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ABSTRACT
MODAL SHAPES OF THE GENERAL
STIFFNESS MATRIX

Nivat Paranapiti
Master of Science in Engineering

Youngstown State University, 1976

The purpose of this thesis is to investigate the
characteristics of the normal mode shapes associated with
the general stiffness matrix of a long slender beam including |
the effects of axial force and transverse inertia loading.
Four separate problems are analyzed. These include
the statical beam beﬁding problem, the statical beam-column
bending problem, the dynamical beem problem in free vibra-
tion, and the dynamical beam-column problem in free vibration.
In each case, the orthogonality conditions of the modal
shapes are established. Also, the existence of rigid body
motions as possible modal shapes are investigated.
In general, it is found that each of the above
four problems possesses two rigid body modal shapes, a trans-
lational and a rotational form. The remaining two deformed
modal shapes are associated with the resonant frequency of

free vibration of a beam, the critical buckling load of a

column, and the resonant freaquency of a beam-column.
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CHAPTER I
INTRODUCTION

1.1 Equafions of Motion

The general stiffness matrix for a beam and/or a
beam-column element is derived from the Bernoulli-Euler
differential equation with the inclusion of the axial force
for the beam-column. Rubenstein(1)* derived the required
stiffness, mass, and axial force matrix utilizing static
displacement functions for the beam-column element. Henshell(z)
used the exact dynamic equations in obtaining the dynamic
stiffness coefficients (i.e., mass matrix) for a beam element.
Wang(B) used the 'exact' equation in deriving the geometricA
stiffness or axial force matrix for a beam-column element.

The resulting matrix series allows for an efficient procedure

for computer operations.

The general stiffness matrix takes the form

IR CT S (I

where[ K ]15 the elastic bending stiffness matrix,[ GO is the
geometrical stiffness matrix associated with the compressive
axial force (P), and[ Mé] is the mass matrix with {L the
natural frequency of free vibration. The stiffness matrix [S]

*¥ Number in parenthesis refers to literature cited

in the Bibliography.




is symmetric, but not necessarily positive definite. In
general, it is positive indefinite, that is, its eigenvalues
are positive, but also may include zero. These particular

zero eigenvalues are associated with rigid body modal shapes.

By transforming this general stiffness matrix [S]
into diagonal form (i.e., spectral decomposition), that is,
performing the eigenvalue-eigenvector problem, a complete
set of modal shapes including both rigid body and deforﬁable
mode shapes are obtainable. This process requires the
calculation of a matrix [U] called the eigenvector matrix

which satisfies the conditions

[v][s][u] = [A] (1-2a)

and

[UIlu] = [ullul = [1] (1-2b)

that is, [U} is orthonormal. The matrix L/\] is a diagonal
matrix of eigenvalues whose zeros are associated with rigid
body mode shapes. Nonzero terms of the matrix[z“;]when equated
to zero yield values of critical buckling load and natural
frequency. Since [S] is a symmetric, it is diagonalized by
an orthogonal matrix [U] . This condition is shown in

equation (1-2b).




1.2 Form of the General Stiffness Matrix

The algebraic components of the stiffness matrix [S]
take the form

- N
12 Symmetric
; 2
_er | el 4l (1-3a)
[K] & -1 -6l 12
i 6l el -6l 42 :
1y Symmetri '
5L ymmetric
ho & |
1
[6) = 52 LS. (1-30)
sL 10 SL
X -L -1 oL
L {e] 30 | 5 d
! 156 Symmetric \
L 2
AL e j
[M'] 420 54 13l 156 (1-3¢)
-3l . -3l -2ol 42 }

The moments, shear forces, displacement, and rotations are

related by the matrix equation (see Figure (I)).

(7} = Is{al -

where

Vv, W,
{F} = { ':I\I' and {A} & {:; P (1-4b,c) -
\ M, ‘sr.




with V1 and V2, the joint shear forces
and M2, the Jjoint bending moments

w1 and Wz, the Jjoint displacements and

91 and 92, the Jjoint rotations
The positive sign convention for M1, M2, V1, V2, 91, 92, W1

and W2 used consistently throughout this work is shown in
()]

Figure (I). )
Mll_e\| M' .oz
P 1 — P Q
E,« N
- L
Vl > w' Vz ) w:
Figure (I) Problem Parameters and Sign Convention

For convenience, the equations (3a), (3b), and (3c)

are recast in dimensionless form as

r 12 Symmetric y
RN « o e B
6 2 -6 <
~ -
] 369 Symmetric
¢ 4¢
&) = | ° ;
[ J G _3¢ 360 (1-5b)
Lacp -¢ -3¢ 49




[ \56Y Symmetric ;
a] -|[§]eXTd (1-5¢)
54  13Y 156 Y
-3y -3Y -22Y 4‘}!J
where .
2 4 9
PL _ PAU
P = orq s X e (1-6a,6b)

Equations (1-4a), (1-4b), and (1-4c) are also written in

dimensionless form as

($1 - [8)(5] i

where

vt WL
{5} =ELI :L , {ﬁ - “?;/L (1-7b,7c)
M, "

The modal shape problem is defined by the condition
that the force vector is proportional to the displacement

{f} -[5]{6}- )\{é} (1-8a)

where )(S are defined as eigenvalues. Equation (1-8a) is

rewritten in the form

81~ Afa)] (8] - [d by




For non-zero value of {5& , it follows that

[§]- AlL]

- O (1-10a)

which yields the characteristic equation of this matrix [§]
which is solved directly for the eigenvalues. The general

form of equation (1-10a) becomes
MeT: X 3FsA02] A+] =0 (1-10b)
\ 2 3 " -

where I1

trace of the matrix [§] (1-10¢)

I, = sum of all (2 x 2) determinant minors formed by
successively eliminating all possible combinations
of any two rows and the corresponding two columns

(1-104)

I3 = sum of the (3 x 3) determinant minors of the prin-
cipal diagonal elements (1-10e)

I, = the determinant of [é] (1-10f)

The roots of the equation (1-1Ob),)\1,,x2, }3, andwkh, are
the eigenvalues of [g]

The eigenvalues of equation (1-10b) are individually
substituted into equation (1-9) and the corresponding eigen-
vectors [5} are obtained which directly define the modal shapes.
These vectors are then combined to form the columns of the

modal matrix [UJ.




