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ABSTRACT

FINITE ELEMENT ANALYSIS OF A TRIANGULAR
BEAM SEAT STIFFENER PLATE

Phillip Anthony Krupa
Master of Science in Civil Engineering

Youngstown State University, 1978

Beam seat stiffeners, such as those employed for beam
and crane girder connections in industrial building, are
structural elements which, to date, are designed using rule-
of-thumb procedures. Both theoretical and experimental results
of previous investigations into this problem are available.

The proposed design methods contained therein, however, are
encumbered with complex equations and multiple graph value
determinations. For these reasons, current design practice
usually involves providing stiffener plate thicknesses
considerably in excess of that of the supported member's

web, rather than making any realistic attempt to optimize the
design with a minimum thickness.

The finite element method of analysis was used in this
study to determine the stress levels within a triangular
stiffener plate. These findings were combined with earlier
theoretical and experimental investigations to rationally
develop design aids which will enable a designer to quickly
determine a minimum stiffener plate thickness. Both yield
stress limitations and buckling considerations were incorporated

into the design aid formulations.
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CHAPTER I

INTRODUCTION

1.1 Problem Statement

The objective of this study was to investigate the
elastic behaviour of triangular stiffener plates, which
are frequently employed for beam/column connections. Fig. 1.1

shows a typical application of a triangular stiffener plate

y

in welded construction.
"\\\~_Top edge

| 1 : [~—Loaded edge
1 ree edge
1 3 Supported edge

:<~——-B-———*J

Fig. 1.1. Welded Construction

The analysis of the welded assembly was accomplished

(1)*

using the finite element technique along with the

Zienkiewicz-Cheung(z) finite element program. The results
from the analysis were combined and compared with previous

(4)

theoretical(B) and experimental investigations in order

to develope useable design aids.

*Number in parenthesis indicates reference cited.



When a designer is confronted with specifying the
proportions of a triangular stiffener plate, two distinct,
yet related, constraints present themselves. These are:

1.) The location and magnitude of the maximum
stress (4 y) ;

2.) The location and magnitude of the critical
buckling stress (A.CR).

A finite element analysis could provide the location._and
magnitude of the maximum plane stress and the maximum free
edge stress. However, it was necessary to employ mathematical
formulations(B) in the determination of the critical buckling
stress, since the Z-C program was limited to plane stress
applications.

Numerous difficulties were encountered due to the
fact that definitive boundary conditions, out-of-plane
displacements, and applied load distributions have not been
completely defined in most accepted design procedures. It
was required, therefore, to initiate the finite element
analysis using the conclusions developed from the findings
of the theoretical work by Salmon(3) and the experimental
work by Buettner & O'Sheridan(u).

The following statements form a basis for the finite
element approach to this problem: (See Figure 1.1)

1.) Translations in the x and y directions of the
supported vertical edge were zero.

2,) Translation in the x direction of the loaded edge
was prevented.

3.) Loading conditions were varied.

4,) Displacements were entirely in plane.



5.) Rotations of the triangular plate due to ~olumn
bending were ignored.

6.) The plate remained an in-plane entity until
buckling occurred.

Before the finite element analysis approach can be
presented, pertinent previous theoretical and experimental

work will be reviewed, in detail,” where necessary.
1.2 Classical Approaches to Buckling Problem

Timoshenko(5) first attempted to solve the buckling
problem by finding the solution of the differential equation,
which described the problem in terms of stress distribution.
However, since the stress distribution is neither constant,
nor is there a readily expressible variation throughout the
triangular stiffener plate, the resulting differential
equation becomes considerably complex. Therefore, even
though the differential equations may have led to a solution,
the considerable complexities involved eliminated any
practical use of the technique.

In other attempts to solve the buckling problem,
both Timoshenko(S) and Ritz(é) developed equations describing
the behaviour of the triangular plate (See Figure 1.1) in
terms of equilibrium and potential energy. In order to
satisfy all of the boundary conditions, expressions for the
displacements must be developed. These expressions proved
to be extremely difficult and cumbersome to develope. The
energy approach to the problem had to be either discarded or
modified if it was to be a practical solution to the

buckling problem.



1.3 Salmon's Solution to the Buckling Problem

Salmon(B) used the generalized energy methods employed
by both Timoshenko(S) and Ritz(é) for the solution to the
buckling problem (See Figure 1.2). Salmon took advantage of
a unique feature of the energy approach, i.e., expressions
for displacements need not satisfy all boundary conditions,
but only these geometric requirements along the edges of the
triangular plates. Expressions for displacements in the
conventional u, v, and w directions were established by
Salmon using a power _series form for both simply supported
and fixed supported plates (These support conditions apply
to the supported edge shown in Figure 1.1).

The solution to the power series equations yielded
the critical value VO (See Figure 1.2) at which buckling was
imminent. With this value known, the stress distributions
were then determined along the edges of the triangular plate.
The maximum stresses when buckling was imminent were the free
edge stresses and thus, the critical buckling stresses
magnitude and locations were determined. These values
depand upon the support conditions of the plate, either
simply supported or fixed along the supported edge.

Salmon then developed a relationship which expressed
the critical stress for both fixed and simply supported
edge conditions. The equation takes the form

6‘(‘;R=——K (1.1)

(A/%)?



Fig. 1.2. Critical Buckling Displacement

The buckling coefficient K, which is a function of the

material properties, has a single value for all plates having
the same aspect ratio (loaded to supported edge ratio) and

the same supported edge conditions. Figure 1.3 shows the
variation of K with respect to the aspect ratio and the
supported edge condition. These variations grouped graphically,
show the critical buckling stresses for different sizes

and thickness of plates (See Figure 1.4).
1.4 Experimental Verification of Salmon®s Findings

Physical testing of triangular stiffener plates was

(&)

performed by Buettner and O0'Sheridan as a follow-up of
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Fig. 1.4. Theoretical Buckling Stresses(3)
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the theoretical analysis done by Salmon. The objective of
the laboratory testing was to verify the reliability and
accuracy 6f the theoretical design equations proposed by
Salmon.

Plate sizes were selected with aspect ratios from
0.75 to 2.00 which include the range of Salmon':s design curves.
In addition, plate sizes and the thicknesses were chosen
using Salmon's design equations to produce both buckling and
yielding type failures. In order to further insure both types
of failure, small and large dimension plates were selected.

The plates chosen for the experimental work are listed in

Table 1.1.
TABLE 1.1
EXPERIMENT AL STUDY PLATE SCHEDULE
Flate Plate Sizes
Thickness Ratio 1 2
"A" A/B Ax B Ax B
(inthes) Small Large
(inches) (inches)
0.75 9 x 12 224 x 30
1.00 9 x 9 30 x 30
1/4 1
1.50 132 x 9 30 x 20
2.00 18 x 9 30 x 15
0.75 9 x 12 221 x 30
1.00 9 x 9 30 x 30
3/8 1.50 13% x 9 30 x 20
2.00 18 x 9 30 x 15




The plates and their boundary conditions were designed
to duplicate the conditions in Salmon's theoretical study.
The load application, which was an important factor in the
testing program, was in all cases concentrated along the
loaded edge approximately 60% of the distance from the

supported edge rather than distributed as is the actual case

(See Figure 1.5).

sy
<

e 3 o T ]

R TR TT  W J W W VD T M S S M N

o e i

Fig. 1.5. The Experimental Study's Load
Application

In order to determine the stress levels and displacements
during testing, both SR-4 resistance type and dial type
strain guages were employed. The SR-4 guages were located

at twenty-six positions on each side of the triangular plates,
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and the dial guages in a total of seventeen locations.

Results from the physical testing program differed
somewhat from Salmon's theoretical investigation. The 30%
fixity along the supported edge as suggested by Salmon (See
Figure 1.3) for design purposes was found to be much too
conservative. Furthermore, as the aspect ratio became
larger, it became nearly impossible to produce a buckling
failure in welded construction, even for plates having
large dimensions and small thicknesses. Also, with a higher
amount of fixity, any plate which actually failed by buckling
would be expected to fail at a higher load than predicted by
theory; i.e., it is logical to expect more plates to fail
by yielding rather than buckling.

Based upon these experimental results, the curve
describing the stiffness coefficient K for welded construction,
was found to actually lie closer to the totally fixed curve
(See Figure 1.6). This, in turn, increased the edge stress
level required to produce a buckling failure, and demonstrates
that yielding is the predominant form of failure for

triangular beam seat stiffener plates.
1.5 Summary of Existing Design Techniques

Current ﬁractice allows several different approaches
to designing the triangular plates. These are based upon
empirical observations and simplifications in load distrib-
ution, with the designer usually free to choose whichever

system deemed acceptable.
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Fig. 1.6. Adjusted Stiffness Curve (¥)
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These methods are briefly described as follows:(7)
1.) Triangular plate thicknessgz‘PWEB

2.) Triangular plate thickness 23(1.4)(TWEB)

. - F
3.) Triangular plate thickness>| "y (T,.ow)
for F, 50 KSI -__BE_AL) WEB

50
4,) Triangular plate thickness >(2)(TWEB) for A36

5.) Triangular plate thickness > (1.5)(T

for Fy = 50 KSI.

