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ABSTRACT

NONSYMMETRIC MATRICES WITH APPLICATIONS
IN LINEAR ELASTICITY

Chiravut Santaputra
Master of Science in Engineering

Youngstown State University, 1978

The purpose of this thesis is to investigate and
summarize some of the properties and characteristics of
nonsymmetric matrices containing real components.
Nonsymmetric matrices are associated with practical
engineering problems which arise in the field of linear
elasticity and the theory of deformable solids.

This thesis is divided into two sections. The
first section presents series of solutions of elastic solid
problems illustrating typical conditions in which
nonsymmetric matrices are generated. The second section
investigates the characteristics of nonsymmetric matrices,
including the concepts of the skew coordinate axes,
biorthogonal coordinates, replacement by a symmetric matrix
and a skew symmetric matrix, eigenvalue-eigenvector problen,

and the concept of the super matrix.
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CHAPTER I

INTRODUCTION

1.1 Nonsymmetric Matrices

Matrices that occur in the field of linear
elasticity are both symmetric and nonsymmetric. The three

(1.,2,3)% traditionally

symnetric matrices most Elasticians
associate with linear elasticity are stress matrix, the
linear strain matrix, and the Hooke's Law matrix relating
stress and strain. The matrix{A] defining the skew
curvilinear axes of the deformed body, and the Jacobian
matrix [J] which functionally defines the shape of the
deformed body are two nonsymmetric matrices. These matrices
play a primary role in defining the geometric shape of the
elastic body in its deformed equilibrium state. Thus, it is
very useful to study the properties and characteristics of
the nonsymmetric matrices.

The coordinates of the points in an undeformed
solid are usually defined with respect to the rectangular
coordinate frame. After the body deforms, due to applied
surface forces, straight lines in the body parallel to the

coordinate axes deform into curvilinear lines. The most

efficient method to define the shape of the deformed solid

* Numbers in parenthesis referred to literature

cited in the Bibliography.



is to formulate unit vectors tangent to these deformed
curvilinear lines.

Let M(x.,x,X,) be a point in an undeformed solid.
After the solid deforms the point M(X x, x,) moves to
MﬂxﬁxtRC) with the displacements U, u,,u, in the direction

of X, X,,X; respectively, (See Figure(1-1))

%)

e
]|

(xy)

(X3)

Figure(1-1) Rectangular Coordinates-Deformed Geometry

thus,

X, = X + U bosi 8,3 (1-1a)

|

* * * -
x.bl+-x1ut4-x3 Uy (1-1p)"

where to is the unit vector in the X; direction. It follows
that
_¥ "
g’;c = .’;(’i. ;
where ?: is a vector tangent to the deformed curved line

which in the undeformed body is parallel to the coordinate
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w ¥ . . ~ %
axes. Further Uy is defined as a unit vector in the X
direction
~ ¥
0% X
= ~ X
Xl
wherelxc\defines the magnitude of the vector X; (See Figure

(1-2))
(x,)

VT { (x))

(X3)

Figure(1-2) Curvilinear Coordinates

Noting Equations (1-1a) and (1-1b) one obtains

*

R = (XeUnT + (Xa+ U g+ (X3 ¥ Uy) Uy (1-1c)
and
i ’th Ui QUi QU
| (L 3x\ (|+ |)L/l +/ax‘ bq_+ 5-;‘\/3
hence,

U, L DUz~ QU -
N* s (l‘l’ @X:)l/\ * 'D)(‘LL/@ 6X| UJ

L, = m
WQ”%?) %&) (%z




¢ QUL (= U,
’;L',* _ :‘g%(z U, + (1 + ,aj;)b.L ,0x3 L/3
z 2 L v U
ST g3
2 U
/E’t - 6’0%3("' + /aong v (14 ®~X3)09
: \ 7 u
(%) (%)« (9%
Defining
. U, L
e = e B (S (3
|+ E

2z

@ul @ul’
( ’ax,) + (1 v,

Ve (F)

l+E5 = ‘\/(%%3)1‘*(@9} )“:\-(H

D Xs

%)

1(=)

J5,
f

the unit vectors are written in matrix form as
[ %) [ i1 5
U . +0U
] t+E‘ O O l ’aXI
¥ . | Y
{ U17 = @) |+EL O (DXZ
~F _L (091
i UsJ i ) @) I+E3J [ 0X;

or in symbolic form as

@) = (Rl

The

elasticity( ) becomes

Y, Y,
Xy X,
(au'z Qus
(OX'L /OX;
(Out ‘ (aU)
@ Xs mxg

(a1{t

matrix [;+E] for small deformation, small rotation linear

y

(1-2v)

(1-2¢)

> (1-24)

(1-3a)

(1-3Y)



i 0 L
l+ 6“1
9%
1 - ‘
[.l"'E-l - O |+ QU2 @)
X,
|
O O I+a-g’
. ’0’(3)

Expansion of each term in the above matrix in a power series

and noting Equation (1-3b) gives

(&) [ e guy ][]
\ X, ,a"xl i
~ ¥ U i

& N - by 9Us J 1-3c
v ] ox, | i G (1-3c)
N U :
U = 04, -

(O S T N Y

or in symboli¢ form as
% s
{b } = [A]{E} (1-34d)
The matrix [A] is in general nonsymmetric and defines the
direction of a skew reference frame in the deformed body.
The Jacobian matrix [J] as defined in Equation (1-3b)

is a second nonsymmetric matrix found in linear elasticity.

Matrix [J] is usually rewritten as

(31 = (o) +I(1] (1-4a)

where [D] is defined as the deformation matrix which is in
general nonsymmetric. The matrix [D] is further reduced to
the sum of a symmetric matrix[ﬁ] and a skew symmetric matrix

(wlin the form



(o] = [e] +[w] (1-4b)

where (€] is the symmetric linear strain matrix and [w] is the

skew symmetric rotation matrix.

1.2 Biorthogonal Coordinate

The three unit vectors tangent to the deformed
curvilinear lines of material body in the deformed
equilibrium state are not in general perpendicular to each
other. They usually form a skew angular coordinate frame. In
a skew angular reference system it is necessary to construct
a second set of vectors defined astVl,_“u,%,(S). This set
of vectors together with the initial set of base vectors
Wi,U;,..-.,U, along the original skew axes system satisfy the

following bicrthogonal conditions

(QL'Vh) LA U A
(1-5a)

i
&
»n
‘N
s

(L_AL- \7‘,)

The family of i vectors and V vectors are associated with
the matrices (U] anad V], respectively. The matrix form of

Equation (1-5a) becomes
vifvl  =[llvl = 1 (1-5b)

A nonsymmetric matrix (A] defined with respect to the dual

coordinate basis satisfies the condition that

LVJT[A]TLul = [U]T[A][v] = (7] (1-6)



where (A] is a diagonal matrix of eigenvalues. If the
original coordinate vectors Qua,u--,ﬁh are orthogonal the
second set of vectors \7.,\7,_---.,\7,. are also orthogonal and

coincide with the first set. Thus,
vl = [uv] (1-7a)
and Equation (1-5b) reduces to

[U]TLU] [u][u]T = (1 (1-71v)

I\

and Equation (1-6) becomes

[WITALL) [A] (1-7¢)

The latter case occurs if the matrix [A] is symmetric.

1.3 Replacement of a Nonsymmetric Matrix by a Symmetric

Matrix and a Skew Symmetric Matrix

Any real nonsymmetric matrix may be replaced by the

sum of a symmetric matrix and a skew symmetric matrix in the

form

lc] = (Al+ L8] (1-8a)
where

(AT = é[[cl‘ricf] (1-8b)
and

1)

(8] é[[c]- [cﬂ (1-8c)

- MU | ‘»\i\{Y
nmitamM £ MAAL  LIDRAT
WILLIAM | e 1)



where (A] is a symmetric matrix and (Bl is a skew symmetric

matrix. Three special cases arise from Equation (1-8a):

Case I -(C] is symmetric;

(8]

(o] | (1-9a)

Case II -(c¢] is skew symmetric;

[(A]atrel: LO) (1-9b)

Case III - (¢] is orthogonal;
(AllB] = (BILA] ' (1-9¢)

From Equations (1-4a) and (1-4b), the Jacobian matrix which

indicates the shape of the body in the deformed equilibrium

state is written as

91 = [el+{wl« (1]

7] - [[€]+[I]] + [w] (1-10a)
and

[J]T = [[Q]* [I]] - (wl] (1-10b)

where [A] = [e]+[1] and (B8] = (w]
Of particular importance in a deformable solids problem is
the condition when [J] is an orthogonal matrix. It may be

shown in this case that
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"

(Allellc) (c)8llA]l - [BIANC) ... (1-11)

These latter equations require that [A],[B] and (C) have the
same eigenvectors. One real eigenvector associated with the
components of the skew symmetric matrix (8)]is a vector normal

to a plane about which rotation takes place.

