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ABSTRACT 

PARAMETRIC VIBRATION OF BEAM-COLUENS 

Serms1lpa Bovornk1rat1kajorn 

Master of Science 1n Engineering 

Youngstown State University, Year 1973 

11 

The purpose of this thesis is to investigate the para­

metric· vibration of a beam-column· including the effects of 

shearing stress and transverse and rotary inertia. 

The effect. of shear on the dynamic regions of stability 

and instability of the beam-column is determined, The theory 

yields the classical Mathieu-type differential equation. The 

stable and unstable solutions of the equation are investigated 

using the- Hill-determinant method, The effect of shear stress 

on the stability of the solutions of the equations is determined 

mathematically and is pictured graphically. A comparison is 

made with the classical solution for the special case when shear 

and rotary inertia are neglected. 
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CHAPTER I 

INTRODUCTION 

The problem of parametri~ vibration of a beam-column 

leads to the classical Mathieu-type -differential equations. 

The exact solutions of sueh equations are: in general not 

possible.'•· H'owever, the stab1l.i ty characteristics of these 

equations are0 well known and are reviewed by Stokef~) The 

regions of stability and instability of the parametric- vibra­

tion of the beam-column· due to flexural stress is investigated 
(1) 

by Bolotin. 

In this thesis, in addition to flexural stress, the 

effec,t.s of shear· stress and rotary inertia on the dynamic 

motions of beam-columns are investigated. The equations of 

motion are derived using the Hamilton:-· • s principle as considerd 

by La.nghaaf: ) -
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CHAPTER II 

RETROD OF ANALYSIS 

2,1 Assumptions and Co-ordinate, System 

'!he· beam-oolumn herein· considered 1s re·str1cted to the 

case of a simple support: end conditions subjected to the: load 

conditions as shown in Fig. 1, below. 

(Y) 

p ------:1~~~~~~±:;::~~~~---P-----cx) 
-- ---

L 

Fig. 1 Load Condition of a Beam-Column 

In addition, the following ~ssumptions are introduced, 

1. The beam-column is made: of a perfectly elastic 

material, 

2, The beam-column· is originally perfectly straight. 

J. The axial loads are applied along the oentroidal 

axis of the beam-oolwnn. 

The co-ordinate system refered.to throughout this paper 

will follow that is shown in· Fig. 1. 
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2.2 Potential and Kinetic Energy of the Beam-Column 

The total potential energy of a beam-column is the sum 

of the internal strain energy plus the increase in potential 

energy of the external loads. The internal strain energy is 

that: caused by the effects of internal bending, axial, and 

shearing stresses. 

Considering the following geometric' definitionsa 

y(x,t) = the total deflection of the- neutral plane 

of the beam-column, where 

y(x,t) = Y°t)(x,t) + Y9'X, t) 

~(x, t)' = the0 deflection of the neut:x,al plane due to 

bending. 

ys<x, t) = the deflection of the neutral plane due to 

shear, 

4. c3<x-,t) = the slope due to shear· at the neutral plane 

(i.e, - f = Yx ). 

5. k = a geometrical parameter defined by the 

equation 

k = A(gi dy 
ij-b 

where A is the cross-sectional area, bis 

the width of the cross section at ordinate 

y, Q is the moment of the area above the 

line with ordinate y about the x-axis, and 

I is the moment of inertia of the cross 

section about the x-axis. For rectangular 

cross section, k = 1,20, 

Then, the total potential energy of the beam-column 



4 

(see Fig. 1.) is 

V = f [~EI (y,,-@./ + !¥t- ~ P(Y/ - 1()(,t).Y ] dx, ( 1) 

where y = y(x,t) and f = ~(x,t). 

The· first term in the integrand of equation (1) is the 

internal strain energy due to bending; the second term is the 

internal strain energy due to shea~, the third term is the 

external potential energy due to the axial compressive force 

P; and the.fourth term is the external potential energy of the 

tran-sveJ1se distributed load q(x·,t)'. 

When the beam-column vibrates, the kinetic energy of 

the system is written as 

L 

T = i [ ~eA.Y: + ~eI(~.1-~Y] dx. 
0 

(2) 

The first term in the integrand of equation (2) is the 

kinetic energy of translational motion and the second term, 

the kinetic: energy of rotational motion. 

The total energy of the beam-column is 

L= T-V ,or 

L J [ ~ eA.Y~ + ~e1 (1Jx1-etf- ~ E1(~ .. -~.J2- ~ ~ t + 
0 

(3) 



5 

2,J Hamilton's Principle 

Hamilton's principle is stated as follow~7)"Among all 

motions that will carry a conservative system from a given 

initial configuration to a given final con~iguration in a 

given time interval (t., t,), that which actually occurs provides 

a stationary value to the integral A!', where 

l
t•t, 

A = L dt , 
t•to 

and' L = T"· - V. 

Thus, Hamilton's principle takes the following mathematical 

forms 

(4) 

Proceeding with the variational operation defined by 

equation (4) and integrating the necessary terms by parts, 

equations (J) and (4) yield 

J::11 [-EI(y.., - ~ •• ) - ~ l3 + f 1 (Y.u - €1.t)} dt9 + 

{-£1(9.,,. -(1 .. J-P (3,.)-fA.IJ,. + ei(y.,H-~ .. ) + ~(x.i)JJ.lJ] clxdt t 

t=t, J [ EI(!j..,-(1.J + P(!j.) -eI(3,11-(Su)] J3 + 
t=t. 

