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ABSTRACT 

RATION.AL FUNCT1ON E XTRAPOLATION 

Richard Joseph Gaydos 

Master of Science 

Youngstown State University, 1980 

In this thesis, I e xamine rational function 

extrapolation to solve the initial value problem in 

ordinary differential equations. Significant historical 

ll 

achievements leading up to rational function extrapolation 

are noted, and a thorough study is made of H. G. Russel's 

computer implementation of the method. That Watfiv 

program is then compared to an Adams Predictor Corrector 

program over a series of prohlems with an error tolerance 

of .0001. The overall results of the computer runs 

show that although computer costs are at times more 

expensive, rational function extrapolation is more accurate. 
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CHAPTER I 

INTRODUCTION 

There are a multitude of methods that can be used 

to approximate the solution to the system of initial 

value problems 

... , y), V (a) = C 
n -n n 

1 

for a< x < b ( 1) 

at specific points in the interval [a,b]. The solutions 

at other points can then be approximated by interpolation. 

Most notable are the one step Runge-Kutta and Runge-Kutta­

Fehlberg methods, multistep methods such as the explicit 

Adams-Bashforth and: impli~it Adams-Moulton methdds, the 

Adams Predictor Corrector method, and the extrapolation 

methods. 

functions. 

Extrapolation methods use polynomials or rational 

When attempting to solve (1) by the numerical 

methods, one should be aware of what stiff systems of 

equations are. A stiff system of equations has no 

unstable solution component, that is, no eigenvalue with 

large positive real part, and at least some very stable 

component, that is, at least one eigenvalue with a large 



2 

negative real part. Stiff systems can cause seve re 

problems in the above methods because rounding error in the 

computations may build up rapidly, producing erroneous 

results. However, the main concern of this paper is nonstiff 

equations without discontinuities that have no large 

oscillations in the starting interval, so that no addi­

tional features have to be built into the methods to solve 

( 1) . 

The order of a particular method refers to the 

amount of accuracy that one expects to obtain from the 

method. For example, Runge-Kutta Four is on O(h 4) method, 

that is, one expects the method to produce solutions accurate 

to some multiple of the step size h raised to the fourth 

power. Associated with each Runge-Kutta, Runge-Kutta-Fehl­

berg, Adams-Bashforth, Adams-Moulton, and Adams Predictor 

Corrector formula is some fixed order, so a fixed order 

method basically employs only one of the above named 

formulas. On the other hand, a variable-order method 

usually employs a series of formulas i .n such a way that 

if a solution to (1) relative to a particular error tolerance 

is not produced in a sufficient time, then a higher order 

formula is used. It will be shown that extrapolation can 

be a variable-order method. 

Exhaustive tests to compare the methods were 

carried out at the Universit7 of Toronto, from which 

two basic conclusions were reached. The first is that 

variable-order methods are best to solve (1) if the 



equations are not stiff. The other conclusion is that 

rational function extrapolation is the best overall method 

if function evaluations are not too costly, and that 

variable-order Adams methods are preferable if function 

evaluations are costly, since they take less function 

1 . 1 eva uations. The break even point for a costly function 

is approximately twenty five arithmetic operations oer 

1 
. 2 eva uation. 

The actual implementation of the Eurlirsch and 

Stoer rational function extrapolation algorithm that 

was tested in Toronto is called DESUB, and is due to P.A. 

3 Fox. However, in a subsequent series of tests, it was 

f9und that DESUE had some problems, and that there was a 

better version of the Burlirsch and Stoer algorithm 

which was less sensitive to the choice of starting step 

size, and which was not as biased to the higher-order 

4 methods, hence more accurate at lower error tolerances. 

This better version was written by H. G. Hussels and is 

1T. E. Hull, et al, "Comparing Numerical Methods 
for Ordinary DifferentialEquations," SIAM Journal of 
Numerical Analysis, IX (4, December 1972), 605. 

2 Hull, 614. 

3 P. A. Fox, "DESUE: Integration of a First Order 

3 

System of Ordinary Differential Equations," Mathematical 
Software, ed. by John Rice (New York: Academic Press, 1971), 
pp . 4 8 6 - 5 0 7 . 

4wayne H. Enright and T. E. Hull, "Test Results 
on Initial Value Methods for Non-Stiff Ordinary Differential 
Equations," SIAM Journal of ~Jurnerical Analysis, XIII (6, 
December 1976), 959. 
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called DIFSYl. 5 

In a separate set of tests, L. F. Shampine, H. A. 

Watts, and S. M. Davenport reached the same conclusion, 

that the best methods to solve initial value problems for 

nonstiff ordinary differential equations are the extrapo­

lation and variable-order Adams methods. 6 They were also 

in agreement about Hussels' program, in regards to DIFSYl's 

improvement over the original algorithm's behavior with 

respect to the choice of step size. 7 The results of all 

8 these tests were summarized by J. D. Lambert. 

A brief summary of the key historical extrapolation 

results is presented in Chapter II. In Chapter III, 

DIFSYl is examined in detail. Chapter IV explains how 

DIFSYl was compared to an Adams Predictor Corrector 

program, and the test results appear in Chapter V, while 

the conclusions appear in Chapter VI. 

5H. G. Hussels, "Schrittweitenteuerung bei der 
Integration gewohnlicher Differentialgleichungen mit 
Extrapolationverfahren," (unpublished M. Sc. Thesis, Universit~t 
Koln, 1973). 

6L. F. Shampine, H. A. Watts, and S. M. Davenport, 
"Solving Nonstiff Ordinary Differential Equations - · The 
State of The Art," SIA...1\1 Review, XVII (3, July 1976), 377. " 

7L. F. Shampine, H. A. Watts, and S. M. Davenport, 382. 

8J. D. Lambert, "The Initial Value Problem for 
Ordinary Differential Equations," The State of The Art in 
N~~erical Analysis, ed. by D. A. H. Jacobs (London: 
Academic Press, 1977), p. 479. 
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CHAPTER II 

HISTORY OF EXTR\POLATION METHODS 

In this section, I will look at some of the key 

extrapolation ideas. Then the Bulirsch and Stoer rational 

function extrapolation method is examined. It is oft:en 

possible to approximate some unknown quantityB, by a calcu­

latable quantity T(h), depending on some parameter h > 0, 

so that the limit as h approaches zero of T(h) is B. 

For extrapolation to proceed, there must exis t constants 

a 1 , a
2

, ... , c 1 , c 2 , ... , g1 , g 2 , ... , and H so that for 

j = 1, 2, 3, and for h < H, T'('h) 

g. 
+ a.h J + E(h), where 

J 

gj+l JE (h) I < c .h is a bound on the 
J 

truncation error. When this is possible, it is said that 

T(h) admits an asymptotic expansion for h approaching 

zero. The idea of extrapolation is to speed the convergence 

of T(h) to the unknown B by combining approximations 

obtained by some discretization method at two different 

step sizes to eliminate terms in the asYT:1ptotic expansion. 

