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Al3STRACT 
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The purpose of this thesis is to obtain a simple model, 

ii 

which gives the load-deflection relationship resembling the load versus 

lateral deflection plot for an axially-compressed thin ,cylindrical 

shell. Hence four simple mathematical models consisting of a rigid 

rod combined with a linear spring are investigated using the criteria 

of static and dynamic stability. Similarly, two more mathematical 

models consisting of a rigid rod combined wi th a linear and a torsional 

s princ are also investigated. 

The basic laws of elastic stability are also interpreted 

mathematically and geometrically for the suitable models. The mathema­

tical solutions for both stable and unstable equilibrium states are 

illustrated graphically, in the statical case, by potential energy 

and load-deflection curves.In the case of dynamic analysis, the .concept 

of phase-plane is utilised. 
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CHAPTER I 

INTRODUCTION 

Object: 

The structural engineering elements have been studied exten­

sively for the criteria of load stability. However stability of certain 

systems such as, an axially-compressed long cylindrical shell, have 

been observed to be governed by perturbing lateral defo:rmations, which 

is explained by Panovko and Gubanova. 3 It follows from the above refer­

ence that, the critical compressive stress, based on Euler's method, 

was approximately given as, 

6-ctt. ::: c•~E h , 

where, 

E= The modulus of elasticity of the material of the shell, 

h= The thickness of the shell, and 

R= The radius of the cylinder. 

The geometric shape, of shell upon loss of stability is shown dotted, 

in the figure (1-a). Subsequent experimental tests on the thin cylin­

drical shells have not supported the ~esults, which were derived, on 

the basis of Euler's method, where the te:rminal axial displacements 

were not considered. The figure (1-c), shows the result of non-dim­

ensional axial load versus, the longitudinal shortening~ magnified 

by the factor R/h, which is obtained by talcing into consideration the 

terminal displacements. The segement O-A of the figure (1-c) shows that, 

in the begining the stress increases rapidly, following a linear law, 

Point A shows the critical stress given by Eulerian approach. At this 
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stage, the shape of the cylindrical surface gets distorted and shows 

deep rhombic dents as shown in the figure (1-b). Hence, longitudinal 

rigidity of the shell decreases suddenly and for the same value of the 

end shortening, a considerably smaller value of the dimensionless stress 

is noted as shown by the point B. If further shortening at the ends 

is followed, the stresses increase slowly and follow the path of the 

segment sho~m by the curve B-C. 

The above phenomena is shown in a different manner in the 

figure (1-d.), where dimensionless stress versus iateral displacement 

of the shell is presented. The stable portion of the curve is shown 

by the heavy line, while unstable portion is marked by the stars. 

Hence the figure (1-d) shows that, for a thin cylindrical . shell, com­

pressed with an axial load, the effect of the lateral perturbing def­

ormations, distorting the rigorously cylindrical shape, is to lower 

the value of the critical stress, governing the stability of the cyl­

inder. Hence in such a system, the lateral deformation is more important 

for stability analysis. 

It is the purpose of this thesis, to exemplify the criteria 

of lateral deformations governing the elastic stability, by means of 

simple mathematical models, and thus to analyse in details, the models 

which show load versus lateral displacement curves, similar to the 

curve shown in the figure (1-d). 

As shown in the figure (1-e), six simple mathematical models 

are selected to illustrate this stability criteria. The figure (1-f) 

shows the typical load-deflection curves for all the systems. 

Model one is the modified form of the system suggested by 

Panovko and Gubanova. 3 Model two and three are not analysed in detail, 



as load-deflection curves obtained, are similar to the specific case 

of model. one. 
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Model one, four and five representing a single degree of free­

dom and model six of two degrees of freedom system are analysed ·in 

detail, for the stability characteristics. 

Approach: 

A complete analysis of a stability model includes, 

1. Static stability analysis, and 

2. Dynamic stability analysis. 

Hence the stability models are analysed both statically and dynamic­

ally. 

1. Static stability analysis: 

The criteria for static stability is based on the potential 

energy function of the system designated as V. If the function must 

be atleast twice differentiable in ta,b) then a necessary condition 

for the existence of an equilibrium state ate for which e,,e0<0,is 
0 

that, dV/de at(e0 )=0. This condition is not sufficient to guarantee 

that 60 is a state of stable equilibrium. A sufficient condition for 

a stable equilibrium state or an unstable equilibrium state is deter­

mined by investigating the sign of the function V" (e0 )=J'v/d0~ 

This corresponds to a maximum point and thus an 

unstable state of equilibrium exists. 