Another commonly used approach assumes the plate to

(9)

WEB)

act as a cantilever beam in which the stresses are
determined using ordinary beam theory. This results in the
employment of excessively thick plates and thus leads to
waste of material.

Buckling was not directly considered in either
approach since it was assumed that by specifying such large
thicknesses buckling would not occur. However, the
possibility of buckling may be conservatively checked by
assuming that the reaction R' (See Figure 1.7) acts
concentrically on the strip which is cross-hatches. This
strip forms a column of length AC and rectangular cross-
section of t*(b cos & )/4 which is not only conservative,
but arbitrary at best.

It is easily seen, that the arbitrary state of
design can lead to material waste, particularly if the
stiffened seat connection is used repeatedly as in

pre-engineered buildings applications.
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CHAPTER TWO

DETERMINING THE FINITE ELEMENT MODEL AND PRELIMINARY
TESTING FOR ACCURACY

2.1 Selection of Finite Element Computer Program

Since the analysis of the triangular stiffener plate

(5)

was primarily a plane stress problem y it was ideally
suited for solution via the finite element method of analysis.
By using any of the readily available finite element programs,
the stress distribution within the plate could be easily
determined. In this study, the finite element program used
was déveloped by Zienkiewicz-Cheungg*(z). which incorporated
a linear constant strain triangular element. Secondly, the
format of the program could be easily modified or changed.

Finally, the applied loading, the geometry, and the boundary

conditions could be selected and altered easily.
2.2 The Finite Element Model

The advantage presented by utilizing the finite
element approach was that with proper modelling techniques,
complex bodies could be analyzed both quickly and accurately.

It became necessary to carefully determine the best possible

* Hereafter referred to as Z-C.
3¢
See Appendix A for listing of program.
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model in order to accurately determine the stresses through-

out the triangular plate.
2,2.1 The Element Configuration and Building Code

Due to limitations imposed in the Z-C program, the
maximum number of elements was limited to one hundred (100).
The two configurations shown in Figure 2.1 were found to be
the most consistent and symmetrical in their arrangement

for the triangular plate problem.

A ='| - A ’]

i__ Lase A _;__— Lase B

Fig. 2.1. Possible Configurations

Despite the choice for the configuration, the
boundary conditions had to be established. By using the
displacement criteria established in the experimental(u) and

theoretical(B) works, translations were taken as zero in x
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and y directions along the supported edge and in the x
direction along the loaded edge. The boundary conditions -
were thus established. These are illustrated in Figure 2.2,
Note that rotational displacements have no real meaning

in the plane stress approach.

BV v VAN VAN vAla v/ valia v VAL VAL VA

Fig. 2.2, Boundary Conditions as Modelled

2.2.2 Load Distribution

Perhaps the most important parameter in the analysis
of the triangular plate was the distribution of load across
the loaded‘edge. Current design practice(7) was to assume
a uniform distribution and ignore any concentrations. However,
in both the experimental(u) and theoretical(3) works, it has
been found that this was not the case, but rather a special

case. The load distributions assumed, calculated.or measured
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in past studies were functions of the type of load, the
supported beam stiffness, the adequacy of the welds, and
initial crookedness. With all the variables to consider, it
becomes extremely difficult to determine how the plate stresses
vary with a corresponding change in the load distribution.

In order to determine the degree of variance in
stress effects for various loading conditions, a series of
loading arrangements were assembled. These loadings, presented
in Figure 2.3, represented distributions assumed in earlier

approaches plus other variations deemed appliecable or possible.
2.2.3 Material Properties

The triangular plate considered in this stﬁdy was
taken to be fabricated with structural steel having E =
29,500 KSI and/ﬂ = 0.295, and a yield stress of both 36 KSI
or 50 KSI. These values were in general agreement with
those taken in the experimental‘ua and theoretical(B) works,
It was not intended to limit the applicability of this
study by using only steel, but rather to obtain results
(3)(4)

easily Verified by the earlier studies

2.2.4 Preliminary Testing to Determine the Extent of Stress

Variation Due to a Variation in the Load Distribution

Since the previous studies(B)(u) demonstrated that
the buckling phenomena was dependent upon the maximum free
edge stress and its location, it was necessary to determine

the variation in the maximum stress and its location for
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each load distribution case. A preliminary analysis program,
which considered one (1) plate from each of the four (4)
aspect ratios in this study, was performed to determine the
effect of a change in load distribution. Table 2.1 lists

the plates analyzed in the preliminary study.

TABLE 2.1
PRELIMINARY TESTING PROGRAM

A/B Ratio Dimensions (inches)
(AxBxt)
0.5 %18 x 1
0.75 15 x 20 x 1
1.0 24 x 24 x 1
1.5 24 x 16 x 1

To determine the degree of stress variance, it was
necessary to apply each of the selected plate sizes and
thus, establish the maximum stress and its corresponding
location. Resultant applied loadings of 50K and 25K were.
then distributed across side A (See Figure 2.1) at the nodes
of eaéh plate.

With‘the finite element analysis yielding the maximum
free edge stress, which was also the maximum plate stress,
it became evident how the different load distribution cases
‘affected the stress distribution. This is illustrated in

Figure 2.4 for the 24" x 24" x 1" plate. By discarding
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those cases which produced large stress concentrationé in .
elements along the loaded edge, say directly beneath an applied
concentrated load, and those which were considered impractical,
it was found that the variation in the maximum free edge
stress for each aspect ratio fell within a narrow range for
most applied load distribution cases (See_Figure 2.4). This
type of distribution was also evident in the plates tested
from the other aspect ratios; i.e., the variation in the
magnitude of the maximum stress fell within a similar narrow
range.

Based upon the results of the preliminary analysis,
it was concluded that the stress distribution within the
triangular plate was not entirely (or predominantly) controlled
by the load distribution chosen. Case 3 (See Figure 2.3) was
then selected to represent the load distribution in the
subsequent analysis with Case 10 and Case 15 used for
verification. These were chosen since they represented the
average, minimum, and maximum stress as demonstrated by the

stress ranges shown in Figure 2.4.
2.2.5 Final Selection of the Model Configuration

With the boundary conditions, material properties
and load distributions established, the two trial model
configurations were then analyzed in order to determine
which more closely simulated the experimental results(u).

Important comparisons between the finite element analysis

and the experimental results were thought to be:
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1.) The magnitude and sign of the maximum free
edge stress.

2.) The location of the maximum free edge stress (See
Figure 2.5).

A plate with an aspect ratio of 1.0 and dimensions of
30" x 30" x %" was chosen for comparison as this size was
also tested by Buettner and O'Sheridan(u).

Resultant loadings equal in magnitudes to the applied
loads used on on Buettner and 0'Sheridan's experimental
30" x 30" x 4" plate were applied to the finite element
models using load Case 3. Table 2.3 illustrates a comparison
between the analysis of the two models and the experimental
counterpart. Slight variations between the SR-4 strain
guage and finite element stresses were not considered critical
since strain gauges are often affected by a host of
conditions which cannot always be exactly controlled. Also,
it has been shown that a slight variation in stress levels
exists when the load distribution varies (See Figure 2.4).

It is evident from Table 2.3 that Case B modelled
the experimental triangular plate stress levels and their
directions accurately. However, Case A modelled neither the
stress levels nor their directions.

Before the selection of the finite element model
could be finalized, it was necessary.to consider the second
important comparison; i.e., the location of the maximum
free edge stress. The experimental(u) and the theoretical(B)
studies demonstrated that the position of the maximum free
edge stress is constant within each aspect ratio. In order

to determine the location of the maximum free edge stress
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TABLE 2.3

COMPARISON OF MAXIMUM STRESS RESULTS

23

Load In Kips

10 15 30 40

& maximum (psi)

experimental -4,860 -7:275 -14,610 -19,620
A maximum (psi)

finite element -4,€600. -6,900 -13,800 -18,400

Case B
A maximum (psi) -
finite element +8,187 +12,281 , +24, 562 +32,750

Case A

+ Tension
- Compression

Finite element position of é$ maximﬁm = 0, 50%*
Theoretical position of CS maximum = 0,50
Experimental position of é maximum = 0.65
Plate size 30" x 30" x %"

A/B, Ratio = 1.0

*
Position along free edge as measured from the

loadéd edge. See Figure 2.5.
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within the models, one (1) plate from each of the four (4)
aspect ratios was loaded with applied resultants of 40K

using load Cases 3, 10, and 15 (See Figure 2.3). Table 2.2
(See also Figure 2.5) presents a comparison of the finite
element locations of the maximum free edge stress for the
various aspect ratios along with the results of Salmon's

and Buettner and 0'Sheridan's earlier studies. Note, however,
that even though solutions using configuration: A and B

gave oppositely sensed stresses, the locations of the

maximum free edge stresses were.the same for both configurations.
Based upon these comparisons, configuration A was eliminated
from further consideration. Configuration B was found to
model both the stress levels and the respective locations
accurately and, thus, was chosen as the sole finite element
model throughout the study. It is for this reason that

Figure 2.6 was presented.
2.3 Scope of the Analysis Program

Twenty different plate sizes were analyzed, with the
range of sizes falling intc four (4) aspect ratios: 0.5,
0.75, 1.0, and 1.5. These sizes and ranges were thought to
be representative of those commonly used in structural practice.
I'he actual plate dimensions chosen permitted enough deviation
so that any relationship existing between the plate sizes
would become eacily noticeable. Table 2.4 gives a listing

of the plate sizes that were analyzed.



