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ABSTRACT

PARAMETRIC VIBRATION OF BEAM-COLUXNS

Sermsilpa Bovornkiratikajorn
Master of Science in Engineering

Youngstown State'University. Year 1973

The purpose of this thesis i1s to investigate the para-
metrio-vibrétlon of a beam-column including the effects of
shearing stress and transverse and rotary inertia,

The effect of shear on the dynamic regions of stability
and instablility of the beam-column is determined, The theory
yields the classical Mathieu-type differential equation. The
stable and unstable solutions of the equation are investigated
using the Hill-determinant method. The effect of shear stress
on the stabllity of the solutions of the equations is determined
mathematically and i1s pictured graphically., A comparison is
made with the classical solution for the special case when shear

and rotary inertla are neglected.

YOUNGSTOWN STATE UNIVERSILY
LIBRARY,
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CHAPTER I
INTRODUCTION

The problem of parametric vibration of a beam-column
leads to the classical Mathlieu-type differential equations.,
The exact solutions of such eﬁuations are in general not
possible, However, the stability characteristics of these
equations are well known and are reviewed by Stokeéé) The
regions of stabllity and instability of the parametric vibra-

tion of the beam-column due to flexural stress is investigated

by Bolotié%)

In this thesis, in addition to flexural stress, the
effects of shear stress and rotary inertia on the dynamic
motions of beam-columns are investigated., The equations of

motion are derived using the Hamilton 's principle as considerd

by Langhaaé%)'



CHAPTER II

KETHOD OF ANALYSIS

2,1 Assumptions and Co-ordinate System
The beam=column herein consldered is restricted to the

case of a simple support end conditions subjected to the load

conditions as shown in Fig. 1. below,

(¥)

)

(x)

Fig., 1 Load Condition of a Beam-Column

In addition, the following assumptions are introduced:
1. The beam=-column i1s made of a perfectly elastic
material,
2., The beam-column 1s originally perfectly stralght.
3. The axial loads are applied along the centroidal
axis of the beam-column,
The co=ordinate system refered to throughout this paper

will follow that is shown in Flg. 1.



2,2 Potential and Kinetic Energy of the Beam-Column

The total potential energy of a beam-column is the sum

of the internal strain energy plus the increase in potential

energy of the external loads. The internal strain energy is

that caused by the

shearing stresses.

Considering
1. y(x,t) =
2, ¥(x,t) =
3. yfx,t) =
Lk, @(xyt) =
5 k =

effects of internal bending, axial, and

the following geometric definitions:
the total deflection of the neutral plane
of the beam=-column, where

y(x,t) = 3(x,t) + yx,t)
the deflection of the neutral plane due to
bending.
the deflection of the neutral plane due to
shear,
the slope due to shear at the neutral plane
(1.e, @ = % )e

a geometrical parameter defined by the

k:é@.f_d_x
9 o

where A 1s the cross-sectional area, b is

equation

the width of the cross section at ordinate
¥, Q 1s the moment of the area above the
line with ordinate y about the x-axis, and
I 1s the moment of inertia of the cross
section about the x-axis. For rectangular

cross section, k = 1.20,

Then, the total potential energy of the beam-column



(see Fig. 1.) 1s
V J 1(YoB) + 256"~ 2P(8) - (DY ] dx, (1)

where y = y(x,t) and (.’. = (s(x,t).

The first term in the integrand of equation (1) is the
internal strain energy due tp bending; the second term is the
internal strain energy due t6 shear; the third term is the
external potential energy due to the axial compressive force
P; and the.fourth term is the external potential energy of the
transverse distributed load q(x,t).

When the beam=column vibrates, the kinetic energy of

the system is written as
L
T= | [#oAs+ s0100e-@)"] o @)

The first term in the integrand of equation (2) is the
kinetic energy of translational motion and the second term,
the kinetic energy of rotational motion.

The total energy of the beam=-column is

[ 2079+ g0l (Gng) - 2E1(,08)" - 396" +

o

£
i

2P(4)° + g (x.t)y ] dx . s



2,3 Hamilton's Principle

Hamilton's principle is stated as followgg)"Amons all
motions that will carry a conservative system from a given
initial configuration to a given final configuration in a
given time interval (t,t), that which actually occurs provides

a stationary value to the integral A", where

tat, 3
/AE Ldt, and L=T--1,

t=te
Thus, Hamilton's principle takes the following mathematical

form:
t=t‘
JA=J Ldsz. (4)
t=t,
Proceeding with the variational operation defined by

equation (4) and integrating the necessary terms by parts,

equations (3) and (4) yield

fIL[ {-Ez(y,u- 6.) - %6 + o1y @“)} de +

=t

{— EI (ymx 1 émc) -P (3“) i PAHH * eI(HuH; éﬂ() i %(X,f )} JH] d’(C“‘ t

j{:t‘

t=t,

{El(yxxx—@u) < P(y") " el(y‘“— @“)J Jy g

dt +

{-El(y.;@,)} J(y,-p)‘

[

t=t

a"'= 0, (5)

teto

(044 8y + {e1(y,-8)} S(y-6)



The differential equations of motion of the beam-column
are obtained by setting the coefficlients of the terms d@ and
dg in the first integral of equation (5) equal to zero. Thus,

EL(Yen= Be) + 828 - 01(Yeu=6:) = O ,ama

(6)
O .

