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ABSTRACT

In this paper, output-feedback control is applied
to a general, linear, time-invariant, stochastic regulator
problem. The system of equations defining the feedback
gain matrix is developed and put into the form of an algorithm.
These equations are then applied to a second-order system to
demonstrate how the algorithm works. The results of computer
simulation for this system using the constant output-
feedback control are compared to results for the same system

using a state-variable estimator.
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CHAPTER 1: INTRODUCTION

One of the basic problems in control theory is to find
the input signals necessary to cause the desired outputs
from a predetermined system. 1In the ideal system, where it
is assumed that the system equations are known exactly and
that all of the state variables can be measured exactly,
there is a known one-to-one correspondence between a given
set_of inputs and the resulting state. In this ideal case,
there is a unique solution for the input signals needed to
produce the desired output signals. In general, the system
equations are given as a set of differential equations
stated in vector form by:

x(t) = £(x(t),u(t)) (1.1)
where x(t) is the state variable vector and u(t) is the
input vector. A block diagram of this ideal system is shown

in Figure 1.

uct)
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FIGURE | : IDEAL SYSTEM ]



However in practically any physical system, it is not
possible to have an exact set of system equationse. Usually
the system equations are based upon some model of the actual
system, and any approximations that are made in arriving at
the model will necessarily introduce some uncertainty into
these equations. Because of these uncertainties, the state
will deviate from the desired values. To overcome this
problem it is necessary to introduce some form of feedback
control system which can produce a correction signal for the
input, based on the deviation of the state. A block diagram
of this type of system is shown in Figure 2. Iﬁ this diagram
uo(t) is the predetermined input vector which, in an ideal
system, would result in the desired state vector xo(t).
However, due to errors in the physical system, the resulting
physical state vector x(t) differs from the desired state
and the deviation is given by /x(t). The control system I
consists of a gain matrix which operates on the state deviation
vector dX(t) to produce the input correction vector Ju(t),
resulting in the input vector u(t) to the physicalhsystem
which should cause the physical state vector to more closely
approximate the desired state vector, provided the control
system has been properly designed.

In ofder to find the desired control system, it is
necessary to find the small-signal, or perturbation, model
of the system. This can be done by taking a Taylor series
expansion of the system equations about the desired quantities

xo(t) and uo(t). Since, in general, X(t) = £(x(t),u(t))
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then a Taylor series expansion about the point (xo(t),uo(t))

is given by: il
of

x(8) = £(xy(6),uy(t)) + 3

(x(£)=x4(t))
(x5(5) 50 ()

i (w(t)-u,(t))
u -1
0% | (x4(t),uy($)) 0
+ (higher order terms) (1.2)

From Figure 2 it can be seen that
x(t) - x5(t) = Ix(¢) (1.3)
Fu(t) (1e4)

Il

u(t) - uo(t)
and from equation (1.1) it is found that

Letting ALL): = (1.5)

o f
“I(:‘:o(t),uO(t))

3£
and B(t) = &=
- a“l(xo.(thuo(t)) (16)

equation (1.2) becomes

cfi(t) = A(t)d%(t) + B(tyfﬁ(t) + (higher order(ter?s)
1e¢7

The'"higher order terms" in equation (1.7) contain terms that
are at least quadratie in J/x and Ju. In most cases it is
assumed that o x(t) and Jdu(t) are small and the "higher
order terms" are negligible. This assumption results in
the linear perturbation equation:

Ix(t) = a(t) Ix(t) + B(t) Ju(t) (1.8)
However, since this equation neglects the "higher order terms",
an additional constraint must be added to this perturbation
model to ensure that these terms will remain negligible.

Taylor's theorem[é]states that, if Tn(x) is the Taylor
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series expansion of f(x) in a neighborhood of x = ¢, then

there exists a number-E'between X and ¢ such that

f(n+1) )
f(x) = X) '*'mr— (x-c) .
Applying this theorem to equation (1.2) Ylelds.
(higher order terms) = {(x )-x4 (%)) af (x(t)-x (t))
(X(t) (t))
+ 2(x(t)-x, (£))" 2& u(t)-u,(t))
3x3U |Z(4),T(t))

p
4 (u(t)-uo(t)) df (u(t)-uo(t))} "

3N (), a(t))
where x(t) is between xz(t) and xo(t);'a(t) is between u(t) and

uo(t). As Athansti] points out, this expression shows that the
"higher order terms" are quadratic in dx(t) and Jh(t). Therefore,
one way of insuring that the "higher order terms" are negligible
is to add the constraint of minimizing the quadratic cost
functional:
j[fx (t)Q(t)dx(t) + du (£)R(E) cfu(t)_]dt (1.9)

where Q(t) and R(t) are weighting matrices selected to
reflect the desired amcunt of emphasis tc be placed on
minimizing J;(t) and Jh(t). Both matrices should be symmetric,
with R(t) being positive definite and Q(t) at least positive
semidefinite.