TABLE 2.2

MAXIMUM FREE EDGE

AS A RATIO OF D/C

STRESS

25

A -l
%inite Element Salmon Experimental
A/B Ratio
D/C D/C D/C

0'5 On25 . —_—
0.75 0.40 0.40 0.50
1.0 0.50 0.50 0.65
1.5 0.65 0.85 0.90

3*
Case A and Case B both exhibited

stress at the same locations.

their maximum free edge
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Fig. 2.6. The Finite Element Model and
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TABLE 2.4

PLATE TESTING SCHEDULE

A/B Ratio Dimensions (A x B)
(inches)
6 x 42
9 x 18
0.5 12 x 24
18 x 36
24 x 48
6 x 9
9 x 12
0.75 15 x 20
18 x 24
30 x 40
9x9
12 x 12
1.0 18 x 18
24 x 24
30 x 30
6 x 4
15 x 10
1.5 18 x 12
36 x 24
30 x 20
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CHAPTER 3
PRESENTATION OF RESULTS
3.1 Final Analysis

The preliminary analysis program established the
accuracy and the selection of the finite element model. It
became necessary to then expand the investigation for all
the aspect ratios and plate sizes listed previously in
Table 2.2. The total (resultant) load application consisted
of a 40 kip load distributed at the nodes along Side A (See
Figure 2.2) using the distribution designated as Case 3 in
Figure 2.3. Only one load application was necessary per
plate since the finite element analysis is linear and
elastic; i.e., the results for a 20 kip applied resultant

load is one half that for the 40 kip load, and so on.
3.2 Results

The results of the expanded analysis program are
presented in Figures 3.1 through 3.4 inclusive: These
curves represent the longitudinal free edge stress
distribution; i.e., stress in a direction parallel to the
free edge, and indicate the location of this maximum
longitudinal stress for all of the plates considered under
the action of a 40 kip load, distributed as noted

earlier. These plots verify that the location of the
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maximum free edge stress is constant for any aspect ratio.

It should be noted that the maximum longitudinal free edge
stress is also the maximum stress for the entire finite
element model. It must be further emphasized that the
direction of this maximum stress, as yielded by the finite
element analysis, is the same as the direction of the ctitical
buckling stress derived by Salmon and Buettner and 0'Sheridan;
i.e., the maximum compressive principal stress (noted

earlier as the longitudinal free edge stress) is in a
direction parallel to the free edge as evidenced, for example,

in Figure 3.5 for a 24" x 24" x 1" plate.

* Q.333 KS1

S 0. 5L
element 0
number 36 45 AV 4
N in Fig. 2.6
\J L

1;,5

Fig. 3.5. Maximum Longitudinal Stress
Directions
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An important relationship extracted from the
graphical presentations is that the free edge stress is
inversely proportional to the loaded edge lengfh(A); i.e.,
the edge stress is doubled when the loaded edge length(A)
is halved. For example, in Figure 3.3 the maximum stress
for a 9" x 9" x 1" plate is 15.4 KSI, while the maximum
stress for an 18" x 18" x 1" stress is 7.7 KSI.

Since linearity exists between different resultant
loads on an individual plate, the relationships between the
free edge stress levels and the loaded edge length(A) may
be utilized more practically as illustrated in Figure 3.5
for an A/B ratio of 1.0 and a plate thickness equal to
one(1) inch. Note that the plots for other aspect ratios
may be similarly constructed.

The stress distributions shown in Figures 3.1 through
3.6 inclusive are for a plate thickness of one(1l) inch.
Since all plates are ob¥iously not one(1l) inch thick, a
method must be established to calculate stresses for plate
thicknesses other than one(1) inch. This apparent
difficulty may be overcome by taking advantage of the
construction of the finite element stiffness matrix. This
matrix is formed by calculating the nodal forces in the u
and v directions for each node due to a unit displacement
occurring in the direction of each degree of freedom
(See Figure 3.7); e.g., in equation (3.1), which illustrates
the stiffness matrix, the Ugq value is actually the nodal
force in the uy direction due to a unit displacement in

the uy direction.
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Fig., 3.6. Load Case 3 (Fig. 2.3.)



or

(Q) = load matrix.

Thus, the stress levels in a one(1) inch thick plate may be
divided by any desired thickness t in order to determine the
stress level in the plate of t thickness. Equation 3.3

describes this operation.

Aﬁ inch
( = ) =41;h'1ckness (3.3)

desired

thickness
desired
The steel used in this study was taken at either

36 or 50 KSI. By using equation 3.3 the minimum thickness to
prevent failure by yielding can be easily determined. For
example, a one inch thick triangular plate with a maximum
free edge stress of 12 KSI and of a steel with Fy = 36 KSI
can be uced to compute the required thickness if the stress
level is permitted to reach the yield limit of 36 KSI.

The process proceeds as follows:

( <§ one inch ) = Tiionbl (3.4)

thickness-
desired

substituting

s yal i e
12 kips in in = 0.333 inches.

in® 36 kips

Similarly, the same plate with 50 KSI steel will require

a thickness of only 0.24 inches. This relationship can be
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Fig. 3.7. Triangular Plane Stress Element
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More importantly, equation 3.1 indicates that the
thickness of an individual element and thus, the plates
maintains a linear effect on both the element stiffness and
the corresponding stress as shown in equation (3.2):

{4} = ) {=} [x]* {a}. (3.2)
where  [p] = elasticity matrix
[B} = displacement strain matrix

[K] "1 - gtiffness matrix inverse
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expanded and illustrated as a series of curves as shown in
Figure 3.8 for an aspect ratio of 1.0 and a yield stress of
36 KSI. Note that the plots for other aspect ratios and
yield stresses may be similarly plotted.

However, as the loaded edge increases in length, the
stress becomes increasingly smaller (See Figure 3.6) and the
thickness based upon yield criteria (See Figure 3.8) also
becomes increasingly smaller. At this point, the plate
exhibits an increased potential to buckle; i.e., the
maximum longitudinal free edge stress for small plate

thicknesses may reach the critical buckling stress before

the yield stress can be achieved. Therefore, the curve shown

in Figure 3.6 has a limited range of application. It was
here that the critical buckling stress equation proposed by
Salmon(3) and verified experimentally by Buettner and
O'Sheridan(u) was introduced. With the maximum longitudinal
free edge stress known for a one(1) inch thickness and its
relationship to other thicknesses established, the minimum
thickness required to prevent failure by buckling can be

calculated. Recalling the buckling equation:

o K
critical , t1.1)
(a/t)?

where

K = stiffness coefficient (from Figure 1.3)

A = loaded edge length
and

t = plate thickness,
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and equation 3.3,

( A o inon ) 4

thickness tgzggg:gs- (3.3)
desired

which determines stress based upon thickness, it is possible
by equating equation (1.1) and equation (3.3) to determine
the critical thickness at which the triangular plate will
attain the critical longitudinal buckling stress for a
particular resultatn load and loaded edge length(A). By
setting

4§ t = chritical. (3.6)

substituting in the appropriate terms,

A K t%__.
one inch = critical . (3.7)

A2

tcritical

Rearranging the terms and taking the cube root yields:

AR

2

- A
A T P ks 3 one %nch - (3.8)

t

By applying the equation for each load and loaded edge
within each aspect ratio, a set of curves may be developed
which represent the critical buckling thicknesses. Figure
3.9 depicts the critical buckling thicknesses for an aspect
ratio of 1.0, Note that the yield stress does not enter

into the buckling formulations.
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By combining the curves based upon the minimum
yield thickness criteria (See Figure 3.8) with those
based upon the minimum buckling thickness criteria (See
Figure 3.9) and plotting only the larger or controlling
value, a useful set of design curves may be developed. For
the four(4) aspect ratios and the two steels used in this
study, the design curves are presented in Figures 3.10

through 3.17, inclusive.
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3.3 Design Examples

