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ABSTRACT

STATIC AND DYNAMIC STABILITY OF SLOPED COLUNNS -

A MATRIX APPROACH

Emmanuel Fountoulis
Master of Science in Engineering

Youngstown State University, 1979

The pnurpose of this thesis is to investigate the
static stability characteristics and the free vibration
phenomena of a beam-column inclined from the vertical align-
ment. A modern compact matrix approach is utilized to form-
ulate the mathematical solutions. A variety of end support
conditions are considered, including fixed ends, simple sup-
vorts, and a combination of those.

For the static stability problem, critical buckling
loads are determined for various angles of inclination of
the beam-column. For each end support condition, nonlinear
load-deflection curves are plotted and critical buckling
loads 2re determined from the maximum point of those curves.

For the free vibration problem, the naturzl fre-
quencies of free vibration of the sloped beam-column =zre de-
termined for various values of the inclination angle. For
each end support condition, axial force-natural frecuency
curves zare constructed using an zpproximate linearized con-
dition.

In general, it is found that the critical buckling
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load decreases as the angle of inclination (measured from
the horizontal) decreases. For the free vibration problem
it is found that,as the induced axial force increases, the
resonant frequency decreases. When the induced axial force

reaches the critical buckling load, the resonant frequency

i8 "zZero,
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CHAPTER I
INTRODUCTION

The problem of the natural frequency of a heam-column
has been extensively investigated.(l)* It has been found
that, in general, as the axial force increases the resonant
frequency decreases. At the value of axial force equal to
the critical buckling load, the resonance frequency 1is zero.
The purpose of this thesis is to investigate this phenomena
for the case where the beam-column is inclined from the
vertical alignment.

In this thesis work, the statical problem of the com-
bined effects of axial strain and bending is reformulzted
using a more concise, modern matrix approach. This mathe-
matical procedure is utilized to form the basic approach to
the solution of the dynamics problem which is by nature a
fzr morzs complex mathematical entity.

The simple truss shown in Figure 1.1 is called a
"Mises Truss'y the static stebility of which was first in-

(2)

vestigated for axial strain. later, the static stability
of the s2me system was investigated, using exact nonlin=~r
thenry, for bending deformaticn only.(j) In a recent study,
the static stability problem of combined axial strzin and
bending deformation using an approximate large deflecticn

¥ Numher in parenthesis refers to literature cited in the
bibliography.



theory and a classical differential equation approach, has

been investigated.(u)

Fig. 1.1 Mises Truss.

Because of symmetry, one may invgstigate only one
element of the system setting proper deflection restrictions.
This element is shown in Figure 1.2. Since both axial strain
and bending are considered, this member is a beam-column,

and it is investigated for various end conditions.

F

a

Fig. 1.2 Sloped Beam-Column.

The deflection restrictions are as follows:
A« End A has no deflections although it may/maynot

be free to rotate.



B. End B only moves in the vertical directicn and

it may/maynot be free to rotate.

For the static problem,the axial load-axial deflection
curves, for a variety of the inclination angles a, are obtain=-
ned, from which the load F that causes instability is deter=-
mined. For the dynamic problem,the axial load-frequency
curves are formulated for different values of the inclination
angle a.

In solving the problem,an approximate large de-

flection theory is utilized. In other words, in the axial

lF

strain the bending effect is included.

¢+

Fig. 1.3 Displacement Functions, u-v.

In Figure 1.3 the positive displacement functions are shown,

The axial strain including the nonlinear term is
3 a)

The totzl strain of the beam-column is

Qux == -g-:'-:- X % (QV)_g.y(L)

ox2



or exx= Wy + 4+ VE 4+ Y Vo

where the subscript denotes the appropriate derivative.
The differential equation for the static problem

)(5)

is developed using Reissner's Functional (Ig

Lmjffy[m C“--ZJE-txe] dv +

+F ( Uy SINQL + Vi cosa) — A (Y osa -V, sina) -

where the term containing F represents the work done by the
apolied nodal force, A defines a lagrange multiplier physi-
cally representing the horizontal end constrazint force at B,
and the entire term containing A expresses the work done by
thls constraint force. Also, exxs, TUxx are the strain and
stress, respectively, in the X direction, and E the mcdulus
of elasticity of the member material,
Defining N-the axial force in the member,

M-the bending mcment,

A-the cross sectional areé - constant,

I-the moment of inertia about z axis,
the stress Ty, consists of the axial stress K with corre=-
sponding strain Oy = Usyp + % V%x and the bending stress
%¥ with corresponding strain y Ve ®
Substituting into the Reissner's Functional, it follows that,

L —”/V{A U+ :x)+ MJ_ {9 %) ( * —") id\l.;.
+ F(uysina + v, cosa) -2 (W, cosa -y sina)  (1.1a’

Integrating the latter equation over the area, one obtains



o N?
IR —f N(u-nt“'g )+M % = FEA T ZEl}dx.‘-

+ F (U, sina + v, cosa) = A (U cosa =V, sina)

1t follows that
I 21{"‘(“““’ Vi) + M Vi - t‘éA 3T ‘ dx <+

[Fusina +F v cosa = Au coset + AV sinay.g

. Su, Sv. SN, SM)

(1.1b)

Performing the variational operations (i.e

on the parameters of Equation (1.1b), one obtains

gIK=j{(u,x+%V,:)SN + N S(u,x'l'n ,-‘)+ MS .") +
: +v,,,$M_§'iASN_gSM}c\x+

+[F sinot Su. + F cosa Sv - ) osa SU. + A sina Sv]x.;L

S(u,) + L o (V3

but S(\L.x-\-"zv.:) =

Combining the latter two equations, yields
Sla:j{ (U + £ 2) SN + N S0 £ N 3(42) 4 M 3%+
N - M Suidx +
§M "EZSN EL H% *

+ Vixx
+[F sina %u + F cosot Sv -)x(osq%u. +)$ino.§v :\X'-'—L (1.2)

Separately performing the integration of the terms 1n

Equation (1.2), ylelds

j..N () dx =jN d(8w) = NSu.t—jLN.x Su dx (1.3)

I N §(v3)dx —fN vx 3(vdx =
=/N Vx - A(SV)

or j‘--‘iN ) dx = N v, Sv\;_fL(N Vi VX (1)




M 8t dx = M deSom] = M Sl Bl dve
= M S0uls — [ My 8w dx =
=M S(wol —X Mx (&) =
=M Svals - M BVl + j Moxx SV dx

oy jM Slyxd dx = M S(vy) - Mx Sv}: +JM/xxSv dx  (1.5)
L L

Substituting Equations (1.3), (1.4) and (1.5) into Equation

SIe =J{(u,,‘+.‘i vi) SN — (NV,x),xSV +M,xxSV +

+v.xx$M-é.°£.SN—E£‘I_SM_N.xSu} dx +

L
+LN8u. + Nvedv + M Svx) = Mix Sv}o +

+[F sina DU + F osat W =\ cosa S + ) sina SV}x—_L

Properly rearranging the terms of the latter equation, one

obtains

Sl -:.f{ Wy + 5 Yx - ENI.} SN dx +i{M,xx—(N‘4x),x}SVJX+
+£{ v,xx-gb%}SM ax —[N;x Su dx +

+[(N+ F sina = ) CosOL) Su+ M S(vx) +
+( N Vx —M,x + F cosa + X sina) Sv] x=L ¥

[0 Su 4 (N vk = M) S + (MY S | o

The variation of the Functional must vanish (i.e. SIP =0).



Because the variation variables inside the integral are
arbitrary, for the integral to be zero, the coefficients
of the variational elements are equated to zero, thus pro-

ducing the stress-strain relations

Wix + 4 Vix = - 1.6a)
N = constant (1.6b)
M=ET v,xx (1.7)

and the differential equation of equilibrium
Mxx — (Nvix),, =0 (1.8)
Combining Equations (1.7), (1.8) and (1.6b) one obtains
(ETvxx),xx — N Vixx =0

Considering the parameters E and I as constants. gives

ElViuygx = N vxx = 0 (1.92a)
o< x4 L
4 2 S A
or EI%‘_X—N%:o (1.9b)

From the variation process and utilizing Equation (1.7), the

following boundary conditions result:

either or
at x = L w=0 N + F sina - Acosoa =0 (1.10z)
V=0 EIVixxx =N Vx = FcosoL + Asina (1.10b)
Vix=0 Vixx = O (1.10¢)
Mg b K uale N =0 (1.104)
v=o EI Vyyux = Nvx=0 (1.10e)
Yy =0 V,xx = 0 (1.10f)

Equation (1.6), in combination with Equation (1.10a) indi=
Cates that the axial force N and the axial strain p are

constants throughout the beam-column.