Based on this linear perturbation model, the problem of
finding the control system now becomes an optimizaticn
prcblem since the optimum control system will be one which
keeps dx(t) and Ju(t) small, which in turn, implies keeping

the cost functional J small. Therefore the control system

problem becomes one of finding the input correction vector

Ju(t) which minimizes the cost function J, subject to the



constraint of equation (1.8).

This problem is often referred to as the deterministic
linear-quadratic regulator problem. Deterministic refers to
the fact that the system has a definite input-output
relationship; there are no random changes.

Although the deterministié linear-quadratic regulator
problem accounts for uncertainties in the system equations
because of approximations in the system model, it is still
a rather idealistic approache. It must be realized that in
an actual physical system it is not always possible to measure
all of the staté variables of the system. Furthermore; any
measurements that are made should not be considered exact
since there 1is uncertainty associated with any physical
measurements. Consider also the vossibility of random
disturbances that may affect the nhysical system. A simple
block diagram illustrating these additional uncertainties is
given in Figure 3.

The measurements shown in Figure 3 are the outputs of
the system. This output vector y(t) is usually considered
to pe a function of the state vector,

yt) = glx(t)) . (1410)
The linear‘perturbation equation of y(t) can be found in a
similar manner to equations (1.2) thru (1.8) for x(t)e The
reasult is:

Iy(s) = () dx(t) (1+11)
where C(t) = 22 |
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To account for the measurement errors and disturbance
variables in the mathematical equations of the system, these
uncertainties are usually treated as completely random
processes and modeled by a Gaussian white noise process.
When these white noise processes are included in the system
model, the linear perturbation equations become:

Sx(t) = A(t) x(t) + B(t)du(t) + £ (&) (1.12)
Iy(t) = C(&)x(s) + v(t) (1.13)

and subject to the expected value of the cost functional of
(1e9)e The expected value is necessary since x(t) is now
a function of a random process .

This type of problem is often referred to as the stochastic
linear-quadratic regulator problem with additive Gaussian white
noise. (It should be noted that it is pcssible to model the
uncertainties with other than white noise processes, however
this is the most cormmon.) The term "stochastic” emphasizes the
fact that some of the variables in the system are random and
there is little or no way to control these variables.

The solution of the stochastic linear-quadratic Gaussian
regulator problem separates the control system into two parts:
(1) a Kalman filter which produces estimates of the system
state variables, and (2) the optimal control gains of the
deterministic case. It has been shown [i] "[éj that these
two parts can be solved independently of each other and
then cascaded to give the complete control system. A block
diagram of this type of solution is shown in Figure l.

This approach leads to the cptimal control system for

the stochastic linear-quadratic problem. However, this system
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normally involves an appreciable amount of on-line computation
since the optimal filter must calculate a new state estimate
vector for each time period based on the present estimates

and the present measurements. In addition, a set of gains

for the deterministic optimal controller must be precomputed
and stored in computer memory. Often times these factors can
be a drawback since sufficient computer storage may not be
available, and if the amount of calculations becomes extremely
large, the response time of the control system may be greatly
reduced.

At times it may be desirsable to implement a control
system which requires less on-line computation. This can be
accomplished by going to a suboptimal control system. A
suboptimal system is obtained by including additional
constraints on the system, hopefully for the purpose of
simplifying the systeme The suboptimal system sacrifices
optimality for some type of reduction in complexity.

One particular type of suboptimal control system is the
output-feedback control formulation o E3],in which the
control inputs are found by multiplying the system measurements
or outputs by an appropriate gain matrixe. This eliminates
the need of the optimal filter shown in Figure li and also
changes the formulation of the optimal controller. Elimination
of the optimal filter results in an appreciable reduction of
on-line computation. However, since the output signals are
now used directly rather than being used to find the estimated

state variables, the cost function will have a greater value



11

and the system will no longer be "optimal". The formulation
is referred to as suboptimal, but it should be noted that
the solution found is the optimal solution for the given
constraintse

The gain matrix by which the output signals are multiplied
_to get the control inputs may be found for either the infinite-
time or finite-time case. The finite-time formulation
assumes that the system operates for a finite period of time
and yilelds a series of gain matrices , one for each interval.
The infinite-time formulation assumes that the feedback gain
matrix will approach a constant matrix and therefore jields
only one gain matrix that is used for the entire time of
operation. The infinite-time, or constant, formulation was
chosen for this thesis since it requires less on-line comp-
utation and storage than the finite-time case and, therefore,
would require less hardware in an actual system implementation.
Note, however, that the infinite-time formulation is applicable
only to systems with time-invariant coefficients, and may
yield a solution which is suboptimal compared to the finite-
time formulation.