The advantages of the proposed design curves can
be best illustrated by using numerical examples along with
comparisons with the design procedures developed in the
previous(B)(u) studies. A thorough analysis of typical
practical applications will then be demonstrated to show
the simplicity and versatility of the curves.
For the first example, a load of 30 kips will be
distributed (using Case 3) on a stiffener plate of dimensions
20" x 20". The required plate thickness will be determined.
By using the A/B ratio of 1.0 and 36 KSI steel, the required
thickness from Figure 3.14 is 0.211 inches with a failure
mode by buckling. It should be noted that as yet, no
factor of safety has been applied. One could be easily applied
to the load prior to using the design charts; i.e., use
factored loads in the design.
As a second example, say a factored 30 kip load
(distributed using Case 3) must be carried by a plate
whose dimensions are 30" x 30". Using the aspect ratio of
1.0, 36 KSI steel and Figure 3.14, the required thickness ?
is found to be 0.241 inches and the mode of failure is also
by buckling.
Table 3.1 compares these example designs using
the finite element analysis design curves with designs

1(3) (1)

made from the earlier theoretica and experimental

recommended procedures.
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TABLE 3.1

DESIGN SPECIFICATION COMPARISON
THICKNESS AND FAILURE MODE

Finite .
Experimental Salmon
Element x
(inehes) %inches) (inches)
Example 1 0.211 0,231 0.250

buckle-mode buckle-mode buckle-mode

Example 2 0.241 0.254 0.313
buckle-mode buckle-mode buckle-mode

These two numerical example designs were specifically
chosen since the plate dimensions A & B were the same as
those used in both the earlier theoretical and experimental
studies. These dimensions were deliberately chosen on the
large size to insure a buckling failure, particularly in
the experimental procedure. Thus, these numerical examples
served as a verification of the finite element procedure
and they are not intended to serve as practical examples.
In practice, the plate dimensions A & B are considerably
less than 20" x 20" and 30" x 30" used in the verification
examples. The following numerical example is intended to
demonstrate: a practical application of the developed
design charts.

Suppose a W 18 x 45 requires a bearing length (n)

of 9.0 inches to safely transmit a factored shear load of
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90 kips to a connecting column. The aspect ratio can be
dictated by several considerations to include architectural
limitations, aesthetic factors, length and size of the
connecting weld, ete. In this instance, the aspect ratio
will be initially taken at 1.0. The steel will be taken as
A36 grade and the loaded edge length(A) will be initially
taken equal to the required bearing length of 9.0 inches.
By using the design curves in Figure 3.14,,the minimum
required thickness is 0.95 inches with failure controlled
by yielding criteria. However, with the design curves
available, other aspect ratios may be easily selected in
order to optimize the volume and hence, the weight of the
stiffener plate. Table 3.2 summarizes the trial designs

for other aspect ratios and their respective volumes.
TABLE 3.2

COMPARATIVE DESIGN SUMMARY

E60 Electrode
& A36
Aspect Thickness Volume Failure | Tillet Weld
Ratio (inches) (inches?) Mode Size
(W oy = t/2)
(inches)
0.5 |0.477 (1/2)* 38.63 yield 1/
0.75 |0.685 (11/16) 36.99 yield 5/16
3.0 0.95 (1) 38.48 yiegld 1/2
1.5 1.63 (1 5/8) 44,01 yield 13/16

¥*
Values rounded up to nearest standard size.
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The weight was found to be minimum using an aspect ratio
of 0.75, which is a weight reduction of 3.87% over the initial
choice of 1.0.

Final selection of a plate thickness is also
contingent upon the welding requirements. For example,
the minimum fillet weld size for structural purposes is
3/16". Thus, with a fillet weld on both sides of the
supported edge, a minimum plate thickness of 3/8" is required
to insure that a weld stronger than the base material is
not applied. Also, the maximum fillet weld size that can
be placed with a single pass (5/16") must also be considered
for construction cost purposes. These considerations must
be made in selecting the connecting or supporting length B.
Typical fillet weld requirements are also shown on Table 3.2

for each design.
3.4 Mathematical Formulations

The aspect ratios analyzed in this study were
thought to be the more commonly used ratios. It may become
necessary,however, to have a set of design curves for an
aspect ratio other than those selected. There are
mathematical relationships evident which may be used to
generate a set of design curves for any aspect ratio and
yield stress. These relationships may be best developed
by use of a numerical example. Say, for example, that the
minimum thickness is required for a steel plate with an

aspect ratio of 2/3, a resultant applied load of 40 kips,
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a loaded edge length (A) of 16 inches and Fy = 42 KSI.

To accomplish the design, it is necessary to determine the
maximum free edge stress and hence, the required thickness.
The calculations may be completed for an individual plate
size; however, with very little further analysis, a complete
set of design curves may be generated.

Examination of the generated data has led.to the
conclusion that for a constant load within a single aspect
ratio, the loaded edge length (A) times the maxzimum
longitudinal free edge stress is a constant (L))- This
relationship can be more clearly illustrated for all aspect
ratios and a 40 kip load by Figure 3.18. For an aspect
ratio of say 2/3, the constant U is found to be 88 kips/inch.
Dividing by the loaded edge length (A) yields,

88 kips/inch = 5.5 kips (3.9)
2

16 inch in

Therefore, the maximum free edge stress for a 16" x 24" x 1"
plate under a 40 kip resultant load is known.
The minimum thickness required based upon yield

criteria is:

55 kips in in?

inc 42 kips

0.131 inches. (3.10)

However, the minimum thickness to prevent premature buckling
failure may be greater and must therefore be calculated.
By using equation (3.8), and a stiffness coefficient

K = 100,000 KSI (See Figure 1.3),
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o 2
Toritical = 2 (5.15)(16) (3.11)
100,000
and,
Cocitianl ™ 0.241 inches. (3.12)

The minimum thickness required is the larger of the two
values, or 0.241 inches with failure by buckling.
A complete set of design curves may be similarly

generated.
3.5 Design Recommendations

The design curves developed by this study are

primarily applicable to welded construction as illustrated

in Figure 3.19. A factor of safety, when chosen with a sound

M EL,

IS

Fig. 3.19. Applicable Construction
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engineering judgement, may be used as a load factor due

to the nonuniformity of the curves. It must be noted,
however, that welded construction:utilizes a minimum weld
size of 3/16" and, in this case with welds on both sides

as in Figure 3.19, a minimum plate thickness of 3/8"(7);
i.e., the welds cannot be such so as to exceed the capacity

of the supported section or member.
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CHAPTER 4
CONCLUSIONS

The capability of the finite element method of
analysis to accurately model the stress distribution
within the triangular plate problem using only the baskc

constant strain triangular element has been demonstrated

by this study. However, irregardless of the sophistication

of analysis technique, both supplemental theoretical and
experimental verifications must be performed in order to
determine the correct model configuration, loading
distribution and boundary conditions. Without these
supplemental verifications, especially the experimental’
portion, the finite element analysis will be weak and
unreliable. Thus, in this study heavy reliance was placed
on the previous investigations. Through this approach,
analysis with constant verification checks, design curves
were developed and shown to closely approximate the design
specifications set forth by the previous investigators

and designers.

The real advantage in applying the design curves
lies in the large scale design and fabrication of pre-
engineered steel buildings. Here design with either
hot or cold rolled sections allows for optimization (by
minimum weight and weld size) of structural elements such

as triangular stiffener plates with possible resultant
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savings multiplied over many hundreds of repetitious
buildings.

Further investigation, both theoretical and
experimental, of the triangular beam seat stiffener plate
is recommended. A finite element analysis with a more
sophisticated basic element(s), including plate elements,
and configurations with more elements would be desirable.
In-plane displacements of the nodes could be incorporated
into such an analysis to perhaps verify the buckling

configuration used in the previous analytical studies.
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APPENDIX A

The finite element program developed by Zienkwicz-

(2)

Cheung , which was used in this study, is listed here
along with flow charts. The program consists of a main
program plus six(6) subroutines to accomplish the analysis.
The flow charts, the program documentation, plus an example,

are sufficient for an understanding of the program.




Start

1

Read number of
problems

Y

Loop on number of

problems

1

Call data input

!

Loop on load cases

1

Call load input

1

Call form stiffness

!

Call equation solver

k|

Call stress output

1

End loop on loads

'

End loop on

problems

!