EL (Y™ @) * P(Y) # 0AY, = 0L Yy ) * G (x:1)

The boundary conditiShs are obtained by noting the

terms of the second integral of equation (5) and take the
following forms:

@x =0, orx=1L

either
EL(Ypr @) * P(Y) - 01 (Yr@s) = O ) (7.8)
or ‘
o R dWE s jand  (7.b)
either
El(y,~a&) = 0 ) (7.0)
or >
(8.-8] =0 1) (7.4)
Rearranging equations (6.a) and (6.b) into matrix form
yields
-Ex(,x.)+ﬁA-+ez(af,) 51(;}35)-91(;,?,—}.) git) | 0

(8)

1(5m) - € (siom)  "EL(30)"P (R oAR) 1) 9t gt



Equations (8), together with the boundary conditions
from equations (7) define the complete boundary value problem
of a beam-column including the effects of shear stress and

rotary inertia.

2.4 The Effect of Shear on the Critical Static Buckling Load

The critical static puckling load of the shearing
beam=column is determined diiectiy from equation (8). The
terms involving transverse and rotary inertia are neglected
together with the transverse load., Hence, the matrix equa-

tion (8) reducesto the form

- PeiAiix] . 1
-El(gxe) + % El(@e) | |6() o
. = (9)
o d* d*
E(@)  -B(E)PE) ||y (o]

where y = y(x) and e =@(x) only.
The linear differential operator which uncouples

equation (9) is determined by notiﬁg the following determi-

nant
-E1 (e +88 El(fx—i)
As = J (10)
3 da
Er(a%) -EI(adp) - P(ax)

which simplifllies to the form

L wppl@A-phpdh fHgAord ‘
4, = EI(—,-(— P)(aﬁ) KP(ZR‘) ; (11)
Thus, the differential equation of transverse displace=-

YOUNGSTOWN STATE UNIVERSITY  <BSKE7
LIBRARY .



ment of the beam-column is written as
Asy(x)= 0 (12)
The boundary conditions for the case of a simply

supported beam-column are

E1{Y,00-8.x)] i

X=L
X=0

The solutions that satisfy exactly the above boundary

conditions.take the forms

e(x) =8 cos(4L)x , ena

' (14)
Y = Bsin(L)x
Substituting equation (14) into equation (12) yields
nw)4 P nwyz _
)~ sy (T = 0 . (15)
Equation (15) yields the value of the critical load as
- N T |
C (1+%%%) ’ (16)

where Pcrn is the critical load of the beam-column when the
effect of shear is included and Pen is the critical buckling
load when shear stress is neglected (i,e., Pen = EI(%;)Z).
Thus, 1f the effect of shear is encountered, the
critical load is decreased. This condition is examined by
(6)

Timoshenko, * When shear effect is neglected, the critical

load becomes

R, = Ra. .

A plot of the relation between P, and %? as given
n



in equation (16) is shown in Fig, 2.

1.0
= \\\
o I
ad ey
Ty
i
0.5 » [~
0.0
. KR
0,0 0.5 Tﬂ? 1.0

Fig. 2 Graphical Relationship between %ﬁand —kai"

Furthermore, both Pcrn and Pen are expressed in terms

of the slenderness ratio L as follows:

5 od

Rr u e )

L o

B o ' (17)

TE ) ;
where G = —I_L— ’ (18)

I+ T
-— E

G e 2(1tv)

and ¥ = 2knm(1+v) , | (19)

Lettingn =1, ¥ = 1.2, and Y = 0.3, the relations
between Pczh' Pen and % are represented by the curves as shown
in Fig. 3. :

For the values of 60 <_3;:_», < 120, the inclusion of

shear stress reduces the critical buckling load by an average



in equation (16) is shown in Fig., 2.

1.0
= it
\\
0.5 | [t
0,0
’ KR
0.~O 005 -—a‘—A'-'!! 1.0

Fig. 2 Graphical Relationship between %and%"'

Furthermore, both Pcrn and Pe‘n are expressed in terms

of the slenderness ratio L as follows:

r
Rr al, n'C, )
“TAE = (%)z and
" o ' (17)
g
where C = —lr ’ (18)
I+ &
- E
G = Z0e7)
and ¥ = 2kn*r*(1+7), AT

Letting n =1, k = 1.2, and Y = 0.3, the relations
between ch]' Pen and % are represented by the curves as shown
in Fig. 3. ,

For the values of 60<_§-. < 120, the inclusion of

shear stress reduces the critical buckling load by an average
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value 0,5 % for typical rolled sections. Timoshenko shows

that for bullt-up sections the effect of shear on the critical

buckling load is considerably highe§§)
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2.5 The Effects of Shear and Rotary Inertia in Free Vibration

of a Beam
The natural frequency of free vibration of a beam
including the effects of shear and rotary inertia is determined
by neglecting the axial and transverse force terms from matrix

equation (8)., This equation is rewritten in the matrix form

— 5 =1 = - - b

) el el el |[6lnh)| | O
3 3 l = (20)
£13k)-pilade)  ~E1k)-eAGR)+ olafer) | | 9let) | | ©

L - - - . .