WILLIAM F MAAG 1iRPA
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Now we proceed to determine the differential equations
of motion and the boundary conditions governing the dynamics
problem. The same displacement functions and sign ccnvention
as used in the static problem are used for the dynamic pro-
blem. For the solution of the problem Hamiltons's Principle
using Relissner's Functional is utilized. The kinetic energy

of the beam-column, denoted by T, is given by the expression

T-_-f'_%.eA(\?’-'-Hl’)o"‘ (1.11)
where @ - the mass density of the beam-column
A - the cross section area
u(x,t), v(x,t)- the axial and transverse displace=-
ment functions, respectivelys
and (°*) denotes the appropriate time derivative. Reissner's
mincticnal Ip is defined by Equation (l.la). Hamilton's

Pr1n01ple(5:,u31ng Reissner's Functional, is defined as

S[f:t(T-h) di]"o (1.12)

Perfaorming the variational operation on T only, since S(IR)
has bheen determined from the static problem, one cobtains

e S{fuu‘i'?“ (\'/2+1l‘)dx] dt}

t4

Interchanging the order of integration, the latter enquation

(T = gu[f‘%en (V2+ i) d’c]dx}

becomes

Performing the variational operation, yields

ST =j [j:z(eﬂ vov+pAu Sll)dl:]c\x



O

or
¥ Yy o b,
8T={[ A pAV dv dt +J¢. QAu. fu d{] dx
Integrating with respect to time, yields
1 . it )
ST"J[QM v I:z-S (pAV) Bvat + pA\lgu\?-—S (pA ) 8w dl:] dx
L ' % , )

or
t2

8T=J[QA\’/8v|:“+ QA&S&E-J {(wa)gv +(0AW) 3\:.} c\’c] d

ere
42 L

8T= “gAva +gAu.3u] dy - JI{ A v+ (QAw)Suldx dt  (1.13)

The variation on Reissner's Functional yields

S[[a] - [

Substituting the latter equation and Equation (1.13) into

s~uztion (1.12), gives
ty

] . Th t . Av) S + (oAl L
J[QAVBVi'?A\Lsu] it l [L{(QA )8V + (eA )5u}dx+81g]df 0

4

But at ty and t, v = u = 0, and the latter equation yields

i2 L
J [}{(QA.V)SV-F(QA\L) SIL}AX'I'SIR]CH‘.:o Y
o
For the ;;tegra] of the latter equation to be alwasys equal
to zero the terms to be integrated must be zerc. Combining
the inertial terms with the terms of the Reissner's Function-
al that have the same variational elements, one obtains the

differential equations of motion as follows:

(EIV;XX)Jxx ox (N V’x),x t (Q‘&\.’) =0 (1.15a)
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N,,_(pA&) == 0 (1.15b)
Wyx +'!i' Vis - = -EilA— (1.15¢c)

Considering the pasrameters E, I, e and A as constants and

using Equation (1.15c), the two previous equations become

ET Yume: = (NMRgi+ AV =0  (1.16)
0¢x< L

z o0
EA(u,x+‘}-v,,),, _QAU. = 0 (1.17)
which are the two differential equations of motion. The

boundary conditions are found tc be:

either or is prescribed
at x'= 0 N=o w
EL vyxyx = N vx =0 v
EI vixx = 0 V)X
at x = L N + Fsinal + A (05a =0 u
EIv,uxx — N v,y = F cosa =Asina v
El vy =0 V%

Recall that (°*) denotes appropriate derivative with respect
to time and the subscript following comma denotes appropriate
derivative with respect to the subscript variable. Also,

the term wu,x + %- V%x is the axial strain function in the

beam-column defined as the Y function.
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CHAPTER II

DERIVATION OF THE EXACT STIFFNESS MATKRIX
FOR AN INCLINED BEAM-COLUMN (STATIC)

From Chapter I the differential equation of equi-
librium for a statical beam-column is written as
4 2
£l v N By e 0
x4 Ix2

or

EIvE _ N VE =0
where the superscript implies the order of differentiation.
Dividing by EI and setting K2=-§NI-. (i.e. compression force),
it follows that,

v o+ Ky =
The solution of this differential equation becomes

Veor = Ay coskx + Az sinkx + Az x + As
where Ay, Ap, A3 and Ay, are artitrary constants. These con-
stants are evaluated in terms of the nodal parameters by
apnlying the boundary ccnditions (BeG.). At first, & mign
convention is established. The end displacementz (rotations)

are considered positive in the manner shown in Figure 2.1.

Y)
o 92
T Afil const. (} uy x)
A
V‘ ' TV,_

Fig. 2.1 Positive 3ign Convention-Dis-
placements (Rotations)s
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The boundary conditions are defined as follows:

at x =0 Vo) = Vi £2:1)

) Y

£ =0 (2.2)
at x = L Viiy = Va (23}

v -

—-_X-]x=|. o 92 (Z.L&)
From B.C. (1) Vi = Ay + Ay

(2) B1 = -A K - A3

(3) Va = Ay cos KL + Az sinllL + AsL + A
(4) D2 = A K sinkL — A2 K cosKL - A3

Expressing relations (1), (2),(3),(4) in a matrix form, we

have
Vi ) (%, 4 0 0 t 1 [A
] 0 -k -1 0 Az
w ol e SinkL L { A3 ol
92 ) | KsinkL  ~Kcoskl -1 0 | |Aa
or in a symbolic matrix form {8} = [Cf){A} {5.6)

where { } denotes a column matrix and [ ] denotes a square
matrix. In order to sclve fer matrix [A) and find the coef-
ficients Al’ Az, A3, Ay in terms of the end displacements,
matrix [C] is inverted. Then,

(A} = (c17 483 (2.7)
where [C]drepresents the inverse of [C].
Defining the determinant of [C] as D, we find that

D= K[ KLsinke — 2 (1-coske)]
Performing the inversion of (c] and substituting intc Equa-

tion (2.7), we have
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Aq [(CK(1-8)) (5-we) (KG-2)) (e-3)] ()

il

Az» (Kg) (1-2-u3) (~¢3) (-q-2) «9.

As DI (y23) .(n(l-é)) (K®3)  (kp-2) | v e

As | (e [13-0-2))) E(5-19) (- ¢ (1-25) (~(a-3)] |9
where €= coskL :
S = sinkL
and D= k(wg-2(-2)
The strain energy for the beam-column is given by the
expression

'Qu. v\
K f + 3 (3 —y L] v
Considering the area A as constant and integrating over the

the aresa, we obtqln

ks J{EA %%+%(’2—:] EzI(’axt\fdx

The first term in the integrand of the latter equation is the

. . d 2
square of the axial strain of the beam-column y,where

2
— i Vv
Y= — + ___(___

This parameter y is considered constant throughout the length
of the beam-column. Substituting the axial strain in the

strain energy expreosion gives

5 i j{l:Alp +ETI(’azv)}dx

Considering E, A, I, and y as constants, we have

Strain energy (y) is expressed in terme of the end dis-

’axt
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‘placements in order to apply Castigliano's theorem to cbtain

end forces. The first step is the evaluation of the integral

D= [ (3) &

which is related to the bending strain, where
g.i‘tz = — AL *coskx — Ag L sinky
X

or in a matrix form

P—} —{ (¢t coskx) (-¢ sm\cx)g{ i
A2

dxt

It follows that,

@t =1{n

~¥2 coskx {(_ V2 coskx) (- s'\nkx)} A,
- sinkx A2

or

X2

{@‘v)’-} = { Ay Ai} (k¢ codux)  (¥sinux cosikx)| [ As
(¢ sinkx (oske) (& snkx ) | | Az

