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ABSTRACT

INTERACTIVE COMPUTER PROGRAMS

FOR SHEET PILE DESIGN

Robert Gagich Jr.
Master of Science in Engineering

Youngstown State University, 1975

This study was primarily concerned with the numerical solution -
to the free and fixed earth support methods of sheet pile @esign. New-
mark's Numerical Method will be briefly reviewed as it pretains to the
shéet'pile problem, and som; sample beam problems will be solved
numerically. The fixed earth support and free earth support methods of
sheet pile design will also be reviewed. The sheet pile problem will
ultimately be reduced to that of a specially loaded beam. Interactive
computer programs will then be introduced to numeric;lly solve the
;heet pile problem using the free earth support and fixed éarth support

methods of sheet pile design.
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CHAPTER I
NEWMARK'S NUMERICAL METHOD
1-1, Introduction

Numerical techniques have proven to be a powerful tool in
structural analysis as a means to investigate the behavior of structures
subjected to complex loading conditions. Depending upon the degree of
complexity, numerical results may vary from exact to very close approxi-
mations. It is often the case that the only logical approach to a
problem may be with the use of numerical procedures. Numerical analysis,
however, has one major drawback; the repetitive calculations utilized to
arrive at a solution, although not difficult, can become tedious and
time consuming. As the complexity of a problem increases, so does the
number of calculations and time required for solution. For this reason
;ccuracy is usually sacrif;ced for time and other means are employed to
arrive at the solution to a complex pfobleﬁ.

Modern computers perform calculations at a speed approaching
that of light. The large number of repetitive calculations used in
numerical analysis, therefore, makes the method ideally suited to
computerization. This study was primarily concerned with the numerical
solution to the free and fixed earth support methods of sheet pile de-
sign., Interactive computer programs were written to numerically analyze

anchored sheet pile bulkheads to determine the required depth of

embeddment,




1l=2, Statically Equivalent Concentrated Loads.

Newmark's Numerical Method (1)* consists of dividing the span of
a beam into increments called chords. The ends of the chords are called
joints or nodes. The behavior of the loaded struc£ure can be investi-
gated only at the joints. A joint is located at the point of‘applica-
tion of each concentrated load on a structure, The numerical analysis
of a point loaded structure will yield exact results at the node points
along the structure, Statically equivalent joint loads must be deter-
mined and applied to each joint on a structure subjected to a distributed
loading, The ordinates of the distributed load are described by the
equation of a curve., The accuracy of the numerical analysis of a
structure having distributed loading depends upon the degree of the
curve that describes the loading, and the length and number of incre-
ments.

To analyze a structure by Newmark's Numerical Method, it has
already been pointed out that the loading must be comprised of point
loads applied at the joints. The structure's behavior can then be
exactly investig;ted only at the joints. This poses no problem for a
point loaded structure, The behavior of a structure betwéen the joints
on a point loaded structure is also known since no load is applied
between the joints. The exact behavior between the joints of a
structure subjected to a distributed load cannot be determined with
Newmark's Numerical Method. However, on a distributive loaded struc-

ture, the average change in behavior over the increment lengths can

*Number in parenthesis indicates reference cited,




be found by converting the distributed load into statically equivalent
concentrated loads applied at the joints. The load conversion makes it
possible to predict the change in shear or moment across an increment
subjected to a distributed load, thereby permitting very accurate
analysis of the structure at the joints.

Concentration formulae have been derived that properly propor=-
tion the area under the loading gurve over any two adjacent increments,
such that the distributed load on the two increments is converted into
statically equivalent concentrated loads acting at the appropriate

joints., The method of converting a distributed load into equivalent

joint loads using the concentration formulae is similar to the Trape-
zoidal Rule or Simpson's Rule of the calculus.

Refering to Figure 1-1, the prqblem is to determine the area
under th; curve

y=F (x) (1-1)

from x=a to x=b. The Trapezoidal Rule states that this area may be
divided into a number of trapezoi&s. The area of each trapezoid is
then determined and the sum of these areas approximates the total area
under the curve., The interval [a,ﬁ] in Figure 1-1 was partitioned into
subintervals and ordinates were erected to the curve from each of the
partitioning points. The points in which successive ordinates met the
curve were connected bf straight line segments in the Trapezoidal Rule;
in Simpson's Rule the points are connected by segments of parabolas.

The area under a linear or parabolic curve may be exactly
determined by using the Trapezoidal ﬁule or Simpson's Rule respectively.
The area under a third degree or higher order curve may be found by

using either linear or parabolic approximations to the curve. The
. .
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- Figure 1-1., The Trapezoidal Rule.

accuracy of the results depends upon the selection of the number and
size of the subin;ervals. This same reasoning applies when converting
an Nth order loading curve into statically equivalent concentrated
loads with the concentratién formulae. The subintervals would be
analogous to beam increments and the partitioning points may be con-
sidered as nodes or joints on the beam.

A distributed load must always be converted into equivaleﬁt
Joint loads before the numerical techmique can procede. Concentration
formulae are used for this purpose. Concentration formulae have been
derived for both linear and parabolic load distributions, The Trape-
zoidal Rule and Simpson's Rule are respectively analogous to the linear

gnd parabolic concentration formulae used in Newmark's Numerical Method.

Concentration formulae may be derived for higher order curves, but

R




for practical applications this is not necessary. The accuracy of the
equivalent joint loads as computed by the concentration formulae is
determined by the selection of the number-and length of the beam .
increments. The derivation (1) of the concentration formulae will be
avoided here and only their use will be presented herein.

Refering to Figure 1-2, Wy, W}, a;d We are the loading ordinates
of the distributed load W at joints a, b, and c respectively. The increm-
ent lengths are Hab and Hpc. The following notation is used in Figure'l-z
to specify the concentrated values of the distributed load W at joint b:
Jba = equivalent concentrated load at joint b due to W on increment ba
Jbe = equivalent concentrated load at joint b due to W on ;ncrement be
Jp = JpatJpe = total staticélly.equivaient Jjoint load at b due to W
The linear concentration formulae used tc compute the statically equiv-

alent joint loads at joints b and ¢ are as follows:

Jb = JpatIbe . ‘ (1-2)

"Jba = ﬂga(zmwa) C (1-3)

f Jbe = B_]gn(zwb'*'wc) : (1-4)
Jep = Je = ygh(zwcwb) (1-5)

The parabolic concentration formulae used to compute statically equiva-
" lent Joint loads at joints b and ¢ are:

Jb = Jbatdbe . (1-6)

- S Jpg = HPaly (L1 (RHG) W, (L -1] -
b = 32 e Gl (et e (L) a-7
where, R = Hbalnbc ) (1-8)

- Ll 1 ] T

be T%Q c(1+R )+Wp (R+4) a(1+R R-1) (1-9)
where, R = Hpo/Hpa : (1-10)

Jop = Jo = Hgp [We (L3 R+2) =Wy (L -] »
cb = Je .I.%b. c<1+R ) +Wb (R+2) wa(m-m 1) (1-11)

vhere, R = Hypc/Hpa ' (1-12)
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Figure 1-2. Linear and Parabolic Load Distribution

-

For equal chord lengths R equals unity, and the papabolic concentrat-

fon formulae reduce to:

) Jb = JbatJbe S (1-13)
Jpa = Hba (3Wa+10Wh-Hc) ' (1-14)

. Jpe = fg_g(swcuowb-wa) o _ (1-15)
Jeb = §: - %ﬁh(7w°+6wb-wa) (1-16)

The computed shears and moments are exact at the joints of a
point loaded structure analyzed by Newma%k's Numerical Method. The accur
1 acy of the computed shears and moments at the joints of a distributive
loaded structure depends upon the accuracy of the statically equivalent
concentrated joint loads as compuced with the concentration formulae.

Deflections at the joints of a beam can be determined by loading.

@ conjugate beam with an elastic load of intensity M/EI. M is the

...IIl--_____________;ggg, e 4:



moment distribution of the real beam while E and I are the modulus of
elasticity and moment of inertia of the section, The moment diagram of

a loaded beam will always be described by a curve of at least order one,
i.e. the elastic load will always be a distributed load, Equivalent
concentrated loads must be determined from the M/EI diagram and applied
to the respective joints on the conjugate beam, Shears and moments in
the joints of the conjugate beam'are then computed by Newmark's Numerical
Method, The shear in the joints of the conjugate beam equals the slope
at the respective joints of the real beam, The moments in the joints of
the conjugate beam equals the deflections at the respective joints of

the real beam, Newmark's Numerical Method will now be explained and some

example problems worked.
1-3, The Numerical Procedure

The following sign convention will be used throughout this study:
positive moment will tend to bend an element of the beam concave upw;rd,
positive shear tends to rotate a beam element clockwise, positive load-
ing is considered as acting upwards, and positive deflection is taken as
upward,

The technique used in ﬁeWmark's Numerical Methoa is one of
numerical integration. Taking into account the end conditions, inte-
gration is carried forward in a step~by-step manner from one joint
to the next., The numerical proéedure is shown in its general form in
Figure 1-3, The equivalent joint loads Jg, Jp, Jc, and Jq are shown
acting in the positive direction and are applied at the joints a, b, c,

and -d respectively. Increment lengths are Haps Hpes and Heqe To

determine the shears and moments at the joints, two values must be

“_g‘bTF “ﬁNﬁRﬂﬁY
!
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Ja Jb Je Ja
; T Sab : Sbe T Scd T
Ma i 4 Hap 4 Hpe 4 Hed
& ;4
a b c d
Line Quantity : | : :
|
0 ) 019 )
1 E; s 3
] H ]
Joint Load  J, b Je Jd
sh ' S . I S : S !
- ) ab | be cd
| | (=Sab+Jb) ! (=Sbctle) ;
i
Moment ' ! ! |
Increment : Iap ' I ! Ied )
‘ : (=SabHtab) : (=SbeHpe) I (=ScgHed) )
1 ~N : : 1
Moment My . ) My Mo . . Mg
(=Mg+Iab) (=Mp+Ibe) (=Mc+Icd)

Figure I-Qi Forward Integration Procedure

known; at least one shear and one moment, or two moments, These values
come directly from the end conditicns of the beam and they are essen-

tial in order to integrate from load to shear and from shear to moment.