Stop

CONTROL
MAIN
PROGRAM
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C CONTROL MAIN PROGRAM

COMMON/CONTR/ZTITLE(LB) yNPyNEJNByNDF 9 NCNyNLDyNMATyNSZFoLIyNT4
COMMON CORD(CL100,2)4NOP(200y%) oIMAT(200) ,0RT(2542)4NBC(25),NFIX(25

1yR1(200)9SK(232,40)

o
C INITALLZE TAPE NU.
8 C ADD NUMBER (F CORNER NUDE MAX .
C
NT4=41
- NCN=4
READ(S, 1)NPRODB
C
C LOOP ON NO. OF PROBLEMS
C
) DO _4C0 NPR=1,NPROB
REWIND NT4
C
C READ INPUT GEUMETRY AND PRUP.
C
CALL GDATA
5 NSLF=NP*NDF
DO 200 LI=1,NLD
C
€ I READ LODADS
C
CALL LDAD
G e
£ FORM THEN SULVE SIMULTANEOUS
o EQUATIONS
C e
CALL FORMK
CALL SOLVE
C
C CALCULATF STRESSES
C
B CALL STRESS i
200 CONTINUE
400 CONTINUE
. 1 FORMAT(915) - -
STOP
END
- e s =




Yes

Start

1

Read and print
control data

1

Read and print
material properties

Read nodal
co-ordinates

Read element
connections and type

1

Read boundary
conditions

!

Skip printing of
input data

1 No

Print nodal
co-ordinates

1

Print element
connections

Y

Print boundary
conditions

P

-

Return

subroutine
GDATA
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SUBROUTINFEF GUDATA

- COMMON/CUNTR/ZTITLECLB) yNPoNE ¢ NB o NDF g NCNyNLDy NMATyNSZF9sL I oNT 4
COMMON CORDOL0042) yNOP(20044) o IMAT(200) yORT(25,2) NBC(25) NFIX(25)
LyPL(203),SK(202y40)
2yRk(3)

0
( READ AND PRINT TITLE AND CONTROL

- G
PEAD(Sy 7)TITLE
WRITE(GL,100)TITLE

F READ(Sy IINP ¢NE g NByNLD ¢y NDF yNMAT,I1
WRTTELOy LINP yNE 9NB g NLD o NDF g NMAT , T'1

-
E C READ AND PRINT MATERIAL ODATA
C
RFEADESy BNy (ORTINGI) 9T=1,42),L=1,NMAT)
3 WRITE(G,108)
WRITE(GyBYINS(ORTINGI) yT=1,2) yN=1,NMAT)
C
i C READ NODAL POINT DATA
6
[ 8 READ ELEMENT DATA
C :
FEADES 33 )Ny (MNIPINGyM) oM=1,44) yIMATIN) yL=1,NE)
(&
C RFAD BCUNDRY DATA
C
READISe4 ) (NSCIT) NFTIX(T)I=1,yNR)
480 IF(I1.NELOIGD TO 500
| &
C PRTNT TNPUT DATA
C
WRITE(&,102

WETTE(G 2V INZ(CORDIN,M) yM=1,2) yN=1,NP)
WRITF(6,4103)
WRITECOy 3D (N IHOPINgM) gM=1 3%4) 9 IMAT(N) yN=1,NE)

5C3O

Wk TTE(G6,104)
WRITE(Oy4)(NBCCT I NFIX(TI)yI=1,NB)
COMTINUE

1
2

2

FORMAT(STS)
FORMAT(6]15)
FORMAT(I104+2F1063)

A
I$
]

102
103

108

100 FORMATUIHL,L8A4)
104

b ENIY T o

FORMAT(Z2TS)
FORMAT(18A4)
FORMATII10,2F10.2)

FORMAT(20H0 NODAL POINTS )
FORMAT(2CHO ELEMENTS )

FURMAT(21IHO BOUNDARY CONDITIONSY

FORMAT( LHO,20H MATERIAL PROPERTIFS)
FETURM




Ye

Start

!

Zero load vector

Y

Print title

P |

. |
Read and print
load card

Y

Store value in
load vector

Is node number less

than max node ?

‘No

Return

subroutine
1OAD
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SURROUTINE LOAD

LU4WHN/CUNTQ/T!TLF(18)'NP'NEoNH,NﬂF.NCN:NLD,NMAT.NSLF.LITWTZ“_——'__—
COMMON CORD(10042)4yNOP(200,%)»IMAT(200)40RT(25,2)NBCI25)4NFIX(25)
1yR1(200) ¢ SK(200,40)

- 2R 3)
C
C ZFRU LIJAD ARRAY
NN 160 J=14NSLF
160 R1(J)=0.0
WPITE(G,100)TITLF,LI
WRITE(6,4109)
|5
C READ,PRINT AND STDRE LOAD CARD
C,
65 CUNTINUE

RFAD(5,49)
INQy(R(K) K=1,NDF)

N WRTTE(G,9)
1"1()"?{(’() cKzl 'N”F)
DO 176G K=1,NDF
o IC=(NQ-1)*NDF+K
170 RI(CTCI=R(K)+R1(1IC)
G
T ~ 1F NUDE NUMBICR NOT MAX. NODE PT.
C G BACK AND READ MORE
#

IFINQSLTSNP)GO TO 165
FORMAT(110,3F10.2)
FORMAT(10X,415)

FURMAT(IHTy 18A4 43Xy LCHLOAD CASE,LI5H)
FORMATLIHO,6H LOADS)
RETURN

END




Start

|

Zero
stiffness matrix

!

Loop on elements

1

Call
element stiffness

!

Store element

stiffness in

rectangular
matrix

'

End loop on
elements

!

Insert boundary
conditions

;

Return

subroutine
FORMK
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SUBROUTINE FDORMK

70

FORMS STIFNESS MATRIX
IN UPPER TRIANGULAR FORM

CHOY & O

COMMON/CONTR/TITLE(L8) ¢ NPyNE gNBy NDF g NCNyNLDyNMAT yNSZF,LI,NT4
COMMON CORDOLOD 92) ¢yNOP{200 44) yIMAT(200) yORT (25,2),NBC(25)NFIX(25)

1,R1I(2C0O) ySKI2U0442)
2yESTIFM(12,12)

NBAND=4C

SET BANDMAX AND NO OF EQUATIONS

LERO STIFNESS MATRIX

DO 300 N=1,NSZF
DO 300 M=1,NBAND
300 SK{N,M)=0.0

SCAN ELEMENTS

DO 4CO N=1,NF
CALL STIFT2(N)

Rz TURNS FSTIFM AS STIFFNESS

STORE ESTIFM IN SK

MATRIX

FIRST ROWS

DO 350 JJ=1,NCN
NRODWB=(NCP(NysJJ)=L)%NDF
IFI(NROKB) 350,305,305

305 D) 350 J=1,NDF
NRUWB=NROWB+1
[=(JJ=-1)*NDF +J

THEN COLUMNS

DO 339 KK=1,NCN
NCOLB=(NOP(N,yKK)=1)%NOF
NN 320 K=1,NNF

L=(KK=1)*NDF +K
NCOL=NCOLB+K+1-NROWB

~ SKIP STORING IF BELOW BAND

TF(NCOL1320,320,310

T310 SKUNROWB JNCUL) =SKINROWB ¢NCOL)#ESTIFM(T,L)
320 CONTIMNUE
330 CONTINUF

355 CONTINUE
4CC CONTINUE




INSERT BOUNDARY CONDIT IONS

£

ND 500 N=1,Nb
NX=1C%#%(NDF=1)

I=N8C(N)
NROWB={T-1)*NDF

Y CHOY

EXAMINE FACH

DO 460 M=1,NDF

DEGREE OF FREEDGM

NRIDWR=NRUOWB+1
ICON=NFIX(N) /NX
IF(ICON)A50,450,420

SKINROWR y1)=1.0
DU 43C J=2,NBAND
SK{NROwWB yJ)=C.0

425

NR=NROWB+1=-)
IFI(NR)A430,4304+425
SK{NR¢J)=0.0

430

450

CON TINUE
NETX(N)I=NFTXIN)=NX*TCON
NX=NX/10

| 430
500

CUNTINUE
CONTINUE
RETURN

END
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1

Locate nodal
connections

I

Calculate
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dimensions

:

Check
for
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numbering
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False

True

Generate strain
displacement
matrix

Write
error
message

i

Generate stress
strain
relationship

1

Stop

Calculate stress
matrix

Store stress matri
on tape NT4

i

Calculate
element stiffness

i

Return

subroutine
STIFT2




SUBROUTINE STIFT2(N)

73

COMMON/ZCOUNTR/ZTITLECLB) oNP o NE 9 NBy NOF g NCNo NLD 9 NMAT 4 NSZFyLIoNT4
COMMON CORDELO02)yNOPL200,%4) «TMAT(200)y0RT(25,42)9NBCI25)yNFIX(25)

1,R1(200),S5K(2002+40)

2oESTIFM(124,12)+A(3,6)48(3,9)

DE TERMINE ELEMENT CONNECT IONS

oloo

I=NOP(N,1)
J=NOP(N,2)

(]

K=NIOP(N,3)
L=IMAT(N)

TSET UP LOCAL COORDINATE SYSTEM

AJ=CORD(J,1)=-CORD(T,1)

AK=CORD{Ky1)~CORD(I,1)
BJ=CORD(J42)-CNRD(I 42)
BK=CORD(K ¢2)=CIIRND(T42)