Performing the integration yields

j (?zv) dx = { A, Az}; (¢ cogex)  (Eomix m“x)& A
i

(* sinkx woks) (€ sinzlr-x) A2

or
L

(2 ={a n)frrgey @] A] 29
(£232) (K- £E3) [Ar

Applying Equation (2.8) gives

(A.I | [ExG-2) (3-kr) (e(1-2)) (eL-%)| (v
A2} D (k&) (1-€-eL3) (~k8) (~u-2)| /o (2.10)
V2

D2
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Transposition of Equation (2.10) yields

{A ALY ={v 8 v, 8} % Ce(-a)  («3) ]
(5-KLe) (1-8-wr3)
(k(1-T)  (~x3)

(k=-3)  (~(1-2))

(2.11)

Substituting Equations (2.10) and (2.11) into Eguation (2.9)
and performing the matrix multiplication, one obtains

;(;?:X) dx = F" (V 6. V; ez} r\ Kn ? Lﬂ Vi

22 24
b Kb b 6

syM. Ko Kollw| (2.122)
kel (e
or in symbolic form I= # {5}7 [Ke] {8} (2+12Db)

where: Ke = ¥ (1-C) (kL -3)
b= - 5L (1-2) (kL-3)
Ki'e o k® (=8 { ke~ 8)

Ko = - KL (1-2) (kL-3)

Ko = u’(«-c)(s-m.c— “"’s)+ £ (1-2)
% e E;l- (1-8) (kL-3)

Ki = @(rke-3)(1-¢-£L)

Kb = & (1-2) (kL-3)

Ko = KL (1-2)(kL-3)

44 o - 22, 5,2 -
Ko K (1-8) (8 -kE - EEE) + B (k-3

where {Sk is the column matrix of the nodal displacements

(rotations).

The sacond step is the determination of the axial strain de-



16

defined as the q)function in terms of the end displacements

(rotations).

Noting
-2 L (V)
p= 2% + 5 ()
and thus

W o=y — L (Y

Integration yields (for Yy = constant)

L
u=pr——‘z-£(;§-;fzolx+C (2.13)

Noting

%l-_; ~ A K sinkx + Az K costx + A3
X

or in matrix form

{%}: {(—K Si“kX) (K (.DSKX\ (! )} A|
Az
Az

it follows that

{2y ={A. A, A,} (- ¥ sinkx) {(—-K sintx) (K skx) (D] (A
(& costx) A,
(1) As

Performing the matrix multiplication yields

{ (%.:_)7} ={A, A, A,} 0% sivz‘kg) (<12 sinkx (oskx) (=K sinkx)] (A,

\(K"Losz\tx) (Lwskx)[(As} (2.14)
SYM. ™
(1)J Ay

Integration of Equation (2.14), as required in the Zquation



(2.13), gives

~

SYM

or
r-(zx-

2 k< :
+ Ksinkx (0skx) (sinkx)
. (e

o)

o

Substituting into Equation (2.13) gives

(-0- coskx))T

sinkx (osk)() (sinkx)
Az}

N—

W= 9 x— 4 {A A A (0= Lsinky ¢ (o5

-~

~r=

SYM.

%. sin tl S kx) (- %‘. s’w? xx) (—(n-&osk&

-(K'siv\zv.\x)\ (- ¥ sin2xx) (— K sinkyx)

(€ cos™ux ) (Kosks)

=t

:

Aprlying the boundary conditions on u

1. at x

u(o) =

0
P at x =&

U(L) = up
From (1)

A
A

= %."{Al A, As}
+ C

From (2) and substituting C

17

-

A
Ay

A
A2(+C
A,



18

Solving the latter eaquations to find Y, one obtains

p = Yazth 4 b A ALK B2 (- & 32) CO-0)) (A

REETLLNONE

SYM k (2.15)
\(L)

As

where  §= sinkL , T = coskL
The latter expression y is now expressed in terms of the end
displacements (rotations).

From Equation (2.8), one obtains

: A R (1-8) (5 -KkE) (x(1=0) (kL=-3)][w
A, =-[')- (k3) (1-T-wg) (-k3) (~(1-E)| & ¢
(24
As (~k3) (k(1-2)) (k*3) (k(1-0) <Vz Wt
92

or upon transposition gives

(k(-8) (£3)  (K3)]
(5-kL®) (1-T-kL3) (k(1-0))
(k(1-3)) (-x3) (k2%)
(L-3) (=(1-2)) (k0-0)|

{A. Ay A,} ={vuev e,,}D_'

(2.17)

Substituting Equations (2.16) and (2.17) into Equations (2.15)
and performing the matrix multiplications, yields

T
p=tamwp Lo ve[kh K K2 KX|(v)
'y 22 23 24 )

|

A A A
N < y
33 34

Sym TR MR (2.18a)
34 82
AJ.\ }

OF in symholic matrix form
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V= by oL (81T [k {s) (2-180)

where the terms of [K,] are:
" ..
A=-x(1-8Y(38 -akL -KkLE)
A= K (1-8) (z-28- %3—%@)

13

A= & (1-8)(33-2kL -KkLE)
A= Kz(l-E)(Q—zi-%-g-—-'%—‘-z)
22

A= KL (k-235-28) + k (1-8) (kL-3 +2 1L E)
Ka = -2 f =2 (2-26—%—5—%2)

28 - g
Ki = « (4-E)(§-3L'.L)+5‘f'-’5 (3s-kl.c)
Y

A=<k (1-€)(35-2kL-kLE)
34 < ~ K T K22
A = K (1-8) (2-28- K= - L)
a4

A =KL (-25-83)+ k(1-8)(kL -5 +2kLE)

Note, since

Ke aule ,  KEEEES

23 2 33 1"
= - KA 9 A = A

34 2 44 22

A = A ] A = A

matrix [KA1 possesses four independent terms in the (4xi4)

matrix.

Summarizing,

g = Ya-l, ZT‘b" {81 [Ka)48)

and
U= ERL v o EL {5} K] {s)

Recalling that the axial force N is constant throughout the

length of the beam-column, it follows that the axizl strain

is written as

y = N/AE



20

N

Noting K2= - E1

one obtains

Y= -7 and EAy=-E1 k2 (2.19)
The positive sign convention for the end forces and moments

is shown in Figure 2.2.

)
M M
Uy f\" /'{ U; (x)
)
v, Iv.

Fig. 2.2 Positive Sign Convention-Forces
(Moments) o

Application of Castigliano's theorem is utilized to

determine the component of the stiffness matrix as follows:

0ad% o G ards o VstV

Jug
or U =-EA¥  or usins Equation (2.19) U=ETW
z:%ﬁ or Un= -A_szw or U=EALY
oy U= EAY and using Eouation (2.19) Ua:— El Vuz

e %\% or W, =EAL w}?— + iEl')Iz“ 3% [{Slr[Ks]{S}]
or Vo= eavy o R IONIK(] + 5 KLV IKN6)]

or using Equation (2.19)

Vl=--EBL,52 {Knr}{s} + EDTI {wa} {S}

Where {Kﬂlr} and {Kblr} denotes & row matrix consisting of the

first row of [KA] and [Kb]. respectively.

- Combinine terms we get
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V, =ED—£ {{wa}- k? {KAW}} {8)

Calculating the matrix subtraction inside the row matrix

and manipulating the terms, one obtains
Ke =—k*% (kL3 -2(1-28)  or Khesizt s
K? = B 0-0) D
b ik B
Ks' = ®(1-8) D

or finally

Vo= L {we) (eu-0) (13) (-2} (v

In & similar manner we obtain My, Vp, My as

My = %L {(k‘(i-i)) (@(kLE-3)) (-km-a))(né(s-m)} {s}

Vo = EL{(k5) (-20-8) (-¥'8) (0=} (5]

M2 =LDI.{(k%(q-a)) (¥ (5-k0) (-K*(1-8)) (kzma-m)} {g]
Combining Uy, Up, Vi, V2, My, Mz in a single matrix equation,
we have

VR ' 0 o 0 o 0 of ] u.\ ETW )
Vi 0 5 &ud) o *g 0| |w 0
M 1.0 BU8) eid) 0 -Ru-T) *E-x) || 8 0
U|=D| o 0 0 0 0 0 uz“{-m‘
V. 0 ¥ ket o KT -0 | |w 0 )
tﬂz 0 (-0 ¥Et) 0 KT RMT-Y| (0| | 0
- -
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and in symbolic matrix form

{a} = KI{s} + {£} (2.20b)
In order to be able to apply the boundary conditions of the
inclined beam-column one must transfeorm the latter matrix
equation to global coordinate system. The coordinates and
the properly transformed end forces and displacements are

shown (with the positive sign convention) in Figure 2.3.

