study might be conducted involving pressure vessels using,
however, the non-linear creep law stated in equation (2},
This thesis represents such an attempt,

In order to consider the stresses on the walls of a

pressure vessel, a simple model whose behavior is the same

is developed in Chapter II,

SHibbeler, p. 140
6Hibbeler, p. 141



‘Chapters III and IV give solutions of equation (2)
when N = 1 and 2. Originally the plan was to solve equa-
tion.(2) for N having values of 1, 2, 3, 4, and 5, but this
was modified due to the mathematical complexity for N = 3,
4, and 95,

Chapter V discusses the determination of the initial
stress on the model together with the deveiopment of asymp-
totic values for the stress on the model when X—>eos, while

Chapter VI gives some conclusions drawn from the analysis.



CHAPTER II
DEVELOPMENT OF THE MODEL

Creep strain is only one of three types of strain
which compose the total strain on a body, the other two being
thermal and elastic strain. Creep strain is defined as the
plastic elongation of a material with time and is normally
temperature-dependent; that is, the higher the temperature,
the faster the rate of creep strain.’ Therefore, when the
interior surface of a pressure vessel is very hot and the
exterior cool by comparison, the creep rate for the material
varies from the inside to the outside and has a much faster
creep rate on the inside.

In order to develop the necessary equations needed
to consider the effect of creep strain on the stresses in
the walls of a pressure vessel, a simple model must be pro-
duced, whose properties are similar to a section of the
pressure vessel., Two initial assumptions must be made:

l. The wall of the pressure vessel is thin compared

to the diameter of the vessel.

2. wPlane strain holds,

The stress distribution across the thickness of the

vessel wall becomes uniform when subjected to a net internal

7J° D. Lubahn and R. P. Felger, Plasticity and Creep
of Metals(New York, John Wiley and Sons, Inc., 1961), p. 129




pressure and has a magnitude of

s =2

e (4)
iy

in the hoop and axial directions, respectively, where "P" is
the net difference between the radial contact pressure at
the inside and outside surfaces of the wall, "t" is the thick-
ness of the wall, and "R" represents its mean radius. Noting
that the value of g is always twice that of ¢§ and, there-
fore a more dominant stress, the influence of ¢§ will be
ignored in this study. In addition, because the wall of the

vessel 1s thin, the effect of § ¢ can be neglected.

Fig. 2--Section of the Pressure Vessel

YOUNGSTOWN STATE UNIVERSITY
LIBRARY '

290141



For a thin cylinder having a tenperature drop of A T

across its walls, the thermal stress distributicn is linear,
and can be represented by the equation
SN E=¢aT (5)
SN N e 1e))
where E, ¢ , and )M are the modulus of elasticity, the
coefficient of thermal expansion, and Poisson's ratio,
respectively, for the material composing the wall of the
pressure vessel,
Consider a section of the wall material as shown in
Fig. 3. The vessel wall will expand uniformly outwards due
to the symmetry of internal pressure. Therefore, élements
lying along radial lines through the thickness will exper-
ience a constant hoop strain. This uniform strain behavior
can be preserved in the model by requiring that the model
be attached to the fixed wall at one end and a weightless
rigid bar guided by a roller mechanism at the other.
Again referring to Fig. 3, the difference in temper=
ature between the inside and outside surfaces of the wall

alters the mechanical properties of the wall material and

makes it possible to divide a cross section of the wall area .

into two equal parts each having a different coefficienl of

expansion. Section A, the hotter inside part, will be tiecated

as a different material, having a different creep rate, than
the cooler outside section B, The correspondence of the

material behavior in the model is preserved by requiring
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Fig. 3 - Proposed two~bar model showing the internal

stresses as developed in the wall of the pressure vessel
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bars A and B to have the same material properties as areas
A and B, respectively, of the vessel wall,

To mgke stress compatible with the idea of two mat-
erials, the linear thermal stress distribution can be replaced

by an average uniform stress distribution with a value of

o= _-_ Extal (6)
4(1-y)

When comparing the pressure vessel to the model, the

initial model stress must be equal to the initial pressure
vessel stress. Therefore, the following equations must be

satisfied:

PREEES ol Wl T (T
E Al -V) 0 R

PR EdAT=_ W _[&T)a- (T
- 4(1-V)  2A ( 2 )E (8)

The behavior of the wall material can now be repre-
sented by the two bar model which will be analyzed to deter=-
mine the effects of creep on the stresses in the walls of

the pressure vessel,



CHAPTER III

The creep law which is to be considered in this

analysis is of the form

d.Eake £ = KG“N (9)
ak ¥

where K and N are known constants for a given material and

g~ represents the stress, A quick look at the formula

tells us that the creep rate increases exponentially.