D. C. Joyce cites the following example. 9 To find an 

approximation to the familiar geometric quantity n, one 

can examine two sequences I(h) and U(h), where I (h) 

9D. c. Joyce, "Survey of Extrapolation Processes 
in Numerical Analysis," SIAM Review, XIII (4, October 1971), 
436-7. 



represents the perimeter of an n-sided polygon inscribed 

in a unit circle, and U(h) r epresents the perimeter of 

6 

an n-sided polygon circ~~scribed around a unit circle, with 

h = 1 
n 

and 

Geometric arguments show that 

I (h) 

U (h) 

= 2 sin TT h 
h 

= 2 tan TTh 
h 

Let M(h) = ! I(h) and N(h) = ~ U(h). Since the Taylor 

series expansions for sin x and tan x Are respectively 

3 5 
sin x = x - X X 

3T + 5! 

and 

7 
X 
7 ! + . 

tan x 
3 

X 
= X + 3 

2x
5 + 17x

7 

+ rs ns 

substitution gives 

M (h) 

and 

N (h) 

+ . • • I 

It can also be shown that M(h) is an increasing sequence 

of lower bounds for TT, and that N(h) is a decreasing 

sequence of upper bounds for TT • That M(h) admits an 

asymptotic expansion as h approaches zero can be s een since 

A--
1 

= 
(-1) jTT2j + 1 

(2j + 1) ! 
for j = 0, 1, 2, . 



and 

g. = 2 j , for j = 1, 2, 3, . . . 
J 

A similar result can be shown for N (h) . In 1654, Huygens 

suggested using two new sequences 

4M (h) - M(2h) 
S ( h) = 3 

and 

V(h) 2N (h) + M( 2h) = 3 

He showed that 

S(h) = 1T -

and that 

V (h) = TT + • • • I 

from which the reader can see that the h 2 terms have been 

4 eliminated from the sequences, making the error O(h) as 

opposed to O(h 2). These Huygens sequences are examples of 

extrapolation formulas. They accelerate the convergence 

of the sequences toward TT, and more than double the 

7 

accuracy. 10 L.F. Richardson produced his deferred approach 

to the limit theory to solve (1) in 1910. He showed that the 

h 2 term in the asymptoti c expansion could be eliminated by 

combining approximations obtained from two different 

step sizes h 0 and h 1 , by means of the formula 

10 D. c. Joyce, 437. 
WILLI AM F. MAAG LIBRARY 

YOUNGSTOWN STATE UNIVERSITY 
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if central diffe rence formulas were used in the descre­

tization method to find T(h), since the asymptotic e xpansion 

11 would then contain only even powers of h. In 1912, 

C. Runge used 

T(2h) - T(h) 
15 

to estimate the error in T(h) when solving initial value 

12 problems. 

W. Romberg dealt with linear iterative e x trapolation 

to integrate a function over an interval, in 1955, which 

dealt with discretization methods based on the trapezoidal 

rule, T(h), and the midpoint rule, U(h) . 13 Let T~ be 

the trapezoidal value T(hi) and U~ is the midpoint value 

U(h . ). If 
l. 

Ti 
m T ( h . , h . + 

1
-;- . • . , h . + ) , 

l. l. l.ffi 

and 

Ui U ( h . , h . + l, ... , h :: + ) , m .1. .1. .1. m 

where 
h. 

h. l. for 1, 2 ' and = s' s = • • • I m 
l. +s. 2 

for i = 0, 1, 2 ' ... ' 
then we have for i = 0 ' 1, 2' ... and m = 1, 2' 3' 

llD. C. Joyce, 442. 

12D. C. Joyce, 442. 

13D. c. Joyce, 452-3. 



9 

·+1 . 
Tl - Tl 

Ti+l + m-1 m-1 
m-1 ( 2) 

and for 1 

and 

1, 2, 3, and m = 0, 1, 2, 

ui+l _ ui 
ui+l + m-1 · m-1 

m-1 

i-1 i-1 
T + U m m 

2 

( 3) 

( 4) 

With these for~ulas, Romberg had developed a method to 

accelerate convergence for the numerical integration prob­

lem, if the values T~ and U~ for i = 0, 1, 2, ... were known. 

The T? for i = 1, 2, 
l • • • I were then calculated by (2), the 

T~ for i 1, 2 , and j = 0, 1, 2, ... were calculated 
J 

by ( 4) I and the u~ for l = 0 , 1, 2 I ... and j = 1, 2, 3, 
J 

were calculated by (3). As the reader will shortly see, (2) 1 

(3) 1 and (4) are somewhat similar to the formulas Bulirsch 

and Stoer developed for rati~nal function extrapolation. 

In 1961, Bauer showed that TO converges superlinearly 
m 

0 as m• 00 • The difference in absolute value between T and B, 
m 

the value of the integral of the function f(x) over (0,1), 

is a constant divided by 2m(m+l) 1 if f(x) is 2m+ 2 times con-

1 tinuously differentiable on (0,1), and if hk - is the 
2k 

t · used. 14 T' f t 1 · s eps1ze sequence nere ore, one ge s super 1near 

convergence since 
"'a - B S: 1 I 2 (m+l) (m+2) 

cl/:c2 .1m+l 
lim = lim lim = 0. 
m• oo 

,.,,0 - B m• oo c2 I 2m (m+l) 
ffi• oo 4 (m+l) 

.l m 

14 D. C. Joyce, 456. 



Roland Bulirsch generalized (2) to 

2 
h. 

l 

Ti+l + Ti 

+ ( :~l )2 :-: 
h:+m 

Ti+l - h~ 
m-1 1+m 

h~ - h~ l l+m 

15 

He and Josef Stoer formalized this idea of polynomial 

extrapolation to solve (1) in 1964, stating that for a 

discretization method T(h) with asymptotic expansion as 

described above, a polynomial 

Pi (h) = 
m 

g g 
B + bl h l + . . . + bmh m 

can be defined such that 

• • • I i + m. 

Then T ( O) is approximated by Pi(O) = 
m 

B , where Ti is 
m 

defined iteratively a~ T(h. ,h.+l' 
l l 

---, h . .J..)-= 
l In 

16 
. B-. 

GI= GI, then f5) generalize3 to 

.,.,·i = 
~!Il 

( 
.. hi )G 
-- - 1 
h.+ 

. l m 

After extensive testing, they concluded that rational 

15 0. C. Joyce, 458. 

16 
D. C. Joyce, 464. 

If 

10 

(5) 



17 function extrapolation was preferable. 

11 

A rational function is the quotient of two polynomials; 

that is, for rational function R(h), 

R(h) 
P (h) 

= Q(h) 

where P(h) and Q(h) are polynomials in h. Suppose 

where M is [k/2] and N is, [(k + 1) /2] , where [x] indicates 

the greatest integer not exc9eding x, with the stipula­

tion that Rk(h.) = Y., for j = 0, 1, ... , k, and · for 
J J 

k = 0, 1, ... , L, where the Y. are the approximations 
J 

obtained from some discretization method. Mand N are 

chosen this way to allow the sequence (0,0), (0,1), 

(1,1), (1,2), ... . of rational functions to be used. The 

reader will shortly see that this gives the desired extra­

polation formulas. In order to find these formulas, given 

Rk(h) as defined above, let us find a similar rational 

function for Rk+l(h). Clearly 

for all hj, j = 0, 1, ... , k by the way ~(hj) was defined. 

17 Roland Bulirsch and Josef Stoer, ";-Jumerical Treat­
ment of Ordinary Differential Equations by Extrapolation 
Methods," Numerische Mathematik, VIII (1966) ,1. 
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As a candidate for ¾+l(hj), let us look at 

( 6) 

Clearly, ( 6) is zero for all h., j = 0, 1, ... , k , and 
J 

if we stipulate that B(hk) = 0, then Tk+l(hk) = O. 

Also, we want to force Tk+l(hk+l) = 0, so it must be the 

case that 

We want Tk+l to be a polynomial of degree Gk+ 2)/2] i n 

h, and linear in y, so that we can obtain 

in order to obtain a rational fun ction. Upon reexamining 

( 6) ' since Tk is a polynomial of degree [(k + 1) /2] then 

if A is a constant, AT k is sti11·· · a polynomial · 6f 

that degree. If B(h) is lin8ar in h , since Tk_1 (h) is 

of degree [k/2] in h, then B (h) Tk-l (h) is of degree 

[(k + 2)/2]. There are two cases to examine, k being 

odd or even. If k is odd, and if [ k/2] = c, then 

[(k + 1)/2] = [(k + 2)/2] = c + 1, and the degree o f 

B(h)Tk_1 (h) _ is c + l. If k is even, an d if [f/2] = e, 

then [( i<+l )/2] = c and [(k+2)/2] = c + l = 

degree (B(h)Tk _1 (h)). If we let 

A = 

and 

(h - hk+l)Tk -l(hk+l) 

Tk (hk+l) 



B(h) = h - hk, 

which incide ntally satisfies B(hk) = 0, then clearly (7) 

is satisfied. Now, plugging these A and B(h) into (6) 

yields 

Tk+l(h) = 

13 

Thus, we have a recurrence relation to calculate Pk+l and 

Qk+l once we know Pk, Qk, Pk-l' Qk-l' Yk+l' hk+l' and hk. 

