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ABSTRACT 

In this paper, output-feedback control is applied 

to a g eneral, linear, time-invariant, stochastic regulator 

problem. The system of equations defining the feedback 

i 

gain matrix is developed and put into the form of an algorithm. 

These equations are then applied to a second-ord er s y stem to 

demonstrate how the algorithm works. The results of computer 

simulation for this system using the constant output-

feedback controi are compared to results for the same system 

using a state-variable estimator. 

WILLI r, F. ~1 ~ r, LIPRA RY 
\ / r"I II 1,-..,..._ 
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CHAPTER 1: INTRODUCTION 

One of the basic problems in control theory is to find 

the input signals necessary to cause the desired outputs 

from a predetermined system. In the ideal system, where it 

is assumed that the system equations a.re known exactly and 

that all of the state variables can be me asured e x actly, 

there is a known one-to-one correspondence between a given 

set of inputs and the resulting state. In this ideal case, 

there is a unique solution for the input signals needed to 

produce the desir~d output signals. In general, the system 

equations are given as a set of differential equations 

stated in vector form by: 

~(t) = f(x(t),u(t)) (1.1) 

where x(t) is the state variable vector and u{t) is the 

input vector. A block diagram of this ideal system is shown 

in Figure 1. 

u..('t)-~, Xu)= fcx'"', u..c1.>) --->- XO:) 

FIGUAE I ; IDEAL SYSTEM [!] 
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However in practically any physical system, it is not 

possible to have an exact set of system equations. Usually 

the system equations are based upon some model of the actual 

system, and any approximations that are made in arriving at 

the model will necessarily introduce some uncertainty into 

these equations. Because of these uncertainties, the state 

will deviate from the desired values. To overcome this 

problem it is necessary to introduce some form of feedback 

control system which can produce a correction signal for the 

input, based on the deviation of the state. A block diagram 

of this type of system is shown in Figure 2. In this diagram 

u 0 (t) is the predetermined input vectQr which, in an ideal 

system, would result in the desired state vector x 0 (t). 

However•, due to errors in · the physical system, the resulting 
. . . . . . . .. 

physical state vector x(t) differs from the desired state 

and the deviation is given by l'x(t). The · control system 

consists of a gain matrix which operates on the state deviation 

vector l'x(t) to produce the input correction vector du(t), 

resulting in the input vector u(t) to the physical system 

which should cause the physical state vector to more closely 

approximate the desired state vector, provided the control 

system has been properly designed. 

In order to find the desired control system, it is 

necessary to find the small-signal, or perturbation, model 

of the system. This can be done by taking a Taylor series 

expansion of the system equations about the desired quantities 

x
0
(t) and u 0(t). Since, in general, x(t) == r(x(t),u(t)) 
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then a Taylor series expansion about the point (x0 (t),u0 (t)) 

is given by: [1] 

(x( t )-x0 ( t)) 
( x0 ( t ) , u0 ( t ) ) 

+ : ! I ( u ( t ) -u0 ( t ) ) 
( :x0 ( t ) , u 0 ( t ) ) 

+ (higher order terms) 

From Figure 2 it can be seen that 

x('t) - x0 (t) 

u( t) u 0 ( t) 

= l'x(t) 

= d' u(t) 

and from equation (1.1) it is found that 
• f(x0 (t),u0 (t)) = x0 (t) • 

Letting A( t) = (j_.f, I 
a x < xo < t ) , uo C t ) ) 

and B(t) = df I 
d u ( xo.< t) , uo ( t) ) 

equation (1.2) becomes 

( 1 • 2) 

( 1 • 3) 

( 1 .4) 

( 1 .5) 

( 1 .6) 

d.x(t) = A(t)dx(t) + B(t)du(t) + (higher order terms) 
( 1 • 7) 

The"higher order terms" in equation (1.7:) contain terms that 

are at least quadratic in Ix and J'u. In most cases it is 

assumed that d"x(t) and cfu(t) are small and the "higher 

order terms 11 are negligible. This assumption results in 

the linear perturbation equation: 

d';.;(t) = A(t) dx(t) + B(t) du(t) ( 1 • 8) 

However, since this equation neglects the "higher order terms", 

an additional constraint must be added to this perturbation 

model to ensure that these terms will remain negligible. 

Taylor I s theorem [2] states that, i1~ Tn (x) is the Taylor 



series expansion of f(x) in a neighborhood of x = c, then 

there exists a number x between x and c such that 
f (n+1 ) (x) n+1 

.f(x)=Tn(x)+ (n+1 )! (x-c) • 

Applying this theorem to equation (1.2) yields: 

5 

(, , ir 
(higher order terms)= ½[<x(t)-x0 (t)) -~ (x(t)-x0 (t)) 

dX (x(t),u(t)) 

I ~ f' 
+ 2(x(t)-x0 (t)) - (u(t)-u0 (t)) 

~xJu <i<t),u.(t)) 

+ (u(t)-u0 (t))' frll- _ (u(t)-u0 (t))} • 
~u (x(t),u(t)) 

where x(t) is between x(t) and x 0 (t); ~(t) is between u(t) and 

u 0 (t). As Athans[1J points out, this expression shows that the 

"higher order terms 11 are quadratic in dx( t) and du( t). Therefore, 

one way of insuring that the "higher order terms II are negligible 

is to add the constraint of minimizing the quadr a tic cost 

functional: -r 

J = ½f Vx 1 
( t )Q.(t)l'x( t) + lu 1 ( t )R( t )l'u(ti} dt ( 1.9) 

" where Q(t) and R(t) are weighting matrices selected to 

reflect the desired amount of emphasis to be placed on 

minimizing dx(t) and du(t). Both m.3.tric.c s should b e symmetric, 

with R(t) being positive definite and Q(t) at least positive 

semidefinite. 