Assuming the time function 1s harmonic, and separating

variables on space and time, it follows that
Blx) = p)e™
and y(xt) = 3(7()6(“%. o
Combining equations (20) and (21) yields

51( d‘f) +G—K -0l o El(fx—i) +0l uf(;%) (3(><) 0
J = (22)

il ) i)+ oA -l |yl | | O

The differential operator which uncouples the matrix

equation is determined as the determinant of the operator
matrix. The uncoupled equation for middle plane displacement

is written as
& ot DL - phd ¢ B i) = 0L on)

kol ¢
The term —€%4u is significant for high frequency
vibrat{gﬁ?) Thus, for low modal frequencies, this term is

neglected, and equation (23) becomes
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o pd(P s ] w0 - 0.

For the case of a simply supported-beam, equations
(13) and (14) when substituted into equation (24) yield the

natural frequency of free vibration as

SR
W, = - s Whers N w 1,2:F000s o (28)
y | 4 (T+kaf)(nl_7f)2

If .the combined effect of bending and shear stress is
neglected in comparison to unity, the term Elé% is eliminated,
Also, 1f the effect of rotary inertia is small in comparison
to unity, the term Igis set equal to zero, For the latter

conditon, 1t follows that

2 A
Wan l fﬁl(_rg)z ’ where n = 1.2'3|Q.. . (26)

If the combined effect of bending and shear stress
together with rotary inertia is neglected, one obtains the

condition

W, = W5,

n

4
where (Ué‘= EL(%?) AN N o= 1,2,3,000 . & (27)

pA
Thus, when the effects of shear and rotary inertia are

included, the natural frequency of free vibration of the beam

is reduced in all mode shapes.
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2,6 The Effects of Shear and Rotary Inertia in Free Vibration

of a Beam-Column

For the general case of free vibration of a beam-column,

the transverse force 1s neglected in equation (8) and the

following matrix equation holds:
A 3 3
El(ax;)‘fg"f‘pl (at ) EI(aix.\) B p] (fax_aafz) ﬁ(x,i} O
3 3 2 2 4
cllsw) - olfsr) £l P -eA G pllaam) | [y | (O]

Similarly, using the separation of variables technique

(28)

of harmonic time and space variables, it follows that

iot
plx.t) = gxje .
it (29)
and yit) = yx)e .
Combining equations (28) and (29) ylelds
£l (ga)+ 5 - ol ) celalm) ||e| |0 |
P T 4t g o vIE8
e1(gm) + oI 2] ~Eilgh)-Plgk) + 042" 012 (g gk |0

Proceeding in the same manner as in the previous

sections, the uncoupled equation of midplane displacement

is written as

[ei( 1K) s ph{F-5)+ S i - a0y =04 m)

; ¢
4
Neglecting the term-ﬁglil, using equations (13) and
(14), it follows that

El (nT |
_Q; = ,:)A{(Z)("> 2 (77) , where n = 1,2,3,.(32)

L
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Thus, 1t 1s seen that inclusion of shear and rotary
inertia reduces the natural frequency. Also, the effect of
axial compressive force reduces the natural frequency in all
mode shapes.

If the effect of axial force 1s neglected, the
natural frequency reduces to the form given in equation (25)
(1.e., (0n=W,) . Neglecting the combination term r2%§ in
comparison to unity and also the effect of rotational inertia

(L.e., r® is small in comparison to unity), it follows that

WO.-. )
kEI( W)

an = ’ where n = 1.2;3'000 . (33)

L

For convenience, noting equations (26) and (27),

equation (33) is rewritten as

P

.QG,, 2 wan(z- ) o where: n-md (24 Feniawie & (34)

In addition, if the term EIX ok (m’) is small in

comparison to unity, that is the effect of shear is neglected,

equations (33) and (34) reduce to the form

2 2 P
ﬂon e UJO"(I-E) y Where n = 1’2'3'.O. . (35)

This result has been investigated by Tlmoshenké?)



16

2,7 Parametric Vibration of a Beam-Column

To investigate the parametric vibration of the beam-
column, the solutionsof equation (28) are assumed to take the

forms

pi) = TBS(ALI( (1) , ana

yit) = Bsin(iLg(t)

where f, (t) and g, (t) are unknown functions of time., Equation

(36)

(36) satisfies the boundary conditions of equation (14) for
the case of a simply supported beam-column,

Combining equations (28) and (36), one obtains

— — - — r— —

- R e alTaTh  ||fw] | o
4 242 z 2.2 e (37)
ol (T D A oA ol (T | | O

L _L..A S ™

Similarly, utilizing the same technique as in the
previous sections, the uncoupled equation of parametric

vibration is written as

[%%Id‘ih{l 155 S e+ SR )ﬁw . (9

Substituting equations (16), (27), and (32) into

equation (38), ylelds

Wou d* L
[‘aef\‘dfﬁn*(’ P,)'f**“’o"( ‘?Z;)}%(U S (39)