(y\ Mzﬁ;

——»Uz, Uy

[

>

£ (x)
v

Us,u,

Fig. 2.3 Positive Sign Convention-Global
Coordinate System.

The inclination angle a is defined from the horizontal axis.

™o transformation matrix [R] is given as follows:

~ -

(& S 0 0 0 (o}

=~y 0 0 0 (o]

o 0 4 0 o0 o0 where ¢ = cosa

sina

—
~
[ SS—
1

o
o
o

()
W
o
n
n

£ J

Eouation (2.20b) is transformed into global coordinates as

{9} = [R]" K] [R] {8} + [RT" {5}
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where [R]T is the transpose of [R]

Performing the matrix multiplications Equation (2.20b) is
written in global coordinates as

{9} = [K]{F} + {5)

or in component form as

Ui E.lﬁs*)\ (s cs) FR(-1)s) (k'3 &) (.kf'é ¢s) (-i?(c-'é)S)T (u.\ e
Vi (:k‘g &) (@0-8)¢) (L5cs) (W8 ) (Qu-B)c)| | Ks
M (Q“(ut-a;) K1-2)s) (-RU-E)c) (€(5-e) || 8, 0
o ( 214 +EL( ) (2.210)
U2{7D (5 s )(K 8 ¢s)(e(1-0) [{wa -éc
A SYM (k‘s c‘)( (1- c)c) A -5
L (Elee-3) 22 0
where $=sinkL , s=sina
€ =coskL , c=cosa

and D =k (kL3 -2(-2))
Equation (2.21) is nondimensionalized in end forces, end
displacements, and parameters k and D as follows:

setting kK = kKL, then

-(-fc‘g §‘) (?4‘75 cs) (—‘l?(l-?.)s) (f(“ g 5‘) (—i‘% cs) (-fc’(\-?.) si i [®2c ‘
V Rze)its @) (3es) (€3 @) @u-0) | 0] |¥s
M ( R (ke- 3))( (1-2) s)( - c)c)(‘iz(g-i)) 8 0

{ A >+4 | (2.22)
(—‘v?% ¢)(¥3 o) @-vrs) [ laf " )R
V, S5YM (_x

X
KE ¢ 1(—k -0c) ||| [-R?s
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An important note must be made here. Equation (2.20),

the matrix equation relating nodal forces (moments) to nodal
displacements (rotations), could have been obtained by the
following seauence of steps:
A. The moment and shear forces functions are related
to the displacement function v and the axial
force N by the equations:

1. M(X) = EIV,XX

2. V(x) -EIv,xxx + Nv,x
Applying boundary conditions for the nedal forces
and moments, the matrix equation that relates
the nodal rotations and lateral displacements to
the nodal forces and moments is obtained.

B. Equating the axial nodal forces Ui and Uz to the
axial force EIk? (using the proper sign), one
obtains the column matrix {f}.

C. ‘'Patch' the two relations together into a single
matrix equation.

This observation will be used in the derivation of the stif-

fness matrix for the dynamic problem.
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CHAPTER III

APPLICATIONS TO THE STATIC INCLINED
BEAM-COLUMN PROBLEM

Four different combinations of end conditions are

possible and each of them is examined separately:

A. Lower end pinned - Upper end free to rotate
Bs Lower end fixed - Upper end free to rotate
Ce Lower end pinned - Upper end fixed against rotation

D Lower end fixed - Upper end fixed against rotation

A« Both Ends Simply Supported

Fige 3¢1 Se¢S.-S.S. Beam=Column,
The end conditions, end forces and end displacements of the
beam-column under consideration are shown in Figzure 3.1.
The matrix equation relating the nodal displacements matrix

18} o the end displacements matrix {A% is given below.
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(0, ) [ 18" 15g 1) |

Vi o 0 0
) { 0 o C:).

ﬂ&,‘ =1l o o o Va (3.12)
Va o 1 0 0

\azJ i o o0 | )

or in a symbolic matrix notation

{81 = [A){a) (3.1b)

In a similar manner, the matrix equation relating the nodal

force matrix {q} to the end force matrix (p} is

T
{r} =[A] {3} (3.2)

where ﬁ, are the applied end forces
{P} = ﬁz (moments) on the beam-column

Ps

Substituting Equations (3.1) and (3.2) into the Equation

(2.22), one obtains

(1 = (Al [K] (A {84 + [A) (e} e

For this problem the applied end forces are

P 0
{1} = {RifayeF (3.4)
Py 0
A 2
Where F ='EJ=- the nondimensionalized applied force.

E I

Performing the matrix multiplications in Equation (3.3) and

itilizing Equation (3.4), one obtains
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0 F("z('k' 3 )( 2(1-9) s) (k (5- k)) 6, 0
-F =—15- (-2%3 z)(k(« c)c)W, +{Bs) (3.5)
0 SYM (ke -z 2)|[e:) o
where =k [Qg-2(4-zﬂ
or
P(Qz(ﬁf :-5') (-As‘l--z)S)(?(z(g-l‘z))T 8, (o]
;Di_ \(-Q‘Ec’\)(-i’(i-‘é)c) v, | = (ids-F (3.6a)
SYM (leRe-3))| @ 0
or in symbolic matrix notation
+ [K]{ad = {5} (3.6D)
In order to sclve for the displacement matr&x.{AJ, the
matrix [K1] is inverted. In a symbolic matrix form, one

obtains
{Ag} - L [K4] {f!

where dq1 is the determinant of matrix [Kl] and is given by the

expression

dq: D k7

>

(4-€) (k€ - 2% + k)
After performing the inversion, and the matrix multiplication,

the unknown displacement matrrx{Ad becomes

A
iy

Ao » fod
k(_k_'s__F

k2s- F

k2c

Af _?)

kc?

K2 c

i

)1

(3.7)

Equation (3.7) gives the relation between the actual end dis-
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nlacements, the applied force ? and the induced axial force

A
k2 in the inclined beam-column with inclination angle a.

From Equations (2.18a) and (2.18b) the axial strain
function y is given in terms of the nodal displacements of

the untransformed beam-cclumn as
7 _ ] T
y = Leze o {8} (KA {8}

where the prime (') denotes the untransformed (element co-

ordinate) system, where

w={-b HH g e v el ) [k (¥
Uy o/
: (3.8)

1S
.

The transformation relation of the nodal displacements (ro-

tations) is given by

u) ) cs 0 0 0 O] r1.1.\
V: -s € O o O O Vi
o 0. 0.4rn0 0 O 7}
{ " ?= { : > (3.9a)
Uy 0 00 C:S © T
vy ©o 0 0 -s C 0O Va
lez) LO o 0 o0 O ‘J \92
or in symbolic metrix notation {31 = [R](S} (3.9p)

Where uq, v1,91, uz, vo, 9, are the nodal displacements of
the 2lobal system. Partitioning the matrices in Equation

(3.9a), the folloawing two relations are obtained
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~

V2 (3.10za)

or in a symbolic matrix form {8‘} o [R'] {S‘} (3.10b)

and
)
Y. f-s ¢ 0 a8 o] 1%
‘v: 0.0 41 W 9 {'5{‘
ﬁv,’r:, a0 o -8 £ o0 u, (3.112)
d, (00 0.0 0 1|V
[ 9
or in symbolic matrix form {S;} = ‘_R,] {S} (3.11b)

The relation between the nodal displacemerts matrix (S}
and the actuzl end displacements of the inclined beam-column

is given by Equation (3.1) as

{st = [A]{ad

- Applying Equetion (3.1) in (3.102) and (3.11a), one obtains,

. 6
Wy (o} 0 0 #
{u’, '[o ()L o} V2 (3412}
0.
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(v 2 e s .
O { 0 o -
1v{ el B BER V2 (3.13)
&} o o 1 | LE