ARFA=ABS(((AJ*EK-AK*BJ)/2.))
IFCAREA «LEe 0.)G0 TO 220

O ONC

FORM STRATN DISP. MATRIX

Ally 1)=bJ=-8BK

A{ly2)=0.0
Allys3)=BK
Ally4)=0.0

All,5)=-8J
Ally€)=C.0
A(2,1)=0.0

A2y 2)=AK=-AY
A(.)_73)=0-0
Al244)=-AK

A( 2'5)=003
Al2,6)=0J
Al3y1)=AK-AJ

Al 3,2)=bJ=-8K
Al 34 3)==AK
Al(344)=BK

A(3ob)=AJ
A(3,€6)==-BJ

iy &Y

FORM STRESS STRATN MATRIX

COMM=ORTIL 9 1) /((1o+URT(L2) )% (14 =URT (L,2)%2.)*AREA)

FSTIFM(U T, 1 )=COMME(T1.-0RT(L2))
ESTIFM(1,2)=COMMX0ORT(L,2)
ESTIFM{1,3)=0.0

ESTIFM(2,1)=ESTIFM(I,2)
ESTIFM(2,2)=tSTIFM(1,41)
ESTIFM(2,3)=0.0

ESTIFM({3,1)=0.0
ESTIFM(3,2)=0.0
ESTIFMI3,3)=0RT(Ly1)/(2e%({1e+0RT{Ly2))*AREA)

aERE




74

C
C B IS THE STRESS BACKSUBSTITUTION
C MATRIX AND IS SAVED ON TAPE
G
DO 205 I1=1,3
NO 2C5 J=1406
Bll,yJ)=0.0
DD 2C5 K=1,3
205 Bl 9J)=BlI4J)+ESTIFM(T K)/2.%A(KoJ)
WRITE(NTAG)INS({R(Ted)pd=1ye6),1=1,3)
C
C ESTIFM IS STIFNESS MATRIX
o
-, DD 210 I=1,6
DO 210 J=1y6
ESTIFM{T,J)=0.0
DD 210 K=1,3
210 ESTIFM(T 4J)=ESTIFM(I ,J)+B(Ky1)/2e%A(KyJ)
RFTURN
C
C ) ERRCR EXTIT FOR BAD CONNECT IONS
C
220 WRITE(64100)N
100 FORMAT(33H1LZER OR NEGATIVE ARFA FLEMENT NOI4/21HOEXECUTION TERMIN
IATED)
STOP
FND




Start

!

Loop on each
equation(N)

¥

Compute
modifications to
terms within
squares of band

'

Modify load vector

)

End loop on
equations

¥

Loop
backwards
on each
equation

Back-substitute
for
equation
solution

End loop on
equations

'

Return

subroutine
SOLVE
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SUBROUTINE SULVE

SPECIFICATICN STATEMENTS

CUMMON/CONTR/TITLE(LS) ¢NP¢NE ¢yNByNDF gy NCNyNLDyNMAT 4y NSZFH LI NT4
COMMNON CORD(LZO92)yNOP(20004) oI MAT(200),0RT(25,)2)14NBC(2H)yNFIX(25)
1y,R1(£C0),SK(2C0,40)

NBAND=40

C
C REDUCE MATRIX
C

DO 3C0 N=1,NSZF

T=Y

DI 260 L=24NBAND

I=T+1

IFCSK(NWL))I240+2G5C9240

240 C=SK(NyL)/SK{N, 1)
J=)
D2 27C K=L NBAND

J=J+1
TEESKINGK))262,27292690
260 ST 4J)=SK(I1,J)-CH*SKIN,K)

273 CONTINUF
280 SK(N,L)=C

O OO

5|

AND LOAD VECTOR
FOR EACH FQUATION

R1(I)=R1I(T)=C*21(N)
290 CUMTINUE
300 P 1(N)=R1IN)/SKIN,L)

BACK=-SUBSTITUT [UN

N=NSZF
50 N=N=-1
IF(N) 500,500,360

(9

36C L=N
DD 4CQO K=2,NBAND
L=L+1

TFUSKIN,K))370,40C,370
370 RLI(N)=R1(N)=SK(NyK)®R1(L)
400 CNNTINUF

GU TO 3590

(1]

JQ RETURY

FND




Start

1

OQutput displacements

!

Loop on elements

1

Read stress back-
substitution matrix

|

Calculate element
displacement vector

Calculate
element stresses

1

End loop on elements

Y

Loop on elements

'

Calculate principal
stress vectors

!

Print stresses

!

End loop on elements

!

Return

subroutine
STRESS
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SUBROUT INE STRESS

DIMENSION DTS(2,1C0) yFORCF (200,3)
COMMON/ZCONTR/ZTITLF(18) gNP ¢NF gNB ¢ NiDF 9 NCNyNLD,NMAT 4yNSZFyLIyNT4
COMMON CORD(L00,2),NOP(200,4) oI MAT(200) ,0RT(25,2) yNBC{25),NFIX(25)

1yR1(200)ySK(20C+4Q)
2+B( 396)4R(8)
COUIVALENCE (DISCL)yRLICL)) o USKUL)FRRCE(L))

PEWIND NT4

PRINT DISPLACFEMENTS

ol o

WPITE(6,1C0)
VRITF (e L1D) IMy(DIS{JyM) yJ=1,NDF) M=1,NP)

1CO FORMAT(///7+15X,13HDISPLACEMENTS )
11C FORMAT(ILO,2F15.4)

CALCULATE ELEMENT FCRCES

eEe e

DO 200 NC=1,NE

READINTGIN((BII9J) 9d=1496)41=1,3)
DO 260 T=1,NCN
M=MOP (N ,T) e

TFIM.EQR.O0)GO T71 260
K=(1=1)%NDF
D 240 J=1,NDF

TJ=J +¥
240 ROIJ)I=DIS(J,M)
260 CONTINUF

TA=K +NDF
DO 3CO I=1,3
FORCE(N,1)=0.0

L0 300 J=1.12
3C0C FORCEIN,I)=FORCEIN,IDI+B(IyJ)%*R(J)
200 CONTINUE

WP TTE(G,101)

L CALCULATE PRINCIPAL STRESSCS
C AND DIRECTICONS
C
NU A6CT N=1,NE
250 C=(FORCE(N,L1)+FORCE(Ny2))/2.0

A=SQRTUI(FORCE(N,2)=FORCE(N1))/2.0) %%2 +FORCE(N,3)%%*2)
SMAX=C+A

SMIN=C-A
IF(FORCE(N,y 2) FN.SMIN)GO TO 700
R A\}=57:?957U*ATA1(FJQCE(Nv3)/(FﬁPCE(N'Z)’SWIN))
GO T 210
00 ANG=GS0.0
»¥NZIO CON TINUE
i
G WRITE ALL STRESS COMPONENTS

C
%00 WRTTETG, IT1)

INy (FORCE(N, 1) 9I=1+3)ySMAX,SMIN,ANG

. 600 CONTINUF
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101 FORMAT(107HO ELEMENT X-STRESS Y-STRESS XY
1-STRESS MAX=STRESS MIN=-STRESS ANGLE )

111 FORMAT(I10s5F 1 7e44F12.3)
RE TURN

FND




Data Input Instructions
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1.) Problem Card (I5)
Col 1-5% Number of problems (NPROB)
2.) Title Card (1246)
Col 1-72 Title to be printed with output (TITLE)
3.) Control Card (715)
Col 1-5* Number ofi nodal points (NP)
6-10% elements (NE)
11-15% boundary points (NB)
16-20% load conditions (NLD)
21-25* degrees of freedom = 2 (NDF)
26-30* different materials ( NMAT)
31-35%¥ 0 print input data
1 skip print of input data (I1)
4,) Material Cards (I10,2F10.2) 1 for each material
Col 1-10% Material number (N)
11-20° Young's modulus (ORT(N.lgg
21-30 Poisson's ratio (ORT(N,2

5.) Coordinate Cards

Col 1-10* Node Number
11-20 X-Co-ordinate
21-30 Y-Co-ordinate
6.) Element Cards (6I5) 1 for each element
Col 1-5*% Element number
6-10% i
11-15% j element connections
16-20*% m
21-25 not used
26-30* Material number
7.) Boundary Cards (2I5)

Col 1-5*%
6-10%

(I10,2F10.0)

Boundary node number
01 Fixed in Y direction
10 Fixed in X diréction

11 Fixed in both directions

. *Indicates that numbers should be ri
no decimal point in the field, all other num

decimal points inserted.

1 for each node point

(N)
Sonnin 53}

1 for each boundary condition

(NBC(I))

(NFIX(I))

ht adjusted with
ers should have
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8.) Load Cards (I10,2F10.2) 1 for each loaded point

Col 1-10%* Node number NQ
11-20 X-Load R(1)
21-30 Y-Load R(2)
Note: Load cards are terminated with a load at the last

numbered node whether or not a load exists there.