1.3 Four Special Cases of the Stiffness Matrix

The following four cases are investigated in this

thesis:
Case I - Beam Bending Problem (Statical)
A ~
[sf’] —[K] (1-11a)
Case II - Beam-Column Bending Problem (Statical)

(8 - [k]-[6] (1-11D)

Case III - Vibrating Beam Problem (Dynamical)

[éi‘"] " [R]— [fﬂ (1-11¢)

Case IV - Vibrating Beam-Column Problem (Dynamical)

5] -[k] -[6,]-[f) (1-114)

386630
WILLIAM F. MAAG LIBRARY
YOINGSTOWN STATE UNIVERSITY




CHAPTER II
BEAM BENDING PROBLEM

241 Eigehvalue Matrix

For the statical beam bending problems, it follows

that
{f) = [R]{$§} (2-1a)
or _ §
/ML 12 Symmetric
EI o 12
VL -12 -6 (2-1Db)
LM ' 6 R -6 4
z. \ s
The four matrix invariants of the matrix in equation (2-1b)
are
I=32,I, =60 , T .=«I, =0 (2-2)

The characteristic equation becomes

N(A-2)(A-30) =0 (2-3b)
with the four roots determined as

(|)>\‘___<n = 0 . (|))\’ 2y (0)\‘___. o (2_30)

b

The eigenvalue matrix takes the form

o Symmetric
(® o o i y\
lAb] == 4 " 2 (2 Bd)
O

() (@] 30




It should be noted that the four invariant properties of
the latter matrix are identical to those given in equation (2-2)

for the matrix [RJ

2.2 The Eigenvector Matrix

Utilizing equation (1-9), one obtains

(K- AR {) - fof o

Substituting the four roots o individually into equa-

tion (2-4), the eigenvector matrix is constructed as

i | | 2 i
e e o) T
U(') K. o e/ We Vi
[ ”] il I =i 0 -5 (2-5)
0 T Vi Viis
-

It should be noted that the eigenvector associated with the
second zero value of A 1is obtained by using the orthogonality
equation (1-2b).

2.3 Solutions of the Moments, Shear Forces, and Normal
Mode Shapes

The normal mode shapes, together with the Jjoint
moments, shears, displacements, and rotations values, are given
for the four values of A in Figure (IIA), (IIB), (IIC), and

(IID) respectively
()]

w W

+ | 5

T e Y m
W|= w2=W &L/,IE' V| - Va- (o]
Q|— Qz— 6 = O M= M= 0

Figure (IIA) Modal Shape of the Beam for ﬁ&l==o




L
i
W o= W, = W & L/fv‘e' Vi= V, = O
9| _— 62 - Q ;g—?/W Ml"' Mg- o

Figure (IIB) Modal Shape of the Beam for the Second

Root “A, =0

W‘—Wz—w = 0 V|-=Vg=0
o, =-9, =0 ~ YV M= M, = 2 ELO
Figure (IIC) Modal Shape of the Beam for “A =2
w Mg v
- A SEGEEY .
{ (x)
r
™
Me

- EX
Vl_ VE= 3°EW

M‘— Mﬁ= 30259
Figure (IID) Modal Shape of the Beam for ©\ = zo

2.4 Interpretation of Result

The two zero eigenvalues define two rigid body mode
shapes, one a rigid body translation, the other a rigid body
rotation. In both cases, the associated Jjoint moments and
shear forces are all zero. The two nonzero eigenvalues
define a ﬁure bending mode shane (i.e. QX°= 2 ) and a combined

bending and shear force mode shape (i.e. “A, =30 ).

10
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CHAPTER III

BEAM~-COLUMN BENDING PROBLEM

3.1 Eigenvalue Matrix

For the statical beam-column bending problem, it
follows that |

15§ = [[K-[6]] {8 G

or ¢ 3 e
vt 12(1- 3¢) dymmelric "
L ML | s-se 4G9 8, et
Er| Yl —12Ci-34 -3(2-9)  12(1-39) "
(M | s Gxd) ze-0) 40-9)] L8
where 2
¢ PL
T
The four matrix invariants of the [[R] - [GOI] matrix in
equation (3-1b) are
T = 16(e-59) s ‘I: = I5( 4-44¢+31¢!)
(3-2)
I, = |30¢(—4+|z¢-s¢f) gy Ip»o

The characteristic equation becomes

Note(e-shy N +15(a-aab+276H N + 130 4 ( 2- s¢)(e-d) = O (3-3a)
or in quadratic factored form as

/\[A'(l‘5¢)][)3+5(25¢-6)}\+ 180 43(4)-2)] =0 (3-3b)




with the four roots determined as

(’)/\‘ = O

] !

0 - (2~ 5¢)
f :

4
AN — l_g.(s<p-z)+/[ '%(54"2)] ~ 1209 (4-2)

”f——(3—3c)

B

The eigenvalue matrix takes the form

= ~

“%w Symmetric

=% T - -0

e} (@) 0O “)/\4

~

3.2 The Eiggnvéctor Matrix

Utilizing equation (1-9), one obtains

[R-1a]- ALY - o

Substituting the four roots of A individually into equation

(3-4)

(3-4), the eigenvector matrix is constructed as

| FE T e,

®n . w

_— 0 = e 3, | n, /4

T o iy (3-50)
c ﬁ-y | 'no/‘&)| 0 __ z/ndl
()
o - My - /Y,
A

12



where

“)n‘= (6-23(#)-,/ 5‘( s¢-z)!~ 50 $(P-2)

(
nnz= 4(2-9)

Ko <6-.u¢)+/s’<s¢-z>’-vo¢><¢-z3

y 2 m, (3-5b)
(ld|=- /{(6-23¢)—J5'(5¢-n'~ 90¢(¢—z)18 +16(2-9)

® 5 . =1 g
e {(6—z=¢)+/5(5¢-n-—80¢(¢-n } +16(2-9)

Note
)
n T, y
(nd‘ ual (')d‘ (1) .

3.3 Solutions for the Moments, Shear Forces and Varia-
tions of Normal Mode ohapes

The normal mode shapes, together with the Jjoint
moments, shears, displacements, and rotations, are given for

the four values of A\ in Figure (IIIA), (IIIB), (IIIC), and

(IIID), respectively.