L 

f- EI ( H .. -~.)} J ( 3. -(l) 0 d t + 

f (fA!Jt)Jy + {er(9,.-(lt)} J(y.-~) 0. (5) 
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The differential equations of motion of the beam-column 

are obtained by setting the coefficients of the terms d~ and 

cf~ in the first integral of equation (5) equal to zero. Thus, 

EI(y)(lClt-~icJ + G:~ -el(_yxit-~t) - 0 ,and 

El(ylUIJll(-~l(J+P(_yJ+~A~tt-er(y~tt-~H) +i(x,t) - 0. 
(6) 

The boundary conditions are obtained by noting the 

terms of the second integral of equation (5) and take the 

f ollow1ng forms a 

@x = O, or x = L 

either 

EI(!:jJCICJ(-~J() + P(~J - e1(HiciCth) - 0 (7.a) 

or 

~ - 0 ,and (7.b) 

either 

El(H_" -~") 0 (7. o) 

or 

(H)(-~) - 0 • cr.d) 

Rearranging equations (6.a) and (6.b) into matrix form 

yields 

= (8) 

• 
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Equations (8), together with the boundary conditions 

from equations (7) define the complete boundary value problem 

of a beam-column' including the effe.-cts of shear stress and 

rotary inertia. 

2,4 The:- Effect of Shear on the- Critical Stat1o- Buckl ing Load 

Tbe ari ti cal static 1?uckling load of the- shearing 

beam-column is determined directly from equation (8). The 

terms involving transverse and rotary inertia are neglected 

together with the transvers-e load. Henc-e, the matrix equa­

tion'. (8) reduaeato the form 

rl' il 
- EI ( ai"•) -t I< 

EI(/.) 

cP EI(cw) 

where y = y(x) and~ =~(x) only. 

0 

(9) 

0 

The linear differential operator which uncouples 

equation (9) is determined by noting the following determi­

nant 

(10) 

which simpliflies to the form 

(11) 

Thus, the differential equation of transverse displace-

YOUNGSTOWN STATE UNIVERStn 
LIBRARY. • 

28886, 
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ment of the beam-column is written as 

( 12) 

The boundary conditions for the case of a simply 

supported beam-column are 

H(X) i:::= 0 

EI(_yn(x)-@ix)] [~: = .0 • 

and 
(13) 

The solutions that sati.sfy exactly the above boundary 

conditions . take the forms 

~(x) = err_7T cos('I_1f)x 

H(X) = Boin(n~)X 

Substituting equation (14) into equation (12) yields 

rn1l)" P ( n1r)2 
\T - EI ( I - ~f) T 0 • 

Equation (15) yields . the value of the critical load as 

= 

(14) 

(15) 

(16) 

where Per is the critical load of the beam-column when the 
n 

effect of shear is included and Pe is the critical buckling 
n 

load when shear stress is neglected (i.e., Pe = EI(.!U0 2 ). 
n L 

Thus, if the effect of shea~· is encountered, the 

critical load is decreased. This condition is examined by 
( 6) 

T1moshenko. When shear effect is neglected, the critical 

load becomes 

A plot of the relation between Per and GA as given 
n k 



in equation (16) is shown in Fig, 2. 

1.0 
~ 

"'-.,~ 
"" 

0.5 

o.o o •. o 

'-.... 
........... 

r----.. 
r--r--

KPe.., 
GA 

-

Fi 2 G hi 1 R l ti hi b t fc(,, kPen 
g, rap ca e ·a ons p e ween Pen and GA 

9 

Furthermore, both Pcrn and P~ are expressed in terms 

of the slenderness ratio Las followsa 
r 

Pcrn n2 C, 
7T1AE. (~)2 

and 

Pen n2. (17) 

7T~E (~t , 

where C, I 

l+"C¢J1 
(18) 

E 
2(1+11') ' 

and 2kn 2 7T2 (1-tv). (19) 

Letting n = 1, k = 1,2, and ti= 0,3, the relations 

between PCJii' PEn and~ are represented by the curves as shown 

inF1g, J. 

For the values of 60 < b < 120, the inclusion of 
r 

shear stress reduces the critical buckling load by an average 



in equation (16) is shown in Fig. 2. 
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Furthermore, both Pcrn and P~ are expressed in terms 

of the slenderness ratio Las followsa 
r 

Pcrn n2 C, 
7r'-AE. (~)2 

and 

Pen n2. (17) 

7T~E (~t , 

where C, I 

I+ f¢J,. (18) 

E 
2 (l+'V') 

and 2 kn 2 7T1 (1-t-1) • (19) 

Letting n = 1, k = 1.2, and 1f' = 0.3, the relations 

between PCJii' PEn and~ are represented by the curves as shown 

inFig. J. 

For the values of 60 < b < 120, the inclusion of 
r 

shear stress reduces the critical buckling load by an average 
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value 0.5 % for typical rolled sections. Timoshenko shows 

that for built-up sections the effect of shear· on the critical 
(6) 

buckling load is considerably higher. 
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2.5 The Effects of Shear and Rotary Inertia in Free Vibration 

of a Beam 

The natural frequency of free vibration of a beam 

including the effects of shear and rotary inertia 1s determined 

by neglecting the axial and transverse force terms from matrix 

equation (8), This equation 1s rewritten 1n the matrix form 

z/ uA a1 

-El(ox~ +7<+ pl(ad 03 · ( a3 ) EI(ad -e I oXat~ ~(x.t) 0 

EI (a~:)- pI(a/:p) -El(a~:)-eA(o~:) + f1(i1x~;t') 
= 

_y(x,t) 0 

(20) 