When the sequence (0,0), (0,1), (1,1), (1,2), ... is used 

for (M,N), then the following scheme exists for rational 

f . l . 18 unction extrapo ation. This scheme was first formalized 

by Stoer in 1961. 19 

18Roland Bulirsch and Josef Stoer, "Fehlerabschat­
zungen und Extrapolation mit rationalen Funktionen bei 
Ve rfahren vom Richardson--Typus," Numerische Mathematik, 
VI (1964), 420-1. 

19 .. 
Josef Stoer, "Uber Zwei Algorithmen zur Inter-

polation mit rationalen Funktionen," Numerische Mathematik, 
III (1961), 285-304. 



Ri = T(h . ) 
0 l 

i+l Ri 
Ri+l R 1 -

Ri + m- m-1 = m m-1 ( h:!J ( l Ri+l 
m-1 

Ri+l 
m-1 

f orm > 1. Letting 

and 

Ri+l 
m-1 

Ri ) m-1 1 -
Ri+l 

- m-2 

then (8) can be converted to 

ci+l wi+l 
m-1 m-1 = 

(~)2 Di - Ci+l 
hi+m m-1 m-1 

, form> 1, 

and 

with 

and 

(
-h~ ) 2 
h . + l ffi 

( 
h. ) 2 

hi:m 

wi 
m 

Ci 
0 

= Ci 
m 

= D.i. 
0 

wi = T (h . ) 
0 l 

, form > 1, 

i-1 D I m 

= T (h.) 
l 

- T(hi-1) 

14 

( 8) 

( 9) 

The underlying discretization method used by Bulirsch and 
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20 Steer is due to Gragg. It is called the Modified Midpoint-

Rule. It is listed here for one equation, but can be 

easily adapted to a system of equations. 

Yo initial condition 

z 0 =Yo+ hf(a,y0 ) 

Yr+l =Yr+ hf(xr + h/2,zr), for r = 0,1, ... ,n-l 

and 

Then 

and 

and finally 

G(h) 

U(h) Yn 

z 
n 

hf(a,y) n 
2 

T(h) = U(h) ; G(h). 

0, 1, ... ,n-1 

U, T, and Gall have asymptotic expansions in even powers 

of h, with coefficients independent of h, which is 

necessary for this h 2-type extrapolation process to be 

applied to any sequence of hk, rather than just the 

21 sequence (h,h/2,h/4,h/8, ... ). 

In Chapter III, I will examine the program 

DIFSYl in detail. This program does Bulirsch and Steer 

rational function extrapolation, using Gragg's Modified Mid­

point-Rule as the underlying discretization method. 

20william B. Gragg, ''On Extrapolation Algorithms 
for Ordinary Initial Value Problems,'' Siam Journal of 
Numerical Analysis, II (3,1965), 395-6. 

21 ·11· 396 W1 1am B. Gragg, . 
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CHAPTER III 

A.~ALYSIS OF DIFYl 

In this chapter, the rational function extrapo-

lation program DIFSYl will be examined in detail. It is 

22 H. G. Russel's Watfiv program. The version examined here 

. . . f . ht 2 3 
is an implementation which I received rom W. H. Enrig , . 

I made modifications to remove some unnecessary statements 

and to add output facilities. A double DO loop was added 

to zero out an array. This was necessary in order to imple-

ment the program with Youngstown State University's Watfiv 

interpreter. I also supplied a main program segment that 

sets the initial step size H1NIT, the maximum step size, 

HI~~X, and the error tolerance, EPS, and defines the initial 

x value, X 1 called a in (1), the final x value, xmm, 

called b in (1), the number of equations, N, and the 

initial values, y(l), y(2), ... , y (n), called c
1

, c 2 , ... , 
en in (1). It also sets a variable NOFNS, -declared COMMON, 

equal to zero. NOFNS is incremented through the Hussels 

program each time a call is made to the EXTERNAL subroutine 

YF, which evaluates the functions f 1 , f 2 , ... , fn, from 

(1), at specified points. Russel's program is contained as 

a subroutine called METHOD. The main program makes the call 

22
H. G. H 1 _ usse s. 

23 Wayne H. Enright, Personal Communication. 
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CALL METHOD (N,YF,X,Y,XEND,EPS,HMAX,HINIT) by which control 

is passed to METHOD, which then attempts to solve (1). 

METHOD calls YF by the call CALL YF (X,Y,DY), where DY is 

an array to hold the values of f 1 (x,y1 , ... ,yn), ... , 

fn(x,y 1 ,. ... ,yn). A step by step description of DIFSYl is 

given in Appendix A in the form of comment cards in the 

program, so my intention here is to explain the three 

major areas of interest in the program. These are what or-

der of extrapolation is used, when and how the step 

size h is changed, and when and how results are accepted 

as correct. 

The program contains logical variables KONV, KL, 

and GR which are partially used as switches to control 

the order of extrapolation. KONV is always false when 

the order of extrapolation that is being attempted is 

less than or equal to three, which is half of the maximum 

allowable order six. It is also used for error testing, 

and is kept true if an error test criterion, which will 

be described shortly, is passed. KL is true only the 

first time through the extrapolation loop, when only 

one modified midpoint value is known. Extrapolation 

cannot be performed without two different modified midpoint 

values. GR is true only when the order of extrapolation is 

at least five and is used in connection with changing 

the step size. It, in effect, prohibits the program from 

altering a step changing parameter FS. The order of 

extrapolation is controlled as follows. First through 
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fourth-~rder extrapolations are carried out without 

testing for convergence, with possible modifications of 

the step size between each iteration. After fourth order, 

a test is made for convergence. If successful, the x 

and y values are printed, ~nd the process continues with 

a first-order extrapolation at the new point, called X, 

or control is returned to the main program if the interval 

has been fully covered. If convergence was not reached, 

there may be a modification to h, which will be described 

shortly, and then fifth-order extrapolation is attempted. 

Convergence gives the same result. Failure yields a 

possible modification to h and sixth-Jrder extrapolation 

is attempted. Again, convergence gives the obvious result. 

Failure means sixth-order extrapolation may be attemoted 

three more times with a different step size each time. 

There is also a counter JTI that is incremented each time 

one of the step size parameters, FY is less than .7 times 

the previous FY, or is greater than .7. An increment to 

JTI passes control back to the point where first order 

extrapolation is begun again. This is a built in safety 

valve so that if the extrapolation loop does not yield 

convergence, then the program will not continue in an 

infinite loop. A value JTI greater than five means the 

program stops iterating and returns control to the main 

program segment. Convergence may always be reached at 

fourth-order extrapolation, so the method may not be of 

variable order. If convergence is not reached, however, 
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the program is free to vary its order. 

The step size h is controlled as · follo0 s. First, 

the program uses the 

(h, 
for rational function 

sequence 

sequence 

h h h h h ~2) 2' 3' 4' 6' 8' 

extrapolau ion . rather 

h 

16 

h 

32 

(10) 

than the 

because it yields equal accuracy with only half the number 

of operations ~24 Recall that (9) needs (h./h.+ ) 2 computed. 
l l m 

DIFSYl stores the values in the D array, and depending 

on the order of extrapolation being used, assigns values 

when needed. For example, when (h3/h
6

)
2 

is needed for an 

even order e xtrapolation, that is, when the order counter L 

is odd, the D(4) is set to 64/9, since 

h 3 = h/3 and h
6 

= h/8, 

h/3 
and = = h/8 

8 

3 

and ( J )2 ~ ~4 
• 

= ( hih+il· -k)2 So, in effect, D(k) - --- Also, if the present 

order of extrapolation is i, then 

24 Roland Bulirsch and Josef Stoer, "Numerical 
Treatment of Ordinary Differential Equations by Extra­
polation Methods," 5. 
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(h. ·)2 (h )2 ( h )2 
D(i) = 1+l-1 = _l = __ = M2 

h. h . h/M 
l l 

where M stores the current denominator in (10). However, 

h is not kept constant throughout the program. Most often, 

h is changed by the formula h = h(FY), where 

1 

) 2k - 1 

where EPk decreases fork= 1, 2, 3, 4, which occurs when 

the order of extrapolation is one, two, three, or four. 