()
\

6~ 6,=6= 0 M= M
Figure (IIIA)

Modal Shape of the Beam-Column for “\

)

(x)

13




(t
el
wl- "Nz- w —_—

~

9~ -0 ~ Nz

Figure (IIIB)

(W

14

(@)
M= M= A, EIg

Modal Shape of the Beam-Column for °A

2

w|=N,-W-Q
- = g% L
0 = 0 &

Figure (IIIC)

€Y

)

2n,0
G

M = ‘Mzn (l))\ E

-

Y

3

|

Modal Shape of the Beam-Column for e~

(%)

W= W, = W k:mt‘_:l
(lax
e‘— Gl- 9 ~ mhl

Figure (IIID)

—

My - = Ypw (1)/\4 E—} »
&
"o W% ELEG

(lal
Modal Shape of Beam-Column for “M\,
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The first and third modal shapes do not change
geometrically as the parameter ¢ increases. The variation
in shape of the second and fourth modal shape as the para-

meter ¢ increases are given in Table (IA), and (IB),

respectively.
¢ o} 0.1 0.2 0.3 Q.4 0.8 1.0 1.9 2.0 2.1
“A V2 Viw 10
0.3749 | 0.4497| 0.5317 | 0.6015 | 0.6472 | 0.7023 |0.7070 0.7070
6, t4pa -0.5952 [~0.5454|-0.4660|~-0.3717 |~ 0.2847|-0.0%15 (- 0.0037|— O +0.0033
W, "%ﬁa -0.3749|-0.4497 —0.53/7|- 0.6015 |- 0.6472 |- 0.7023|-0.7070 |- '/{T |-0. 7070
el =5 2/473 -0.5952 -0.545¢4(-0.4660 |-0.3717 |-0.2947|-0.0%15|-0.0037 (o] +0.0033

Table (IA) Mode Shape Variation for (e\ﬁ

”54_ ¢ 0 Q.1 0.2 0.3 0.4 0.5 1.0 1.9 2.0 2.
Wil %6 |0.5352[0.5456 |0.4660 |0.3717 |0.2847 |0.081s |0.0037| O |0.0033
0, Yid |0.3749 |0.4497 [0.5317 |0.6015 0.6472 |0.7023 |0.7070 | 'WT' |- 0.7070
B TG |- o.5382 -0.5456/-0:4660/-0-3717 |- 0.2847|-0.0815(-0.0037| O - 0.0033
L 4
8, '/JE’ 0.3749| 0.44937/0.5317 | 0.60i5 [0.6472 |0.77023 |0.7070 '/,[? - 0.7010

Table (IB) Mode Shape Variation for )\,

3.4 Zero of the Eigenvalues

The first eigenvalue@k.:o corresponds to a rigid

body translation as shown in Figure (IIIA).

The second eigenvalue “)\, — _is (5¢-z)-—J[ ng(w-z)}z-\eo;b@-z)
|
when equated to zero yields the condition

5

Pacn, © (3-6)

which implies the axial force P equals zero.
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For ¢ -0, the mode shape takes the form shown in Figure (IIIE).

W= w,=w & L@ Vi=%=o0
6,- 8,-6 » ~Yg M= M, — 0
Figure (IIIE) Modal Shape of Beam-Column for the Second

Zero of (QKZ

The third eigenvalue “A = (2-s¢) when equated to
zero yields the condition

¢ = % (3-72)

2
Noting ¢== PL , it follows that a critical value of axial

30ET
force is obtained as

By - ik %g
(
The value €K5 corresponds to a pure bending mode shape as

(3-7p)

shown in Figure (IIIC). The exact Euler-Bernoulli theory
yields a wvalue of critical buckling for a simply-supported

column as

Re =T %% (3-7c¢)

The value of Fa' by the matrix formulation given by equation
(3-7b) is greater by 21.86%. For'¢-%, the same mode shape

occurs as given in Figure (IIIC).
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(2) L R
The fourth eigenvalue )\4- - ‘;_(s¢-g)+ﬁu:(s¢-z)} ~130$(¢-0)
when equated to zero yields the condition

¢ = 2.0 (3-82)

which yields a critical value of buckling load.

(®
Pcr - 60 EL%

The mode shape at critical‘load takes the form shown in

(3-8b)

Figure (IIIF).

€Y

W.—lewﬂg Vl-vl-o

6 - 6=-6% Y M,=Mg=~ O

Figure (IIIF) Modal Shape of the Beam-Column for the

Fourth Zero of (QX4

The exact Euler-Bernoulli theory yields a value of
critical buckling for the second mode shape of a simply

supported column as
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Ry — 4T % (3-8c)

The value of F%, by the matrix formulation given by equation
(3-8b) is greater by 52%.

3,5 Interpretation of Results for the Beam-Column

The single zero eigenvalue is obtained for this
problem which corresponds to a rigid body translation. The
three nonzero eigenvalues define a pure bending mode shape
and two additional deformed mode shapes with associated Jjoint

moments, shears, displacements, and rotations.

Equating to zero the three nonzero values of A

yields the condition of critical buckling load. The three

conditions are:

a) (l)>\l = 0 imp\ies ¢ = 0O or P = 0O

b) m}\g o B - implies ¢ = Ys or B, = m;:_g
|

Q) m)\,,r = 'lmplies ¢ = 2.0 or P, = 60 EX

{2

For condition a),the mode shape corresponds to a rigid body
rotation with zero Jjoint axial force, moments, and shear forces.
Condition b) produces a modal shape corresponding to the

first buckling mode shape of a simply supported column.
Condition c¢) produces a mode shape at critical load which
corresponds to the second buckling mode (i.e. n=2) of a

simply supported column.
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CHAPTER IV
VIBRATING BEAM PROBLEM

4.1 Eigenvalue Matrix

For the dynamical vibrating beam problem, it follows

that
() - |[R] -] {8 i
or _ s '
L ( R(1-13%) Symmetric Wn/l.1
LM ] ee-wk) a0y S (4-1b)
EI V,L —_ -6 (2+a¥) ——(6HIY) 120I-139) W, /o
M,_), C (6+13Y)  (2+43Y) -2 (3-1Y) 4Cl—%J L @,
4 2
where \// - JTAGW
420 ET

A

The four matrix invariants of the[[KJ —[[C]JJ matrix in equa-
tion (4-1b) are

N
I = 32(1-10Y)
I, = (60-~7556 Y+ 22617‘i’2)
2 . (4-2)
I, = -448Y(60-633V¥4133¥)

I, = 735 Y ( y-20) (7¥-12)
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The characteristic equation becomes