• 
Assuming the time function is harmonic, and separating 

variables on space and time, it follows that 

and 

iw't 
= ~(x)e , 

= ,Y ( X) e iott • } (21) 

Combining equations (20) and (21) yields 

d2 GA -EI(dx•) +7< -fl cJ d3 z. d 
EI(dx') + pl W'(dx) ~(x) 0 

= (22) 
d' z. d d4 ' z. d2 

El(dx~ + pl ro(dx) -EI ( dx•) + fA u1 -pI w(d;:1) ~(x) 0 
• 

The differential operator which uncouples the matrix 

equation is determined as the determinant of the operator 

matrix. The uncoupled equation for middle plane displacement 

is written as 

[El 1:, + pAW(I+ ~~1)d~' - pAoJ + k§'1o.t] !:J(X) = 0 • (2Jl 

The term kticJ is significant for high frequency 
(J,7) 

vibration. Thus, for low modal frequencies, this term is 

neglected, and equation (2J) becomes 
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= 0 • (24) 

For the case of a simply supported-beam, equations 

(1J) and (14) when substituted into equation (24) yield the 

natural frequency of free vibration as 

il( nrr)4 
PA L , where n = 1,2,J, ••• • (25) 

If .the combined effect of bending and shear stress is 

neglected in comparison to unity, the term EI.K. is eliminated. 
GA 

Also, if the effect of rotary inertia is small in comparison 
2 

to unity, the term r is set equal to zero. For the latter 

conditon, it follows that 

_u_(mr)4 
PA L 

, where n = 1,2,J, ••• • (26) 

If the combined effect of bending and shear stress 

together with rotary inertia is neglected, one obtains the 

condition 

where z. ll(mr)4 Won = pA L , and n = 1 , 2 , J , • • • • (27) 

Thus, when the effects of shear and rotary inertia are 

included, the natural frequency of free vibration of the beam 

1s reduced in all mode shapes. 
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2.6 The Effects of Shear and Rotary Inertia in Free Vibration 

of a Beam-Column 

For the general case of free vibration of a beam-column, 

the transverse force is neglected in equation (8) and the 

following matrix equation holds, 

0 

= (28) 
0 

• 
Similarly, using the separation. of variables technique 

of harmonic· time and space variables. it follows that 

and 

(3(X) cJnt 
~ (x) eiilt • } 

Combining equations (28) and (29) yields 

( d
1

) GA i -El ctx2.+K-pln EI(d~:) + plff(/x) 0 

El(d~:) + pID
1 (tx) 

. d4 dz i z d2 
-EI(-ax4)-P(dxz) +pAn -pln (dx1) 0 

• 
Proceeding in the same manneras in the previous 

sections, the uncoupled equation of midplane displacement 

is written as 

(29) 

(Jo) 

(31) 

k 21 4 Neglecting the term TD, using equations (13) and 

(14), it follows that 

El (Mr)"'( I P ) 
pA T - Pcm 

--------~'--
1

-
1
--, where n = 1,2,J,.(32) 

I + { t( 1- df) + i 1 ( T'Y 
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Thus, it is seen that inclusion- of shear and rotary 

inertia reduces the natural frequency. Also, the effect of 

axial compressive force reduces the natural frequency in all 

mode shapes. 

If the effect of axial force is neglected, the 

natural frequency reduces to the form given 
2. 1 

(i.e., S2n~ Wn}. Neglecting the combination 

in equation (25) 

term r 2kP in 
GA 

comparison to unity and also the effect of rotational inertia 

2 (i.e., r , is small in c-omparison to unity), it follows that 

2. ( .L) 
()Jon I - Pc~ 

, where n = 1,2,J, ••• • 

For convenience, noting equations (26} and (27), 

equation (JJ) is rewritten as 

2 '2- ( p ) nG = UJa / - e> , where n = 1, 2, J, • • • • 
n n fcr'n 

In addition, if the term EI.1£..(n!") 21s small in 
'GA L 

(JJ) 

(J4_) 

comparison to unity, that is the effect of shear is neglected, 

equations (JJ) and (J4) reduce to the form 

This 

'2- '2. ( p ) ..0. 0 11 = W'o11 I - ~ , where n = 1 , 2 , J, • • • • ,e11 

result has been investigated by T1moshenki?) 

(35) 
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2.7 Parametric· Vibration of a Beam-Column 

To investigate the parametric· vibration of the beam­

column, the solutions of equation (28) are assumed to take the 

forms 

~(x,t) = n{Bcos(-°tx)fn(t) , and 

} ~(x,t) = Bsi n (n{x)Sn(t) 
(36) 

where- fn (t) and S:ri(t) are unknown functions of time. Equation 

(36) satisfies the boundary conditions of equation (14) for 

the case of a simply supported beam-column. 

Combining equations (28) and (36), one obtains 

0 

= (37) 
0 

• 
Similarly, utilizing the same technique as in the 

previous sections, the uncoupled equation of parametric 

vibration is written as 

Substituting equations (16), (27), and (32) into 

equation (J8), yields 

(38) 

(39) 

Consider the case where the axial force Pis of the 

form 

P - Po + ~ cos ei • (40) 
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that is P consists of a constant term P0 and a periodically 

va~ying term Ptoos et which has an amplitude of Pt and period 

of 2:(see Fig. 4). 