FY will increase h if 

and decrease h if 

If 

then h will not change. If the program gets completely 

through. the rational function extrapolation loop, that is, 

gets to a point where no convergence has been recently 

obtained, then h is halved, and another attempt is made 

from first-8rder extrapolation on. However, since JTI is 

also incremented, this canno~ happen more than five times 

without success. There are also limits on h. If h 

becomes smaller than HMIN, then the program stops. If h 

becomes larger than HMAX, then HMAX is assigned tQ h. 

Finally, achieving convergence means that the most 

recently extrapolated value minus the second most recently 
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extrapolated value in absolute value, divided by the step 

size h, is less than or equal to EPS, the user specified 

error tolerance. When this is the case, the point x and 

the values of y 1 (x), y 2 (x), ... , yn(x) are printed. Then, 

if the end of the interval has not been reached, the process 

begins at a new point, determined by the new value picked 

for h. 

Next, I will explain how DIFSYl was compared to a 

single equation Adams Predictor Corrector program, which 

I modified and adapted to handle (1) . 25 

25 1 · Richard L. Burden, J. Doug as Faires, 
Albert C. Reynolds, NumericaT An·a·lysis (Boston: 
Weber and Schmidt, 1978), pp. 268-9. 

and 
Prindle, 
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CHAPTER IV 

EXPLANATION OF COMPARISON CRITERIA 

As mentioned in Chapter I, past research has shown 

that DIFSYl is one of the best programs to solve (1) .
26 

I 

did a series of tests over a set of eight problems which 

appear in the next chapter. Recall that variable-order 

d th d 1 t . t . 2 7 A ams me o s were a so compe i ive. One tested was 

28 DIFSUB, due to C. W. Gear. DIFSUB also appears in 

29 -
Gear's text on initial value problems. · However, upon 

examining DIFSUB, I found it to be a very large, multipur­

pose program, capable of handling stiff systems, and 

requiring subroutines for matrix inversion and the computa-

tion of partial derivatives. It has been mentioned that 

such programs should be viewed as complete software 

packages, rather than as single methods. 30 However, I 

mention one small test of DIFSYl with DIFSUB on problem one 

in Chapter VI. 

26 Wayne H. Enright and T. E. Hull, 959. 

27T. E. Hull, et al, 605. 

28c. William Gear, "DIFSUB for Solution of Ordinary 
Differential Equations," Communications of the ACM, 
XIV (3, March 1971), 188-90. 

29c. William Gear, Numerical Initial Value Problems 
in Ordinary Differential Equations (Englewood Cliffs, 
New Jersey: Prentice-Hall, Inc., 1971), pp. 158-66. 

30L. F. Shampine, H. A. Watts, and S. M. Davenport, 376. 
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The program that I compare to oIFSYl is a fourth­

order Adams Predictor Corrector program which I adapted 

to handle a system of n equations. 

PC WATFIV. It appears in Appendix B. 

The program is called 

I gave it the exact 

output features that were built into DIFSYl, so that no 

time differential would be realized when printing. PC 

outputs when the maximum difference in absolute value 

between the predictor value and the corrector value is 

less than the error tolerance EPSIL, in all components. 

It changes step size relative to the formulas 

= (EPSIL)h 
( )

.25 

q .2IPREDICTOR(I) - CORRECTOR(I) J 

h = qh, 

if q is between .1 and one, and h 

than . 1. 

.lh if q is less 

I chose .0001 as my error tolerance for two reasons. 

First, since PC is a fourth-order method, it would easily 

be able to accomodate this tolerance, since initially h 

is l.5(EPSIL) · 25 . Second, I was curious to witness DIFSYl's 

performance at a relatively low error tolerance, since 

it is mentioned that DIFSYl is not as good as the variable­

order Adams, as well as Runge-Kutta methods, for low error 

31 
tolerances. This makes sense, since a program like DIFSUB 

starts with a first-order method and works up in order, 

and the higher the order, the more function evaluations, 

31 Wayne H. Enright and T. E. Hull, 959. 
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and consequently, the more time that would be needed. Since 

DIFSYl does not even check for convergence until after 

fourth-order rational function extrapolation is performed 

in hopes of increasing the step, it seems logical that it 

would take slightly more time at a lower error tolerance. 

I compared DIFSYl and PC in four main areas: 

accuracy, number of function calls, computer time, and 

computer storage. Accuracy is probably the most important 

area to the casual user, who wishes only a solution to 

the problem. For six of the problems, the actual solution 

is evaluated at the right endpoint of the interval for 

each equation. It is then subtracted from the value 

which DIFSYl or PC finds. The absolute value is taken, 

and this is referred to as the accuracy. For the other 

two problems, both of which are nonlinear systems, the 

actual solution at the right endpoint is taken to be the 

4 value obtained from a Runge-Kutta Four program, an O(h) 

method, which integrates the equations with step size .001. 

Accuracy is then determined in the same manner. If the 

results for individual problems in the next chapter have 

more than one value listed under accuracy, it is because 

not all equations in the system yielded the same accuracy. 

Both programs were run in single and double precision, with 

single precision only to determine which method is more 

susceptible to roundoff error. 

The reader familiar with th ost of computer time 

can see that considerations on comp, ?r costs must be made. 
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If a function is very complicated to evaluate, obviously 

one would like it to be evaluated as few times as possible. 

Each time a call is made to evaluate a function, both prog­

rams increment a counter to record the call. However, 

DIFSYl evaluates all n components of a system on each call, 

while PC evaluates only one specified function, so a true 

comparison of number of calls can only be made if the num­

ber of PC's calls is divided by the number of equations in 

the system in question. I adapted PC to evaluate all n 

components at once, like DIFSYl. I found this to take 

slightly more computer time and storage, because dummy 

variables were needed to send all n values, so the figures 

quoted here are for a PC which evaluates components one at 

a time. 

Computer time and storage are the final two ways 

in which DIFSYl and PC were compared. Time has been divided 

into compile time and virtual CPU time. Compile time is the 

amount of time that it takes the computer to translate a 

program from WatfiV, a high level language, to a machine 

text, and virtual CPU time is the amount of time the compiled 

program actually spen~s solving the initial value problem 

in the central processor, not counting time for the parti­

cular system's paging apparatus to function. Finally, a 

comparison is made between the programs' storage for the 

actual DIFSYl and PC object codes as well as the amount of 

array area that each require. Clearly, the program which takes 

up less of the computer's costly time and space would be more 



desirable, providing it gave acceptable accuracy. The 

results for the test runs on the eight problems are given 

in the next chapter . 

• 

26 
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CHAPTER V 

TEST RESULTS 

DIFSYl and PC were put through a series of computer 

tests on the Amdahl 470 V/5 computer at Youngstown State 

University. The eight problems tested were as follows. 

Number one is included because of an upcoming comparison 

with DIFSUB. 

y I 

1 -y 
1 

a = O , b = 2 

= 1 

-x Solution: y = e 
1 

Number two is a logistic growth problem. 

y I = 
1 

a = 0 , b = 5 

Solution: y 1 = 20 

1 + 19e-x/4 

Number three is a conflicting species problem. 

y I 

1 

Y I = -.001 
2 

a = 0 , b = 4 

= 30 

= 30 

Solution: Given by Runge-Kutta Four. 

Number four is a nonlinear chemical reaction problem. 



y I = -y 
1 1 

= 1 

Y2 
I = Y1 - y22 Y2 = 0 , 

Y3 
I = y22 Y3 = 0 , 

a = 0 , b = 1 

Soluti on: Given by Runge-Kutta Four. 