1.4 Eiegenvalue-Eigenvector Problen

(%)

The nonlinear strain tensor in the mechanics of

deformable solids is given as
| i | T 2
i[[J]LJ] ¥ [Iﬂ = [€]+5[Ee1+tenw]-twlce]+Lw]} (1-12)

For the special case of linear elasticity one obtains

Httar-tn] = (e

where the last four terms of Equation (1-12) are higher
ordered terms. The eigenvector directions of %[UllJJ-[I]]

are the principal directions of the strain matrix- (] (i.e.
in the direction of principal strain), Thus, given the
nonsymmetric matrix (V] it is expedient to investigate the
eigenvalue-eigenvector problem of [J] premultiplied by its
transpose. Hence, given a nonsymmetric matrix (A] with real
components, it follows that the multiplication of matrix (A]

and its transpose produces a symmetric matrix, that is,
T T )
(AJ(A] = [B] = (8] (1-13a)

(BHAT = [t1 = (1" (1-13Db)
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where (8] and (C] are both symmetric matrices. In general
(8] # [c] and as the result (8]{c] # (c){B] . The
eigenvalues of (B8] and (C] are all real numbers and the
eigenvectors are orthogonal, while for matrix [A] the
eigenvalues may be real or complex and the eigenvectors may
be real or complex. The diagonalized form of matrices (A],
(B8] and (Cldefined as [f&].[A3] and [ﬁ&], respectively, may

be shown to be
) = ) - (A (1-14)

since both [8] and [C] possess the same characteristic equation.
A special case arises when [B][c] = [C][B] . It follows

that (8] = [c]. Three special cases are involved.

Case I - (Al is orthogonal.(A]-|= [A]*. eigenvalues
are real or complex and the absolute value of each eigenvalue
must be one. All complex eigenvalues appear in complex
conjugate pairs. If [(A]is both orthogonai and symmetric all
eigenvalues are real and must be only *1, the eigenvectors

are real and orthogonal.

Case II - [A] is skew symmetric, [A] = -[A]T.
eigenvalues are real or complex. If [A]is odd ordered
matrix at least one eigenvalue is zero. All complex
eigenvalues have zero real parts and appear in complex

conjugate pairs.

; T
Case III - [A]is symmetric, [A] = (A], eigenvalues
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are real and eigenvectors are orthogonal.

This thesis investigates the mathematical patterns

in the above cases.

1.5 The Super Matrix

The concept of multiplying a nonsymmetric matrix

by its transpose and producing a symmetric matrix as
considered in Section 1.4 leads to the formulation of a new

. Fe . (6 ; % ;
matrix defined as the super matrlx( ) which 1s symmetric.
Given a nonsymmetric matrix{A] of order (nxn), one constructs

LA;] , the super matrix, in the form of a partitioned matrix

\

as ( :

Lo] « [A]
»
[A] f[o]J

[A;] is a symmetric matrix which has an order (2n x2n), twice

(1-15a)

I

that of matrix (Al. In addition the matrix [AJ becomes

(1-15D)

[As]z = e

/

\

2
which has the same eigenvectors as the matrix [A;]. Also.[A;I
has eigenvalues that are the square of the eigenvalues of
LAl . The form of Equation (1-15b) relates directly to the

concept of Section 1.4 in Equation (1-132a) and (1-13b).
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CHAPTER II
ENGINEERING PROBLEMS INVOLVING NONSYMMETRIC MATRICES

. T -3 15
2.1 Summary of Illustrative Problems

In this chapter we summarize the Jacobian matrix
and its properties as applied to series of six realistic
engineering prdblems that occur in the theory of elastic
solid. As shown in Chapter I, the Jacobian matrix defines
a set of vectors which are tangent to the curvilinear lines
in the deformable static equilibrium state, as.will be shown
the Jacobian matrix may take'on properties of unit matrix,
symmetry, orthbgonality, or general nonsymmetry. The
following problems will be used to illustrate these
conditions(?):

1) Uniaxial extension of a three dimensional
slender rod.

2) Three dimensional extension of a long.slender
rod under its weight distribution.

3) Pure bending of a slender rod in three
dimensions.

4) Plane stress analysis of pure bending.

5) Plane stress analysis of bending and constant
shear.

6) Plane stress analysis of bending and linearly

varying shear.
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2.2 Uniaxial Extension of a Three Dimensional Slender

Rod

(X))
A

o

Jl/

! f -
QP—_—' e e el "/,/ —————— P (X3)
3 F—

(X2)

Figure(2-1) Long Slender Rod in Tension

Consider a long slender rod of length L and cross
sectional area A -subject to axial force P as shown in

Figure(2-1); the stress state within the rod is constant with
v, = £

and

Satisfying the three equations of-stress equilibrium, the
six equations of Hooke's Law for a linear elastic material,
and the 5ix linear strain displacement equations, it follows

that the displacement field for the elastic body becomes
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e 1y i
- -AEx, (2-1)
Us = EEXB
It follows from Equation (1-3c) that
. '(”{,f" (1 o o] (%)
& SRE S F. o) Ly dad
\'t:‘ \O & T/}J

The [A] matrix in this case possesses the properties of
symmetry, orthogonality as well as being unit matrix. Thus,
lines parallel to coordinate axes before deformation remain
parallel to these coordinate axes after deformation.

Finally all planes parallel to the coordinate planes before
deformation remain parallel to these coordinate planes after

deformation.

2.3 Three Dimensional Extension of a Long Slender Rod

Under Its Weight Distribution

l (X3)

h

i_ ;17
/ (Xz)
(X))

i}

Figure(2-2) Long Slender Rod under Its Own Weighf
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Consider a long slender rod of length L subject
to its weight distribution with weight per unit volume Y as

shown in Figure(2-2).The stress state within the rod is
T3 = §X3

and
,)71 = ,f22 = /-Zz = ’jl'i - o

Satisfying the three equations of stress equilibrium, the
six equations of Hooke's Law for a linear elastic material,
and the linear strain displacement equations, it follows

that the displacement field becomes

y
u, = -—/ME X, X,

<
'
I\

= A XX (2-3)

z Y /o2 2
L)y + (kL)

L
W
\

It follows from Equation (1-3c) that

33 ( Y ()
M ‘ O 7%;X: D
S ¥
J U = 0O | ~ Y, {T (2-4)
zr /%;Xz zr
ri'x _ MY, 5 Y =
U L zﬁ%x, zﬁgxz | J 5
¥ ~% A%

vector 1@ is perpendicular to both U, and b& « Straight

lines parallel to the X, direction before deformation remain

Straight lines after deformation. The [A]matrix is
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Miol,

nonsymmetric. However, if is small in comparison to

unity the matrix [A] is most nearly orthogonal, and the three
. A% ; ’
unit vectors U=1,2,3 form an orthogonal set.

The coordinates of a point in the deformed body are

*
* ' 4
X, = Xq_— /UE X, Xy
* = Y 2 2z Y T
X = X, +/’2‘—E(x, +X2)+ 3 (X3-L)
A Pa
For the line X, = constant = X, and X, = constant = X, (i.e.

a line parallel to the X, axis) it follows that

x (Y, 02 0% ¥
£ A X X - 17— (X-X —-L]
X! "Xl - Xz'Qz 3 ZE : * ZE . X
By ST | = s
—/“EYX: -/’gxz !
0<X, <L

is small in comparison to unity. The latter
equation is the equation of a straight line passing through
+h 3 (),z ‘% ¥ S W 3 3 J
the point v, X, ’ fe(/"(x‘*x*)'l'.)) and having direction
nunmbers {-/’{EYX,:-/‘%Y%j [} + These latter direction numbers

; = , %
are just the constant numerical components of the vector 713
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2.4 Pure Bending of a Slender Rod in Three Dimension

(X

I /A : M
e I
e __1__ T [ L

e F k| (x3)

(X2)

Figure(2-3) Long Slender Rod in Pure Bending

Consider a long slender rod of length L subject
to bending moment M as shown in Figure(2-3).The stress state

within the rod is

and

I}
I

’JTJ ,72 2 ’]I/’L = 7

13 23

"
Q
]
o

Satisfying the three equations of stress equilibrium, the
six equations of Hooke's Law for a linear elastic material,
and the linear strain displacement equations, the

displacement field becomes

JAM VLN &ﬂ 2 )
U, = 257 K Xi) = gz Xs
U, = -2 X, (2-5)
: [
. M
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it follows from Equation (1-3¢c) that

’/;lﬂ‘\. r l .4 M M 1
Y -/{?;IX’L EIX ‘rbl
~% M .