Based on this linear perturbation model, the problem of 

finding the control system now becomes an optimization 

problem since the optimum control system will be one which 

keeps d'x( t) and d'u ( t) small, which in turn, implies keeping 

the cost functional J s~all. Therefore the control sy stem 

problem becomes one of finding the input correction vector 

-cl'u(t) which mini~izes the cost function J, subject to the 
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constraint of equation (1.8). 

This problem is often referred to as the deterministic 

linear-quadratic regulator problem. Deterministic refers to 

the fact that the system has a definite input-output 

relationship; there are no random changes. 

Although the deterministic linear- quadratic regulator 

problem accounts for uncertainties in the system equations 

because of approximations in the system model, it is still 

a rather idealistic approach. It must b e realized that in 

an actual physical system it is not al~-;ays possibl e to measure 

all of the state variables of the system. Furthermore, any 

measurements that are made should not be considered exact 

since there · is uncertainty associated with any physical 

measurements. Consider also the possibility of random 

d isturbances that may affect the physical system. A simple 

block diagram illustrating these additional uncertainties is 

given in Figure J. 

The measurements shoun in Figure 3 are the outputs of 

the system. This output vector y ( t) is usually considered 

t o o e a function of the state vector, 

y(t) = g(x(t)) (1.1 0) 

The linear 9erturbation equation of y(t) can be found in a 

similar manner to equations (1.2) thru (1.8 ) for x(t) . The 

result is: 

cfy(t) = c(t) d"x.(t) ( 1.11) 

where C(t) 



.... - ---· ·- ·-- - - ----~ -- ---~- ------·--- - ---

7 

D/5TUR BANCE MEAS1JP,£MfNT 

NTROL co 
INPU,S 

PAOC£SS 

1) I STLIR BANC£ 
VARIABL~S 

q 

PHYS/CAL 
- -- SYSTfM .... 

SYSTEM 
YA AIAl3L E5 

FIGURE 3: EFFECT of 

M£ASUAf'M£NT 

ERROR 
PROCESS 

MEA SVA [MENT 
ERAORS 

~· 
MEASUAE.MENT 

SYSTEM 

l)tsTUR,8ANCE 

r3J 
EAA OI~ • -

-
MEA SUR£f"'IEN'iS-

WILLIA F. MA G LI ARY 



8 

To account for the measurement errors and disturbance 

variables in the mathematical equations of the system, these 

uncertainties are usually treated as completely random 

processes and modeled by a Gaussian white noise process. 

When these white noise processes are included in the system 

model, the linear perturbation equations become: 

/i(t) = A(t)l'x(t) + B(t)du(t) + f (t) 
ly(t) = C(t)dx(t) + v(t) 

(1.12) 

(1.13) 

and subject to the expected value of the cost .functional of 

(1.9). The expected value is necessary since dx(t) is now 

a function of a random process. 

This type of problem is often referred to as the stochastic 

linear-quadratic regulator problem with additive Gaussian white 

noise. (It should be noted that it is possible to model the 

uncertainties with other than white noise processes, however 

this is the most common.) The term "stochastic 11 emphasizes the 

fact that some of the variables in the system are random and 

there is little or no way to control these variables. 

The solution of the stochastic linear-quadratic Gaussian 

' regulator problem separates the control system into two parts: 

(1) a Kalman filter which produces estimates of the system 

state variables, and (2) the optimal control gains of the 

deterministic case. It has been sho\-m [3] -· [b] that these 

two parts can be solved independently of each other and 

then cascaded to give the complete control system. A block 

diagram of this type of solution is shown in Figure 4. 
This approach leads to the optimal control system for 

the stochastic linear-quadratic problem. However, this system 
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normally involves an appreciable amount of on-line computation 

since the optimal filter must calculate a new state estimate 

vector for each time period based on the present estimates 

and the present measurements. In addition, a set of gains 

for the deterministic optimal controller must be precomputed 

and stored in computer memory. Often times these factors can 

be a drawback since sufficient computer storage may not be 

available, and if the amount of calculations becomes extremely 

large, the response time of the control system may be greatly 

reduced. 

At times it may be desirable to implement a control 

system which requires less on-line computation. This can be 

accomplished by going to a suboptimal control system. A 

suboptimal system is obtained by including additional 

constraints on the system, hopefully for the purpose of 

simplifying the system. The suboptimal system sacrifices 

optimality for some type of reduction in complexity. 

