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A Study of Fixed-Point-Free

Automorphisms and Solvable Groups

Abstract

In 1903, Ferdinand Georg Frobenius made a conjecture that can be stated as

such: let G be a group and φ ∈ Aut(G) such that φ acts what is called "fixed point

freely" on G. Then, G is a solvable group. Throughout the rest of the 20th century

many different specific cases of this conjecture have been proved (with the cases

putting a restriction on the order of φ). For example, in 1959 John Thompson

proved this for |φ| = p for some prime p. Later on in the 70’s, Elizabeth Ralston

proved this result for |φ| = pq for two primes p & q.

Finally in the 90’s the full conjecture was accepted as being proven as a con-

sequence of some results in the landmark Classification of Finite Simple Groups.

As a result, an attempt at an all-encompassing and unified proof of this conjecture

has been largely abandoned by group theorists. For this thesis, we will look at a

specific case of this conjecture where |φ| = 4 (as also done in Gorenstein and Her-

stein, 1961) and try to give a formal proof whilst introducing the necessary results

used as tools in said proof.
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Chapter One

Preliminaries

In order to give a thorough proof for this case of the Frobenius conjecture, a vari-

ety of results will need to be used as tools. In this chapter, the results which are

considered to be well-known will be mentioned. Proofs of these will not be given

since it can safely be assumed these results are already known to the reader.

Theorem 1.1. (The First Isomorphism Theorem)

Let G1, and G2 be groups and

φ : G1 7→ G2 (1.1)

be a homomorphism. Then

G1/Ker(φ) � φ(G1).

The First Isomorphism theorem is one of the most well-known results in math-

ematics, and is followed by the other two isomorphism theorems.

Theorem 1.2. (The Second Isomorphism Theorem)

Let G be a group, N E G and H ≤ G. Then,
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HN/N �H/H ∩N .

Theorem 1.3. (The Third Isomorphism Theorem)

Let G be a group, N E G, H E G and N ≤H . Then

G/N
H/N � G/H .

Although the first isomorphism theorem is likely the most commonly used the-

orem of the three, these isomorphism theorems play an integral role in describing

the relationship between groups and their quotients.

The following result also deals with relating groups to quotients, but this time

it is with respect to a specific homomorphism. The homomorphism used is defined

below.

Remark 1. Let G be a group and N E G. Then the map,

φ : G 7→ G/N defined by

φ(g) = gN

is often referred to as the natural map.

Due to this homomorphism’s common use, most group theorists just refer to it

as the "natural" map without explicitly defining it. This way, any time the natural

map is mentioned it should be implicitly understood what the map is.

Remark 2. Throughout this paper, the natural map will be used to get results in the

quotient group and then pre-imaging the results back to the original group. Instead of

explicitly giving the map every time, it is best to introduce the notation that will be used

to implicitly show the use of the natural map (without spending time writing the whole

map out). Let G be a group, and N E G. Then, define
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G = G
N .

At face value, the bar symbol looks as if it stands for just the quotient group,

but implicitly, the bar can be thought of as the invoking of the natural map. This

notation will be used throughout the rest of the paper.

Theorem 1.4. Let G be a group, N E G. H ≤ G, and φ : G 7→ G/N be the natural map.

Then,

1. φ(H) = HN/N

2. φ−1(HN/N ) = HN

3. If L ≤ G/N , then L = K/N where N ≤ K ≤ G.

This theorem is often called the "correspondence theorem" and is often associ-

ated with the three isomorphism theorems.

Much like the isomorphism theorems, the Sylow theorems are also fundamen-

tal results in group theory. Here is an overview of the three theorems.

Theorem 1.5. (Sylow’s 1st) Let G be a p-group for some prime p. Then Sylp(G) , ∅.

Theorem 1.6. (Sylow’s 2nd) Let G be a group, p be a prime, and H ≤ G be a p-subgroup.

Then ∃P ∈ Sylp(G) such that, H ≤ P .

Theorem 1.7. (Sylow’s 3rd) Let G be a group. p be a prime, and np = |Sylp(G)|. Then

1. np = |G|
|NG(P )|

2. np | |G|

3. np ≡ 1 mod p .
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Sylow’s theorems are used regularly by group theorists. Their relation with

other groups is analogous to the relation of prime numbers to other integers. In

other words, they are thought of as fundamental building blocks to every group

(much like prime numbers relation to other integers). This, of course, means that

there are a myriad of results concerning Sylow (sub)groups used to characterize

bigger groups. Some of these results are given below.

Theorem 1.8. (Frattini Argument) Let G be a group N E G, and P ∈ Sylp(G). Then,

G = NG(P )N .

Theorem 1.9. Let G be a group and N E G, P ∈ Sylp(G). Then P ∩N ∈ Sylp(N ) and

G = NG(P ∩N )N

The concept of Sylow subgroups can be generalized to more than just one prime

at a time. For these, we defined a set to indicate which primes divide the order of

a given group. Such a definition is given below.

Definition: Let G be a group. Define

π(G) = {p|p is prime and p | |G|}.

The set π(G) is the set of all primes that divide the order of the group. For

example, π(Z10) = {2,5}. For the generalized notion of Sylow p-subgroups, we

sometimes pick many primes that divide the order of the group as opposed to just

one. In those cases, we refer to the set π(G).

Definition: Let G be a group, π be the set of primes as above, H ≤ G, and

n ∈Z+. Then,

1. π′ = {p|p is prime and p < π}.
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2. n is a π-number if π(n) ⊆ π.

3. H is a π-group if π(H) ⊆ π.

4. H is a Hall π-subgroup of G if H is a π-group and |G||H | is a π′-number.

These Hall π-subgroups can be thought of as generalized Sylow p-subgroups.

Sylow subgroups are essentially Hall subgroups where the set of primes that make

up the subgroup is just the singular prime, p.

Example: In A5, we have |A5| = 22 · 3 · 5. Consider

H = {1, (123), (132), (234), (243), (134), (143), (124), (142), (12)(34), (13)(24), (14)(23)}.

Then, H ≤ A5, in fact, H = (A5)5 (the stabilizer of 5) and |H | = 12 = 22 · 3. So

H is a {2,3} group. Moreover, |A5|
|H | = 5 is a {2,3}′ number, and hence H is a Hall

{2,3}-group.

Since Hall subgroups can be seen as generalizations of Sylow subgroups, it may

seem rational to think that some characteristics of Sylow subgroups also extend to

Hall subgroups. In many ways these characteristics do extend to Hall subgroups,

but, in certain situations, there needs to be additional structure on the original

group itself for these characteristics to extend over. This will be discussed later on

as it will play a pivotal role in the proof of the final theorem.

Definition: Let G be a group, and S be some nonempty subset ∅ , S ⊆ G. The

subgroup generated by S is 〈S〉 = {sn1
1 sn2

2 sn3
3 ...s

nk
k |si ∈ S,ni ∈Z} ∀1 ≤ i ≤ k.

Proposition 1. Let G be a group and ∅ , S ⊆ G. Then 〈S〉 ≤ G.
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Example Consider G = S3 = {1, (123), (132), (12), (13), (23)}, and take S = {(12), (13)}.

Then,

〈(12), (13)〉 = {(12)0 = 1, (12)1, (12)2 = 1, (13)0 = 1, (13)1, (13)2 = 1, (12)(13) =

(132), (13)(12) = (123), (23)} = {1, (123), (132), (12), (13), (23)} = S3

Lemma 1.10. Let G be a group and H ≤ G. Define

HG = 〈hg |h ∈Hand g ∈ G〉.

This is called the normal closure of H in G. Then, HG E G.

Proof. By Proposition 1, we know that HG ≤ G. Now, let g ∈ G and x ∈ HG. Then

x = h
g1
1 h

g2
2 ...h

gn
n where hi ∈H , gi ∈ G. Then

xg =

 n∏
i=1

h
gi
i

g =
n∏
i=1

(hgigi ) ∈HG.

Thus HG E G.

Definition: Let G be a group, a,b ∈ G, H ≤ G, and K ≤ G. Then

1. a conjugated by b is notated as ab = b−1ab.

2. The commutator of a and b is denoted [a,b] = a−1b−1ab.

3. The derived subgroup is G
′
= 〈[a,b]|a,b ∈ G〉.

4. The commutator subgroup generated by H and K , is [H,K] = 〈[h,k]|h ∈H,k ∈

K〉

It may be worth while to note that throughout this paper the exponential nota-

tion will be used for conjugation.

Theorem 1.11. Let G be a group, N E G, H ≤ G, and a,b ∈ G. Then,
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1. [a,b] = 1 iff ab = ba.

2. G
′
E G.

3. G
G′

is abelian.

4. If G
N is abelian then G

′ ≤N .

5. If G
′ ≤H , then H E G.

6. If H ≤ G, N E G, then HN
N ≤ Z(GN ) if and only if [G,H] ≤N .

Some results will require the use of direct products of groups, both internal

and external. The external direct product is the standard Cartesian product, but

the internal direct product is a bit more technical in it’s definition which is given

below.

Definition: Let G be a group and {Hi}ni=1 be a collection of subgroups of G.

Then, G is called the internal direct product of these subgroups if

1. G = Πn
i=1Hi .

2. Hi E G, ∀1 ≤ i ≤ n.

3. H ∩Πj,iHj = 1, ∀1 ≤ i ≤ n.

This is often denoted by G =
⊕n

i=1Hi .

Now it’s important to emphasize one’s ability to switch from one direct product

or the other. The following theorem draws a strong connection between the two

types of products.
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Theorem 1.12. Let G be a group and {Hi}ni=1 be a collection of subgroups of G such that

G =
n⊕
i=1

Hi .

Then G �
�n

i=1Hi (external direct product).

Proof. We will prove this by induction. Say n = 2, then G = H1H2 for H1 E G,

H2 E G and H1 ∩H2 = 1. Define

φ : G 7→H1 ×H2

by

φ(h1h2) = (h1,h2).

To show well-definedness, say h1h2 = h3h4, for h1,h3 ∈H1, and h2,h4 ∈H2. Then

φ(h1h2) = (h1,h2),

φ(h3h4) = (h3,h4).

Now it follows that

h−1
3 h1h2 = h4 =⇒ h−1

3 h1 = h4h
−1
2 .

Now, let x = h−1
3 h1 = h4h

−1
2 . Then x ∈H1, and x ∈H2 which means that x ∈H1∩H2,

but H1 ∩H2 = 1 and so

h−1
3 h1 = h4h

−1
2 = 1.

Thus it must be the case that h1 = h3 and h2 = h4, and so (h1,h2) = (h3,h4). There-

fore, φ is well-defined.

Now for injectivity, say we have

(h1,h2) = (h3,h4).
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This means that h1 = h3 and h2 = h4 and so

h1h2 = h3h2 = h3h4.

Thus φ is injective.

For surjectivity, let x ∈ H1 ×H2. Then x = (h1,h2) for h1 ∈ H1,h2 ∈ H2. Consider

h1h2 ∈H1H2 = G. Then

φ(h1h2) = (h1,h2) = x,

and so φ is surjective.

Now, to show that φ is a homomorphism, let x = h1h2, y = h3h4 for h1,h3 ∈ H1,

h2,h4 ∈H2. Then evaluating φ at xy, we get

φ(xy) = φ(h1h2h3h4).

Now, consider [h1,h2] = h−1
1 h−1

2 h1h2. Realize that since both H1 and H2 are normal

in G, we get that [h1,h2] is an element of both H1 and H2, and so [h1,h2] ∈ H1 ∩

H2 = 1. So [h1,h2] = 1 which means that h1h2 = h2h1 (elements from different hi ’s

commute with each other). So, from above, we have,

φ(h1h2h3h4) = φ(h1h3h2h4) = (h1h3,h2h4) = (h1,h2)+(h3,h4) = φ(h1h2)φ(h3h4) = φ(x)φ(y).

Thus, φ is a homomorphism and therefore an isomorphism, (i.e G �H1 ×H2).

Now, the inductive argument follows the same logical steps, and again is de-

pendent on the ability of the hi ’s to commute with each other ([hi ,hj] = 1 and so

hihj = hjhi for any hi ∈ Hi and hj ∈ HJ ). Therefore we can see that for n ∈ Z
+,

G =
⊕n

i=1Hi �
�n

i=1Hi .
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Chapter Two

Solvability

Many of the results needed to give a proof of the conjecture are not necessarily re-

sults that are well-known or immediately obvious, and along with the conjecture

itself, these results are integrally connected to the concept of what is known as

solvability.