P(t) 

o....._ _________ ....._ ________ _ 
t-o<> 

time 

Fig. 4 Graphical Representation of the Periodic Force p 

Substituting equation (40) into equation (.39), the 

following modified equation is obtained1 

0 , (41) 

where 

R 
• (42) 

Equation (41) is simplified neglecting certain higher 

order terms. The product term of shear and rotational inertia 

(i.e. the term~~) is neglected. The combined term of shear, 

rotational inertia, and axial force (i.e. the term r.2kP) is 
GA 

neglected in comparison to unity. Further, for lower mod·e 

frequencies, the effect of rotational inertia (i.e. the term 

r 2 ) is neglected in· comparison to unity • . The above approxi­

mations simplify equation (41) in the following ways. First­

ly, the 4th order derivative term is eliminated. Secondly, 
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since the term r 2kP is neglected, this condition implies that 
GA 

nd 
P0 = Pt =Ji= 0 in the coefficient of the 2 order derivative 

term. Thi~dly, the coefficient of the oth order derivative 

term remains unchanged •. As a result of these simplifications, 

equation (41) reduces to the form 

which upon further algebraic simplification takes the form 

where 

and 

2 

S2c1n 
2. Pc, 

Wan ( I - Pc✓,; ) 

2f - Pt 
- Pein- Po • 

In addition, if the effect of shear (.k.) is also 
GA 

neglected, equation (4,'.3) reduces further · to the classical 

form 

where 

and 2 o= - , 2/ Pt 
Pe., - Po 

as given by Bolotin~l) 

(4J) 

(44) 

(4.5) 

(46) 

(47) 

{48) 
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2.8 The Effect of Bending Stress on the Region of Stability 

Equation (46) is the classical form as formulated by 
_ (1) (5) 
Bolotfn and reviewed by Stoker. Both equations (43) and (46) 

take the forms of the Mathieu type differential equation with 

periodic coefficient. They differ only in the form of the 

constants which appear in· the coefficients. the exact solu­

tions of this type equation is impossible, but by using 

Floquet's theory, the regions of stability and instability of 
<1,5) 

the beam-column' are determined. 

Using Floquet's theory, it follows that:"The regions 

of unbounded increasing solutions are separated from the 

regions of bounded solutions by periodic solutions with 

periods of T" and 2T'. In other words, two solutions of iden­

tical periods bound the region of instability and two solu -
(1) 

tions, of different periods bound the region of stability". 

In investigating the effect of bending stress on the 

region of instability, equation (46) is considered. 

To determine the regions of instability bounded by 

the periodic solutions with a period T, the solution of the 

equation (46) for any arbitary value of n is assumed to take 

the form 

(49) 

substituting equation (49) into equation (46) and 

expanding the series, the result is set into the following 

two matrices, 
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61 
I - _n1 jlo 0 0 0 • • • • .P2. 0 

0 

401 

04 1-'· 1-.o! -J'o 0 0 • • • • 0 

/60
1 

06 
(50.a) 

0 -p.o I- n-z. Jlo 0 • • • • 0 
0 

;lo 3602 

Oa 0 0 I- n-z. -;fo • • • • 0 
0 

I I I I I I e I I • I I I t a 8 I I I I I • I • a e • I • I I I I • • • ••• 

and 

-)). 0 0 0 • I I I I bo 0 

-;u. 02 
I- .O~ r· 0 0 • • • • • b2 0 

402 

0 J}o l- .O! ;lo 0 • • • • • 
= (50.b) 

b4 0 

/662 

0 0 1-'· I- .O.! -J'o • • • • • b6 0 

I I I I I 1 1 I 1 1 I I I I I I I e I I I I I I I I I I I I I I e I I • • • 0 

• 

Next, to determine the regions of instability bounded 

by the periodic solutions with the period 2T, the periodic 

solution is assumed to be 

3(t) = Z ( aksin k~t + bkcos kt). (51) 
k::1,3,:), ... 

Similarly, substituting equation (51) into equation 

(46) and expanding the series, the resulting matrices are: 
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07. a. I- 4ft +)Ao J}o 0 0 0 • • • • 0 
0 

-J'o 
992. 

0 0 03 0 I- 4.Q~ -J'o • • • • 

2set 
05 0 "f/o I- 4,n2. "J)o 0 • • • • 0 (52.a) 

0 

49e' 07 0 0 -J}o 1- 4ft~ -Jlo • • • • 0 

• • • • • • • • • • • • • • • • • • • • • • • • • • • 
' 

and 

ei b, /- 4f2~ -po JAo 0 0 0 • • • 0 

;Jo 
ge1 

0 b3 I- 4f2' ;Jo 0 • • • 0 
0 

258'1. 
bs 

(52.b) 
0 -}Jo 1- 4Q'l. ;Jo 0 • • • 0 

0 

4ge2 

b1 0 0 -;o I- 40~ -j)o • • • 0 

• • • • • • • • • • • • • • • • • • • • • • • • • • •• 
• 

For nontrivial solutions of OK and bl<, each determinant 

of the coefficients of OK and bK in equations (50.a), (50. b), 

(52.a), and (52.b) must be zero. From these equations the 

reg~ons of stability and instability of the beam-column are 

determined by the relations between 0 and f20 • The higher the 

order · of the determinant, the higher the- accuracy of boundary 

curves of the regions of stability and instability. 

For the first approximation, in region 2T 
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92. 
0 I - 4n: + )Ao = , 

and 
92. 

0 I - 4n2. - }lo = 
0 

or 
e2. 