"These known values are, in fact, the constants of integration,

Let it be assumed that the momené at joint a, My, and the
change in shear over increment ab, Sgp, are known. The change in shear
over all the other increments can be found by adding across as foilows:

SheSabtdy . (1-17)

Scd =Spe e i (1-18)
The known shear will usually be at one end of the beam due to a given
end condition, although correct results can be obtained if the chord
shear is known at any other location on the span.

The loading consists of point loads applied only at the joints

IIIIIIlll--..______________;'_____‘




and there is no load acting on the beam segment between joints, The
change in moment between joints, therzfore, is the increment average
shear multiplied by the increment length and is called the moment
increment., Since the moment at joint a, My, is known, and the change
in moment, I, between joints is also known, the moments at allbthe
other joints can be found by adding across the beam from joint to

joint as follows: .8

Mp=Ma+Ilah (1"19)
“c‘“b"’lbc . (1 - 20)
Md‘nc+1cd i (1"21)

‘The known moment will usually be at one end of the beam due to a given
end condition, although correct results can be obtained if the moment
is known at any other location on the span. -

In order to determine the real shear V at a joint, Pigure 1-3 is

again utilized and the following procedure is used:

Va=Va ' C(1-22)

] Vo=V +lap b (1-23)
! - Ve=VptIbe Hch L | (1-24)
Va=VoHed Mac . (1-25)

The real shear at joint a,or at any other joint, must be known.

The initial assumption in the foregoing discussion was that a

known shear and a known moment exist, such as at the free end of a
cantilever beam, Two end moments are readily known in the case of a
simply supported beam, A shear value, i.e. an end shear, can be deter-
mined by summing moments but this is not necessary. When analyzing a
simply supported beam, the average shear in any increment is assigned

an arbitrary value. The shears and moments are then computed by the

b -~ = .
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numerical procedure, The computed values at the joints will be in error
unless the assumed shear value was correct. A linear correction can
then be applied to the moments go make then conform to the two known
moment conditions. The correct average shear values can then be
obtained by working back from the corrected moment values.

Some example beam problems will now be presented to illustrate

the procedure and techniques involved in Newmark's Numerical Method:




Example Problem 1-1.

Given: The cantilevered beam shown below. E = 29x106 psi,
I =100 in%,

Find: Shear and moment at A, B, C, and D.

Solution:
1
10k 5k 8k
7
L,
l g T 3! l 5 g
| /
A B :2 DV
| ! o
; l I 7
1 | | !
i ]
Line ' ‘ I )
Quantity | | , ) Units
‘ | ‘ '
|N l ' '
Joint | ! . '
Load -10 +5 -8 ! K
\ ]
| \\l /;' \\\§~. ! '
4 ]
Shear | ~-10 : -5 : -13 |OK
* |
Moment [ | }
Increment ! -20 | -15 \ -65 | K-FT
|
'/ N / ; '
Moment 0 = =20 - -35 . -100 K-FT
i | | '
t | ' |
Moment & . K-FT
Diagram

-100
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Example Problem 1-2,
Given: The simply supported beam loaded as shown below,
Find: Shear and moment at A, B, C, D, and E,
Solution:
10 3K . 4%
et £ 4! \L 8' T e
ran B c D ,@,-
Line !: I ! : -
Quantity . : ! i { Units
| | : | :
Joint ! | l "
Load | /-10\ /-3 +4 ' K
| 1 ! | |
Assumed Shear 8 -2 | -5 ) -1 K
|
Moment Imcr. | 32 : -8 ' j =40 | =4 | K-FT
| : | ] 1 .t
Moment 0/ \32/ 24 =16 -20 - K-FT
’ l | [ i | |
’ | 1 L ' ¢
' ] . b 16 20
Linear Moment - 0—(/4//”] K-FT
Correction L
i ] \ i | 15
Corrected ! v ' t
Moment 0 36 32 0 0 K=-FT
: _— o ! | |
Corrected | ', | [ |
Shear : 9 § Ty -4 i J 0 K
| ) 4: A |
36 A |
| 32 | )
,. | ! |
| &> 1. |
Moment 3 \ l
Diagram 0 0+ g-FT
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Example Problem 1-3,
Given: The cantilevered beam of Example Problem 1-1 and
its associated M/EI diagram.
Find: Deflection at points A, B, C, and D.
Solution:
4
)A 2 = A 8" p Conjugate
Beam
/]
/
/
| -20 .
| EL -35
| . EL
| | |
I |
! | '
| | | -100
| | : E_I_: Line
Units | m| S o Quantity
k-rr/er 15 pd I § Jotnt
¥ s TR W T Load
. | : '
» -6,67 -50.83 ~186,.67 -195.83
| ' n g, -~
= | -431.3 | -380.5 | -193.83 . Shear
x—rr3/z_1_ | -862.6 : -1141.5 ! -969.85 ' Moment
| ' ' Increment
.M | | : |
" -2974 -2111.4 -969.85 " 0.0 Moment
Mnltiplying the above moments by C gives the deflection
in inches.
; C =(1000 LB)(1728 IN3) = 5.96X10~4 IN |
(29X10° LB ) (100 IN™)
l IN2 ' ' |
l | '
l | | |
Inches -1.77 -1.26 -0.58 0.0 Deflection
I I ! |  of the
Real Beam
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CHAPTER 11
THE FREE EARTH SUPPORT METHOD
2-1. General

The basic assumpéion in the free earth support m;thod of
anchored sheet pile bulkhead design is that the soil below the dredge
line cannot develop sufficient restraint so as to produce negative
bending moments in the sheet pile section. Negative bending can only
occur in that section of the pile above the anchor point.

Refering to Figure 2;1, the bulkhead is first considered fixed
at a deéth Z, where Z is the distance from the anchor point to the
bottom of the pile. The assumption of fixity at Z implies both moment
(Mz) and shear (V,) exist at that point. The resultant forces produced
by the active and passive soil pressures are P; and P, respectively. The
&istance from the anchor point to P, is Z;, and the distance from the
anchor poiat to Pp is Zpe

Stabili;; requires that the sum of the moments about the anchor
point equal zero. Neglecting Mz and V, for the timé being

Mop=ka Za-PpZp=0 ' (2-1)
Ignoring the anchor force tempo?arily, the moment at Z is found by
summing moments about Z -
M;=Pa(2~Zg) ~Pp(Z~Zp) =(Pa~Pp) Z+P 2, ~P, 7, (2-2)
Still ignoring the anchor force and summing forces in the horizontal

direction determines the shear at 2

Vz=Pa-Pp , (2-3)

¥' ‘




rﬁ 15

water level A A
o N
= * ' dredge line
AN AT A A
X

Pigure 2~1, Pree Earth Support Method

Substituting (2-3) into (2-2)
My = Vz(2)+PpZp-PaZq » (2-4)

Substituting (2-1) into (2-4) h

. My = Vz(2) : | o (2-5)
Thus the only Z fo£ which equation (2-1) holds is the same Z which
is required to satisfy (2-5).
L ’Thg required depth of embeddment is determined by analyzing the
cant;lgv;red.qember shown in Figure 2-2. The rotated piie is subjected
to distributed loading due to the active and passive soil pressures.
Neglecting the anchor force, the shear V; and moment M, are computed
at the support for various values of Z until equation (2-5) is satisfied,

f.e. when M, equals V, multiplied by Z, the required depth of embedd-

ment has been obtained. The bottom tip of the pile is at Z, and

-
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My

l\ Anchor Point

Ve s it _—
. .
] . . = 3

Figure 2-2, Cantilevered Beam with Distributed Load

Due to Active and Passive Soil Pressures

since the free end of a member can carry fml shear or moment, the un-
l.mlanced shear must be balanced by the anchor or |
AoV, (2-6)
thus, the real shear at Z is zero. Considér now the anchor force
applied to the member in Figure 2-2, Summing moments about Z, deter-
mines the real moment at Z. In equat:ioﬁ form
real Hz=Hz-Ap(Z)-0 (2-7)

The real moment at Z is zero as it should be at a free.end.
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2-2., Numerical Method for Free Earth Support

The tr:al and error approach used to find the required depth
of embeddment is facilitated by using Newmark's Numerical Method when

computing M, and V,(Z) for a giﬁen soll pressure distribution. Once

this depth is determined, the numerical values of all the forces acting
upon the bulkhead are then known. Newmark's Numerical Method can then
be usea to determine the actual sLears and bending moments induced by
these forces. The computational procedure will be illustrated by
numericaliy analyzing the loaded bulkhead shown in Figure 2-3 by the
free earth support method.

The active and passive soil pressures shown in Figure 2-3 are
purely arbitrary. The distribution and intensity of the assumed soil
pressures, although unrealistic, will expedite the hand solution té ' ' .
the protlem by simplifying the calculations. The linear pressure
distributions will also make it easier to check the results by summing
moments and forces.

_ The first step in the free earth support method is to assume a
depth of embeddment D. A cantilevered beém of length H4-D is loaded
with a distributed load due to the assumed active and passive soil
pressures, The anchor force is neglected initially. The span is then
divided into increments with joinés at the ends of each increment., The

i+ 1increments need not be of equal length. A joint must, however, be
l>cated at the anchor point since the anchor force wili be a point load.
The joints are numbered for convenience. Concentration formulae can

then be used to convert the distributed soil loads into equivalent

¢oncentrated loads applied at the joints. The shears and moments at

Ld

- ——
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Ground Surface

\ A | K~~~ A /A A
~
Y
K
.d-.
Al
| a
Ny =
A &
(=]

‘P=37.5D ' A=10(64D)

Figure 2-3, Example Problem for Sheet Pile Design.

the joints are computed by Newmark's Numerical Method beginning at a
point of known moment or shear; in this case, at thé free end of the
cantilever pile section. The computed mament at the support, i.e.

the embedded tip, is then compared to the shea; at the s;me location
multiplied by Z. The required depth of embeddment is obtained when
these quantities are equal. A new embeddment depth is selected and the
process is repeated if equality does not exist.

