
RATIONAL FUNCTION EXTRAPOLATION

by

Richard Joseph Gaydos

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Ma ster of Science

in the

.Mathematics

Program

11M· -

D~ t~e School

YOUNGSTOWN STATE UNIVERSITY

August, 1980

Date

Date

ABSTRACT

RATION.AL FUNCT1ON E XTRAPOLATION

Richard Joseph Gaydos

Master of Science

Youngstown State University, 1980

In this thesis, I e xamine rational function

extrapolation to solve the initial value problem in

ordinary differential equations. Significant historical

ll

achievements leading up to rational function extrapolation

are noted, and a thorough study is made of H. G. Russel's

computer implementation of the method. That Watfiv

program is then compared to an Adams Predictor Corrector

program over a series of prohlems with an error tolerance

of .0001. The overall results of the computer runs

show that although computer costs are at times more

expensive, rational function extrapolation is more accurate.

ACKNONLEDGEME:tJTS

I would like to expr e ss my sincere thanks to Dr.

J. Douglas Faires for his help and technical suggestions,

which aided me in the preparation of this thesis. Also, I

would like to thank Pam Spon for her help in typing the

paper.

iii

ABSTRACT

ACKNOWLEDGEMENTS .

TABLE OF . CONTEN TS

CHAPTER

TABLE OF CONTEN TS

I. INTRODUCTION

II.

III.

HISTORY OF EXTRAPOLATION METHODS

ANALYSIS OF DIFSYl ...

IV. EXPLANATION OF COMPARISON CRITERIA ..

V. TEST RESULTS

VI. CONCLUSIONS

APPENDIX A. DIFSYl WATFIV Computer Program

APPENDIX B. PC WATFIV Computer Program

BIBLIOGRAPHY

iv

PAGE

ii

. . . iii

iv

1

5

16

22

27

32

35

43

49

CHAPTER I

INTRODUCTION

There are a multitude of methods that can be used

to approximate the solution to the system of initial

value problems

... , y), V (a) = C
n -n n

1

for a< x < b (1)

at specific points in the interval [a,b]. The solutions

at other points can then be approximated by interpolation.

Most notable are the one step Runge-Kutta and Runge-Kutta

Fehlberg methods, multistep methods such as the explicit

Adams-Bashforth and: impli~it Adams-Moulton methdds, the

Adams Predictor Corrector method, and the extrapolation

methods.

functions.

Extrapolation methods use polynomials or rational

When attempting to solve (1) by the numerical

methods, one should be aware of what stiff systems of

equations are. A stiff system of equations has no

unstable solution component, that is, no eigenvalue with

large positive real part, and at least some very stable

component, that is, at least one eigenvalue with a large

2

negative real part. Stiff systems can cause seve re

problems in the above methods because rounding error in the

computations may build up rapidly, producing erroneous

results. However, the main concern of this paper is nonstiff

equations without discontinuities that have no large

oscillations in the starting interval, so that no addi

tional features have to be built into the methods to solve

(1) .

The order of a particular method refers to the

amount of accuracy that one expects to obtain from the

method. For example, Runge-Kutta Four is on O(h 4) method,

that is, one expects the method to produce solutions accurate

to some multiple of the step size h raised to the fourth

power. Associated with each Runge-Kutta, Runge-Kutta-Fehl

berg, Adams-Bashforth, Adams-Moulton, and Adams Predictor

Corrector formula is some fixed order, so a fixed order

method basically employs only one of the above named

formulas. On the other hand, a variable-order method

usually employs a series of formulas i .n such a way that

if a solution to (1) relative to a particular error tolerance

is not produced in a sufficient time, then a higher order

formula is used. It will be shown that extrapolation can

be a variable-order method.

Exhaustive tests to compare the methods were

carried out at the Universit7 of Toronto, from which

two basic conclusions were reached. The first is that

variable-order methods are best to solve (1) if the

equations are not stiff. The other conclusion is that

rational function extrapolation is the best overall method

if function evaluations are not too costly, and that

variable-order Adams methods are preferable if function

evaluations are costly, since they take less function

1 . 1 eva uations. The break even point for a costly function

is approximately twenty five arithmetic operations oer

1
. 2 eva uation.

The actual implementation of the Eurlirsch and

Stoer rational function extrapolation algorithm that

was tested in Toronto is called DESUB, and is due to P.A.

3 Fox. However, in a subsequent series of tests, it was

f9und that DESUE had some problems, and that there was a

better version of the Burlirsch and Stoer algorithm

which was less sensitive to the choice of starting step

size, and which was not as biased to the higher-order

4 methods, hence more accurate at lower error tolerances.

This better version was written by H. G. Hussels and is

1T. E. Hull, et al, "Comparing Numerical Methods
for Ordinary DifferentialEquations," SIAM Journal of
Numerical Analysis, IX (4, December 1972), 605.

2 Hull, 614.

3 P. A. Fox, "DESUE: Integration of a First Order

3

System of Ordinary Differential Equations," Mathematical
Software, ed. by John Rice (New York: Academic Press, 1971),
pp . 4 8 6 - 5 0 7 .

4wayne H. Enright and T. E. Hull, "Test Results
on Initial Value Methods for Non-Stiff Ordinary Differential
Equations," SIAM Journal of ~Jurnerical Analysis, XIII (6,
December 1976), 959.

4

called DIFSYl. 5

In a separate set of tests, L. F. Shampine, H. A.

Watts, and S. M. Davenport reached the same conclusion,

that the best methods to solve initial value problems for

nonstiff ordinary differential equations are the extrapo

lation and variable-order Adams methods. 6 They were also

in agreement about Hussels' program, in regards to DIFSYl's

improvement over the original algorithm's behavior with

respect to the choice of step size. 7 The results of all

8 these tests were summarized by J. D. Lambert.

A brief summary of the key historical extrapolation

results is presented in Chapter II. In Chapter III,

DIFSYl is examined in detail. Chapter IV explains how

DIFSYl was compared to an Adams Predictor Corrector

program, and the test results appear in Chapter V, while

the conclusions appear in Chapter VI.

5H. G. Hussels, "Schrittweitenteuerung bei der
Integration gewohnlicher Differentialgleichungen mit
Extrapolationverfahren," (unpublished M. Sc. Thesis, Universit~t
Koln, 1973).

6L. F. Shampine, H. A. Watts, and S. M. Davenport,
"Solving Nonstiff Ordinary Differential Equations - · The
State of The Art," SIA...1\1 Review, XVII (3, July 1976), 377. "

7L. F. Shampine, H. A. Watts, and S. M. Davenport, 382.

8J. D. Lambert, "The Initial Value Problem for
Ordinary Differential Equations," The State of The Art in
N~~erical Analysis, ed. by D. A. H. Jacobs (London:
Academic Press, 1977), p. 479.

5

CHAPTER II

HISTORY OF EXTR\POLATION METHODS

In this section, I will look at some of the key

extrapolation ideas. Then the Bulirsch and Stoer rational

function extrapolation method is examined. It is oft:en

possible to approximate some unknown quantityB, by a calcu

latable quantity T(h), depending on some parameter h > 0,

so that the limit as h approaches zero of T(h) is B.

For extrapolation to proceed, there must exis t constants

a 1 , a
2

, ... , c 1 , c 2 , ... , g1 , g 2 , ... , and H so that for

j = 1, 2, 3, and for h < H, T'('h)

g.
+ a.h J + E(h), where

J

gj+l JE (h) I < c .h is a bound on the
J

truncation error. When this is possible, it is said that

T(h) admits an asymptotic expansion for h approaching

zero. The idea of extrapolation is to speed the convergence

of T(h) to the unknown B by combining approximations

obtained by some discretization method at two different

step sizes to eliminate terms in the asYT:1ptotic expansion.