I ±)Ao 4.0! = , 

_fr_ = ( l ± )'o )~. 2Do 

If )Ao= 0, 

e = 2D.o • (54) 

Equation (54) is interpretted physically by the con­

dition that a small periodic-varying force induces violent 

lateral vibration of the beam-column if its frequency is twice 

the lateral frequency of vibration of the beam-c-0lumn under 

constant axial force P0 • 

The second approximation· is given by the second order 

determinants as 

82 

f::.Ar 
I - .02. -jlo 

0 

402 0 (55.a) 
-;f/o j- fP 

0 

e,. 
1- n; 

0 ' (55.b) 
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et 

~A2.r 

I-4n:+flo -J}o 
0, 

961 

-J'o I- 4ff
0 

(55.c) 

e1 
-)Ao /- 4fl-µ. 

f::::.B2.r 
0 

0 • and - (55.d) 

-)Jo 
gei 

1- 4.0~ 

e Ploting the relation; between z.n
0 
andµ. in equations 

(55.a), (55.b), (55.o), and (55.d), the second approximation 

regions of stability and instability of the beam-column are 

sho·wn in Fig. 5 where the crosshatched areas indicate regions 

of instability. The graphical interpretation is given in 
(1) 

Bilot1n. The numerical results are tabulated in Table 1. 
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Period 

2T 

T 

Table 1. Numerica.l~~~olutions of Classical Regions of Stability 

e 
112 2ilo 

_/)0 = 0 Jlo = O, 1 ,f'o = 0.2 /o = 0,3 J-'o = o.4 .J'o = 0,5 

± 1.000 + 1.049 ± 1.097 ± 1.144 ± 1.188 ± 1.230 
A2T 

zt 0.334 ± 0.333 ± 0.327 ± 0.319 ± 0.313 ± 0.302 

± 1.000 ± 0.949 ± 0.897 ± o. 846 ±, 0.796 ± o. 749 
BzT· 

± 0.3.34 + 0.332 ± 0.323 ± 0.308 + 0.277 ± 0.224 

+ 0.500 ± 0.501 + 0.503 + 0.567 ± 0.512 ± 0.518 
AT 

± 0.250 ± 0.248 ± 0.243 ± 0.235 ± 0.223 ± 0.208 

± 0.500 + o.495 + o.4Bo ± o.453 + o.412 ± 0.354 

Br - - ~ - - -

I\) 

\J\ 
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2.9 The Combined Effect of Bending Stress and Shear Stress 

on the Region of Stability 

The influence of the shear on the natural frequency 

of a vibrating beam is approximately three times greater than 

that of the rotational inertia for a rectangular cross -

sectional be~~) To investigate the effect of shear stress on 

the regions of stability and-' instability, equations (4.3), (44), 

and (45) are considered. 

Noting equation (44) together with equation (47), it 

follows that 

(56) 

where 

o( Pct'n - P. 
Pen - Po • 

(57) 

For- the special case where shear · stress is neglected, 

the value of o<.. 1s equal to unity. 

Setting_ 

(58) 

and combining th1s · def1n1tion with equation (57), one obtains 

o( = Ci - p 
I - p 

where c1 is that given. by equation· (18). 

Similarly, the term)-' given in equation 

defined using the term_)-'0 given in equation (48) 

following forms 

(45) is 

in the 

(59) 

(60) 
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where 

or 

C, = ~. [1 -(f)'.(~)J . (61) 

The relashionships among o(, p, and Lare represented 
Jr. 

geomet~ically by the curves shown in Fig. 6, The relation· -

ships among c2 , p, and Lare represented geometrically by the 
r 

curves sho1m in Fig. 7. 

The determinant equations defining the stability and 

instability zones including the effect of shear take the 

modified form for the first approximation, 

e ( )¼ 2.Q
0 

= o/... I ± Cijlo • (62) 

For the second order approximations the determinant 

forms are w,mtten as1 

e2 
1- o<..o: -Cf'o -c,. 

11 = - 0 /J6T = = 0, -
' Ar 4e• 6' 

-C,)I. I - cxn! -2Cf. 1- o(.Q: 

(6J) 

e .. 
1-.w.a!+cl'· -Cf, e· 

I-40(0:-Cfo -cy1. 
j = =· 0 

' and f1s2r = = o. 
Air 

90' 902 

-sP· {-4o(O! -Cf. I-4o(fl! 
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2.10 Numerical Example 

A numerical example is represented to illustrate the 

developed theory as well as justify the elimination of certain 

higher order terms in' comparison to unity. 

thus, 

data: 

Consider the following numerical definitions1 

L = 20 ft. 
4 

I = 80 in. 

A= 20 2 in. 

E = JO X 10
6 

psi. 

G = 12 X 10
6 

psi. 

k = 1.20 for a rectangular cross-section 

~. = 490 pcf • 

g = .32.2 ft/sec~ 

p = 19/20 P8 ' 
where n = 1. 

n 

Pe = EI (.!1?[) 2 

1 L 
10

6 
= o.412 X lbs, 

p = 0.,391 X 
6 

10 lbs. 
~, 

p = B7 
= 0.7,34 X 10-J 

The following terms are calculated from the given 

' 10-10 ~1 = 2,45 X: 

2 kP(mrf ((TAT = 1,J4 X 10-6 

r(ntt 6,86 X 
-4 

= 10 

kEl (Hf 
GA L 

= 2,00 X 10-.3 
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In order to investigate the shear effect of the regions 

of stability and instability, nume~ical values are assigned as 

follows1 

and 

Y= 0 • .30, 

P = 19/20, 
L - = 120. r 

(64) 

Substituting these values into equations (18), (59), 

and (61), one obtains 

<,_ = 0.9979 

ol = 0.-9.57.3 

C.Z= 1. 0446 . 