Number five is a linear chemical reaction problem. 

y I = 
1 y = 2 1 

y I = -2y - y 
3 1 3 = 2 

a=O,b=2 

Solution: y 1 
= -6ex + 8e 3x 

= -19e 2x + 20e 3x 

6 X 4 3x y = e - e 3 

Number six is a non-autonomous problem. 

Y1 
I = Y2 1 Y1 = 1 

I 2 + 1 1 Y2 = Y1 - X , Y2 = 

a = 0 , b = 6 

Solution: 2 + 1 Y1 = X 

Y2 = 2x + 1 

Number seven is a mildly stiff system. 

Y1 
I = -y + Y2 + 2x Y1 = 3 1 

, 

Y2 
I = Y1 - 2y2 Y2 = 0 , 

28 



Number 

y I = 
3 

a = O , b = 3 

Solution: Y1 = e-x/2 + 

-3x +. Y2 = -e 

Y3 = -x -e /2 + 

eight is a mildly stiff 

y I = 
1 

-Sy 
1 

a = O , b = 3 

e-3x/2 

2 + 1 X 

e-3x/2 

sy;stem. 

Solution: Y1 = e-lOx + e-4x 

-lOx y 2 = e 

29 

+ 2 
1 X = 

2 6x + X - + 1 

= 2 

The test results for the individual problems are presented 

in Table 1. In the remainder of this chapter, the results 

are presented for all eight problems viewed as a group, so 

that any variance in one or more of the comparison parameters 

caused by a single problem will be averaged into the group. 

However, some additional individual results are presented 

in the next chapter. 

In regard to number of function calls, DIFSYl made 

an average of 323.75 calls to its function evaluation sub­

routine, while PC made an average of 380 if the number of 

calls for a system is divided by the number of equations, and 

9 0 2 . 5 if not. · 

Both programs took an average of .24 seconds per 

problem to compile each source code. Average virtual CPU time 



Number 

1 
D 2 
I 3 
F 4 
s 5 
y 6 
1 7 

8 

1 
2 
3 

p 4 
C 5 

6 
7 
8 

TABLE l 

TEST RESULTS FOR INDIVIDUAL PROBLEMS 

CPU CPU Accuracy C 

b 
Calls Compile Time- Time-

Timea All b 
Points Only Double 

108 .22 .0376 .0335 10 
126 .24 .0486 .0406 11 
126 .24 .0683 .0598 6 

75 .26 .0500 .0486 10,6,6 
1419 .24 .9154 .8514 9,8,9 

168 .23 .0849 .0744 5 
195 .24 .1260 .1215 0 
369 .25 .1890 .1792 1 

68 .24 .0271 .0145 6 
168 .23 .0646 .0351 7 
264 . 26 .0764 .0496 6 
132 .24 .0317 .0238 3 

3012 .24 .7036 .4943 4,3,4 
408 . 24 .1081 .0698 2 
984 .24 .2340 .1765 0 

2184 .23 .6222 .3995 1 

aCompile time is given in seconds. 

bCPU time is given in seconds. 

c 10-accuracy_ Accuracy is given as 

dObject code is given in bytes. 

Single 

6 
4 
pe 
5 
F 
2 
0 
1 

4 
F 
F 
3 
F 
F 
F 
F 

eAn F signifies no output was received. 
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Objectd 
Code 

5408 
5464 
5568 
5584 
5696 
5512 
5720 
5672 

7048 
7104 
7248 
7288 
7416 
7200 
7432 
7360 

for DIFSYl is .189983 seconds, and for PC is .233454 seconds, 

if the programs are allowed to output data wherever they wish, 

and .176119 seconds and .157882 seconds, respectively, if 

they are modified to output data only at the right endpoint 

of the interval. 
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DIFSYl needed 528 bytes of array storage for each 

problem, while PC needed four hundred. For object codes, that 

is, the amount of storage needed for the compiled programs, 

DIFSYl needed an average of 5578 bytes, while PC needed an 

average of 7262 bytes. 

In terms of accuracy, recall, both programs were to 

consider convergence to be achieved if the two values being 

compared were accurate to within 10-4 . In double· precision, 

1 . h' 10- 6 · 75 h'l DIFSY was accurate to wit in on the average, w i e 

. h' 10- 3 · 6 h Th PC was accurate to wit in on t e average. ese 

results are analyzed in the next chapter. 
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CHAPTER VI 

CONCLUSIONS 

In this chapter, the results of Chapter V are ana­

lyzed. The number of function evaluations and the computer 

time and storage are clearly influenced by the step size h, 

since this has a direct bearing on how many times the method 

must be called to solve (1) over [a,b]. By construction, PC 

restricts h more than DIFSYl, a fact that can be seen by 

viewing output, since PC prints out at far more points per 

problem than DIFSYl. For example, in problem five, PC pro­

duced 151 output points, while DIFSYl produced only 53. Over 

all problems, PC produced about four and a half times as 

many output points as DIFSYl. Depending on the user's point 

of view, this could be good or bad. For example, if one re­

quires the solution to (1) at only a few points in [a,b], 

then DIFSYl appears more suited to their needs. The number of 

output points difference is clearly seen in the average vir­

tual CPU time for output at all points, since on the average 

DIFSYl is about .043 seconds faster per problem. However, if 

the user desires output at the right endpoint only, then 

average virtual CPU time for PC is about .018 seconds faster. 

In regard · to program and array storage, although 

DIFSYl needs on the average 128 more bytes of storage for its 

arrays, it also need 1684 less bytes for its object code. 

So on the average, DIFSYl saves the user 1556 bytes of space. 



33 

The main advantage of the rational function extrap­

olation program appears to be in the accuracy requirement. 

Although both programs specified that the output values be 

accurate to within 10-4 , DIFSYl was on the average accurate 

to within 10- 6 · 75 , while PC was only accurate to within 

10 - 3 · 6 h" b d t th f h . Tis appears to e ue o e act tat the Adams 

Predictor Corrector program is more susceptible to roundoff 

error. To confirm this, I ran all eight problems in single 

precision for both methods. DIFSYl produced output for six 

out of eight of the problems, while PC could only produce 

output for two out of eight problems. Both DIFSYl and PC 

were on the average accurate to within lo- 3 · 25 in single 

precision. Errors were returned for attempting to divide by 

zero in all six failed PC runs, while the two DIFSYl failures 

were due to page limit being exceeded in problem three, and 

job time being exceeded in problem five. This implies that 

PC builds up roundoff error at a faster pace than DIFSYl, 

that is, that rational function extrapolation is more stable 

than the Adams Predictor Corrector method. 

When comparing DIFSYl to Gear's DIFSUB on problem 

one, I found that DIFSYl was more than twice as accurate. 

Although that was only one problem,it does give an indication 

that DIFSYl is very powerful. 

In conclusion, my test results support the previous 

results of Hull, Enright, Shampine, Watts, and Davenport by 

confirming the fact that rational function extrapolation is 

one of the best methods available today to solve nonstiff 
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initial value problems. When the problem of stiffness arises, 

as in problems seven and eight, the method is not very re­

liable, and neither is Adams'. One must employ another type 

of method to solve stiff systems, for example, the method 

32 due to Deuflhard and Bader. However, for nonstiff problems, 

rational function extrapolation gives very good results, 

especially in regards to computer storage and solution 

accuracy, provided that function evaluations are not expen-

sive. 