D. C. Joyce cites the following example. 9 To find an

approximation to the familiar geometric quantity n, one

can examine two sequences I(h) and U(h), where I (h)

9D. c. Joyce, "Survey of Extrapolation Processes
in Numerical Analysis," SIAM Review, XIII (4, October 1971),
436-7.

represents the perimeter of an n-sided polygon inscribed

in a unit circle, and U(h) r epresents the perimeter of

6

an n-sided polygon circ~~scribed around a unit circle, with

h = 1
n

and

Geometric arguments show that

I (h)

U (h)

= 2 sin TT h
h

= 2 tan TTh
h

Let M(h) = ! I(h) and N(h) = ~ U(h). Since the Taylor

series expansions for sin x and tan x Are respectively

3 5
sin x = x - X X

3T + 5!

and

7
X
7 ! + .

tan x
3

X
= X + 3

2x
5 + 17x

7

+ rs ns

substitution gives

M (h)

and

N (h)

+ . • • I

It can also be shown that M(h) is an increasing sequence

of lower bounds for TT, and that N(h) is a decreasing

sequence of upper bounds for TT • That M(h) admits an

asymptotic expansion as h approaches zero can be s een since

A--
1

=
(-1) jTT2j + 1

(2j + 1) !
for j = 0, 1, 2, .

and

g. = 2 j , for j = 1, 2, 3, . . .
J

A similar result can be shown for N (h) . In 1654, Huygens

suggested using two new sequences

4M (h) - M(2h)
S (h) = 3

and

V(h) 2N (h) + M(2h) = 3

He showed that

S(h) = 1T -

and that

V (h) = TT + • • • I

from which the reader can see that the h 2 terms have been

4 eliminated from the sequences, making the error O(h) as

opposed to O(h 2). These Huygens sequences are examples of

extrapolation formulas. They accelerate the convergence

of the sequences toward TT, and more than double the

7

accuracy. 10 L.F. Richardson produced his deferred approach

to the limit theory to solve (1) in 1910. He showed that the

h 2 term in the asymptoti c expansion could be eliminated by

combining approximations obtained from two different

step sizes h 0 and h 1 , by means of the formula

10 D. c. Joyce, 437.
WILLI AM F. MAAG LIBRARY

YOUNGSTOWN STATE UNIVERSITY

8

if central diffe rence formulas were used in the descre

tization method to find T(h), since the asymptotic e xpansion

11 would then contain only even powers of h. In 1912,

C. Runge used

T(2h) - T(h)
15

to estimate the error in T(h) when solving initial value

12 problems.

W. Romberg dealt with linear iterative e x trapolation

to integrate a function over an interval, in 1955, which

dealt with discretization methods based on the trapezoidal

rule, T(h), and the midpoint rule, U(h) . 13 Let T~ be

the trapezoidal value T(hi) and U~ is the midpoint value

U(h .). If
l.

Ti
m T (h . , h . +

1
-;- . • . , h . +) ,

l. l. l.ffi

and

Ui U (h . , h . + l, ... , h :: +) , m .1. .1. .1. m

where
h.

h. l. for 1, 2 ' and = s' s = • • • I m
l. +s. 2

for i = 0, 1, 2 ' ... '
then we have for i = 0 ' 1, 2' ... and m = 1, 2' 3'

llD. C. Joyce, 442.

12D. C. Joyce, 442.

13D. c. Joyce, 452-3.

9

·+1 .
Tl - Tl

Ti+l + m-1 m-1
m-1 (2)

and for 1

and

1, 2, 3, and m = 0, 1, 2,

ui+l _ ui
ui+l + m-1 · m-1

m-1

i-1 i-1
T + U m m

2

(3)

(4)

With these for~ulas, Romberg had developed a method to

accelerate convergence for the numerical integration prob

lem, if the values T~ and U~ for i = 0, 1, 2, ... were known.

The T? for i = 1, 2,
l • • • I were then calculated by (2), the

T~ for i 1, 2 , and j = 0, 1, 2, ... were calculated
J

by (4) I and the u~ for l = 0 , 1, 2 I ... and j = 1, 2, 3,
J

were calculated by (3). As the reader will shortly see, (2) 1

(3) 1 and (4) are somewhat similar to the formulas Bulirsch

and Stoer developed for rati~nal function extrapolation.

In 1961, Bauer showed that TO converges superlinearly
m

0 as m• 00 • The difference in absolute value between T and B,
m

the value of the integral of the function f(x) over (0,1),

is a constant divided by 2m(m+l) 1 if f(x) is 2m+ 2 times con-

1 tinuously differentiable on (0,1), and if hk - is the
2k

t · used. 14 T' f t 1 · s eps1ze sequence nere ore, one ge s super 1near

convergence since
"'a - B S: 1 I 2 (m+l) (m+2)

cl/:c2 .1m+l
lim = lim lim = 0.
m• oo

,.,,0 - B m• oo c2 I 2m (m+l)
ffi• oo 4 (m+l)

.l m

14 D. C. Joyce, 456.

Roland Bulirsch generalized (2) to

2
h.

l

Ti+l + Ti

+ (:~l)2 :-:
h:+m

Ti+l - h~
m-1 1+m

h~ - h~ l l+m

15

He and Josef Stoer formalized this idea of polynomial

extrapolation to solve (1) in 1964, stating that for a

discretization method T(h) with asymptotic expansion as

described above, a polynomial

Pi (h) =
m

g g
B + bl h l + . . . + bmh m

can be defined such that

• • • I i + m.

Then T (O) is approximated by Pi(O) =
m

B , where Ti is
m

defined iteratively a~ T(h. ,h.+l'
l l

---, h . .J..)-=
l In

16
. B-.

GI= GI, then f5) generalize3 to

.,.,·i =
~!Il

(
.. hi)G
-- - 1
h.+

. l m

After extensive testing, they concluded that rational

15 0. C. Joyce, 458.

16
D. C. Joyce, 464.

If

10

(5)

17 function extrapolation was preferable.

11

A rational function is the quotient of two polynomials;

that is, for rational function R(h),

R(h)
P (h)

= Q(h)

where P(h) and Q(h) are polynomials in h. Suppose

where M is [k/2] and N is, [(k + 1) /2] , where [x] indicates

the greatest integer not exc9eding x, with the stipula

tion that Rk(h.) = Y., for j = 0, 1, ... , k, and · for
J J

k = 0, 1, ... , L, where the Y. are the approximations
J

obtained from some discretization method. Mand N are

chosen this way to allow the sequence (0,0), (0,1),

(1,1), (1,2), of rational functions to be used. The

reader will shortly see that this gives the desired extra

polation formulas. In order to find these formulas, given

Rk(h) as defined above, let us find a similar rational

function for Rk+l(h). Clearly

for all hj, j = 0, 1, ... , k by the way ~(hj) was defined.

17 Roland Bulirsch and Josef Stoer, ";-Jumerical Treat
ment of Ordinary Differential Equations by Extrapolation
Methods," Numerische Mathematik, VIII (1966) ,1.

12

As a candidate for ¾+l(hj), let us look at

(6)

Clearly, (6) is zero for all h., j = 0, 1, ... , k , and
J

if we stipulate that B(hk) = 0, then Tk+l(hk) = O.

Also, we want to force Tk+l(hk+l) = 0, so it must be the

case that

We want Tk+l to be a polynomial of degree Gk+ 2)/2] i n

h, and linear in y, so that we can obtain

in order to obtain a rational fun ction. Upon reexamining

(6) ' since Tk is a polynomial of degree [(k + 1) /2] then

if A is a constant, AT k is sti11·· · a polynomial · 6f

that degree. If B(h) is lin8ar in h , since Tk_1 (h) is

of degree [k/2] in h, then B (h) Tk-l (h) is of degree

[(k + 2)/2]. There are two cases to examine, k being

odd or even. If k is odd, and if [k/2] = c, then

[(k + 1)/2] = [(k + 2)/2] = c + 1, and the degree o f

B(h)Tk_1 (h) _ is c + l. If k is even, an d if [f/2] = e,

then [(i<+l)/2] = c and [(k+2)/2] = c + l =

degree (B(h)Tk _1 (h)). If we let

A =

and

(h - hk+l)Tk -l(hk+l)

Tk (hk+l)

B(h) = h - hk,

which incide ntally satisfies B(hk) = 0, then clearly (7)

is satisfied. Now, plugging these A and B(h) into (6)

yields

Tk+l(h) =

13

Thus, we have a recurrence relation to calculate Pk+l and

Qk+l once we know Pk, Qk, Pk-l' Qk-l' Yk+l' hk+l' and hk.