One particular type of suboptimal control system is the 

output-feedback control formulation [7] - B3J, in which the 

control inputs are found by multiplying the system measurements 

or outputs by an appropriate gain matrix. This eliminates 

the need of the optimal filter shown in Figure 4 and also 

changes the formulation of the optimal controller. Elimination 

of the op timal filter results in an appreciable reduction of 

on-line computation. However, since the output signals are 

now used directly rather than being used to find the estimated 

state variables, the cost function will have a greater value 
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and the system will no longer be 11 optimal". The formulation 

is referred to as suboptimal, but it should be noted that 

the solution found is the optimal solution for the given 

constraints. 

The gain matrix by which the output signals are multiplied 

to get the control inputs may be found for either the inf'inite

time or finite-time case. The finite-time formulation 

assumes that the system operates for a finite period of time 

and yields a series of gain matrices , one for each interval. 

The _infinite-time formulation assumes that the feedback gain 

matrix will approach a constant matrix and therefore yields 

only one gain matrix that is used for the entire time of 

operation. The infinite-time, or constant, formulation was 

chosen for this thesis since it requires less on-line comp

utation and storage than the finite-time case and, therefore, 

would require less hardware in an actual system implementation. 

Note, however, that the inf'inite-time formulation is applicable 

only to systems with time-invariant coefficients, and may 

yield a solution which is suboptimal compared to the finite

time formulation. 

This thesis considers a constant, output-feedback 

c·ontrol for a linear, stochastic system having a quadratic 

cost function. 

The general system to be considered is described in 

Chapter 2, and a solution is derived in the form of a set of 

matrix equations. Also given is an algorithm which can be 

used to determine the control matrix from this set of equations. 
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Chapter 3 describes the application of this control 

formulation to a second-order s y stem. The system operation 

with output feedback control is compared to results obtained 

using estimated state variable feedback. 
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CHAPTER 2: SOLUTION OF GENERAL SYSTEM 

This thesis applies the concept of a constant, output 

feedback control formulation to a linear, time-invariant, 

stochastic regulator problem. The mathematical equations 

for the general system that is considered can be given by:[4] 

x(t) = Ax(t) + Bu(t) + D0w(t) + D1f(t) 

w(t) = Aww(t) + Bwf(t) 

y(t) = Cx(t) + C w(t) + v(t) w 

for to< t <tr. 

where: x(t) is the state vector 

u(t) is the control vector 

y(t) is the measurement vector 

( 2.1 ) 

( 2. 2) 

(2.3) 

v(t) is a white, gaussian measurement noise vector 

and A,.B; D0 , D1, Aw' Bw' C, and Cw are time-invariant coefficient 

matrices. -

Also, w(t) is an external disturbance which influences the 

physical system as sho-wn in equation (2.1 ), and is mathemat

ically described as the result of a linear dynamic system 

driven by the white noise vector .f(t) in equation (2.2). 

Furthermore, equation (2.3) states that the measurements 

y(t) can contain some terms dependent on this external 

disturbance:. 

The performance criteria for the control system is the 
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quadratic cost function: 
~ 

J = ½$.ff [x' (t)Qx(t) + u 
1 
(t)Ru(t)] dt] 

0 

( 2. 4) 

where Q and Rare positive definite, time-invariant weighting 

matrices • . 

For the output feedback control formulation, the con

straint added to this system of equations is 

u(t) = Fy(t) (2.5) 

where Fis a constant gain matrix for the control system. 

However, it must be noted that the cost .functional 

contains a quadratic term of u(t), and u(t) is a linear 

function of y(t) which contains a white noise vector. There

fore the control vector u(t) will have infinite variance and 

the cost f'unctional will be undefined. As Erm.er[?] points 

out, this difficulty is avoided by formulating the problem 

in discrete time rather than continuous time. In the discrete 

time case, the measurements will have finite variance. 

Equation (2.1) thru (2.4) can be converted to the discrete 

time form by integrating each equation over the sampling 

period and then changing the interval of integration to 

~k,tk+1] • The resulting discrete-time equations are: [5] 

xk+1 = ¢xk + T2wk + T1uk + f k 

wk+1 = 0wwk + 72 k 

yk = Cxk + Cwwk + 

J = ½F, Ut"~+1 Q;E.k+1 
u~Ruk)] 

and the constraint of equation (2.5) becomes 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

{ 2. 10) 



15 

where uk is held constant over the sampling interval tk<t<tk+1 • 

For the finite-time case this set of equations is applicable. 