This thesis considers a constant, output-feedback
control for a linear, stochastic system having a quadratic
cost function.

The general system to be considered is described in
Chapter 2, and a solution is derived in the form of a set of
matrix equations. Also given is an algorithm which can be

used to determine the control matrix from this set of equations.
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Chapter 3 describes the application of this econtrol
formulation to a second-order system. The system operation
with output feedback control is compared to results obtained

using estimated state variable feedback.
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CHAPTER 2: SOLUTION OF GENERAL SYSTEM

This thesis applies the cohcept of a constant, output
feedback control formulation to a linear, time-invariant,
stochastic regulator problem. The mathematical equations

for the general system that is considered can be given by:[ﬁJ

x(t) = Ax(t) + Bu(t) + Dow(t) + D,If(t) (2.1)
w(t) = A w(t) + B _§(t) . (2.2)
y(t) = Cx(t) + wa(t) + v(t) (2+3)

for to< t <tf .
where: x(t) 1s the state vector

u(t) is the control vector

y(t) is the measurement vector

v(t) is a white, gaussian measurement noise vector

and'A,B,DO,D1,AW,BW,C,and CW are time-invariant coefficient

}matrices.-
Also, w(t) is an external disturbance which influences the
physical system as shown in equation (2.1), and is mathemat-
ically described as the result of a linear dynamic system
driven by the white noise vector f°(t) in equation (2e2).
Furthermore, equation (2.3) states that the measurements
y(t) can contain some terms dependent on this external

disturbance.

The performance criteria for the control system is the
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quadratic cost, function:

7 =58 [x'(ex() + ' (w)Ra(e)] atf (2.0
where Q and R are positive definite, time-invariant weighting
matrices. .

For the output feedback control formulation, the con-
straint added to this system of equations is

| u(t) = Fy(t) (2.5)

where F is a constant gain matrix for the control system.

However, it must be noted that the cost functional
contains a quadratic term of u(t), and u(t) is a linear
function of y(t) which contains a white noisé vector. There-
fore the control vector u(t) will have infinite variance and
the cost functional will be undefined. As ErmerEi] points
out, this difficulty is avoided by formulating the problem
in discrete time rather than continuocus time. In the discrete
time case, the measurements will have finite variance.

Equation (2.1) thru (2.&) can be converted to the discrete
time form by integrating each equation over the sampling
period and then changing the interval of integration to

E:k’tkH] « The resulting discrete-time equations are: [5]

Xypq = ﬁxk + Towy + T1uk + f’k (2.6)
Wieeq = B + Ny (2.7)
Ty = ka + C W, + v (2.8)

e 2 (g Qg+ 2ap gy 2x i -

whe)f  (2.9)

and the constraint of equation (2.5) becomes
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where U is held constant over the sampling interval tk<t<tk+1.
For the finite-time case this set of equations is applicable.
But, for the infinite-time case, N goes to infinity and

causes the cost function to diverge [7] e Ermer suggests taking
the average cost for eAacV:h sampling interval rather than taking
the total cost over the entire interval. When this is done,

equation (2.9) becomes:
N
e i t A t A
J = %1lim < E4Q 2. (x, . .Qx + 2x, . Nw +
N N {go k+1 “"k+1 k+17 "k+1

_ 1A T A
2x, Mu, + u, Ruy ) i

Therefore the general, discrete-time, stochastic linear

regulator problem can be stated as followse. Find the control

vector . which satisfies the system equations

Rl féxk + Tz“k + T1uk +§‘k (2611)
Wk+1 = ﬁwwk 4= ﬂk (2.12)
Ty = ka + wak + v (2¢13)

and minimizes the cost functional

= s A B L & 1 A t oA
o %Iﬂ o B ) (my8x g + 2xy g MWy F
K=0

1A 1
ox flu, + u fu, )} (2.11)
subject to the constraint

The solution for this general problem, given by equations
(2¢11) thru (2.15), will now be developed.

Substitute equations (2.15) and (2+13) into (2.14):

N
J = lim ] '3 'R
Now 2N E};[}LKH Ficeq + Fpy Wy *

A
2ka(Fka + F'wak + ka) &

( 'C'F' | I T 1 ')lﬁ P
nG'F + w O+ v R(Fox, + RO Py )
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Applying the fact that E{a'Ba} = tI‘{B E(aa')_? ’

3= lim o t 5& QB ( ')+ 2NE( ) +
e K k41 %141 i1 %K
»>@© K=c
A ' A ' A B ( :) M
ZMFL,r.(xkxk) + 2MFCWE(wkxk) + 2MFE(vy X
1_tA t 1_t1A 1 t_1A |) "
CF RFCE(xkxk) +CPF RFCWE(wkxk) +CPF RFE(vkxk
S1_1A ] C'F'ﬁFC E( l) " lF!/\ !)
C.F RFCE(kak) L Wb (W C, RFE(vkwk +
tA ! tA t LEA] 1 -
F RF‘CE(xkvk) + F RFCWE(wkvk) + P RFE(vkvk)} (2.16)
Since vy is a white, gaussian noise vector, completely inde-

pendent of x, or w,, it is known that

1 1

E(xkvk) & E(v}?‘k) =0
1 1

E(wkvk) C E(vkwk) &0
1

and E(vkvk) = V'fij

;- i, 1f =3 o

Where ij = o’ if i#j fOI‘ l’J = 0’1,2’...