32P. Deuflhard and G. Bader, "A Semi-Implicit Mid­
Point Rule for Stiff Systems of Ordinary Differential Equa­
tions," Techni•sche Universitat Mlinchen, (August 1978), 1-48. 
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APPENDIX A 

DIFSYl WATFIV Computer Program 



$JOB 
C 

36 

DIFSYl WATFIV COMPUTER PROGRAM 

C 
C 
C 
C 

THE PURPOSE OF THIS PROGRAM IS TO SOLVE THE INITIAL 
VALUE PROBLEM IN ORDINARY DIFFERENTIAL EQUATIONS. 
THIS IS THE MAIN PROGRAM SEGMENT. THE USER MUST 
SPECIFY THE FOLLOWING PARAMETERS: 

C 
C HINIT - THE INITIAL STEP SIZE 
C N - THE NUMBER OF EQUATI ONS 
C X - THE LEFT ENDPOINT OF THE INTERVAL 
C y (I) - THE N INITIAL VALUES 
C XEND - THE RIGHT ENDPOINT OF THE INTERVAL 
C EPS - THE ERROR TOLERA..~CE 
C HMAX - THE MAXIMUM ALLOWABLE STEP SIZE 
C 

DOUBLE PRECISION HINIT,X,Y(4) ,XEND,EPS,8!'1AX 
C 
C YF IS THE EXTERNAL SUBROUTINE THAT IS CALL~D 
C BY !J'iETHOD TO EVALUATE THE FUNCTIONS. 
C 

EXTER."'\JAL YF 
C 
C NOFNS COUNTS THE NUMBER OF FUNCTION EVALUATIONS. 
C 

C 

COMMON NOFNS 
NOFNS=O 
HINIT=2.0D-2 
N=l 
X=O. ODO 
Y ( 1) =l. DO 
XEND=S.DO 
EPS=.0OOlDO 
HMAX=l. ODO 

C METHOD IS THE SUBROUTINE THAT SOLVES THE INITIAL 
C VALUE PROBLEM. OUTPUT OF THE SOLUTION AT PROGRAM 
C SELECTED POINTS IS DONE BY METHOD. 
C 

CALL METHOD(N,X,Y,XEI-JD,EPS,HMAX,HINIT) 
C 
C THE NUMBER OF FUNCTION EVALUATIONS IS OUTPUT. 
C 

WRITE (6,998) NOFNS 
998 FORM..~T (lH ,'NO. OF EVALUATIO~S IS ',16) 

STOP 
END 
SUBROUTINE YF(X,Y,DY) 

C 
C THIS IS THE FUNCTION EVALUATION SUBROUTINE. 
C ARRAY DY RETURNS THE VALUES OF F(X,Y). 
C ALSO, THE NUMBER OF FUNCTION EVALUATIOHS IS 



C 
C 

C 
C 
C 
C 

C 

INCRE ~..ENTZD. 

DOUBLE PRECISIO~J X,Y(4) ,DY(4) 
COMMON NOFNS 
NOFNS=NOFNS+l 
DY(l)=-Y(l) 
RETURN 
END 
SUBROUTINE METHOD(~,YF,X,Y,XEND,EPS,HMAX,HINIT) 

THIS IS THE HUSSELS RATIONAL FUNCTIO~ EXTRAPOLATION 
SUBROUTINE. 
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DOUBLE PRECISION Y(4) ,YA(4) ,YL(4) ,YM(4) ,DY(4) ,DZ(4), 
+DT ( 4, 7) , D ( 7) , X, XN, H, G, :S, Bl, U, V, C, TA, tv, XE:·m, EPS, HMAX, 
+HINIT,R(4) ,HMIN,ERREST 

C EPS IS USED TO CHAfJGE THE STEP SIZE H. 
C 

C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

REAL*4 EP(4)/0.4E-l,0.16E-2,0.64E-4,0.256E-5/ 

THE LOGICAL VARIABLES ARE: 

KONV - KONV IS FALSE WHEN THE ORDER OF 
ZXTRl\POLATION IS THREE OR LESS, WHEN NO TEST 
IS I-~DE FOR CO~JVERGENCE. IT IS TRUE IF 
CONVERGENCE HAS BEEN ACHIEVED. 

BO - THIS IS A SWITCH TO DIFFERENTIATE BETWEEN 
ODD k.~D EVEN ORDER EXTRAPOLATION. 

KL - KL IS TRUE ONLY WHEN FINDING THE FIRST 
.MODIFIED MIDPOINT VALUE. 

GR - GR IS TRUE WHEN THE ORDER OF EXTR:z\POLZ\.TION 
IS FIVE OR SIX. IT IS USED IN CONNECTION WITH 
CHANGING THE STEP SIZE H. 

LOGICAL*l KONV,BO,KL,GR 
EXTERi.~AL YF 
COMMON NOFNS 

C DT WILL HOLD EXTRAPOLATED VALUES. IT MUST BE ZEROED 
C OUT FOR THE FIRST ITERATION. 
C 

DO 993 I=l,4 
DO 993 J=l,7 
DT(I,J)=0.0D0 

993 CONTINUE 
C 
C HMIN IS THE MINIMUM ALLOWABLE STEP. 
C 

HMIN=l.D-14 
C 
C H IS rrHE CURRENT STEP SIZE BEING ATTEMPTED. 
C 

H=HINIT 



C 
C 
C 
C 
C 
C 
C 
C 
C 

1000 
C 
C 
C 
C 
C 

C 

CONTROL IS PASSED TO STATEMENT 1000 WHEN A FRESH 
START IS BEING MADE AT THE POINT X. ALSO, THE 
SAFETY VALVE JTI IS SET EQUAL TO ZERO. JTI IS 
INCREMENTED WHEN EXTRAPOLATION FAILS TO ACHIEVE 
CONVERGENCE. THIS IS ALLOWED TO HAPPEN ONLY FIVE 
TIMES, SO THAT THE PROGRAM DOES NOT CONTINUE 
RUNNING INDEFINITELY. 

JTI=0 

FY IS THE PARAMETER THAT IS USED TO CHANGE STEP 
SIZE H BY THE FORMULA H=H*FY. IT IS INITIALLY SET 
TO ONE. 

FY=l.D0 

C YA SAVES THE VALUES OF Y(X). 
C 

DO 100 I=l,N 
100 YA(I)=Y(I) 

C 
C H CAN NOT EXCEED THE LENGTH OF THE INTERVAL. 
C 

IF (H.GT.XEND-X) H=XEND-X 
C 
C DZ HOLDS THE VALUES OF F(X,Y) 
C 

CALL YF(X,Y,DZ) 
C 
C CONTROL IS PASSED TO STATEMENT 10 WHEN A NEW STEP 
C SIZE HIS BEING ATTEMPTED. 
C 

10 XN=X+H 
BO=.FALSE. 

C 
C M,JR, AND JS ARE THE DENOMINATORS FOR THE STEP SIZE 
C SEQUENCE (H,H/2,H/3,H/4,H/6,H/8,H/12). 
C 

C 

M=l 
JR=2 
JS=3 

C THIS LOOP CONTROLS THE ORDER OF EXTRAPOLATION . 
C 

DO 260 J=l,10 
IF(.NOT.BO) GO TO 200 

C 
C THE D ARRAY HOLDS THE VALUES (H(I+l-K}/H(I))**2. 
C FOR ODD ORDER EXTRAPOLATION, 0(2)=16/9, 
C 0(4)=64/9, AND 0(6)=256/9. 
C 

O(2}=1.777777777777778D0 
0(4)=7.11111111111111100 

38 



C 

D(6)=2.844444444444444Dl 
GO TO 201 

C FOR EVEN O~DER EXTRAPOLATION, D(2)=9/4, 
C D(4)=9, AND D(6)=36. 
C 

C 

200 D(2)=2.25D0 
D(4)=9.D0 
D(6)=3.6Dl 

C THE MAXIMUM ORDER OF EXTRAPOLATION IS SIX. 
C LIS ONE MORE THAN THE CURRENT ORDER. 
C 

201 IF (J.LE.7) GO TO 202 
L=7 
D(7)=6.4Dl 
GO TO 203 

202 L=J 
D(L)=M*M 

203 KONV=L.GT.3 
C 
C THIS SECTION PERFORMS THE MODIFIED MIDPOINT 
C RULE, DUE TO GRAGG. 
C 

C 

M=M+M 
G=H/DFLOAT(M) 
B=G+G 
DO 210 I=l,N 
YL (I) =YA (I) 