. g
,\‘_ 32(|—|o‘}’)>\3+(60- 1556V + 22617 ‘V’))\ + 448Y(60-633y+133 ‘Vz)k

I3 (4—33
+735 YV (y-20) (7¥-12) = 0 )

or in quadratic factored form as
[)\g+(‘°3"’- 30) A+ 21¥ (Y- zCJ)][/\z*r(*""‘f’-z))\ + 35‘1’(7%»:} = Q4-3b)

with the four roots determined as

B

(z))\\ - b ( Z—li-—’q/-‘\) - /( i_!zj‘f/-nt— 35 1}’(-,\}/_”)

(ﬂ)\l AL -( \_Ora‘f’..w) - 4/(1,_02,3‘}/45)1— 2IW(‘}’~;o)ﬁ (4 BC)
N = -0y o O Gy
Ny = - (2¥-19) x] (S Y (yeg | J
The eigenvalue matrix takes the form
™. Y
| Symmetric
(o) (3)>\
e ' . 4-34
[[\b o o “\, (4-3d)
o o O e
~ g
4.2 The Eigenvector Matrix
Utilizing equation (1-9), one obtains
(4-4)

R - A 8] - (o
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Substituting the four roots of A individually into equation

(4-4), the eigenvector matrix is constructed as

r ( (s i) o ]
Wby, S Ty Phepy
ilwd e L T LT T
T thgy Ch Chepy ey iy
gy, repy, hefry e, ]
where ‘
mﬂ. G {0+2NY%rJ?;7vﬂ‘- $H7W‘07}
3 T * 3
mﬂz h 38 1{/
= - ' [}
n, = { (-6 + 9 V¥) + /( '%«':W—to) = £8 V(Y20 }
3 3
(.s>‘n‘¥ o 0 (3‘!"-4-)

(2

7
Mo = { (1+ 203 Yy) —,[(“_J‘V—')z- 35 Y (T1Y-12) }
2 2

— (4-5b)

“"n6 — {('6*"9_.“{/)—‘/7( 'E‘I’-W)g- 2% Y (y-20) }
3 3 3

2

4
“d, = )/l (1 e.e;‘vﬁf( 07y asY( Ty 'k +( asv)!
& 2
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9 /
i
“’dl= /\/{(-6+\%‘_‘|’)+ ('93_3 ¥ -10)" - ‘gv(v-w)} + a(ay-4)'
? 7
(J)d ? g
iy ™ {(H— ‘2532_3‘1’)—-/(2111’1/-!) 4 ss\t’(ﬂ’—n)i + (ssY)®
. Y] /
Yd,—= //1(—6+@w)—‘[<19_w—no>‘- z_t_awv-zof}wcs%n’
3 3 3
/
Note
(€3] : _(J)n! (:)_ﬂ2 ) .
el B
! 3 dl d;
e oy “ny e
L.ndz wd+ 3 de o (-ia';

4,3 Solutions for the Moment, Shear Forces and Variations
of Normal Mode Shapes

For the eigenvalue ‘ﬁ\| , the normal mode shape

together with moment and shear values are given in Figure (IVA).

(L)

» (%)




(:)d'_‘
el__e'= 0 ~ (l\n

£

(:)-a'

Figure (IVA)

VI = Vl i m)\|
M|= -Mz > m)\l

W

m
o P rul
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Modal Shape of the Vibrating Beam for A\,

The variation in the mode shape for values of the

parameter ¥ where of ¥ < 2 are shown in Table (IIA)
‘%‘W 0o Q.001 0.00S 0.0092 0.1 1.0 1.5 "/1 2
ik '/JT 0.7070 |0.70s59 |0.7040 [0.69983 |0.69753/0.6315 [0.6374 |0.6373¢
* 0 0.0122 (0,0409 |0.0882 [0.1971 |0.1n38 [0 eig |0. 11624 [0.11633
"L Yi& |0.7070 |o.70sa |0.7040 [0.6988 |0.637530.6315 0. 6374 |0.6a73¢
0, 0 - 0.01122 [~ 0.0408|- 0.0582|-0.1071 |-0.1158 |-0.1616 |[-0.11624 |-0-11633

Table (ITA)  Modal Shape Variation for A,

For the eigenvalue @)\2 , the normal mode shape

together with moment and shear values are given in Figure (IVB).

(v Vg
i < PR
w M S e o
—r_ fﬁt i e 111:;:-_ = b :
(3}\ —r
20 M,
4 V|
() ¥
Wi = oW, = w ~ ._;L/,a V‘— —-V: =.())\2 E—L%W
@ (3)
6 = 8,= 08 & M/ Moo= My = A, t1g
Figure (IVB) Modal Shape of the Vibrating Beam for “A
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The variation in the mode shape for values of the varameter YV

where OLY £ 2.0 are shown in Table (IIB).

N (¢] 0.00) 0.1 0.3 1.0 10.0 15.0 20,0 21.0

w
'/L 0.3162 [0.3169 |0.40765|0.62¢8 |0.7066 |90.7049 [0.7047 |0.70466 |0.T1046

G. -0.6324 |-0.63208(—0.57716(—0.334% |~0.0255 0.0550 [0.0375 [0.05872 [0-05889
W

’/L -F0.3162 |-0.3169 —0.407¢ |—0.6228 [~0.7066 —0.7049(~0.7047 |- 0.70464|— 0- 7046
G, —0.6324 |-0.¢3203~®.5711¢|—0.3348 |—0.0LE5(0.0850 [ 0875 [0.08%7L [ 0.05%%9

Table (ITB)  Modal Shape Variation for “A,

For the eigenvalue“}\3 , the normal mode shape

together with moment and shear values are given in Figure (IVC).

(8

M,

/%2
x - (%)

We Wew —n‘L/“a; Vl . V2= (J)/\s E‘%W
L
(
8, = ‘eg= 8 ~ :‘n!/‘a; M|= —Mz -—(3))\3 E--I- 9
=

Figure (IVC) Modal Shape of the Vibrating Beam for(ﬁx3

The variation in the mode shape for values of the

parameter ¥ where 0O < ¥ <2 are shown in Table (IIC).




ey

N ) 0.00! 0.005 | 0.0082 | oO.I 1.0 I3 '%/7 2.0
N‘/L o 0.01g 0.0408 |0.058%2 |0.1071 |o0.1s8 0.6 0.1l624 |0.1633
8, — i@ |-0.7070 |-0.7059 |-0.7040 | -0.6983|-0.6375 |-0.697s |- 0.64974 |- 0. <974
N'/L O 0.0ne [0.04.08 |0.0582 |0.\071 0.188 0. 161 O.1l624 |0 1633
8, '/4? 0.7070 |0.7059 [0.7040 [0.6983 [0.637S [0.69375 |0.6374 |O.6974

Table (IIC) Modal Shape Variation for ©A\

3

For the eigenvalue "’)\‘ , the normal mode shape

together with moment and shear values are given in Figure (IVD).