Definition Let G be a group. Then G is solvable if ∃ a subnormal series

G = G0 D G1 D G2 D ... D Gn = 1

such that Gi /Gi+1 is abelian ∀0 ≤ i ≤ n−1. These quotients are commonly referred

to as "factors".

The rest of this chapter will consist of more results dealing with solvability

along with some examples for extra clarity.

Example: The group S3 is solvable since we have the following subnormal se-

ries

S3 D A3 D 1.
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Also, |S3/A3| = |S3|/ |A3| = 6/3 = 2 and so

S3/A3 �Z2

which is abelian. Similarly, A3/1 �Z3 is also abelian, and thus S3 is solvable.

Some groups can easily be identified as solvable groups. The following results

categorize some of these.

Lemma 2.1. Let G be an abelian group. Then G is solvable.

Proof. Consider the series,

G D 1.

Clearly this is a subnormal series and

G/1 � G

which is abelian. Thus G is solvable.

Lemma 2.2. Let G be a solvable group and H ≤ G. Then H is solvable.

Proof. G is solvable, so ∃ a subnormal series,

G = G0 D G1 D ... D Gn = 1

with Gi /Gi+1 abelian. Now,

H = H ∩G = H ∩G0 DH ∩G1 D ... DH ∩Gn = 1

is a subnormal series since the intersection of a subgroup with a normal subgroup

is normal in the former group. Also,

H ∩Gi /H ∩Gi+1 = H ∩Gi /H ∩Gi ∩Gi+1

since Gi+1 E Gi . Now
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H ∩Gi /H ∩Gi ∩Gi+1 �
(H∩Gi )Gi+1

Gi+1
(by Theorem 1.2)

≤ Gi
Gi+1

(since (H ∩Gi)Gi+1 ≤ Gi).

But Gi
Gi+1

is abelian and so H∩Gi
H∩Gi+1

is also abelian. Therefore, H is solvable.

Now, anytime a situation where there is a subgroup of a solvable group (or

some abelian group), any results applying to solvable groups will also apply to

these groups. Let us continue exploring results that deal with identifying solvable

groups.

Lemma 2.3. Let G be a solvable group and N E G. Then G
N is solvable.

Proof. Since G is solvable, ∃ a subnormal series

G = G0 D G1 D ... D Gn = 1

such that Gi
Gi+1

is abelian ∀ 0 ≤ i ≤ n− 1.

Let G = G
N . Then

G = G0 D ... D Gn = 1

is a subnormal series. Also,

Gi /Gi+1 =
GiN
N

Gi+1N
N

� GiN
Gi+1N

(by theorem 1.3)

= GiGi+1N
Gi+1N

(since Gi+1 ≤ Gi).

Now, by theorem 1.2, we get

GiGi+1N
Gi+1N

� Gi
Gi∩Gi+1N

�
Gi

Gi+1
Gi∩Gi+1N

Gi+1

(by theorem 1.3).

Now, since Gi
Gi+1

is abelian (by hypothesis) and Gi+1 E Gi , we get that
Gi

Gi+1
Gi∩Gi+1N
Gi+1N

=

Gi /Gi+1 is abelian. Therefore, G
N is solvable.
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Lemma 2.3 is a useful result, especially in situation when one is working with

the natural map or working with quotient groups in general. This next result about

solvability is often used in conjunction with Lemma 2.3.

Lemma 2.4. Let G be a group, N E G such that N and G
N are solvable. Then G is

solvable.

Proof. Let G = G
N . Since N and G are solvable, ∃ a subnormal series

G = G0 D G1 D ... D Gn = 1

and

N = N0 DN1 D ... DNm = 1

(for some m and n), such that Gi /Gi+1 and Ni /Ni+1 are abelian ∀i.

Since the pre-image of a normal subgroup is normal, we can take the pre-image

of the first series to get

G D G1 D G2 D ... DN

(since the preimage of the identity under the natural map is the subgroup which

was factored out). Now, consider the series

G D G1 D G2 D ... DN DN1 D ... DNm = 1.

We have

Gi
Gi+1

�
Gi
N

Gi+1
N

= Gi /Gi+1

which is abelian ∀i, and we know Ni
Ni+1

is abelian ∀i. Thus, G is solvable.

The previous two lemmas lead us to a proof of a result about a certain class of

groups that show up very often in group theory.
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Proposition 2. Let G be a p-group. Then G is solvable.

Proof. We will prove this using induction on |G|.

If |G| = p0, then G = {1}. Hence G is abelian and so by Lemma 2.1, G is solvable.

Now, assuming this holds for all values < |G|, since G is a p-group, the center

Z(G) , {1}. Also, note that Z(G) D G and so

G = G
Z(G) is a legitimate group (and also a p-group).

Moreover, |G| = |G|
|Z(G)| < |G| (since the center is non-trivial) and therefore by induc-

tion, G is solvable. Also since Z(G) is abelian, we know by Lemma 2.1 that it is

solvable as well. Therefore, by Lemma 2.4, we get that since Z(G) and G = G
Z(G) are

both solvable, then G must also be solvable.

For the previous results, a subnormal series with abelian factors is needed in

order to show that a group is solvable. But solvability can be defined through

methods through different types of subnormal series. One of these is what’s called

the derived series.

Definition: Let G be a group. The derived series of G is

G(0) = G,G(1) = (G(0))
′
= G

′
,G(2) = (G(1))

′
= [G(1),G(1)].

Inductively, G(n) = (G(n−1))
′
. Then

G = G(0) D G(1) D G(2) D ...

is a subnormal series.

14



Theorem 2.5. Let G be a group. Then, G is solvable if and only if ∃n ∈ Z+ ∪ {0} such

that

G(n) = 1.

Proof. (⇐) Suppose ∃n ∈ Z ∪ {0} such that G(n) = 1. Then, consider the derived

series

G = G(0) D G(1) D G(2) D ... D G(n) = 1.

Now, G(i)

G(i+1) = G(i)

(G(i))′
, which is abelian by theorem 1.10 ∀i. Therefore, G is solvable.

(⇒) Suppose G is solvable. Then ∃ a subnormal series

G = G0 D G1 D ... D Gn = 1

such that Gi
Gi+1

is abelian ∀0 ≤ i ≤ n− 1.

Claim: G(i) ≤ Gi ∀0 ≤ i ≤ n. Using induction on i, if i = 0, then G(0) = G ≤ G =

G0, and so the claim holds.

Now, if G(i) ≤ Gi , then

G(i+1) = (G(i))
′ ≤ G

′
i ≤ Gi+1

and (by theorem 1.10 # 4), since Gi
Gi+1

is abelian, then (Gi)
′ ≤ Gi+1. Therefore,

G(i) ≤ Gi ∀0 ≤ i ≤ n

by induction. But then,

G(n) ≤ Gn = 1 and so

G(n) = 1.
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Chapter Three

Nilpotence

Along with solvability, nilpotence is a quality of some groups that is studied by

those in the group theory world. At first glance, the definitions of the two may

seem a bit similar, but there are distinct differences between the two qualities.

Nilpotence is a stronger and more restrictive quality for a group to have in com-

parison to solvability. In some ways, nilpotent groups are slightly closer to being

abelian than solvable groups. Nonetheless these concepts are very much related to

each other.

Definition: Let G be a group. The upper central series is

Z0(G) = 1, Z1(G) = Z(G), Z2(G)
Z1(G) = Z( G

Z1(G) )

and inductively,

Zn(G)
Zn−1(G) = Z( G

Zn−1(G) ).

Then,

1 = Z0(G) E Z1(G) E Z2(G) E ...

is a subnormal series.
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Definition: Let G be a group. Then G is nilpotent if ∃n ∈ Z+ ∪ {0} such that

Zn(G) = G.

As can be seen, both solvability and nilpotence can be defined through the

use of a subnormal series, but the series themselves are not the same. The up-

per central series is defined through pre-images whereas the subnormal series for

solvability is not. Also note how for nilpotence, the subnormal series begins at

the identity and terminates at the whole group (the reverse is true for solvability).

Some results about nilpotent groups are below. Some of these results are similar

to previous results about solvable groups.

Example If G is abelian, then G is nilpotent.

Proof. Since Z1(G) = Z(G) = G (as G is abelian), then G is clearly nilpotent, as

desired.

Theorem 3.1. Let G be a p-group. Then G is nilpotent.

Proof. Suppose G is not nilpotent. Then Zi(G) < G ∀i ∈Z+ ∪ {0}.

Claim: Zi(G) < Zi+1(G) ∀i ∈Z+ ∪ {0}. Using induction, if i = 0,

Z0(G) = {1} < Z(G) = Z1(G)

since G is a p-group. Now, let

G = G
Zi+1(G) .

17



Since Zi+1(G) < G, we know G , 1. Also, since G is a p-group by (), we know,

1 , Z(G) = Z( G
Zi+1(G) ) = Zi+2(G)

Zi+1(G) . Thus Zi+1 < Zi+2(G).

But then we have

1 = Z0(G) < Z1(G) < Z2(G) < ... <

and this contradicts the assumption that the order of G is finite. Thus, G is nilpo-

tent.

Again in a similar vein to solvability, nilpotence can be defined through a dif-

ferent series. Another definition of such a series is the given below, but before that

are some results to help motivate this new series.

Lemma 3.2. Let G be a group and N E G. Then, [G,N ] E G

Proof. Let x = Πm
i=1[ai ,bi]ni ∈ [G,N ] for m ∈ Z

+, ai ∈ G, bi ∈ N and ni ∈ Z
+ ∀i =

1, . . . ,m and let g ∈ G. Then

xg = (Πm
i=1[ai ,bi]

ni )g = Πm
i=1([ai ,bi]

ni )g = Πm
i=1([ai ,bi]

g)ni .

Now, realize that

[a,b]g = (a−1b−1ab)g = (ag)−1(bg)−1agbg = [ag ,bg]

and that bg ∈N since N is normal and so we can see that the product becomes

Πm
i=1[agi ,b

g
i ]ni ∈ [G,N ]

and so therefore [G,N ] E G.

Lemma 3.3. Let G be a group, N E G. Then [G,N ] ≤N.
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Proof. Let a = Πm
i=1[gi ,ni]li ∈ [G,N ] for gi ∈ G, and ni ∈N . First, note that

[g,n] = g−1n−1gn ∈N

and so [g,n]l ∈ N for any l ∈ Z. From this it follows that any product of these for

any g ∈ G, and n ∈N will be in N , and so

a = Πm
i=1[gi ,ni]

li ∈N.

Thus, we have that

[G,N ] ⊆N,

and therefore it follows that

[G,N ] ≤N.

Definition: Let G be a group, the Lower Central Series is a central series de-

fined in the following way:

K0(G) = 0,

K1(G) = [K0(G),G] = [G,G] = G′

K2(G) = [K1(G),G] = [[G,G],G]

and inductively,

Kn(G) = [Kn−1,G].

Then, using the above lemmas, we have the following subnormal series,

G = K0(G) D K1(G) D K2(G) D ...

Theorem 3.4. Let G be a group. G is nilpotent if and only if ∃n ∈ Z+ ∪ {0} such that

Kn(G) = 1.
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Proof. (⇒) Suppose G is nilpotent. Then, ∃n ∈Z+ ∪ {0} such that Zn(G) = G.

CLAIM: Ki(G) ≤ Zn−i(G) ∀i ∈Z+ ∪ {0}

Using induction, we can see if i = 0,

K0(G) = G ≤ G = Zn(G) = Zn−0(G).

Also, we have

Ki+1(G) = [KI (G),G] ≤ [Zn−i(G),G] ≤ Zn−i−1

from the above lemma and since

Zn−1(G)
Zn−i−1(G)

= Z(
G

Zn−i−1(G)
) = Zn−(i+1).

Thus the claim holds.

But then,

Kn(G) ≤ Zn−n(G) = Z0(G) = 1

and so we get

Kn(G) = 1.

(⇐) Suppose ∃n ∈Z+ ∪ {0} such that Kn(G) = 1.

It follows from the above claim that we get an upper central series which begins at

1 and ends back at the original group and so G is nilpotent.

This definition of nilpotence is more similar to a groups solvability since, this

time, the subnormal series terminates at the identity and not the whole group. We

can now return to more results about nilpotent groups.