Let E(xkx;) =P,

Equation (2¢16) becomes:

1 —
and E(wkwk) = Wk .

) G 1 & i’: A A ] N cP
J = lim =g 7 QPpq *+ 2NE(wy 4%y q) + 2MFCP +

N
2:'[\'/\IFC E( ') & C‘ tA P 1 1A E 1
oo (X : F RFCP, + C F RFCw (wkxk) +
t VA D 1 1A — 1A 5
C.F'RFCE(xwy) + C F'RFC W, + F'RFV ¢ (2417)
To find E(xk+1wJ::+1)’ first substitute equations (2.15) and -
(2.13) into (2011),
Xy q = (B+T,FC)x, + (T+T,FC Jw, + T, Fvy +§ . (2418)
1 "
Then Efx, w1 = ES((B+T,FC)x, + (T,+T,FC Jw, +
¢ ]
TPy +E ) (et ay)' {
' = : 198 yois 19 ,1
E{xk_ﬂwk”g = (¢+T1F‘C)E{kak§¢w + (‘I‘2+T1FCW;E{wkwk§¢W +
1] ] 1 1 1
] . 1 1
(T,+T, FC )Efw, 0,1 + T1Fh{vkﬂkg + B,  (2.19)
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But since Vi is a white noise vector, independent of W orﬂ
1 1
Egvkwkz =0 and E{vkﬂkz =0 .
. - '
Likewise, Wi depends on??k_,l but not on ”k’ S0 ngkﬂkg= 0,
x, depends on} . _, but not on?{k, so ngkﬂl'{g =0
and w,, is not directly dependent uponf’k, S0 Eggkw]('{i: Oe
However, Ez('g’k?(];z is not zero. Recall from equations (2.1)
and (2.2) that both fk a.nd’lfk depend on f(t). Therefore
1 ,
E{fkﬂkg can be calculated in terms of E{f(t)f'(t)} . N

Using the above equalities in equation (2.19),

Bf%, W = (84T, FO)ESx, kgq; + (T,+T, FC Efww lg. +

E{?kﬂki

14 ]

Let E§xown § = G, and ESgn, ¢ = 2, .
‘ 1 - ‘
Then Gk+1 = (5&+T1FG)G]![¢W + (I’2+'J‘.‘,]F‘Cw)wkﬂW + Zk F (2.20)
Using the definition of EZxk ]:cz = el equation (2417) becomes:
3= £ i 2fire MFC_G,
%]-:tli 2N rx:., Q,Pk+1 + 2NG + P + ﬂ‘IFCka %

A —
CFRFCPk+GFRFC_G + ¢'P'RFCG +C;F'RFCW +

W k W k w K
IA
F RFV

Combining terms,
o Ykl
Jd = 1lim ead trZ{QPk 1 + ZNGkH + (2.M+C F R)F(CP +C Gk) +

c.F fF(c W, +ca,) + F'RFV ¢ (2.21)
By applying the properties of limits and series,
N

A
= =»tr lim 1 )P + 2N 1
% o Ne® T g‘.o N—-ma v sz‘H

(om+c ' P RYyF(C 1im 4 P, + G mm1 G ) +
N—NDNéo N—NDN'Zok

k+1

¢! F'RF(C Lin ﬁrsz tc1md¥e) « FRIV] (2.22)
K=o

Nre

For the cost function J to be finite, it is necessary that
N

(‘ .
N_,q, NK_ ’ N—?"’ NZ—’H ,» and I%Iﬂ ﬁz,y converge
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. . > — '
To find the recursive equation for Pk’ recall that PK—ngkxk}.

Using equation (2.18),

Prer = B b
Pret = BYBPTRO)x, + (TyHT 70wy + Ty Py + £ )

(2 (#+7,70) " + wy(2+0,F0 ) + oF'T, +6 1)){  (2.23)

I

Expanding, and using the following equalities,
Efxv,$=0, Efwv8=0, ngkﬁlg: o,
ngkw];} =5 E{vkvllg =V, E{gkql'{} =£ ,

Efxw,§ = 6, » Efwne 3=0, Eivkﬁﬁ = e

then equation (2.23) becomes:

1 t
Pp,q = (#+T,FC)P, (F+T,FC) + (B+T,FC)G (T,+T,FC )
! 1 e 1
(T,+T,FC_)Gy (B+T,FC) + (T2+T1ch)wk(T2+T1FCw)
+ T,FVP T. + E (2e2L)

1 1

Likewise, to find the recursive equation for ﬁ? .