(65) 

Noting equations (56), and (60), the solutions of 

equation (6.3) are determined in the same manner as in section 

2.8. The regions of stability and instability due to the 

combined effect of bending stress and shear stress are plotted 

in Fig. 8 (solid lines). For convenience_, the classical 

results of the effect of bending stress only· is also shown 

(dotted lines). The numerical results are given in Table 2. 
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Table 2. NUJ11erical Solutions of Regions of Stability Including Shear Effects 

_e_ 

~2 
2n. 

Feriod 
.,,)Ao = 0 j,'o = 0,1 J.'-o = O. 2 .J,lo = O. 3 _)lo= o.4 )'o = 0,5 

t 0.979 t 1. 029 ± 1.078 ± 1.125 ± 1.171 ± 1.216 
A2T 

± 0.326 ±_ o. 324 ± 0.320 ± 0.313 ± 0.304 + 0.293 
2T 

± 0.979 + o. 927 ± 0.874 ± o. 822 ±:. o. 771 ± o. 724 
~T 

± 0.326 ± 0.324 ± 0.316 ± 0.298 ± 0.26{} ± 0.199 

+ o.489 ± o.490 ± o.493 + o.497 ± 0 • .502 + o. 509 
AT 

+ 0.245 ± 0.243 ± 0.238 ± 0.229 ± 0.216 ± 0.200 
T 

± o.489 + o.484 ± o.467 ± o.439 ± 0.395 ± 0.330 

Br - - - - - -

\,,A) 
\,,A) 



CHAPTER III 

DISCUSSIONS 

34 

For the parametrio vibration of a beam-column, the 

addition of the combined effect. of shear. and rotary inertia 

produces a fourth-order differential equation for the time 

function which has periodic coeffioient. The necessary 

mathematical theory to investigate the stable and unstable 

solutions to such type of· equation is currently not available 

in the mathematical 11 terature;. 

If these additional higher, order terms are neglected 

in comparison to unity, that 1s, terms formed by coupling 

between shear · and rotary inertia, and if the rotary inertia 

terms are neglected for low frequency modal vibrations, the 

differential equation for the time function·• reduces to a 

general type Mathieu equation. 

The elimination of certain terms in comparison to 

unity is completely justified by the numerical example as 

represented. 

The formulation of the problem in matrix-operator 

form allows for an efficient and unique mean of uncoupling 

the resulting equation of motions. 



CHAPTER IV 

CONCLUSIONS 

The following conclusions a:re determined from the 

resulting theoretical analysis1 

35 

-:1, If the combined effect of shea~ ·and rotary inertia 

is included for all modal frequencies in the parametric 

vibration problem, the theory yields a fourth-order differen­

tial equation whose solutions and stability characteristics 

are not available. 

2. If the effect of shear is included in the para­

metric vibration problem, the ratio of the longitudinal 

frequency to the lateral frequency at which resonance occurs 

is reduced. Thus, the system becomes unstable for a lower 

frequency condition, 

3, The size of the instability zones increase as the 

effect of shear becomes important, since inclusion of shear 

deformation reduces the geometrical and physical constraints 

on the system. 

4. The natural frequency of free vibration· of a beam­

column is reduced if the effects of shear, rotary inertia, 

and axial force are included. 

5. For rectangular section· or for typical rolled 

sections, the effect of shear is small. However, for built­

up sections or short-stubby sections, the effect of shear 

stress must be considered. The theory may be directly applied 

for this condition, 
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APPENDIX A· 
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APPENDIX A 

As a complement to the equations developed using the 

minimum potential theorem, the following nonlinear beam-
(2) 

theory using the variational theorem of E. Heissner 1s formu-

lated as a double check of the equations of motion. 

A.1 Stress Resultants and Stress Couples 

A parallelopiped element of the beam with dimensions 

dx, dy, and dz is subjected to the forces and couples Nyyd.x, 

Vyzdx• and Myydx respectively. (See Fig. A.1) 

z 

X 

Fig. A.1 Stresses on an Element of a Beam 

The tractions NYY' Vyz• and the intensity of bending 

moment Myy are expressed in terms of stress by means of the 

statioal relations 

Nyy = 
J?z ~ 0-:'j dz 

' 
Vyz = J!7;idz , {A-1) 

and Myy == j: z ~dz. 
~ 



J8 

A'.2 Strain-Displacement Relations 

The equations of nonlinear· strain components area 

Cxx = Ux + t( u! + v: + w,.'L) -, 

E~~ - ½ + I ( L 2 u.lJ + 
2 2) ½ + w, , 

Eu Wz . I ( 1. w:), = + z:: u: + Vz + 
(A-2) 

ox~ ::; U_y + Vx + UxU~ + VxVJ + WrW!J, 

Oxi = Uz + Wx + UxUi + V~V. + WxWz, 

and o~z - v'i. + w~ + U~Ua + V'jV~ + W!JWz.. -

Discarding all quadratic terms except the rotation 

terms 
2 

wx• 
2 

Wy, and wxwy, equation (A-2) reduces- to 

Cxx = u~ + J_ w/· 
2 , 

c,l;J~ = v'j + J_ 2 

2 w:J , 

€a - Wi, -

(A-J) 

ox!) = uj + Vx + WxW~' 

Oxz = u! + Wx , 

and o~l = Vz + w!J. 
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TO obtain the appropriate stress-strain relation, the 

following approximate equations are assumed1 

U(x,y,z) = U(x,y) + zp(x,y) , 

V(x,y,z) a V(x,y) + zij(x,y) , (A-4) 

and W(x,y,z) 
A 2~ 

= i(x,y) + z~(x,y) + ~z _W{x,y) , 

where U(x,y,z), V(x,y,z), and W(x,y,z) are the displacements 

of an arbitary point (x,y,z) in the beam: U(x,y), V(x,y), and 

W(x,y) are the displacements of the corresponding point on 

the middle plane; f>(x,y) and f(x,y) are the changes of slope 

of the normal to the middle plane along the x and y coordinate 
" ~ lines respectively; and W(x,y) and W(x,y) are the contribu -

tions to the transverse normal strain·. 