Proposition 3. Let G be a nilpotent group and H ≤ G. Then H is nilpotent.
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Proof. Using the upper central series, suppose G is nilpotent. Then ∃n ∈ Z+ ∪ {0},

such that Zn(G) = G.

CLAIM: ZI (H) ≥H ∩Zi(G), ∀0 ≤ i ≤ n.

If i = 0,

Z0(H) = {1} ≥ {1} = H ∩ {1} = H ∩Z0(G).

Also,

[H ∩Zi+1(G),H] ≤H ∩ [G,Zi+1(G)] ≤H ∩Zi(G) ≤ Zi(H)

by induction, part 6 of theorem 1.10, and by noting that

Zi+1(G)Zi(G)
Zi(G)

=
Zi+1(G)
Zi(G)

= Z(
G

Zi(G)
).

Thus we have that [H ∩Zi+1(G),H] ≤ Zi(H) and so, again by pt. 6 of theorem 1.10,

(H ∩Zi+1(G))Zi(H)
Zi(H)

≤ Z(
H

Zi(H)
) =

Zi+1(H)
Zi(H)

.

But then, (H ∩Zi+1(G))Zi(H) ≤ Zi+1(H) and so H ∩Zi+1(G) ≤ Zi+1(H) and thus the

claim holds by induction.

Then,

Zn(H) ≥H ∩Zn(G) = H ∩G = H

and so Zn(H) = H and therefore H is nilpotent.

Proposition 4. Let G be a nilpotent group, N E G. Then, G
N is nilpotent.

Proof. Using the lower central series, since G is nilpotent ∃n ∈ Z+ ∪ {0} such that

Kn(G) = 1. Let G = G
N .

CLAIM: Ki(G) = Ki(G), ∀i.
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If i = 0, then

K0(G) = G = K0(G).

Also, we have

Ki+1(G) = [Ki(G),G] = [Ki(G),G] = [Ki(G),G] = Ki+1(G).

Thus the claim holds by induction.

Now,

Kn(G) = Kn(G) = 1

and therefore G = G
N is nilpotent.

The following result gives a connection between nilpotence and solvability and

therefore it will be introduced as a theorem, rather than a proposition.

Theorem 3.5. Let G be a nilpotent group. Then G is solvable.

Proof. Since G is nilpotent, ∃n ∈ Z+ ∪ {0} such that Zn(G) = G. Consider the sub-

normal series,

G = Zn(G) D Zn−1(G) E Zn−2(G) D ... D Z0(G) = 1

and also
Zi(G)
Zi+1(G)

= Z(
G

Zi(G)
)

is clearly abelian ∀i. Therefore G is solvable.

The above theorem shows that nilpotence implies solvability. But the oppo-

site implication does not hold, meaning that there are properties held by solvable

groups that are not held by nilpotent groups.
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Example:

Recall result lemma 2.4. Consider G = S3 and N = 〈(123)〉 E G. Now,

|N | = 3

and so N �Z3 so N is abelian, and therefore nilpotent. Also realize that

|G
N
| = |G|
|N |

=
6
3

= 2,

and so G
N �Z2 which is abelian and therefore nilpotent. But Z(S3) = 1 and so

Z2(S3)
Z1(S3)

= Z(
S3

Z1(S3)
) = Z(

S3

Z(S3)
) = Z(

S3

{1}
) � Z(S3) = {1}

and so inductively, we can see that Zi(S3) = {1} for all i which means that the

upper central series will never reach S3. Therefore S3 is not nilpotent.

The above example demonstrates the lack of an equivalent result of lemma

2.4 for nilpotence, and further indicates that nilpotence enforces a bit more of a

restricted structure upon a group as opposed to solvability. The following results

show a few peculiar properties of nilpotent groups, which would lead one to draw

a connection between nilpotence and p-groups.

Theorem 3.6. Let G , 1 be a nilpotent group. Then Z(G) , 1.

Proof. Since G is nilpotent and G , 1, ∃n ∈Z+ such that

Kn(G) = 1.

Let i be minimal such that

Ki(G) = 1.
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Then, Ki−1(G) , 1, and also

1 = Ki(G) = [Ki−1(G),G]

and therefore by theorem 1.10 it follows that

1 , Ki−1 ≤ Z(G)

and so Z(G) , 1.

Theorem 3.7. Let G be a nilpotent group and H < G. Then H < NG(H).

Proof. Since G is nilpotent, ∃n ∈ Z
+ such that Zn(G) = G. Since H < G, let i be

maximal such that

Zi(G) ≤H.

Then Zi+1 �H and,

[H,Zi+1(G)] ≤ [G,Zi+1(G)] ≤ Zi(G) ≤H.

Thus Zi+1(G) ≤NG(H) and so H < NG(H).

Now for a definition before some further results, which will be needed in show-

ing a fairly significant result about nilpotent groups.

Definition: Let G be a group, and M ≤ G. Then M is a maximal subgroup of G

if the following two conditions hold:

(1) M , G

(2) Whenever ∃H ≤ G such that M ≤H ≤ G then either H = M or H = G.

Theorem 3.8. Let G be a nilpotent group, and M ≤ G be a maximal subgroup. Then

M E G.
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Proof. Since M is a maximal subgroup of G, we know that M , G. Thus, by theo-

rem 3.7,

M <NG(M) ≤ G.

Hence G = NG(M), and therefore M E G.

Theorem 3.9. Let G be a nilpotent group. Then,

G �
�

P ∈Sylp(G)
p∈π(G)

P .

Proof. Let P ∈ Sylp(G). If NG(P ) < G, then ∃ a maximal subgroup M of G such that

NG(P ) ≤M. Since G is nilpotent, by theorem 3.8, M E G. Now,

P ≤NG(P ) ≤M,

and so P ≤M. Then P ∈ Sylp(M). Thus, by the Frattini argument, we have

G = NG(P )M ≤MM = M

and so G = M (⇒⇐). This contradicts the maximality of M. Thus, it must be the

case that NG(P ) = G, which means P E G. But then we can see that

∏
P ∈Sylp(G)
p∈π(G)

P ≤ G.

But realize that ∣∣∣ ∏
P ∈Sylp(G)
p∈π(G)

P
∣∣∣ =

∏
P ∈Sylp(G)
p∈π(G)

|P | = |G|.

Thus G =
∏

P ∈Sylp(G)
p∈π(G)

P . Moreover,
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P ∩
∏

Q∈Sylq(G)
q∈π(G)−{p}

Q = 1

∀P ∈ Sylp(G). Thus by theorem 1.11, G �
�

P ∈Sylp(G)
p∈π(G)

P .

Thus from theorem 3.9, we can see that a group being nilpotent means that it

must break down into a product of Sylow p-subgroups, but we also wonder if the

opposite implication is true. It would be nice to be able to completely character-

ize the property of nilpotence to simply just products of Sylow p-subgroups, and

the next theorem helps achieve this. The following proposition leading up to the

theorem will be used as tools for the proof of said theorem.

Proposition 5. Let A,C be groups, and B E A, D E C. Then B ×D E A ×C and also,

A×C
B×D � A

B ×
C
D .

Proposition 6. Let A and B be groups. Then Z(A×B) = Z(A)×Z(B).

Proof. For (⊆), let x = (a,b) ∈ Z(A × B), (h,k) ∈ A × B. Then (ah,bk) = (a,b)(h,k) =

(h,k)(a,b) = (ha,kb). Thus we have that ah = ha, and bk = kb and so a ∈ Z(A), b ∈

Z(B). Thus (a,b) ∈ Z(A)×Z(B).

For (⊇), let (a,b) ∈ Z(A)×Z(B). Then a ∈ Z(A), b ∈ Z(B). Now, let h ∈ A, k ∈ B. Then

ah = ha, and bk = kb. Thus we get that

(a,b)(h,k) = (ah,bk) = (ha,kb) = (h,k)(a,b)

and so (a,b) ∈ Z(A×B). Therefore Z(A×B) = Z(A)×Z(B).

Proposition 7. Let A and B be groups such that A � B. Then Z(A) � Z(B)

Proof. Suppose for groups A,B we have A � B. Then ∃φ : A 7→ B such that φ is a

bijective homomorphism. Realize that for x ∈ Z(A) and a ∈ A, we have

φ(x)φ(a) = φ(xa) = φ(ax) = φ(a)φ(x).
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Thus it must be the case that φ(x) ∈ Z(B). It follows that φ(Z(A)) ≤ Z(B). Since

φ is is an isomorphism, then φ−1 : B 7→ A is also a homomorphism, and so for

b ∈ Z(B), y ∈ B we have

φ−1(b)φ−1(y) = φ−1(by) = φ−1(yb) = φ−1(y)φ−1(b).

So φ−1(b) ∈ Z(A) which means φ−1(Z(B)) ≤ Z(A) and hence φ(Z(A)) = Z(B). There-

fore, φ|Z(A) is an isomorphism and we get Z(A) � Z(B).

Theorem 3.10. Let A,B be nilpotent groups. Then A×B is nilpotent.

Proof. Since A and B are nilpotent, ∃k, l ∈Z+∪ {0} such that Zk(A) = A and Zl(B) =

B. Let n = max{k, l}.

CLAIM: Zi(A×B) = Zi(A)×Zi(B), ∀ i ∈Z+ ∪ {0}.

If i = 0, then Z0(A×B) = {1} × {1} = Z0(A)×Z0(B).

Now

Zi+1(A×B)
Zi(A×B)

= Z

(
A×B

Zi(A×B)

)
= Z

(
A×B

Zi(A)×Zi(B)

)
� Z

(
A

Zi(A)
× B
Zi(B)

)
by propositions 5 and 6 above. Now, furthermore, we have

Z

(
A

Zi(A)
× B
Zi(B)

)
= Z

(
A

Zi(A)

)
×Z

(
B

Zi(B)

)
=
Zi+1(A)
Zi(A)

× Zi+1(B)
Zi(B)

�
Zi+1(A)×Zi+1(B)
Zi(A)×Zi(B)

.

Now looking at this we can realize that

Zi+1(A)×Zi+1(B)
Zi(A)×Zi(B)

=
Zi+1(A)×Zi+1(B)

Zi(A×B)
,

and so tracing back a bit, we have

Zi+1(A×B)
Zi(A×B)

=
Zi+1(A)×Zi+1(B)

Zi(A×B)
.
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Thus, by pre-imaging, we get

Zi+1(A×B) = Zi+1(A)×Zi+1(B).

Now, Zn(A×B) = Zn(A)×Zn(B) = A×B and thus A×B is nilpotent.
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Chapter Four

Automorphisms

In preparation for the main results of this paper, it may be beneficial to give some

background and results on automorphisms of groups. We can start with a defini-

tion.

Definition: Let G be a group and φ : G 7→ G be a function. Then, φ is an

automorphism if φ is a one-to-one and onto homomorphism. Also,

Aut(G) = {φ : G 7→ G|φ is an automorphism}.

Automorphisms can be split into two types, inner and outer. The inner auto-

morphisms are defined as,

Inn(G) = {φ ∈ Aut(G)|φ(x) = g−1xg ∀x ∈ G, for g ∈ G}.

It is a fact that Inn(G) E Aut(G). The outer automorphisms are defined as,

Out(G) =
Aut(G)
Inn(G)

.

The inner automorphism maps are also commonly denoted as φg , where g is

the group element that the map conjugates everything by. The following definition

deals with subgroups left invariant by a groups automorphisms.
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Definition: Let G be a group and H ≤ G. Then H is a characteristic subgroup if

φ(H) = H , ∀φ ∈ Aut(G).

This is commonly denoted by H char G. Subgroups that exhibit this behavior

are highlighted because they can be useful when trying to prove a result about the

parent group. Some examples of characteristic subgroups are shown below.

Example: Let G be a group. Then Z(G) char G.

Proof. Let φ ∈ Aut(G), z ∈ Z(G), and g ∈ G. Since φ ∈ Aut(G), ∃g1 ∈ G such that

g = φ(g1). Then,

φ(z)g = φ(z)φ(g1) = φ(zg1) = φ(g1z)φ(g1)φ(z) = gφ(z).

Thus φ(z) ∈ Z(G), and so φ(Z(G)) ≤ Z(G), but since φ is one-to-one, we can realize

that |φ(Z(G))| = |Z(G)|. Thus we have φ(Z(G)) = Z(G) and hence Z(G) char (G).