This signifies a minium point exists and hence, 

a stable point of equilibrium. 

Finally, if V" (ea)=O, the point is neither a stable point nor an 

unstable point. This condition detennines the critical positions of 

the system separating a stable and an unstable zone of equilibrium. 



It is designated as neutral equilibrium. 

2. Dynamic stability analysis: 

Fundamental to dynamic stability analysis is the formulation 

7 

of the differential equation of motion, which is usually of the non­

linear type even for the most simplified stability problems. The equ­

ation of motion is reduced in order, into a set of ,first order differ­

ential equations which have inherent in them a form of the potential 

energy of the system. Secondly, an intermediate energy intigral equation 

which exists for a conservative force system, in which direction of 

an external applied force remains vertical throughout, is formed. 

This equation states the condition that the sum of the kinetic and 

the potential energies remain constant for all values of time t. For 

a one degree of freedom system, a function of the variables results 

which is plotted as a surface in three space, the variables being 

displacement, velocity and the potential energy. The projections of 

this surface onto the displacement-velocity plane define the phase­

plane. A specified level of potential yields a single continuous 

trace or curve on the phase plane. A geometric interpretation of the 

phase plane plots yields the criteria for stable and unstable equi­

librium configurations. 

The various plots of the analysis of each model are included 

at the end of each chapter, showing the results of static analysis 

and dynamic analysis ·geometrically. 



CHAPTER II 

Al¢ALYSIS O~STABILITY 'MODEL {ONE 

p 

L 

Initial Configuration 

Figure (2-a) 

2.1 STATIC ANALYSIS 

Displaced Configuration 

Figw.~e (2-q) 

The geometrical configuration of the model, , -shown in figure 

(2-~, consists of a vertical and horizontal frictionless guide cons­

· training the movement of the rigid rod. A vertical load Pi~ applied 

as shown. 

The following assumptions are made for the idealized mathe­

matical model: 

1. The bar is assumed to be a rigid body. 

2. The springs are assumed to have a linear load-displacement 

relationship. 

8 
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3. The external applied force Pacts in the vertical direction for all 

values of the angular rotation 9 and is thus a conservative force. 

4. The weight of the bar is neglected. 

5. The total mass of the bar mis assumed as a point mass located at 

the point of application of load P. 

Refering to figure(?-~, the displaced configuration of the 

model yields the dimensionless potential energy function as: 

where, 
/\ a. -t 
V :::: V [ 1/2.KaCJ 

' ' 6_ 

P= P/K2.L • I\ 

U= U/L , and 

K == I'<, I K2. • 

It follows that, 

(2) 

(3) 

For static stability analysis, the necessary condition, for the 

A' existence of a possible equilibrium state at e = 80 · is that V = O, 

this condition yields; 

/\ A 2 t/ Z. ,1\2.. l/ 
P = [l-U J +K[J -(1-u· ) 2

] (4) 

Equation (4) gives a relation between dimensionless load~ and dime-

• I\ nsionless displacement U. 

The sufficiency condition for neutral equilibrium is given by the 

"" condition V = O, this condition yields 
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(5) 

Simultaneous solution of equations (4) and (5) yields the critical 

• A A 
value of displacement U0 r and the critical value of load Per ~s 

A 
(u, ) c~ :; 0. , 

A 

(U2.)cR= I, 

and 

• 

and 

• 

and 

.( 6) 

(6-a.) 

(7-a.) 

A plot of the family of dimensionless load-deflection curves is shown 
,' 

in figure (2-c} for various values of the parameter K. 

''"''''- .stable 

/,. 
t'Zbttt4&r unstable 

p 
l·!NF~-e:f:Ye-19-8--8 

6 Q o:o O meu tral 

0 --------------0 0·5 •O Q 
Figure ( 2..-c) 
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From figure 2-c, it follows that for K = 1 and 0~ tr::: 1, load­

displacement curve is a straight line. 

For K = o, the shape of the curve is the classical cosine 

function. 
I\ . 

For 0~ K :<;.1 and O ~ U ~ 1 , the slope of the curve is negative 

and increasing. 

I\ 
For K > 1 and O ~ U ~ 1 , the slope of the curve is positive and 

increasing. 

A 
For the case U = O, all points on the vertical axis are stable 

A A A 
for 0<P<1; for P = 1 neutral equilibrium exists, and for P>-1 all 

points are unstable. 