When the sequence (0,0), (0,1), (1,1), (1,2), ... is used

for (M,N), then the following scheme exists for rational

f . l . 18 unction extrapo ation. This scheme was first formalized

by Stoer in 1961. 19

18Roland Bulirsch and Josef Stoer, "Fehlerabschat
zungen und Extrapolation mit rationalen Funktionen bei
Ve rfahren vom Richardson--Typus," Numerische Mathematik,
VI (1964), 420-1.

19 ..
Josef Stoer, "Uber Zwei Algorithmen zur Inter-

polation mit rationalen Funktionen," Numerische Mathematik,
III (1961), 285-304.

Ri = T(h .)
0 l

i+l Ri
Ri+l R 1 -

Ri + m- m-1 = m m-1 (h:!J (l Ri+l
m-1

Ri+l
m-1

f orm > 1. Letting

and

Ri+l
m-1

Ri) m-1 1 -
Ri+l

- m-2

then (8) can be converted to

ci+l wi+l
m-1 m-1 =

(~)2 Di - Ci+l
hi+m m-1 m-1

, form> 1,

and

with

and

(
-h~) 2
h . + l ffi

(
h.) 2

hi:m

wi
m

Ci
0

= Ci
m

= D.i.
0

wi = T (h .)
0 l

, form > 1,

i-1 D I m

= T (h.)
l

- T(hi-1)

14

(8)

(9)

The underlying discretization method used by Bulirsch and

15

20 Steer is due to Gragg. It is called the Modified Midpoint-

Rule. It is listed here for one equation, but can be

easily adapted to a system of equations.

Yo initial condition

z 0 =Yo+ hf(a,y0)

Yr+l =Yr+ hf(xr + h/2,zr), for r = 0,1, ... ,n-l

and

Then

and

and finally

G(h)

U(h) Yn

z
n

hf(a,y) n
2

T(h) = U(h) ; G(h).

0, 1, ... ,n-1

U, T, and Gall have asymptotic expansions in even powers

of h, with coefficients independent of h, which is

necessary for this h 2-type extrapolation process to be

applied to any sequence of hk, rather than just the

21 sequence (h,h/2,h/4,h/8, ...).

In Chapter III, I will examine the program

DIFSYl in detail. This program does Bulirsch and Steer

rational function extrapolation, using Gragg's Modified Mid

point-Rule as the underlying discretization method.

20william B. Gragg, ''On Extrapolation Algorithms
for Ordinary Initial Value Problems,'' Siam Journal of
Numerical Analysis, II (3,1965), 395-6.

21 ·11· 396 W1 1am B. Gragg, .

16

CHAPTER III

A.~ALYSIS OF DIFYl

In this chapter, the rational function extrapo-

lation program DIFSYl will be examined in detail. It is

22 H. G. Russel's Watfiv program. The version examined here

. . . f . ht 2 3
is an implementation which I received rom W. H. Enrig , .

I made modifications to remove some unnecessary statements

and to add output facilities. A double DO loop was added

to zero out an array. This was necessary in order to imple-

ment the program with Youngstown State University's Watfiv

interpreter. I also supplied a main program segment that

sets the initial step size H1NIT, the maximum step size,

HI~~X, and the error tolerance, EPS, and defines the initial

x value, X 1 called a in (1), the final x value, xmm,

called b in (1), the number of equations, N, and the

initial values, y(l), y(2), ... , y (n), called c
1

, c 2 , ... ,
en in (1). It also sets a variable NOFNS, -declared COMMON,

equal to zero. NOFNS is incremented through the Hussels

program each time a call is made to the EXTERNAL subroutine

YF, which evaluates the functions f 1 , f 2 , ... , fn, from

(1), at specified points. Russel's program is contained as

a subroutine called METHOD. The main program makes the call

22
H. G. H 1 _ usse s.

23 Wayne H. Enright, Personal Communication.

17

CALL METHOD (N,YF,X,Y,XEND,EPS,HMAX,HINIT) by which control

is passed to METHOD, which then attempts to solve (1).

METHOD calls YF by the call CALL YF (X,Y,DY), where DY is

an array to hold the values of f 1 (x,y1 , ... ,yn), ... ,

fn(x,y 1 ,. ... ,yn). A step by step description of DIFSYl is

given in Appendix A in the form of comment cards in the

program, so my intention here is to explain the three

major areas of interest in the program. These are what or-

der of extrapolation is used, when and how the step

size h is changed, and when and how results are accepted

as correct.

The program contains logical variables KONV, KL,

and GR which are partially used as switches to control

the order of extrapolation. KONV is always false when

the order of extrapolation that is being attempted is

less than or equal to three, which is half of the maximum

allowable order six. It is also used for error testing,

and is kept true if an error test criterion, which will

be described shortly, is passed. KL is true only the

first time through the extrapolation loop, when only

one modified midpoint value is known. Extrapolation

cannot be performed without two different modified midpoint

values. GR is true only when the order of extrapolation is

at least five and is used in connection with changing

the step size. It, in effect, prohibits the program from

altering a step changing parameter FS. The order of

extrapolation is controlled as follows. First through

18

fourth-~rder extrapolations are carried out without

testing for convergence, with possible modifications of

the step size between each iteration. After fourth order,

a test is made for convergence. If successful, the x

and y values are printed, ~nd the process continues with

a first-order extrapolation at the new point, called X,

or control is returned to the main program if the interval

has been fully covered. If convergence was not reached,

there may be a modification to h, which will be described

shortly, and then fifth-order extrapolation is attempted.

Convergence gives the same result. Failure yields a

possible modification to h and sixth-Jrder extrapolation

is attempted. Again, convergence gives the obvious result.

Failure means sixth-order extrapolation may be attemoted

three more times with a different step size each time.

There is also a counter JTI that is incremented each time

one of the step size parameters, FY is less than .7 times

the previous FY, or is greater than .7. An increment to

JTI passes control back to the point where first order

extrapolation is begun again. This is a built in safety

valve so that if the extrapolation loop does not yield

convergence, then the program will not continue in an

infinite loop. A value JTI greater than five means the

program stops iterating and returns control to the main

program segment. Convergence may always be reached at

fourth-order extrapolation, so the method may not be of

variable order. If convergence is not reached, however,

19

the program is free to vary its order.

The step size h is controlled as · follo0 s. First,

the program uses the

(h,
for rational function

sequence

sequence

h h h h h ~2) 2' 3' 4' 6' 8'

extrapolau ion . rather

h

16

h

32

(10)

than the

because it yields equal accuracy with only half the number

of operations ~24 Recall that (9) needs (h./h.+) 2 computed.
l l m

DIFSYl stores the values in the D array, and depending

on the order of extrapolation being used, assigns values

when needed. For example, when (h3/h
6

)
2

is needed for an

even order e xtrapolation, that is, when the order counter L

is odd, the D(4) is set to 64/9, since

h 3 = h/3 and h
6

= h/8,

h/3
and = = h/8

8

3

and (J)2 ~ ~4
•

= (hih+il· -k)2 So, in effect, D(k) - --- Also, if the present

order of extrapolation is i, then

24 Roland Bulirsch and Josef Stoer, "Numerical
Treatment of Ordinary Differential Equations by Extra
polation Methods," 5.

20

(h. ·)2 (h)2 (h)2
D(i) = 1+l-1 = _l = __ = M2

h. h . h/M
l l

where M stores the current denominator in (10). However,

h is not kept constant throughout the program. Most often,

h is changed by the formula h = h(FY), where

1

) 2k - 1

where EPk decreases fork= 1, 2, 3, 4, which occurs when

the order of extrapolation is one, two, three, or four.