Example Let G be a group. Then G′ char G.

Proof. Let φ ∈ Aut(G), x =
∏m

i=1[ai ,bi]ni ∈ G′ for ai ,bi ∈ G, and ni ∈Z. Then, realize

that for a,b,c,d ∈ G,

φ([a,b][c,d]) = φ(a−1b−1abc−1d−1cd) = [φ(a),φ(b)][φ(c),φ(d)].

Therefore, we can see that

φ(x) = φ

 m∏
i=1

[ai ,bi]
ni

 =
m∏
i=1

[φ(ai),φ(bi)]
ni ∈ [G,G] = G′

and so φ(G′) ≤ G′ and since φ ∈ Aut(G), it follows that φ(G′) = G′. Hence, G′ char

G.
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Theorem 4.1. Let G be a group. Then the following hold:

1. If H char G, then H E G.

2. If H char K char G then H char G.

3. If H char K and K E G, then H E G.

Proof. For (1), since H char G, then φ(H) = H ∀φ ∈ Aut(G). Thus ∀π ∈ Inn(G),

π(H) = H or g−1Hg = H ∀g ∈ G. Thus H E G. Now for (2), let φ ∈ Aut(G). Since K

char G, we know φ(K) = K . Thus φ|K ∈ Aut(K). But since H char K , φ|K (H) = H

and so φ(H) = H , meaning that H char G. For (3), let g ∈ G. Then, φg ∈ Aut(G).

Since K E G, we get φg(K) = K and so it follows that φg |K ∈ Aut(K). Now, since H

char K , φg |K (H) = H and so φ(H) = H . Thus g−1Hg = H , and so H E G.

Definition: Let G be a group. Then G is characteristically simple if {1} and G are

its only characteristic subgroups.

Example: Zp for some prime p is characteristic. In fact, any simple group is

characteristic.

Theorem 4.2. Let G be a characteristically simple group. Then G is isomorphic to the

direct product of isomorphic groups.

Proof. Let 1 , G1 E G such that |G1| is minimal and let H =
∏s

i=1Gi such that

1. Gi E G ∀1 ≤ i ≤ s.

2. Gi � G1 ∀1 ≤ i ≤ s.

3. Gi ∩
∏

j,iGj = 1 ∀1 ≤ i ≤ s.

4. s is maximal.
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If H is not a characteristic subgroup of G, then ∃φ ∈ Aut(G) and ∃ 1 ≤ i ≤ s

such that φ(Gi) � H . Then, φ(Gi)∩H ≤ φ(Gi). Since Gi E G ∀1 ≤ i ≤ s, we know

H E G. Also, since Gi E G, we get that φ(Gi) E G. Thus φ(Gi)∩H E G. But

|φ(Gi)∩H | < |φ(Gi)| = |Gi | = |G1|.

Therefore φ(Gi)∩H = 1, by the minimality of |G1|.

Now, φ(Gi) E G, φ(Gi) � Gi � G1, and φ(Gi)∩
∏s

i=1Gi = 1. But then, we get

H =
s∏

i=1

Gi < φ(Gi)
s∏

i=1

Gi ,

a contradiction to the maximallity of s. Thus, H is a characteristic subgroup of G.

Since G is characteristically simple and H , 1, we get G = H =
∏s

i=1Gi �
�s

i=1Gi .

Now, suppose N E Gi for some 1 ≤ i ≤ s. Then for x = g1g2...gs ∈ G, n ∈N ,

nx = g−1
s ....g−1

1 ng1...gs.

Also, realize that for any i , j, [Gi ,Gj] = 1. which means that gigj = gjgi , ∀gi ∈ Gi ,

gj ∈ Gj . This implies that nx = n, and so N E G. But |N | ≤ |Gi | = |G1| and |G1| is

minimal so N = 1 or N = Gi . Therefore, Gi is simple.

Definition: Let G be a group and N ≤ G. Then N is a minimal normal subgroup

if:

1. N E G.

2. Whenever ∃H ≤N such that H E G, then H = 1 or H = N .

3. N , 1.
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Minimal normal subgroups are useful, especially in situations where a normal

subgroup gets factored out of a solvable group. These subgroups have nice struc-

ture and are more controllable. A result about their structure is below.

Definition: Let p be a prime, and N be a group. Then N is an elementary abelian

p-group if N �Zp ×Zp × ...×Zp.

Proposition 8. Let G be a group such that G = G′. Then, G is not solvable.

Proof. Suppose G is solvable. Then ∃n ∈Z+ ∪ {0} such that G(n) = 1.

CLAIM: G(i) = G ∀ i.

If i = 0, G(0) = G. Also, G(i+1) = (G(i))′ = (G) = G′ by induction. Thus, G(i) = G

for all i, a contradiction to the derived series terminating. Thus, G is not solvable.

Lemma 4.3. Let G be a solvable and simple group. Then, G �Zp for some prime p.

Proof. Now, G is simple so {1} and G are the only normal subgroups of G. Also,

since G is solvable, ∃n ∈ Z+ ∪ {0} such that G(n) = 1 . So we have the subnormal

series,

G = G(0) D G(1) = G′ D G(2) D ... D G(n) = 1.

So, G′ E G, which means that G′ = 1 or G′ = G since G is simple. Now since G is

solvable, and by proposition 8 above, G′ , G, so it must be true that G′ = 1. So, the

subnormal series becomes G = G(0) D G(1) = G′ = 1, or, G D 1. Therefore, G must

be abelian. Now, all subgroups of an abelian group are normal, and since G is

abelian, it must have no proper non-trivial subgroups. Now, by Cauchy’s theorem,

if |G| = m then for some prime p such that p|m, there exists a subgroup of order
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p. Since G is simple, it must be the case that m = p (or else there would be a

proper subgroup), and so |G| = p. So by the classification of finite abelian groups,

G �Zp

Theorem 4.4. Let G be a solvable group and N be a minimal normal subgroup of G.

Then N is an elementary abelian p-group for some prime p.

Proof. Since N is a minimal normal subgroup of G, we know N is characteristically

simple. By theorem 4.2,

N �

n�
i=1

Ni

with each Ni being simple isomorphic groups. Since G is solvable, we get that Ni

is solvable ∀ 1 ≤ i ≤ n. Thus, since the Ni ’s are isomorphic groups, by lemma 4.3,

∃ prime p such that Ni � Zp ∀ 1 ≤ i ≤ n. Therefore N � Zp ×Zp × ... ×Zp is an

elementary abelian p-group.

The significance of the above theorem is clear, as it completely characterizes

minimal normal subgroups of solvable groups. Now, if a situation were to ever

arise where one of these subgroups is factored out of the original group (under the

natural map), then the resulting quotient group (along with images and preim-

ages of given subgroups) is much easier to understand and control. Now, recall-

ing the definition of Hall π-subgroups, the following theorem shows how these

groups truly are generalized notions of Sylow subgroups when it comes to solv-

able groups.

Proposition 9. Let G be a group, N E G and P ∈ Sylp(G) for some prime p. Then,

PN
N ∈ Sylp(GN ).

Proof. Now, by the second isomorphism theorem, we know that

|PN |
|N |

=
∣∣∣∣∣PNN

∣∣∣∣∣ =
∣∣∣∣∣ P
P ∩N

∣∣∣∣∣ =
|P |
|P ∩N |
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which is a p-number, since P is a p-group. Thus PN
N is a p-subgroup of G

N . Also,

since P ∈ Sylp(G), we know that |G||P | is a p′-number. But,

|G|
|P |

=
|G|
|PN |

· |PN |
|P |

and since we know |G|
|P | is a p′-number, it follows that |G||PN | must also be a p′-number.

Now, realize that ∣∣∣GN ∣∣∣∣∣∣PNN ∣∣∣ =
|G|
|N |
|PN |
|N |

=
|G|
|PN |

is a p′-number and therefore PN
N ∈ Sylp(GN )

We can generalize this result for Hall subgroups.

Proposition 10. Let G be a group, N E G, and H ∈Hallπ(G). Then HN
N ∈Hallπ(GN ).

Proof. Follows a similar argument as the previous proposition.

Proposition 11. Let G be a group, H ≤ G, K ≤ G and L ≤H . Then, H∩KL = (H∩K)L.

Proof. Let x ∈ H ∩KL. Then x ∈ H and x ∈ KL. So x = kl for some k ∈ K , and l ∈ L.

We also have that k = xl−1 ∈ H . Thus k ∈ H ∩ K =⇒ x = kl ∈ (H ∩ K)L and so

H ∩KL ⊆ (H ∩K)L.

Now, let x ∈ (H∩K)L. Then x = gl for g ∈H∩K , l ∈ L. Also gl ∈HL = H and gl ∈ KL.

Thus x = gl ∈H ∩KL and so (H ∩K)L ⊆H ∩KL. Therefore (H ∩K)L = H ∩KL.

Theorem 4.5. (Hall’s Theorem) Let G be a solvable group, and π be a set of primes.

Then,

1. ∃R ∈Hallπ(G).

2. Every π-subgroup of G is in a conjugate of R.
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Proof. Using induction on |G|, if |G| = 1, then G = {1}. Then, π(G) = ∅ ⊆ π and so G

is a π-group. Also,

π

(
G
{1}

)
= π(G) = ∅ ⊆ π′.

So G ∈Hallπ(G), giving (1), and since G ≤ G = G1, we see that (2) holds as well.

Now, suppose the theorem holds for all solvable groups of order < |G|. Let N be

a minimal normal subgroup of G, and G = G
N . Since G is solvable, then by theorem

4.4, N is an elementary abelian p-group, for some prime p.

CASE 1: Say p ∈ π.

Now, since G is solvable, we know by lemma 2.3, G is solvable. Thus, since |G| < |G|,

∃H ∈Hallπ(G). Then this means that H ≤ G, and

|H | =
∣∣∣∣∣HN

∣∣∣∣∣ · |N | = |H | · |N |
is a π-number. Thus H is a π-group, and

|G|
|H |

=
|G|
|N |
|H |
|N |

=
|G|
|H |

is a π′-number. Hence, H ∈Hallπ(G), giving (1).

Now, let L be a π-subgroup of G. Then L ≤ G is a π−group. Hence, by induction,

∃g ∈ G such that L ≤H
g

= Hg . But then

L ≤ LN ≤Hg

and so L ≤Hg , giving (2).

CASE 2: p < π and G has no normal π-subgroups.
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If H < G, Then since G is solvable, by lemma 2.2 H is solvable. Thus, by induc-

tion, ∃K ∈Hallπ(H). Then K is a π-group and

|G|
|K |

=
|G|
|H |
· |H |
|K |

=
|G|
|N |
|H |
|N |

· |H |
|K |

=
|G|
|H |
· |H |
|K |

is a π′-number. Thus K ∈Hallπ(G), giving (1). Let L be a π-subgroup. Then L ≤ G

is a π-subgroup. Thus, by induction, ∃g ∈ G such that L ≤ H
g
. But then L ≤ LN ≤

Hg and so Lg
−1

< H is a π-subgroup, and so ∃x ∈ H such that Lg
−1 ≤ Kx. But then

L ≤ Kxg , giving (2). If G = H , Then G = H is a π−group. Let M be a minimal

normal subgroup of G. Since G is solvable, by theorem 4.4, M is an elementary

abelian q-group with q ∈ π. Since M E G, we know M E G. Let Q ∈ Sylq(M). By

Proposition 9, we know Q ∈ Sylq(M), and so M = Q. But M = QN . By the Frattini

argument,

G = NG(Q)M = NG(Q)QN = NG(Q)N.

Since N E G, we know N ∩NG(Q) ENG(Q). Also, since N is abelian,

N ∩NG(Q) EN.

Thus, N ∩NG(Q) E NG(Q)N = G. Since N is a minimal normal subgroup of G, we

get N ∩NG(Q) = N , or N ∩NG(Q) = 1.

If N ∩NG(Q) = N,

then N ≤ NG(Q) and so G = NG(Q)N = NG(Q). Thus Q E G, but we said G has no

normal π-subgroups and so this is a contradiction (since Q is a π-group). Therefore

N ∩NG(Q) = 1. Now,

|G| = |NG(Q)N | = |NG(Q)| · |N |
|N ∩NG(Q)|

= |NG(Q)| · |N |.