Substituting equation: (A-4) into equation (A-.3) one 

obtains 

Exx Exx + iKx + r..2 Cx + lSx + z'Tx , 

E~~ E~!J + zK~ + lC!J + z3S.'j + z4~ ' 

" ~ 

Eu w + r.W 
(A-.5) 

ox~ ox~ + zDx!J + iEx~ + i~~ + z4Hx~, 

ou " * 
Oxz - + "r. W~ + J_,t-w 

2 X ' 
" * 0~1: + and 6-!:ji! - iWH + ztW~ • 
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where 

fxx Ux + 1-2 = 2Wx , 

Kx ~ 
- A = + w.w,. • 

Cx = I - ~ 
2( Wr.Wx + "2) Wx , 

A ~ ; 

Sx I = 2 WxWx • 

Tx 
I ~ i = aw)( 

' 

E!l~ V1;1 + l-2. 
- zWy • 

w 
- A 

K!J = + w'jw':j 
' 

C~ 
I - ~ A2) = 2 (W!JW!J + w!j , 

s':j 
I " ~ 

(A-6) = 2W!:JW!J 

1 
I ~ 

= B w':j , 

ol(':j = Vx + u!i + WxW!J , 

Dx_y - 1~ + fx + - " " w'l.w';J + WxW'j • 
I - ~ " " " I" -

Ex':j = 2 W,.W~ + w,.w!j + 2 WxW3 , 

I " ~ ~ " 
Fxy = 2 ( w.w!J + WxW~) • 

Hx~ 
I ~ ~ 

= 7:;Wx W!J 
' 

Oxz = f + Wx • 

and O_yz = r + w':j • 



A.J The Components of Stress 

With equation (A-1), the following components of 

stress are assumed• 

~ N~~ + 12i M.!1.Y 

h h,3 

~ 0 
' 

~ 0 

and X 0 . 
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(A-7) 

The othen components of stress, i.e., r:r{ z and :l;z are 

determined by the direct solution of the three stress~equili-

brium equations· which area 

'ov(x 
+ 'oXx + 'alx + pXe. 0, 'oX ~ 82 

?/Jxy 
+ a~!J + aTzy + rYs 0, (A-8) ax arr- aT 

?J'J;z + aXz 
+ artr + pl& 0 • and oX a~ '<Ji: 

With the assumptions of equation (A-7), equation 

(A-8) reduces- to 

0~ + ?/Z./j + pYs 0, 
'o~ '<)l. 

(A-9) 

and toll + B~ + f>Zs 0. 
'o~ 'al 
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A.4 Force and Moment Equilibrium Conditions 

Neglecting the body force and integrating equation 

(A-9) with respect to z yields the traction force-equilibrium 

equations as follows, 

0, 
(A-10) 

and + = o. 
The- moment-equ111br1um equation obtained by multiplying 

the first equation of equation (A-9) by z and then· integrating 

through the thickness, ~keu the: form 

0. (A-11) 

A.5 Determination the Stresses Xr. and rrz"t 
The stress component J.j-a 1s obtained by substituting . 

equation•(A-7) 1nt·o the first equation of equation (A-9), 

noting the force and moment relations in. equations(A-10) and 

(A-11), and applying the boundary condi t1on• for .7;~ at z = : ~. 

This results 1n the following stress distr1but1ona 

X. 3 V'.:Jz [ j _ ( Z ) ] 
2h X . (A-12) 

The same procedure is performed to the second equation 

of equation (A-9) to determine r;,:z, and there results, 

(A-13) 
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A.6 Re1ssner · 's Variational Theorem 

Reissner· • s theorem states that a "The equilibrium 

state of a body is suoh that dI == 0 for arbitary variations 
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of U, V, W, V:.Y., ~~,,.,.,, J;z • The cond1 tion that JI = 0 ensures 

the followinga 

(1) The sat1sfaot1on of the differential equations 

of equilibrium, 

(2) the stress-displacement relations, and 

(J) the boundary conditions." 

Reissne»· 's variational theorem of three dimensional 

elasticity 1s written in the form 

+ 2(1 +'V')( x; + z: + .x:)}] dxd_ydz 

--f]JJ[ u: + v,' + w:] dx_dydz 
V 

-Jf {( p,V + p:v'+ p;wj+ ( p; u-+ p;v-+ p;w-)] dxd!J] df = 0 . (A-14) 

6 



where the first term in, the integrand represents twice the 

internal strain energy, the second term - the complementary . 
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energy, the third term - the kinetic· energy, and the last 

term - the work done by the extemial forces on the upper and 

lower surfaces of the beam. 