Wypq = By g q§
el = BBt ) (b 721;),?
Wyepq = ﬁwE{kaI::§ g, + 8 Byw % Ltcf ¥ Ef”k"‘ll{”»‘q ¥ E{”k"’]::f

Therefore ,

=
|

— 1
Wepq = zwwkﬁw Ay (2625)
The limit of'ﬁL will converge if ﬂw is a stability matrix

(i.e. 2all eigenvalues of the matrix are less than one). It

can then be seen from equations (2.20) and (2.2l) that any F
which makes (¢+T1FC) a stabilitx_matrix will cause the limits
of G,_ and P, to converge.[}&l[hsj Assuming that the necessary

N N

- .3 o 2

¥ can be found, then 1lim =) P, = P lim =) G,. = G, and
’ N>z g; ’ N-o Né; k ¢
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Equations (2¢22) , (2.2}) , (2+25) , and (2.20) will converge to:
J=3%tr§Qp + 2fc' + (2fsc'F'RIF(CPHC G") +

¢ F'RF(C_j+ca) + 7' RFv . (2.26)
1 - 1
P = (B+T,FC)P(F+T,FC)  + (B+T,FC)G(T,+T,FC ) +
 § 4 — |
(Tsz,IFCw)G (¢+T1FC) + (T2+T1FCW)W(T2+T1FCW) +
T1FVF'T,: + & - (2.27)
—_ -_1
1 g |
6= (¢+T1FC)G ﬁw + (T2+‘I‘1FCW)W£5W + 2 (2.29)

To solve this system of equations for the control matrix F,
form the Lagrangian: Eé]
L(F,PsNG,2) = % tr{[@? + 2NG'+ (2Mic P R)F(cP4C G') +
o F RP(C_Ji+ce ) + ' fEv] +w[(¢+T1FC)P(¢+T1FC)' .
(B+T,FC)G(T,+T,FC_) ' + (T,+T,FC )G (B+1,FC) " +
(T 4T, FC (T 47,76 ) + T,EVF' T +&- P +
A [(¢+T1FC)G¢;J + (T,+T,FC_JUg + % - G]} (2430)
where W and A\ are each a matrix of multipliers.

For J to be at its extreme value, it is necessary that:

oL _ 3L _ oL _ oL _ oL _
570 57=9s 58=0, 58=0,» 5x=0>

[Note: For some properties concerning differentiation of

matrix equations, see Appendix I. ]

oL _
(1) 57=0
a F 1 ) 1 l/)\ w—— 1 tA tA
ks tr {[(CP*—CWG ) (244G F'R) + (C_W+CG)C F R + VP R +
1 1 1 1
T
CR(+T,FC) W T, + CG(T,+T,FC )AT, + C G (B+T,FC)WE, +
— 1 | I - 245
C (T +T, FC JAT, + VF T AT, | CGQ,:}% pl CWWW"TJF 3
[ﬁF(CP+c ¢')e' + Rr(c W+ca)c' + REV + Tiw(geTrC)PC' +
W w W 1 }TC

! t 1 LI | 1 4
TN (B+T FC)GC | + T, &(T,+T,FC )G C + T, #(T,+T,FC WO,

f 1]
T1WT1FVJ F } =0
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A t A Tt N —_ 1 A ] A Ny 1
0 = RFCPC + RFC G C + RFC WC_ + RFCGC_ + RFV + M PC +
M GC + éT (w +W)(¢+T1FC)\PC +ac. =
l:s.” (W& +A) (T +T1FC y(a'c' 4w ) +lgT (A +A—)T FV +
}é'.[‘,']\ fdw(G C +wcw)
V) 1 Vi 1] 1 1 - t
= ’(\R+3§T1(.A. +AT)T,)F(CPC + C G C + C WG+ CGC_ + V) +
1 ! 1 ! ’ 1 1 1 2 £, ¥ ey
M (PC +Gcw) + %T1(-A +W )@ (PC +Gcw) + %T1 (ww»)Tz(G g +nlcw) 4
1 1 | T 3 === 3
T, r ¢w(G c +WCW)
/
Letting A = %(ANM+d&) and solving for F:
F = -(R+T ‘W 2 )’1[M (rc ' +aC ) + T1w g(pc' +Gc D)o+
T_l./VSTz(G c +wcw) s @17« ¢W(G c -wcw)]
cre' +ca'e' + cwe' + cae' + V!
W w w w