Then, |NG(Q)| = |G|
|N | = |G| is a π-number and so NG(Q) is a π-group. Also, |G|

|NG(Q)| =

|N | is a π′-number (p < π). Thus H1 = NG(Q) ∈Hallπ(G), giving (1). Let L ≤ G be a
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π-group. Now,

LN = LN ∩G = LN ∩H1N = (LN ∩H1)N,

and thus we have that

|LN |
|LN ∩H1|

=
|(LN ∩H1)N |
|LN ∩H1|

=
|N |

|LN ∩H1 ∩N |

which is a π′-number. Since LN∩H1 is a π-group, we get that LN∩H1 ∈Hallπ(LN ).

Also, L ≤ LN is a π-group.

If LN < G, then by induction, ∃y ∈ LN such that L ≤ (LN ∩H1)y) ≤ H
y
1 , giving

(2).

If LN = G, since N ≤M, we get G = LM. Thus

|L| · |N | = |G| = |L| · |M |
|L∩M |

.

Thus |N | = |M |
|L∩M | is a π′-number and so L∩M ∈ Sylq(M). Thus ∃z ∈ M such that

(L∩M) = Qz. Since M E G, we get M ∩L E L. Thus L ≤NG(M ∩L), and so

L ≤NG(Qz) = NG(Q)z = Hz
1

giving (2).

Lemma 4.6. Let G be a group, H ≤ G, and K ≤ G. Then HK ≤ G if and only if

HK = KH .

Proof. Suppose HK = KH. Since H ≤ G and K ≤ G, we know H , {∅} , K . Thus

∃h ∈H and ∃k ∈ K . But then hk ∈HK and so HK , {∅}.

Let h1k1,h2k2 ∈HK . Then

h1k1(h2k2)−1 = h1k1k
−1
2 h−1

2
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and since HK = KH , ∃h3k3 such that h3k3 = (k1k
−1
2 )h−1

2 . Now continuing with the

above expression, we get

h1k1k
−1
2 h−1

2 = h1h3k3 ∈HK.

Thus HK ≤ G by the subgroup test.

Now, suppose HK ≤ G and let hk ∈ HK . Then (hk)−1 ∈ HK , or k−1h−1 ∈ HK . So

∃h1 ∈ H and k1 ∈ K such that k−1h−1 = h1k1. Thus hk = k−1
1 h−1

1 ∈ KH and so we get

het HK ⊆ KH .

Now, let kh ∈ KH . Then h−1k−1 ∈ HK . Since HK ≤ G, we get (h−1k−1)−1 ∈ HK or

kh ∈HK . Thus KH ⊆HK and hence KH = HK .

Theorem 4.7. Let G be a group, H ≤ G, and K ≤ G such that gcd
( |G|
|H | ,

|G|
|K |

)
= 1. Then,

1. G = HK .

2. |G|
|H∩K | =

|G|
|H | ·

|G|
|K | .

Proof. Now,
|G|
|H ∩K |

=
|G|
|K |
· |K |
|K ∩H |

=
|G|
|H |
· |H |
|H ∩K |

.

Then |G||H |
∣∣∣ |G||H∩K | and |G||K |

∣∣∣ |G||H∩K | and since gcd
( |G|
|H | ,

|G|
|K |

)
= 1, then we have that

|G|
|H |
· |G|
|K |

∣∣∣ |G|
|H ∩K |

,

and so it is obviously true that

|G|
|H |
· |G|
|K |
≤ |G|
|H ∩K |

.

Thus, by doing some basic algebra, we have that |G| ≤ |H ||K ||H∩K | = |HK |. Thus G = HK,

giving (1).

Now, for (2), we also have |G| = |HK | = |H |·|K ||H∩K | and so |G| · |G| = |G|·|H |·|K ||H∩K | . Thus, we

get that |G||H | ·
|G|
|K | =

|G|
|H∩K | , giving (2).
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Theorem 4.8. Let G be a group and Hi < G such that Hi is solvable ∀ 1 ≤ i ≤ 3 and

gcd
(
|G|
|Hi |

, |G||Hj |

)
= 1, ∀ i , j. Then, G is solvable.

Proof. Using induction on |G|, let N be a minimal normal subgroup of H1. By

theorem (4.4), N is an elementary abelian p-group, for some prime, p. By Sylow’s

theorem, ∃P ∈ Sylp(G) such that N ≤ P . Since gcd
( |G|
|H2|

, |G||H3|

)
= 1, we get that p -

|G|
|H2|

or p -
|G|
|H3|

. WLOG, say p -
|G|
H2|

, then |G|p = |H2|p. By Sylow’s theorem, ∃x ∈ G such

that P x ≤ H2. Since N ≤ P , we get N x ≤ P x and so N x ≤ H2. Also since N E H1, we

get N x EHx
1 . Now,

gcd

(
|G|
|Hx

1 |
,
|G|
|H2|

)
= gcd

(
|G|
|H1|

,
|G|
|H2|

)
= 1,

by theorem (4.7), G = Hx
1H2. Let K = (N x)G. Then, by lemma (1.10), K E G and so

G = G
K is a group. Also,

K = (N x)G = (N x)H
x
1H2 = (N x)H2 ≤H2 < G

since N x E Hx
1 and N x ≤ H2. Thus, 1 , K < G. Now, since Hi is solvable for each i,

by lemma (2.3), Hi is solvable for each i. Now,

|G|
|HiK |

· |HiK |
|Hi |

=
|G|
|Hi |

and so |G|
|HiK |

∣∣∣ |G||Hi |
∀ 1 ≤ i ≤ 3. Thus, since gcd

(
|G|
|Hi |

, |G||Hj |

)
= 1 ∀ i , j, we get gcd

(
|G|
|HiK |

, |G||HjK |

)
=

1 ∀ i , j. Thus,

gcd

 |G||Hi |
,
|G|
|Hj |

 = gcd

(
|G|
|HiK |

,
|G|
|HjK |

)
= 1.

Since |G| = |G|
|K | < |G|, we get that G = G

K is solvable by induction. Since K ≤ H2

and H2 is solvable, we get that K is solvable by lemma (2.2). Thus G is solvable by

lemma (2.4).

Theorem 4.9. Phillip Hall Let G be a group. Then G is solvable if and only if

Hallp′ (G) , ∅, ∀ p ∈ π(G).
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Proof. (⇒) Suppose G is solvable. Then, by Hall’s theorem, Hallp′ (G) , ∅.

(⇐) Suppose Hallp′ (G) , ∅, ∀ p ∈ π(G). Using induction on |π(G)|, if |π(G)| = 1.

Then G is a p-group, and thus solvable by proposition 2. If |π(G)| = 2, then G is a

pq-group, and thus G is solvable by Bender’s theorem (Bender, 1972). WLOG, say

|π(G)| ≥ 3. Let

|G| =
m∏
i=1

pnii

where pi is prime, m ∈Z+, and ni ∈Z+ ∀ 1 ≤ i ≤m. Let Hi ∈ Hallp′i (G), ∀ 1 ≤ i ≤ 3.

Then,

gcd

(
|G|
|Hi |

,
|G|
|Hj |

)
= gcd

(
pnii ,p

nj
j

)
= 1

∀ i , j. By theorem (4.7), G = HiHj and |Hi |
|Hi∩Hj |

= |G|
|Hj |

= p
nj
j is a pj-number. Thus,

Hi ∩Hj ∈Hallp′j (Hi) ∀ 1 ≤ i ≤ 3, 1 ≤ j ≤ 3. Thus, Hallp′ (Hi) , ∅, also

|π(Hi)| = |π(G)| − 1 < |π(G)|

∀ 1 ≤ i ≤ 3. Therefore, by induction, Hi is solvable, for all 1 ≤ i ≤ 3 and thus, by

theorem (4.8), G is solvable.

Hall’s Theorem (Hall, 1928) has been a foundational tool for many modern

group theorists. Later on, we will see how it will be of use in the proof of the fi-

nal theorem. At times, it may be useful to focus on the image of elements under

automorphisms and see how given group elements and their images relate to each

other. The following definition is motivated by this line of thought.

Definition: Let G be a group, H ≤ G. Then, H is called φ- invariant if φ(H) ≤H .

Proposition 12. Suppose G is a group, φ ∈ Aut(G), and H ≤ G such that H is φ−invariant.

Then, NG(H) and CG(H) are φ-invariant.
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Proof. Let h ∈ H , and g ∈ NG(H). Then, φ(h) ∈ H and hg ∈ H . Thus φ(hg) ∈ H , but

φ(hg) = φ(h)φ(g) ∈H . Thus φ(g) ∈NG(H), and so NG(H) is φ-invariant.

Now, let h ∈ H , g ∈ CG(H). The, gh = hg, and we have that φ(gh) = φ(hg) by well-

definedness. So

φ(g)φ(h) = φ(gh) = φ(hg) = φ(h)φ(g)

and since φ(h) ∈H, we see that φ(g) ∈ CG(H). Thus, CG(H) is φ-invariant.

Definition: Let G be a group, φ ∈ Aut(G), and g ∈ G. Define

1. [g,φ] = g−1φ(g).

2. [G,φ] = 〈[g,φ] | g ∈ G〉.

3. CG(φ) = {g ∈ G| φ(g) = g}.

Proposition 13. Let G be a group, φ ∈ Aut(G), and g ∈ G. Then, CG(φ) ≤ G.

Proof. Clearly 1 ∈ CG(φ) since φ is a homomorphism, and so CG(φ) , ∅. Now, let

a,b ∈ CG(φ). So we know, φ(a) = a, and φ(b) = b =⇒ b−1 = φ(b)−1 = φ(b−1). Thus

ab−1 = φ(a)φ(b−1) = φ(ab−1)

and so ab−1 ∈ CG(φ). Therefore CG(φ) ≤ G.

Definition: Let G be a group, and φ ∈ Aut(G). Then φ is fixed-point-free if

CG(φ) = {1}.

We will now focus on some results about these fixed-point-free automorphisms.

Theorem 4.10. Let G be a group, φ ∈ Aut(G), suppose CG(φ) = 1, and |φ| = n. Then,

1. G = {x−1φ(x)| x ∈ G}.
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2. xφ(x)φ2(x)φ3(x)...φn−1(x) = 1 ∀x ∈ G.

Proof. Let S = {x−1φ(x)| x ∈ G}.

CLAIM: S = G.

Clearly, S ⊆ G (since φ ∈ Aut(G)). Now, suppose ∃x,y ∈ G such that x , y and

x−1φ(x) = y−1φ(y). Then yx−1 = φ(y)φ(x)−1 = φ(yx−1). Thus, yx−1 ∈ CG(φ) = 1.

Hence, yx−1 = 1 =⇒ y = x, a contradiction. Therefore |S | = |G|, and so G = S.

For (2), let x ∈ G.By (1), ∃y ∈ G such that x = y−1φ(y). Then,

xφ(x)φ2(x)...φn−1(x) = y−1φ(y) = y−1φ(y)φ(y)−1φ2(y)(φ2(y))−1...(φn−1(y))−1φn(y),

which simplifies down to

y−1φn(y) = y−1y = 1,

as desired.

Proposition 14. Let G be a group, and P ≤ G be a p-subgroup of G, such that P ∈

Sylp(NG(P )). Then, P ∈ Sylp(G).

Proof. Suppose P < Sylp(G). Then, ∃Q ∈ Sylp(G), such that P < Q. Thus, we know

that since Q is a p-group, P < NQ(P ). But then we have P < NQ(P ) ≤ NG(P ), a

contradiction since NQ(P ) is a p-group and P ∈ Sylp(NG(P )). Thus P ∈ Sylp(G).

Theorem 4.11. Let G be a group, φ ∈ Aut(G), and CG(φ) = 1. Then

1. ∃ a unique P ∈ Sylp(G) such that P is φ-invariant ∀ p ∈ π(G).

2. If U ≤ G is a φ-invariant p-subgroup, then U ≤ P .

Proof. For (1), let P ∈ Sylp(G). Since φ is one-to-one, we get |φ(P )| = |P |. Thus

φ(P ) ∈ Sylp(G), and by Sylow’s 2nd theorem, ∃g ∈ G such that φ(P ) = P g . By
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theorem (4.10), ∃x ∈ G such that g = x−1φ(x). Now, consider P x−1
. Then, P x−1 ∈

Sylp(G) and

φ(P x−1
) = φ(P )φ(x)−1

= P gφ(x)−1
= P x−1

.