For an example, a 23" x 24" x 1" plate is loaded
with a 40 kip load in Configuration 3 (See Figure 2.3).
Young's modulus is taken as 29,500,000 psi and as 0.295.
Figure A.1 illustrates the problem The computer results
follow.

Load

“//’/”71””” Distribution
<<;> Case .3
[ 1) )

Resultant Load = 40 kips

Fig. A.1. Sample problem (24" x 24" x 1")
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J MATERTAL PROPERTIES

1 29500.00 0.30

O NODAL POINTS L el o ol s i ot

) 1 0.0 0.0

2 0.0 2400
3 2,400 2400
4 0.0 4,800
5 2. 400 44800

5 4,800 44800 = s e el
¥ T 0.0 7.200
5 2¢4)0 7.200

» Q 44800 7.200 -l
F 10 7.220 7.200
11 0.0 9,600

12 2.400 9,600 k!
13 44820 9,600
14 7.200 9,600
15 9. 600 9,600
16 0.0 12.000
17 2.400 12.000

_ 18 44,800 12.000 kb
: 1Y 7.200 12.000
20 9,670 12.000

B 21 12.000 12.000 Y
B 22 0.0 14.400
23 2.400 14.400

24 4.8)0 144400 RHT
25 7.200 14.400
26 9600 14.400

R 27 12.000 14400 iR
1 28 14400 14,400
26 0.0 16.800

30 2e4)0) 164300 Sl
31 4e8I0 164800
32 7.200 16.800
33 9,600 16 800
34 12.000 16.800
35 144400 16.8C0
37 0.0 19,200
3R 2.400 19200
B 36 44820 19.200
40 T« 200 19.200
41 Se 610 19.200
42 12.000 19.200
43 14,400 19,200
44 16800 19.200

R 45 19.220 19.200 S . 1a 4
46 0.0 21600
47 2.400 21.0609
F\\‘_f 48 4480 21,600
49 7.2)0 21-60\)
50 9.600 21,600
. 51 12.000 21,600
52 14.400 21.600
53 16.5800 21.600
54 15.200 21.600
HE 2Y . &HO0 21 . ADRO




59 7.200 24000
60 9.6J0 244032 83
61 12.030 24.000
b2 L4420 24.000
653 L6.820 24,000
b4 19.200 244000
65 21.690 24,000
65 240000 24.000
O CLEMENTS
1 1 2 3 Q 1
2 2 b) 4 C 1
3 2 3 5 0 1
4 3 O 5 G 1
B3 L R T G I
o B . % 3 9] 1
7 5 « 9 & 0 1
2 5 6 9 0 1
9 6 12 9 O 1
10 7 12 11 0 1
11 1 8 12 0 1
12 5] 13 12 U 1
13 R 9 13 0 X
L4 9 14 13 0 1
15 9 10 14 ¢ 1
L6 10 15 14 9] l
)7 11 Ll 16 0 1
18 11 L2 L7 0 1
19 12 18 L7 0 1
S T - T T D SR SN, 1 )
21 13 19 L8 0 1
pirs 13 14 19 0 1
23 14 20 19 0 1
24 14 15 20 0 1
25 .15 21 20 8] 1
26 L6 23 22 0 1
27 16 17 23 J 1
28 17 24 23 0 1
25 L7 158 24 8] 1
30 L8 25 24 0 1
31 L8 19 25 0 1
32 LY 20 25 0 1
33 L9 20 26 0 1
34 20 217 26 4] 1
35 20 21 27 V] 1
36 21 28 27 Q 1
¥ § 22 30 29 0 1
38 22 23 30 0 1
39 23 31 30 0 1
40 23 24 31 0 1
41 24 32 31 0 1
42 24 25 32 V] 1
%43 25 33 32 0 1
B 44 25 26 33 0 1
45 26 34 33 o] 1
46 26 27 34 C 1
e 47 27 35 34 0 1
: 43 27 23 35 J 1
45 28 306 35 0 1
B 50 23 38 37 9] 1
‘ 51 29 3N 38 0 1
52 30 39 38 0 1
53 30 31 39 0 1
N 2.3 4 () p N 1




55 33 42 %41 0 1
59 33 34 "2 ®) 1
60 34 43 42 0 1 84
61 34 15 43 ) 1
62 35 44 43 0 1
63 35 36 44 3] 1
€4 36 45 44 0 1
e R sk s A N K i ol
0b 37 38 AT 0 1
67 38 48 47 0 1
68 38 39 48 0 1
; 69 39 49 48 0 1
70 39 40 49 0 1
71 40 50 49 0 1 e
72 40 41 5C 4] 1
13 41 51 50 0 1
T4 41 4 5% O i R
75 42 52 51 0 1
76 42 43 52 0 1
17 473 53 52 0 1
75 ) H4 53 0 1
79 44 54 53 0 1
50 44 45 54 0 1
81 4% 55 54 0 1
§2 46 57 56 0] 1
&3 46 41 57 ] 1l
YA w1 54 57 0 1
B5 47 43 58 o 1
- £6 48 59 58 0 1
i 37 +8 49 59 ) 1
38 49 60 59 ¥ 1
89 49 50 60 D) 1
90 50 61 50 0 1
91 50 51 51 0 1
92 2L _ bE ~o&d . O RS
93 51 52 62 o 1
G4 52 63 62 0 1
95 52 53 63 0 1
96 53 64 63 0 1
57 53 54 64 0 1
93 53 65 54 0 1
59 54 55 55 0 1
100 55 Guh 65 G 1
G ROUNDARY CONDITIONS
1 11
2 11
4 11
i 11
11 11
£ 16 11
22 11
29 11
57 11
46 11
5H 11
57 19
54 1¢
59 10
60 1)
61 10
62 10
. 63 10
& i T O




O LOADS

‘)8 Oo\) "l.bO
59 0.0 -2.40 &
60 Q.0 =320
61 0.0 -44.80
62 0.0 6440
63 O.0 -8.00
B U i B L) SR K L
oh 0« -4.,80
66 CeD =240
I P D TRBL ACENENT S
| De O 0«0
2 U.0 0.0
3 -C.0001 -0.0003
4 0.0 J.0
5 -=0.0001 "’0.0003
. 7 0.0 0.0
3 -0. 0001 -0.0004
9  -0.0003 -0.0008
- 10 -0.0004 ~-0.0011
11 000 3.0
12 -0.0002 =0.0004
I3 -0, 0003 -0.0003
14 -0e 3005 -0.,0012
15 =0.0000 __=0.0017 _
Lo 0.0 00
1.1 -0.0002 =J.0004%
1 18, @Y . -0.0003 -0.0008
15 -0.0005 -0.0013
20 -0.00206 -0.0018
: 21 =0.0007 —0.0024%
P2 0.0 0.0
23 -0.0002 ~0.0004%
24 -0 0003 -0.,0008
25 -0. 0004 -0.0013
26 -0.C006 -0.0019
L 27 -0.0007 -0.0025
ZQ./ "’Oo OOUB '0 00031
29 0.0 y De 0
30 =0 0001. -0.0004
31 -0.0C03 -0.0008
32 -0 0004 -0.0014
33 -0, 0005 -0.0019
24 -0, 0006 - =0.0026
35 -0.,0C07 -0.0033
36 -0.0008 -0.,0040
S 0.0 De0
38 -0. 00UL -0.0004
39 -0.0002 -0.0009
40 -C.0C03 -0.C014
41 -0. 0004 -0.0020
B 42 e =0 0002“ s -0.0027
43 -0. 0005 -0.0034
44 -0. 0006 -U0.0041
B Cas -0.5007 -3.0049
46 0.0 0.0
v7 ~-0.0001 -0.0004
n 4R -0.0001 -0.0009
| 4 G =0.00N? =0 NN 14




o b Ve VAW S N e v WSS
53 -0.0003 -0.0043
54 -0.,00C3 -0.0050 86
55 -0.0004 -0.0059
506 0o O 040