The loading ﬁsed in the procedure thus far was that due only to
soil loads. The anchor force was ignored and it must now be considered,
Once the required depth of embeddment has been obtained, the computed
shear force at the support, i.e. the embeddment tip, is equaled to the
anchor force. The numerical procedure muék then be repeated, but this

time to include the anchor force. The.resulting shears and moments

¥ :
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computed at the joints will then be the actual shears and moments on
the pile in accordance with the given loads and assumptions of the free
earth support method.

The set-up and computational procedure is illustrated in the
following example. For convience, the required depth of embeddment has
been predetermined with the aid of the computer. The check at the end of

the procedure verifies that this‘depth is correct.




Example Problem 2-1.

Given: The loaded bulkhead showa in Figure 2-3,

Find: Required embeddment depth, shears, mbments, and anchor force, Use the free earth
support method.

Solution: Assume a depth of embeddment of 4.675 ft. Use 2' increments.

Ignore the anchor force temporarily. -106.75 °

. A -100
-60

-40

<
N

Fixeélﬁnd

0.0

2

|
|
| : -175.3
Line Quantity (rx Qs als als 29 ol g uniessre.
- S al s et o o 18 o
O Al o nle P Cﬂ'r4 o~
' Iyt LI} LS 'l+ +1 + +i
! . | : ) | I
Joint Load =6.67 - «40 -80 -95 -10 +50.63 421 LBS.
-1 'S [ . | ) . .
Ave. Shear |  -6.67 | =46.47 | -126.67 | -221.67 | -231.67 | -181 | "
. | i i
Moment Incr. | -13.34 ° : =93.34 | =253.34 | -443.34 | -463.34 |1-122.2 : FT-LB
’ ! ¢ 1 )’ ' 1 { ) .
Moment o.o/ -13.34 -106. 68 . =360 -803, 36 -1266.7 -1388,9 "
' | | - IR | | |
Shear 0.0 -20 -80 -180%" " -245 -200 -160.1 LBS.

0¢



Example Problem 2-1 (continued)..

M; = -1388.9, Vz(2Z) = (-160.1) (8.675) = -1388.9, therefore 4,675 ft. is the required embeddment depth,
Now compute real shears and moments to include the anchor force.

=106.75

160.1 . :
? a0 100 —
-20

55.675' é> Z

0.0

l +150 | +173.3
l

- .
Line Quantity . y afes 214 pa. Ko 3'}‘," Sl Units/Ft.
? & e Al & & 28 I
v - L I Ny o) o ) = o
! n+ LR [ ol 4+ +' + H
: . & | | |
Joint Load -6.67 +120.1 -80 . =95 -10 +50,63 +21 LBS.
[ A - | ! | I »
Ave, Shear | =6.67 | +113.43 | +33.43 | -61.57 |  =71.57 I =20.9 | "
] | |
Moment Incr. ! -13.34 ! +226.86 : +66.86 4' -123.14 ' -143.14 I o<14.1 ) FT/LBS
' N\ - ] , !
Moment 0,0 -13.3% +213.52 +280. 38 +157.24 +14.1 o.(l) "
| ! | | | |
Shear 0.0 ' -20 +80 -20 - -85 =40 0.0  LBS.

b Check Mz = 0.0:
; M, = 160.1(8.675)+(173.3) (4. 675) (4.675) - (106, 75) (10. 675)2 = =7,33 FT-LB
& (2 () BYE)

12
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Thé check of the results in the foregoing example problem re-
veals the presence of a small negative bending moment at the bottom of
the pile. If the same problem is reworked using a slightly smaller
depth D, the final conputed moment at the bottom of the pile will be
either a smaller negative one, or a small positive one. This would
imply that a point of contraflexure must exist near the bottoﬁ of the
pile. This situation may exist in reality, but for design purposes it
is contrary to the initial assumption of the free earth support method,
i.e., the soil into which the pile'is driven cannot offer sufficient
resirtance ss as to induce negative bending moments in the pile section.
Yhe sign oF the Flaal momsut &t the bovesn Hip of the plile 1 mpdbul An
determining the next embeddment depth during the trial procedure. A
positive moment indicates the triallembeddment depth is too émall and
that the ne;t trial depth should be lgrger. A negative'momeﬂt indicates
the present embeddment depth is too large and that a snailer depth
should be used in the Qext trial. The.exact depth of embeddment about
which the summation of moments is uniquely zero may never be determined.
However, by using the moment sign indicators, éﬁe required embeddment
- depth may be hand calculated to within a fraction of a foot in only a
few trials, and to within a fraction of an inch ;sing a ﬁigh speed
computer.

Restrictions have not been placed on displacements at the bottom
tip of tﬁe pile in the free earth.support method. This point may, in
fact, displace. Compatibility conditions oa deflection have not been im-
posed and, therefore, the conjugate beam method, or any other nethod,

cannot be employed tc calculate deflections at the remaining joints.
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CHAPTER III1
THE FIXED EARTH SUPPORT METHOD
3-1. General

The basic assumption in éhe fixed earth support method is that
the soil into which the pile is driven can offer sufficient resistaﬁce
so as to induce negative bending moments in the pile below the dredge
line. A point of contraflexure, therefore, exists and the bulkhead
acts like a' partially built-in beam. The fixed earth support method
involves a number of simplifying assumptions. These assumptions will
be explained in the following discussion of the procedure,

Refering to Figure 3-1 a depth of embeddment D' is selected and
the active and passive soil pressure distributions are determined over
the length H+4+D' to point t. To model the pile action below point t,
the depth D' is extended by an.additional amount equal to 0.2D'. A
concentrated force R is placed on the bulkhead at point t in ;'direcfion
such that it'wiil tend to resist the passi&e earth pressures, The"
magnitude of R equals the resultant of the passive pressure distributibn
over the length of the additional 0.2D' below point t. The anchor
force, Ap, is found by summing forces in the horizontal direction in
Figure 3-1 to include the force R and the active and passive pressure
distributions over the length H+4D'. A deflection line of the bulkhead
can then be determined for the known loading.

The elastic line of the bulkhead is assumed to be tangent to the

vertical at point t and intersects the vertical at the anchor point,
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Ground Surface

A XA 7AW A
Elastic Line .
o
Dredge line 3
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&
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Figure 3-1. Fixed Earth Support Method.

i.e., the deflection at the anchor point is zero (Figure 3-1). If the
elastic line thus determined does not intersect the vertical at the
anchor point, then the depth D' has been estimated incorrectly and is
not compatible with the conditions of equilibrium imposed. A new
value must then be selected for D' and the entire procedure of deter-
mining the elastic line has to be repeated for the new depth. The
required depth of embeddment has been obtained when the deflection of

the elastic line is zero at the anchor point.
3-2. Numerical Method for Fixed Earth Support

A depth of embeddment D' is selected and a cantilever beam of
length H-!-D' is loaded with the active and passive pressure distributions

as shown in Figure 3-2. The sﬁkn is then divided into increments with
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Fixed Support

¢

Reaction R
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’
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L} ]
< D - 0.2D

Figure 3-2, Cantilever Beam Used in Fixed Earth Support Method

joints at the ends of each 1ncreﬁent. The joints are numbered for
convenience, A joint must be located at.the anchér point because the
deflection of  that point constitutes'a design parameter and also be-
cause the anchor force at that point-is a concentrated load. Concentra-
tion formulae ;an then be used to convert the active and passive
pressure distributions into.equivalent concentrated loads applied at the
joints. Newmark's Numerical Method can then be uséd to compute the
shear and moment.at each joint due to the soil loads,

The reaction at the support of the cantilever pile equals the
resultant of the passive pressure distribution over the additional length
0.2D' positioned at the bottom of the pile (the area enclosed by the

dashed lines in Figure 3-2). The only remaining unknown is the anchor

force and it is found by summing forces. All the forces acting upon
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the bulkhead are now known and the induced shears and moments at the
joints can be computed by Newmark's Numerical Method.

Deflection at each joint can now be determined, A conjugate
beam is loaded with an elastic load equal to the moment distribution
of the real beam divided by EI. Concentration formulae can again be
used to convert the distributed elastic load into a series of equiv-
alent concentrated loads applied’at the joints. Starting at the free
end of the conjugate beam, Newmark's Numerical Method is used to com-
pute the shear and moment at the joints due to the elastic load. The
shear at the joints on the conjugate beam equals the sldbe at the
joints on the real beam, and the moment at the joints on the conju-
gate beam equals the deflec;ion at the joints on the real beam. The
required depth of embeddment has been obtained 1f the computed deflec-
tion at the anchor point equals zero. It must be added thaF no deflec=-
tion or slope is experienced at each assumed embedded end of the pile.

The foregoing procedure will now be illustrated with an ex-
émple problem. The required embeddment depth for tﬁé gulkhead shown
in Pigure 2-3 will be computed by #umerical pro;edures with the fixed

earth support method. This same problem was worked by the free earth

support method in example problem 2-1.
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Example Problem 3-1.

Given: The anchored bulkhead shown in Figure 2-3 and reproduced
below, E = 290,000 psi and I = 10 in 4/ ft.

Find: Required embeddment depth, shear, moment, and deflection
by the fixed earth support method.

Solution: Assume D' equals 3.469 ft. Use 2 ft. increments.

Ground Surface
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Example Problem 3-1(continued).