Thus P x−1
is φ-invariant. Now, suppose P ,Q ∈ Sylp(G) are each φ-invariant. By

Sylow’s theorem, ∃g ∈ G such that P g = Q. Then,

P g = Q = φ(Q) = φ(P g) = φ(P )φ(g) = P φ(g).

Thus P g = P φ(g) or P = P φ(g)g−1
. Hence φ(g)g−1 ∈ NG(P ). Since P is φ-invariant,

by proposition 12, NG(P ) is φ-invariant. Also CNG(P )(φ) ≤ CG(φ) = 1, and thus

CNG(P )(φ) = 1. By theorem 4.10, ∃n ∈ NG(P ) such that φ(g)g−1 = φ(n)n−1. Hence

φ(n−1g) = n−1g. So n−1g = 1, since n−1g ∈ CG(φ), and so g = n. Then,

Q = P g = P n = P ,

and so Q = P giving (1).

For (2), let U ≤ G and let P0 ≤ G be a maximal φ−invariant p-subgroup such

that U ≤ P0. Since P0 is φ-invariant, by proposition 12, NG(P0), is φ-invariant.

Moreover CNG(P0)(φ) ≤ CG(φ) = {1} and so CNG(P0) = 1. Therefore, by (1), ∃! P ∈

Sylp(NG(P0)) such that P is φ-invariant. Now, P0 E NG(P0) and P0 is a p-group. So,

it follows that P0 ≤ P .

CLAIM: P0 ∈ Sylp(NG(P0)).

If P0 < Sylp(NG(P0)), then P0 < P . Since P is a p-group and P0 < P we get P0 <

NG(P0). Again, by proposition 12, since P and P0 are φ-invariant, we know NG(P0)

is φ−invariant. But then we get,

U ≤ P0 < NG(P0),
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a contradiction to the maximallity of P0. Thus P0 ∈ Sylp(NG(P0)) and by proposition

13, P0 ∈ Sylp(G). Thus U ≤ P0 and P0 is the φ-invariant Sylow p subgroup of G.

These fixed-point-free automorphisms can be induced from the original group

to a quotient group, which could prove useful in scenarios where induction is used

as a proving tool. The following theorem fills in the details for how this works.

Theorem 4.12. Let G be a group, N E G be φ-invariant, and φ ∈ Aut(G) such that

CG(φ) = 1. Then, φ induces a fixed-point-free action on G
N .

Proof. Let G = G
N , define φ : G 7→ G by

φ(g) = φ(g)

∀g ∈ G. (NOTE: this map is technically φ|G, but will just continue to be referred

to as φ). To show φ is well-defined, let g1, g2 such that g1 = g2. That means,

g1N = g2N =⇒ g−1
2 g1 ∈ N , and so since N is φ−invariant, we get φ(g−1

2 g1) ∈ N .

Thus, we have φ(g1)N = φ(g2)N or, in other words φ(g1) = φ(g2) and so φ is well-

defined. Now, let a,b ∈ G. then,

φ(ab) = φ(aNbN ) = φ(abN ) = φ(ab) = φ(ab) = φ(ab)N = φ(a)φ(b) = φ(a) φ(b).

Thus, φ is a homomorphism. Let a ∈ G. Then, a ∈ G, since φ ∈ Aut(G), ∃b ∈ G such

that φ(b) = a. Then b ∈ G and φ(b) = φ(b) = a and so φ is onto. If a,b ∈ G such that

φ(a) = φ(b). Then,

φ(a) = φ(b)

meaning that φ(b)−1φ(a) = φ(b−1a) ∈ N . Now, since N is φ−invariant, φ(N ) ≤

N =⇒ φ(N ) = N and so φ(b−1a) ∈ φ(N ) and so ∃n ∈ N such that φ(b−1a) = φ(n).

Since φ ∈ Aut(G) we get b−1a = n ∈N , so a = b, and so φ is one-to-one.

Now, let a ∈ CG(φ), then φ(a) = a. In other words, φ(a) = a =⇒ a−1φ(a) ∈ N . Since
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N is φ-invariant and CN (φ) ≤ CG(φ) = 1, we get that φ acts fixed-point-freely on

N . By theorem (4.10) ∃n ∈ N such that a−1φ(a) = n−1φ(n) =⇒ φ(an−1) = an−1 and

thus an−1 ∈ CG(φ) = 1. Thus an−1 = 1 so a = n. Hence a = 1, and so CG(φ) = 1 .

Now, finally, for some results about fixed-point-free automorphisms with spe-

cific orders.

Theorem 4.13. Let G be a group, φ ∈ Aut(G) and CG(φ) = 1 such that |φ| = 2. Then

G is abelian.

Proof. Let x ∈ G. By theorem (4.10), we know

xφ(x) = 1 =⇒ φ(x) = x−1.

Thus, if y ∈ G, then

xy = (y−1x−1)−1 = (φ(y)φ(x))−1 = φ(yx)−1 = (x−1y−1)−1 = yx

and hence, G is abelian.

Thus, in a situation where there exists a fixed-point-free automorphism, φ, of

order 2, not only do we know the group must be abelian, we also know exactly

what map φ has to be. So, in some ways, the order of the automorphism character-

izes the automorphism itself. Now for another result involving a fixed-point-free

automorphism of a different order.

Theorem 4.14. Let G be a group, φ ∈ Aut(G) and CG(φ) = 1, such that |φ| = 3. Then,

G is nilpotent.

Proof. Now, recall that we have characterized the quality of a group’s nilpotence

as being equivalent to many other statements. One of those statement was that all

Sylow-p subgroups are normal ∀p ∈ π(G). Thus, to show nilpotence, we need only
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show that Sylow-p subgroups are normal in G.

So suppose G is not nilpotent. Then ∃P ∈ Sylp(G) such that P 5 G and P is

φ−invariant, by theorem (4.11). Hence, by Sylow’s theorem (np , 1) and so ∃Q ∈

Sylp(G) such that P ,Q. Since |P | = |Q| = |G|p, we get Q * P . Then, ∃x ∈Q − P , and

since CG(φ) = 1 and |φ| = 3, by theorem (4.10), we get

xφ(x)φ2(x) = 1 = φ2(x)φ(x)x =⇒ xφ(x) = (φ2(x))−1 = φ(x)x.

Let H = 〈x,φ(x)〉. Then by proposition 2, H ≤ G, also since xφ(x) = φ(x)x, we

know H is abelian. Since x ∈Q, we know x is a p-element. Also, since φ ∈ Aut(G),

we know |φ(x)| = |x|, and so φ(x) is a p-element.

Thus, since xφ(x) = φ(x)x, it follows that all elements of H are p-elements.

Hence, H is an abelian p-group. Since φ(x) ∈ H , φ(φ(x)) = φ2(x) = x−1φ(x)−1 ∈ H .

Since H = 〈x,φ(x)〉 we get that H is a φ-invariant p-group. Thus by theorem (4.10)

we get that x ∈H ≤ P , a contradiction. Therefore, G is nilpotent.
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Chapter Five

Transfer

The transfer is one of the more commonly used tools in group theory. It arises from

the action of a group on an abelian section of a subgroup’s cosets. Some insight on

this will be given throughout this chapter.

Definition: Let G be a group and H ≤ G. Then, ∃{gi}ni=1 ⊆ G such that

G =
n⋃
i=1

Hgi ,

and the union is disjoint. We call {gi}ni=1 a transversal of H in G, and

T = {T | T is a transversal of H in G}.

Remark: For T = {ti}ni=1, U = {ui}ni=1 ∈ T , after re-indexing of the sets, we can

assume tiu
−1
i ∈H , ∀i = 1, ...,n.

Theorem 5.1. Let G be a group, J EH ≤ G, such that H
J is abelian, and T = {ti}ni=1,S =

{si}ni=1, U = {ui}ni=1 ∈ T . Define T
U ∈

H
J , by

T
U

=
n∏
i=1

Jtiu
−1
i
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and for g ∈ G, define

T g = {tig}ni=1.

Then,

1. T
T = J .

2. ( TU )−1 = U
T .

3. T
U ·

U
S = T

S , ∀S,T ,U ∈ T .

4. T g
Ug = T

U

Proof. For (1),
T
T

=
n∏
i=1

Jtit
−1
i =

n∏
i=1

J1 = J.

For (2),
T
U
· U
T

=
n∏
i=1

Jtiu
−1
i

n∏
i=1

Juit
−1
i ,

and since H
J is abelian, we can rewrite that as

n∏
i=1

Jtiu
−1
i Juit

−1
i =

n∏
i=1

J1 = J.

Thus, we get that ( TU )−1 = U
T . For (3), realize that

T
U
· U
S

=
n∏
i=1

Jtiu
−1
i

n∏
i=1

Juis
−1
i =

n∏
i=1

Jtiu
−1
i Juis

−1
i =

n∏
i=1

Jtis
−1
i =

T
S
.

Now, finally, for (4), observe that

T g

Ug
=

n∏
i=1

Jtigg
−1u−1

i =
n∏
i=1

Jtiu
−1
i =

T
U
.
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Theorem 5.2. Let G be a group, J EH ≤ G such that H
J is abelian, and T ∈ T . Define

the transfer of G into H
J , τ by

τ(g) =
T g

T
, ∀g ∈ G.

Then,

1. τ is a homomorphism.

2. τ doesn’t depend on T (or any transversal).

Proof. For (1), if g1, g2 ∈ G, then

τ(g1g2) =
T g1g2

T
=
T g1g2

T g2
·
T g2

T
=
T g1

T
·
T g2

T
= τ(g1)τ(g2),

by theorem (5.1). For (2), let U ∈ T , g ∈ G. Then

T g

T
=

T g

Ug
·
Ug

U
· U
T

=
T
U
·
Ug

U
U
T

=
T
U
·
Ug

U
·
( T
U

)−1
=
Ug

U
.

Thus, we can see that τ is independent of T .

Here, τ is commonly referred to as the "transfer homomorphism". Again, as

seen from the last theorem, it is important to note that this homomorphism does

not depend on the choice of a transversal, which can be helpful since this means a

transversal can be freely chosen based on convenience.

Proposition 15. Let G be a group, H E G, g ∈ G, n ∈ Z such that gn ∈ H and

gcd( |G||H | ,n) = 1. Then, g ∈H .

Proof. Let m = |G|
|H | . Since gcd(m,n) = 1, ∃x,y ∈ Z such that mx + ny = 1, and so

mx = 1−ny. Now, realize that

gH = g1−nyH,
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since (g1−ny)−1g = gny−1g = gny = (gn)y ∈H . But 1−ny = mx, and so we have

gH = gmxH = (gxH)m = 1H.

Thus we get that gH = 1H =⇒ g ∈H .

Theorem 5.3. Let G be a group, J E H ≤ G, H
J is abelian, |G||H | = m, |H ||J | = n, and

gcd(m,n) = 1. Then, H ∩Z(G)∩G′ ≤ J .

Proof. Let h ∈ H ∩Z(G)∩G′, and τ : G 7→ H
J be the transfer homomorphism, and

T ∈ T , T = {ti}ni=1. Then, by the first isomorphism theorem,

G
Kernτ

� τ(G) ≤ H
J

is abelian. Thus G
kernτ is abelian and so by theorem (1.11), G′ ≤ Kernτ , but then

h ∈ G′ and so h ∈ Kernτ . Hence, J = τ(h) = T h
T = hT

T (since h ∈ Z(G)), and realize

that
hT
T

=
m∏
i=1

Jhtit
−1
i =

m∏
i=1

Jh = Jhm.

Therefore hm ∈ J , and so by proposition 15, we get h ∈ J , thus

H ∩ Z(G)∩G′ ≤ J.

Definition: Let G be a group, J EH ≤ G, H
J be abelian,

T = {T | T is a transversal of H in G}, and T ,U ∈ T . Define ∼ on T by, T ∼ U is

T
U = J .

Comment: By theorem 5.1, ∼ is an equivalence relation on T . Let Ω = {[T ]|T ∈

T } be the set of equivalence classes. Notice that G and H act on Ω by

g[T ] = [T g−1]
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and

h[T ] = [hT ],

∀g ∈ G and ∀h ∈H .