(2) =0
P = (f+T,FC)P(B+T,FC) ' + (g+T,FCIG(T,+T,FC )" +
(T +T1FC )6 (B+1,F0) | + (41, FC NT(T+T O )+
T,lFVFT + £
(3) =0
G = (B+T,FC)GH, + (T,+T,FC B + 2
L) &2 =0
0 = § + (2Bsc'F'RIFC + (pem,F0) W (4T, FC) - A
N = (21, FC) W (4T, FC) + (2Bsc'F'RIFC + §
(5) 3g=o0 .
0 = ;2(-}- % trz([(‘:;rF'ﬁFc + (T,+T,FC ) "A (+T,FC) + ¢;?(Q5+T1FC) %
2] 6 + [2f «(afisc 'F'RIFC, + (84+1,F0) A (14T, FC_ )] s
0 = %[C'F'ﬁFC + 2(B+T,FC) A (T,+T,FC ) + (+1,FC) 7' By -

A
Ao+ oo+ (2 + C FR)FCw]



21

7 | T !
2 = (@+T,FC) A g + 2(8+T,FC) A (T +T,FC_) +
A | R e A
2(M+C F R)FcW + 2N
1
} = 8 A(B+T,FC) + 2(T,+T,FC_) N ((F+T,FC) +
ZC;F'(ﬁ+C'F'§)'+ Zﬁ'
/
Also, since A was defined as L(N+NM),
A A 1AL
W = (#+1,70) "N _(#+1,50) + ¢'F'RFC + Q + Urc + C'F M
Therefore, the set of equations to be solved is :
P = -(ReT. & _T )'1'[ﬁ'(Pc'+Gc') + ' n B(pc'eac!) +
= =(B+T, & 2 W 1% s W
1

T‘l 4 STZ(

1 ! il
c(}cW % wacw + V) (2631)

g'c'imc') +xr 0\ (G'c'+§c')] (cec' +ca'c' +
W 1 W W W

P = (¢+T1FC)P(¢+T1FC)'+ (#+1, FC )G(T2+T1FCW)' ¥

—

] t 1
(T2+T,IFCW)G (¢+T1FC) i (T2+T1FCW)W(T2+T1FCW) +
T,IFVF'T,: + & {2432)
1 1 1A N 1 1 ™M A
M= (+T7,FC) WV (F+T,FC) + C FRFC + MFC + C F M + Q@ (2.33)
s 1 s 1
G = (Q5+T1FC)GQS;I + (T2+T,IFCW)W¢; + 2z (23L)
= g (#+T,FC) + 2(T,+T,FC_ ) ‘& _(B+T,FC) +
t 1t AL A AR

2c F (M +RFC) + 2N (2.35)

W=gig + 7 (2.36)

In addition, it has been assumed that the system is stabilizable,
so there must exist an F such that the magnitude of each
eigenvalue of (¢+T1FC) is less than one.

The desired solution for the control system is the matrix
F which satisfies all of the above constraints. Notice from
equation (2.31) that F is a function of PyW_, G, /* , and W,
which, in turn, are all dependent on F (except for ﬁ) as shown
by equations (2.32) thru (2.36). Because of this interdependence,

a direct solution is not possible, and an iterative method
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must be used. This leads to the following general algoritim
for solving the system of equations (2.31) thru (2.36):
1e Assume an initial matrix F which satisfies the comnstraint
that the eigenvalues of (¢+T1FC) are less than one
so that the system is stable.
2. Solve for W in equation (2.36).
3. Solve for v in equation (2.33) and G in equation (2.3L).
L. Using these values of‘A% and G, solve for NAin
equation (2435) and P in equstion (2.32).
5. Using the values of JVS and G from stepn 3 and the
values of N and P from step L, calculate a new F
matrix using equation (2.31).
6e Using this calculated F matrix from step 5, repeat
stevs 3 thru 5 until the F matrix converges to the
solutione.
It should be noted that equations (2.32) thru (2.36) are
nonlinear, nonseparable, matrix equations. There are no direct
solutions for this type of equation. It 1s therefore necessary
to solve these equations by an iterative method also. An
algorithm which can be used is one developed by Bartels and
Stewart ﬁz}for a matrix equation of the form AX + XB = C,
where X is the unknown matrix.
When the complete set of equations (2.31) thru (2.36)
is solved, the resulting solution will be the matrix F, which
is the gain matrix of the output feedback control system. A

block diagram cf this system is shown in Figure 5.



w PHYSICAL

SYSTEM

23

(6

FIGURE & : OUTPUT

L_X__ JIMEASUREMENT Y
PROCESS
CONTROL  SYSTEM |4
RIN  MATRIX F)
FEEDBACK CONTROL  SYSTEM.