o1 0e 0 -0.0004%
58 0.0 -0.0009
59 0.0 -0.0015
50 0.0 -0.,0021
ol 0.0 -0.0029
62 Ce0 -0,0037
()5 U.O -\)00045
H4 0.0 -0.0052
65 0.0 -2.0060
66 000 -000069
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FLEMFNT  X-STRESS Y=STRESS XY=STRESS MAX=STRFSS MIN-STRESS ANGL E*
1 le4950 0e6255 1.4071 2.5330 -D.4125 53.5838
2 -2.05%2 ~0et8995 ~1le65H23 063001 ~3,2138 =-35,0625
3 -1.8478 ~1le468% -1.5697 -0.0772 ~3.2394 =41.5581
4 -1.9416 -1.5081 ~1,7730 00614 -3.5111 =-41.5144
5 -2.4249 L0147 -1.7955 062092 -3.6488 =34,2799
6 2.2602 1.3520 1.7601 3.6239 -0.0116 52.2334
7 -2.3429 ~1.3300 -1.3990 0.0941 -3.,8236 =-37.9356
3 -2.0558 -1.730%9 -1.8776 -0.0358 ~3.,8010 =42.9064
9 -2.2681 -1.8697 -2.1199 Ue.0603 -4.1981 -42.3163
10 =266271 0 »130993 0 18668 01838 8 =3¢BH03 =33,8725
Il -2.5275 -1.259 -1.8543 0.,0660 -3.5533 =-35,5645
12 -2.5766 -1.2804 -1.9837 0.1584 -4.,0154 =-35.9534
13 =2.4310 =1.59172 -1.%80 -0.0214% -4,0069 =-38,9618
14 -2.5398 -1.6427 -2.1940 0.148B2 -4,3306 =39,2231
15 -2 3606 -240909 -2.1389 -0.0827 ~4,3689 =-43,1563
16 -2 5443 -2.1618 -2.4898 | Uelh09 -4.8530 =42.8381
17 -2.6515 -1.1095 -1.9889 0.1597 -3,9207 =33,8981
13 -2.6590 -1.1755 -1.8739 0.C981 -3.9326 =-34.,2019
- 19 -2.0162  -1.1575 -2.0286 0.2689 -4.0426 =-35.,1123
20 -2. 5450 ~1le4437 -1.9641 0.0095 -4 .0982 =36,4980
21 -2.5632 ~1.6221 -2.2210 0.2951 -4,3104 =-37,634C
22 -2.5334% ~1a06064 -2.1277  =0.0879 -4.4119 -39.8616
23 -2.0159 -1.3591 -2 .4840 J 2752 447501 -40.6693
24 -2e 5456 -2 .4U99 -2.3650 1598 -4.H957 =43,5724
25  =247295 _ ~2.4450  =2.8250 Q:Zﬁlﬁw,,m:5-4lbﬁ ~43.5588
26 -2.%49% -1.0459 -1.8812 Dedatl -3.7894 =34,4384
27 -2+ 404 -1.0831 -1l.8447 D.1406 -3.8641 =-33.5571
N 28 —2.46%1 ~leQ093 " L edylIBZ3 - 094001  omasOl4l =35.2419
Z'9 -2.6812 ~1+3128 -1e945¢0 D.0654 —440594 =35,3127
30 —2.4349 ~1.2114% -2,2425 0.4998 441501 =37.3471
- 31 =247071L =1.06942  =2.0886  -0.0515 - 443491 =38.1846
32 -2.4500 -1.5805 ~2.4584 O 4177 -4.,5143 =40.0199
323 -2.7492 -2.1776 -2.2159 -0.1696 ~4,7572 =-41.4216
34 -2.5260 -2.0843 -2.71517 0e4195 -5.02983 =42.6751
35 -2.8337 ~Ze0942 -2.527¢ -0.2354 -5.2925 =44,209%
35 -2.7433 -2.658% -3.02256 Je.3326 -5.7393 -44.5761
37 =2.1792 =0.9118 =1.8580  0.4182 -345092 =35.5872
34 =2.4659 =0,9680 -1.7881 02213 -3.6563 =-33,6304
39 -2.1322 -0.8280 —2.3711 0.6912 -3.6515 -36,26l4
40 -24540) -1.1907 29132 0e1633 -3.8940 =39.,2877
41 -2.1055 -1.0089 -2.2575 0.7658 —3.8801 =-33.1734%
42 -2.5423 -1.5553 =2.0474 0.C419 -4.,1799 =37.9572
43 =2,1CT79 =1.3560 =2.44183 07383  -4.2027 =40.6271
44 -2.06292 -2.0143 =-2.2000 -0.1006 -4.,5433 -41,0251
49 -2.13883 ~-1.4090 -2.6397 0.67C6 -4,0190 -43,2158
= 74ﬁ07_w:;71qu7_7—4.)L£d¢_wjg3§790mA7 -o 2269  =4,9901 =-43.8387
&7 -2.2303 -2.3133 -2.3266 .5551 -5.0988 =45,4209
43 —2.;39) 2.8765 -2.5863 -u.271( ~5.4444 =45,2043
49 =2.5203 m:g.7w95_7“7},Qul5vm_mv0.3016v ~5.0394 =46.0453
50 -1.6927 -0.7083 -1.8313 0.6962 -3.0973 =37.4797
51 -2.1405 -2.81906 -1,7172 Je3598 -3.3199 -34.4808
- 52 -1.6252 ~0,6039  =2,0068 L.0D435  =3.27126 ' -38.1561
53 -2.2327 -1.0630 =1.8771 O %lbU -3.6157T =36,3R25
54 -l.olBs -Ueflll -2.27217 1.093 -3.5233 =39,9625
55 -2.2800 -1.425% -2.,0111 u.dOBO -3,9089 =39,00062
'a'”“-1.0494 T -l.1621  -2.4332 = 1.0396 -3.8511 =-42.1407
57 «3223 ~1.85689 -2.1504%4 0.0667 ~4425719 -41.9515
- 55 -l.b&ﬁ? ~1.6019  =2.,6063 = = 0O, yézc ~4,2481 =44,5480
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63 =2.5519  =2.8066 -2.5211 -0.1550 =5.2036 =46.445"
64 -2.3353 -2 7160 -2.5571 0.0385 -5.0898 =47.122"
5H5 -l.0101 22T -1.8101 le1174 -2.5501 =40.3515
66 =le0bLS —o 6336 -1.,6333 05647 =2.8597  =3642667
67 -0.9232 -0.3246 -2.1371 le 5340 ~2.,7819 =41.013% _
68 =1.7726 -0e9563 ~1.3335 0e5139 =3.2428 =38.7243
69 =0.9772 -0.52 34 -2.2701 lea767 «3.0773 -42.7726
70  -1.8252  ~=1.3046 =-1.9566 0.4090 =3,5388 =-4l.21cC7
71 -1.0333 -0.9942 -2.3982 1.3599 =3.43713 -44.46177
72 -1.8840 =-1.7227 -2.0847 042829 ~-3,8896 =-43.8922
73 -1.1719 =1.4247 -2.5649 1.2697 ~3,8664 =—46.4175
74 -1.9551 ~2.2494% -242353 041379 ~4.3424 =40.8831
75 -1.3163 -1.9821 -2.663% 1.0349 -4.3333 -48.5623
e 16 =2.0239  -2.7479  =2.,3613° 0.,0030" " =4.7748 -49.358!
72 -1.9875 -2.5053 -2.7085 0.6758  =4,8287 =-50.1ll¢0
79 -2.1279 -343940 -2.4264 -0.2548 SERa2121 - =52.3375
) 19 =0.7398  =2.8182 -2.07176 Q5440 =4,1020 -58.2864%
) -2.1375 -2.2435 -1.9039 -0.2808 =4 ,1002 =45.17541
51 -2.)882 -2.222% -2.5639 044093 -4,7203 =-45.7521
g2 0.0 0e0 -1,8043 1.8043 -1.8043 =-45,020)
53 -1.0018 -0e4023 -1.5163 0.B433 =2.2479 =39.4130
84 N. 0083 0.0199 -2.1873 22013 —2.1732 =-44.924"
85 -1.1554 =0.8795 -1.7643 0.7523 =2.7871 =-642.7640
86 -042009 -0.4801L =2.213% <8773 -2.5583 =4648045
a7 -1.2272 -1.2210 -1.8511 06270 -3.,0752 =44,9521
AR -0.3589 -0.85717 242921 1.6974 =2.9140 =48.12044
89 =le332H -1.5898 -1.9425 0e&43506 =3.40719 -46486547
97 -0e5236 -1.2513 -2.4600 1.6058 -3.3807 =-49,19%¢
I ) | —1.4844  -2.1713 =2.08l)  Ce2813  =3,9370 =-49.6851
92 -0. 1864 —1.8792 =2.5172 l.2430 -3,9086 =5l.l24
93 -1l.6404 -2 7505 -2.1622 0.C347 ~4 4316 =52.2300
L 54 =1,0501  =2.,5096  =2.4501 0 0.7767 | =G H36d =53.292¢
95 ~1.82063 -3, sta -2.1625 -0.2215 -4 1407 =53.4221
95 -1.2031 -2.8751 -1.7947 -0e0553 L0190 =57.484)
97  =0.9515 -3.3241 =1.7542  ~0.0201 —4.2555 —62.0342
93 -0.5200 -1.2421 -2.2695 le4lob =3,1793 =45.5235
59 -2.3215 -2.7806 =2.4097 -0.1304 =4, 9717 =47.7204
168 =0.911717 -2.1931 -2.000¢  D.5438 ~3.6546 =-53.842
*Clockwise angle from v rt
of maximum stress fnrgelement N? ical 25 line Of action
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