Substituting Equations (3.12) and (3.13) into Equation (3.8)

and performing the proper matrix operations, yields

A 2
y={oso}(a] +-{av,0} 1 et He,
A e 12 A
V, K & -6 c|(Ve (3.14)
0, SYM ; :2 0,

Equation (3.7) becomes

G| 3\6
Y} = (-} (3.15a)
0, \C
where 5\ = _Qi_zﬁ;zﬂ (3150
k< C

Substituting Egquation (3.15) into (3.14) and performing the

calculations, yields the simplified equation

. A 3?(1
¥=-As+ 3 (3.16a)

From Equation (2.19) the relation between y and %2 is given

as

W =k K | (3.16b)

Where R = (%) is the slenderness ratio of the beam-colunn.
A .
' Substituting Y in Equation (3.15a) and A in Equation (3.15b)

With their equals and performing the proper calculations,
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the equated form of Equations (3.16a) and (3.16b) yield the

following quadratic equation:
b A
FPRr 42k -Kk'sR =0

or solving for F

Y2

A A

F= "‘(2 [Sz—Zkz Cz/RIJ (3.17)
Substituting ﬁ into Equation (3.7), yields

U _[s2- 2%% */p2)"*
G= - 5=l — ') (3.18)

Equations (3.17) and (3.18) appear as parametric equations

. ol . s @D -
in k4. But, solving Equation (3.18) fcr k%, one obtains
£2 2 w2 Ar
N2 C 2
k:-—(v R +V,_5R) (3.19)
Substituting the value %2 from Equation (3.19) into Equation

(3.17), yields the cubic equation in factored form as

F=-RY, (V—=z°—2-+ s) (Vac?+ s); G<o  (3.20)
Equation (3.20) is used to plot F vs. V2, for certain values
of R and a. First, » is normalized to the Euler critical
buckling load for the given case which is w2. The normalized

avplied force then, denoted by ﬁn. is related to §2 as fol-

lows:

A 2 A gy 2 A 2 A
Fn=—(-§—) Va (l/_zz_C...s) (VzC +9); V<o (3.21)
Recall that R is the slenderness ratio of the bheam-column,

C = cosa, s

sina, and a is the angle of the inclined beam-
Cclumn with the horizontal. A plot of ﬁn VS, ﬁg,given by

the cubic Equation (3.21), is shown %p Figure 3.2. Also, the
Straicht lines ?q=(/zf-’+s and ‘F:,=-y32-i+s are plotted, each

iNear factors of the cubic equation.
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R =50
1 [+
.15 a'—'— 7.5
L.P
40 % BF.
FP
; k<
e s
.05 | s
0
0 .05 10 e

~ o

Figo 302 Fn Vs. Vg for SeS«=S.S.

R=50

s + + >
© (5 30 45 e T5 90 a’

Fige 3.3 ﬁn max VS. a curve - S,S-S.S.
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As it is shown, there are two bifurcation points (BF.P.) on the
curve and one limit point (L.P.). Note that at BF.P.1, oc-
curing when Gz = 0.0348076 and ﬁn = 0.0963116, the axial force
k2 is equal to m2. After point BF.P.1 is reached, the system
follows the negative slope curve which makes it unstable. If
%n is increased, k2 increases, so the Euler buckling load (WY
is exceeded. The load deflection curve never reaches its
maximum point (L.P.) because buckling occurs at a lower point
of bifurcation stability.-

Another useful curve is that of the maximum ﬁn for the
stable system versus the inclination angle a for a given
value of R. Observing that the maximum value occurs for

k2 = W2, and utilizing Equation (3.17), it follows that

A

Famax = [sz- 2(7_‘&5)2]‘/" (3.22)
The plot of this curve is shown in Figure 3.3. ﬁn max ©°on the
curve represents the maximum applied force that will make the
bteam-column buckle at the Euler buckling load (bifurcation
type of buckling).

From Equation (3.22), for ﬁn max to be physically
meaningful, the term inside the radical must be positive num-

ber. It follows that,

or R , ( --S‘:-‘-)2

" R> V2 X 13,23

~
\}
(o]

This relation petween R and 2 is plotted in Figure 3.4.
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80*

I - Bifurcation instability (Euler Buckling)
II - Limit point instability (Direct Thrust)
60
R
40
201
0 s >
0 15 30 45 60 75 90 a’
Fige 3.4 Bifurcation-Limit Point Zones - S.S.=S.S.
o}
A
F\‘I max
R=50
a3
.50
D
: {
5 10 5 20 a°

Fige 3¢5 Fn max VSs. @ curve, S.S.-S.S.
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From Figure 3.4, beam-columns with an R and a combination
which falls in region I, have bifurcation point instability
and therefore buckle before the maximum point on the load de-
flection curve is reached; those falling in region 1T will

not have bifurcation point instability and hence reach the

maximum curve value exibiting the limit point instability.
A final plot of the maximum limit point value of ﬁn
versus the inclination angle a. The first derivative of gn

with respect to Gg is equated to zero yielding

A2 ~
3tV +r6PsV,+28 =0 (3.20a)
or
Vo = & (“*_vi?') (3.240)

where the (+) sign corresponds to the maximum point and the
(-) sign to the minimum point. The maximum point is important

and thus the (+) sign is used. [t follows that,

A s { )

Vo= & (v ) (3.25)
Substituting the value of Vz from Equation (3.25) into Equa-
tion (3.21) and performing the mathematical operations, one
obtains

2

- (_&)2 sina_{aia

nmox = \3C/) T 3YV3 (3.26)
Bquation (3.26) giving the maximum ﬁn at the limit point as a

function of the angle a and the slenderness ratio R is shown

3 2 A . .
in Figure 3.5. F on tn2 curve represents the maximum

n max
applied load that makes the heam-column unstable before the

Eular'g buckling load is reached (buckling due to direct thrust).
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The bifurcation is a phenomencn occuring only in case A, the
simply supported beam-column. For the remaining . cases no
bifurcation instability occurs which implies that the beam-
columns become unstable before the axial force reaches Euler's

buckling load for the particular support conditions.

B. Lower End Fixed-Upper End Simply Supported (free to rotate)

ﬁ, ,O(QT P2, Va

Fig. 3.6 Fixed-S.S. Beam-Column
In Figure 3.6 the beam-column under consideration,
the end forces and end displacements are shown. The matrix
equation relating the nodal displacements matrix {5} with

the beam-column 2ctuzl end displacements {Az}, is given by

'ﬁd\ [ 0 g ]
Vi | 0 o0
A 0 0 Va2
< " lr,_ (3.272)
W 0 0 Gz
A 1 o0
0
LSz‘ H 1 ]

or in symbolic matrix notation

{8} = [Ad) {22} LW (3.275)



Similarly the relation between the nodal forces matrix {a}

with the applied end forces matrix {p}, is

o} = (A" {al BIFER—
where {p} 4 {2}

Substituting Equations (3.27) and (3.28) into Equation (2.22)

one obtains

{p} = [A;]T [K] [A2) {Aa} + [Az]T{P.} | (3.29)

The applied end forces matrix is

{p}= <|P:} = {-:} (3.30)

Performing the matrix multiplications in Equation (3.29) and
substituting Equation (3.30), yields

A

-f LRe ) (Ru-a)c)][V] [
= st + (3.31)
0 D |sYm ((ke-9)| |0,
It follows that
s -F (&2 c) (Bu-Br) | [V
- I «32
0 D [s¥m (K"(kC-S» 0, e
or in symbolic matrix form
{2} = 5 [Ka] {42} | (3.32b)
Solving Equation (3.322) for displacements, yields
a -1 :
{42} = 3% [ka] {6} (3.33)

Where dp is the determinant of the matrix [KZ] given by the
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exprescsion
A A ~ 2
dz::- D k5 € ¢
Perfarmin~ the inversion and then the m=2trix multiplications,

the following equation of the displacements is obtained

¥, _ G2s-F)ke-3)
k3 C c?
- o MRS (3434)
0, _(Ps-F)kli-E) ¢
k? € c2?

Equation (3.34) gives the end displacements in terms of the
applied force F, and the induced axial force k2, for a beam-
column with an inclination angle a.