In this particular case·, equation (A-14) reduces to 

-ff ff [Vt'+ Wt'] dxd9dr. 
V 

JJ [ ~w+ j dxd!jdz] di 
6 

0. (A-15) 



Substituting equations (A-5), (A-4), (A-7), (A-12), 

and (A-13) into equation (A-15) yields, 

-ff ff[(¼ +z f.)' + ( w, + zW, + f~J] dxd!Jdr 

V 

45 
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Carrying out the integration in equation {A-16) with 

respect to z in the limits of.±~ yields, 

- JS { p.(W + ~ w + 
s 

g• W ) j dxd y] dt 0. (A-17) 

Substituting the values of Eyy' CY, TY, Ky, SY, and 

O yz• into equation, (A-1 ?) yields, 
lz 

Jj U)[ {N9i(V9 + i W9' + ;; wA + 21 W; + 6~; 09•) + 

- ~ .3h'L " ~ ) n " hi ~ . 
M!l~(~ + W':JW'j + 40 W'jWy + (y)pz.W + (10 )PzW + 

( - h2. ~ ) ) I l l 12M 2 13hl. 'I i/1 + IA, + w l N + ""' + _ R:t -
V;31: T vv~ 40 ~ J - 2Eh .':J'j h1 35 i 

jj{ p,(W + fW + f ~)] dxdy] dt = 0. (A-18) 

,s 



Integrating by parts and performing the variational 

operation, equation (A-18) becomes 

t1 

J[f [[- 0t(Ny,) + ph¼1} Jv + {-a1(My,) +Vj, + f W1} 6f + 

. . 

Jr([/(- 1-z h
2

-~ h'"2 h4 ~z) '( ~ )jc j Vy+ 2 w_j + 24 w_jw~ + 24 w, + 640 w~ -En N,~-zP, oNy~ + 

s 

47 

(A-19) 
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The boundary conditions take the following forms 

+ 

2.;7 Equations of Egu111br1um 

S1n-oe cfr vanishes for arb1tal1y var1at1ons of lv, 6f' 
r~ 6w, ••• , and ow, 1t follows that thei~' coefficients are all . 

equal to zero. This condition yields the · equilibrium equa­

tions below. Also, noting that Pz is q(y,t), one obtains 
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A •. 8 Stress-Displacement Relations 

Following the same argument and setting the coeffi­

cients of the, funot1ons · dNyy• JMyy• and Jvyz equal to zero, 

the stress-displacement relations become 

(A-22) 

and 
_If 12 ( l+'V') \I. l 

- Eh 5 !jJ: J , 

Integrating each equation of equation, (A-22) through 

the thickness of the beam, the stresses are expressed in 

terms of displacement as, 

(A-2J) 

wher.e-

A - bh , -

l 
bh3 

12 ' 
E (A-24) 

. G 2(1+v), 

k 6 
and 5 • 



Similarly, the equations of equilibrium take the 

following modified form, 
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(A-25) 

Neglecting all the quadratic terms, equations(A-23) 

reduce to 

N~ = EA( V~) , 

M~ = EI (t) , (A-26) 

v~i GA ( - h1 ~ ) - k f + Wy + 40W~ and - • 
su.bst1 tut1ng equation (A-26) into equation (A-25) and 

arranging the resulting equation 1n matz,ix form yields 

A11 0 0 o · 0 V 0 

0 A22 A23 0 A2.5 Y1 0 

0 A32 A33 A34 A3.5 w -i(y,t) (A-27) 

/\ 

0 0 A43 A44 A45 w 0 

~ h" 
0 A52 A53 A.54 A5 -40~(y,t) 

• 
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where 

A11 = ( ~· ( ~·) EA ~,) - eA 3tt , 

A22 = ( a·) GA aL 
-Er ~y 1 + T + eILw) ' 

A:33 = GA) ( 01

) c~N; )( ~) (1) ( N_'j + k g_yt + ag- ay - f A ot' ' 

A44 = ht [ a' (3N~)(a) 1 ('l) 
24 Ni~HJ + ay a~ J-rl ;w • 

A55 = (. h' h~ uA)(e') h~ (~)(L) .3h
1(I) 

320N./ 16OOK 'J,Y' + 1920 g_y ~y -BO 811 
• 

(A-28) 

A23 = A32 = · GA (1-) 
K g,!J ' 

A25 = A52 = h' GA ( g ) 
40T ay ' 

A34 = A43 = M~(a~1) + e~~~)(:y) , 
A35 = A53 = hz h

1 aA)(a1

) hz(~M~j(a} If) (uN_y + 4OT ~!t +N 1y g~ -f 0 • 

and A45 = A54 = Jh2 

( 
02

) 3h2(~M~)( ~ ) 
40M.!I o.\t + 40 ~ ay • 
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A.9 Special Case of the Beam-Column 

In order that stability condition can be investigated 

and also corresponding to the notation used in literature, 

the term N is replaced by -P. Furthermore, if the effects of 

transverse normal strain and axial deformation are neglected 
- " ~ ( 1. e. V = W = W = 0) , while•- ret'erring to the coordinate 

system in Fig. 1, equations (A-27) and ·(A-28) reduce to the 

matrix. form 

ClA(.1._) 
k 'oX 0 

GA(l) 
k. ax. w 

(A-29) 

• 

T'o c·orrela te · this resu1 t w1 th the theory derived by 

using the minimum potential energy theorem, the function'/ 

1s replaced by the following identitya 

(A-JO) 

where f is the slope due t:o shear at themidplane. 

Combining equations (A-29) and (A-JO) gives 

0 

{A-31) 
w -q(x,t) 

• 
Compa~ison of equation (A-31) with equation (8) shows 

that they are identical. Thus, Reissner 's Variational 

Theorem yields the. same mathematical result, 
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