/\ 
For 0<P<1 , all points on curves for 0<K~1, are U.."1stable, 

A A 
for all values of U, but excluding U = 1, where neutral equilibrium 

exists. For given values of i, U with 0~K<1 , if resulting point 

,falls on the prescribed load-displacement curve, the system is unst­

able and motion occurs, so that the system attains the neutral equi-

I\ 
librium position at U = 1. 

If K>1 and the point falls on the curve the system is stable. 

For K > 1 all points on the load-deflection curves are stable exclud­

" ing U = o. 
I\ 

The points corresponding to the condition K = 0, 0 < P. <. 1 and 

I\ ,I\ I\ A 
0 < U <1 are unstable since V' = 0 and V" is negative. For K = 1, P = 1 

and 
I\ . 

0 < U < 1 all points on line are in neutral equilibrium. For K > 1 , 

A A 
0<U<1 all points on load-displacement curves are stable. For P>1, 

all points on vertical axis are unstable for all values of K. 
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2.2 DYNAMIC ANALYSIS 

Assuming the mass of the bar 'm• as a point mass located at the 

point of application of load P, the Lagrangian of the system tis defi­

ned as L = ~ - ~, 

where 

~ = kinetic energy of the system / ( 1/z. 1<,2i!-), and 

I\ 
V = potential energy of the system / ( 1/.2, \<2.L!" ) , 

hence it follows that . 
" " " ;. A I /\2. A L ==L(u, 1.1, P) == Vz.MU -[ VJ 

where, 

M = 2 'Yll/k2. , and 
i,. • 
u = U/L. 

(8) 

The differential equation of motion satisfies the following 

Lagrange equation: 

'bt. ~ cot ) -}0 -~ lO -O. (9) 

which yields, ... 
I\ I\ 7 

MU +(V) =O. ( 10) 

, /1. I\ 
where, ·,V' denotes first derivative with respect to U • 

Equation (10) is reduced to a pair of first order differential 

equations in the fonn 

where, 
/\ /1. 
u = u1 
;... A I\ 
u = u

1 
= u2 , and 

A A A 
u = u1 = u2 • 

(11) 

( 12) 
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Integration of equation (12) yields, 

C /\ )2. I\ ,'\ A 1/2.M U2. + V =E0 Cu,,P) =CONSTFINT, ( 13) 

that is, r the sum of the kinetic energy plus the potential energy of the 

system remains constant, which is the special case of a conservative 

" I\ force field. The parameter E
0 

(U1, P) represents the sum of the kinetic 

energy plus the potential energy evaluated at the time t = t = o. 
0 

Solving equation (13), yields 

I\ A J,l 
U2. == ±[ 2./t-1(£0-V)] !° 

where for convenience, 

(2/M)y~ =I , yields 

U2. == ±[ Eo-0] ~2. 

Equation (15) gives the relationship between angular displacement, 

the stability load, the initial energy of the elastic system at any 

time t, and the velocity of motion in non-dimensional form. 

( 14) 

( 15) 

For this one degree of freedom system shown, the phase-plane 

diagram of the non-dimensional velocity versus displacement is plotted 

with the dimensionless potential energy on the third axis. The proje­

ctions of this three dimensional surface on to the phaae~plane produce 

the phase-plane trajectories. For eaQ~ value of ~ a separate phase­

plane diagram is produced. Noting the load-deflection curve in figure 
I\ 

2-c, the following values of Pare .j,nvestigated: 

~ = o, ~ = o.a, ~ = 1.0, and i = 1.2 

For the special case K = o, the phase-plane trajectories are 

shown in figure ( ~-Q.) through ( 2.--t"). 



Figure ( 2.-fl) represents phase-plane trajectories which are 
A 

_produced for load P = o. They are characterized by a stable point at 

14 

the origin. Hence, all oscillatory motion about the origin is st~ble. 

For load~= o.a, figure(,-¥) illustrates the phase.plane 

trajectories. A stable point A at the origin, ,, and an unstable point B 

on the 01 axis at the point i) = ! . 0.,6 is shown in the figure ( 2.- -0). 
A 

For load P = 1, figure ( z.-s) illustrates a set of traje-

ctories showing point A,as unstable point of equilibrium. 
I\. 

Thus, for K =( ,0, as ·;p increases the unstable point B moves 

to the left and approches the stable point A. Points A and B coincide 

for i = 1 , producing an unstable point. 
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CHAPTER III 

ANALYSIS OF STABILITY MODEL TWO 

Initial Configuration 

Figure (3-a) 

3.1 STATIC ANALYSIS 

Displaced Configuration 

1''igure (3-~ 
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The geometrical configuration of the model shown in figure ~-a~ 

consists of a vertical and a circular frictionless guide constraining 

the movement of the rigid rod • • A vertical load Pis applied as shown. 