Therefore, our analysis will be limited to values of N 1
and N = 2, because the resulting equations using largér values
~of N are unreasonably complex to solve by the method used
.here. |

Consideration of our model yields several basic
equations that are required for a further look into the

subject:

equilibrium equation: 0";‘..\. ()\‘6 = "K_ (10)

compatibility equation: g = E (1))
n-'m' @’ h A

-

o=

.

’ - .
total strain (&) for each member:

¢ = + oo + EQ Bl i

gl
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in which & T represents thermal strain, ecis the creep
a\t

strain as developed in eguation (9), and = is the strain
resulting from the pressure in the vessel,

The preceding equations (10 through 12) make it
possible to analyze the trend of stresses on the two sec-
tions of the model and ultimately to determine the initial
and final stress on the wall of the pressure vessel as a
result of the effects of creep.

An equation for stress versus time can be derived
by taking the derivative of equation (12)

dE g |= devrn e
2+ E dt ey (13)

and substituting equation (9) into (13)

d€ l de~
T e Ko (14)

Relating equation (14) to material A yields

dt E d&

d.€ M. A% + KAG-V” (15)

Similarly, for material B we get

A&y | ds N
ot R 3 K‘*




13

The derivative of equation (11) gives

_d_f.g_“_ =. dEB (17)
dt dt

Therefore, substituting (15) and (16) into (17) yields

dd'\‘ N \ &NB_‘_K N (18)
8

Bty CA0Ta Erlat e

Rewriting equation (10) and taking its derivative we get

W ‘
a~$\ = -z:- — g\_g (19)
dd\dﬂ = e i———- (20) -
dt dt

Substitution of these values into (18).produces

A% N 6~
ATF K0 == S e (W)
(21)
which can be rewritten as
W N s ) e i
K, (% - B) o KB% o (22)
Taking the integral of equation (22) yields
dur‘“a =/ Bl (g
|

K, (F-03)"-Keoz®
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The following represents the solution of equation

when No=+1L,

A o=
= 't-\-C (24)
S K "VCKA“'K> 2

A 2 Et 25
S(KA-\-K >o~+< KA +C, (25)

From a table of integrals

S a\u«b =%Lm(a\¢+b) (26)

£t ey K:\*KBL“ {_(KA*KB>6\§>J" (_.W& KA\):} (27)
e

+5:C,

r.;.—

By

At t =0, = 6"‘-’31
ol Q\ = (28)
KB\_Y\ [(K,ﬁ KB) 5 = * KA] |
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(K +\<e)o“'5-—y"\/ KA &
L“ (K:-\-KB)PEJ_"%— K J ( A KB)

| Ezt <KA+ Ks)

(KA+ Ks)f‘é‘ A Kalictia

(31)

(KA"' KB) 81— "" KA

(K v )05 - = K s

(K + K )0‘"16 2~ (K *KP’)
=L (KaKs)

(32)

—A—KAe
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W Ka
A (KA"‘KB)

Et
WS Kavie ' ot (Kn +¥5) o (33)
A (Kpa+Ke)

¥ .E_E'-(KA-\-KQ)
%1€

Og =

Equation (33) gives a value for the stress on
section B of the model as time varies. To compute simulated
values for d‘ﬁé, substitutions in the equation can be made

for the constants as indicated in Table 1.

Elastic Modulus (E) (ksi) 20 ® 103
Poisson's ratio (V) g9

Constant K in creep law
(in./in.-hr-ksi?