T l _(X)
_ ) W
(3) T—
n
(J);:.e L Ml
v|
(3 (a)
SRR AR L
(3 (2
8= 6 - 6 » ""'«/mdq M= My Ay E&Ee

Figure (IVD) Modal Shape of the Vibrating Beam for ©“\

4

The variation in the mode shape for value of the

parameter ¥ where o ¢ ¥ <:2.0are shown in Table (IID).
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Sa i Q 0.001 Q.1 0.3 1.0 10.0 15.0 20.0 21.0

MiL  |o.¢3t48 [o.¢3208 |0.5717 |0.334%1¢[0.00s5 | 0. 0ese l0.0515 [0.08512 [o-0sss

g| 0.31622 [0. 316Q72(0. 40767 |0.622814 |05, v706¢ - 0.704q |~ 0.7047|-0.70466|—0.704¢
w

‘/L ~0.63245-0.63208(—0.5777 |—~0.3343¢|~ 0.0255 |~ 0.0550 | ~0.0575 |~ 0.0537 "o.oan
8, |o.z1622 [0.316972 0. 40767 [0.622814 o 7o = 0.7049 |~ 0.7047 |~0. To4q[-0-TO%¢

Table (IID) Modal‘Shape Variation for(ﬂk4

4,4 Zeros of the Eigenvalues

7

The first eigenvalue “))\l - o= (R Y-) - (zl_gv—t)'-ssww—m

when equated to zero yields the condition
Y = 0 (L4-6a)
which requires the natural frequency to equal zero, or

w = O (4-6b)

For Y=0 the mode shape, for the condition w=0, takes the shape

as shown in Figure (IVE).
4)

A 4
il R O T e et B B 5 i g O aegiond b (®)
i | f
L
W o= Wy aN W L/ﬁ- V= V=0
9\ - el= G - 0 M‘ - Ml= 0

Figure (IVE) Modal Shape of the Vibrating Beam for the
First Zero of (%\‘




2t

The second eigenvalue,“’)\z , when equated to zero,

yields the condition

Yy = O (4=7a)

which requires. the natural frequency to equal zero or

W = 0 (4=7b)

For ¥=0 the mode shape takes the shape as shown in Figure (IVF).
(4) ‘

L &
w
E 3
W= W, = w8 Y@ Vi= V,= 0
8, = 6= 6 = Y M,= M,= 0

Figure (IVF) Modal Shape of the Vibrating Beam for the

Second Zero of (ﬁKl

The third eigenvalue,(?As , when eguated to zero,
yields the condition

vy =2 (3-8a)

The mode shape at resonant frequency takes the shape shown

in Figure (IVG).
C)]

-z |

—a= (%)
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W= W, = w % O.uesl Vie Y%w O

6,- 6, =~ 0 & -0.6974 M, M,= ©

Figure (IVG) Modal Shape of the Vibrating Beam for the

3

Third Zero of °“A

4 2

PAL w
420ET

Ll o 26.63/%%& (3-8b)

the exact Euler-Bernoulli theory yields the lowest value of

Noting B, = , it follows that a natural frequency

is obtained as

natural frequency for a free-free beam as

’EI ]
w = 09 L3729 m‘- (LF—BC)

The value of w obtained from the matrix formulation given by
equation (4-8b) is greater by 19.93% than the exact value
given in equation (4-8c).

The fourth eigenvalue,(ﬁ\ , when equated to zero,

A
yields the condition

¥ = 20.0 (4-9a)

The mode shape at resonant frequency takes the shape shown in

Figure (IVH).




vq|=-V‘J

g - W A o.ose7el V, = V=0

6,= 6= 06 A —0.70466 M, = Mg=°

Figure (IVH) Mode Shape of the Vibrating Beam for the

Fourth Zero of (9A4

Equation (4-ga) yields the value of natural frequency as

ET
W = 9I.65/m (4-9Db)

The exact Euler-Bernoulli theory yields a value of natural

frequency for a free-free in its second mode as

[ET
W = 61.66 o (4-9¢)

The value of @ obtained from the matrix formulation given by
equation (4-9b) is greater by 48.61% than the exact value
given in equation (4-9c¢).

4.5 TInterpretation of Result for the Vibrating Beam

29

The four nonzero eigenvalues define the mode shapes'

with associated joint moments, shear forces, displacements,

and rotations. Equating to zero the four nonzero value A\
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yields the conditions of natural frequency. The four condi-

tions are
) “’/\‘ PR imp‘ies W rau o or T - o
by “N\, = 0o imp\"es W = O or. W owm o
(3 3 : EI
) AN, = O implies - 12 oy w = 2683 =—
. : ol | AL

d) w)\,, - 0 'lmp\ies ¥ - 200 O W ke q"f’s,%\.‘

For condition a), the mode shape corresponds to a rigid body
translation with zero natural frequency, and zero Jjoint moments
and shears. In condition b), the mode shape corresponds to

a rigid body rotation with zero natural frequency, and zero
moments and shears. Condition c¢) produces a mode shape at
natural frequency which corresponds to the first mode (i.e. n=1)
of a free-free beam. Condition d) produces a mode shape at
natural frequency which corresponds to the second mode (i.e. n=2)

of a free-free beam.