Temporarily ignoring the anchor force, compute joint shears and moments for the assumed D' by
Newmark's Numerical method:

-94,69
-80
- | - Ig.z D'
=
| | | !
| f ! R
. ; | B
Use Linear : | | : /’:
Concentration | | | ’ #130.1 11
Formulae \ i 1 D'l +156.1
] Line Quantity i e nln ol m' r Units/Ft
15 iy - oy 9% by .
IS R B s pe gy =l
'l 'y 'I ' |I| 1|+ +|
' ; 1
Joint Load <=6,67 =-40,0 ' -80.0 . =95.,0 -17.11 416,11 LBS.
o I N & l |
Ave, Shear 1 =6.67 ] =46,67 | =-126.67 | -221,67 I -238.78 | s
| .
Moment Incr, | -13.34 : =-93.34 ' =-253.34 | - =443,34 I -350,77 | FT-LBS
§ M 4 P4 ! | I : |
Moment 0.0 -13.34 =-106.68 =360.0 -803.36 -1154,13 L
i ) | ! ) i
-180 =245 =-222,67 LBS.

Shear 0.0 o =20 =80

8C



Example Problem 3-1 (continuegl;

The reaction R = (130.1+156,1) (0.6938) = 99.28 LB/FT
i e i

The anchor force = =Vz=R = (-)(~222.67)-99.28 = +123,3 LBS/FT

Use Linear
Concentrarion
FPormulae -

Line Quantity

)
4
)
o~
=
at
M~
¥
L
O
o~
'

Joint Load
Ave, Shear

Moment Incr,

Units/FPt

LBS.
LBS.
FT-LBS

LBS,

62



Example Problem 3-1 (continued).

Deflection equals moment on a conjugate beam loaded as defined by the M/EI diagram,

+140
EL +133.4
EL
©), =t ? Conjugate Beam
| -
| [
| |
Use Parabolic | 3
Concentration | !
Formulae | '
! )
Line Quantity | | Units/Ft
Sl 213 i}
ol 31
Joint Load ~-0.91 0.055 - 12,58 11.65 x103
| ; ! |
Ave, Shear | 133 -y 1329 | 071 [ =0’
: : )
Moment Incr. I 320,16 : 318.96 : 17.04 : =261.6 : -}14.58 |- X103 INCH
| . ]
Moment 40,279 =0.04 =0,359 =0, 376 \ -0,114 \ 0.0

(Real Deflection)

INCH

>

0]
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The computed deflection at the anchor point in the foregoing
example problem is 4.0}{10”2 inch for the given depth of embeddment. A
positive deflection indicates displacement in the direction of the
anchor force, tﬁ?t is, opposite to the direction of the active.pressure
forcess If example problem 3-1 is reworked using a slightly larger
embeddment depth, the computed deflection at the anchor point will be
either smaller, i.e. positive or‘reversed, i.e. negative. This change
in sign can be used, therefore, as an indicator when selecting the
next trial embeddment depth, A positive sign for the computed deflec-
tion at the anchor point implies the assumed embeddment depth is too
small, and an increased length should be used for the next trial, A
negative deflection at the anchor point implies the trial embeddment
depth is too large,

The depth at which the deflection 'at the anchor point is unique-
ly zero may never be determined. In order to illustrate this point,
example problem 3-1 was worked using the computer and the deflectién at
.the anchor point was found to be 5.052x1o'4 inch for a D equal to
4,16352 feet, and -3.499X10-4 inch for D equal to 4.16364 feet, The de-~
fleétion at the anchor point changed sign from positive to negative by
incre;sing the embeddment depth an additional .00612 feet, It would
not be feasible to attempt to determine the embeddment depth D to closer
a tolerance than this., The difference in magnitude of the shears and

moments in the pile section over a change in embeddment depth this

small is insignificant, -




CHAPTER 1V
CONCLUSIONS
4-1. Selection of COmputatiohal Method

A conservative embeddment’ depth will always be obtained when
designing a bulkhead by the free earth support method, The design
parameters of example problems 2-1 and 3-1 are identical but example
problem 2-1 was worked b& the free earth support method, and example
problem 3-1 was worked.by the fixed ;arth support method. A compar-
ison of the required embedd;ent depths for the two example problems
reveals that a larger embeddment depth was determined for the bulk-
head designed by the free earth suvpport methéd. Bulkheads embedded in
soft clay or soils having questionable loading characteristics should,
therefore, be designed by the free earth support method,
| The fixed earth support method may be used to design bulkheads
embedded in sand or predominately granular soils. Fieid measurements
indicate th;t stiff, overconsolidated clays also provide sheet pile
fixation below the dredge line just as effectively as do sands.

No data is available for clays of medium stiffness, nor for complém.i
types of soils such as silt or mixtures of silt with sand and clay(),

Engineering judgement must be used to estimate the extent of sheet

Pile fixation in such soils.

32
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4-2, Accuracy of Results,

The design of sheet pile bulkheads using numerical procedures
is nearly exact in accordance with the assumed soil pressure distri-
butions and the assumptions of éhe particular design method being used,
The assumptions in the free and fixed earth support methods are based
on theoretical and experimental thults, but they cannot be applied
specifically to every situation. Pactors such as soil moisture content,
svil type, density, angle of internal friction, wall friction, etc.
make each sheet pile design problem unique, For example, in the fixed
earth support method, it may be that the true length over which the
resultant of the passive soil pressﬁre is determined, and appliéd to
the bottom of the pile as a concentrated reaction, is equal to a value
other than .2 D'. This length may even vary with different soil types
or soil properties. The criteria of no neéative bending of the bulk-
head in the free earth support method i; also a design assumption.
Investigation of an existing bulkhead designed by the free earth sup-
port method may, in fact, reveal the existance of a point of contra-
flexure in the bulkhead below the dredge line. Error may also be
introduced in assuming the éype of curve which describes the soil pres-
sures acting upon the bulkhead., Errors of the above nature, rather than
inherent errors in the numerical technique itself, will govern the
accuracy of a bulkhead designed using Newmark's Numerical Method with
the free or fixed earth support methods.

It must be pointed out that no soil constraints, such as permis-
sable soil displacement, are imposed with the free or fixed earth support

methods. This is advantageous in that, once the required depth of

-~
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embeddment is obtained by the fixed earth support method, the designer
can vary the pile section modulus and compute éeflections by Newmark's
Numerical Method until any desired deflection is obtained. Also, by
using Newmark's Numerical Method, a very accurate analysis can be ob-

tained for any given soil pressure distribution or loading condition.

4-3, Summary

: Except for the work of a‘few individuals such as Rowe, Blum,
and Tschebotarioff (2), relatively little experimental work has been
done to correlate theogetical resufts, nor to supplement or alter
existing assumptions of the free or fixed earth support methods of
sheet pile design. This la;k of experimentation is probably due to
the complexity of the problem with respect to the large number of
variables involve#. Full scale tests to include all combinations of
these variables would be practically and economically infeasible.

This study is not intendéd to criticize or make recommendations
to the existing ;ssumptions of the free or fixed earth support methods,
The main objective here is to introduce more proficienf computational
techniques and methods for the existing design criteria. This is
accomplished with the aid of Newmark's Numerical Method which has already
been presented, and interactive computer programs which will be dis=~
cussed later. Regardless of the fact that some basic assumptions may
be qﬁestionable, the free and fixed earth support methods have proven
to furnish reliable design criteria for anchored flexible sheet pile
bulkheads. Nevertheless, safety factors and good engineering judge--

ment should be included in every sheet piie design,
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CHAPTER V
INTERACTIVE COMPUTER PROGRAMS
5=1. Description of Programs

The programs presented herein have been written in the BASIC
language to facilitate on~line user interaction witlk the computer. The
computer will "ask" for input of data and variables as the program pro-
cedes. The user will supply this information at the terminal, as '"call-
ed for" by the computer, A knowledge of the BASIC language is, there-
fore, useful, but not neces;ary.to design anchored bulkheads with '
these programs.

The trial and error approach for finding the required depth of
embeddment by the free or fixed eafth support methods of sheet pile
. design, and computation of the pile section's behavior by Newmark's
ﬁumerical Method,'is greatly facilitated by computer programming. The
computational techniques used in the programs are identical with those
illustrated in example.problems 2-1 and 3-1, with tge exception that
resg}ts are obtained with greater speed and accuracy.

To set up a2 problem for computer solution, the designer must
first assume an embeddment depth D for the free earth support meﬁhod; or
D' for the fixed earth support method. The active and passive soil :
pPressure distributions are then assumed, taking into consideration soil
densities, surcharge loads, etc, The pile is then divided irnto incre-
ments, and the joints at the ends of each increment are numbered consec~

utively from top to bottom of the bulkhead, A joint must be located at
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the anchor point on the bulkhead.' The number of joints thus determined
will be refered to henceforth as 'the original number of joints". 1It is
not necessary for the increment lengths to be equal or for the pressure
distributions to be linear., The active and passive loading ordinates
corresponding to each joint are determined by the designer in pounds

per linear foot of bulkhead and read into the computer for calculation
of the equivalent joint loads, “

It is recommended that the initial assumption for the em-
beddment depth be larger than what is felt by the designer to be actually
required. This reasoning can be justified through the use of Pigure 5-1,
which illustrgtes the portion of a bulkhead below the dredge line. DO
represents the initial assu;ed ;mbeddment depth, The embeddment depths
used in the next two succeeding trials are D1 and D2. A4 and P4 are
the active and passive loading ordinates corresponding to joint 4, The
increment length at the bottom of the pile between the last two joints
(384) 1is designated by L3. It can be seen in Figure 5-1 that the last
lncrement length will change as the embeddment depth changes. This will
cause the last joint at the bottom of the pile to be relocated. For the
smaller embeddmeﬂt depth D' in PFigure 5-1, the last increment length L3
will be smaller, and joint 4 willabe repositioned between its original
location and joint 3,

This is desirable sinc; a second degree approximation to the
third order M/EL diagram is used to compute deflections in the fixed
earth support method, and small increment lengths will increase the
accuracy of the computed deflections. The last increment- length L3.
in Pigure 5-1 will be larger for the larger embeddment depth D2, i.e.