But, for the infinite-time case, N goes to infinity and 

causes the cost function to diverge[?]. Erm.er suggests taking 

the average cost for e.ach S'ampling interval rather than taking 

the total cost over the entire· interval. When this is done, 

equation (2.9) becomes: 

;J = ½lim t E [ t (x~+1 Qxk+1 + 2x~+1 Nwk+1 + 
N~ (1<-c 

'"' r " ] · 2¾:Muk + uk Ruk ) 

Therefore the general, discrete-time, stochastic linear 

regulator problem can be stated as follows. Find the control 

vector~ which satisfies the system equations 

xk+1 = ¢xk + T2wk + T1uk +f k ( 2.11 ) 

wk+1 = 0wwk + ii. k (2.12) 

yk = C~ + Cwwk + vk (2.13) 

and minimizes the cost functional 

. . 1 [~ f A f /\ 
J = · lim 2N E L(~+1Qxk+1 + 2xk+1Nwk+1 + 

N+«> ,Cao 

2x~uk + u~Ruk ) } ( 2.14) 

subject to the constraint 

(2.15) 

The solution for this general problem, given by equation~ 
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pendent of xk or wk, 
I 

E(xkvk) = 

it is know.ri that 

and 

Let 

I 
E(wkvk) = 

I 
E(vkvk) = 

= 0 

= 0 

if i=j 

if ifj 
for i,j = 0,1,2, ••• 

Equation (2.16) becomes: 

J = lim 1N trI rQPk+1 + 2~(wk+1x~+1) + 2l1FCPk + 
N-+m K=-o t ' 

,'\ I t I /I t I A. I 
2MFCWE(wkxk) _+ _c F RFCPk + C F RFCWE(wkxk) + 

' '" ' ' '" - ti\ J CwF RFCE(xkwk) + CwF RFCwWk + F RFV (2.17) 

To find E(xk+1w~+1 ), first substitute equations (2.15) and -

(2.13) into (2.11), 

xk+1 = (¢+T1FC)xk + (T 2 +T1FCw)wk + T1:Bvk +f k (2.18) 

Then E[xk+1w1:+1? = EJ( (0+T1FC)xk + (T2+T11'"'Cw)wk + 

T 1 Fv·k + ~ k) ( ~k + n k) 'J 
Efxk+1-w~+1J = (0+T1FC)Efxkw~~9J~ + (T 2+T1FCw)E[wkw00~ + 

T1FEfvkw~~0~ + E[gkw~§0~ . + (9J+T1FC)Efxk1/~~ + 

(T2 +T.1FCw)E[wk?liJ + T1FE[vk1/~f + Efsk1/~5 (2.19) 
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But since vk is a white noise vector, independent of wk or'fl. k' 

Efvkw~1= 0 and Efvk1{~1= 0 • 

Likewise, wk depends on 1/ k-1 but not on 11 k' so E{wil~J = o, 

~ depends on'Jl k- 2 but not on1( k' so Ejxk71~i = 0, 

and wk is not directly dependent upon; k' so E[f kw~~= O. 

However, E[f-0~1 is not zero. Recall from equations (2.1) 

and ( 2. 2) that both J k and ?l k depend on ) ( t) • Theref"ore 

Effkfl~§ can be calculated in terms or E[~'(t)f' (til • "\ 

Using the above equalities in equation (2.19), 

E[~+1w~+11 = (0+T1FC)Ejxkw~s0~ + (T2+T1FCw)Ezwkw~~0~ + 

E[f k1l~~ . 

Let E2xkw~§ = Gk and Ef ~k?/~~ = ¾: • 
' - ' Then Gk+1 = (0+T1FC)Gk¢w + (T2+T1FCw)W~w + ~. (2.20) 

I 
Using the definition or Eixkwk! = Gk, equation (2.17) becomes: 

" 
J = lim ,k tr l f QPk+1 + 2NG~+1 + 2MFCPk + 2MFCwG~ + 

N•m ICso l 
f fA f tA I f fl\ f fJ'\ 

C F RFGPk + C F RFC-wPk + CwF RR:Gk + CwF RFCwWk + 

F 1 RFV J 
Combining terms, 

N{" I\' /\ I fl\ ' J = lim ~ tr[ QPk+1 + 2NGk+1 + (2M+C F R)F(CPk+c Gk) + 
~c~ ~ W 

I fl\ - II\ ? 
Cv/' RF(CwWk+CGk) + F RFV S (2.21) 

By applying the properties of' limits and series, 

I" . ~ I\ • 1 t"" ' J = ½tr Q llln 1 ti Pk+1 + 2N lim ·v Gk+1·+ 
N+a1 N l(:o N-HP ~ ttao . 

" t ·~ 1 ti 1 ~ ' (2M+c F tt)F(C lim N-~Pk + Cw lim N-.l.Gk) + 
N~ l<•o N+<.D k:=o 

c 'F1RF(c 1im -½~wk + c 1im ½ ~Gk) + F'm} c2.22> 
W W N..._, #(so N-+-«» l<=o 

For the cost function J to be finite, it is necessary that 

liln i ipk , lim N1 ~Gk , and lim i ~Wk converge. 
N~ct1 t<=o N• a, #<1'0 N~ !'I 1<::o 
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To find the recursive equation for Pk, recall that Pk =Efxkx~~• 

Using equation (2.18), 

pk+1 = E f~+1 ~+1 l 
pk+1 = E £( (¢+T1FC)xk + (T2+T1FCw)wk + T1Fvk + 5 k)• 

I t I t Ill t J 
(xk(¢+T1 FC) + wk(T 2+T1 Few) + vkF T1 + S k)) (2.23) 

Expanding, and using the following equalities, 

Efxkv~1 = 0 , Efwkv~~ = 0 , Efxkr~? = 0 , 

Ef wkw~} = Wk , E £vkv~s = V , E{;kf~f = e , 
Efxkw~~ = Gk , 

t . 