From Equation (3.8) the axizl strain Y in terms of the

nodal displacements for the untransformed beam-column is

given by
p=f{-t EHul e W 8w oo} [Ki) (o
U o)
Vi
O

where prime (') denotes the untransformed system.
The transformation of the nodal displacements is given by the

Ecuation (3.9) as

(§'t = [R1{s}

or after partitioning by Equations (3.10) and (3.11)

(8} = [R] {8}
ana {8} = [Ra] {8}

The relation between the nodal displecements and the beam-
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column end displacements is given by Equation (3.27) as

8§} = [Aq) {8,) - (3.27)
Substituting Equations (3.27) in Equations (3.10) and (3.11),
substituting these results in Equation (3.8), and performing
the proper matrix operations, yields the following expression
fory:

p={s o} (%)+ 261{ 6.} [(Kh ) K )| (T

(3.35)
)

0, syMm (K)o,

where the terms of matrix [KA] are given on page 19.

From Equation (3.34), one obtains

Va A (kc g)
5 .36
0, klt-8)¢ i)
where 3\ = _%%E;.cg)_ (3.36b)

Substituting Equation (3.36) into Eaquation (3.35) and ner-

forming the matrix multiplications, yields

Y=V 5+ ’5‘24‘2 [3(R2e2-Lz3)+222)

N
A ~
or substituting )s in terms or V ( = _) one obtains
& 2\

mi<>

V 5+-V_=§_._ 3(k2¢2-kEg) + k* 82 {3.37)
Y=V Y S),[ ( ) ]
or
V 1 _ tonk 2 A
Y = Vi s+ (i-z 1)27[3(' s iai )+l~.ank} (3.38)

For convinience in calculations, the following substitutions

are made:

T=t-tenk  ond 5= L [5T +tahk] (339
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Substitution of Equation (3.39) into (3.38), yields.
A 29
p=Vos + B2 S o ‘25
or by utilizing Equation (2.19)

A2 A A2

~ A ~ 2
or (CQS) sz + (Tzs) Vo, + T =0 (340)

R?.
Solving the quadratic egquation for 62. one obtains

| Y
b o =Tlsz[T*e-sc@sTy/p2]" e
2 2 C2 s - %

A :
From the two possible solutions for V, the most important

is the one with the positive sign in front of the radicsl
because, aslit has beeﬁ found from the load-deflection curve,
using the positive sign produces the lowest maximum point of
the curve.

From Equation (3.34) the Qz expression becomes

hom st (- )

iz Cz
or
N 5w ST T f3.42)
L

Solution of the equation above for P yvields

ﬁ = £ (5+ _VA?-__I_‘.:i) (3.43)

Normalizing g to the Euler's buckling load for the case
€xamined (Po= 4.49340046), one obteins

Fo= (B)° (s 4 22) | BT



41

A plot of the load-deflection curve is constructed using two

A
parametric equations (parametric on k) in the form

Q 2 Lty e LTsz_ 4 c? i STz/Rzm

iy
£ — & 2 : Vh C2 45D
Fn = (_po) (S + -T- ) (3.45 )

where c = cosa , s = sina , Bo= 449340946
R = slenderness ratio , a = inclination angle
~ .
T =1 = 'E%!\k
A o b
P (5T+£unk)

In order to plot the load-deflection curve for a beam-
column with the known R and a, a value for k is choosen and
then ?2 and ﬁn are calculated. For the ploﬁ a high speed
digital computer is utilized. The computer program used is
listed in the Appendix A. In the program both values for Vg
(plus and minus) are used. From the output it is determined
that the first maximum point always occurs for Vz with the
positive sign in front of the radical in Equation (3.41).
Another observation is that this maximum pecint always occurs
for the values of k2 less than the Euler's buckling load pf
Which means that there is no bifurcation point on the curve
and the beam-column buckles due to direct thrust only.
In Figure 3.7 the plot of the load-deflection curve for various
inclination angles is shown.

Another useful plot is the curve of the maximum ﬁn
Versus the angle a. Such a plot is shown in Figure 3.8, with

-

90ints on curve found from the load-deflection curve for ezch Qe
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C. Lower End Simply Supported-Upper End Fixed

Fige 3.9 S.S.-Fixed Beam-Column.

In Figure 3.9 the beam-column for the simply Sup-
ported-fixed case is shown fogether with the actual end dis-
placements and forces. The matrix equation relating the
nodal displacements matrix {8} with the end displaceﬁents

matrix becomes

(i, T
Vi o ©
‘a( 0 1 \7:.
iz = i o (3.46a)
% PRL.
\3&1 _O 0 ]

or in symbolic matrix form

{81 = [As] {As) (3.46D)

In a similar way the relation between the nodal forces matrix

.(%} and the beam-column end force matrix {p}. is found to be

{p} = [As)"{q} (3.47)
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3 |

By substitution of Equation (3.47) and (3.46) into Equation

where

(2.22), one obtains

o} = [A) K] [As) £As} + [as) {o) (3.49)

The applied forces matrix is related with the end forces by

r}= {E} % \—i} (3.50)

Performing the matrix multiplications in Equation (3.49)
and substituting Equation (3.50) into (3.49), one obtzins

-2¢
- (3.51)
0

A

X (k'3 @) (RRu-8 )]V
N “*

_sage
of = B[ srm (RZ(RE-E»)) B,

It follows that

R2o-F , Rtz ) (-2 a-are)| Ve
0 D | sym kK(ke-9)) 6| (3.52a)

or in symbolic matrix form

{f} = %‘ [K2] {As} (3.52b)
An impoftant observation is that Equations (3.52a, b) are
the same as Equation (3.32) although the matrices {Aﬂ and

(As}possess different components. Solving Equation (3.52)

Yields

Y s -F)(RT-3)

V2 %3 € c2

:91 T \_®@s-B) - &k ¢ ‘ (3.53)
k3¢ ¢
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Comparing Equation (3.53) with Equation (3.34), it can be
seen that the deflection VZ is the same for both cases, while
the rotations 9 and % have the same values.

Proceeding in a similar manner as in case B, the y function

becomes

»2
% Vo c® _ [3(p2ex-kes) 4+ k232
Y st+4T&LE-—S)I[(kC )+ ] (354)

This ecuation is the same as Equation (3.37). Therefore,
both cases have the same equations relating 62, ﬁ and k and
hence the same load-deflection curves. This implies that
for case C the buckling load ﬁn is the same as in case B al-
though the deflected shapes of the beam-column are not the
same for both cases. It is actually seen that one shape is

symmetric to the other with respect to a point.

D. Both Ends Fixed

Fige. 3.10 Fixed-Fixed Beam-Column.
In Figure 3.10 the beam-column under consideration and its

€nd forces and displacements are shown. The nodal displace-
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ments matrix {5} is related with the end displacements matrix
{04} by the matrix equation

i 9

|
Ui
> {‘72} , (3.55a)

>
~n
I
~ O o © o

o

Y |

or in symbolic matrix form
{81 = [As) {44} (3.55b)

Similarly, the nodal forces matrix {a} is related to the end

forces matrix {p} by the equation

(o} = [Ad]" {5} (3.56)
where  {pt = {B,} (3.57)

n

Substituting Equations (3.55) and (3.56) into Equation (2.22),

one obtains

i} = AT IKD [AJ {ad + [Ad {p) (3.58)

The end forces matrix {p} is related to the apnlied end

forces by the equation

for = {P} = {-F} (3.59)

After performing the matrix multiplications in Equation
(3.58), applying Equation (3.59) and manipulating the re-

Sulting matrix eouation, one obtains

(Bs-th= LLots @] (3.60)
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Solving the above equation, one obtains
A A
¥ e (k*s-F) D
V& = {—"ﬁ:rii—zf—- {3.61)

Proceeding as in case B the equation of the axizl strain

function Y is found to be

2
y = st+fb—2 £ (1-8)(2k+ k2 -23%) (3.62)

Substituting y and D with their equals and making proper

manipulations, one obtains

A A A - A A . e 2 A2
Vo V2 kK (AA-L-)(Zk +kc;35)c +E =0 (3.6
2[k3-2(-2)] R
Defining T = kS -2 (4-¢)
ard s =k (1-¢)(2k + RS -38)
it follows from Equation (3.63) that
2
62 A
(Sc2) a2+ (2T%s) V,_+3'-;—‘2-2—T- 0 (3.64)
Solving the above'quadratic equation, yields
2
A 2 ! 42 _ o2 2 2 /p2

5 ct
As in cases B and C the pesitive sign for the radical is the
mocst imnortent since again the first maximum of the load-
deflection curve is found by using the positive sign.