CHAPTER V

VIBRATING BEAM-COLUMN PROBLEM
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ain Eigehvalue Matrix
For the vibrating beam-column problem, it follows
et SO | [R] 8T (5-12)
’ ( L s
v,L 121~ 3¢ -13¥) symmetric ‘"'/L
L ! ML (6-3¢ -2:¥) 4(1~¢-v) ) 8,
ET VL -6(2-69+aVv) -(6-30+13Y) t2(1-3¢p-13Yy) NI/L
L Mz (6-3p+13V¥) (2+d +3V¥) -(e-5¢_zl‘v) 4(1-9-Y) ks 6.
) ? ¢t
with ¢ = PL. and VY fAE &
30ET 420 ET
The four matrix invariants of the ,:lik} ¥ [GOJ— [M"H matrix in
equation (5-1b) are
T, = (32-god-320V)
Tz = (60-660¢-75s6Y +3855 " + %110 PV 4 azel‘l‘lf
2
I = (720 ¢ - 13440 ¥ 42160 b + 143760 ¢‘I’+I‘H-:ggqf i
-400 ¢ -1g160 qbzxy - 185220 431(/2- pgT9L )
¢ 2
Iq_ = ( 151200 4)’1/ +176400Y - 453600 ¢KP-64.2600(P‘1}
3 3 L 2
- N720 Y +189000 QY 4 327600 Py + 832000y
+ 5las ‘1’4 J
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The characteristic equation in quadratic factored form becomes

{)\z+ (0 1Y+5$-DN+ 35Y (301247 ‘P)] [)\2*('03\1’*75¢'30)}‘ (5-%a)

¥ 3{7‘1/l+t0(9¢-l4)‘f’+6oq'><cb..:)i] = 0

with the four roots determined as

u)}\‘ = ‘(1_‘.2?’1’+§z-¢")-\/(£{?”f’+§£¢-l)z~ 35y (30 ¢-12+7Y)

2

m)\ aal —("’?3‘!/+7_2§¢-|s)—J(lgz_311/+-r_!§¢-|s)'~3{7y'+|o(q¢—l+w'+60¢(¢'l)\
~(5-3Db)

A= (g Gryegp o sy oo
2

(%\ B
. =

? I
Lt 122_3 ¥+ 7_z§¢-\5) +}/( t9_l§ Y+ 1‘z§ ¢-\5)~3{7!,}4.10(34:-:4)\{/1-604)(4)-1)}

7

The eigenvalue matrix takes the form

m)\‘ SymvaiC
= 0 WA
@ ] 2 ; 5-3¢
I_Abc] O @) : ))\3 ( )
o} 6] 0] m)\;

5.2 The Eigenvector Matrix

Utilizing equation (1-9), one obtains

K-8 - ala]] {8} - Lo}



b

Substituting the four of A\ individually into equation (5-4),

the eigenvector matrix is constructed as

( N
e ey, Thew, S
[ cd)J I - R 4, ref, “h‘/(‘c'i,,' (5-58)
=_ -5a
el 2 #n, /“::\ i, l(‘a Bing /‘33 s, [“y
\ 2 &
(W‘z/ﬂg' (“n”uz)\! (%g/(‘as “‘h‘*/“a“' J
where 1
“n, = {(‘-édw ra3y)+ «ﬁ%‘*’* u1y-0'- (1050 $y - seo ¥4 sen ) } ~
“’n, = 35Y

: 7
w’ﬂz = {(a-zscﬁ— 191 ) =~ /(|o-zs¢ -108 ¥)'-(20¢’-160¢ 4120 ¥ -560 ty+l,;‘!’~yt) §
3 z - :

“n, — (g-4%-6Y¥)

. 71

Wy, - {(n-gd;n_o_;y)_,\[(54,...g;rw-\)l_qmsodPly-uol{u9.45’1’) E
z 2 2 2

~(5-5b)

» * 71
“ne = {<‘-zs¢>~‘%‘w+ﬁ'o-zW-‘%w'-<*°4>“‘°¢*“°‘P‘*’ R 4t 4B

1

?
; , =1
d, = {(4-1_5!_¢+7;c%_z,\y)+A/(r—%@;}_.agq’){(cosoW{(— 420Y + 1.45\]12) } +(35\1,)’
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7

a2l
(4‘&2 — (6—23¢- 101 Y)-Jﬁo- !.5¢-|2_3\y)‘_ (30¢‘_|50¢+|l0 ¢W—S_‘_9 ‘1’...2__3![/2) } +(%-4¢-5(V)l
3 3 3 3

-

7

- ey =

3

14
(:-26+ z_o_;vy)_ﬁl—?b -!_lzj'v)'. (1050 ¢y - 410y 4 245 ly') l + (35 ’v)'
£ b 2

;%

712 1
2
~(“2:\4-ﬂ(e-zz¢~lgv)+ (lo-154)-!_0_31y)‘..(20¢!-160¢+llod)llf-5_£9‘f’+2_3115) }4-(%—4-‘?“%
3 % 3 3

Note
(

R s Ony _ ng
(4) d, “)d, (%) d‘ (»)da
N 0 mﬂ ®n g

| w =0 P S <
“)d L (ﬁa «Jd 2 (ﬂd

4

5.3 Zeros of the Eigenvalues

‘The first eigenvalue

4

“’)\\ I z_njw*.;;c)q)-,J(l_\]qz+§4>_\)’-zs'¥( 309 -114TY)
L 2 2

when equated to zero, yields the condition
either Y = 0 (5-62a)
or 3 -12+T¥= 0O (5-6b)

together with the constraints that if “A=0 , then




(Wyesd &y (5-6¢)

Thus, as ¢ increases over the range o¢{ ¢ 4% , it follows
that ¥ decreases. It is determined, by direct substitution,
that equation (5-6a) satisfies eguation (5-6¢), and (5-6d4)
simultaneously and thus satisfies the condition A, - o . It
is further determined that equation (5-6b) does not satisfy
the inequality of equation (5-6¢c) and hence does not yield
the condition “YA,=o ., Thus, only the root¥-0is applicable

in this case.

The mode shape takes the shape shown in Figure (VA)
which is identical to that given in Figure (IVE).

pPi-_ —L p :
___________________ (x
. 7 | f
|
W, =W, =W # L V, =V7_=0
9|=e‘=9 ol 4 MI=M1=O

Figure (VA) Modal Shape of the Vibrating Beam-Column for
the First Zero of “A

35
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The variation in the mode shape for values of the parameter ¢

in condition Y=o shown in Table (IIIA)

where O (Ppg L
S

shows that the mode shape does not change as ¢ increases.

% . 0 Yfio the 3o %/io
e, ° o o o o
WL it n Yur fiE /i
6, o] o o o o
Wil Yz o Yix o o
6, 0 0 o 0 0
Table (IIIA) Modal Shape Variation for the First Zero

(4
of A,

The second eigenvalue

3 L 4
LS _(lo_zsly+'l_z§¢-\s)-— Cl_oisvw_’w-ls)’-s{7¢+\0(9¢-|+W+604>(¢-2)',

when equated to zero yields the conditions that either

: Ak '-‘;(943-'*)*«/[5(9‘#’"")]?- 60 0 9-1) (5-7a)
7
or : 1
i~ -§<g¢-\4)-/[§<e¢—\+)] - 69 $(4-D (5-7b)
together with the constraints
(12y+1Ed) s (5-7¢)

Thus, as ¢ increases over the range o¢¢< £t , it follows that
5

Y decreases. (5=-74)
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It is determined by direct substitution that equation (5-7b)
satisfies equation (5-7c¢), and (5-7d) simultaneously only
when ¢=Yy =0 and thus satisfies the condition (€\2= o s
It is further determined that equation (5-7a) does not satisfy
the inequality of equation (5-7c¢) and hence does not yield

the condition “A, =0 . Thus, only the root yielding w¥-¢=o0

is applicable in this case.