Ef vk~~5 = 0 • Efwkrk~ = 0 , 
then equation (2.23) becomes: 

' f Pk +1 = (¢+T1FC)Pk(¢+T1FC) + (¢+T1FC)Gk(T 2+T1FCw) 
I I - I 

(T 2+T1 FCw)Gk (¢+T1 FC) + (T 2+T1 FCw)Wk(T 2+T1 FCw) 
t t 

+ T1FVF T1 + ~ (2.24) 

Likewise, to find the recursive equation for Wk, 

wk+1 = Ejwk+1w~+1~ 

wk+1 = EZ(¢wwk+ 7/k)(w~¢~+Ji~)J 

Wk+1 = ¢wEfwkw~ ~ 0:1 + ¢wEfwk7{ ~f + E£11kw~~¢~ + E{J?k:l?~} 
There.fore, 

- ' 
wk+1 = ¢wwk¢w + 1/k (2.25) 

The limit of Wk will converge if ¢w is a stability matrix 

(i.e. all eigenvalues of the matrix are less than one). It 

can t h en be seen from equations (2.20) and (2.24} that any F 

which makes (¢+T1FC) a stability_ matrix will cause the limits 

of Gk and Pk to converge. [14J,[15J .Assuming that the necessary 
. 1 N • 1 ,_, 

F can be found, then lim N LPk = P , 11.m N [Gk = G, and 
N-+-a, k-:.o N-+<n K=o 
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Equations (2.22) ·, (2.2Lt) , (2.25) , and (2.20) will converge to: 
1- f /\ I\ t ( /\ I II\) ( I 

J = ·2 tr z. QP + 2NG + 2M+C F R F CP+cwG ) + 
1 ti\ - IA J CF RF(C W+CG) + F RFV w w (2.26) 

I I 
p = (¢+T1FC)P(¢+T1FC) + (¢+T1FC)G(T2+T1FCw) + 

I I - I 
(T2+T1FCw)G (¢+T1FC) + (T2+T1FCw)W(T2+T1FCw) + 

I I 
T1FVF T1 + € {2.27) 

- I w = ¢ w¢ + 'll. w w 
I - I 

G = (¢+T1FC)G ¢w + (T2+T1FCw)W~w + Z 

(2.28) 

(2.29) 

To solve this system of equations for the control matrix F, 

form the Lagrangian: B6] 

f rt " , I\ ' • " ' L{F,P,A,G,~) = ½ tr[LQP + 2NG + {2M+C F R)F(CP+CwG) + 
I II\ - · II\ :1 r; I 

CwF RF{CwW+CG ) + F RFVJ + ,A,u¢+T1FC)P(¢+T1FC) + 
1 I I 

{¢+T1FC)G(T2+T1FCw) + (T2+T1FCw)G {¢+T1FC) + 

- I 1 I J 
('r2+T1FCw)W(T2+T1FCw) + T,FVF T1+ f - P + 

,f' U¢+rr1FC)G¢~ + (T2+T1FCw)W¢~ + Z - G)} (2.30) 

where ./\. and ~ are each a matrix of multipliers. 

For J to be at its extreme value, it is necessary that: 

aL ~L dL dL _ ~L __ o • 
~ = 0 , d p = 0 , ~.Iv = 0 , dG - 0 , i)~ 

[Note: For some properties concerning differentiation of 

matrix equations, see Appendix I.] 
dL = 0 
c> F ;) \ r t " I IA - I l"I IA »·½ tr 2 ~CP+CwG )(2.~+C FR)+ {CwW+CG)CwF R + VF R + 

( 1 ) 

1 I 1 I 
C P ( ¢ +T 1 FC ) A- T 1 + CG ( T 2 +T 1 FC w) .A- T 1 + Cw G ( ¢ +T 1 FC ) """ T 1 + 

- ' ' ' CwW(T2+T1FCw)-A-T1 + VF T1-hT1 + CG¢>T1 + CwW¢~~T1] F + 

[ ,., I I II. - I " I t 
RF(CP+CwG )C + RF(CwW+CG)Cw + HFV + T1.1v(¢+Trc)PC + 

f t I If I -t+ 
T1-lvU1+T1F'C)GCw + T 1A-(T 2+T1Fcw)G C + T1.tv(T2+T1FCw)WCw 

T ~-Iv T1 FV J F I J = O 
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/\ f I\ f f I\ - I /\ I /\ /\t I 
0 = R~PC + RFC G C + RFC WC + RFCGC + RFV + M PC + w w w w 

l'\1 t t , I I 
M GC w + ½T 1 ( A- +""' ) ( ¢ +T 1 FC } ( PC +GC w) + 
11 / 11-t I ' 
:!1r 1 ( v'\- + .I\. ) { T 2 +T 1 FC w) ( G C +WC w) + ½T 1 ( ./\- + .,\.- ) T 1 FV + 

I I I I - I 
½T1~ ¢ (G C +WC ) w w 

I\ I / I fl -I I 
0 = (R+½T1 (./\. +.A )T1 )F(CPC + C G C + C WC + CGC + V) + . w w w w 