The assumptions regarding the type of rigid rod• the linear 

spring, and the direction of load Pare same as mentioned in chapter 

two for the stability model one. 

Refering to figure(3-~ the displaced configuration of the 

model yields the dimensionless potential energy function as 



where, 

0:U/J.., 

P = P/1<2.L , 

J...= R/L • and 
A 

u = u. 
R J.... 

It follows that, 

and 

◊ 1=2.·c!. ~-U7ci.2.)...112xTRN-'[_u( ol.2-02.)-V2.J 
-2.PO[Q-Oe;-v2 - c~2._o,-f/2-_], 

◊ ·~ zi:G.2:. u;1-2.0cl2( ~7. uj-51\ TAN-i[O (J...~ u2J-f2. J 
--2.P uz.[C-02)~;._(ctz_ 0~-31~ 
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(17) 

-2P[C1-u2J-v2._ccl~o1-11J. (18) 

For static stability analysis, , the necessary condition for the existe-

nee of a possible equilibrium state at 

condition yields, 

" 0 = 00 ia that V' = O, this 

Equation (19) gives a rela tion between dimensionless load P and 
/\ 

dimensionless displacement U and a parameter o(.. 

The sufficiency condition for neutral equilibrium is found by setting 

~" = o, this condition yields, 
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p ==- ' ( J.2._ 0 2-)-"5'2x .. ' 
[d.2-- 02-)'i+O TAN-'( 0 / c l--0~ J/2.)] x 
[ (1-l?·J~I;_ JC"( J..;_ Uj-"51:] : 1 (20) 

Equations (19) and (20) .:aYe ,·. solved simultaneouly to evaluate the 
A /\ 

critical values of displacement Ucr and load P cr·:.in a non-dimensional 

fonn. 
A 

A set of curves for nondimensional load P versus dimensionless 

displacement for various values of parameter cl, are shown in figure 

(3-c). 

As figure (3-c) does not resemble' . the figure (1-d), further 

stability analysis for this model is not done. 

Typical load Vs displacement 

Figure0~ 
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CHAPI'ER IV 

ANALYSIS OF STABILITY HODEL THREE 

Initial Configuration 

Figure ( 4-a) 

4.1 STATIC ANALYSIS 

Displaced Configuration 

Figure ( 4-b) 

The geometrical configuration of model shown in figure (4-a) 

consists of a vertical and a horizontal frictionless guide constrai­

ning the movement of the rigid rod.A vertical load Pis applied as 

shown. 

36 

The various assumptions regarding the type of rigid rod and the 

linear springs are the same as described in chapter two. The direction 

of the applied external load remains vertical for all the positions 

of the displaced rod. 

Refering to figure (4-b), the displaced configuration of the 

model yields the dimensionless potential energy function as 



where, 
II 
U = U/L 

' p = P/Ke,L, 

K = k3/K2., 

V = V /'r2.KL'l!: 
F = CQSclo = Y2... 

It follows that, 

and 
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, and 

(23 ) 

For static stability analysis, the necessary condition for the 
)4. 

existence of a possible equilibrium state at 6 = 90 is that V' = O, 

this condition .yields, 

A 

-Equation (24) gives a relation between dimensionless load P and dimen-
, A 

tionleas displacement u. 

The sufficiency condition for neutral equilibrium is given by 
/\ 

the condition V" = O, this condition yields 

P:::IT-t-K +1<(F~£)(02~2.0F +9-312J (J_-0 2
)

5:2. (25) 
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Equations ( 24) and ( 25) , :are ,; ·: solved simultaneously to determine the 

critical values of displacement U and the critical valueS of load P • er er 

A plot of the family of dimensionless load versus dimensionless 

displacement curves is shown in figure {4-<;), for various values of the 

·parameter K. 

As figure (4-c) does not resemble the figure (1-d.), further 

stability analysis for this model is not done. 

:2.·0 

I\ 
p 

" V 

Typical load Vs displacemerrt 

Figure (4-C) 

l•O 
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Load Vs displacement Figure(4-d) 



CHAPTER V 

ANALYSIS OF STABILITY MODEL FOUR 

L 

Initial Ccinfiguration 

Figure(5-aj 

5.1 STATIC A~ALYSIS 

Displaced Configuration 

Figure ~-b) 
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The geometrical configuration of the model shown in figure(5-a~ 

which consists a vertical' and horizontal frictionless guide to constr­

ain the movement of the .rigid rod, is loaded with an external vertical 

load P. 