Solving Eguation (3.61), one obtains

Foir(s e L)

Normalizing ? to the Euler's buckling ioad for this case
( Po = 8.98682), yields

e (8)? (s+ Ve £52) (3.66)
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Utilizing Equstions (3.66) and (3.65), the load-deflection
curve is found for a given beam-column.

The ecuations obtained are given as

i, = =Les [T° T Lk s i

A A 2 A A 2
£, = (_.k ) s+ V, k3 (3.67D)
Bo T
where R = the slenderness ratio, 2 = the slope angle

- - - A e A
c = cosa, S = silna, s sink, ‘e= cosk

A ~

T=k§-2 (-7
3 %)

ER)
ol
|

s =4 (1 -8)(2k <+

The plot, for given R and a of the bheem-column, is con-
structed by selecting a value of %, and calculating 62 and ﬁn
from Equations (3.67a) and (3.67b). Again, & high =peed di-
gital computer is utilized for the plot and the computer pro-
ocrem used is given in Appendix A. For this case there is no
bifurcation point since the value of k2 is less than the
Fuler's buckling load when the maximum point of the lcad-
deflection curve (point of instability) is reached. Agsin,
the beam-column buckles due to direct thrust only.

In Figure 3.11 the load-deflection curve is shown
for different angles of inclination a. A very important
finding in drawing this curve is that when ge= 2 N(the
Euler's buckling load for the first mode shape) the value of
ﬁn exceeds 1 while when F is normalized to the Euler's
buckling load for the second mode shape ( po = 8.98682) the

Value of ﬁn never exceeds 1. This means that the prevailing
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buckling shape is that of the second mode shape.

Another useful plot, the plot of the maximum F, versus
the inclination angle a for a given R, is shown in Figure
3.12. This plot is constructed using the maximum point of
the load-deflection curve for a variety of the inclination
angle a.

With this case the four different combinations of
end conditions for the static inclined beam-column have been
examined.

For comparison purposes the buckling load of the
. sloped beam-column for the four different end support con=
ditions is observed. The effect of change of the buckling
load for various ehd support conditions is graphically il-

)

lustrated. The maximum F versus the inclination angle a is
plotted.in Figure 3.13. Note that 2 and not §n (normalized)
is used since the normalization constant is different for
each boundary condition case. For comparison, Table 3.1
summarizes the buckling load value F for each of the four
cases.at various values of the inclination angle a. These
values are obtained from the graphical results of Figures
3.3, 3.8, and 3.12. From Figure 3.13 and Table 3.1 one

observes that the buckling load increases as the end fixity

stiffens.
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CRITICAL BUCKLING LOAD VALUES FOR COMBINATIONS OF END CON-
DITIONS, A VARIETY OF INCLINATION ANGLES AND R = 100

5° 15° 30° 45° 60° 75° 90°

35.-55.| 0.74l 2.519| 4.920| 6.972 | 8.544 9.533 | 9.8693
56.-F | 0.854 | 4.435| 9.43¢| 13,756 | 17.125 | 19.249 | 20,194
i— 85| 0.854 | 4.435| 9,436 {3.756 | 17,125 | 19.319 | 20.19(
F.-F | 1.410 | 14.025 | 34.755| 52.752 | 66.974 | 7e.520 | 80.7T63
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CHAPTER IV

DERIVATION OF THE DYNAMIC STIFFNESS MATRIX
FOR THE INCLINED BEAM-COLUNN

In Chapter I the differential eguations of motion

for a beam-column are given by Equations (1.22) and (1.23) as
E L Yo~ (EA (\Lax“'% V,i) V”‘):x+ pA V=0 (1.22)

and EA(ux+4ivi),  —eAll =0 (1.23)
Because the equations are nonlinearly Qoupled both statically
and dynamically, a first approximation is made assuming thet
the axial inertial term eAﬁ is relatively small. Hence,

eAﬁ =0
this uncouples the equations dynamically. Ecuation (1.23)

becomes
EA (U.,x +—'2- V,:") = Comstant (4.1)

The term (u y + % v?x) is the axial strain of the beam-
column previously defined as y. Also, the axial force N is

defined as
N=©tA(ux++ v2 (4.2)

and from Fquation (4.1) it is constant.

Substituting Equation (4.2) into Equation (1.22), yields

ELvxxxx = N Vjxx +9AV = 0
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or dividing through by EI

CA o 0

Vyxxxx = ‘E‘Nf‘ V)*i + ‘-—I vV =
Denoting l(2= - _E_NI_
and m = —g—?—

the above equation yields

Vyxxxx + K2 V,xx + MV =0 (4.3)
Recall that dot (°+) and subscript after com?a denote ap-
propriate time or length derivative, respectively. The term
v is the transverse deflecticn function and is both position
and time dependent (v(x,t)).
The functien V(x,t) must be harmonic with finite bound as the

time t increases. Hence,

1k
Vot = Yo € (o)

Using Equation (4.4), Equation (4.3) becomes

2 - wz iwt

2 . :
or Vix),xxxx + K V(x),xx = WM 07 Vix) =0 - (&.5)
Solution of Equation.(4.5) is obtained assuming WV(x)=A é\",

then the characteristic equation becomes

N+ X-wmow? =0 (4.6)
Solution of the Equation (4.6), yields the following four

roots

ae [[(8) w ]t £]
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M= [y + W wz]"’_ k=]”"’

Defining X = : (-'-‘-2-2-)2 +m w’]“2+ J‘;] (4.72)
and e = (-“23)2 + w’]”2 - L;—] (4.7b)

e

The solution of the Equation (4.5) after proper mathematical

operations is given as

Vix) = Ay sinax + A, cosax + Ag sinhpx + Ay coshex  (4.8)

where Aq, A2, A3 and Ay are constants to be evaluated. The

evaluation of the Aj's is determined in terms of the nodal

displacements (rotations) by applying the boundary conditions.

t first, the positive sign convention of the displacements

(rotations) is established in the manner shown in Figure 4.1.
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!
9, d
¢ LEl=comel. 7V
Wy ,* 2 aoint UQ! (x)
v,/ T 1
1 Va
Fig. 4.1 Positive Sign Convention-Dis-
placements (Rotations).
The boundary conditions are defined as follows:
at X =0 Vix) = W (4.92)
&
Vix),y = -9 (4.9D)
?
at x =1L V(x) = Va (4.9c)
’
Vix),x = - V2 (4.9d)

It foilows that,

V41=A9.+A4

% =-Ad -A;
Vi=A 5 +A,C + A8 +A,0
9§=-A4¢E+Azo&§-—A5QC-A4 e S

where € = cosxl, § = sine«l, C = coshel, 8 = sinhel.

The above equations are expressed in a matrix form as follows

v [o 1+ o ¢ ] [A)
3/ -o 0 =P 0 A,
Vz' - 3 - S c o r (4.10a)
% _-o(E s -pG -eSJ A”

or in symbolic matrix notation as

{8'} = [L14{A} (4.10D)
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In order to solve for the unknown constants, matrix [t.] must

be inverted. Performing the inversion, Equation (4.10) yields

A By Lol Lae | 19
= - 11a
As. D |Lar Lsz Liss Ly, v
lAH _LM L4z L:.; Lt,a 9;.
or in symbolic matrix notation
P |
{aY = [L] {8} (4.11b)
where D = 20(Q(1—EC)+ (Q"—D&z) $S (4a12)

and the components of the [L] matrix are defined as follows:
L"=-e(eES+u§¢) . L12=—-[q(4-EC)—0(§S]
Li;=e(a§+eS) y L44=e(C.'~E)
qu:e[m(t-EC)+g§S], Ly =atS-p3C
Ls = —xp (C-2), L2s = p3 -8
Lss = « (pES '+ a3 ), L;zz-[m((-EC)+e§S}

"
|
$=4
—
n
[}
m

L33=—0((95+0(§)) Lag
L41=u[e(¢-EC)—°(§S]) L4z=-(°‘ES‘€§C)
ngzﬁe(C'E))_ L“-;O(S-eg