210 YM(I)=YA(I)+G*DZ{I) 
M=M-1 
DO 220 K=l,M 
CALL YF(X+DFLOAT{K)*G,YM,DY) 
DO 220 I=l,N 
U=YL(I)+B*DY(I) 
YL(I)=YM(I) 
YM(I)=U 

220 CONTINUE 
CALL YF(A'N,YM,DY) 
KL=L.LT.2 
GR=L.GT.5 

C FS IS USED IN CHANGING THE STEP SIZE H. 
C 

FS=0.D0 
C 
C THIS LOOP PERFORMS THE RATIONAL FUNCTION 
C EXTR~POLATION ALGORITHM OF BULIRSCH P..N D STOER. 
C 

DO 233 I=l,N 
C 
C V HOLDS THE VALUE OF THE MODIFIED MIDPOINT RULE 
C AT THE PREVIOUS STEP. 
C 

39 



V=DT(I,1) 
C 

C C HOLDS THE CURRENT VALUE OF THE MODIFIED 
C MIDPOINT RULE. 
C 

C 

C=(YM(I)+YL(I)+G*DY(I))*0.SD0 
DT(I,l)=C 
TA=C 

C IF KL IS TRUE, THE PROGRAM IS ON THE FIRST 
C ITERATION, AND HENCE, EXTRAPOLATION CAN NOT YET 
C BE PERFORMED. 
C 

IF(KL) GO TO 233 
DO 231 K=2,L 
Bl=D(K)*V 
B=Bl-C 
W=C-V 
U=V 
IF (B.EQ.0.D0) GO TO 230 
B=W/B 
U=C*B 
C=Bl*B 

230 V=DT(I,K) 
DT(I,K)=U 

C 
C TA HOLDS THE MOST RECENTLY EXTRAPOLATED VALUE. 
C 

231 TA=U+TA 
C 
C IF THE ORDER OF EXTRAPOLATION IS LESS THAN FOUR, 
C DO NOT TEST FOR CONVERGENCE. 
C 

IF(.NOT.KONV) GO TO 232 
C 
C R=ABS(LAST EXTRAPOLATION-THIS EXTRAPOLATION)/H. 
C 

R(I)=DABS(Y(I)-TA)/H 
C 
C IF R LESS THAN OR EQUAL TO THE ERROR TOLERANCE, 
C CONVERGENCE HAS BEEN ACHIEVED. 
C 

IF(R(I) .GT.EPS) KONV=.FALSE. 
C 
C IF THE ORDER OF EXTRAPOLATION IS AT LEAST FIVE, 
C DO NOT ATTEMPT TO ALTER ANY OF THE STEP CHANGING 
C PARAMETERS. 
C 

232 IF(GR) GO TO 233 
C 
C FV=ABS(LAST MIDPOINT-PRESENT MIDPOINT) 
C 

FV=DABS(W) 
C 

40 



C IF THERE IS SOME DIFFERENCE, FS rs I NCREASED. 
C 

IF(FS.LT.FV) FS=FV 
C 
C Y NOW HOLDS THE MOST RECENTLY EXTRAPOLATED VALUE. 
C 

233 Y(I)=TA 
C 
C IF FS IS ZERO, DO NOT ATTEMPT TO ALTER FY. 
C 

IF(FS.EQ.0.) GO TO 250 
C 
C FA HOLDS THE LAST VALUE OF FY. 
C 

FA=FY 
K=L-1 

C 
C FY=(EP(K)/ABS(LAST MIDPNT-THIS MIDPNT))**(l/(2L-1)). 
C THIS IS WHAT H MAY BE ALTERED BY. 
C 

C 

FY=(EP(K)/FS)**(l./DFLOAT(L+K)) 
IF (L.EQ.2) GO TO 240 

41 

C IF FY GREATER THAN OR EQUAL TO OLD FY OR FY LESS THAN 
C .7, THEN SAFETY VALVE JTI IS INCREMENTED, HIS ALTERED, 
C AND A NEW ATTEMP.T I S MADE TO CONTINUE WITH THIS NEW 
C STEP SIZE. 
C 

C 

IF(FY.LT.0.7*FA) GO TO 250 
240 IF(FY.GT.0.7) GO TO 250 

JTI=JTI+l 
IF (JTI.GT.5) GO TO 250 
H=H*FY 
IF (H.GT.HMAX) H=HMAX 
GO TO 10 

C IF CONVERGENCE HAS BEEN ACHIEVED, OUTPUT THE 
C RESULTS, AND PROCEED TO THE NEXT STEP. IF NOT, 
C HALVE THE STEP SIZE AND BEGIN AGAIN. 
C 

C 

250 IF (KONV) GO TO 20 
D(3)=4.D0 
D(5)=1.6D0 
BO=.NOT.BO 
M=JR 
JR=JS 

260 JS =M+M 
IF {JTI.GT.5) GO TO 30 
IF (DABS(H) .LE.HMIN) GO TO 30 
H=H*0.5D0 
IF (DABS(H) .GE.HMIN) GO TO 10 
H=DSIGN(HMIN,H) 
GO TO 10 



C OUTPUT THE RESULTS, CHANGE H, MOVE X UP TO XN, 
C AND BEGIN AT THIS NEW POINT. 
C 

C 

20 WRITE (6,551) XN,(Y(K),K=l,N) 
551 FORMAT(lH ,F20.14,4(2X,F20.14)) 

X=XN 
H=H*FY 
IF(H.GT.HMAX) H=HMAX 
IF(DABS(XEND-X).LT.l.D-8) RETURN 
GO TO 1000 

C IF THERE HAS BEEN A FAILURE, THE INITIAL Y VALUES 
C ARE RESTORED, HIS SET EQUAL TO ZERO, AND THE 
C PROGRAM IS ABORTED. 
C 

30 H=0.D0 
DO 300 I=l,N 

300 Y(I)=YA(I) 
RETURN 
END 

$ENTRY 
/* 
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APPENDIX B 

PC WATFIV Computer Program 



PC WATFIV COMPUTER PROGRAM 

$JOB 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

THIS IS THE MAIN PROGRAM SECTION. 
THE USER MUST SPECIFY: 
N THE NUMBER OF EQUATIONS 
Y(I) THE INITIAL VALUES 
A THE LEFT ENDPOINT 
B THE RIGHT ENDPOINT 
EPSIL THE ERROR TOLERANCE. 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION Y(4) 
EXTERNAL F 
N=2 
Y(l)=l.DO 
Y (2)=1.DO 
A=O.DO 
B=6.DO 
EPSIL=.OOOlDO 
H=l.5DO*EPSIL**.25 

IN THE SYSTEM 

C PC SOLVES THE INITIAL VALUE PROBLEM. 
C 

CALL PC(Y,N,A,B,EPSIL,H) 
STOP 
END 
FUNCTION F(N,T,U,NUM) 

C 
C FIS THE FUNCTION EVALUATION FUNCTION. 
C 

C 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION U(4) 
GO TO (1,2) ,NUM 

1 F=U ( 2) -1. DO 
RETURN 

2 F=U(l)-T*T+l.DO 
RETURN 
END 
SUBROUTINE PC(Wl,N,A,B,EPSIL,H) 
IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION T(5) ,WO (4) ,Wl (4) ,W2 (4) ,W3 (4) ,W4 (4) ,W5 (4) 
NCALLS=O 

C IFLAG IS ONE IF THE PROGRAM IS AT POINT A. 
C 

IFLAG=l 
IND=O 
T(l)=A 

551 FORMAT (lH ,F20.14,4(2X,F20.14)) 
333 DO 8 1=2,4 
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8 T(I)=A+(I-l)*H 
C 
C THE FIRST THREE VALUES ARE RUNGE-KUTTA VALUES. 
C 