Consider the case where the axial force P is of the

form

ko R T (40)
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that is P consists of a constant term P, and a periodically
varying term Ptcos 8t which has an amplitude of Pt and period

of %”(see Fig. 4).
P(t)

PO +Pt

time

Fig. 4 Graphical Representation of the Periodic Force P
Substituting equation (40) into equation (39), the

following modified equation is obtained:

4 % 2 2
[%%—1%4+ %’fr‘(!-,—ﬂ:‘:)(l-yzcoset)(%ﬁux,,(l-z/ucoset):lﬁn({) = QL (41)
where
= 5 - 2)

Equation (41) is simplified neglecting certain higher
order terms., The product term of shear and rotational inertia
(1,e, the term-%%i) is neglected., The combined term of shear,
rotational inertia, and axial force (i.e. the term rzgﬁ) is
neglected in comparison to unity. Further, for lower mode
frequencies, the effect of rotational inertia (i.e. the term
r2) is neglected in comparison to unity. The above approxi-
mations simplify equation (41) in the following‘ways. First-
ly, the 4th order derivative term is eliminated, Secondly,
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since the term r2%§ 1s neglected, this condition implies that
Po = Py = Ml = 0 in the coefficient of the an order derivative
term. Thirdly, the coefficient of the Oth order derivative

term remains unchanged. As a result of these simplificatioms,

equation (41) reduces to the form

(85)+ wii-B)1-guoot) | gt = 0.

which upon further algebraic simplification takes the form

e (- qpeset) | gy = 0, )
where
e W) )
T .
and U = g (45)

In addition, if the effect of shear (é%) is also

neglected, equation (43) reduces further to the classical

form
[dw 2, (1~ 2444208 6t )}g,,m:o ' (46)

where
0= ain({——%) : (47)
and ZUy = —PB‘:—B ’ (48)

as given by Bolotinsl)
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2.8 The Effect of Bending Stress on the Region of Stability

Equation (46) is the classical form as formulated by
Bolot£%)and reviewed by Stoke§?> Both equations (43) and (46)
take the forms of the Mathieu type differential equation with
periodic coefficient, They differ only in the form of the
constants which appear in the coefficients, the exact solu-
tions of this type equation'is impossible, but by using
Floquet's theory, the regions of stabllity and instability of
the beam-column are determineé%'E)

Using Floquet's theory, it follows that:"The regions
of unbounded increasing solutions are separated from the
regions of bounded solutions by periodic solutionms with
periods of T and 2T, In other words, two solutions of iden-
tical periods bound the region of instability and two solu =

1
tions of different periods bound the region of stability"f )

In investigating the effect of bending stress on thé
region of instability, equation (46) is considered.

To determine the regions of instability bounded by
the periodic solutions with a period T, the solution of the
equation (46) for any arbitary value of n is assumed to take

the form

Substituting equation (49) into equation (46) and
expanding the series, the result is set into the following

two matrices:



-

and

L

0 0
¥ e
I 166"
3 .
360°

e i

0 0
—710 o
h4s 7

‘ ﬂ: /u.
166°
-)uo ,- T:

Mo

'..!.l..‘.....l..l'.l'...l..l......

—

—

20

(50.a)

(50.b)

Next, to determine the regions of instability bounded

by the periodic solutions with the period 2T, the periodic

solution is assumed to be

9(t)

8

k=

-

3,5,..

- ket t
(aesin S + becos k)

(51)

Similarly, substituting equation (51) into equation

(46) and expanding the series, the resulting matrices are:




.
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(52.a)

(52.0)

For nontrivial solutions of Uk and bk, each determinant

of the coefficients of Ok and bk in equations (50.a),(50.b),

(52,a), and (52,b) must be zero.

From these equations the

regions of stability and instability of the beam-column are

determined by the relations between 0 and (.

The higher the

order of the determinant, the higher the accuracy of boundary

curves of the regions of stability and instabllity.

For the first approximation, in region 2T
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and f"z%z'fjh =1,
ei
or mﬁ = li-/'(o »
ik
20, = (1Ep)% (53)

If/ll°= 0,
$ =481l . (54)

Equétion (54) is interpretted physically by the con-
dition that a small periodic-varying force induces violent
lateral vibration of the beam-column if its frequency is twice
the lateral frequency of vibration of the beam-column under
constant axial force FP,,

The second approximation is given by the second order

determinants as

82
I'TE o
AAr o) 46* = 0 ’ (55.2)
R
| e,
Hg, = T (55.0)
-2/(40 l—h_z
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AV ° = 0, (55.c)

Azt

ana Qg = 5 A% (55.d)

Ploting the relation between é% and /L, 1n equations

(55.2), (55.b), (55.¢), and (55.d), the second approximation
regions of stability and instability of the beam=column are
shown in Fig. 5 where the crosshatched areas indicate regions
of instability. The graphical interpretation is given in