FY will increase h if

and decrease h if

If

then h will not change. If the program gets completely

through. the rational function extrapolation loop, that is,

gets to a point where no convergence has been recently

obtained, then h is halved, and another attempt is made

from first-8rder extrapolation on. However, since JTI is

also incremented, this canno~ happen more than five times

without success. There are also limits on h. If h

becomes smaller than HMIN, then the program stops. If h

becomes larger than HMAX, then HMAX is assigned tQ h.

Finally, achieving convergence means that the most

recently extrapolated value minus the second most recently

21

extrapolated value in absolute value, divided by the step

size h, is less than or equal to EPS, the user specified

error tolerance. When this is the case, the point x and

the values of y 1 (x), y 2 (x), ... , yn(x) are printed. Then,

if the end of the interval has not been reached, the process

begins at a new point, determined by the new value picked

for h.

Next, I will explain how DIFSYl was compared to a

single equation Adams Predictor Corrector program, which

I modified and adapted to handle (1) . 25

25 1 · Richard L. Burden, J. Doug as Faires,
Albert C. Reynolds, NumericaT An·a·lysis (Boston:
Weber and Schmidt, 1978), pp. 268-9.

and
Prindle,

22

CHAPTER IV

EXPLANATION OF COMPARISON CRITERIA

As mentioned in Chapter I, past research has shown

that DIFSYl is one of the best programs to solve (1) .
26

I

did a series of tests over a set of eight problems which

appear in the next chapter. Recall that variable-order

d th d 1 t . t . 2 7 A ams me o s were a so compe i ive. One tested was

28 DIFSUB, due to C. W. Gear. DIFSUB also appears in

29 -
Gear's text on initial value problems. · However, upon

examining DIFSUB, I found it to be a very large, multipur

pose program, capable of handling stiff systems, and

requiring subroutines for matrix inversion and the computa-

tion of partial derivatives. It has been mentioned that

such programs should be viewed as complete software

packages, rather than as single methods. 30 However, I

mention one small test of DIFSYl with DIFSUB on problem one

in Chapter VI.

26 Wayne H. Enright and T. E. Hull, 959.

27T. E. Hull, et al, 605.

28c. William Gear, "DIFSUB for Solution of Ordinary
Differential Equations," Communications of the ACM,
XIV (3, March 1971), 188-90.

29c. William Gear, Numerical Initial Value Problems
in Ordinary Differential Equations (Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1971), pp. 158-66.

30L. F. Shampine, H. A. Watts, and S. M. Davenport, 376.

23

The program that I compare to oIFSYl is a fourth

order Adams Predictor Corrector program which I adapted

to handle a system of n equations.

PC WATFIV. It appears in Appendix B.

The program is called

I gave it the exact

output features that were built into DIFSYl, so that no

time differential would be realized when printing. PC

outputs when the maximum difference in absolute value

between the predictor value and the corrector value is

less than the error tolerance EPSIL, in all components.

It changes step size relative to the formulas

= (EPSIL)h
()

.25

q .2IPREDICTOR(I) - CORRECTOR(I) J

h = qh,

if q is between .1 and one, and h

than . 1.

.lh if q is less

I chose .0001 as my error tolerance for two reasons.

First, since PC is a fourth-order method, it would easily

be able to accomodate this tolerance, since initially h

is l.5(EPSIL) · 25 . Second, I was curious to witness DIFSYl's

performance at a relatively low error tolerance, since

it is mentioned that DIFSYl is not as good as the variable

order Adams, as well as Runge-Kutta methods, for low error

31
tolerances. This makes sense, since a program like DIFSUB

starts with a first-order method and works up in order,

and the higher the order, the more function evaluations,

31 Wayne H. Enright and T. E. Hull, 959.

24

and consequently, the more time that would be needed. Since

DIFSYl does not even check for convergence until after

fourth-order rational function extrapolation is performed

in hopes of increasing the step, it seems logical that it

would take slightly more time at a lower error tolerance.

I compared DIFSYl and PC in four main areas:

accuracy, number of function calls, computer time, and

computer storage. Accuracy is probably the most important

area to the casual user, who wishes only a solution to

the problem. For six of the problems, the actual solution

is evaluated at the right endpoint of the interval for

each equation. It is then subtracted from the value

which DIFSYl or PC finds. The absolute value is taken,

and this is referred to as the accuracy. For the other

two problems, both of which are nonlinear systems, the

actual solution at the right endpoint is taken to be the

4 value obtained from a Runge-Kutta Four program, an O(h)

method, which integrates the equations with step size .001.

Accuracy is then determined in the same manner. If the

results for individual problems in the next chapter have

more than one value listed under accuracy, it is because

not all equations in the system yielded the same accuracy.

Both programs were run in single and double precision, with

single precision only to determine which method is more

susceptible to roundoff error.

The reader familiar with th ost of computer time

can see that considerations on comp, ?r costs must be made.

25

If a function is very complicated to evaluate, obviously

one would like it to be evaluated as few times as possible.

Each time a call is made to evaluate a function, both prog

rams increment a counter to record the call. However,

DIFSYl evaluates all n components of a system on each call,

while PC evaluates only one specified function, so a true

comparison of number of calls can only be made if the num

ber of PC's calls is divided by the number of equations in

the system in question. I adapted PC to evaluate all n

components at once, like DIFSYl. I found this to take

slightly more computer time and storage, because dummy

variables were needed to send all n values, so the figures

quoted here are for a PC which evaluates components one at

a time.

Computer time and storage are the final two ways

in which DIFSYl and PC were compared. Time has been divided

into compile time and virtual CPU time. Compile time is the

amount of time that it takes the computer to translate a

program from WatfiV, a high level language, to a machine

text, and virtual CPU time is the amount of time the compiled

program actually spen~s solving the initial value problem

in the central processor, not counting time for the parti

cular system's paging apparatus to function. Finally, a

comparison is made between the programs' storage for the

actual DIFSYl and PC object codes as well as the amount of

array area that each require. Clearly, the program which takes

up less of the computer's costly time and space would be more

desirable, providing it gave acceptable accuracy. The

results for the test runs on the eight problems are given

in the next chapter .

•

26

27

CHAPTER V

TEST RESULTS

DIFSYl and PC were put through a series of computer

tests on the Amdahl 470 V/5 computer at Youngstown State

University. The eight problems tested were as follows.

Number one is included because of an upcoming comparison

with DIFSUB.

y I

1 -y
1

a = O , b = 2

= 1

-x Solution: y = e
1

Number two is a logistic growth problem.

y I =
1

a = 0 , b = 5

Solution: y 1 = 20

1 + 19e-x/4

Number three is a conflicting species problem.

y I

1

Y I = -.001
2

a = 0 , b = 4

= 30

= 30

Solution: Given by Runge-Kutta Four.

Number four is a nonlinear chemical reaction problem.

y I = -y
1 1

= 1

Y2
I = Y1 - y22 Y2 = 0 ,

Y3
I = y22 Y3 = 0 ,

a = 0 , b = 1

Soluti on: Given by Runge-Kutta Four.

Number five is a linear chemical reaction problem.

y I =
1 y = 2 1

y I = -2y - y
3 1 3 = 2

a=O,b=2

Solution: y 1
= -6ex + 8e 3x

= -19e 2x + 20e 3x

6 X 4 3x y = e - e 3

Number six is a non-autonomous problem.

Y1
I = Y2 1 Y1 = 1

I 2 + 1 1 Y2 = Y1 - X , Y2 =

a = 0 , b = 6

Solution: 2 + 1 Y1 = X

Y2 = 2x + 1

Number seven is a mildly stiff system.

Y1
I = -y + Y2 + 2x Y1 = 3 1

,

Y2
I = Y1 - 2y2 Y2 = 0 ,

28

Number

y I =
3

a = O , b = 3

Solution: Y1 = e-x/2 +

-3x +. Y2 = -e

Y3 = -x -e /2 +

eight is a mildly stiff

y I =
1

-Sy
1

a = O , b = 3

e-3x/2

2 + 1 X

e-3x/2

sy;stem.