Ka 5.2 % 10°F
-9
KB 5.4 K10
Load (W) (kips) 10
Area (A) (inZ2) 1.0
Table 1

In actual computation, the initial stress on section

B (0~gy), was varied from 7 psi. to 12 psi. As "t" became
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large for.each value of G‘El,'f~%\NaS found to reach a
final value of 8.904 psi. (See Figure 4. ) This indicates
that section B of the model takes a stress of approximately
9 psi., or .9 of the load placed on the wall of the cylinder.
It must be emphasized that these results do not
correspond to any actual case, but merely indicate that the
stress on section B will eventually reach some constant

value,



18

Tims 0aa=1 TRa=t e T 10 e
0.0 7.00 8,00 $.000 10.00 12,00
5,0 7.00 8.00 9.000 10.00 12,00
10.0 7.01 8.00 9.000 10.00 12,98
50,0 700 8.03 8.997 9.97 12,91
100.0 P11 8.05 8.995 9.94 11.82
200.0 7,21 8.10 8.989 9.88 11.66
250,0 T:26 8.12 8,987 9.85 11.58
300.0 7.31 8.15 8.985 9.82 11,50
400,0 7.40 8.19 8.980 9.77 11.36
500, 0 7.48 8,23 8.976 9.72 11,22
750.0 7.68 8,32 8,966 9.61 10.90
1000, 7.84 8.40 8.958 9.52 10.63
1250, 7.99 8.47 8.950 9.43 10.39
1500, 8,11 8.53 8.944 9,36 10.10
2000, 8.30 8.62 8,934 9,34 9.87
2500, 8.46 8.69 8.926 9.16 9.62
3000, 8.57 8.48 8.921 9.09 9.44
5000, 8.80 8.86 8,909 8.96 9.07
7500, . 8.88 8.89 8.905 8.92 8.94

10000, 8.90 8.90 8.904 8.91 8.91

Table 1

Table 2 - Values of ~p using the constants from
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Fig., 4 = Graph of ¢~y versus time for N = 1
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CHAPTER IV
N =2

The following pages show the development of an
equation for N = 2,

Beginning with the basic equation (23)

d 0% - Et-\-c (23)

KA('AV'/‘ 7 a\—B>N pr Kao\éN

Let N = 2 and simplify

O‘(O'\’B - E 't_\. C (34)
- v
KA<—A— i °\§> gL A
A0 = e 't'\" C, (35)
Ka(x"—z%%*.r{ -Kao\éz =
dd\é - £ t-&-C(se)
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Because section A of the model is hotter than section B,

we may conclude that Kgd Kge
2.W'“
L e ) K Ry

and KA> KA - KB'

Relating the general formula ax? + bx + ¢ to equa=-
tion (36), we can see that b2» 4ac by equation (37). From
mathematical tables the general equation for integrating an

equation like (36), in which b2'y 4ac, is

AL - ‘ %
o +bx +c -\]ba“‘"flac (38)

L 2oy +b —7b*=-4HacC
20L+b +1Vb*-4ac

The left side of equation (36) then becomes

l
4 (ke 4 (KaKe) K, Wz)

| 2 (Ka=Ko o~y - zm%-z%ﬁm&
2. (K- <)a- e+ 2 TR Ko
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which simplifies as

|
i o R

LT\ [ Z(KA‘K%)J\E’; ‘ZKA% —Z.%!JKAKB
2 (KA —Ka >6~B-2~KA'\:A!' *Z'\:}."JK,\KBA

and the total equation is

A é.t. :l : S
C 2-‘ Fad) KaXs
Rt 7 (39)
LT\ Kao g —KaCE - AWE—'\AM Ka Ks
) KAO‘\'B-KB%—KAWE.-\.% KnKe

At t = 0, =0 g2




F_ s

23

SLELE | ¥
il %<3

—

L (% K)O\é AA - % TkKe
- o -— (41)
(K K }P’ KA < N KAKB

\ \— (Kp, K)O\'ﬁl KA%\L_ | Ki Ke
Z“"‘“{__{a (Ka¥e) i -K X ~ K {Ku e

[(KA'K&\)GVB AWK \%'l K“Ka]