At I I I / I I I I I - t 
M (PC +GCw) + ½T1 (A- +A, )¢(PC +GCw) + ½T1 (..,._+_..:)T2 (G C +HCw) , 

'-:i' ',-, ½T1 J~ ¢w(G C +WCw) 
I 

Letting .1v8 = ½( .Iv +J., ) and solving :ror F: 

F = -(~+T1
1 ../V T1 >-1 [M 1 (Pc 1 +ac 1 ) + T1

1 A ¢(Pc'+ac') + . s w s w 
I 11-1 1/ 11-1:7 

T1 Iv 8 T2 (G C +WCw) + ½T1 ?- ¢w(G C +WCw~ 

(cpc' + c o'c' + c we' + cac' + v)-1 
w w w w 

(2) t~ = 0 

' ' P = (¢+T1FC)P(¢+T1FC) + (¢+T1FC)G(T 2+T1FCw} + 

I I - I ' 
(T2+T1FCw)G (¢+T1Fc) + (T2+T1FCw)W(T2+T1FCw) + 

I I 
T1FVF T1 + l 

(3) ~L = 0 
c)_j\ 

I - I 
G = (¢+T1FC)G¢w + (T2+T1FCw)W¢w + Z 

( 4.) ?L = 0 
JP 

A A t fl\ I 
0 = Q + (2M+C F R)FC + (¢+T1FC) ../1., (¢+T1 FC) - ~ 

I '\ I !/\ A 
A = ( ¢+T 1 FC ) '.(I., ( ¢ +T 1 FC ) + ( 2M +C F R) FC + Q 

(5) dL = O 
dG 

a (r, I I" I I 
0 = dG ½ tr 2 fwF RFC + (T2 +T1FCw) .A, (¢+T1 FC) + ¢w ]' (0+T1 FC) -

']. J G + [ 2N + ( 2M +C IF I B) FC w + ( ¢ +T 1 FC ) 1.1\. ( T 2 +T 1 FC w)) G 1 
1 r: I fl' I I / I 

0 = ~ LC F RFC w + 2 ( ¢ +T 1 FC ) ./\, 8 ( T 2 +T 1 FC w) + ( ¢ +T 1 FC ) f ¢\J - · 

I I\ /\ I 1/\ J P + 2N + ( 2M + C F R) FC w. 



; 

Also, since .h was derined as ½(fa+.}.,), 
s 
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t t t ,!Y.__ A I\ I t A I 
./vs = ( ¢ +T 1 FC ) .f¥ s ( ¢ +T 1 FC ) + G F RFC + Q + MFC + C F M 

Thererore, the set or equations to be solved is : . 

/\ I -1-[" I I I I I I . 
F = - ( R +T 1 .Jv 5 T 1 ) M ( PG +GC w) + T 1.Jv 3 ¢ ( PC +GC w) + 

' ,,-, '' ,,-,] ' ,, 
T 1 ./v 8 T 2 (G C +WCw) + ½T 1 .j\ ¢w(G C +WCw) (CPC + CwG C + 

C GC 1 + C WC 1 + V) - 1 ( 2 • 31 ) 
w w w 

' ' . P = ( ¢+T 1 FG ) P ( ¢ +T 1 FC ) + ( ¢ +T·1 FC ) G ( T 2 +T 1 FC w) + 

I I - I 
( T 2 +T 1 FC w) G ( ¢ +T 1 FC ) + ( T 2 +T 1 FC w) W ( T 2 +T 1 FC w) + 

I I I), 
T1FVF T1 + c (2.32) 

I I I I\ II I t "t A 
fts = ( ¢ +T 1 FC ) .N s ( ¢ +T 1 FC ) + C F RFC + MFG + C F M + Q. ( 2. 3 3 ) 

I - I 
G = (¢+T1 FC)G¢w + (T 2 +T1 FCw)W¢w + Z (2.34) 

I 
1' = (J w f\ ( ¢ +T 1 FC ) + 2 ( T 2 +T 1 FC w) .k s ( ¢ +T 1 FG ) + 

I I Al I\ l't 
2C F ( M + RFC ) + 2N ( 2. 3 5 ) 

w 

W = (J W¢ I + 11. ( 2.J6) w w 
In addition, it has been assumed that the system is stabilizable, 

so there must exist an F such that the magnitude of each 

eigenvalue of (¢+T1FC) is less than one. 

The desired solution ror the control system is the matrix 

F which satisries all or the above constraints. Notice from 

equation (2.31) that Fis a function or P,vvs, G, (', and W, 

which, in turn, are all dependent on F (except ror W) as shown 

by equations (2.32) thru (2.36). Because of this interdep endence, 

a direct solution is not possible, and an iterative method 
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must be used. This leads to the following general algorithn 

for solving the system of eauations (2.31) thru (2. 36) : 

1. Assume an initial matrix F which satisfies the constraint 

2. 

3. 

4. 

that the eigenvalues of (0+T 1FC) are less than one 

so that the system is stable. 

Solve f'or Win equation (2.36). 

Solve for ,I\, in equation (2.33) and Gin eq_uation (2.34). s -

Using these values of ./v and G, solve for fl in 
s 

equation (2.35) and Pin equ 2. tion (2.32). 