{r = GLON O |10y (2-6)
~ % v -

~%
The [A] matrix for this case is nonsymmetric, l./, is

P L % . =
perpendicular to both (L, and Us' Lines parallel to U, before
deformation remain lines after deformation and all planes
normal to Tzz before deformatiom remain planes after

deformation. The matrix [A]lis most nearly orthogonal

M
ET

The coordinates of a point in the deformed body are

provided the quantity is small in comparison to unity.

X‘ M %2
X, Wi oy EI( - %) - 251x3
*
2= X =M,
*

)
or the plane X, = constant = X; (i.e. plane parallel to

XX, plane), it follows that

M2 ¥ 5

i x3 X\ + X3

2y
3 X

1}

3

The latter equation is the equation of a plane whose

. - : M A
direction cosines aré'g'}xa, e, ) .
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2.5 Plane Stress Analysis of a Beam in Pure Bending

(X2)

|

! W
)
I

B4 A ,

(x)

Figure(2-4) Thin Beam in Pure Bending

Consider .a long thin beam of length L subject to
bending moment M as shown in Figure(2-4), the stress state
in the XX, plane is '

’Tu =
0;2 = Cﬁz a o

Satisfying the equation of stress equilibrium, the equation

(e ik
>

of Hooke's Law for a linear elastic material, and the strain

displacement equations,:the displacement field becomes
\

M
un - _xlxz ;
2 f (2-7)
. ~ MM 'L_ M z
3
It follows from Equation (1-3c) that
[ %) MY (e
L, ( | E_-]':X‘ U,
£ ( = (2'8)
& a5 [T
Uq, ~.l'='I J v

The (A] matrix possesses the property of orthogonality,

. N M. ; . ”
assuming the quantity €1 is small in comparison to unity.
Thus, any two perpendicular lines parallel to the coordinate

axes before deformation remain perpendicular lines after



deformation. Noting

* M
X, = X, +* 5T XX,
X R 1
= X "./M_MX - M..X‘
X ol A 7
it follows that, for the line X, = constant = Q,. and

g : .. M
neglecting higher order terms in 77 ,

* *
X, ‘$\<| S X'L'O

M I
€I

Hence, straight lines parallel to X, before deformation

remain straight lines after deformation.

2.6 Plane Stress Analysis of Beam Bending with

Constant Shear
(X2) AP

)
(%)

t

L .

Figure(2-5) Cantilever Thin Beam with Concentrated Load

A

ASNANAN N AN NN

Consider a thin long slender beam subject to force

P as shown in Figure(2-5), the stress state in the plane

is
T = P%'XL - ?x,xl
T = o
T = 'zf;x: - Z'{h

Satisfying the equations of stress equilibrium, the

equations of Hooke's Law for a linear elastic material, and
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the linear strain displacement equations, the displacement

field becomes

A 2
u, = E{x.xi("{-L)*(lw)(;xz' ;‘)‘r/“f’]

-

ET
(2-9)
piorerl X %] f
YA __‘_ N
dy =Bl e () /
it follows from Equation (1-3¢) that
( . s 3
e v & _'.]
M | 2 [t
4 = ‘ (2'10)
| v S »
¥ f[’f}_ l'.l_ v X &
v |ald Xik) () 3% ) M l J

The [A] matrix is nonsymmetric. The cosine of the angle
o
~

o
~ & -
between U, and U, 1s given as

hy 2
cose = EI(I-*/"‘)(Z—X,,)

On the stress-free lines (surface) X, = ¥ g. the angle

~ ~

* : .
between (,‘* and v, 1s 7,"2 radians. On the neutral axis

one obtains

O 2 s 188 1
(v, . 7,) = Cose = (','7")5’;1 Z—’
or
P 1 N
Cos o = gzé = E-ETZIXZ" © s 3_2?12 ‘Xz:O

Thus, lines parallel to X, before deformation do not remain
pPerpendicular to the curvilinear neutral axis after

deformation.
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2.7 Plane Stress Analysis of Beam Bending with Linearly

Varying Shear

(Xy)

i S | A T

—%

(X

i

et L

s
ol

|

£

1T— ¢

Figure(2-6) Simply Supported Beam under Uniform Load

Consider a simply supported thin beam of length L

with uniformly applied stress ¢ as shown in Figure(2-6).

) A b5 - -
For convenience the force per unit length ¢ is defined with

é,: ¢t. The stress state in the plane XX, is

B T o203 4
%= -Eatbar OB
Ah" §
Ty = - 3; 3~ %)X
R 2T A s
T = 73 3t md.

Satisfying the equations of stress equilibrium, the equations

of Hooke's Law for a linear elastic material, and the linear

strain displacement equations, the displacement field

becomes

L=

. 4 v 1 4 4 2 1t
i ["_u XXy MLX, _ MX, X _LXo, %L
2er|+2 "2 - 8 6 1 8
%
T kA

(2-11)
f
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it follows from Equation (1-3c) that

) ( ' 2 2 ;
(b.* | e e (t
|+h" -(EZA), )i. |
< } - » —)(1_1.__ _1._:. ~[- i)‘—il—]— < gl
4 A 7 -
v I (/'P
g
L / \ ! J \

The [A] matrix is nonsymmetric. The cosine of the angle

L ¥ S ¥,
between Tx, and 'l:%‘ is

A2
n 2(1+ )%hx,[ X2 \?
= - %
cos 6 — (hh) :
~ ¥

On the stress-free lines X, = i'?z-‘ » the angle between (, and
~ X
'C,L is %( radians. In general, one obtain

C0s ©

n

Ahtx, 2 \?

-]
01')_ = .x_.z' >
GIX:. o {‘ "(h/”) ]

Yolxoo [1- (5]

Thus, lines parallel to X, before deformation do not remain

perpendicular to the curvilinear neutral axis after

deformation except the line X, =0.



CHAPTER III

BIORTHOGONAL COORDINATES

3.1 General Transformation Matrix

)]
A L,
~N
~
- _
K ~_V
¥ .
61. 8, | 'C
" P Vi
L. _,
‘} 63\ - : ” > - (X.)
~ ”~
|l A SN el

(X3)

FigureQ-l) Rectangular Vector Components

Given the XiyXs, X, axes defining a three

24

dimensional orthogonal coordinate frame which has the unit

vectors i/,)f,l)f,a , respectively. Also, vector V has the

orthogonal components V,,v, v, related to the X, X,,X,

(See Figure(3-1)). It follows that

v = VU, + V{CL + V3 Uy

or in matrix form

axes.
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(3-1a)

(3-1b)

(%)

Figure(3-2a) First Skew Coordinate Axes

@) (%) (2)
0 P
N
ks CaTien e %
Vi \\
o \
m \
= — — ~ \
—— G e (X))
\ d
e 7
A, K 4
(%) (Z)

Figure(3-2b) Second Skew Coordinate Axes
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Given Y,,Vy, Y, and 2,,%, Z as additional sets of

skew coordinate axes which have the unit vectors 7,,7,, 7,

and /E)}II_,E, , respectively. Defining the angles between

, / / /
Yo AND X, AS O, Y, AND Xy AS O, Y, ANp X; As @,

1

n
Yo AND X0 AS 8, Y, AND X, AS O, , Y, AND X, AS a:

n /] mn
Y3 AND Xl As el ’ Y3 AND Xg_ AS 62 ) Y3 AND X3 As 95

and the angles between

]

§ /

Z, AND X, As @, , Z, AND X, AS @, , E, AND X3 AS @,
" " o

Zz AND X. AS ¢l ’ zz. AND X’- As ¢2 ) 22, AND XS As %3

n "l n
23 AND X, AS (A ) Z3 AND Xy AS ¢z s Z3 AND X3 As ¢3
and also defining the coordinates of vector V as related to
!
Yi,Y2,Ys axes as v.,v,f ,v; and as related to %, z, z, axes

A A

L)
as V,,Vv, ,v,; , one obtains .