Solution: Y1 = e-lOx + e-4x

-lOx y 2 = e

29

+ 2
1 X =

2 6x + X - + 1

= 2

The test results for the individual problems are presented

in Table 1. In the remainder of this chapter, the results

are presented for all eight problems viewed as a group, so

that any variance in one or more of the comparison parameters

caused by a single problem will be averaged into the group.

However, some additional individual results are presented

in the next chapter.

In regard to number of function calls, DIFSYl made

an average of 323.75 calls to its function evaluation sub

routine, while PC made an average of 380 if the number of

calls for a system is divided by the number of equations, and

9 0 2 . 5 if not. ·

Both programs took an average of .24 seconds per

problem to compile each source code. Average virtual CPU time

Number

1
D 2
I 3
F 4
s 5
y 6
1 7

8

1
2
3

p 4
C 5

6
7
8

TABLE l

TEST RESULTS FOR INDIVIDUAL PROBLEMS

CPU CPU Accuracy C

b
Calls Compile Time- Time-

Timea All b
Points Only Double

108 .22 .0376 .0335 10
126 .24 .0486 .0406 11
126 .24 .0683 .0598 6

75 .26 .0500 .0486 10,6,6
1419 .24 .9154 .8514 9,8,9

168 .23 .0849 .0744 5
195 .24 .1260 .1215 0
369 .25 .1890 .1792 1

68 .24 .0271 .0145 6
168 .23 .0646 .0351 7
264 . 26 .0764 .0496 6
132 .24 .0317 .0238 3

3012 .24 .7036 .4943 4,3,4
408 . 24 .1081 .0698 2
984 .24 .2340 .1765 0

2184 .23 .6222 .3995 1

aCompile time is given in seconds.

bCPU time is given in seconds.

c 10-accuracy_ Accuracy is given as

dObject code is given in bytes.

Single

6
4
pe
5
F
2
0
1

4
F
F
3
F
F
F
F

eAn F signifies no output was received.

30

Objectd
Code

5408
5464
5568
5584
5696
5512
5720
5672

7048
7104
7248
7288
7416
7200
7432
7360

for DIFSYl is .189983 seconds, and for PC is .233454 seconds,

if the programs are allowed to output data wherever they wish,

and .176119 seconds and .157882 seconds, respectively, if

they are modified to output data only at the right endpoint

of the interval.

31

DIFSYl needed 528 bytes of array storage for each

problem, while PC needed four hundred. For object codes, that

is, the amount of storage needed for the compiled programs,

DIFSYl needed an average of 5578 bytes, while PC needed an

average of 7262 bytes.

In terms of accuracy, recall, both programs were to

consider convergence to be achieved if the two values being

compared were accurate to within 10-4 . In double· precision,

1 . h' 10- 6 · 75 h'l DIFSY was accurate to wit in on the average, w i e

. h' 10- 3 · 6 h Th PC was accurate to wit in on t e average. ese

results are analyzed in the next chapter.

32

CHAPTER VI

CONCLUSIONS

In this chapter, the results of Chapter V are ana

lyzed. The number of function evaluations and the computer

time and storage are clearly influenced by the step size h,

since this has a direct bearing on how many times the method

must be called to solve (1) over [a,b]. By construction, PC

restricts h more than DIFSYl, a fact that can be seen by

viewing output, since PC prints out at far more points per

problem than DIFSYl. For example, in problem five, PC pro

duced 151 output points, while DIFSYl produced only 53. Over

all problems, PC produced about four and a half times as

many output points as DIFSYl. Depending on the user's point

of view, this could be good or bad. For example, if one re

quires the solution to (1) at only a few points in [a,b],

then DIFSYl appears more suited to their needs. The number of

output points difference is clearly seen in the average vir

tual CPU time for output at all points, since on the average

DIFSYl is about .043 seconds faster per problem. However, if

the user desires output at the right endpoint only, then

average virtual CPU time for PC is about .018 seconds faster.

In regard · to program and array storage, although

DIFSYl needs on the average 128 more bytes of storage for its

arrays, it also need 1684 less bytes for its object code.

So on the average, DIFSYl saves the user 1556 bytes of space.

33

The main advantage of the rational function extrap

olation program appears to be in the accuracy requirement.

Although both programs specified that the output values be

accurate to within 10-4 , DIFSYl was on the average accurate

to within 10- 6 · 75 , while PC was only accurate to within

10 - 3 · 6 h" b d t th f h . Tis appears to e ue o e act tat the Adams

Predictor Corrector program is more susceptible to roundoff

error. To confirm this, I ran all eight problems in single

precision for both methods. DIFSYl produced output for six

out of eight of the problems, while PC could only produce

output for two out of eight problems. Both DIFSYl and PC

were on the average accurate to within lo- 3 · 25 in single

precision. Errors were returned for attempting to divide by

zero in all six failed PC runs, while the two DIFSYl failures

were due to page limit being exceeded in problem three, and

job time being exceeded in problem five. This implies that

PC builds up roundoff error at a faster pace than DIFSYl,

that is, that rational function extrapolation is more stable

than the Adams Predictor Corrector method.

When comparing DIFSYl to Gear's DIFSUB on problem

one, I found that DIFSYl was more than twice as accurate.

Although that was only one problem,it does give an indication

that DIFSYl is very powerful.

In conclusion, my test results support the previous

results of Hull, Enright, Shampine, Watts, and Davenport by

confirming the fact that rational function extrapolation is

one of the best methods available today to solve nonstiff

34

initial value problems. When the problem of stiffness arises,

as in problems seven and eight, the method is not very re

liable, and neither is Adams'. One must employ another type

of method to solve stiff systems, for example, the method

32 due to Deuflhard and Bader. However, for nonstiff problems,

rational function extrapolation gives very good results,

especially in regards to computer storage and solution

accuracy, provided that function evaluations are not expen-

sive.

32P. Deuflhard and G. Bader, "A Semi-Implicit Mid
Point Rule for Stiff Systems of Ordinary Differential Equa
tions," Techni•sche Universitat Mlinchen, (August 1978), 1-48.

35

APPENDIX A

DIFSYl WATFIV Computer Program

$JOB
C

36

DIFSYl WATFIV COMPUTER PROGRAM

C
C
C
C

THE PURPOSE OF THIS PROGRAM IS TO SOLVE THE INITIAL
VALUE PROBLEM IN ORDINARY DIFFERENTIAL EQUATIONS.
THIS IS THE MAIN PROGRAM SEGMENT. THE USER MUST
SPECIFY THE FOLLOWING PARAMETERS:

C
C HINIT - THE INITIAL STEP SIZE
C N - THE NUMBER OF EQUATI ONS
C X - THE LEFT ENDPOINT OF THE INTERVAL
C y (I) - THE N INITIAL VALUES
C XEND - THE RIGHT ENDPOINT OF THE INTERVAL
C EPS - THE ERROR TOLERA..~CE
C HMAX - THE MAXIMUM ALLOWABLE STEP SIZE
C

DOUBLE PRECISION HINIT,X,Y(4) ,XEND,EPS,8!'1AX
C
C YF IS THE EXTERNAL SUBROUTINE THAT IS CALL~D
C BY !J'iETHOD TO EVALUATE THE FUNCTIONS.
C

EXTER."'\JAL YF
C
C NOFNS COUNTS THE NUMBER OF FUNCTION EVALUATIONS.
C

C

COMMON NOFNS
NOFNS=O
HINIT=2.0D-2
N=l
X=O. ODO
Y (1) =l. DO
XEND=S.DO
EPS=.0OOlDO
HMAX=l. ODO

C METHOD IS THE SUBROUTINE THAT SOLVES THE INITIAL
C VALUE PROBLEM. OUTPUT OF THE SOLUTION AT PROGRAM
C SELECTED POINTS IS DONE BY METHOD.
C

CALL METHOD(N,X,Y,XEI-JD,EPS,HMAX,HINIT)
C
C THE NUMBER OF FUNCTION EVALUATIONS IS OUTPUT.
C

WRITE (6,998) NOFNS
998 FORM..~T (lH ,'NO. OF EVALUATIO~S IS ',16)

STOP
END
SUBROUTINE YF(X,Y,DY)

C
C THIS IS THE FUNCTION EVALUATION SUBROUTINE.
C ARRAY DY RETURNS THE VALUES OF F(X,Y).
C ALSO, THE NUMBER OF FUNCTION EVALUATIOHS IS

C
C

C
C
C
C

C

INCRE ~..ENTZD.