Joint 4 will be repositioned at a greater distance from joint 3. The
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Figure 5-1. Relocation of Last Joint for Various Embeddment Depths

initial selection of the embeddment depth should be large enough to pro-

vide an ample number of increments, such that for succeeding trial

depths, the location of the bottom joint on the pile will always fall
between two originally existinrg joints. “
Parameters such as the original number of joints, increment

lengths, and the active and passive loading ordinates that defined the

original problem are automatically reset by.the computer before any com- - J
putations are performed for a new trial depth. The computer will also !
calculate the active and passive loading ordinates associated with the I
newly relocated bottom joint for each new trial embeddment depth before |

any other computation procedes.,

Two seperate computer programs have been written; one facilitates

sheet pile design by the free earth support method and the other by the

N
- &
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fixed earth support method. The programs are currently titled FRE and
FIX. The input data for both programs is identical, the exception
being that relative values of E and I for the pile section must be
input for the program FIX which eventually computes displacements.,
Dimensions of the input data for both programs‘are as followsf the
active and pessive loading ordinates at each joint are in pounds per
linear foot of bulkhead,‘incremenc lengths are in feet, and trial eﬁ-
beddment depths are in feet. For program FIX, E is in pounds per
square inch per linear foot of bulkhead and L.ishin inches fourth per
_ linear foot of bulkhead. .

The program FRE utilizes the free earth s#pport method of sheet
pile design which was expla;ned.in Chapter II. With this program, the
designer interacts with the computer by inputting various values for D
(embeddment depth), and comparing relative values of M and V,(Z). When
M equals Vz(Z) the required depth of eﬁbeddment has been reach;d. The
coﬁputer will theﬂ print, if directed by the designer, joint load,
éhear, and moment at each joint. The anchor force will also be printed,
and the program terminates,

The program FIX utilizes the fixed earth support method.of sheet
plle design which was explained in Chapter III. Designer interaction
consists of inputting various values for D', and observing the com-
puted relative deflection of the bulkhead at the anchor point, Relative
deflections are due to relative E andll values originally inmput by the
designer, When the relative deflection at the anchor is very small or
Zero, the computer will print, if directed by the desiéner, equivalent

Joint load, shear, and moment at each joint., The anchor force will alsu
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be printed, The computer will then "ask" for real values of E and I,
When these are input by the designer, real deflection in inches will be

printed for each joint, The computer will then "ask'" for another I

value., The designer can then terminate the program, or the designer
can continue to imput various values for I until satisfied that the
computed joint deflections obtained are tolerable.

The normal procedure for' terminating the FIX program is to imput
the letter N (which stands for no) when the computer "asks" for another
I value. Both the FIX and FRE programs will be terminated whenever a

value of zero is input for D' or D.
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APPENDIX A

Example Anchored Bulkhead Design Problems
and Their Computer Solutions

Example Problem 1-A.

. =300 1b/ft
ground surface Wi
-

P
o = o~y -
S ! L A
Z ' 1\
7 ' A
' y\
" ' 1
0 N L
|
=l % . ! \
4 : | \
1 ! \
dredge line : 8 %
- * NN N i (] '
27 ' ! \
/,: ] 1 ‘
al P ' ! \
e 1
4 | ‘
I, 1 | \
—L—_ /: ————— -’- — S S ———.—— ——J
, Pp 0 1 Pa

Given: The bulkhead shown above.¥=120 pcf, G=2.65, =30"
Factor of safety = 2,

" Pind: Computer bulkhead design by both free and fixed earth
support methods. '




Example Problem l-A (continued). -

Solution:
Ysub. = Y-(WE) = 120-(120/2.65) = 75.0 pef
ga = TaN2(65-9/2) = Tan?(30) = 0.333

Kp = 1/Ka = 1/0.333 = 3.0

PO = qb(Ka) = (300) (1) (0.333) = 100.0 1b/ft

Pl = b¥(3.0)(Ka) = (1)(120)(3) (0.333) = 120.0 1b/ft

Pa = bYsub. (E+D-3) (Ka) = (1) (75)(12+D)(0.333) = 25(12+D) 1b/ft
Pp = Usub.bD(Kp/F.S.) = (75) (1)D(3)/2 = 113.0(D) 1b/ft |

Assume an original embedduent depth of 15 feet. Use 2 foot

increments. The loading ordinates at the joints are as follows:

15 increments @ 2' = 30'

41
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. Example Problem 1-A (continued).

Free earth support computer solution.

. baslic fre ,
INPUT ANCHOR POINT JOINT NUMBER.
? 2
INPUT ORIGINAL NUMBER OF JOINTS.
? 16 -
INPUT ACTIVE AND PASSIVE LOADING ORDINATES (LBS/FT)
100,0 i
180,0 Y
2u5,n
295,0
345,00
395,0 , —
445,0 R I S e
495,0 . -, oo
545,113
595,339
645,565
695,791
745,1017
.795,1243
845,1469 P 2 . :
895,1695 iy e WOWRme——
NPUT INCREMENT LENGTHS (FT) i

-

. 2 i . ) ' i 1 ‘ .
ﬂ&'\!’\"\"\"\"\"\"\"\"\"\"\"\""\)'\"\"\”0-\"\’0\"\"\,'\"\"\"\)'\’

- .
NNRNNNNDNNNNNNNNNNN

1

1]

#”;

%NPUT IMBEDDMENT DEPTH D (FT) w .
13 . i) g8 r s e -2

D= 13 REL. M= 10.4185  REL. V(Z)= 10.8678

D QHOULD BE INCREASED.
;HALL | PRINT ALL JL, V, 4 (TYPE Y=YES, N=NO).
n _ B i Sl I

[ ]
. - i R - «e - ®
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D= 13.27

~ SHALL |

" INPUT IMBEDDMENT DEPTH D (FT)
"7 14

D= 14 REL.

D SHOULD BE DECREASED.
SHALL | PRINT ALL JL, V,

TN

INPUT IMBEDDMENT DEPTH D
? 13.25
D= 13.25 REL.
D SHOULD BE INCREASED.

SHALL | PRINT ALL JL, V,
Tn

INPUT IMBEDDMENT DEPTH D
? 13.27

REL.

D SHOULD BE INCREASED.
SHALL | PRINT ALL JL, V,
?2n

- INPUT IMBEDDMENT DEPTH D
?‘13.275
D= 13.275 REL.

D SHOULD BE DECREASED.

"SHMALL ! PRINT ALL JL, Vv,
T n

INPUT IMBEDDMENT DEPTH D

? 13.272

D= 13,272 REL.

D SHOULD BE DECREASED.

v PRINT ALL JL, VY,
n .

~ - -
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M= 10.8038 REL. V(Z)= 9.48223

M. (TYPE Y=YES, N=NO).
(FT)

M= 10.521 REL. V(Z)= 10.5556

M  (TYPE Y=YES, N=NO).

(FT)
M= 10.5291 REL. V(Z)= 10.5297

M  (TYPE Y=YES, N=NO).

(FT) IR ’
M= 10.5311 REL. V(Z)= 10.5232

M (TYPE Y=YES, N=NO).

(FT)

M= 10.5299 REL. V(Z)= 10.5271

M (TYPE Y=YES, N=HO).




INPUT IMBEDDMENT DEPTH D (FT)
? 13.2705

D= 13.2705
D SHOULD BE DECREASED.

SHALL | PRINT ALL JL, VYV, M
?2n

INPUT IMBEDDMENT DEPTH D (FT)
? 13.2704 -

D= 13.2704

D SHOULD BE DECREASED.
SHALL | PRINT ALL JL, V, M

?y

FOR IMREDDMENT DEPTH (FT)= 13.2704

NODE NO. JOINT LOAD (LB)
1 -126.667
2 3653,

3 -485.
b - - =580,
9 -690.
6 -7900
7 -890,
H -952.333

.9 -8260333

- 10 ‘ «512
11 =160
12 192
13- - - - S-11'

14 A 896
9 . - 650.766
16 e 86.5048

ANCHOR FORCE (LBS)= h008.

|
|

REL. M= 10.5293

REL. M= 10.5292

REL.

(TYPE Y=YES, N=HO0).

REL.

(TYPE Y=YES, N=NO).

SHEAR (LB)

-0

'280.
3303,
2763
2123.
1383.
543.001

-396.999

-1324.

-20120

-2348.
-2332.
=-1964.
-1244,
-171.998
-6.09131F=-02

44

V(Z)= 10.529

V(Z)= 10.5292

MOMENT

0

| -253.333

6799.33
12882.

17784.7
21307.3

23250,

23412.7
21670.7
18276.

13857.3
9118.67 .
L764.01
1497.34
22.6807

-.725586
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Example Problem 1-A (continued).

Fixed earth support computer solution:

baslic fix

IHPUT ANCHOR POINT JOINT NUHBER -

2 2 -
" INPUT RELATIVE VALUES FOR E,|I

? 3nnnnnnn,sn

IPUT DRIGINAL NUIBFP OF JOIHTS

? 16

HpPnT ACTIVE AND PASSIVE LOADINC ORDINATES (LBS/FT. OF UALL)
100,0

180,0

2#5,0 - s R _

295,0 .. - e — = ERCEE - ° i ....

345,0. : : : - y

385,0
ll'&S,O e - '.' § = . SO ¥ 7
l|95,0 p ' = . . ’ s
545,113 ' . D __ »
585,339 . R T I T .

645,565 _ Wi, g

695,791 : 3 , '

71‘5’1017 wny -.' S e : - . <. ‘ e E e .....N...
795,1243 g T NS —"

R45,14069

895,1695 - Cew
HPUT INCREMENT LENGTHS, >

i o« - .- - - . - P

'-\)'\)0\)'\"\"\)"\"\"\"0'\"Q'\)'\"\""Q'\"\"\)'\DO\)'\"QN’-\)N’-\)N"\’0\)-0

NNNNNONNNRNNNNMNNNODNN
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INPUT D PRIME (FT).
? 10

D PRIME = 10 REL. DEFL. AT A.P. = .65822

D PRIMF SHNULD RE INCREASED .
SHALL | PRINT ALL JL, Vv, M, DEFL? (TYPE M FOR NO, Y FOR YES.)
?2n . .