5. Using the values of ./v 3 and G from step 3 and the 

values of~ and P from step 4, calculate a new F 

matrix using equation (2.31). 

6. Using this calculated F matrix from step 5, repeat 

steus 3 thru 5 until the F matrix converg es to the 

solution. 

It should be noted that equations ( 2.32) thru (2.36 ) are 

nonlinear, nonseparable, matrix equations. There are no direct 

solutions for this t yp e of equ.ation. It is therefore necessary 

to solve t h ese equ ations b y an iterative me thod also. An 

algorithm which can be used is one developed by Bartels and 

Stewart 87J for a matrL"'C eauation of' the form AX + XB = c, 

where Xis the unknown matrh. 

\·Jhen the complete set of' equations (2.31) thru (2.36) 

is solved, the resulting solution will be the matrix F, which 

is the gain matrix of' the output feedbac k contro l system. A 

b lock diagram cf this syste~ is shovm in Figure 5. 
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CHAPTER 3: APPLICATION TO A SECOND ORDER SYSTEM 

In order to demonstrate how the algorithm developed in 

Chapter 2 works it was applied to three variations of the 

(3.2) 

+ ~(k~ (3.3} 

{3.4) 

where § (k), 1/ (k), and v(k) are Gaussian, white noise vectors 

such that: 

; = E{S{k) s' (k)j 



Three variations of this system were obtained by 

choosing the matrices ¢ and C such that the open loop 

transfer function, given by 

GH(z) = C(zI-¢)-1T1 

had the following conf'igurations of poles and zeroes: 

Case #1: two real poles, no zeroes. 

Case #2: two real poles and one real zero. 

( with zero < pole 1 < pole 2 ) • 

Case #3: two complex poles and one real zero. 
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To apply the algorithm of Chapter 2, it is necessary to 

choose an initial F matrix. In each of the three configurations, 

the initial F was chosen by considering the shape of the root 

locus plot. For case #1, the initial F was chosen at the 

breakaway point of the root locus from the real axis. For 

case #2 and case #3, the initial F was chosen at the breakin 

point to the real axis. A computer program was written to 

perform the algorithm by starting with the initial F matrix 

and iterating until the F matrix converged. 

Having found the desired F matrix, a computer simulation 

was run for each of the three configurations to see how the 

control matrix performed in the output-feedback system. In 

each configuration, the response of the state variables was 

monitored as a function of time. 

As an indication of how well the output-feedback control 

formulation performed, a comparjson was made between the 

state variable response of the output-fe~dback formulation 

to the response obtained by using a feedback system similar 
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to the stochastic optimal control system shown in Figure 4. 
The general equation for the control system considered 

is stated as: [4] 
" I\ u(k) = -Hx(k) - Hww(k) • (3.5) 

- A A 
The vectors x(k) and w(k) are the estimated values of the 

state and disturbance vectors and are given by: [5] 
A /\ A /\ /\ A 
x(k+1) = ~x(k} + T2w(k) + T1u(k) + L(y(k)-Cx(k)-Cww(k)) 

(3.6) 

I\ " " /\ w(k+1) = ~ w(k) + L (y(k)-Cx(k)-C w(k)) w w w (3.7) 

Where Land Lw are the gain matrices of the Kalman filter 

for the respectiv& vectors. The equations used to compute 

the- control gain matrices . (Hand Hw) and the estimator 

matrices; . (L and Lw) are discussed in Appendix II. 

As in the output-feedback control case, a computer 

simulation was performed on this estimator-control case to 

determine the response of the state variables. The complete 

system of equations used for this simulation consisted of 

equations (3.1) thru (3.3) in addition to equations (3.5) 

thru ( 3-. 7) • 

Following is a description or- each of -t h e three conf'"ig

urations considered and a summary of the results obtained. 

Case #1 Two real poles. 

The poles were chosen at z = 1.0 and z = 0.9 by selecting h o.o 
~ = -0~9 

1,~ 
1.9 

and C = [ 1.0 o.o] • 

The open loop transfer function is: 

GH(z) = K 
(z - 1.0)(z - 0.9) 

• 
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The breakaway point of the root locus from the real axis 
. dK 

(found by solving - = O) is at z = 0.9.5, 
dz 

and the value of the gain at this point is K = 0.002,5 • 

By applying the algorithm of Chapter 2 to this system and 

using- an initial F =- [-Oa002~ , it is found that the optimal 

gain f ·or the output feedback control system is F = [:-o.054i} • 

A sketch of the root locus for this system is shown in 

Figure 6(a). 

For the state-estimator control system the control gain 

matrices are found to be: 

H = Go. 7373 1.338~ 

Hw = [ 0.9346] 

and the estimator matrices .··; are: 

L = 11 • 059ol. 
L1 .392~ 

Lw = @•046~ • 
The state variable response for the output-feedback 

control system is shown in Figures ?(a) and ?(b), and those 

for the state-estimator control system are shown in F~gure 8. 

Case #2 Two real poles and one real zero. 