The basic assumptions for the rigid rod, the linear springs, 

and direction of the applied load Pare same as given for model one in 

chapter two. 

The displaced configuration of the model shown in figure ~-b) 

yields the dimensionless potential energy function as 
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where, 

. ,. 
U =U/L, , and 

· K =k3/K2- • 

It follows that, 

y':: 2.0{l+K[-(!-t(1-(1-0a.)'l2.)J-¥:][Q-(j_.a2)'1~ G--02}-V:IJ , (~7) 

- [2 G P(t-0 '-[vj, 

and 

v ·~2.□-Pu-o,-3'2J +2K{[ <1-02;-oJ.2. il x 
[1-Q +(J-( 1-0 2) ~2. )2.)-{12-J + 

02.0_0_02)""1:J2[!-oj-'fl-1-<i-(i-o2.)'12.)2J-5/2J. <2a) 

A 
For static stability analysis, V' = O, governs the necessary 

condition for the existence of a possible equilibrium state ate= 00 • 

This condition yields, 

,.. 
Equation (29) gives a relationship between dimensionless load P and 

I\ 
. dimensionless displacement U, for a given value of parameter K. 

I\ 
The sufficiency condition V" = O, govems the existence of 

neutral equilibrium. lt follows, 



~={f(i-02)-3/2 fl Q-(\+(1-(1-0'')1/2:);-I/~ + . 

U2"[i-(t-02-JV~ 2Q-02.f1 [}+~-(1-0~/~ )2J-:517jx 
[K(l- 02

)~
12_] +[(1-62.)31:J • 
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(30) 

Equations (29) and (30),are solved simultaneously to yield the critical 

values •Of displacement~ and the critical value of load Per• er 

A typical set of the family .. of dimensionless load-deflection 

curves is shown in figure(5-~, for various values of the parameter K • 

. l·O<p·,_·· -· __;.---------

I\ p 

o - cri tica.l load 

Typical load Vs (iisplacement Figur.e (5-c) 
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Refering figure(5-~, it follows tha~ for K = 19.30, and 
.A 

0 ~li~ 1, t}1e slope of the curve changes from negative value to positive 

value, and the slope is zero at O = o.6 

The point corresponding to i = 1 and~= 0, is in neutral 

equilibrium since V' = 0 and V" = 0 for K = 19.30. For K = 19.30, ·. 
i\ A 

0.875<P<1, and 0<U<.0.6, all points on the load deflection curve 

are unstable, since V! = 0 and V" is negative in magnitude. The points 
A /\ 

on the curve corresponding to K = 19.30, P>0.875, and U,..0.6 are in 

stable equilibrium since~•= 0 and 'v11 is positive in magnitude. 

5.2 DYNAMIC ANALYSIS 

Adopting a procedure outlinecLin chapter two, .. the basic foxm of 

equation (15) is used to plot a family of ~hase-plane diagramsfor 

various values of load i. 
As outlined for stability model one, the projections of the 

.phase-plane surface on the plane containing non-dimensional velocity 

and displacement axes are plotted for the specific values of Kand P, 
as phase-plane trajectories. The load-deflection curve shown in figure 

(5-c), for the specific value of K = 19. 30 is investigated by the phase-

a " " " plane diagrams, for¥= 0.875, P = 0.95, P = 1.0 and P = 1.05, to 

verify the stability zone. 

Figure(s-h)shows the set of phase-plane trajectories for P = 

0.875, representing the origin as a stable point. Hence oscillatory 

" motion about the origin is stable. Points Band C coinciding on u1 
I\ 

axis for U =; 0.6, represent the neutral equilibrium. 

Figure (s- i) £or 
,.. 
P = 0.95 illustrates the stable points 

,.. 
A and C and unstable point Bon u1 axis. 
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Figures (s-:r) and (5-]<) illustrate the phase-plane plots for 
/\ A 
P = 1.0 and P = 1.05 respectively. The points A and B coincide at the 

. A 
origin, :hence origin is a.n unstable point while point Con u1 axis is 

a stable point. 

Thus, for K = 19.30 
I\. 