DOUBLE PRECISIO~J X,Y(4) ,DY(4)
COMMON NOFNS
NOFNS=NOFNS+l
DY(l)=-Y(l)
RETURN
END
SUBROUTINE METHOD(~,YF,X,Y,XEND,EPS,HMAX,HINIT)

THIS IS THE HUSSELS RATIONAL FUNCTIO~ EXTRAPOLATION
SUBROUTINE.

37

DOUBLE PRECISION Y(4) ,YA(4) ,YL(4) ,YM(4) ,DY(4) ,DZ(4),
+DT (4, 7) , D (7) , X, XN, H, G, :S, Bl, U, V, C, TA, tv, XE:·m, EPS, HMAX,
+HINIT,R(4) ,HMIN,ERREST

C EPS IS USED TO CHAfJGE THE STEP SIZE H.
C

C
C
C
C

C
C
C
C
C
C
C
C
C
C

C

REAL*4 EP(4)/0.4E-l,0.16E-2,0.64E-4,0.256E-5/

THE LOGICAL VARIABLES ARE:

KONV - KONV IS FALSE WHEN THE ORDER OF
ZXTRl\POLATION IS THREE OR LESS, WHEN NO TEST
IS I-~DE FOR CO~JVERGENCE. IT IS TRUE IF
CONVERGENCE HAS BEEN ACHIEVED.

BO - THIS IS A SWITCH TO DIFFERENTIATE BETWEEN
ODD k.~D EVEN ORDER EXTRAPOLATION.

KL - KL IS TRUE ONLY WHEN FINDING THE FIRST
.MODIFIED MIDPOINT VALUE.

GR - GR IS TRUE WHEN THE ORDER OF EXTR:z\POLZ\.TION
IS FIVE OR SIX. IT IS USED IN CONNECTION WITH
CHANGING THE STEP SIZE H.

LOGICAL*l KONV,BO,KL,GR
EXTERi.~AL YF
COMMON NOFNS

C DT WILL HOLD EXTRAPOLATED VALUES. IT MUST BE ZEROED
C OUT FOR THE FIRST ITERATION.
C

DO 993 I=l,4
DO 993 J=l,7
DT(I,J)=0.0D0

993 CONTINUE
C
C HMIN IS THE MINIMUM ALLOWABLE STEP.
C

HMIN=l.D-14
C
C H IS rrHE CURRENT STEP SIZE BEING ATTEMPTED.
C

H=HINIT

C
C
C
C
C
C
C
C
C

1000
C
C
C
C
C

C

CONTROL IS PASSED TO STATEMENT 1000 WHEN A FRESH
START IS BEING MADE AT THE POINT X. ALSO, THE
SAFETY VALVE JTI IS SET EQUAL TO ZERO. JTI IS
INCREMENTED WHEN EXTRAPOLATION FAILS TO ACHIEVE
CONVERGENCE. THIS IS ALLOWED TO HAPPEN ONLY FIVE
TIMES, SO THAT THE PROGRAM DOES NOT CONTINUE
RUNNING INDEFINITELY.

JTI=0

FY IS THE PARAMETER THAT IS USED TO CHANGE STEP
SIZE H BY THE FORMULA H=H*FY. IT IS INITIALLY SET
TO ONE.

FY=l.D0

C YA SAVES THE VALUES OF Y(X).
C

DO 100 I=l,N
100 YA(I)=Y(I)

C
C H CAN NOT EXCEED THE LENGTH OF THE INTERVAL.
C

IF (H.GT.XEND-X) H=XEND-X
C
C DZ HOLDS THE VALUES OF F(X,Y)
C

CALL YF(X,Y,DZ)
C
C CONTROL IS PASSED TO STATEMENT 10 WHEN A NEW STEP
C SIZE HIS BEING ATTEMPTED.
C

10 XN=X+H
BO=.FALSE.

C
C M,JR, AND JS ARE THE DENOMINATORS FOR THE STEP SIZE
C SEQUENCE (H,H/2,H/3,H/4,H/6,H/8,H/12).
C

C

M=l
JR=2
JS=3

C THIS LOOP CONTROLS THE ORDER OF EXTRAPOLATION .
C

DO 260 J=l,10
IF(.NOT.BO) GO TO 200

C
C THE D ARRAY HOLDS THE VALUES (H(I+l-K}/H(I))**2.
C FOR ODD ORDER EXTRAPOLATION, 0(2)=16/9,
C 0(4)=64/9, AND 0(6)=256/9.
C

O(2}=1.777777777777778D0
0(4)=7.11111111111111100

38

C

D(6)=2.844444444444444Dl
GO TO 201

C FOR EVEN O~DER EXTRAPOLATION, D(2)=9/4,
C D(4)=9, AND D(6)=36.
C

C

200 D(2)=2.25D0
D(4)=9.D0
D(6)=3.6Dl

C THE MAXIMUM ORDER OF EXTRAPOLATION IS SIX.
C LIS ONE MORE THAN THE CURRENT ORDER.
C

201 IF (J.LE.7) GO TO 202
L=7
D(7)=6.4Dl
GO TO 203

202 L=J
D(L)=M*M

203 KONV=L.GT.3
C
C THIS SECTION PERFORMS THE MODIFIED MIDPOINT
C RULE, DUE TO GRAGG.
C

C

M=M+M
G=H/DFLOAT(M)
B=G+G
DO 210 I=l,N
YL (I) =YA (I)

210 YM(I)=YA(I)+G*DZ{I)
M=M-1
DO 220 K=l,M
CALL YF(X+DFLOAT{K)*G,YM,DY)
DO 220 I=l,N
U=YL(I)+B*DY(I)
YL(I)=YM(I)
YM(I)=U

220 CONTINUE
CALL YF(A'N,YM,DY)
KL=L.LT.2
GR=L.GT.5

C FS IS USED IN CHANGING THE STEP SIZE H.
C

FS=0.D0
C
C THIS LOOP PERFORMS THE RATIONAL FUNCTION
C EXTR~POLATION ALGORITHM OF BULIRSCH P..N D STOER.
C

DO 233 I=l,N
C
C V HOLDS THE VALUE OF THE MODIFIED MIDPOINT RULE
C AT THE PREVIOUS STEP.
C

39

V=DT(I,1)
C

C C HOLDS THE CURRENT VALUE OF THE MODIFIED
C MIDPOINT RULE.
C

C

C=(YM(I)+YL(I)+G*DY(I))*0.SD0
DT(I,l)=C
TA=C

C IF KL IS TRUE, THE PROGRAM IS ON THE FIRST
C ITERATION, AND HENCE, EXTRAPOLATION CAN NOT YET
C BE PERFORMED.
C

IF(KL) GO TO 233
DO 231 K=2,L
Bl=D(K)*V
B=Bl-C
W=C-V
U=V
IF (B.EQ.0.D0) GO TO 230
B=W/B
U=C*B
C=Bl*B

230 V=DT(I,K)
DT(I,K)=U

C
C TA HOLDS THE MOST RECENTLY EXTRAPOLATED VALUE.
C

231 TA=U+TA
C
C IF THE ORDER OF EXTRAPOLATION IS LESS THAN FOUR,
C DO NOT TEST FOR CONVERGENCE.
C

IF(.NOT.KONV) GO TO 232
C
C R=ABS(LAST EXTRAPOLATION-THIS EXTRAPOLATION)/H.
C

R(I)=DABS(Y(I)-TA)/H
C
C IF R LESS THAN OR EQUAL TO THE ERROR TOLERANCE,
C CONVERGENCE HAS BEEN ACHIEVED.
C

IF(R(I) .GT.EPS) KONV=.FALSE.
C
C IF THE ORDER OF EXTRAPOLATION IS AT LEAST FIVE,
C DO NOT ATTEMPT TO ALTER ANY OF THE STEP CHANGING
C PARAMETERS.
C