The poles were chosen at z = o.8 and z = 1.2, and the 

zero at z = 0.5 by selecting 

1 o.s : 1 .. 0] 
~ =l_:-0.21 1.5 

and C = [ 0. 0 1 • 0] • 
The open loop transfer function 

K(z - o.5) 
is: 

GH(z} = 
z2 - 2z + 0.96 

• 



The breakaway point and breakin point of the root locus 

the real 

and the 

axis are at 

z = 0.96 , breakaway point 

z = 0.04- , breakin point 

value of the gain at these breakpoints 

K = 0.0835 , at z = 0.96 

K = 1.9165 , at z = 0.04- • 

is: 
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at 

By applying the algorithm o:f Chapter 2 to this sys·tem, and 

using an ini~ial F = (:1.916~, it is found that the optimal 

gain for the output-feedback control system is F = [:0.93356]. 

A sketch of the root locus of this system is shown in 

Figure 6(b). 

For the state-estimator control system the control gain 

matrices are found to be: 

H = ~0.1299 1.303~ 

Hw = [J.291fl 

and the estimator matrices .. are: 

L = 10.63587 
~.0159J 

= [0.1196_] • 

The state variable response for both systems is shown 

in Figure 9; 

Case #3 Two complex poles and one zero. 

The poles were chosen at z = 0.866 ! -jo.5 and the zero 

at z = 0.9 by selecting: 

kS = ~o.9 -0.25 
1.0 J 
0.832 

and C = [ o.~ 1.0 ] • 



The open loop transfer .function is : 

GH(z) = 
K(z - 0.9) 

z2 - 1.732z + 0.9988 
• 

The breakin point of the root locus to the real axis is at 

z = 0.4 
and the value of the gain at this point is 

K = 0.932. 
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By ·applying the algorithm of Chapter 2 to this system, and 

using an initial F = fo.932j, it is found that the optimal 

gain for the output-feedback control system is F = G,0.830~ • 

A sketch of the root locus for this system is shown in 

Figure 6(c). 

For the state-estimator control system the control gain 

matrices are found to be: 

H = (_o.1012 o.997~ 

Hw = [o.886~ 

and the estimator matrices 

L = j0.298al 
l.9.698~ 

Lw = ~.128-U 

are: 

• 
The state variable response for both systems is shown 

in Figure 1 o. 
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Comparing the results of these three cases it is seen 

that the performance of the output-feedback control formulation 

is highly dependent upon the system to which it is applied, 

whereas the state-variable feedback control system is fairly 

consistent for each of the three cases. 

This difference in performance of the two types of 

control systems was anticipated since the output-feedback 

control system is necessarily suboptimal due to the additonal 

constraints. The state-variable feedback system should, by 

design, be capable of more closely following the desired state. 

However, it was also noted that the output-feedback 

control formulation is influenced by the shape of the root 

locus for the system. It can be seen from the sketches of the 

root locus for each of these three cases that a system which 

allows for greater stability of the closed loop system will 

most likely yield desirable results with the output feedback 

control formulation. 

For any particular system, consideration must always be 

given to the various tradeoffs involved when using output

feedback control or any other formulation. Because of the 

added constraints, output-fe~dback control is subop timal 

when compared to the state-estimator control. However, at 

times it may be desirable to utilize a suboptimal control 

system in exchange for some reduction in cost of implementation. 



( 1 ) 

( 2) 

APPENDIX I 

DIFFERENTIATION OF MATRIX EQUATIONS 
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If f(X) is a function of the (m x n) matrjx X, then the 

derivative of' f(X) with respect to Xis:~~ 

ti~ ~:J. 
( • d f . ( ) t . h . . th l . ;) f ) i.e. ~x 1s an m x n ma rix w ose l.J e ement is - • 

~A dX• . 
J. J 

I 
If f (X) = a Xb, where a is an (m x ·1) vector, b is an 

(n x 1) vector, and X is an (m x n) matrix, then fi E!J 
l r , 
fi ~ ab • 

{3) If f(X) = AX, where A is an (n x n) matrix which is not 

a .fu.-riction of X, then [7] 

h~r{mlTI~ A 1 
• 

(4) 
1 . .' 

If f(X) = X AX, where At~ not a function of X, then 

hGr[f(X)~ = (A+A 1 )X • 

If A is a symmetric matrix, then 
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APPEUDIX II 

EQUATIONS FOR ESTIMATOR-CONTROL SYSTEM 

The control equation (3.5) for the estimator - control 

system can be written in au~ented mat~ix form ~s: 

[u(kU = - rH ; H 7 ~.{~Ll . 
L I wj w(k)j 

Likewise, the equations for the estimated state and disturbance 
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The equations used to determine the control gain matrices 

Hand Hw are those developed by Halyo and Foulkes: I4J 
H = R- 1G 

1 

H = R-1 G 
w 2 

~ 

where R 

I A I 
G = T1 P1¢ + M 1 

G2 = 
1 

T1(Pi/Jw + p1 T 2) 

p1 = ¢ I I\ 
P1¢ + Q + 

,--1 
G1 R G1 

(¢ - --1 I 
+ P1T2) 

I 

p2 = T1R G1) (Pi/Jw + N • 
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