- . I Ly
J, = Cose, U, + Cose, U, + COSO; U,

For cecnvenience, let cose.’ = l,‘ , Cog e; = /P,“ and cossa'= ,KN,
and in additional let the direction cosines of 32_be /au_)ﬂu,l
and finally those of 53 be /2,5, Lu . }/53 + The following
matrix is formulated relating the orthogonal unit vectors

and the first set of skew unit vectors (See Figure(3-2a))

as
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3, Lo L da (%
27 0 |4 be Aol4W, (3-2a)
5.3 /?45 j’u /ﬁsa ta

or symbolically
{5} = gy (3:28)

The vector Y related to the first skew axes set becomes

;- ;) - - -
Vv vm V|J|+VLJ,_+V33.3

or in matrix form

3,

{vy = v v v {:]‘ (3-3a)
3s

v = TS (3-3b)

Combining Equations (3-1ib) and (3-3b) eives

o ul

i Vs { 340
Substituting Equation (3-2b) into Equation (3-4b) yields
(a5 GRS
Yt {vy
[LT'{V’; {v} (3-5a)
{vy

 /
vy {st \ (3-ba)

ci- <t
"

<l

Ts

]

(1]

tel{v'}



In a similar manner one obtains
A A
(sl
Equating Equations (3-5a) and (3-5b) gives

(v tL1{vy

{v]

Assuming [(L]| # 0 , and defining

!

{9y

(L1re) (7]

one obtains

{v}

tr1{0]
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(3-5D)

(3-6)

(3-7)

£ 3=B)

The matrix (T] in the latter equation is the matrix that

transforms {OSinto {V%. In general it is nonsymmetric. A

special case arises when Y,y, y, axes and the %%, 2, axXes

are both orthogonal. It follows that
by i

L] = Ly

I\T A _-!

(L] = fL)
Equation (3-7) becomes
(v3 « i1ty

or

-+

(7] = [T]

-

Thus, [T) is an orthogonal matrix.

(3-9a)

(3-91)

(3-10a)

(3-10Y)
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)

Figure(3-3a)

—_— (x)

First Skew Coordinate Axes in Two Dimensions

X 1z
=) T f}gl
L -
Vv
- / 1 (2)
- / ¥
Va ¢1 ] k.
o,
Figure(3-3b) Second Skew Coordinate Axes in Two Dimentions

For the case

( cos e,
(L] =
| cose,
[t
LL] =
L°°S¢z

It follows that,

(L] =

SIN(e,-6.)

of two dimensions only

cos('%-el) cose, sive,
= (3-11a)
cos (%-6.) Cos®, SO,
sINg,
(3-11b)
SN ¢z
S‘Nez —~SING,
(3-11c¢)
-~0s6,  cose,




and therefore, Equation (3-6) simplifies to the form

{V’ l swe, -sive,fcosd, swg :
E T 5IN(6,-0,) (3-12)

v
-C0s9, (osg, cos¢z Sin ¢1

(y,)

Figure(3-4) Skew Axes Frames in the Dimensions

If the following substitutions are made (See

Figure(3-4))

e, = o
6, - ¥
P, - o
. s L, +¥

One obtains from Equation (3-12) the following result

v, S\Nt, COT ¥ + LOSH sine CSCY \'},
|
= (3-13a)
i D
v ~
v -SINo, CSC Y cosd,-sIN, coT¥| | Vo
where

D = cos(«,-,) + COTY SIN (d,-,) (3-13b)
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This result has been obtained for this special two

(8) 4

Assuming ¢' = ©,+7

dimensional case by Kardestuncer 5

and ¢1 : e,+"x£_ the notion of a biorthogonal basis set is

defined. Axes Yy, and Y, are perpendicular to axes Z, and %,

respectively. It follows that

005 ©, SING, ~SINO, coseo,

A
, (L] = . (3-14a)
“SIN®, (ose, -SiNB, cos o,

]

The two latter matrices possess a certain orthogonality

characteristic, that is
n T )
(eIlw)] = (1] (3-14D)

where [’\\.‘] is the normalized form of (L] with respect to
matrix (L]. This concept is called a biorthogonal condition
and is taken up in detail later in this Chapter.

For the case where ©,- ©+% and ¢,- ¢,+%, y, and 2,

are perpendicular to Y, and ¥, , respectively, one obtains

L0s 9, Sinv 9, c0s9, Swo,
(L] - . (3-15a)
Los (o, +'%) Sin (6.+'%) “S\WW e, Cose,
and
s, s,
(k1 - (3-15D)
*SlN¢l CO$¢‘
Where

u

eyl o= |ty
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Since [L] and [_/f.] are both orthogonal, it follows that

(t) = [T1 (3-16)

and (T]is an orthogonal matrix.

3.2 Biorthogonal Transformation

When the equation of quadratic surface is defined
related to a skew coordinate reference system, the matrix(A]
associated with this geometry is by mathematical consequence
a nonsymmetric matrix. The diagonal form of this matrix LA] .
is defined as the eigenvalue matrix (A], Let LWl ve the
matrix which transforms [A] into (A, where LUlis associated
with the eigenvectors U.JG,----,!I“ which form a set of skew

(5)

angular axes. As shown by Lanczos » -One obtains

[AJCU] = ([UllA] (3-17a)

or

[A] U] TATLY] (3-17b)

..The transpose of matrix (A] has identical eigenvalues as [A].
@ i

Let (V] be the matrix which transforms [A] into (A], where (V]

" is associated with the eigenvectors \7|,\7,,-- -,\7“ which also

form another set of skew angular axes; one obtains

(AT Tv] (VILA] (3-17¢)

or

"

[A] WILAT V] (3-174)
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Taking the transpose of both sides of Equation (3-17c)

gives

u

VILA] ATV

Postmultiplying the latter eguation with (V] yields
T v
LVItAILu] = (ATLvILL)

Substituting Equation (3-17a) into the previous equation

gives

[[vlTwJ][Al : tM[tvftUﬂ (3-18)

Thus, the matrices [LVfEU1] and (A] commute and have the same
T
principal axes. Since [A] is a diagonal matrix, then [[V]LU]]

must be a diagonal matrix also. It follows that,

(Vi+ Ug) 0 U#k (3-19a)

(Moa g .= 4 L= & (3-19b)

if one normalizes the vector Va with respect to ao.
Equations (3-19a) and (3-19b) define the notion of a
biorthogonal set of vectors. In symbolic matrix form one

writes
vItul = LID (3-20a)

or

™ =Wy (3-20D)
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or

= -+

(vl (vl (3-20c¢)

Equating Equations (3-17b) and (3-17d) gives

(A]

(VITAILU) - [VITATVI (3-21a)
and noting Equations (3-20b) and (3-20c¢c) yields

(A) WILAIU] = CUITATLY) "~ (3-21b)

(1]

This transformation is called the biorthogonal transformation.

£ T
For the special case when (Al is a symmetric matrix, (Al = (A},
it follows that (U] = (v]. Equatiéns (3-21b) and (3-20a)

simplify to the form .

CAT = [U]TLA]LU] ' (3-22a)

and
LU]TLU] = L1] o (3-22D)

respectively. This transformation is characterized by an
orthogonal rotation of axes which is associated with an

orthogonal transformation.

Numerical Example .

Given (A]

n
]
~N
I
1
o
[
v
~




The three invariants of the matrix [A] are

1, = 3-10~17 * &
-0 -57 29 72 33 A
I.z = . + + = “
-4 -7 -¢ -7 -24 -10
-10  -%7 -24 -67 -24 -0
I, = 33 .2 hEE “lellg -7 |*7Z|- g _4| = 6
The characteristic equation becomes
SR PO A = o
(A-1)(A=2)(A-3) = o
with eigenvalues as
) = ,2,3
-15
For A=1{ the eigenvector is {U.} z 12
4
-1l
For Az 2 the eigenvector is {Uz& " 3
4
-4
For A=3 the eigenvector is {u,} = 3

The {u] matrix is constructed as
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-19 -6 -4

[u] = 12 13 3
4 4 !