1
Bilotinf )The numerical results are tabulated in Table 1.
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28t] [] = stable region
1.3 V4 = Unstable region
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21
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Fig. 5 Classical Reglons of Stability

Neglecting the Effect of Shear Stress
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Table 1. Numerical Solutions of Classical Regions of Stability

Period Az kL

M, =0 b= 001 | U= 0.2 | M= 0.3 | 4 = 0k | 4 = 0.5

+ 1,000 | * 1,049 | % 1,097 | £ 1,144 | + 1,188 | * 1,230

B ok | £ 6.333| 0,327 | % o519 % oy & olech

. + 1,000 | * 0,949 | % 0,897 | x 0.846 | % 0,796 | % 0,749

e + 0,334 | £0.332| £ 0.323| % 0.308| £ 0,277 | % 0.224

4+ 0,500 | * 0,501 | % 0,503 | * 0,507 | % 0.512 | # 0,518

- + 0,250 | + 0.248 | % 0,243 | % 0,235| £ 0.223| % 0,208

2 4+ 0,500 | + 0,495 | * 0.480| £ 0,453 | % 0,412 | + 0,354
B

g2



26

2.9 The Combined Effect of Bending Stress and Shear Stress

on the Region of Stability

The influence of the shear on the natural frequency
of a vibrating beam i1s approximately three times greater than
that of the rotational inertia for a rectangular cross -
sectional beaé?) To investigate the effeot of shear stress on
the regilons of stability and’ instability, equations (43), (44),
and (45) are considered,

Noting equatioh:(44) together with equation (47), it
follows thét

Qzﬁn o O<Q:n 1 (56)
where
e
KU (57)

For the special case where shear stress 1s neglected,

the value of X is equal to unity.

Setting
B =P, (58)
and combining this definition with equation (57), one obtains
Cl_

(0<x<[)  (59)

where C; 1s that glven by equation (18).
Similarly, the ter%/u given in equation (45) is
defined using the ter?/aggiven in equation (48) in the

following form:

/J = C,/U. ; (60)
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where
G 'J}WL)’ (1< C, <o)
I~ GATE)
C, = - . : (61)
@)

The relashionships among o, P, and.% are represented
geometrically by the curves shown in Fig. 6. The relation -
ships among CZ' P, and % are represented geometrically by the
curves shoﬁn in Fig. 7.

The determinant equations defining the stability and
instablility zones including the effect of shear take the

modified form for the first approximation,

2 =/l £ ), (62)

For the second order approximations the determinant

forms are wmitten asi

FRa Gl | -C
AAT = g = O ’ ABT = e‘ - O’
SO X 20h X
Y (63)
o 6"
l'm%./l. C}U. | | o C}l/. Cyll.
AA - - O 5 and A527= - O.
y- 96" 96"
_yu. l’m: —C%/. ,—40“2: J
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Fig. 6 Geometrical Relationships among



Fig. 7 Geometrical Relationshlps among 'xL'v-' p, and Cp
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2,10 Numerical Example

A numerical example is represented to illustrate the

developed theory as well as justify the elimination of certain

higher order terms in comparison to unity.

Consider the following numerical definitions:

L
I

W ®

thus, 4

= K © ©H >

20 f't.

80 in?

20 1ng
6

30 x 10" psi.

12 x 106 psi.

1.20 for a rectangular cross-section

490 pef.

32,2 ft/secg

19/20 Ign , Where n = 1.

EI(%?)Z
o412 x 106 1bs,

0.391 x 106 lbs,

S
g

0.734 x 1o"3

The following terms are calculated from the gilven

)

vl

2,45 x g

1.34 x 10'6

BT Y

2.00 x 10'3
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In order to investigate the shear effect of the regions

of stabllity and instablility, numerical values are assigned as

followst

7= 0430,

p = 19/20, (64)
and L _ 120,

r

Substituting these values into equations (18), (59),

and (61), one obtains

¢ = 049979
oL = 0,9573 (65)

Noting equations (56), and (60), the solutions of
equation (63) are determined in the same manner as in section
2.8. The regions of stability and instability due to the
combined effect of bending stress and shear stress are plotted
in Fig. 8 (solid lines)., For convenience, the classical |
results of the effect of bending stress only is also shown

(dotted lines)., The numerical results are given in Table 2, '



52% ---- = Classical theory
1437 = Shear theory
ev)
1.2 STABLE
1.1'
100'
049
0.8
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0,61
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Fig. 8 Stability Regions Including Shear Effects
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Table 2. Numerical Solutions of

Regions of Stability Including Shear Effects

Sk -
2Q2,
Period Az
Me=0 | U= 0.1 | fo= 0.2 | U= 03| M= 0s| U, = 0.5
+ 0,979 | * 1.029| % 1,078 t' 125 12 T1a | T 1,216
A
.. *+ 0,326 | £ 0,324 | % 0,320 £ 0,313 | * 0.304| % 0.293
27
£ 6.979 | % 0,927 | ‘£ 0,878 | X 0,822 | ‘X 0,771 X 0,725
P2t + 0,326 | £ 0,324 | % 0,316 * 0.298| * 0,264 | * 0,199
+ 0,489 | % 0.490| % 0.493| % 0.497| % 0,502| % 0,509
A
: + 0.,245| % 0,243 | % 0,238| % 0.,229| % 0,216 | % 0.200
T
+ 0,489 | * 0,484 | x 0,467 £ 0,439 % 0,395| £ 0.330
Bp