WE.t
K, L'Yl [(K‘KQ"'V K WWB]

(42)
[(KeKodew, - K 7: a ‘A‘W]
[(KA— Kg) fyr A A \:\/ WS] ]

_ e-\g’-s‘cﬁ?@: (KK — K2 -¥ i) |
[(KA K)o % - Ky % ity \R;Fej

(43)

[(KA K>d"§1 KA KAKBJ
{(KA Ke) 5~ KAA A Ka KB]
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Therefore

.<KA— Ka)rg i kA A TER .\)_KA Ka] 4

- 1 NE KR
y_ 'V "'"E'!'. KAKB\ i

G<A-P(B><r7ﬁ,- }<A A _‘7; k;#<ﬁj e p A T

X 44

e 7 W ~

_(KA‘ KB)G-KAT T A VKaKg | X

E e
__(KA‘ K5>°\a'1— Ka AR KAKBd

and

{(KA-K Jeses 2 " KakoKe) & o5+
A KeK) TR i = Ka (KymKy) g t
K:%:"%:K{_ = R Voo (KX)o
A: K, T S K Kg }eWEtW-— (45)
{(K—K)avcv = K, (K, =K )‘KO“* e
it (5 K)Mm =K (K=K ) Res
K '.L'\'*'\‘A’-KW‘\' A‘\,—_‘O@\%O‘“
X KK - R
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{ (&, K)ml A )
YK, (KoK g eXEHTER -
K= K e = K, (KK
CETREK (K- K o5 =
=Kok ¥ o, +~V1-\!(KA"KB>X
B KKK, — R KK %e%atm L
{-K, (K “K) ¥, - .w..<K DAY
’m. e KA Aa'\' A?-K W%

-\ﬁ\/-:. KA'\!KAKa" i (KAKQ}



Therefore
o | K, (K%
5 (KA—K WK, ot Ky 3 -

X% (KoK je HetTRA -
Ke) T

To simplify, let Cp = Kp = Kp; C3 = Kp, C4 ='QKAK@‘

Substituting, we get:
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0\'§=[{— Czcs 081 - Cz% Cad\gl o

C Xca Ke} x {.—Czcs“\'al i
AT AR LU
g [{ C;d\%l o Czcs i % chz} E%EJC -
Yoy T }]

Just as in Chapter III, the constants from Table 1

7 were substituted in equation (48). For all values ofd‘gi,
as "t" became large, 0% gradually reached a constant value.
(See Table 3.) Figure 4 illustrates a graph of ¢~ versus
time. As was anticipated, the curve reaches an asymptote

more rapidly for N = 2,



Time 521 R T Tgrie ol
0.0 7.00 8.00 9.00 10,00 12.00
5.0 7.01 8.00 8.98 9.97 11.96

10,0 7.02 7.98 8.95 9.94 11.93

100,0 st 7.82 8.58 9.40 11,27

200.0 7.21 7.70 8.26 8.91 10.56

250.0 7.25 7.65 8.13 8.70 10,22

300.0 7.27 7,61 8.02 8.51 9.89

400.0 .31 7.55 7.84 8.21 9.31

500.0 7.34 7.51 971 7.98 8.83

750,0 7.38 7.44 7.53 7.64 U 8.05

1000, 7.39 742 007 .45 7.50 7.67

1250, 7.40 7.41 7.42 7.44 7.51

5000. 7.40 7.40 7.40 7,400y Lo

10000. 7.40 7.40 7.40 {740 7,40

Table 3 - Values of ¢™j using the constants from.
Table 1
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CHAPTER V

»

INITIAL VALUE OF C_Bl

The initial value of ¢34 can be determined by relat-
ing the basic equations of equilibrium (10) and compatibil=-
ity (11) to the total strain relation (equation (12)) when

t =0, At't =0, we know that '€ = 0 and the follewing

c
equation can be obtained.