/\ 
as the magnitude of dimensionless load P 

increases beyond P = 0.875, point B showing position of unstable pointr 
I\ 

moves towards the origin and approaches point A. For P ~ 1, points 

A and B coincide and fonn,; an unstable point. 
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~o~ential energy Vs displacement 

Figure (5-e) 

46 



Al 

" o-e 

1\ 
V' Vs displacement 

Figure(5-f) 
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-t•O /\ 
V'' Vs displacement 

Figure (5-g) 
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Figure (5-h) 
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Figure ( 5-l) 
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CHAP!'ER VI 

ANALYSIS OF STABILITY MODEL FIVE 

p 

L 

Initial Configuration 

Figure ~-a) 

6.1 STATIC ANALYSIS 

l, 

Displaced c;nfiguration 

Figµre (6-b) 

The vertical and horizontal frictionless guide is used to 

constrain the movement of the rigid rod, as shown by the geometry of 

the model in figure(6-afa An external load Pis applied vertically on 

the top of the rigid rod. 
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The torsional spring is assumed to have a linear moment-rota­

tiQn relationship of the form M = K~ e, where M denotes the moment 

required to produce an angular rotation expressed as e in radians. 

The other basic assumptions are same as described previously. 



Figure(6-b)representing the displac~d configuration of the 

model yields the dimensionless potential energy function as 

where 

~ =f' /K2.L , 

V = V /'r2.'r<2..t' 

K =KT/}<.z.L'2. • 

It follows that, 

and 

Al A 
V = SIN(2.9) ;- 2..1<.8 - 2.PSIN6 

1 

Ah A 
V :: 2,.G0S(2S) + 2J<. - 2P Cose • 

AND 
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(31) 

( 32) 

(33) 

For static stability analysis, the necessary condition, for 

the existence of a possible equilibrium state at e = &0 is that, 

v• = c:1,0 
d.8 

= o, this condition yields, 

/\ 
p = co.se -H<G/.SIN9 • 

E4uation (34) Gives a relation between non-dimensional load~ and 

angular rotation e. 

(34) 

The sufficiency condition for neutral equilibrium is given by 

the condition ◊11 = !~z. = O, this condition yields, 

? ::.(505(2.G) + 2K] / COS 8 , (35) 

Equation (34) and (35) can be solved simultaneously to evaluate the 

critical value of angular rotation ecr and the critical value of load 

icr• 

.A plot of the dimensionless load versus angular rotation is 

shown in figure(6-c)for the specific value of the parameter K. 



" p 

o-cri tical load 

o'!:--___ __,,__ ___ ..,_ ________ ,__ __ ,__ 
o rrfe. rr 

8 
Typical load Vs angular displacement Figure (6-c) 
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Refering figure(6-c) it follows that, for K = 1 .and 0~6~1T, 

the slope of the load-rotation curve changes from negative to positive 

and slope is zero at e sTr/sz. • 

The point corresponding to i = 2 and e = O, is in neutral equi-
A A A 

librium, since V' = 0 and V" = o. For 1.57<P<2 and O<S<'lf/2., all 

points on the load-rotation curve are unstable, since V' = 0 and~" is 

negative in magnitude. The points on curve corresponding to the condi­

tion i > 1 '. 57 and e > 'tT/2. are in stable equilibrium. 

6.2 DYNAMIC ANALYSIS 

Using the basic form of equation_ (15) , the non-dimensional 

angular velocity of motion can be evaluated for the specific value of 

the initial energy E
0 

of the elastic system at any time t, for the 

known value of the dimensionless potential energy. 
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The phase-plane concept is used to investigate dynamic stabi­

lity conditions for the specifi~ value of parameter K = 1 and for vari­

ous values of non-dimensional load i. 
The phase-plane trajectories, which are obtained by the _proje­

ction of the phase-plane surface on to a plane containing angular 

velocity and angular rotation in non-dimensional fonn, are shown in 

figures ( 6- h ) through ( 6-'l<). 

Figure .· ( 6-h) shows the set of phase-plane diagram;; for f' =J 
and represents the origin as a stable point. Hence oscillatory motion 

about the origin is stable. Point B which is the unstable p9int, coin­

cides with the point Con the axis of angular rotation ate= !rrta. 

Figure (6- i) shows the set of phase-plane trajectories, for 
,\ 

P = 1.8 and illustrates the stable points A and c, and an unstable 

point Bon the axis of angular rotation. 

Figures (s-1) and (s-~)illustrate phase-plane trajectories, 
A /\ 

for P = 2 and P = 2.2 respectively. The unstable point B coincides 

with point A at the origin, hence the origin is an unstable point 

and point C is a stable point. 