€€
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CHAPTER III
DISCUSSIONS

For the parametric vibration of a beam-column, the
addition of the combined effect of shear and rotary inertia
produces a fourth-order differential equation for the time
function which has periodic coefficient. The necessary
mathematical theory to investigate the stable and unstable
solutions to such type of equation is currently not available
in the mathematical literature,

If these additional higher: order terms are neglected
in comparison to unity, that 1s, terms formed by couplihs
between shear and rotary inertia, and if the rotary inertia
terms are neglected for low frequency modal vibrations, the
differential equation for the time function reduces to a
general type Mathieu equation,

The elimination of certain terms in comparison to
unity is completely Jjustiflied by the numerical example as
represented,

The formulation of the problem in matrix-operator
form allows for an efficient and unique mean of uncoupling

the resulting equation of motlons,
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CHAPTER IV
CONCLUSIONS

The following conclusions are determined from the
resulting theoretical analysis:

1. If the combined effect of shear and rotary inertia
is included for all modal frequencles in the parametric
vibration problem, thg theory ylelds a fourth-ordexr differen-
tial equation whose solutions and stabllity characteristics
are not avallable,

2, If the effect of shear is included in the para-
metric vibration problem, the ratio of the longitudinal
frequency to the lateral frequency at which resonance occurs
is reduced. Thus, the system becomes unstable for a lower
frequency condition,

3. The size of the instabllity zones increase as the
effect of shear becomes important, since inclusion of shear
deformation reduces the geometrical and physical constraints
on the system.

L, The natural frequency of free vibration of a beam-
column is reduced 1f the effects of shear, rotary inertia,

and axial force are included,

5, For rectangular section or for typical rolled
sections, the effect of shear 1s small, However, for built-
up sections or short-stubby sections, the effect of shear
stress must be considered., The theory may be directly applied

for this condition,
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APPENDIX A

As a complement to the equations developed using the
minimum potential theorem, the following nonlinear beam-
2
theory using the variational theorem of E, Reissnér)ls formu=-

lated as a double check of the equations of motion,

A.,1 Stress Besultants and Stress Couples

A parallelopiped element of the beam with dimensions
dx, dy, and dz is subjected to the forces and couples Nyydx.

V,,dx, and My dx respectively. (See Fig., A.1)

z
s
|
: V.
Mgy | : 7
/"ly/.j/l l Myy
‘_L_%_ _'____/__.__._._._ y

N S bl s .3 wp N
. (lyl'/ / i /l G
/

/ / dy b
//// dx
X

Fig. A.1 Stresses on an Element of a Beam

The tractions Nyy. V&z, and the intensity of bending

moment Myy are expressed in terms of stress by means of the
statical relations b
2 N
Nyy = %ngdz s

~

%
Vyz = j-%yg’dz ’ (A-1)

and Mgy = j;zv{,dz.

J
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A.,2 Strain-Displacement Relations

The equations of nonlinear strain components are:

€Ew = U + U+ wW+W),
€y = Vo + HUs+W+W),
€ =  We + H(Us+ W+ W),
b (a-2)
5"3 > UH + VX * UKUg =+ Vij == wa‘g'
sz = U: + We + UslUz + WVa + WxWa,
and ng £ Ve + W3 + UyUs + V:,V: T Wsz.J

Discarding all quadratic terms except the rotation

terms wi. wi. and wxwy. equation (A-2) reduces to

& 3
€xx - U" ¥ _]2_ Wx B
6@9 X \& + %T“g ’
622 : We ,
> - (A=3)
blxy = Uy * Vx + Wny ’
6)(1 v UE * W* ’
and 632 e Vt * Wy i J
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To obtaln the appropriate stress-strain relation, the

following approximate equations are assumed:
U(x,y,z) = U(x,y) + zd(x,y) ,

V(x,y,2) = V(x,¥) + z¢(x,y) , > (A=4)

and  W(x,y,2z) = W(x,y) + sz{(x.y) + -él-zzﬁ(x.y) v

where U(x,y,z), V(x,y,z), and W(x,y,z) are the displacements
of an arbitary point (x,y,z) in the beam; U(x,y), V(x,y), and
Wix,y) are'the displacements of the corresponding point on
the middle plane;‘ﬁ(x,y) and ¢(x,y) are the changes of slope
of the normal to the middle plane along the x and y coordinate
lines respectively; and ﬁ(x.y) and ﬁ(x.y) are the contribu -
tions to the transverse normal strain.