T =1 0% i
" E_""’\AA (49)

Lol O ga
53 - + d\&-‘; (50}

'M
Since EA = CB’

ool
._;Oj_é‘.i‘- e S Pl d\;m + “AT; (51)

Rewriting the equilibrium equation yields

: W p
0’71 g WB:L = -7:- (Ju-/
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Substituting equation (52) into equation (51), we get

= U782 W a«ATB- %a T

& (53)
g AE B
which when solved for ™3 yields
Juia W
0\%1 = 7 (a&ATA —“AT3> 2% A (54)

Equation (54) can now be used to obtain an initial
value for@pq » Ifehy =chp and Ty = Tg, it follows from
“equation (53) that o~4 = f’: 3
we may conclude tha‘to&aﬁTA?o(BATB,.or using the constants in

Since cAp increases with &T,,

Table 1, %AO‘TA 2 5. Values of G"‘n_from seven to twelve were

then substituted,

DETERMINING THE ASYMPTOTIC VALUES
OF f‘h FOR VARIOUS. VALUES OF N

Even though this paper does not solve equations for
N 2, it is possible to conclude on the basis of the bhehave
Aior of the material for N = 1 and N = 2 that ¢~h.will Ve e
tually reach an asymptote for each value of N, The foliowing

equation can be used to compute these asymptotic values
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of ¢ (See Table 4) using the constants from Table 1.
W
As = A (55)
| + ._E»)N
Ka

It appears from the values given for €% in Table 4
that the asymptotic values of’a~—b<decrease but at a decreasing
rate as N increases, We might also conclude from the indi-
cated values, that a material following the creep law con=-
sidered in this paper will tend to let g~g reach an asymptote
of value just above 5 ksi, for large values of N; that is,
as N=p e, o~ will have a value only slightly greater
than U\Ao

Observing equation (55), if W = 0, then A_, = O,

o
indicating that at t = infinity, the vessel woulésnot have
any stress in its walls. Sections A and B of the vessel
would creep in such a manner that ¢~ =6"f= 0, or both would
return to the conditions that existed before the temperature

difference was applied.



1,00
2,00
3.00
4.00
5.00
6.00
7.00
8,00
9.00
10,00
11.00
12,00
13.00
14.00
15.00

Asp

8.90
7.40
6.68
6.28
6.03
5.86
5.74
5.65
5,58
5452
5,47
5 .44
5.40
5.38
5,489

Table 4 - Asymptotes for Various Values of N
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CHAPTER IV
CONCLUSION

It was the purpose of this thesis to solve the gen-

eral creep equation
. :
EEi — k( 0\.»“ (2)
e N

and find the stress in the walls of a pressure vessel by
means of mathematical analysis in an attempt to analyze in
a general way the effects of creep strain on the walls of
a pressure vessel., Useful insight into the problems of
creep can be gained from the consideration of a practical
situation. For example, consider a pressure vessel made of
stainless steel which uses a value of N = 5 in the general
creep equation considered here., Consulting Table 4 on page
33, we find that i the stress on the outer section of the
model, reaches a value of 6.03 ksi. as t=—» o= , thus deter-
mining a stress on the inner section of the wall of 3.97 ksi,
This information can be interpreted to mean that sixty per
cent of the stress falls in the outer one-half of the vessel
wall,

Because stress is actually linear across the wall
and not a rectangular approximation as was assumed in order
to use a model, it can be seen that the outermost part of

the outer skin of the vessel carries the highest stress. It
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is therefore evident that flaws, nicks, or scralches in the
materials used in construction the pressure vessel will ﬁave.
a profound effect on its performance,

Because this analysis solved the general creep
equation using only values of N = 1 or N = 2, stress values
for arbitrary times can be determined for those materials
having a value of N =1 or N = 2 in the creep equation,
However, by applying equations (54) and (55) respectively,
the initial and final stresses in the model can be estab-
lished for any value of N. Values of 0~y as t—» ee which
are shown in Table 4, page 33, give indications of the stress
distribution in the walls of the vessel after long periods
of use., The initial values are the result of the difference
in temperature from the inside to the outside wall of the
vessel as the hotter inside expands and stretches the out-
side,

The pressure in the vessel also contributes to the
hoop stresses (equation (3), page 7). Since stresses from
the internal pressure and the stress caused by temperature
differences must be added together we see a higher stress

created in the outside wall of the vessel,
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