INPUT D PRIME (FT).
? 1n.25

D PRIME = 10,25 REL. DEFL. AT A.P. =-.507456
D PRIME SHOULD BE DECREASED
SHALL | PRINT ALL JL, V, M, DEFL? (TYPE N FOR MO, Y FOR YES.)

-2 i e o W M o e e

INPUT D PRIME (FT).
? 10,15

D PRIME 10.15 . REL. DEFL. AT A.P. ==2.74763E-02

D PRIME SHOULD BE DECREASED - :
SHALL | PRINT ALL JL, V, M, DEFL? (TYPE N FOR NO, Y FOR YES.)"
?n ) 0

INPUT D PRIME (FT).
? 10,14

D PRIME = 10.14 * REL. DEFL. AT A.P. = 1.94519E-02

D PRIME SHOULD BE INCREASED . = : ;
" SHALL | PRINT ALL JL, VY, M, DEFL? (TYPE N FOR NN, Y FOR YES.)
?n . A

.+ IMPUT D PRIME (FT). ;
? 10,145 v 2 R

D PRIME = 10.145 -REL. DEFL. AT A.P. f'S.QSkh7§-03

P PRIME SHOULD BE DECREASED
?NALL I PRINT ALL JL, V, M, DEFL? (TYPE N FOR NO, Y FOR YES.)
n : : : '

- .

o —————— v D et




Y
- IKPUT D PRIME (FT).
? 1n.144
D PPIME = 10,144 REL. PEFL. AT A.P. = 7.21037E-04
D PRIME SHOULD BE INCREASED

SHALL | PRINT ALL JL, V, M, DEFL? (TYPE N FOP NO, Y FOR YES.)
?y :

FAR D PRIME (FT)= 10.144

JOINT N0, JOINT LOAD (LBS) SHEAR (LRS) MOMENT (£t-1b)!
1 -126.66G7 0 - -0 3
2 - 26930.0n9 -230. -253.333
3 -485. 2340.09 4873.51
L =590 18n0.09 an39.35
L -690. 1160.09 12007.2
6 790 . 420.091 13604,

7 -890. -419.909 13620.9
8 -852.333 -1359.91 11857.7
9 -826.333 ~2286.91 8189.92
10 -512 -2974 .91 2369.44
11 =160 =3310.91 -3475.04
12 192 =3294k.91 ~10139.5
13 388.112 - =2826.91 -16420

14 193.973 -255R8.16 -19568.4

ANCHOR FORCE (LBS)= 3045.09

INPUT REAL VALUES FOR E, | (PSI & INCHES FOURTH)
? 29000000,50 :
FOR | = 50 D PRIME = 10.144
REAL DEFLECTION (IN)
211303
7.46727E-04
-.20888
Pigt4-pd-a. . L I -
-.539862 35
-.627376
~-.650668
. -.609738
' -.51304
-.377958
-.22960L4
-9.79425E~-02
~1.44625E-N2 : -
0

JOINT NO.
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wouLD YOou LIKE TO TRY ANOTHER 1?2?22(TYPE YES OR KO) -

? yes
INPUT |
? 28
FOR | = 25 D PRIME = 1n.144
JNINT NO. REAL DEFLECTION (IN)
| .h22608
2 1.49584E~03
% T = 417757
[ -.791318
6 -1.25475°
7 -1.30133
R -10219'47
9 -1-026"8
in -, 755915
11 _ -.459208
12 -.195885
I - 3% -2.89250E-02

iw 0

WOULD YOU LIKE TO TRY ANOTHER 1??2?2(TYPE YES OR NO)
? no : )

PONT FORGET, YOUVE BEEN INPUTING D PRIME. THE REAL D=1.2(D")

FINAL IMBEPPMENT DEPTH (FT) = 1.2(D PRIME) = 12.1728"
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Example Problem 2-A,

Given: The anchored bulkhead of Example Problems 2-1 and 3-1.
E=290,000 psi and I = 10 in%/ft.

Find: Computer bulkhead design by both free and fixed earth
support methods.

Solution: Use 2' increments.

H =6 ft

Dredge Line y
I AAAA

.

&3

| L=

| 0

i [}
a 150 100
&g
(o]
a

; 225 120
A 300 140
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Example Problem 2-A (continued). -

Free earth support computer solution.

basic fre

INPUT ANCHOR POINT JOINT NUHBER.

? 2

INPUT ORIGINAL NUMBER OF JOINTS.

?2 8

lNPUT ACTIVE AND PASSIVE LOADING ORDINATES (LBS/FT)
n,n g ; .
26 0

40,0

6n,n

80,75

100,150

120,225 _

140,300 :
NPUT INCREMENT LENGTHS (FT)

- . - - - -

N

B T T Tt YT C JE 0 YU YUt S S S e G S o

WO RN RNNRN N NN

UT IMBEDDMENT DEPTH D (FT)

3 REL. M= .1048625  REL. V(Z)= .165375

D=
+ D SHOULD BE INCREASED. e .
. SHALL | PRINT ALL JL, V, M (TYPE Y=YES, N=HO).
?n ' i :

@ m vhma - e vy e Tee . - - e - e o= S . s e e - ‘.-

INPUT IMBEDDHENT DEPTH D (FT) ; I . |
74 & )

D= 4 . __ . ... . _ REL. M= .126667 REL. Y(Z)= .16
N SHOULD BE INCREASED.

SHALL | PRINT ALL JL, V, M (TYPE Y=YES, N=!O).
?n '




" SHALL |

- INPUT IMBEDDMENT DEPTH D
?5 :

D= § REL.
D SHOULD BE DECREASED.
PRINT ALL JL, VY,
?n :

INPUT IMBEDDMENT DEPTH D
? 4.5 -

D= 4.5 REL.
D SHOULD BE IMCREASED.

SHALL | PRINT ALL JL, V,
?Tn

- . INPUT IMBEDDMENT DEPTH D

2?2 4.6
D= 4.6
‘D SHOULD BE INCREASED.
SHALL | PRINT ALL JL, Vv,
n .

INPUT IMBEDDMENT DEPTH

D
?.4.75 )
D= 4.75 REL.

"D SHOULD BE DECREASED.
SHALL | PRINT ALL JL, V,
“Tn -, -

INPUT IMREDDMENT DEPTH D
? 4.6733
‘D= 4.6733 REL.
D SHOULD BE INCREASED.

;HALL I PRINT ALL JL,
o

L

REL.

(FT)

(FT)
M= .143708

M. (TYPE Y=YES,

(FT)

M= .135984

/

M (TYPE Y=YES,

CFT)
M= .137668

M (TYPE Y=YES,

(FT) -
M= .140067

-

M (TYPE Y=YES,

M= .138859

M (TYPE Y=YES,

51

.

REL. V(Z)= .122625

N=NO).

REL. V(Z)= .145828 .

'N=NO). R .

. REL. V(Z)= .141943

N=NO).

REL. V(Z)= .135419

N=NO). =

REL. V(Z)= .138861

|
|
N=NO). :



INPUT IMBEDDMENT DEPTH D (FT)
? 4.67335

D= &.67335 REL. M= .13886 REL. V(Z)= .138858

- D SHOULD BE DECREASED.
SHALL | PRINT ALL JL, V, M. (TYPE Y=YES, N=NO).
Tn : .

INPUT IMBEDDMENT DEPTH D (RT) , .
"? 4.67334 Y :
D= 4.67334 - REL. M= .13886 REL. V(Z)= .138859

D SHOULD BE DECREASED. ;
SHALL | PRINT ALL JL, vV, M (YYPE Y=YES, N=NO).

7y

FOR IMBEDDMENT DEPTH (FT)= 4.67334

ANCHOR FORCE (LBS)= 16n.098

-4 . 42505E-04

NODE NO. JOINT LOAD (LB) SHEAR (LB) MOMENT

1 -+ =6.66667 0 . 0 -

2 120,098 ' - =20, -13.3333
3 "=80. . 80.0985 213.53
h -85 " =19,.,9015 280.394
5 =-10. - =84.9015 - 157.257
6 50.5782 -39.9015 -14.1211
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' -Example Problem 2-A (continued)..
e - Fixed earth support computer solutiom,
~basic flIx
INPUT ANCHOR POINT JOINT NUMBER
3
INPUT RELATIVE VALUES FOR E, |
? 30nnnnan,5
INPUT OPIFINAL NUMBER OF JOINTS f
? R LI
INPUT ACTIME AND PASSIVE LOADING ORDINATES (LBS/FT. OF WALL)
T AN '
2 20,0
? 4Lo,n
? 60,0 . .
? 80,75 =
? 100,150 - -
? 120,225 .
? 140,300 i y & . i
HPUT INCREMENT LENGTHS. e IR
? 2 Lo f
‘22
- 9? 2 vy ~ g . -
? 2
? 2
? 2 R
? 2

INPUT D PRIME (FT).
(R

D PRIHE =4 * REL. DEFL. AT A.P. =-.120105

P PRIME SHOULPM BE DECREASED
SHALL | PRINT ALL JL, VvV, M, DEFL? (TYPE N FOR NO, Y FOR YES.)
?n

" INPUT D PRIME (FT).
?7 3.5

D PRIME = 3.5 REL. DEFL. AT A.P. =-5.17007E-03

D PRIME SHOULD BE DECREASED ‘
.gHALL | PRINT ALL JL Y, M, DEFL? (TYPE N FOR NO, Y FOR YES.)
. n ;




IWPUT D
? 3.45

D PRIME
D PRINE

. SHALL 1

?n

INPUT D
? 3.46

e .

D PRIME

D PPIME

. SHALL |

?n

INPUT D
? 3.467

D PRIME
. D PRIME

SHALL |
"7y

FOR D PRIME (FT)= 3.467 -
JOINT NO.