CHAPTER 3: APPLICATION TO A SECOND ORDER SYSTEM

In order to demonstrate how the algorithm developed in
Chapter 2 works it was applied to three variations of the

following second-order system:

@;Eiﬂ"% ’Z; i (k} H[w(k] H[}(k] f“‘*’J (3.1)
e ] 05]["(*‘)] M) (3.2)
o) =[e, o [ w] o] )] + [rea] 6o

x2(
]

il

:F]Er(kﬂ_ (3.14)

where f(k),?ﬂ(k), and v(k) are Gaussian, white noise vectors

such that: ‘
f =E{§(k)f'(k)} = [1.0x10® 0.0
| 0.0 1.0x107°
N = {7 ) = [1.0x107 ]
vV = Efv()v (k)f = [1.0x107¢ ]
Z = Efg“(k)ﬂ'(k):( = [1.0x107° 7
1.0x107° |

end the cost function is given by:

Jd = ‘EN’ Z(Lx (k+1)Qx(k+1) + 2% (k+1)Nw(k+1) +

2x (k)Nu(k) + u (k)Ru(k{}
i OB 80[0db
with Q [5 %]

[2]
ﬁ:[o] .

B> W

i
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Three variations of this system were obtained by
choosing the matrices § and C such that the open loop
transfer function, given by

GH(z) = C(zI-¢)7'T,
had the following configurations of poles and zeroes:
Case #1: two real poles, no zeroes.
Case #2: two real poles and one real zero.
(with zero <pole 1< pole 2 ).

Case #3: two complex poles and one real zero.

To apply the algorithm of Chapter 2, it is necessary to
choose an initial F matrix. 1In each of the ﬁhree configurations,
the initial F was chosen by considering the shape of the root
locus plot. For case #1, the initial F was chosen at the
breakaway point of the root locus from the real axis. For
case #2 and case #3, the initial F was chosen at the breakin
point to the real axis. A computer program was written to
perform the algorithm by starting with the initial F matrix
and iterating until the F matrix converged.

Baving found the desired F matrix, a computer simulation
was run for each of the three configurations to see how the
control matrix performed in the output-feedback systeme. In
each configuration, the response of the state variables was
monitored as a function of time.

As an indication of how well the output-feedback control
formulation performed, a comparison was made between the
state variable response of the output-feedback formulation

to the response obtained by using a feedback system similar
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to the stochastic optimal controcl system shown in Figure l.
' The general equation for the control system considered
is stated as:ﬂq

u(k) = -EX(k) - E (k) . (3+5)
The vectorsrﬁ(k) and a(k) are the estimated values of the
state and disturbance vectors and are given by:[5]

Qwﬂ)=ﬁm)+%&m+Tﬁm)+uﬂm4ﬂm4ﬁwn
(3.6)

#(k+1) = B 0(k) + L (y(k)-CR(k)-C_#(k)) (3.7)
Where L and L, are the gain matrices of the Kalman filter

for the respective vectors. The equations used to compute
the control gain matrices  (H and H,) and the estimator
matrices (L and Lw) are discussed in Appendix II.

As in the output-feedback control case, a computer
simulation was performed on this estimator-control case to
determine the response of the state variables. The complete
system of equations used for this simulation consisted of
equations (3.1) thru (3.3) in addition to equations (3.5)
thru (3.7).

Following is a description of each of the three config-

urations considered and a summary of the results obtained.

Case #1 Two real poles.

The poles were chosen at z = 1.0 and z = 0«9 by selecting

B0 TuB
8 = 0.9 149

and ¢ =[1.0 o.o] .

The open loop transfer function is:

G’H(Z) = K .
(2 = 1.0)(z2 = 0.9)
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The breakaway point of the root locus from the real axis

(found by solving &E = 0) 1s at  z = 0.95,
dz

and the value of the gain at this point is K = 0.0025 .
By applying the algorithm of Chapter 2 to this system and
using an initial P = [-0.0025], it is found that the optimal
gain for the output feedback control system is F = E0.05h3] .

A sketch of the root locus for this system is shown in
Pigure 6(a).
For the state-estimator control system the control gain
matricés _afg found to be: '
H= E0-7373 1»338651
E, =|:o.93u6:]

and the estimator matriceés: are:

L = [1.0590
1.3928
Lw = E)oOLl.éZ] .
The state variable response for the output-feedback

control system is shown in Figures 7(a) and 7(b), and those

for the state-estimator control system are shown in Figure 8.

Case #2 Two real poles and one real zero.
The poles were chosen at 2z = 0.8 and z = 1.2, and the

zero at 2 = 0.5 by selecting

O.S —'100
8 =|_0.21 145

and ¢ =[0.0 1.0] .