Substituting equation (A-4) into equation (A-3) one

obtains

Exx - Exx + 2K + FC + 238)( + Z‘-ﬂ ’
Cw = éys | TR S o TR R W § o
Ezz e \X/ + ZW :
> (A=5)
D’xy X Ux_y A8 Zny " ZzExy + sty L ZAHxS,
A | A
e = K&z ® 2N+ TEW, ,

and 63’-‘ 2 UH’-‘ > ZW& ¥ "é'Z . J
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where

(A-6)

>

Exy =

=3

and
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A.3 The Components of Stress

With equation (A-1), the following components of

stress are assumed:

Nyy 12zM 9
Ll
X% = Qn
' g (A-7)
. 0,
and .jﬂ o O .
/

The other components of stress, i.e., 0z 2 and CE; are
determined by the direct solution of the three stress-equili-

brium equations which are:

'an/x @ZB_X @7;)( = 9
S i R - O RO
0%y 9 %o 0Tz s > (A=8)
T S ) (R -
e 9Tz 0re ki3
and X - 6; * # - pzs = O ° )

(0]
With the assumptions of equation (A-7), equation

(A=8) reduces to

"% R o -0

Q)
)

(A=9)

(N7 0 2/
and —@T + ?z + @ZB = O.
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A4 Force and Moment Equilibrium Conditions

Neglecting the body force and integrating equation
(A-9) with respect to z yields the traction force-equilibrium

equations as follows:

3olNa). = .0,

r (A-10)

and _8%(\/3:) + Pz ¥ O -J

The moment~equilibrium equation obtained by multiplying
the first equation of equation (A-9) by z and then integrating
through the thickness takes the form

%(Mw) g \/gz 5 O. (A-11)

A.5 Determination the Stresses Jvz and Vzz

The stress component Jy: is obtained by substituting.
equation(A-7) into the first equation of equation (A-9),

noting the force and moment relations in equations(A-10) and

(A-11), and applying the boundary condition for Jy=: at z = ‘.*121-,
This results in the following stress distribution:
- 3 Vsz ‘ TR

The same procedure is performed to the second equation

of equation (A-9) to determine %2z , and there results,

e = %[H%{%'%(’%)ﬂ- X
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A.6 Reissner 's Variational Theorem
Reissner 's theorem states that: "The equilibrium
state of a body is such that JI = 0 for arbitary variations
of U,V,W, Wxs Vjysessess Jozs The condition that 0I = O ensures
the following:
(1) The satisfaction of the differential equations
of equilibrium,
(2) the stress-displacement relations, and
(3) the boundary conditions."
Reissner"s variational theorem of three dimensional

elasticity 1s written in the form
t,
C;f fffl:(Vx/x Exx + V;yéyy'*' Qz/z€zz+ jx;xxg ¥ .7:26,(: * Zzb/gz)
b v
. -2'—{(% b+ W) - V(e + Tale + i)
24T + T + 795)}} dxdydz

5 ijf[uf + V. o+ Wf} dxdydz
v

(s e o) ey | =0 cacs

S



Wiy

where the first term in the integrand represents twice the
internal strain energy, the secondvterm - the complementary
energy, the third term - the kinetic energy, and the last

term - the work done by the external forces on the upper and

lower surfaces of the beam,

In this particular case, equation (A-14) reduces to

t, ' |
Sl =Jt'_[ f vg [{ WyCyy T Yeebaz + Zz'xs'}-z_;g{(vﬁ'ffz)

- oWt + 201475} ] dxdydz

M zfjf[v:+ W:] dxdydz
v

Mg jj{ Piw*} dxdgdz dt = 0. (A-15)
s
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Substituting equations (A-5), (A-4), (A-7), (A-12),
and (A-13) into equation (A-15) yields,

f limu% 2%52 Eys+ ZKs + ch + 236 + 24_1_)

Qs +32-22) i+ 2) fvﬁf[:—@;rms 2l + —;fv“vg)}

Nyy |2 MyyZ ol 3 % o Nyy
RS - ) - v

_JJ;B(V_W —zhv?/+%zv§/)}dxdg }d{ = (0, (A-16)
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Carrying out the integration in equation (A-16) with

respect to z in the limits of .i'% yields,

tr
o h" 4 hz h b
O(f[.ﬁ':{%(e” A 5%_]3) + Myy(Ky *+ '32_053> 4 ('Z‘)Bw "
4L

4 Ay X 4 Yy
(F)RW + Vaa(Tyet 75Ws )} ze{N +—h—il+’3hg 270Ny +

65%5% |251;V) vyz dxdy ﬁ_ﬂ hz i
(W + ,QWW+ L+ ) dxdg J j (W + b +
gz@)} dxdgjl ghes () (A-17)

Substituting the values of eyy' Cy, v %. Sy, and
Uyz' into equation (A-17) yilelds,