ANMEWN
i

e el e 16,06 - e -
"~ ANCHOR FORCE (LBS)= 123.577

PRIME (FT).

= 3,45 REL. DEFL. AT A.P,

SHOULD BE INCREASED v
PRINT ALL JL, V, M, DEFL? (TYPE N FOR

PRIME (FT).

« 3.46 REL. DEFL. AT A.P.
SHOULD BE INCREASED '
PRINT ALL JL, V, N, DEFL? (TYPE N FOR

PPIME (FT).

= 3,467 REL. DEFL. AT A.P.

SHOULD BE INCREASED
PRINT ALL JL, V, M, DEFL? (TYPE N FOR

JOINT LOAD (LBS)

~6.66667

83.5775 -20.
s | I - - 43,5775
T -56.4225
-17.1371 -121.422
~99,1662

54

= 3.25252E-n3

10, Y FOR YES.)

= 1.60715E-03

HO, Y FOR YES.)

= 4,43920E-04

NO, Y FOR YES.)

SHEAR (LBS)
0 :

o e . & —— — "

MOMENT
0
-13.3333
140.488
134.31

~61.8683
- =230.905

S —
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A3

]

IMPUT REAL YALUES FOR E, | (PSI & INCHES FOURTH)
? 299000,10 .

FOR | = 10 D PRIME = 3.4G7

" JOINT NO.  REAL DEFLECTION (IN)
.365138 :
2.29619E-02
-.317793
-.355481
-.110786 ,
0

DN E NN -

WOULD YOU LIKE TO TRY ANOTHER 1???2(TYPE YES OR HNO)

? ves ] )
| ©INPUT | S e T - -
? 506G ) )
FOR | =5 : " D PRIME = 3.467
JOINT NO. REAL DEFLECTION (IN)
| 1 .730275 ' .
2 4.59227E-n2 : - - S
3 -.635587 : . ’ :
[ ~.710962 -
5 S - =,221572 SRR
\ 6 0 . : T

WOULD YOU LIKE TO fRY ANOTHER 1??22(TYPE YES OR HO)
?no . N L . . ‘. i o .

DONT FNORGET, YOUVE BEEN INPUTING D PRIME. THE REAL D=1.2(D PRIME)
FINAL IMBEDDMENT DEPTH (FT) = 1.2(D PRIME) = 4.,1604 ‘




APPENDIX B

FRE and FIX Computer Program Listings

FRE Listing.

type fre baslc

10 PRINT 'INPUT ANCHOR POINT JOINT NUMBER.'
20 INPUT Q9
30 A$="N'
50 DIMA(30),0(30),5(30),1(30),1(30),L(30),R(30Y, J(BO\ v(30Y,¥(30Y,°(30),1(30)
50 DIM M(30), V(30),E(30) : .
60 PRINT'INPUT ORIGINAL HUMBER OF JOINTS.'
70 IMPUT W
80 PRINT 'INPUT ACTIVE AND PASSIVE LOADING ORDINATES (LBS/FT)'
90 FOR N=1 TO W

100 INPUT ACN),P(N)

- : 110 MEXT N

120 PRINT 'INPUT INCREMENT LENGTHS (FT) '

130 FOR H=1 TO W-1

140 INPUT H(N)

150 NEXT N

160 N1=(P(W)*H(W=-1))/CP(W)=P(W-1))

170 T1=0

180 FOR N=1 TO W-1

190 T1=T1+H(N)

200 NEXT N

210 G=T1-n1

220 IF Q9=1THEN250

230 IF Q9=2THEN270

240 IF Q9>2THEN290

250 Q1=0

9s




260
270
280
290
300
310
320
330
340
350
360
370
380
390
Loo
410
L20
4L3n
Lso
450
Len
470
Len
490
500
510
520
530
540
S50
560
570

580

590
600
610

GOTN330

Ql=H(1)

G0T0330

01=n0

FOR N=1 TO Q9-1

N1=Q1+H(N)

MEXT N

PRINT '"INPUT IMBEDDMENT DEPTH D (FT)!
INPUT D2

IF D2=0 THEN 1650

IF N2=D1 THEN 390

|F D2>D1 THEN 1160

IF D2<D1 THEN 1230

Z=W

FOR N=1 TO Z

C(N)=A(N)

U(N)=P(N)

NEXT N

FOR N=1 TO Z-1

E(N)=H(N)

NEXT N

L(1)=0

X(1)=0

R(Z)=0

Y(Z)=n

FOR N=1 TO Z-1
R(NY=(CE(N)/6)*(2+C(N)+C(N+1))»(=-1)
Y(N)=(E(N)/6Y*(2+U(N)+UU(N+1))
NEXT N )
FOR N= 2 T0O Z .
LINY=(E(N=1)/6)Y*(2+C(N)+C(N=1))*(-1)
X(NY=(E(N=1)/6)Y%(2+U(N)+U(N=1))
NEXT N

FOR N=1 TO Z !
JN)=L(N)+R(N)+X(N)+Y(N)

NEXT N

LS



© 77620 S(1)=J(1)

630 FOR N=2 TO 2-1

G40 S(N)=S(N=1)+J(N)

650 NEXT N

660 FOR N=1 TO Z-1

670 1(N)=S(N)*E(N)

680 NEXT N

690 M(1)=0

700 FOR N=2 TO Z

710 M(MN)=M(N=1)+](N=1)

720 NEXT N

730 V(1)=L(1)+X(1)

750 FOR N=2 TO Z

750 V(N)=V(N=1)+R(N=1)+Y(N=1)+L(N)+X(N)

760 NEXT N . .
770 T=0 A -
780 FOR N=1 TO z-1

790 T=T+E(N)

800 MNEXT N

810 Q2=T-01

820 IF A$ <> "N' THEN 960

830 PRINT

840 PRINT'D="';D2,"REL., M=";(=1)*M(Z)/10000, 'REL. V(Z)=";(-1)*V(Z)*Q2/10000
850 PRINT

860 IF ABS(M(Z))<ABS(V(Z)*Q2) THEN 890

870 PRINT 'D SHOULD BE DECREASED.'

880 GO TO 900

890 PRINT 'D SHOULD BE IMCREASED.'

900 PRINT 'SHALL | PRINT ALL JL, V, M (TYPE Y=YES, N=NO).'
910 INPUT A$

920 IF A$ = "N' THEN 1040

930 R(N9)=R(NIV+(V(Z)Iw(-1))

940 V=V(Z)

950 6O TO 590

960 PRINT

97n PRINT

8s




~ 980
.99n
1onn
1010
1n20
1030
1040
1050
1060
In70
1080
1n90
1100
1110
112n
1130
1140
1150
1160
1170
1180
1190
1200
121n
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

PRINT 'FOR IMBEDDMENT DEPTH (FT)=';D2
PRINT 'NODE NO.','JOINT LOAD (LB)','SHEAR (LB)', 'MOMENT (LB FT)'
FOR N =1 TO Z

PRINT N,J(N),V(N),M(N)

NEXT N

GO TO 1620

PRINT

PRINT

PRINT

FOR N=1 TO W

C(N)=A(N)

U(N)=P(N)

NEXT N

FOR N=1 TO W-1

E(N)=H(N)

MEXT N ' -

Z=\

GOTO330

Z=l+1

E(Z-1)=D2-D1 '
C(Z)=((A(W)-A(W=1))+(E(Z- 1)+H(N-1))/H(W-l))+A(W-1)

UCZ)=((P(W)=-P(W=1))*(E(Z-1)+H(W=-1))/H(W=-1))+P(W-1)
FOR N=1 TO Z-1
C(N)=A(N)
U(N)=P(N)

MEXT N

FOR M=1 TO Z-2
E(N)=H(N)

NEXT N

GOTOLT70

T=0

FOR N=1 TO W-1
T=T+H(N)

IF T=G+D2THEN1340
IF T>G+D2THENLILGED
NEXT N

6S



1340 Z=N+1

1350 E(Z-1)=H(Z-1)
1360 C(Z)=A(Z)

1370 W(Z)=P(Z)

1380 FOR H=1 TO Z-1
1390 C(M)=A(N)

1600 U(H)=P(N)

14109 HEXT N

1420 FOR N=1 TO Z=-2
1430 E(N)=H(N)

1440 NEXT N

1450 GOTOLTO

1460 Z=N+1

1470 Ul=n

1480 FOR N=1 TO Z-2
1590 U1=W1+H(N)
1500 NEXT N

1510 F(Z-1Y=G+D2-W1
1520 FOR M=1 TO Z-1
1530 C(N)=A(N)

1540 U(H)=P(N)

1550 NEXT N

1560 FOR N=1 TO Z-2
1570 E(N)=H(N)

1580 NEXT N d
1590 C(Z)=((A(Z-1)=A(Z=2))»(H(Z=2Y+E(Z-1))/H(Z=2))+A(Z~2)
1600 UCZ)=((P(Z-1)=P(Z=2))*(H(Z-2)+E(Z~ 1\)/H(Z 2))+P(2-2)
1610 GOTOL7D

1620 PRINT

1630 PRINT 'ANCHOR FORCE (LBS)‘ V= (-1)
1640 PRINT

1650 END

R; T=n.86/4.08 14+22-:00

09



FIX Listing,

type fix baslic

10 PRINT

20 PRINT

30 PRINT '"INPUT ANCHOR POINT JOINT NUMBER'

40 INPI'T Q9

50 PRINT '"INPUT RELATIVE VALUES FOR E, 1!

G0 INPUT R2,B3

70 DIM A(zn) P(30),H(30),C(30), E3n),EC3N), L(30),X(30),R(30),Y(30)
8n DIM B(30),F(30),K(30),0(3n),D(3Nn),6(30),0(30),T(30)