Thus, for K = 1, as the value of load P increases beyond 7l/2
1 

unstable point B moves towards the o~igin and approaches point A. For 

i~ 2, points A and l3 coincide to form an unstable equilibrium at the 

origin. 
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Figure ( 6-d) 
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~• Vs angular displacement Figure (6-f) 
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I\ 
V'' Vs angular displacement Figure(6-zj 
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ANALYSIS OF STABILITY MODEL SIX 

p 

Initial Configuration 

Figure ( 7-a) 

7.1 STATIC ANALYSIS 

Displaced Configuration 

Figure(7-bJ 

65 

The geometrical configuration of the model shown in figure(7-a) 

consists of a frictionless guide along the axis of the rigid rod for' 

the linear spring. A vertical load Pis applied as shown, for this two 

degrees of freedom model. 

The assumptions of model five hold · good for this particular 

model also. Hence refering to figure(?-b~ the displaced configuration 

of the model yields the dimensionless potential energy function as, 



where, 

V = V(y,e) 
KT , 

i=~ 
KT 

, 

~ =o/Lo , and 

It follows that, 

v~ :: [-4-t<(r-~> +PcoseJ, -
I\ All\ v~ := [ 8 - P't:SIN eJ. 
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(37) · 

(38) 

For static stability analysis, the necessary condition for the 

existence of a possible equilibrium state ate= e is that, 
0 

" 'b~,L ,. ~(◊) ' 
V~ = · 1> l' = a and Ve = ~ = O, these condi t _ions yield,, 

~ 1 ,2. = l/,2.Q =t-(I ~ 8(1< TANS)-1) 1/2._J 
1 

Combining equations (36) and (39), yields 

Yee> 1, 2.. = 82./2. + l</2.[! +Ct- 8Q<TAN fi)-~ 11
~ 2+ 

· (39) · 

V2..~Cosao ± (l-8(1<TAN8)-l)11~-P, (40) 

It follows that, 

Ar ~ 
V1 ::: [K(l-D)- PC0S6/;)~ 

[(t+I>) TAN 0 + (t.K'D)_, (TAN8-85EC
2
9)\fAN

2
~j(41-a} 

A> I' 
V2.;:: [f<(l +D) - Pcose/?J X 

{f2Q<.D)-1 (TAN8-e5Ec2~<_TAN2.e)_, + 
(1 -!>)TAN eJ}. (41-b) 



V~~)t =[{(t+J>)TAN0 +(2~D)-1(TAN0-0SEC
2 e)(TAN

20j} 
{ (TRNe-esEc2e) (2.'DTAN2a)-'+ V2.Ps1Ne}J+ 
[{-TRN6 (TA N6-0SEc2e) (2...l)~TAN2e)-i+ 
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(t-t.n)( col'-e)-t +(TRNa- 85Ec'2.e)~(4K~~TAN4.e)_, 

+(DK s1N2.a)-' (-1 + e<:ose/stNey}Jx 
. " [K(t-I> )- 1/2. 'P cos~ , ( 42-a.} . 

Ye;) 2. =[{(t-:D)TAN e -(2.KJ)) ... tTANe-esEc
2 e)(TAN2 e)-'}x 

{-(TAN e-esEc2
a)(2.1>TAN

2e)-~ Y2.Ps1N e }]-+ 

[{+ TAN e(TAN9-6SEC
2

0) (2l>KTAN
2 e)-1

-t 

(t-D)( cos2.e)-L(TAN9-0SEC2 e)~4t<".D3
TAN4e)-1 

+(JJKStN2.a)-1(-1 + ecose/s1Ne)i] x 

[K(l+D) -(PCOS8) l/2.J. 

where, 

D =[1- 0(K TAN 0)-~~i!z.and J 

"" clfv Yee>= cl 82- • 

For static stability analysis, the necessary condition for the 

" ,l.Q existence of a possible equilibrium state ate= 0
0 

is that, V' =re= o, 

this condition yields 



68 

(43) 

Equation {43) gives relations between dimensionless load~ and angular 

rotation e in radians. 

The sufficiency condit i on for the neutral equilibrium is given 

by the condition that, " t 11 = :: = O. Hence the critical values of rota­

tion (e1 2)c and critical' values of load (i1 2)c is.re evaluated by , r ., r 
I\ A 

using the conditions that, (v1,2)' = 0 and . (V1,2)" = O, simultaneously. 

load . 

l· 

o,__ _____ ..a..._--io~--------'---_., 
o o·.55rr 7'/z. 

e 
rr 

lfypical load Vs angular d~splacement Figure(7-c) 

I\ 
A.plot of the family of dimensionless load P versus rotation 8 

curves is· shown in figure(7-c)for various values of parameter K. 
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" For K=1, P1=2 and 8=0, the corresponding point on the load 
I\ /\ 

rotation curve is in neutral equilibrium, since v1•=0 and v1
11=0. For 

A 
P1►1.484 and O. 357f~·9< 1l, all points on the curve are in stable equi-

librium for K=1. 
I\ 

For K=1, P2=2 and e=O, the corresponding point is in stable 

equilibrium, since V 2 '=O and ◊ 2" is positive. For K=1, P 2>2 and 0<6< lT/2 

I\ 

all points on the curve are in -stable equilibrium, since v2•=0 and 

" v2~ is positive. 