Noting
33 -24 -8
9

[A'l - 16 -10 -4 Y

72 -57 -17

-
the eigenvalues of [A] and [A] are the same, hence

h = 1,2, 3%
& =3 ),4
*
For A=1 the eigenvector is {V,} = 0
|
o)
For MA=2 the eigenvector is {V:} = {4
[
4/3
For A:3 the eigenvector is {V:} = {4
I
%
The matrix [V] becomes
[ 4,
* ,\i (0] /3
[v* )
I 0 3 4




It

It is noted that Equation (3-19a) is satisfied although
7 x
Equation (3-19b) is not satisfied. Normalizing matrix [V]

with respect to (U] to satisfy this latter condition yields

The numerical forms of Equation (3-21b) becomes

I o 4 33 16 72 ['-ls -6 -4

-
[V][A][U] = 0 | -3 -24 -10 -57 tlz 13 3
-4 -4 -3 -8 -4 -7 A4 4 |

| (@) @)
=lo 2 of = [A]
o o 3
-5 12 4”33 s
[U-.\TLMT[V] = loip 13 dlie -0 -2
-4 3 n,\n -57 -7
I 0 0]
= 6 2 0 e LAY
Lo o 3|

Also Equation (3-20a2) is satisfied by the numerical form

| O 4 1[-15 -l -4] [i o ©

Wiy = jo 1 -3l s sr‘on ol = 171
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3.3 Replacement of a Nonsymmetric Matrix by a Symmetric

Matrix and a Skew Symmetric Matrix

Any nonsymmetric matrix may be replaced by the sum

of a symmetric and a skew symmetric matrix in the form

(c] = (A1 + (8] (3-23a)
where
(Al = [A] = é[LCMCC]T] (3-23Db)
and
[_B] = '[B]T = %{[C]‘[C]T] (3-23¢)
and
(¢l = (A~ (8] (3-23d)

Three general cases of matrix [C] are observed:

Case I - (€] is symmetric, (8]=00] , and [c]-(A]

Case II - (c] is skew symmetric, (AJ=[0], and [c]=(5]

Case III -(C] is orthogonal; this case is the most
important of the three and is considered in detail. Noting

the orthogonality conditions on [C], it follows that

T 1 v
lellc] =[Lmte>3][u]-t61]= (A) +(8]LA] -[ATLB) - (B) = (I) (3-24a)
and

Ite) = [1-te)){ianted) = CAT-(BIAY+ CAT(EI- (BT = (1) (3-24b)
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Subtracting Equations (3-24a) and (3-24b) yields

(A1(8)

Noting Equation (3-23a), postmultiplying and premultiplying

(8](A] (3-25)

by (A] yields, respectively

[c1[A] - [A]ﬂ-[B][A] (3-26a)

(AT + [All8] (3-26b)

(Al(c]

Combining the latter two equations with Equation (3-25)

gives

(citAal = [Allc] . (3-27)

Similarly, one obtains

(c1(B1 =  [ellc) - (3-28)

Combining Equations (3-25), (3-27), and (3-28) yields

[aJ(8llc]) = ([cl(BI(A] - ([allc)(B] = .

L [

Thus, matrices (A, (B] and (C] are diagonalized to [A,], [N,],
[A.] by the same transformation matrix which is formed from
their eigenvectors. Let the matrix that transforms (C] into
(A.] be (W] which is composed of complex components. This
matrix {w)] also transforms [A] and (8] into ([A,] and (A,] .

~ T
Premultiplying and postmultiplying Equation (3-23a) by (W]
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and (W], respectively gives

WILCIIW] = (WITAIIW] + [wi(el{w] (3-29a)

and

(A = [AT+UA] . (3-29m)

The symbol[~] denotes complex conjugafe form. All elements
of [(A] are real since [A] is symmetric and all elements of[AQ'
are imaginary or zero since [B) is a skew symmetric matrix.
An alternate approach to the problem is to
determine the real matrix [M] that transforms [A] into [A,],

and observe the operation of (Mlon the matrices (C]zand (8] in

the form

(MITCI(M) = TMIAIIMI + [MIT8ILM] S (3-30)
Matrix [8] = [M]EC][M] remains orthogonal since

16T = eMITCIMIIMICCTIM) =[]

T T
Also the matrices [MI[AJ(M] ana (M](BIIM] remain symmetric
and skew symmetric, respectively since

-

[MITAICM] = () = dowd [ieteced Jon = 1 {eche o87)

1
2

and
(MITeM] - (8] = semTfrer-tellmt - 4[ec1-te]

Using the complex analysgis approach, one
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characteristic value of (¢] must be either ¥|, with other two

values as complex conjugate pairs. The diagonal matrix (A,]

is written for convenience as

| O @)
A= |© &b o (3-31a)
0 o) .-ib
where dﬂbﬁl . It follows that,
L © o o
Al =0 @ [A) - o tb 0 (3-31b)
o 0 W o o0 ~-ib |

and hence by Equation (3-29b), one obtains

{ @] (0] | 0 © © © (o]
o a+b o =10 o ol+lo b © (3-31c)
0O o a-ib 0 0 w 0 o -ib

Using the alternate real analysis approach, one

obtains

(1 o 01
[c] =0 & -b , (3-32a)
et | o]

and
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I 0 © O 0 o
¥
M =|o a o (8] = |0 o -b (3-32Db)
O 0 o o b o

and hence, by Equation (3-31ic), it follows that

I o O | 0 o 6 ¢ ©
5 o bkl o & O0O|+]|0 0 -b (3-32c)
6 b o 0O 0 o b o©

The three invariants of the matrices are

MATRIX I, Ty I3
[C] 20.+\ o b +2a = 24+l I
(A] 2041 ' ok 2a a”
(&) 0 b 0

It should be noted that TR{A} =Tafc] , I, =71, for matrix [C],
and the sum of the second invariants for [A)and (8)equals

the second invariant of matrix (C]).

Numerical Example

.6 7845 1564
Gi = - T
ven Lcl -6 -seey =11 |, [¢(¢) = (1]

The three invariants of [(C] are
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I, = =989 , I, = -9489

2 g 43 == 1)

3

The characteristic equation becomes

y !
A+ 9689 N -.0(89N -1

= 0
with eigenvalues determined as
A o= 1, -.9845 t 757 v
b 7963 .0785

[A] - lz[[C]*'[C]T]: .7923 5883  .039%2

.0785 .0397% -.9%02

The three invariants of [A] are
I, = =989 | 1, = - I, = L9189

The characteristic equation becomes

n
(o}

v
N+ .9680 A - A -.9689

with eigenvalues determined as

| ) = 1,-.9845 - 9ps5
I
o -0078  .0785 |
(8] - %_[[C]-[c]f] = |.0078 © ~. 1569
70785 (569 o )

The three invariants of (8] are
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I, = o > I, = .oz08 , I,= o
The characteristic equation becomes
)\3+ .0308>\ = o)
with eigenvalues determined as
A = o, 1,1754 0

Using the complex analysis approach the complex eigenvector
matrix (W] becomes

- 8936 3174 <3174

[w]

"

8468 (- 6286-.06370) (= 4284+.06370)

0441 (=0426—7038() (=062 +,70380)

with
' |
-B9dk 4468 L0441
_NT .
Wl = 3174 (6286+.06370) (- 0b26+.7038L)
|- 2174 (- 6286 -.06470) (= 0026 -.70380)
and
[ o) o
~ T
witwl) = | o | g 1= L7
Lo © !




&5

Also
| o) o)
(WTTeltw] = (Al = | 0 -9ga5+17s7i o
o) o ~.9845 -, 17570
| 0 o
[\FJ]T[A]U/\II= (A = | © 9845 ©
o O -~.9845
) 0 o)
~ T ; .
(witel(w]-= [Ab] = | O .1757v ©
L © o -.11s70

It should be noted that ®&=-9845 , b =./1757 and af+b$= -
Also, the Tirst eigenvector of the [W] matrix is comprised of
the normalized components of the vector associated with the
skew symmetric matrix (8].