The open loop transfer function is:

5 z° f(:z-+ocf‘))6
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The breskaway point and breakin point of the root locus at

the real axis are at

z = 0,96 , Dbreaskaway point
z = 0.0t , breakin point
and the value of the gain at these breakpoints is:

K

000835 9 at z = 0.96
K

1.9165 , at z = 0.04 .
By applying the algoritbm of Chapter 2 to this system, and
using an initial F = [-1.9165], it is found that the optimal
gain for the output-feedback control system is F = [30.9335é].
A sketech of the root locus of this system is shown in
Figure 6(b).
For the state-estimator control system the contrel gain
matrices are found to be:
B = [-0.1299 1.3038]
B, = [ 3.2911]

and the estimator matrices. are:

L =[0.6358
1.0159
L, =[0.1196] .

The state variable response for both systems is shown

in Pigure 9.

Case #3 Two complex poles and one zero.
The poles were chosen at z = 04866 : ‘jOe5 and the zero

at z = 0.9 by selecting:

0e9 140
g = -0e25 04832

and gwl o 30
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The open loop transfer function is :
K(Z - 009)
G’H(Z) = P .
2- = 17322 + 009988

The breakin point of the root locus to the real axis is at
z = 0.l .
and the value of the gain at this point is
K = 0.932.
By -applying the algorithm of Chapter 2 to this system, and
using an initial F = [;0.93%], it is found that the optimal
gain for the output-feedback control system is F = [}0.8302 .
A sketch of the root locus for this system is shown in
Figure 6(c).
For the state-estimator control system the control gain
matrices are found to be:
H = E).1012 0.9976:‘
B = [0.886l]

and the estimator matrices are:
L = 002988
046988
LW = E)o128ﬂ ]

The state variable response for both systems is shown

in Figure 10,
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Comparing the results of these three cases it is seen
that the performance of the output-feedback control formulation
is highly dependent upon the system toc which it is applied,
whereas the state-variable feedback control system is fairly
consistent for each of the three cases.

This difference in performance of the two types of
control systems was anticipated since the output-feedback
control system is necessarily suboptimal due to the additonal
constraints. The state-variable feedback system should, by
design, be capable of more closely following the desired state.

However, it was also noted that the output-feedback i
control formulation is influenced by the shape of the root
locus for the systemes It can be seen from the sketches of the
root locus for each of these three cases that a system which
allows for greater stability of the closed loop system will
most likely yield desirable results with the output feedback
control formulation.

Por any particular system, consideration must always be
given to the various tradeoffs involved when using output-
feedback control or any other formulation. Because of the
added constraints, output-feedback control is suboptimal
when compared to the state-estimator control. However, at
times it may be desirable to utilize a suboptimal control

system in exchange for some reduction in cost of implementation.



(1)

(2)

(3)

(4)
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APPENDIX I

DIFFERENTIATION OF MATRIX EQUATIONS

If £(X) is a function of the (m x n) matrix X, then the
derivative of f(X) with respect to X is: ES]

a—.f—-z é—‘t S
X axi.
Jf

(i.e.‘gi is an (m x n) matrix whose ijth element is =—— )
X axij

If £(X) = a'Xb, where a is an (m x 1) vector, b is an

(n x 1) vector, and X is an (m x n) matrix, then Eé]

§§»: ab' .

If £(X) = AX, where A is an (n x n) metrix which is not

2 fumation bl Bianll]

-gifr{f(x)}]= & .

If £(X) = X'AX, where A is not a function of X, then

gxgr{m)ﬂ = (axah)x .

If A is a symmetric matrix, then

;%C[:cr{f(x_)z’ = 2ax .
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APPENDIX II
EQUATIONS FOR ESTIMATOR-CONTROL SYSTEM

The control equation (3.5) for the estimator - control

[u(k)] = -[H :H:I k)

(k)

Likewise, the equations for the estimated state and disturbance

system can be written in aul.:gmented matrlx form as:
x(

vectors can be written:

vy [
2er1) | 1T (R L T ]+
(k1) o g, [Ba [o]”
L-— N T 1R (k)
d k - |C + C_| |~~~
(B - B o [

1] _ |4 2|} &llc e e ], [ffYT
TR

and PLGl_[¢ 1 n,|[BlE|[d
3T B o ] R o
] ' W ' I w

0. D) FLEI Mot o] [Pi8 )]s )Y
o 8| B[\ té':ﬁ c o]/ °
L - ' W

— - PPl A 1 / {

C: C 71:,-:—,\} _¢_}_T2 + 5.1:._2‘_

¢ HUIE R o;ng AN
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The equations used to determine the control gain matrices

H and H are those developed by Halyo and Foulkes: Dd

~ A [}
where it Wl A
g =9, '
= 1P1¢ +
1
G, = T1(P2¢W 3 P1T2)

. ! A 1~
P, = ¢ P1¢ +Q + G1R G,

P, = (¢ - T, R™ G "(p B+ BT, + N
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