The mode shape takes the shape shown in Figure (VB)
which is identical to that given in Figure (IIB), Figure (IIIE),
and Figure (IVF).

)
)

z
n
1
z
"

W %S V,=V,-0

8, = eg"'e & Z/‘de Ml.ML:O

Figure (VB) Mode Shape of the Vibrating Beam-Column for

the Second Zero of (ﬁkl

The mode shape for the values of the parameters ¢=0

and ¥=o0 is shown in Table (IIIB).




v | ¢ | v | & | v | e
0 0 i . i “/yid

Table (IIIB)' Mode Shape Variation for the Second Zero
(
of ®A,

The third eigenvalue

T

(ﬂ)\s T —(L—‘Jw"'%d)“) *’4/(7-‘_74’+.5_¢-l)'-3s‘}’(30 $-1z+TY)
2 2 : 3
when equated to zero yields the condition

e, 30¢-12+17Y = 0 (5-8b)

together with the constraints

(wiv+sd) > (5-86)
Thus, as ¢ increases over the range 04<¢<:% , it follows that

Y decreases. (5-84)

It is determined by direct substitution that equation (5-8b)
satisfies equation (5-8c) and (5-8d) simultaneously and thus
satisfies the condition “A,-=0 . It is further determined that
equation (5-8a) does not satisfy the inequality of equation
(5-8c) and hence does not yield the condition “A,=o . Thus,

only the root Y = 12- 30¢ is applicable in this case.
T

The mode shape takes the shape shown in Figure (VC)
which is identical to that given in Figure (IVF).
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)

w w
T . f » (x)
L
Wy = W, =W A 0.1143l V, =V,=0
9, s -0,=8 % -~0.6974 M, = M, =0

Figure (VC) Mode Shape:of the Vibrating Beam-Column for

the Third Zero of(ﬂks

The variation in the mode shape for values of the
parameter ¢ where o < ¢ ¢ & in condition ¥ . 12-309
7
are shown in Table (IIIC) which shows that the mode shape

changes proportionately as ¢ increases

0] &) I/lo 2o %10 /10
W~ Yy 12/4 9/ 6/ */4 0
ol o-lets 0.08718 |0.08312 | 0.0t gos o

6, -0.6974 |-0.7017l |-0,7047! |-0.7065 |- 0.707]
NefL 0.6y 0.08718 | 0.05812 |o0,02908 o

0, 0.6974 0.7017T| 0.-7041! | 0.7068 O.7071

Table (IIIC) Mode Shape Variations for the Third Zero
®
of )ﬁ
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The fourth eigenvalue

J

m)\‘.’ - (\g!_:,y+1_is¢_\s)+/( ‘%_:,\y,, 'l_;'_n¢-|.5)!- 3{1 vx+|o(n¢-l+)‘}’+ eosb(¢.g) .

when equated to zero yields the conditions

either H’-.-%(9¢'WY+J[§(9¢"Mﬂ!-ﬁg¢c¢-n1 (5-92a)

or Y - —%(w-w?—,f[ 2 (og-100) - LPce-1) (5-9b)

together with the constraints

3
METEP i il (5-9¢)
Thus, as ¢ increases over the range o< $<20, it follows that

Y decreases. (5-94)

It is determined by direct substitution that equation
(5-9a) satisfies equation (5-9c), and (5-8d) simultaneously
and thus satisfies the condition “A,=0 . It is further
determined that equation (5-9b) does not satisfy the inequality

of equation (5-9¢), and hence does not yield the condition

“))\4 =0 , Thus, only the root ¥= —.5:,(9¢-|+)+4/{g,(a¢-m)y_ 6_$¢(¢-z)’
is applicable in this case.

The mode shape takes the shape shown in Figure (VD).

i,
Ciny
I
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W, = —W w ~ Nﬂa\-/«r o= &
1= =W, = R, = Vg =0
W
~ n & -
8,= 6, = 0 ~N 4/(.3‘ M, M, =0
Figure (VD) Mode Shape of the Vibrating Beam-Column for
the Fourth Zero of “A,
The variation in the mode shape for values of the
parameter ¢ where o (¢ < 2.0 are shown in Table (IIID).
¢ o 0.1 0.5 1.0 1.8 1.9 2.0
(“3:. 4 " 20.0 |12.8004) 14.029642 | 8.1834 942 | 2.917635 | O.341420 (o}
W'/L - 0.0s37L |0.058501 |0.057273q¢|0.05403q% |0:043013% |0.0ls42e8 |- O
8, - 0.70466 - 0.704G 826 -0.7047834|- 0.70503% | -0.7057q¢ |—0-107007 |~ /{7
/L ~0.06%7 |- 0.058501 |- 0.0572734,— 0054039 | -0,0430i83| ~0.0u84ees|~ O
9, —O.7046 |- 0.7046826|-0.7047334 |~ 0.705038 | - 0.70579¢ | —0. To7oor|— /N2

Table (IIID) Mode Shape Variations for the Fourth Zero
*)
of ,A4

5.4 Interpretation of Result for the Beam-Column

The four nonzero eigenvalues define the mode shapes
with associated joint moments, shear forces, displacement and
rotations. Equating to zero the four nonzero value of A -

yields the condition of natural frequency as a function of

axial force. The four conditions are



:E:"
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Ay (“)\‘ =0 imP\ies Yz0 NL\cn o0& $ &2
s

b) “))\,_ ) imr\'les l{/ =0 when 4) o

) "N\, w0 implies Y= 12-304 when 0 < <4

7

d) (‘*)/\4 =0 imp\ies Y= -57(9(1,_‘*)”/{%(64’—14)]2_ 6__%¢(¢—z)\

when ol p<e

For condition a), the mode shape corresponds to a rigid body
translation with zero natural frequency and zero values of
Jjoint moments and shear forces with the parameter variation
o0& 9 & % . This condition is the same as in Casés E
ITI and III previously investigated. For condition b), the
mode shape corresponds to a rigid body rotation with zero natural
frequency and zero values of joint moments and shear forces
with the value of ¢ =0 only. This condition is the same for
Cases I, II and III previously investigated. Condition c),
the mode shape is produced with a natural frequency which
corresponds to the first mode (i.e. n=1) of a free-free beam-
column. For this condition, the mode shape changes propor-
tionately as ¢ increases over the range o0& $ ¢ § y, With a

simultaneous decrease in natural frequency. For ¢=o0 5
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this case simplifies to that of Case III, Condition c¢),