Theorem 5.4. Let G be a group, J EH ≤ G, H
J be abelian, |G||H | = m, |H ||J | = n,

T = {T | T is a transversal of H in G}, Ω = {[T ]| T ∈ T }, and gcd(m,n) = 1. Then,

1. H acts transitively on Ω.

2. H[T ] = J , ∀[T ] ∈Ω.

Proof. For (1), let T ,U ∈ T . It’s enough to show that ∃h ∈ H such that hT ∼ U .

Since gcd(m,n) = 1, ∃x,y ∈ Z such that xm + yn = −1. Now, ( TU )n = J , and so

( TU )−n = J =⇒ ( TU )−ny = J . Let h ∈H such that ( TU )x = Jh. Then,

hT
U

=
hT
T
· T
U

=
m∏
i=1

Jhtit
−1
i ·

T
U

= Jhm · T
U

=
( T
U

)mx

·
( T
U

)
=

( T
U

)mx+1
=

( T
U

)−ny
= J.

Thus hT ∼ U and so H acts transitively on Ω. For (2), let j ∈ J . Then jT
T =∏m

i=1 Jjtit
−1
i =

∏m
i=1 Jj = J . Thus, jT ∼ T and so j ∈ H[T ], and therefore J ≤ H[T ].

Now, let h ∈ H[T ]. Then, hT ∼ T and so J = hT
T =

∏m
i=1 Jhtit

−1
i = Jhm. Therefore,

hm ∈ J , and by proposition 15, we get h ∈ J . Thus H ≤ J and therefore H[T ] = J .

Remark:

Let G be a group, J EH ≤ G, H
J be abelian, |G||H | = m, and T ,∼,Ω, τ be defined as

they have been in the previous theorems.

Let g ∈ G, and let 〈g〉 act on X = {Hx| x ∈ G} by right multiplication. Then

X =
s⋃

i=1

Oi ,

52



where, s ∈Z+, and Oi is an orbit ∀ 1 ≤ i ≤ s. Then,

Oi = {Hxi ,Hxig,Hxig
2, ...,Hxig

ni−1},

where ni ∈ Z+, and xig
ni
i x−1

i ∈ H , ∀ 1 ≤ i ≤ s. Let T = {xigr | 0 ≤ r ≤ ni − 1, and 1 ≤

i ≤ s}. Then, T ∈ T , and T g = {xigr | 0 ≤ r ≤ ni and 1 ≤ i ≤ s}. Then,

τ(g) =
s∏

i=1

Jxig
nix−1

i ,

and xig
nix−1

i ∈H , ∀ 1 ≤ r ≤ s, and
∑s

i=1ni = m.

Definition: Let G be a group and J EH ≤ G. Then,

1. G splits over H if ∃K ≤ G such that G = HK and H ∩ K = 1. We call K a

complement of H in G, and if K E G, we call it a normal complement of H in

G and we say G splits normally over H .

2. G splits over H
J if ∃K ≤ G such that G = HK and H ∩K = J . If K is normal,

we say G splits normally over H
J .

Example

Consider S3. We know 〈(12)〉 ≤ S3, moreover we know S3 = 〈(12)〉〈(123)〉 and

〈(12)〉 ∩ 〈(123)〉 = 1. Also, realize that 〈(123)〉 = A3 E S3. Thus we can say that

S3 splits normally over 〈(12)〉.

Proposition 16. Let G be a group, S be a set such that G acts on S. If H ≤ G and H

acts transitively on S, then G = GaH , ∀a ∈ S.

Proof. Let g ∈ G and let a,b ∈ S such that ga = b (since G acts on S Now, since H

acts transitively on S, ∃h ∈H such that b = ha. Thus we get,

ga = ha =⇒ h−1ga = a,

and so h−1g ∈ Ga =⇒ g ∈ GaH . Thus G ⊆ GaH , and since we clearly have GaH ⊆ G,

we get G = GaH.
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Theorem 5.5. Let G be a group, J EH ≤ G, H
J be abelian, |G||H | = m, |H ||J | = n, gcd(m,n) =

1 and T ,T ,∼,Ω, and τ be as they were in the previous theorems. Then, the following

are equivalent:

1. G splits normally over H
J .

2. Whenever ∃h1,h2 ∈H such that h1 and h2 are conjugate in G, then Jh1 = Jh2.

3. τ(h) = Jhm ∀h ∈H .

4. T h ∼ hT , ∀h ∈H .

Proof. (1) =⇒ (2) : Suppose G splits normally over H
J . Then, ∃K E G, G = HK and

H∩K = J . Let g ∈ G, h ∈H , such that hg ∈H , then ∃h1 ∈H , k ∈ K such that g = h1k.

Let hh1
= h2. Since K E G, we get,

[k,h−1
2 ] = k−1h2kh

−1
2 ∈ K,

but also realize that,

K−1h2kh
−1
2 = hk2h

−1
2 = hh1kh−1

2 = hgh−1
2 ∈H.

So, [k,h−1
2 ] ∈ H ∩K = J . Thus, Jhg = Jh2, and so Jhg = Jhh1 = JhJh1 = Jh, since H

J is

abelian, yielding (2).

(2) =⇒ (3) : Suppose (2) holds and let h ∈H . By choosing the transversal, T , as

in the previous remark in this chapter , we get

τ(h) =
s∏

i=1

Jxih
nix−1

i =
s∏

i=1

Jhni ,

by (2). Thus we get
s∏

i=1

Jhni = Jh
∑s

i=1ni = Jhm,
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giving (3).

(3) =⇒ (4): Suppose τ(h) = Jhm ∀h ∈H , and let h ∈H . Then,

T h
hT

=
T h
T
· T
hT

=
T h
T
·
(
hT
T

)−1

= τ(h) ·

 s∏
i=1

Jhtit
−1
i

−1

= Jhm · (Jhm)−1 = J

and thus, we have hT ∼ T h.

(4) =⇒ (1) : Suppose hT ∼ T h ∀h ∈H . Then, by theorem 5.4, H acts transitively

on Ω on the right. By proposition (16), G = G[T ]H . Also, G[T ] ∩H = H[T ] = J , again

by theorem 5.4. Finally, realize that for g ∈ G[T ], we have

[T ]g = [T ] =⇒ [T g] = [T ] =⇒ T g ∼ T =⇒
T g

T
⇐⇒ τ(g) = J ⇐⇒ g ∈ Kernτ,

and thus G[T ] = Kern(τ) E G. Thus G splits normally over H
J , and so (1) holds.

Theorem 5.6. Let G be a group, A ∈Hallπ(G) and A be abelian. Then G splits normally

over A if and only if whenever ∃a1, a2 ∈ A such that a1 is conjugate in G to a2 then,

a1 = a2.

Proof. Now {1} E A ≤ G, A
{1} � A is abelian and gcd

( |G|
|A| ,
|A|
|1|

)
= gcd

( |G|
|A| , |A|

)
= 1, since

A ∈ Hallπ(G). Now, G splits normally over A⇐⇒ G splits normally over A
{1} ⇐⇒

whenever ∃a1, a2 ∈ A such that a1 is conjugate to a2, then {1}a1 = {1}a2 by theorem

5.5, and this is true if and only if whenever ∃a1, a2 ∈ A such that a1 is conjugate to

a2 then a1 = a2.

Theorem 5.7. Let G be a group, P ∈ Sylp(G), x ∈ Z(G), and y ∈ Z(P ) such that x and

y are conjugate in G. Then, x and y are conjugate in NG(P ).

Proof. Now, ∃g ∈ G, such that xg = y. Since x,y ∈ Z(P ), we know P ≤ CG(x)∩CG(y).

Thus P ∈ Sylp(CG(y)), and also, since P ≤ CG(x), we get

P g ≤ CG(x) = CG(xg) = CG(y).
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Thus by Sylow’s theorem, ∃c ∈ CG(y) such that P gc = P . Then, gc ∈ NG(P ) and

xgc = yc = y.

The following theorem was first stated and proved by Burnside in the early

20th century. Since then, it has found extensive use as a tool for many group

theorists.

Theorem 5.8. Let G be a group, P ∈ SylP (G) such that P ≤ Z(NG(P )). Then G splits

normally over P .

Proof. Since P ≤ Z(NG(P )), we know P is abelian. Suppose x,y ∈ P such that x is

conjugate to y in G. Since P is abelian, we have P = Z(P ), and so x,y ∈ Z(P ). So, by

theorem (5.7), ∃n ∈ NG(P ) such that xn = y. But, x ∈ P ≤ Z(NG(P )) and so xn = x,

thus x = y and so G splits normally over P , by theorem (5.6).
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Chapter Six

Final Result

The main result of this paper is similar to the results at the end of chapter four.

This result is separate, as it requires the use of all the weaponry introduced through-

out this paper, along with a some auxiliary results mentioned in the lead up to the

final result in this chapter. It is formally stated in the following pages.

Proposition 17. Let G be a group of odd order. If g ∈ G then |g2| = |g |.

Proof. Let g ∈ G, |G| odd with |g | = n, |g2| = m. Now since the order of |G| is odd,

then the order of all the elements must also be odd by LaGrange’s theorem and so

we can say |g | = n = 2k − 1 for k ∈Z+. Now,

(g2)n = (gn)2 = 12 = 1,

and so n |m. Also, we have that

gn = g2k−1 = 1 =⇒ g2k = g =⇒ (g2k)m = (g2m)k = 1k = 1 = gm,

and so m|n. Thus m = n, as desired.

Proposition 18. Let G be a group of odd order. If g,x ∈ G such that g2 ∈ CG(x), then

g ∈ CG(x).
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Proof. Let g,x ∈ G, g2 ∈ CG(x). Now since |G| is odd, we know |g | is also odd, i.e

∃k ∈ Z+ such that g2k−1 = 1 =⇒ g2k = (g2)k = g. Now, CG(x) is a group, and since

g2 ∈ CG(x) we must have (g2)k = g2k = g ∈ CG(x).

Proposition 19. Let G be a group, N E G, H ≤ G, and G = G
N . Then, NG(H) =

NG(HN )

Proof. Let g ∈ NG(HN ). Then g ∈ NG(HN )N = NG(HN ). So, (HN )g = HN =⇒

HN
g

= HN , or, in other words, H
g

= H . Thus, g ∈ NG(H) and we have NG(HN ) ≤

NG(H).

Now, let g ∈NG(H). Then G
g

= H , or Hg = H . Thus, by pre-imaging, we get that

HgN = HN , and since N E G we know that N g = N . Hence, HgN g = (HN )g = HN ,

and thus g ∈ NG(HN ) =⇒ g ∈ NG(HN ) which implies that NG(H) ≤ NG(HN ).

Therefore NG(H) = NG(HN ).

Proposition 20. Let G be a group, φ ∈ Aut(G), N E G be φ−invariant and G = G
N .

Then |φ| on G divides |φ| on G.

Proof. Let g ∈ G. Then, φ
|φ|

(g) = φ |φ|(g) = g. Thus φ
|φ|

= 1, and so |φ| on G divides

|φ| on G.

Lemma 6.1. Let G be a group, φ ∈ Aut(G), and n ∈Z+. Then, CG(φn) is φ−invariant.

Proof. Let g ∈ CG(φn). Then, we know that φn(g) = g. Now consider φn(φ(g).

Realize that

φn(φ(g)) = φ(φn(g)) = φ(g),

and so φ(g) ∈ CG(φn). Thus, CG(φn) is φ−invariant.

Now, k−1
2 h−1

2 ∈ KH and so ∃hk ∈ HK such that k−1
2 h−1

2 = hk. Thus, from above

we can write,

h1k1k
−1
2 h−1

2 = h1k1hk ∈HK
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and so HK ≤ G.

Now, for one final proposition before the main result.

Proposition 21. Let G be a group, H ≤ G, and K ≤NG(H). Then HK ≤ G.

Proof. Let x = h1k1, y = h2k2 ∈ HK , for h1,h2 ∈ H,k1, k2 ∈ K . We know that hk1
1 ∈

H , since K ≤ NG(H). Also, (hk1
1 )k

−1
2 ∈ H and it follows that (hk1

1 )k
−1
2 h−1

2 ∈ H =⇒

((hk1
1 )k

−1
2 h−1

2 )k2k
−1
1 ∈H . Realize that

((hk1
1 )k

−1
2 h−1

2 )k2k
−1
1 = (k2k

−1
1 )−1k2k

−1
1 h1k1k

−1
2 h−1

2 k2k
−1
1 = h1k1k

−1
2 h−1

2 k2k
−1
1 ∈H.