Using the real analysis approach the real

eigenvector matrix [(M] is determined as

.8936  -0981 - 4415 |
(M] = |.a468 -0081 .8874
1044 =~ 9903 1325 |

and




| o @
&
[MIIM] = O ' Of = [1]
Lo © !
Also
| o) o) | o0 o
T %
(MILcIIMY = (€] = | 0 -9845 ~1757 | = | O @ -b
O .1757 - 09p45 o b &
-
kg @ o ] e QW p
T
[MITAIM] = TA] = |o -9845 O =le 2 o
L0 o -.9845 o 0 o
(o) (0] O o le) o)
-
IMILBIMT = [Ag)l =0 o =757 = |o o0 -b
o .l7s7 © o b o
hence,
O =984S -757 | = 0 =9845 © +| 0 O =178
QO .1757 =-,9845 e} O -~-.9945 O .1757 ©

Let Uﬁ be the equivalent vector associated with the skew

symmetric matrix (8] , or

L6




L7

1569
{bll = -, 0785
.0078

After normalizing {b} to the unit vector {b,}, with

8930
{b = {.ame)

044

{bu} is 'equal to the one eigenvector of [M]which is associated
with M ! , and the single real eigenvector of W], The

magnitude of {b} before normalizing is

\{bH y \/.15691+.07851+.00761' = 1757 = b

*
which is the remaining component of (B).
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CHAPTER IV
EIGENVALUE-EIGENVECTOR PROBLEM

4,1 The Multiplication of a Matrix by Its Transpose

The multiplication of a nonsymmetric matrix (A]

with real components by its transpose produces a symmetric

matrix, that is,

[A1CA] (8] - el (4-1a)

T

[A]D’JT el = e (4‘-1b)

where both [®] and (€] are distinct but symmetric matrices.

Postmultiplying Equation (4-1b) by (A] and noting Equation
(4-1a) gives

[cllA] (Alle]

or

(c]

(AYLBI(AT (4-2)

Subtracting the quantity A[I] from both sides of Equation
(4-2) gives

teatn) - [matsnartacm)

al
Substituting the condition (AJ(Al=(Ilinto the latter

équation and simplifying yields




[te1-at11) [tarteacAT - Aeadtat’]

or

[[c] -] [A][[B]-XLI]]LA]-‘

Taking the determinant of both sides of the previous

equation gives
ca-neny)] = fesalllesa-aen)|fear|

Noting that |(AIAT|<|(Al|(AT]= |, the latter equation reduces to
\ter-nem)] = |(ts3-2an]] (4-3a)

Hence, (8] and (¢) have the same characteristic equation and

identical eigenvalues, that is,

(A = [AY) - N e

In general (8] and (c] have different sets of orthogonal

eigenvectors.

4.2 General Case, LB) # [(]

- In general matrix (8] is not related to matrix [c].
Let [X]and [Y) ve the orthogonal matrices which transform (B8]
and (€] into the diagonal matrix. Also, let (U)and (V] ve the
biorthogonal transformation matrices that transform (A) and
iAlTinto LA, Noting Equations (3-21b) and (3-22a), one

obtains

(Al - CUlAMVY C (4-ba)



(A7« [VIIALVT (i)

and
Al = xleix] = [YITeltv] (4-5)

Substituting Equations (4-4a) and (4-4b) into Equations
(4-1a) and (4-1b) gives

(8] = [VILAILUITUICAICVY (4-63)
and

€l = (UMDY (4-60)

Substituting Equations (4-6a) and (4-6b) into Equation (4-5)

gives

(A] = DALMY IVITX] = (Y CVIIAY VI VI TAMLUIEY] ¢ i)

Equation (4-7) represents the general relationship between
the eigenvalues of the compound matrices (8] and [C]and the

.
eigenvalues of the single matrices [A] ana [Al .

4,3 Special Case, [B] =[]

A special case arises when matrices (8]and [c]

commute in the form
(el(c] = (cils) (4-8)
Matrices [B8] and [C] have the same principal axes, thus

(x]

Lyl (4-9)
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Noting Equations (4-5) and (4-9), one obtains
8] = (¢} - A1) = (YICALLY! (4-10)
Equation (4-7) reduces to

IVIATLUTLUTEATLVY. = CUICAIVILVILAILUY (4-11)

This special case occurs for three important properties of
matrix [A]
-l -
1) (A) is ortnogonal, [A] = [Al , then

183 = ¢l - (I] (4-12a)

2) (Al is skew symmetric, (A] - -[A]T. then

(83 = [c¢] - '[A]t = -ﬁA]ﬂz' (4-120)
3y [Al is symmetric, [A] = [A]T. then

2z

(8] =« (¢ = [A) (4-12c)

4.4 [A) Is orthogonal,

Consider the case when (Alis a nonsymmetric
orthogonal matrix. Matrices [Al, (8], [c¢), (A], (X], and LY]
have all real components but matrices (U, Lv] ana LA]may
possess certain components which are complex numbers. Since
(Alis a real matrix it equals its complex conjugate (i.e.

[A] - [X] ). Equation (4-4a) is written as

(Al = titmod = AT

Noting the latter equation and Equation (4-12a), Equation



§2
(4-6a) becomes
(8] = [VIIMMUITOIRILVY = (1)
Noting that {.V]*[U] z LU]TW] = [I], the previous equation is
written as
Wik = vieaTto)”
or
W - IRV (4-13)

Since [Alis orthogonal the absolute value of each eigenvalue

of (Al must be one. Thus

(AILA) (1] (4-1ka)

or
= -1
(Al - [A] (4-14b)
Comparing Equation (4-13), one obtains

(UTL0] Witvl - (1)

hence
vi = 0] . (4-15)

It should be noted that if [A) is an odd ordered matrix, at
least one eigenvalue and eigenvector must be real. Also,
The complex eigenvalues and eigenvectors must occur in

complex conjugate pairs.
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4,5 [A]lIs Skew Symmetric

For the case when [A]is a skew symmetrie matrix.
the matrices [A], [B], (C], [Kl.[x3 and Y] all have real
components; the matrices LU}, [V] and [Al may nave some
components which are complex numbers. Squaring Equations

(4-4a) and (4-4b) one obtains, respectively,

7

(A]

UILATELVY (4188
and

[aT]" - (vItaTCuY  (4-16v)

Substituting Equation (4-16b) into Equation (4-12b) gives
* 7
(el = - [vITAILUL)

Taking the complex conjugate of the latter equation and
noting that real numbers are the conjugate of themselves,

yields

(8] NSt (4-16¢)

Noting Equations (4-12b), (4-16a) and (4-16c), it follows
that

(IATIOT - uIAY VY

T ~T N
Noting that [VILU] = (I = (vICU] the latter equationis rewritten

as

ity - i)




S

TN v
Since &VBUU] and [N) commute, they have the same principal
v T ~
axes, and [M) is a diagonal matrix. The matrix RVJ[V]] is also
a diagonal matrix. But each eigenvector associated with [V]

is normalized to a unit vector, thus

TN
tvitvy = (1]
It follows that

(Ul = L[V] (4-17)

.
Noting- that [A) = -[A]l, equating Equation (4-4a) to the

éompléx"conjugate of edugtion (4-4b) gives
: T 3 ~ ~ ~ T
[VILATLIV) = - VITAIQV]

Substituting Equation (4-17) into the latter equatiqn. one

obtains
IAYLVT = - CUICAILVY
hence
S VN (4-18a)
or
A+ [A] = (o] (4-18D)

Thus, the eigenvalues of the skew symmetric matrix have zero
real part. For matrices of odd order at least one eigenvalue
is zero. The complex eigenvalues have only imaginary parts

and occur in complex conjugate pairs.
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4.6 (Alis Symmetric

All matrices involved in this case have all rezal

components. Squaring Equation (3-22a) gives

1

(A)

(UTLAILUILUTTAILL]

or

(Al = [UTLAILV)

Noting Equation (4-12c¢) the latter equation becomes

1 b
(Al = (uilsltv) (4-19)

Comparing Equation (4-5) to Equation (4-19) one obtains
(Al = (4-20a)
and

(Ul = [x] (4-200)

It should be noted that all eigenvalues and eigenvectors of

the symmetric matrix are real. If the matrix is both

symmetric and orthogonal the eigenvalues are only * | .
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L.7 Summary of Results

For general case [8] # [C]

(Al = IAIVY ;A1 - oy

(el

"

XA 5 e - 1y

n

(Al (A) = LA
(Al - fotvztmwfwnmtv]Ttx3 = [yftu][MLVva]M)[uﬁyJ
For special case when [8][c] ={cI[®]), i.e.(B)=1c])
xl1 = [yl
(UIANVIIVILATLUT = (vIEAYWUITOICAY LYY
1)  [A1CA] = (8] -1c1 = LI

(vl = (0] (VILV] = [I]

)