= | =2 A z A 4 R,
(SJ [jj[{Nyy(Vy + _2' (' ﬁWHWH 2% ; o o '6—hBWy ) e
LS
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Integrating by parts and performing the variational

operation, equation (A-18) becomes

Uj 2 () + phvﬂ}éku{-_My9 e B0 1 by +

é—%[N&N(WH ¥ %Wy) + Myy Wy + Vsi] + Ph( Wy + gjwu)‘P;} oW +

4 A 2 5 ht h"
{ ay[Nya(7Wy 3?0W )+ ys(%wy)+mvgz] 40p+24( K ZO )}JW}dxdy +

ﬁ vy LT g BN (YA Tg)}éwy,

{(%{*Wyvl‘\@*&'@,\sw) El_f,i(Mw IOPE)}éMw +

{(L//-f- Wy + Z%‘Wy) ¥ F'ﬁ[ ’2(’5'”/) Vsz} (5\/3: . ¥

{_W-Z’%W - -E-'F[-%'-gg - zzﬁ—(Nyp %'\]11’-)]} cgf;} dxdy] dt =0. (4-19)
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The boundary conditions take the followlng form:

{1

J[J.(Nya)év + Myg)5% {H,W+—L};W9)+M”w9+vﬁ}gw +

e
( f ()67 + (624)d + (0T S5 ) G+ (657)90 +
(8w, + 5w, I

2,7 Equations of Equilibrium

{Nyy(gwy) + My(Wy + %%Wg)}é *

Nl 251, + ) (3 (308) + B W |

d)(dy = O (A=20)

Since JI vanishes for arbiltary variations of JV. J}ll.
§W,eses and 6W, 1t follows that their coefficients are all .
equal to zero, This condition ylelds the equilibrium equa=-
tions below. Also, noting that Py is q(y,t), one obtains

—6%(N99) i @hvtt '

1% %(Mys) + Vg = ‘%‘ e

A A 2 A 3 A
a_ay{Nsv(ﬁWH) ” Myy(wy+ %‘W,)} = %Wﬂ , and (A-21)
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A.8 Stress-Displacement Relations
Following the same argument and setting the coeffi=-

clents of the functions N, , dM ., and dV,, equal to zero,

Yy’
the stress-displacement relations become

\

h? o h? ”:z
Uy + 20+ W HE) + s = o (Nuy= 2vhg),

Py WW +%W5W9 =, gl M m) L (A-22)

and ' % % ﬁ@ 4"J%W i E%{Eigzl%ﬂ}. 4

Integrating each equation of equation (A-22) through
the thickness of the beam, the stresses are expressed in

terms of displacement as:

= S ht — A Az
Ny = EA[T 475+ (W + %) + oo
My = EI(§ + Wy + SmWW,), ana * (a-23)
A = bt
Vyz:'Gk'(sl'J’Ws" TO'Wa)o y
where
A = bh, )
bh?
-
e 1 (A-2k)
@ .= . |
and k = -g_ .
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Similarly, the equations of equilibrium take the

following modified form:

i(NH) =~ PAvttv

%(My) " = 'PI% ,

U 2 M)+ = oA ol)-qlgd), b caces)

A

%{N,(%wy)w,(w; %"—WJ} = OlW,, ana

= A e 1 ol g
991N9(24Ws+ E%Wy)+MB<%JhW3)+‘TO\@!} ¥ 7@1(th+ W)—Iﬂ(yv{) 4

Neglecting all the quadratic terms, equations(A-23)

reduce to

iy = EA(VH) ’ \

My = EI{¢) | : (A-26)
and Vgz = %(%*Wy+%ﬁ’5) .

Substituting equation (A-26) into equation (A-25) and

arranging the resulting equation in matrix form yields

Aqq 0 0 ST 0
0 App A23 0 A25 SU 0
wl =1|_ A=-2
0 0 Mgz Ay, sl | W 0
W] |-Eayd
| 0 Ay A5y A Al W [Ta0hY



where

and

A1 = EA(%z) » QA(%t) ;

Agp = ‘EI(%) + g@- +@I(9%:

A= (W) (BB - el
3

K ¥
AM& - 24 {N3

A=-55 B
Az3= Ay =
Ags = Agp =
A3y = AL,,B =
A35= A5y =

Eus» Mgy =

row'e e * g -
aA 2]

K\9y)

h'GA

'
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(A-28)
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A.9 Special Case of the Beam-Column

In order that stability condition can be investigated
and also corresponding to the notation used in literature,
the term N is replaced by =P, Furthermore, if the effects of
transverse normal strain and axial deformation are neglected
W R e ﬁ = 0), while referring to the coordinate
system in Fig. 1, equations (A-27) and (A-28) reduce to the

matrix form

“Elfgn) - % -ll) K@ || ¥
1 . = (A-29)
Xzl (-P+ %)) -0A ) || W )
L— — L- - — o

To correlate this result with the theory derived by

using the minimum potential energy theorem, the function }0

is replaced by the following identity:

W
A >, (A-30)
where @ is the slope due to shear at the midplane,
Combining equations (A-29) and (A-30) gives
[ 9%y GA_ o0 ; RIS R B
-El{m)- % - 0l(ar) El(z0) -1 (5cw) || € 0
3 63 al ,az ot o (A"Bl)
Elze)-Olaaae) -El)-Plac)-0AGE) el || W] [k
L 0 TS Y el

Comparison of equation (A-31) with equation (8) shows

that they are identical, Thus, Relssner 's Variational

Theorem yields the same mathematical result.
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