232 IF(GR) GO TO 233
C
C FV=ABS(LAST MIDPOINT-PRESENT MIDPOINT)
C

FV=DABS(W)
C

40

C IF THERE IS SOME DIFFERENCE, FS rs I NCREASED.
C

IF(FS.LT.FV) FS=FV
C
C Y NOW HOLDS THE MOST RECENTLY EXTRAPOLATED VALUE.
C

233 Y(I)=TA
C
C IF FS IS ZERO, DO NOT ATTEMPT TO ALTER FY.
C

IF(FS.EQ.0.) GO TO 250
C
C FA HOLDS THE LAST VALUE OF FY.
C

FA=FY
K=L-1

C
C FY=(EP(K)/ABS(LAST MIDPNT-THIS MIDPNT))**(l/(2L-1)).
C THIS IS WHAT H MAY BE ALTERED BY.
C

C

FY=(EP(K)/FS)**(l./DFLOAT(L+K))
IF (L.EQ.2) GO TO 240

41

C IF FY GREATER THAN OR EQUAL TO OLD FY OR FY LESS THAN
C .7, THEN SAFETY VALVE JTI IS INCREMENTED, HIS ALTERED,
C AND A NEW ATTEMP.T I S MADE TO CONTINUE WITH THIS NEW
C STEP SIZE.
C

C

IF(FY.LT.0.7*FA) GO TO 250
240 IF(FY.GT.0.7) GO TO 250

JTI=JTI+l
IF (JTI.GT.5) GO TO 250
H=H*FY
IF (H.GT.HMAX) H=HMAX
GO TO 10

C IF CONVERGENCE HAS BEEN ACHIEVED, OUTPUT THE
C RESULTS, AND PROCEED TO THE NEXT STEP. IF NOT,
C HALVE THE STEP SIZE AND BEGIN AGAIN.
C

C

250 IF (KONV) GO TO 20
D(3)=4.D0
D(5)=1.6D0
BO=.NOT.BO
M=JR
JR=JS

260 JS =M+M
IF {JTI.GT.5) GO TO 30
IF (DABS(H) .LE.HMIN) GO TO 30
H=H*0.5D0
IF (DABS(H) .GE.HMIN) GO TO 10
H=DSIGN(HMIN,H)
GO TO 10

C OUTPUT THE RESULTS, CHANGE H, MOVE X UP TO XN,
C AND BEGIN AT THIS NEW POINT.
C

C

20 WRITE (6,551) XN,(Y(K),K=l,N)
551 FORMAT(lH ,F20.14,4(2X,F20.14))

X=XN
H=H*FY
IF(H.GT.HMAX) H=HMAX
IF(DABS(XEND-X).LT.l.D-8) RETURN
GO TO 1000

C IF THERE HAS BEEN A FAILURE, THE INITIAL Y VALUES
C ARE RESTORED, HIS SET EQUAL TO ZERO, AND THE
C PROGRAM IS ABORTED.
C

30 H=0.D0
DO 300 I=l,N

300 Y(I)=YA(I)
RETURN
END

$ENTRY
/*

42

43

APPENDIX B

PC WATFIV Computer Program

PC WATFIV COMPUTER PROGRAM

$JOB
C
C
C
C
C
C
C
C
C

C

THIS IS THE MAIN PROGRAM SECTION.
THE USER MUST SPECIFY:
N THE NUMBER OF EQUATIONS
Y(I) THE INITIAL VALUES
A THE LEFT ENDPOINT
B THE RIGHT ENDPOINT
EPSIL THE ERROR TOLERANCE.

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION Y(4)
EXTERNAL F
N=2
Y(l)=l.DO
Y (2)=1.DO
A=O.DO
B=6.DO
EPSIL=.OOOlDO
H=l.5DO*EPSIL**.25

IN THE SYSTEM

C PC SOLVES THE INITIAL VALUE PROBLEM.
C

CALL PC(Y,N,A,B,EPSIL,H)
STOP
END
FUNCTION F(N,T,U,NUM)

C
C FIS THE FUNCTION EVALUATION FUNCTION.
C

C

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION U(4)
GO TO (1,2) ,NUM

1 F=U (2) -1. DO
RETURN

2 F=U(l)-T*T+l.DO
RETURN
END
SUBROUTINE PC(Wl,N,A,B,EPSIL,H)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION T(5) ,WO (4) ,Wl (4) ,W2 (4) ,W3 (4) ,W4 (4) ,W5 (4)
NCALLS=O

C IFLAG IS ONE IF THE PROGRAM IS AT POINT A.
C

IFLAG=l
IND=O
T(l)=A

551 FORMAT (lH ,F20.14,4(2X,F20.14))
333 DO 8 1=2,4

44

8 T(I)=A+(I-l)*H
C
C THE FIRST THREE VALUES ARE RUNGE-KUTTA VALUES.
C

C

CALL RK4(H,Wl,W2,T(l) ,NCALLS,N)
WRITE (6,551) T(2), (W2(K) ,K=l,N)
CALL RK4(H,W2,W3,T(2) ,NCALLS,N)
WRITE (6,551) T(3),(W3(K),K=l,N)
CALL RK4(H,W3,W4,T(3) ,NCALLS,N)
WRITE (6,551) T(4),(W4(K),K=l,N)

C LIS ZERO IF VALUES ARE OBTAINED BY PREDICTOR
C CORRECTOR LOOPS, AND ONE IF VALUES ARE OBTAINED
C BY RUNGE-KUTTA FORMULAS.
C

L=0
C
C CONTROL IS TRANSFERRED HERE IS THE PREDICTOR
C CORRECTOR LOOPS ARE TO BE USED.
C

5 T(5)=T(4)+H
C
C T(S) CAN NOT SURPASS THE INTERVAL.
C

IF (T(5) .LT.B) GO TO 6
T(S)=B
H=T (5) -T (4)

C
C IND IS SET TO ONE IF THE PROGRAM HAS REACHED
C THE END OF THE INTERVAL.
C

IND=l
C
C LOOP 34 COMPUTES A PREDICTOR VALUE.
C

6 DO 34 NUM=l,N
P=F(N,T(4) ,W4,NUM)
Q=F(N,T(3) ,W3,NUM)
R=F(N,T(2) ,W2,NUM)
S=F(N,T(l) ,Wl,NUM)

34 W0(NUM)=W4(NUM)+H*(55.D0*P-59.D0*Q+37.D0*R-9.D0*S)/
+24.D0

C
C LOOP 35 COMPUTES A CORRECTOR VALUE.
C

DO 35 NUM=l,N
P=F(N,T(S),W0,NUM)
Q=F(N,T(4) ,W4,NUM)
R=F(N,T(3) ,W3,NUM)
S=F(N,T(2),W2,NUM)
NCALLS=NCALLS+8

35 W5 (NUM) =W4 (NUM).+H* (9. D0*P+l9. D0*Q-5. D0*R+S) /24. DO
C
C SIGMA=ABS(PREDICTOR-CORRECTOR).

45

C
SIGMA=DABS(W5(1)-W0(l))