Chapter IV. For W¥-=0 , this case simplifies to that of

Case II, Condition b), Chapter III. For condition d), the

mode shape is produced with a natural frequency which
corresponds to'the second mode (i.e. n=2) of a free-free
beam-column. For this condition, the mode shape changes

as ¢ increases with a simultaneous decrease in natural
frequency. For ¢>-o : this case simplifies to that of Case III,
Condition d), Chapter IV. For V¥=° , the case simplifies

to that of Case II, Condition ¢), Chapter III.




CHAPTER VI
DISCUSSION AND CONCLUSION

6.1 Discussion

A summary of the normal mode shapes for Cases I, II,
III,and IV for A;’s i=1,2,3,4 are shown in Figure (VIA).
In general, four deformed mode shapes are defined for each
case except for the beam-bending problem with one rigid body
translational mode shape, and one rigid body rotational mode
shape, and the beam-column bending problem with one’rigid

body translational mode shape.

The zeros of the A.’S L= 1,34 produce mode
shapes fof the four cases as summarized in Figure (VIB).  For
all four cases, two rigid body mode shapes exist for each case,
one a rigid body translational mode shavpe and the other a

rigid body rotational mode shape.

The zeros of the eigenvalues in Cases II, III and IV
produce approximate values of critical buckling load of column,
natural frequency of beam and resonant frequency of a beam-
column, respectively. These values are compared with the
theoretical values as given by the exact Euler-Bernoulli

theory in Table (IVA).
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C Bouno\dry Cr'\hcc‘ Buck\ing Lodcl T
0O y € xact Approximate Difference
; Condition Theory Sb?)lqu*#"'\‘o"n .
S‘mp‘g supporled Et) 'ﬂgE_I 12 EL v
U both ends, n= 2 L
M Simpl 1 cl ® 2
imply  supporie er 4'"'_5_];_. 60 E—f +52.0
N boﬂ\ eho\, Nn= 2 e L

Nd’fum\ Fyequencies

Boundary e Dif ference

Condition Exact Matrix .
Theory Solution /o

Free-free w, ?_2'3’[/ _514 26.83/ E_x;“ 4 18.93
boﬂ'\ e_T’lASQY‘:‘ fAL fAL

Free - free /
both ends, n=2 20 R fAL FAL '

Table (IVA) Summary of Numerical Results for
Critical Buckling Loads and Natural
Frequencies

O Z—-4A4A>» gp - <
2T>m

For the vibrating beam-column, the relationships
between the natural frequency of free vibration and the axial
force are shown in Figure (VIC). The end points of the two
curves shown in Figure (VIC) correspond to the summary condi-
tions of Table (IVA). It shouldjbe noted that all values of
critical buckling load and natural frequency obtained using
the stiffness matrix approach are greater than those given by

the exact theory.




CASE I

CASE III

Figure (VIA)
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CASE II

CASE IV

Sumnary of the Normal Mode Shapes
for A * 0 L= 1,2,3,4
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CASE IIT

Figure (VIB)
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CASE II

CASE IV

Summary of the lNormal Mode Shapes
for A = O b= 1,23 4
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Figure (VIC) Plot of Natural Frequency versus

Axial Force for a Free-Free Beam-Column
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6.2 Conclusion

The form of the general stiffness matrix relating
end harmonic forces and moments to displacements and rotations
is shown in Appendix I. The exact theory yields a stiffness
matrix with tfigonometric elements which lead to rather

inefficient computer operational procedures. This stiffness

matrix, when expanded in infinite series form becomes

[8]+~ [x]-plc]-d[m]-rd[ A]-Pla ]~ [m]- (6-1) |

° The convenience of the latter form is that trigonometric
components are replaced by numerical components., However,

in doing so, the solutions utilizing this form become approximate.

It is further assumed for simplicity that

[s]~[®]-Ple] —a [m] (6-2)

that, is the first three terms of the series are utilized.

~

If this method is used to determine critical buckling
loads, an error of at least 22% should be expected for the

lowest critical buckling load.

For the case of vibrating beams, a minimum error of
20% for the first natural frequency should be expected and a

minimum error of 49% for the second natural frequency.

If the percentage error obtained by the approximation
of equation (6-2) is too large, the higher order form of the

series given by equation (6-1) should be utilized.




APPENDIX I




R ————————————————
51

The form of the general stiffness matrix relating

end harmonic forces and moments to displacements and rotations
is

r \Z : S, Symmetric (W‘
M _ iy (A-1)
Vz s" S.Il : " We !
( Me L Sy, Sy . T Saa ) . 92/
where

8= S, 8| CPip; +pip) Sc + Cpipt+pp) Cs ) (A-2)

S“" —543— B[ (Plp':— p‘lp‘) +(P?p,‘P.bf)Cc +2pri Ss] (A-3)

Su= 544= B[<P.|°i+pf)Cs-(pfp,+Pf)SC] CA-¥i5 | ;
!
5= -8 - B[<P.ri+P’.P.>Cc-C>] kX0 5:‘?
5, = B[(-pri-P.‘Pz)S-CﬁTpi+P.P,*75] 563
S, = B[(pfp,+p“,)5—cp.p:+p’.>5l (A-7)
g . EI (A-8)

2PiP -2pp, Ce u cpfopt) 8¢




58

subject to the condition that
2PiPy - 2 p,p, Ce +<|of-p',)55 0 (A-9)
14
P = [ - hl-a- (‘f)2+ N . (A-10)
z £ /
t 4 WI/Z
P = [ Ky [ (O A (A-11)
s - B (A-12)
ET
4 2
N = pAn (A-13)
ET :
S = S'm PL (A"'14)
¢ = Cospl (A-15)
S = Sinh pl (A-16)

C = (Coch p.l_ (A-17)
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(A-18)
g
3150
L5
(A-19)
llf
6,300
=
(A-20)
1l
*?sq_j
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