[A)Y = (Al ;  [A] - LI

2)  [A]l - -(AT
(vi = 01 ; VItVI = 1)
(A = -[A ;A1 - -y
3) (AT = [AY
EY) sme olliv o nn s REYIA Bbedai]

PRYF Lo, the gl
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CHAPTER V
THE SUPER MATRIX
5.1 Super Matrix Formulation
Any nonsymmetric matrix of order (hxwn) may be
utilized to construct a partitioned symmetric matrix of
order (2nx2h). Given a nonsymmetric matrix [A] one
constructs a super matrix LA;) in the partitioned form
r \ 2
[o] ! [A)
- J
(A = [A] = |---2-—- (5-1a)

L
(A) ! (o]
L ! J

where [Aslis a symmetric matrix of order (Znx 2n) , twice

that of matrix [A]. 1In addition the square of [A;] becomes
( U ]
[A]EA]: (o]
e Al e (5-1b)
I W
Lol [[A)[A)
|

1
The eigenvalues of [A,] are equal to those of [[A'JT[A]) and

2

[A;]

*
(_(A][A'}T] which are always positive or zero. Let « be an
v
eigenvalue of [AS] , the eigenvalues of (A become T .
‘v
Since [A;]is symmetric the eigenvectors of [Ac]and [A] are

v
identical. Let {"} be an cigenvector of [A;] and [As] written
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in the partitioned form as {?} Hence,
[[As] ) ¢[1]]{w} . {o} (5-2a)
or r | 1 g
-«[11 1 (A M {"]f
e s o e B e B = o (5-20)
[A) l-oc[ﬂi{”]l {0}
Noting Equation (5-2b), one has
[An) = «{m] (5-3a)
and
[Af{m} - il (5-3b)

which is a set of linearly coupled algebraic equations. For

the squared form of matrix [As]. one obtains

(- cmlpy < {o) (5-4a)

or

[Ax[Af-zmi (o) {m} M
= S A UEE T (5-4b)

(o] i[A]T[Al - £ (1) M M

Equation (5-4b) yields the following two uncoupled equations:

SO T T (5-52)
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and

-

[AI(A {n]

J{V\} (5-5b)
From the theory developed in Chapter III, one obtains

(AT1A1{A] )

and

(altal 1)

with the condition

o -

and hence,

>
——
S
—
"
——
>
—
~

It
1

\
'

A ¢

Since one normalizes {Y} and {X} to unit vectors the
magnitude of {W} becomes Vi+\ = 47 . Let {Wﬁ be the

normalized vector of {W} ; it follows that
i
|5 L (5-62)
W = -
{ “\ rz &

v
Let [W] ve the matrix which transforms (A,]and [Aglinto(jk}
and Lhﬁﬂ , respectively. The matrix (W] which is orthogonal

is written as
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o il
U X e iatroy (5-6b)
[x] ;-[Xl ~
Thus,
[ | 10 0 .
r V11 X3 | Le]i [A) )ty
(WITALIW] = & A r ""“"%
[Yl:-m [A] [o] [x]’[-[x]

([YKT[AMXPtXﬁAﬁNE[X"JTEA]T[\/} (YITA] 1K)

Al B ot e S g s Ll
L[YltAl (x7- IXICATLY )i DY TTAT Ix] + XD LATLY)

Noting Equations (5-3a) and (5-3b) it follows that

1]

[YILAILX] (&)
(5-64)

[]

(X1TATTX)

Substituting the latter equations into Equation (5-6c) gives

(WITAJIW] = femmmbemmne

aC[.I]E fol | -
, 1 (5-7a)
(0]} -«1(1)

In a similar manner it may be shown that

4] o £{1)1 (o]
(WILAIW] = |- --- (5-7b)
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Numerical Example

1 2
Given {A] = ]
[ =2
5 -3 . 2 O
LAJLAT - } , [Al(A] -
-3 5 o B8
({o 0\';&' 2}\ 15 3)![fo o]
o slilt 2 . 1l 5].’ l
, L ‘Lo o)
= S el A 2 dn=laihela R
[A,] l 1}:{0 o} y  [A] . O}ffz ;
1 J P
L7_.2:00. HO o;_o 8J

v
The eigenvalues of [AS] are 2,8 , 7 and 8 and those of (Adare
Z + V8 +-J2 and -y . The eigenvector matrices [X] and (Y]

are written as

@z ‘f}é § g
Lyl - . [x] -

The matrix (W] becomes

{r
' R I T 8T
| Li iz %
[Wl » \l:\ i
y ) r' o) lF-l o
!
o | :LO -1
L3 ' J
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Then,
r 2 O “ O o) ] [‘ ll "
” 0 f@}:{o o] (] : [O]
ROV 3 L e e e e -
© olifvz o] l.
{O (o) :{O —J‘a‘h [O] = [.0(']
L } ] !
and .
Y'Q ol!fo 017 {
L L© 8]:‘{0 o [0('] : ['O-J
LW]{A;}[W] = "——c-)-ll—;—';- - |--- _.ll____._.
o \
}[ ] (0] 1 (&)
LLO oliLo BJ :

5.2 Relationship Between LA]andLNJ

Let [V] and (V] ve the biorthogonal matrices which

3
transform (Aland (Al into [(N). Hence, referring to Chapter

III, one obtains
(A1 = (UILAIVY (5-8a)

and

T

[A) = DALMY (5-8b)
Noting Equations (5-6d), (5-8a) and (5-8b), one obtains
(Al = T = IV (5-92)
and

(A1 = DAY = VIt (5-9b)
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It follows that

(] = OYITUIAIVITXT = CXITVILAILUILY) (5-102)

Equation (5-10a) is the relationship between (M) and [«]
where '[X]T[X] = [Y]TY.Y] 2 [V]T[u] = L1]

It should be noted that although [X] and (Y] are
individually orthogonal matrices, matrices (V]land V] form a

biorthogonal set of vectors.
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CHAPTER VI

DISCUSSION AND CONCLUSION

6.1 Discussion

A typical asymmetric matrix in the field of
linear elasticity as shown in Chapter II is the fundamental
matrix which defines the shape of the deformed body in
curvilinear coordinate form. The matrix specifies how
straight lines originally parallel to the coordinate axes
deform into curvilinear shapes in the deformed equilibrium
state. If this matrix is orthogonal the curvilinear axes
of the deformed body remain orthogonal as in the problems
of uniaxial extension of long slender rod, a long slender
rod hanging under its own weight, pure bending of long
slender rod, and plane stress analysis of a beam in pure
bending.

A nonsymmetric matrix is usually defined with
respect to a skew angular reference system. In this case it
is necessary to formulate a dual set of skew angular vectors,
defined as the adjoint system, in order to operate
mathematically. This process leads to the notion of
biorthogonal coordinates. The transformation of a
nonsymmetric matrix into the purely diagonal matrix of
eigenvalues relies upon the concept of a biorthogonal

transformation.
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symmetric and skew symmetric matrix is applied to the
replacement of the Jacobian matrix by the linear strain
matrix and a rotation matrix. When the Jacobain matrix is
orthogonal all eigenvectors of these three matrices are the
same and they are transformed into purely diagonal matrices
of their eigenvalues by the same transformation matrix which
is usually in complex form. In an alternate way one may find
the real orthogonal matrix which transforms the symmetric
part of the Jacobian matrix into diagonal matrix. This
matrix transforms the Jacobian matrix into a classical
orthogonal matrix and the rotation matrix into a skew
symmetric matrix with only one real component.

The eigenvalue-eigenvector problems of nonsymmetric
matrices in general deal with complex numbers as in the case
of orthogonal and skew symmetric matrices. When the
eigenvalues are complex numbers they occcur in complex
con jugate pairs. The complex eigenvectors of the first
basis set and the second basis set are complex conjugate to
each other and the real eigenvectors are coincident. . The
relationship between the eigenvalues and eigenvectors of the
nonsymmetric matrix and those of the symmetric matrix formed
by the product of the nonsymmetric matrix and its transpose
is generated. It is complicated by the fact that the two
sets of eigenvalues are not indepently interrelated and the

two sets of eigenvectors are not interrelated.. However, a
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general relationship interrelating the two sets of
eigenvalues and two sets of eigenvectors is obtained.

The development of the super matrix and its
solution leads to no new information connecting eigenvalues
and eigenvectors. However, it does lead to an efficient

=
compact form of the solution to the LAfEA]and the [(A]lA]

problem as described in Chapter IV.