C
C IF N IS ONE, THERE IS ONLY ONE EQUATION.
C

IF (N.EQ.l) GO TO 666
C
C SS IS THE MAXIMAL DIFFERENCE OF ALL EQUATIONS
C IN THE SYSTEM.
C

DO 50 NUM=2,N
SS=DABS(W5(NUM)-W0(NUM))
IF (SS.GT.SIGMA) SIGMA=SS

50 CONTINUE
666 SIGMA=.lD0*SIGMA

C
C IF .l*EPSIL LESS THAN OR EQUAL TO SIGMA, AND SIGMA
C LESS THAN OR EQUAL TO EPSIL, PRINT THE VALUES. IF

46

C NOT, CHANGE HAND COMPUTE NEW VALUES BY RUNGE-KUTTA.
C

C

IF(.lD0*EPSIL.LE.SIGMA.AND.SIGMA.LE.EPSIL) GO TO 51
GO TO 52

C IFLAG IS ZERO IF THE PROGRAM IS NOT AT POINT A.
C

C

51 IFLAG=0
WRITE (6,551) T(5), (W5 (K) ,K=l,N)
DO 66 KK=l,N
Wl(KK)=W2(KK)
W2(KK)=W3(KK)
W3(KK)=W4(KK)

66 W4(KK)=W5(KK)
T(l)=T(2)
T (2) =T (3)
T (3) =T (4)
T(4)=T(5)
L=0

C IF IND IS ONE, THE TASK HAS BEEN COMPLETED.
C

IF (IND.EQ.l) GO TO 18
C
C CONTINUE AT THE NEXT POINT.
C

GO TO 5
C
C Q IS USED TO CHANGE THE STEP SIZE H.
C

52 Q=((EPSIL*H)/2.D0*SIGMA))**.25
C
C IF SIGMA GREATER THAN EPSIL, CHANGE H.
C

IF (SIGMA.GT.EPSIL) GO TO 17
IF (Q.LE.l) H=Q*H

C
C GET NEW VALUES BY RUNGE-KUTTA.
C

C

14 L=l
DO 77 KK=l,N

77 Wl (KK) =W5 (KK)
T(l)=T(5)
T(2)=T(l)+H
IF (T(2) .LT.B) GO TO 56
T(2)=B
H=T(2)-T(l)
IND=l

56 CALL RK4(H,Wl,W2,T(l) ,NCALLS,N)
WR I TE (6 , 5 51) T (2) , (W 2 (K) , K = 1 , N)
IF (IND.EQ.1) GO TO 18
T(3)=T(2)+H
IF (T(3) .LT.B) GO TO 57
T(3)=B
H=T(3)-T(2)
IND=l

57 CALL RK4(H,W2,W3,T(2) ,NCALLS,N)
WRITE (6,551) T(3),(W3(K),K=l,N)
IF (IND.EQ.1) GO TO 18
T(4)=T(3)+H
IF (T(4) .LT.B) GO TO 64
T(4)=B
H=T(4)-T(3)
IND=l

64 CALL RK4(H,W3,W4,T(3),NCALLS,N)
WRITE (6,551) T(4), (W4 (K) ,K=l,N)
IF (IND.EQ.1) GO TO 18

C CONTINUE WITH THE PREDICTOR CORRECTOR LOOPS
C WITH THE NEW INITIAL VALUES.
C

GO TO 5
C
C IF Q LESS THAN .1, H=.l*H, ELSE H=Q*H.
C

17 IF (Q.LT .. 1) GO TO 58
H=Q*H
GO TO 59

58 H=.lD0*H
C
C GO TO 333 IF STILL AT POINT A.
C

59 IF (IFLAG.EQ.1) GO TO 333
C
C COMPUTE RUNGE-KUTTA VALUES IF L=l.
C

IF (L.EQ.l) GO TO 14
C
C PRINT THE NUMBER OF FUNCTION CALLS.
C

47

18 WRITE (6,862) NCALLS
862 FORMAT (lH ,'NUMBER OF FUNCTION CALLS IS ',18)

RETURN
END
SUBROUTINE RK4(H,A,B,T,NCALLS,N)

C
C RK4 COMPUTES THE RUNGE-KUTTA VALUES.
C

IMPLICIT REAL*8(A-H,O-Z)

48

DIMENSION A(4) ,HO(4) ,B(4) ,XK1(4) , XK2(4) ,XK3(4) ,XK4(4)
DO 22 NUM=l,N

22 XKl(NUM)=H*F(N,T,A,NUM)
DO 23 NUM=l, N

23 HO(NUM)=A(NUM)+XKl(NUM)/2.D0
DO 24 NUM=l,N

24 XK2 (NUM) ·=H*F (N, T+H/2. DO, HO, NUM)
DO 25 N1. ·' = l ,N

25 HO(NUM) \ (NUM)+XK2(NUM)/2.D0
DO 26 N '-1=1,N

26 XK3(NUM) =H*F(N,T+H/2.D0,HO,NUM)
DO 27 NUM=l,N

27 HO(NUM)=A(NUM)+XK3(NUM)
DO 28 NUM=l,N

28 XK4(NUM)=H*F(N,T+H,HO,NUM)
DO 29 NUM=l,N

29 B(NUM)=A(NUM)+(XK1(NUM)+2.D0*XK2(NUM)+2.D0*XK3(NUM)+
+XK4(NUM))/6.D0

NCALLS=NCALLS+4*N
RETURN

$ENTRY
/*

END

49

BIBLIOGRAPHY

Books

Burden, Richard L., Faires, J. Douglas h and Reynolds, Albert
C. Numerical Analysis. Boston: Prindle, Weber, and
Schmidt, 1978.

Gear, C. William. Numerical Initial Value Problems in Or
dinary Differential Equations. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., 1971.

Articles

Bulirsch, Roland and Stoer, Josef. "Fehlerabschatzungen und
Extrapolation mit rationalen Funktionen bei verfah
ren vom Richardson-Typus." Nurnerische Mathematik,
VI (1964), 413-27.

Bulirsch, Roland and Stoer, Josef. "Numerical Treatment of
Ordinary Differential Equations by Extrapolation
Methods." Numerische Mathematik, VIII (1966), 1-13.

Deuflhard, P. and Bader, G. "A Semi-Implicit Mid-Point Rule
for Stiff Systems of Ordinary Differential Equations."
Technische Universitat Mlinchen, (August 1978), 1-48.

Enright, Wayne H. Personal Communication.

Enright, Wayne H. and Hull, T. E. "Test Results on Initial
Value Methods for Non-Stiff Ordinary Differential
Equations." SIAM Journal of Numerical Analysis, XIII
(6, December 1976), 944-61.

Fox, P.A. "DESUB: Integration of a First Order System of
Ordinary Differential Equations." Mathematical Soft

•
ware. Edited by John Rice. New York: Academic Press,
1971.

Gear, c. William. "DIFSUB for Solution of Ordinary Differen
tial Equations." Communications of the ACM, XIV
(3, March 1971), 185-90.

Gragg, William B. "On Extrapolation Algorithms for Ordinary
Initial Value Problems." SIAM Journal of Numerical
Analysis, II (3, 1965), 384-403.

so

Hull, T. E. et al, "Comparing Numerical Methods for Ordinary
Differential Equations." SIAM Journal of Numerical
Analysis, IX (4, December 1972), 603-37.

Hussels, H. G. "Schrittweitensteuerung bei der Integration
gewohnlicher Differentialgleichungen mit Extrapola
tionverfahren." Unpublished M. Sc. Thesis, Univer
sitat Koln, 1973.

Joyce, D. C. "Survey of Extrapolation Processes in Numerical
Analysis." SIAM Review, XIII (4, October 1971),
435-90.

Lambert, J. D. "The Initial Value Problem for Ordinary Dif
ferential Equations." The State of the Art in Nu
merica l Ana lysis. Edited by D. A.H. Jacobs. London:
Academic Press, 1977.

Shampine, L. F., Watts, H. A., and Davenport, S. M. "Solving
Nonstiff Ordinary Differential Equations - The State
of the Art." SIAM Review, XVIII (3, July 1976),
376-411.

Stoer, Josef. "Uber zw·ei Algori thmen zur Interpolation mi t
rationalen Funktionen." Numerische Mathematik, III
(1961), 285-304.

	252 Gaydos
	252003