C 

CALL RK4(H,Wl,W2,T(l) ,NCALLS,N) 
WRITE (6,551) T(2), (W2(K) ,K=l,N) 
CALL RK4(H,W2,W3,T(2) ,NCALLS,N) 
WRITE (6,551) T(3),(W3(K),K=l,N) 
CALL RK4(H,W3,W4,T(3) ,NCALLS,N) 
WRITE (6,551) T(4),(W4(K),K=l,N) 

C LIS ZERO IF VALUES ARE OBTAINED BY PREDICTOR 
C CORRECTOR LOOPS, AND ONE IF VALUES ARE OBTAINED 
C BY RUNGE-KUTTA FORMULAS. 
C 

L=0 
C 
C CONTROL IS TRANSFERRED HERE IS THE PREDICTOR 
C CORRECTOR LOOPS ARE TO BE USED. 
C 

5 T(5)=T(4)+H 
C 
C T(S) CAN NOT SURPASS THE INTERVAL. 
C 

IF (T(5) .LT.B) GO TO 6 
T(S)=B 
H=T ( 5) -T ( 4) 

C 
C IND IS SET TO ONE IF THE PROGRAM HAS REACHED 
C THE END OF THE INTERVAL. 
C 

IND=l 
C 
C LOOP 34 COMPUTES A PREDICTOR VALUE. 
C 

6 DO 34 NUM=l,N 
P=F(N,T(4) ,W4,NUM) 
Q=F(N,T(3) ,W3,NUM) 
R=F(N,T(2) ,W2,NUM) 
S=F(N,T(l) ,Wl,NUM) 

34 W0(NUM)=W4(NUM)+H*(55.D0*P-59.D0*Q+37.D0*R-9.D0*S)/ 
+24.D0 

C 
C LOOP 35 COMPUTES A CORRECTOR VALUE. 
C 

DO 35 NUM=l,N 
P=F(N,T(S),W0,NUM) 
Q=F(N,T(4) ,W4,NUM) 
R=F(N,T(3) ,W3,NUM) 
S=F(N,T(2),W2,NUM) 
NCALLS=NCALLS+8 

35 W5 (NUM) =W4 (NUM).+H* (9. D0*P+l9. D0*Q-5. D0*R+S) /24. DO 
C 
C SIGMA=ABS(PREDICTOR-CORRECTOR). 
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C 
SIGMA=DABS(W5(1)-W0(l)) 

C 
C IF N IS ONE, THERE IS ONLY ONE EQUATION. 
C 

IF (N.EQ.l) GO TO 666 
C 
C SS IS THE MAXIMAL DIFFERENCE OF ALL EQUATIONS 
C IN THE SYSTEM. 
C 

DO 50 NUM=2,N 
SS=DABS(W5(NUM)-W0(NUM)) 
IF (SS.GT.SIGMA) SIGMA=SS 

50 CONTINUE 
666 SIGMA=.lD0*SIGMA 

C 
C IF .l*EPSIL LESS THAN OR EQUAL TO SIGMA, AND SIGMA 
C LESS THAN OR EQUAL TO EPSIL, PRINT THE VALUES. IF 
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C NOT, CHANGE HAND COMPUTE NEW VALUES BY RUNGE-KUTTA. 
C 

C 

IF(.lD0*EPSIL.LE.SIGMA.AND.SIGMA.LE.EPSIL) GO TO 51 
GO TO 52 

C IFLAG IS ZERO IF THE PROGRAM IS NOT AT POINT A. 
C 

C 

51 IFLAG=0 
WRITE (6,551) T(5), (W5 (K) ,K=l,N) 
DO 66 KK=l,N 
Wl(KK)=W2(KK) 
W2(KK)=W3(KK) 
W3(KK)=W4(KK) 

66 W4(KK)=W5(KK) 
T(l)=T(2) 
T ( 2) =T ( 3) 
T ( 3) =T ( 4) 
T(4)=T(5) 
L=0 

C IF IND IS ONE, THE TASK HAS BEEN COMPLETED. 
C 

IF (IND.EQ.l) GO TO 18 
C 
C CONTINUE AT THE NEXT POINT. 
C 

GO TO 5 
C 
C Q IS USED TO CHANGE THE STEP SIZE H. 
C 

52 Q=((EPSIL*H)/2.D0*SIGMA))**.25 
C 
C IF SIGMA GREATER THAN EPSIL, CHANGE H. 
C 

IF (SIGMA.GT.EPSIL) GO TO 17 
IF (Q.LE.l) H=Q*H 



C 
C GET NEW VALUES BY RUNGE-KUTTA. 
C 

C 

14 L=l 
DO 77 KK=l,N 

77 Wl (KK) =W5 (KK) 
T(l)=T(5) 
T(2)=T(l)+H 
IF (T(2) .LT.B) GO TO 56 
T(2)=B 
H=T(2)-T(l) 
IND=l 

56 CALL RK4(H,Wl,W2,T(l) ,NCALLS,N) 
WR I TE ( 6 , 5 51) T ( 2 ) , ( W 2 ( K) , K = 1 , N) 
IF (IND.EQ.1) GO TO 18 
T(3)=T(2)+H 
IF (T(3) .LT.B) GO TO 57 
T(3)=B 
H=T(3)-T(2) 
IND=l 

57 CALL RK4(H,W2,W3,T(2) ,NCALLS,N) 
WRITE (6,551) T(3),(W3(K),K=l,N) 
IF (IND.EQ.1) GO TO 18 
T(4)=T(3)+H 
IF (T(4) .LT.B) GO TO 64 
T(4)=B 
H=T(4)-T(3) 
IND=l 

64 CALL RK4(H,W3,W4,T(3),NCALLS,N) 
WRITE (6,551) T(4), (W4 (K) ,K=l,N) 
IF (IND.EQ.1) GO TO 18 

C CONTINUE WITH THE PREDICTOR CORRECTOR LOOPS 
C WITH THE NEW INITIAL VALUES. 
C 

GO TO 5 
C 
C IF Q LESS THAN .1, H=.l*H, ELSE H=Q*H. 
C 

17 IF (Q.LT .. 1) GO TO 58 
H=Q*H 
GO TO 59 

58 H=.lD0*H 
C 
C GO TO 333 IF STILL AT POINT A. 
C 

59 IF (IFLAG.EQ.1) GO TO 333 
C 
C COMPUTE RUNGE-KUTTA VALUES IF L=l. 
C 

IF (L.EQ.l) GO TO 14 
C 
C PRINT THE NUMBER OF FUNCTION CALLS. 
C 
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18 WRITE (6,862) NCALLS 
862 FORMAT (lH ,'NUMBER OF FUNCTION CALLS IS ',18) 

RETURN 
END 
SUBROUTINE RK4(H,A,B,T,NCALLS,N) 

C 
C RK4 COMPUTES THE RUNGE-KUTTA VALUES. 
C 

IMPLICIT REAL*8(A-H,O-Z) 
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DIMENSION A(4) ,HO(4) ,B(4) ,XK1(4) , XK2(4) ,XK3(4) ,XK4(4) 
DO 22 NUM=l,N 

22 XKl(NUM)=H*F(N,T,A,NUM) 
DO 23 NUM=l, N 

23 HO(NUM)=A(NUM)+XKl(NUM)/2.D0 
DO 24 NUM=l,N 

24 XK2 (NUM ) ·=H*F (N, T+H/2. DO, HO, NUM) 
DO 25 N1. ·' = l ,N 

25 HO(NUM) \ (NUM)+XK2(NUM)/2.D0 
DO 26 N '-1=1,N 

26 XK3(NUM) =H*F(N,T+H/2.D0,HO,NUM) 
DO 27 NUM=l,N 

27 HO(NUM)=A(NUM)+XK3(NUM) 
DO 28 NUM=l,N 

28 XK4(NUM)=H*F(N,T+H,HO,NUM) 
DO 29 NUM=l,N 

29 B(NUM)=A(NUM)+(XK1(NUM)+2.D0*XK2(NUM)+2.D0*XK3(NUM)+ 
+XK4(NUM))/6.D0 

NCALLS=NCALLS+4*N 
RETURN 

$ENTRY 
/* 

END 
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