7.2 DYNAMIC ANALYSIS 

The phase-plane concept is used to investigate the dynamic 

stability of the model, for a specific value of parameter Kand for 

various values of non-dimensional loads. 

The basic relation between the non-dimensional angula~ velocity, 
J\ • 

the i nitial energy E
0 

and the potential energy V, in the fonn e2::e1= 

+ I\ V _(E
0

~V) 2, is used to evalu&te the angular velocity, by assuming 

various values of potentials E
0

, which are shown on the phase-plane 

trajectories, for each plot. 
A 

The figure ( 7-l<) · shows phase-plane plot for P=1. 484, and reP-

· ·+ resents neutral equilibrium at e= ··- o. 357T, and a stable equilibrium 

at e=0.141T and an unstable origin. ,. 
I\ 

The phase-plane plots of figure (7-i) drawn for P=1.75, shows 

a set of stable points for two different values of angular displace­

ments and a set of unstable points which includes the origin. 

The phase-plane plots of figures (?-~, (7-n) .. and (7-q) drawn 
A ~ ~ 

for P1:2.0, P1=4.0 and P1=s.o, respectively show a set of stable points 

including the origin and an unstable point in between the two stable 

points. 
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·A 
Figure (7-P) shows phase-plane plots for P2=2.O and represents 

a stable origin. 
~ 

The phase-plane plots shown in figure (7-Q) and (7-~) for P2=4.O 
A 

and P2=8.O respectively, represent the origin as an unstable point and 

a stable point on an ·angular displacement axis for different values of 

0 corresponding to the points ontthe load-deflection curve. 
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I\ v,• . Vs angular displacement 

Figure (7-f) 
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CHAPTER VIII 

SUMMARY 

Discussion: 

The load-displacement curves of the models, one, two and three 

show that, these systems do.not possess the ideal load-deflection 

relationship, which can be related to that of an axially compressed 

thin cylindrical shell. 

Models four, five and six, show the load-deflection curves 

which are ideal for illustrating_ the stability characteristics of an 

axially compressed thin long cylinder. 

From the complete analysis of these models, it is clear that 

static stability analysis requires plots, at least for the first 

derivative and the second derivative of the potential energy function 

of the system. In certain cases even higher order of derivatives are 

needed, for the detennination of stable, unstable and neutral equi­

librium points of the system. The dynamic stability analysis of one 

degree of freedom system, based on the phase plane concept, is directly 

related with the total potential energy of the system. 

The two degree of freedom system of model six has been analysed 

for the static stability and for the dynamic stability, by changing 

the potential energy function of two variables, in the fonn of a function 

of a single variable. 

Hence the results of the dynamic stability analysis of a system 

complement the results of the static stability analysis. Thus the combi­

nation of a static and a dynamic analysis of the stability for a system 



gives a precise interpretation of the stability .based on the lateral 

displacement criteria. 

Conclusion.: 
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The system of model six,even for such a simple geometrical 

configuration, involves a complicated mathematical analysis. The 

load-deflection plot for the system sho'Wll by model five, gives a finite 

value of non-dimensional load for zero deflection. As the deflection 

starts increasing beyond zero, the curve -follows a well defined down­

ward trend, showing an unstable segment between the two neutral equi­

librium points. Once the deflection starts increasing beyond the second 

neutral equilibrium point, the curve shows a stable segment and thus 

reverses the earlier downward trend.·Hence the model five is chosen 

as the most appropriate model to illustrate the lateral-deflection 

criteria of the elastic stability of an axially compressed thin cylin­

drical shell, in a most simplified manner. 

Throughout this thesis, non-linearity is induced geometrically~ 

while material properties have been assumed to possess a linear load­

deflection relationship. Even a simple non-linear fonn .of geometrical 

configuration involves a complicated mathematical analysis as seen 

from the analysis of model two. 

Hence the effect of the non-linearity of the material may be 

investigated for the simple models of one degree of freedom systems, 

which are presented in this thesis, to verify the possibility of a 

further simplification of the analysis of the models. 
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