9n DIM V(30),J(30), S(’n) |(3n),n(30) -
inn p*:'N
110 A$="nO!
120 PPIMT '"INPUT ORIGINAL NUMBER OF JOINT
130 INPUT W

140 PRINT 'INPUT ACTIVE AND PASSIVE LOADING ORDIMNATES (LBS/FT. OF WALL)!

2 : 150 FOP N=1 TO W

160 INPUT A(N),P(N)

170 MNEXT M

180 PRINT 'INPUT INCREMENT LENGTHS.'

190- FOR N=1 TO -1
200 [HPUT H(N)
21n MEXT N

220 N1=(P(W)*H(W=1))/(P(W)=P(W=1))
230 T1=n
240 FOR N=1 TO W-1

250 T1=T1+H(N)

260 NEXT N

270 G=T1-D1

280 PPINT

290 PRINT

19




T 300
310
320
33N
LN
380
36N
370
381
390

- bnn
L1n
. 420
539
hyn
LSN
460
L70
Lan
Lan
50N
cin
520
530
Ehn
550
560
g7n
San
590
600
610
629
630
cun
650

PRINT "INPUT D PRIME (FT).'
INPUT D2

IF D2= 0 THEN 2230
IF D2=D1 THEN 3G6n
IF D2>D1 THEN 1740
IF. D24{D1 THEN 18G0
7=V

FOR N=1 TO Z
C(N)=A(N)
U(H)=P(N)

HEXT N

FOR N=1 TO Z-1
F(M)=H(N)

HEXT N

03=((U(Z)-U(Z-1))*(E(Z-13+(.2*DZ))/E(Z-1‘)*U(Z-1)_

07=((U(Z)+Q8)/2)*(.2+D2)

L{1)=n b

X(1)=n

R(Z)=0

Y(7Z)=n

FOR N=1 TO Z-1
PCN)=(E(M)/G)*(2*C(N)+C(N+1))*(~1)
Y(N)=(E(N)/6)=(2*U(N)+U(N+1))

NEXT N

FOR N=2 TO Z
LCN)=(E(N=1)/6)*(2+«C(N)+C(N=-1))#(-1)
XCN)Y=(E(R=1)/6)*(2*1I(N)+U(N=-1))
HEXT N

VI =L(1)+X(1?

FOR N=2 T0O Z i

V(H)=V(N=1)+R(N=1)+Y(N=1)+L(N)+X(N)
NEXT N

N6=(07+V(Z))*(-1)

P(N21=R(NI)+O6

FOR N=1 TN Z
JOH)=L(N)+R(NI+X(N)+Y(N)

29



660
670
680
690
700
710
720
730
740
750
760
170
700
790
aN0
21N
®20
230
LN
350
260
37n
880
890
ann
al1n
920
930
LN
950
q6N0
970
agn
990
1000
1n10

MEXT N

S(1)=Jd(1)

FOR N=2 Th 7Z=1
S(N)=S(N=1)+J(N)
HEXT N

FOR H=1 TO Z-1
T(N)=S(N)*E(N)
HEXT N

M(1)=n

FOR N=2 TO Z
MCHY=M(N=1)+1(N=1)
MEXT N
BRC1)=L(1)+X(1)
FOR N=2 TO Z

BRCH)=B(N=1)+R(N=1)+Y(N=1)+L(NY+X(N)

MEXT N

REM B IS REAL SHEAR TO INCLUDE ANCHOR FORCE

REM R1=S.M., R2=E,
F(1)=n :
K(Z)=n

FOR N=1 TO Z

O(N)Y=(M(N)*12)/(B2xB3)

HEXT N
REM O IS M/EI
R=E(1)/E(2)

RC1)=EC(1)*((((1/(1+R))I+3)*0(1))+((R+2)*0(2))=(((1/(1+R))+R=-1)*0(3)))

R=E(Z-1)/E(Z2-2)

FOZ)=F(Z=1Y+((((1/C1+R))+3)*0(Z7))+((R+2)*0(Z~ 1)) (((1/(1+R))+R=1)*0(Z-2)))

FOR N=2 TO Z-1
R=E(N=-1)/E(N)

FON)=E(N=1)*((((1/C(1+R))+1)*0(N=1))+((R+4)I*O(N)I=-(((1/(1+R))+R=1)*0(N+1)))

R=E(N)/E(N=-1)

K(N)=E(N)*((CC1/C1+R))+1)*O(N+21) )+ ((R+4)I*0O(N))=-(((1/(1+R))I+R-1)*0(N=-1)))

NEXT N

FOR N=Z TO 1 STEP -1

DEN)=F(N)+K(N)
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1020
1030
1040
1nsn
1060
1070
1n80
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
12nn
1210
1220
1230
1240
1250
1260
1270
1280
1290
1390
1310
132n
1330
1340
13680
1360

1370

NEXT N

G(7Z=-11=D(2Z)

FOR N=Z-2 TO 1 STEP =1

GIN)Y=G(N+1)+D(N+1)

MEXT N

REM D AND G- ARE J.L. AND AV.V. FOR CONJ. BREAM
FOR N= Z-1 TO 1 STEP =1

D(H)=G(NI*E(N)*12

NEXT N

REM Q IS M.l. FOR CONJ. BEAM
T(Z)=0 .
FOR§N= £=1 TH 1 STEP =1
T(NY=T(N+1)+Q(N)

MEXT N

REM T IS DEFLECTION OF REAL BEAM

IF A$<>'NO' THEN 1470 ‘ %
[F P§ <> '"N' THEN 1470

PRINT

PPINT 'D PRIME =':D2,'REL. DEFL. AT A.P. =';T(Q9)

PRINT '

IF T(N9)<0 THEN 1250

PRINT 'D PRIME SHOULD BE INCREASED'

GO TO 12060

PRINT 'D PRIME SHOULD BE DECREASED' :

PRINT 'SHALL | PRINT ALL JL, V, M, DEFL? (TYPE N FOR NO, Y FOR YES.)'
INPUT P$

[F PS='N' THEN 1650

PRINT

PRINT

PRINT

PRINT 'FOR D PRIME (FT)=';D2

PRINT

PRINT 'JOINT NO.','JOINT LOAD (LBS)','SHEAR (LBS)','MOMENT (FT-LB)'
FOR H=1 T0O Z

PRINT N, JC(H),B(N),M(M)

NEXT N

%9



| | .

1380 PRINT

" 1390 PRINT 'ANCHOR FORCE (LBS)=':Q6
1400 PRINT .
1410 PRINT! '

1420 PRINT

1430 PRINT 'INPUT REAL VALUES FOR E, | (PSI & INCHES FOURTH)'

1440 INPUT B2,R3

1450 PRINT

1460 GO TO 860

1470 PRINT 'FOR | =';B3,'D PRIME =';D2

1480 PRINT

1590 PRINT 'JOINT NO.','REAL DEFLECTION (IN)'

1500 FOR N=1 T0 2

1510 PRINT N, T(N) _ :

1520 NEXT M

1530 PRINT

1540 PRINT

1550 PRINT

1560 IF A$<>'NO' THEN 1580

1570 PRINT ‘

1580 PRINT 'WOULD YOU LIKE TO TRY ANOTHER 12?22(TYPE YES OR NO)'
‘ 1510 INPUT A%

160N |F A$='NO'THEN 2200

1610 PRINT 'INPUT I

1620 INPUT B3

1630 GO TO 860

1640 REM T IS DEFLECTION

1650 FOR N=1 TO W

1660 C(H)=A(N)

1670 U(N)=P(N)

1680 NEXT M

1690 FOR N=1 T0 W-1

1700 E(N)=H(N)

1710 MEXT M

1720 7al)

1730 GO TO 280

S9



. 1740 7=lel

1750 E(Z-1Y=D2=-D1
1760 C(Z)=(C(A(W)=A(U=1))*(E(Z=1)+H(W=1))/H(W=1))+A(W=-1)
1770 WCZ)=((P(W)=-P(U=1))}*(E(Z-1)+H(W=-1))/H(W=1))+P(W-1)
1780 FOR N=1 TO 2-1
1790 C(H)=A(HN)
1300 UCN)Y=P(N)
1310 HEXT N
1820 FOR N=1 TO Z-2
1330 E(N)=H(N)
1’840 MEXT N
1850 GO TO 440
1260 T=n
1870 FOR K=1 TO W-1
1880 T=T+H(N) L
1890 IF T=G+D2 THEN 1929
1900 IF T>G+D2 THEN 2040
1910 NEXT N
1920 7Z=H+1
1930 E(Z-1)=H(Z-1)
1940 €(Z)=A(Z)
1950 U(Z)Y=P(Z)
1960 FOR M=1 TO Z-1
1970 C(NY=A(N)
1980 UY(N)=P(N)
- 1990 MEXT N
2000 FOR N=1 TO 2-2
2010 E(M)Y=H(N)
2020 NEXT M
2030 GO TO Lun
2040 7Z=N41
2050 Wl=n
2060 FOR N=1 TO 7-2
2070 Wl=W1+H(N)
2080 MEXT N

99



2090 E(Z-1)=G+D2-W1

2100 FOR N=1 TO 2-1

2110 €(H)=A(N)

2120 U(N)=P(N)

2130 NEXT N

2140 FOR N=1 TO Z-2

2150 E(N)=H(N)

2160 MEXT N

2170 C(Z)=((A(Z-1)~A(Z=-2))*(H(Z=2)+E(Z=1))/H(Z=-2))+A(Z~-2)

2180 U(Z)=((P(Z=1)=P(Z-2))*(H(Z=2)+E(Z=1))/H(Z=2))+P(Z~-2)

2190 GO TO 440

2200 PRINT

2210 PRINT i

2220 PRINT'DONT FORGET, YOUVE BEEN INPUTING D PRIME. THE REAL D=1.2(D PRIME)®
2230 D3=1.2+D2

2240 PRINT , :
2250 PRIMT 'FINAL IMBEDDMENT DEPTH (FT) = 1.2(D PRIME) =';D3

2260 PRINT ;

2270 PRINT

2280 EMD

R; T=1.12/k.47 12:07:21 -
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