Thus, it follows that h1k1k
−1
2 h−1

2 k2k
−1
1 (k1k

−1
2 ) = h1k1k

−1
2 h−1

2 = xy−1 ∈ HK, and so

HK ≤ G.

Theorem 6.2. Let G be a group, φ ∈ Aut(G), and CG(φ) = 1 such that |φ| = 4. Then,

G is solvable.

Proof. We will introduce a list of claims and verify them.

Claim (1): |G| is odd.

Consider 〈φ〉 ≤ Aut(G). Now since φ ∈ Aut(G), we know 〈φ〉 acts on G (as a

set). Since G is the set being acted on, we get

G = 〈φ〉1∪
n⋃
i=1

〈φ〉gi ,

where n ∈ Z+, gi , 1 ∈ G, ∀ 1 ≤ i ≤ n. Then, 〈φ〉gi = {gi ,φ(gi),φ2(gi),φ3(gi)}, since

|φ| = 4. Also, since gi , 1 and CG(φ) = 1, we know gi , φ(gi).

If φ2(gi) = g2, then φ3(gi) = φ(gi), and so |〈φ〉gi | = 2.
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If φ2(gi) , gi , then φ2(gi) = φ(φ(gi)) , φ(gi), and in this case, if φ2(gi) = φ3(gi),

then by applying φ−2 we get gi = φ(gi), a contradiction. Thus in this case, |〈φ〉gi | =

4. Therefore, |〈φ〉gi | = 2 or 4, ∀ 1 ≤ i ≤ n. Thus

|G| = |〈φ〉1|+
n∑
i=1

|〈φ〉gi | = 1 + 2k

for some k ∈ Z
+, since each individual order is even, and since the order of the

trivial orbit is just 1. Thus, |G| is odd.

Now, let θ = φ2, so |θ| = 2, and let F = CG(θ), and I = {g ∈ G| θ(g) = g−1}. Then,

F ≤ G and {∅} , I ⊆ G.

Claim (2): F is abelian.

If f ∈ F, then

θ(φ(f )) = φ2(φ(f )) = φ3(f ) = φ(φ2(f )) = φ(θ(f )) = φ(f ).

Therefore, φ(f ) ∈ F and so F is φ-invariant. Hence, φ (or φ|F)∈ Aut(F). Also,

CF(φ) ≤ CG(φ) = 1, and so CF(φ) = 1. Moreover, if 1 , f ∈ F, then φ(f ) , f , but

φ2(f ) = θ(f ) = f , and so |φ| = 2 on F. Thus, by theorem (4.13), F is abelian.

Claim(3): G = IF = FI .

Let x ∈ G. Then, θ(x−1θ(x)) = θ(x)−1θ2(x) = θ(x)−1φ4(x) = θ(x)−1x = (x−1θ(x))−1.

Thus x−1θ(x) ∈ I . Now, using right cosets, if x,y ∈ G such that Fx , Fy, then

yx−1 < F, and so θ(yx−1) , yx−1 or θ(y)θ(x)−1 , yx−1. Thus y−1θ(y) , x−1θ(x)

and so |I | ≥ |G||F| . Now, let x,y ∈ I such that x , y. If (using left cosets) xF = yF,

then ∃f ∈ F such that x = yf and so θ(x) = θ(yf ) = θ(y)θ(f ). So x−1 = y−1f , or

(yf )−1 = y−1f =⇒ f −1y−1 = y−1f and so we get

f −1 = y−1f y.

Hence y−1f −1y = y−2f y2, but we know that y−1f −1y = (y−1f y)−1 and so we have

(y−1f y)−1 = y−2f y2, or (f −1)−1 = y−2f y2 =⇒ f = y−2f y2. Thus, y2 ∈ CG(f ). Since
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|G| is odd, we get that y ∈ CG(f ) and by above, that means that f −1 = y−1yf = f

and so f 2 = 1. Again since |G| is odd, it follows that f = 1 and so we get x = y,

a contradiction to what our hypothesis. Thus xF , yF and so |I | ≤ |G||F| and hence,

|I | = |G||F| . Thus G =
⋃

gi∈I giF = IF and by a similar argument, we get that G = FI .

Claim (4):Let f1, f2 ∈ F and g ∈ G such that f1 = f
g

2 . Then f1 = f2.

Since F is abelian and G = FI , we get that f1 and f2 being conjugate in G boil-

ing down to f1 and f2 being conjugate in I . So ∃g ∈ I such that f1 = f
g

2 . Thus,

θ(f1) = θ(f g
2 ) =⇒ f1 = f

θ(g)
2 = f

g−1

2 . Hence, f g
2 = f

g−1

2 =⇒ f
g2

2 = f2, and thus

g2 ∈ CG(f2) and since |G| is odd we get g ∈ CG(f2). Therefore f1 = f2.

Claim (5): If H ≤ F, then H ≤ Z(NG(H)).

Let H ≤ F, h ∈ H , and g ∈ NG(H). Now, H ≤ NG(H) and hg ∈ H , and so hg ∈ F. But

h ∈ F and h = (hg)g
−1

so h and hg are conjugate (in G). Thus, by (4), h = hg , and so

h ∈ CG(g). Hence, it follows that H ≤ Z(NG(H)).

Claim (6): Let g ∈ I . Then, [g,φ(g)] = 1.

Since CG(φ) = 1, and |φ| = 4, we get by theorem 4.10, that gφ(g)φ2(g)φ3(g) = 1 or

gφ(g)θ(g)φ(θ(g)) = 1 =⇒ gφ(g)g−1φ(g)−1 = 1, or gφ(g) = φ(g)g. Thus [g,φ(g)] = 1.

Claim (7): Let p ∈ π(G) and P ∈ Sylp(G) be φ−invariant. Then F ≤NG(P ).

If P ∩ F = 1, then since P is φ−invariant we know that P is also θ−invariant.

Also, CP (θ) = P ∩CG(θ) = P ∩ F = 1. Moreover, |θ| = 1 or 2 on P . If |θ| = 1 on P ,

then P ≤ F, and since F is abelian we get P E F. So we have F ≤ NG(P ) and the

claim is proved. So, if |θ| = 2 on P, then θ(x) = x−1 ∀x ∈ P and so P ⊆ I . Let x ∈ P

and f ∈ F. Then θ(f −1xf ) = f −1x−1f = (f −1xf )−1, and so P f ⊆ I . Now, if P f , P ,

then ∃x ∈ P f \P . Let H = 〈x,φ(x)〉. Then, by (7), H is abelian which would make it

an abelian p−group. Finally, since x ∈ P f ⊆ I , we have H is a φ−invariant p-group

and so by theorem 4.11 we have that x ∈ H ≤ P , a contradiction. Thus P f = P , and
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so F ≤NG(P ).

If P ∩F , 1, we use induction on |G|. Then, P ∩F is a φ−invariant p−group such

that F ≤ NG(P ∩ F).Let P ∩ F ≤ P1where P1 is a maximal φ−invariant p-group such

that F ≤NG(P1). Since P1 is a φ−invariant p−group, by theorem 4.11, P1 ≤ P .

If NG(P1) , G, then NG(P1) is φ−invariant and CNG(P1)(φ) ≤ CG(φ) = 1. By

theorem 4.11, ∃P2 ∈ Sylp(NG(P1)) such that P2 is φ−invariant. By induction, F ≤

NG(P2).Now, P1 ENG(P1) and P1 is a p−group and so it follows that P1 ≤ P2. Suppose

P1 , P2, say P1 < P2. Then, P1 < NP2
(P1), but NP2

(P1) is a φ−invariant p−group and

F ≤ NP2
(P1) which contradicts the maximallity of P1. Thus P1 = P2 ∈ Sylp(NG(P1)),

and by proposition 14, we get P1 ∈ Sylp(G) and it’s φ−invariant. Thus, by theorem

4.11, P = P1, and so F ≤NG(P ).

Now, if G = NG(P1), then P1 E G. Let G = G
P1

, then G is φ−invariant and CG(φ) =

1, by theorem 4.12. Also, P ∈ SylP (G) is φ−invariant. Moreover, F = CG(θ) = CG(θ).

Now it follows that |φ| = 2 or 4 on G and, in either case, F ≤ NG(P ) by induction.

But F ≤NG(P ) = NG(P P1) = NG(P ), and so F < FP1 ≤NG(P )P1 = NG(P ), as desired.

Claim (8): If A ≤ G is φ−invariant, and B ≤ G is φ−invariant such that F ≤

NG(A)∩NG(B), then ABF ≤ G is φ−invariant.

Now, since A,B and F are φ−invariant and F ≤NG(A)∩NG(B), we know AF ≤ G

is φ−invariant and BF ≤ G is φ−invariant. Thus it’s enough to show that ABF =

BFA. But BFA = BAF since AF ≤ G and by proposition (21) . Thus we only need to

show ABF = BAF. Also, since |ABF| = |BAF|, then to verify our claim, it’s enough
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to show that BAF ⊆ ABF. Which, again can be simplified down to showing that

BA ⊆ ABF.

Let ba ∈ BA. By claim (3), we can write A = (A∩ I)(A∩F), and B = (B∩F)(B∩ I).

Then, a = a1f1, b = f2b1, where a1 ∈ (A ∩ I), f1 ∈ (A ∩ F), f2 ∈ (B ∩ F),b1 ∈ (B ∩ I).

Then, ba = f2b1a1f1. Since F ≤ NG(A) ∩NG(B), it’s enough to show b1a1 ∈ ABF.

Since G = FI , ∃f ∈ F, h ∈ I such that b−1
1 a−1

1 = f h. Applying θ to both sides,we

get b1a1 = f h−1, but from above we get that h−1 = a1b1f . Hence b1a1 = f a1b1f =

a2f b1f = a2b2f
2, where a2 ∈ A,b2 ∈ B, since F ≤ NG(A)∩NG(B). Thus, b1a1 ∈ ABF

and so ABF ≤ G is φ−invariant.

Final Claim (9): Let n ∈ Z
+ such that n ≤ |π(G)|, {pi}ni=1 ⊆ π(G), and Pi ∈

Sylpi (G) such that each Pi is φ−invariant ∀ 1 ≤ i ≤ n. Then, P1P2P3...Pn ≤ G.

Using induction on n, if n = 1, then P1 ≤ G and the claim holds. Now, let

H = P1P2P3...Pn−1. Then, by induction, we can say that H ≤ G. Also, since Pi is

φ−invariant ∀i, H is φ−invariant. Moreover, by claim (7), F ≤NG(Pi) ∀1 ≤ i ≤ n−1.

Thus we can say that F ≤ NG(H). Now, by claim (8), we have K = HPnF ≤ G. Let

Q ∈ Sylq(F) such that q < {pi}ni=1. Then it follows that Q ∈ Sylq(K), since they would

share the same number of primes q. Also, by claim (5), Q ≤ Z(NG(Q)). But then

Q ≤ Z(NK (Q)), and thus by Burnside’s theorem, K splits normally over Q. In other

words, ∃Kq E K such that K = KqQ, and Kq ∩Q = 1. Let K = K
Kq

. Then,

K =
K
Kq

=
KqQ

Kq
,
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and by the second isomorphism theorem we get

KqQ

Kq
�

Q
Q∩Kq

=
Q
{1}

�Q.

Thus, K is a q−group, but then H = Pn = 1 since q < {pi}ni=1. Hence H ≤ Kq, and

Pn ≤ Kq, meaning that HPn ≤ Kq.

Now, repeat this process for all such primes q, and let L =
⋂

q∈π(F)
q<{pi }ni=1

Kq. Then,

L ≤ G. Since gcd
(
|K |
|Kq |

, |K ||Kr |

)
= 1 ∀q , r, by theorem 4.7, we get

|K |
|L|

=
|K |
|
⋂

Kq |
=

∏
q∈π(F)
q<{pi }ni=1

|K |
|Kq |

=
∏

q∈π(F)
q<{pi }ni=1

|Q| =
∏

Q∈Sylq(F)
q<{pi }ni=1

|Q| = |K |
|HPn|

.

Thus |L| = |HPn|, but HPn ≤ L and so HPn = L ≤ G. But HPn = P1P2P3...Pn−1Pn ≤ G

and the claim holds. From this we can see that it is possible to construct any

Hall subgroup for any combination of primes in π(G), and so this means that

Hallp′ (G) , ∅ ∀p ∈ π(G), and hence, by Theorem (4.9), G is solvable.
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