6.2 Conclusion

If the asymmetric matrix which defines the change
in shape of a deformed body in curvilinear form is
orthogonal, it follows that, there is no shear stress
present in the body; the linear strain matrix is a diagonal
matrix as in problems of unixial extension of a long slender
rod, a long slender rod under its own weight, pure bending
of a beam, and plane stress analysis of beam in pure
bending

When shear stress occurs in the body the
curvilinear coordinate axes are not orthogonal as in the
case of beams bending with constant shear as well as beams
bending with linearly varying shear. In this case the first
fundamental nonsymmetric matrix is not sufficient to specify
how planes originally parallel to the coordinate planes
deform into the curvilinear shapes in the deformed
equilibrium states. The second set of vectors which forms
a biorthogonal set with the first set of vectors associated

with the fundamental nonsymmetric matrices must be constructed.
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The first set of vectors form unit vectors tangent to the
curvilinear axes of the deformed body and the second set of
vectors form the unit vectors normal to the planes parallel
to the curvilinear coordinate planes of the defomed body.
This second set of vectors is formed by the cross product
of pairs of the first set of vectors in the cyclic system.
The matrix associated with the second set of vectors ia a
nonsymmetric matrix which is biorthogonal to the fundamental
nonsymmetric matrix. This concept is shown in Appendix I
with the example of a long cylindrical circular bar under
torsion.

The equation of a quadratic surface which is
defined with respect to the basis set of skew angular
coordinate must rely on the biorthogonal basis. The matrix
associated with this equation in always a nonsymmetric
matrix. If the equation of the samevquadratic surface is
defined with respect to an orthogonal coo:dinate the matrix
associated to this equation is symmetric (See Appendix II).
Thus, any nonsymmetric matrix may be transformed to a
symmetric matrices by the transformation of skew angular
coordinate frame to the orthogonal coordinate frame. There
is no exact solution for converting a nonsymmetric matrix to
the symmetric matrix. The usual classical solution is
obtained by utilizing the Gram-Schmidt orthogonalization

rocedure.
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Biorthogonal Curvilinear Axes

From Equation (1-34d)

ft - 1) (&-1)

~ ¥

where U; is the unit vector~tangent to the curved line in
the deformed body which is originally a straight line
parallel to X, axis in the undeformed body. The matrix [A)
describes the curvilinear shape of the deformed body. 1In
order to determine whether planes parallel to the coordinate

planes before deformation remain planes in the deformed

~ ¥ o~ %

~ R
body, one must define the unit vectors J, J2 , 33 normal

N‘N* N‘N‘ N;N*
to the curvilinear planes X,X; , X3 X, and X. X, ,
\ ~ % ® ~ ¥
respectively. The vectors J, , 51 and J, are defined as
= ~ X ~R U PR TPVE
i = (Y, x "3)/1(";)(’;3” }'
~ % NEA A N T
2 = (L3><b.)/l(b3xu.>l \ (A-2a)
o ~% Oy P
I, = ATxTO[1ENTH
where from Equation (1-3c)
v I Q% @gs] t,]
X QX
L % ou, Hus t G (A-2Db)
~ ¥ Q4 nu: +
\/3 @X3 0x3 ‘ 4 LJJ
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Substituting and combining yields

P S @Lh 4 @ul -
= - = - Y b
J\ = L’l DXq bt 0X; 3
:Tv-k ) _(a_q_z_t + "L" . @H_zt
&£ 7 D%, L QXy 3
) - =~V - "=
s @x: ' 2X, * b3
or in matrix form
~ ¥ - 7
5 L-ew e ()
@X2 @X3 L
¥ * = |.0u | _ @Y. 4 -C
z %, D% ”T (A-3a)
o & _Ys  _ DU, | E
Js L 9X, 0%y 14 ¥
" and symbolically
N* % - l
7Y - [e1{E) (A-3b)

~ X

If J,is constant vector when X[ is constant, this means
that plane normals to the X, direction before deformation

~ X

remains plane after deformation with a normal vector J. .

In linear elasticity we neglect the higher order

terms in comparison to unity which leads to the condition
- T
(81(A) - [Al(B] - [1] (A-4)

Comparing the form of matrices [Aland [B] it may be easily

shown that

(8] = C[cor(Al] (A-5)
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This is exactly the concept of biorthogonal
coordinates where the unit vectors t:'tangent to the
deformed lines form a biorthogonal set with the unit vectors

fgbnormal to the curvilinear coordinate planes. For the
special case of orthogonal curvilinear coordinates {A]is an

orthogonal matrix and [8]:[Al, that is, the tangent vectors

and the planar normal vectors are identical.

Sample Example

(%)

..... R
7

(X2)

Figure(A-1) Circular Section Long Slender Rod under Torsion

Consider a long slender rod of circular cross
section subject to torque T as shown in Figure(4-1) the

stress state within the rod is

-
Tote =1 Ix
Tas i R }>“

,-Tn = ’Tzz = 0/33 = ,.T,?_ = (o]

Satisfying the three equations of stress equilibrium, the
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six equations of Hooke's Law for a linear elastic material,
the Cauchy equations, and the six linear strain displacement
equations, it follows that the displacement field for the

elastic body becomes

T

U = g %Xy
-

uz_ 2 —G_"I X|X3

U_; = (@)

It follows from Equation (A-2b) that

~ % T
\ 3 | ‘GJX3 o L
® T &
. ¥ T T <
lt& L—G:'-sz GJXl { Lj

The [A] matrix in this case is a nonsymmetric matrix, the
~ ¥ x|

vectors \, and Tl are perpendicular to each other but not to
%

vector T% . It follows from Equation (A-3a) that

~ % T b

3] o T61%3 'é&xz |

o ¥ P
P T

- G]x3 ‘ 6 © by

~ % -

3 e © I N

The (B]matrix in this case is also a nonsymmetric matrix and
~ ¥ .
the vector J; is a constant vector simultaneously
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perpendicular to the plane of t,* and t: which lies in a
plane parallel to the X,X, plane. Hence, planes parallel to
X1X, plane before deformation remain planes parallel to
XiX, plane after deformation.

The coordinates of a point in the deformed body are

% o
X| = x‘ <+ G—J XQ_X3

T
Xy = &3 X X3

Py
o~
4]

Xs = X3

For the plane Xa = constant = 5\<, (i.e. a plane parallel to the
X,X; plane), the equation of the plane passing through the
b A X A
point ( X, , X:. X3 ) is X3 = X, and having the unit normal

~ %
vector {o o :} equal to J; .
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Equation of the Quadratic Surface

The matrix equation of the quadratic surface is

given as

(B-1a)

{Vear{ry

with
[A]T = [A] (B-1D)
where the equation is defined with respect to an orthogonal
axes set.
If a situation exists where the basis set is a skew
system Y,, Y., Y3, the notion of a biorthogonal basis is
introduced where the second axes set is defined as %, %Z,, Z;.

It follows from Chapter III that

{v} - 107 (B-2a)

and
{z} SR AN Y (B-2b)

with
Wy <) (B-2¢)

where vectors {y} and {l}from a biorthogonal set.

Substituting the results into Equation (B-1la) gives

luttaosy - (C-3)
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Denoting

"

W1tatd) (A" , (c-4)

#
it follows that, in general, the matrix (Alis nonsymmetric.
Thus, the equation of a quadratic surface is associated with
a particular class of matrices depending upon the properties

of the basis axes.



BIBLIOGRAPHY

Shames, I. H., "Mechanics of Deformable Solids",

Printice-Hall, Englewood Cliffs, N. J., 1964.

Pines, L. A., "Matrix Methods for Engineering",

Printice-Hall, Englewood Cliffs, N. J., 1963.

Borg, S. F., "Matrix-Tensor Methods in Continuum

Mechanies", Van Nostrand, Princeton, N. J., 1963.

Kuntakom, B., "Matrix Mathods in the Nonlinear Theory

of Elasticity", Unpublished Master Thesis, Youngstown

~State University, June 1977.

Lanczos, C., "Applied Analysis", Prentice-Hall,

Englewood Cliffs, N. J., 1956.

Lanczos, C., "Linear Differential Operators",

Prentice-Hall, Englewood Cliffs, N. J., 1961.

Bellini, P.; Lecture Notes, CE. 941, Structural

Mechanics, Youngstown State University, Fall 1976.

Kardestuncer, H., "Elementary Matrix Analysis of

Structures”, McGraw-Hill, New York, 1974.

i