The relation between the nodal forces and nodal displacements

are now derived. First, a positive sign convention for the

nodal forces (moments) is established as shown in Figure 4.2,
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M, 4
U, M LEI = const. Q L i
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Fig. 4.2 Positive 3ign Convention-Nodal
Forces (Moments).
The equations relating the moment and shear force functions,
to the displacement function and the axial force, are as fol-
lows:

M(x) = E[ V, xx (4.13a)

V(") = ~EL vuux + N v,y (4.13Db)
The boundary conditions are defined as follows:

at X5 0 Mxy = M,
V@) = -\L’

at X = M(x) = -M’z
V(x) = Vz,
It follows that,
M= E1 (-A2 62 + A, 2) (4.14a)

My =E1(A\u"§+Azazz ~ Ay e’S-A.e’C) (4.14D)
Vi =El (-A.d’+Aae‘)—N(A4c(+As e) (bo1ke)

Ve = EL (A P2 -A a3 -As 2 C -ALp®S )= (4.1kq)
-N(-A.uE +A, 48 —Aged‘Aq,ES)
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From Equation (4.7), it follows that

k= «*- g2 (La15)
with
N =SB T kz (4'16)

Consideration of Equations (4.15) and (4.16), fields

N = EI(Q’-G‘) (Be17)
Substituting Equation (4.17) into Equation (Lo14), one
obtains
M; = EI (-A, o2 + A, e’) (4,18a)

Mo~ E1(A 008 + A, 022 -A, 2 5-A, ¢2C) (4.180)
V= EL(-Adp?+Ayalp) (4.18c)
Vi =EI (A.ug‘E-Azug“s -As % C - A,.o(’es) (4.18d)

Expressing Equation (4.18) in matrix form, yields

W) fexe) (0 (we) (o) ]]A
M (0) (-«) (0) (e2)]]Az
1V2’ } = E1 (“925’) (-ue"'s') (_xzec)(_“zes) {A, (L,193)
M: (8°5) («22) (-¢*8) (-¢*C)||Aq

or in symbolic matrix notation

{6} = e1 [N]{A} (4,19D)

Substituting Equation (4.11) into (4.19), one obtains

{ey =ex [N) 117 {8} s
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Performing the matrix multiplications in gquation (4.20),
yields
A, o -
Vi Qu\ Qiz Qs Qya V,'
! S /
M, L Q22 Qs Qa4 %
{ ., (=EL o i (4.21)
V. D Q;s\ Qu| | v
' SYM s '
\Mﬁw Q44J '811

where the terms Qjj are defined as follows
Qu=p (rg)(eS +43C),  Qu=p[(e-u(1-2C)-20p3 ]
Qa=-sp@+e) (a3 +pS) | Qu = - wp (d24p) (G- €)
Qyy = (424 0*) (03G-4ES), Quu=- Qu

Qu=(d‘+e‘)(o&5-es) ;  Qas= Qu
Qas = - Qp, , Qag = Q22

Note that there are six (6) independent terms in [Q]
Utilizing the observation made at the end of Chapter II, the
matrix equation relating the nodal forces (moments) to tne

nodal displacements (rotations) takes the following form;

[U) oo 0o o o o]fu) Bra
0 ‘Qu‘ Qi © qu QM V4' 0 ‘
El 0 Ql'l ‘sz Y st Qu J’a;& < 0
EL -
Dlo o o o, 0o o [Ju

Vi 0 Qs Qy © .Qsa\ @y | V2 0
M’zJ 0 Qu Quy 0 Qus ‘Q“’.J \\92'/
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or in symbolic matrix notation

(@t = (kT {8} +{e} (4,22b)
The aprlication of the boundary conditions for the beam-
column requires that the latter matrix equation be trans-
formed to a global coordinate system. The positive sign
convention for the nodal forces and displacements and for
the coordinates of the global system is established and is

shown in Figure 4.3.

(v /’~\ L&,“z

M! (]
—> (x)

Ul,U.g
Vq,Vq

Fig. 4.3 Positive Sign Convention =Globhal
Coordinate System.
The inclination angle a is defined from the horizontal axis.

The transformation matrix [R] is defined as follows:

(¢ s o 0 o o
6. € . .0 10 420 4 O
D. O0ud O O . O
- where ¢ = cosa
[R]" 0. 0 5O, 5. S¢ O
8 = sina
O~ 0 .08, El O
0, 0. 0+ 0.0 1J
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Eouation (4.22b) is transformed into global coordinates as

{3} = [RT [k [R]{8} + [RT {et (230

Performing the matrix multiplications Equation (4.23) becomes

) [@us?) (- @ucs) (-Qn 8) (A ) (-Ques) (@ s][w|  ferde
Vi (Qu ) (Quz ¢ )(Qses) (Qu &) (Quec)f|w | s
M _€1 :(Qu)\(‘st 5) (st C) ( Qa4 )4 ) L+ 0 }
: U D (Q‘B 5"2 ('st cs) (“Qn s) U, EIéq
YV SYM ‘(‘Q,, c{)( Qac)l|v, | [-EIks
;MZ g (Q“)Jlazj 0 |

Nondimensionalizing the latter equation, yields

O ), Tk, Kn Ko Kis K Ki] 0] SfEH

\ Key Kas Kao Kas Kae [0 ] [826

f‘l. »_ ; \Kn\ Kso Kis Kic| | 9, 0 ’
<Uz = K e «ﬁ; LA IR LY
1A SYM Kos Kee| |9 | |22

M, ; \K“_ (4] | o

or in symbolic matrix form

{3} = [K] {8} + {eo} (4.20b)

where ;

K = wp (a2+¢%) (pE8 +u5 C) &2

Ko = - o p («?+0?)( € S +a3C)cs

Kn = - xp [(Qz_ ) (1-2C)-24psS] s
K = - xp (u?+p?) (a3 +p S) s?

Kis = % p («x*+p*) (a3 +¢8) cs

Kic = ap (x*+p*) (G-E) s



2nd

Also,

Kaa = op (o e (pES +«3C) 2

Kes = ap [(e2-o®)(1-EC)-24p38] ¢
Kag = Kis

Kes = - X p (x?+p?) (3 +p8) c2

Kee = - &p (x2+¢?)(C-E) ¢

Kss = («*+¢*) (3G - nES)

Kas = - Kie

Kss = - Kae

Kse = (e¥+¢*) (xS -p3)
Kea = Kue

Kis = Kaz

Kee = = Kis

Kss = Kaa

Kse = - Kas

Kee = Kss

E=cosk, 5=sina C=coshe, S=sinhe

C=cost, 5=s5ind
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and finally, D=2ap (1-2C) + {p'% ®*) 3§ S

The stiffness matrix has been developed without using the y
function like in the static problem. The y function,how-
ever, is necessary for the solution of the dynamic problem.
The axial strain function g is given by the relation

Y= Uy +'%'\Gi
which is constant. It follows that

- 1 2
u:x- ‘f)""z"vox

Integration of the latter equation, yields
X

_ [ 2
u...lpx-?JV,x dx (4,25)
[}

Noting v,x as equal to

Vix = { (&) (-88) (eC) (@5) }[A
.

it follows that,

V2 = (A Ay A A o222 —wEs wpeC wpES] (A
\qz?.{ -ap3C -ap3S| JA,
\g"Cz\ 0G5 | | As

\e.lszj A,

(L4.26a)

SYM

or in symbolic matrix. notation

vZ = {A}" [Kae] (A} (4.26D)
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Equation (4.25) becomes

¥ x ———j (A} [Kik) $AY dx

(<]

u

|

X
w= e - AT [ [ de 4a)

Performing the integration, applying the boundary conditions
that at x =0 u = up
and at x = L u = up

and solving for y, one obtains

g = dazu oy b (A [k {A) (4a27)

where [KA] is a symmetric matrix with components given as

follows:
Kay= St + &3, Kig= - & 82
KA,, «‘+e [QESH\%C], K;M- :ifez [NSS—Q((-CC)]
K/Az,-:-d—;-‘:-—%-f,g , Kizf-%géz [e§S+u(¢-aC)]
KQ“':_;%Z [ezC- e8], Kass = -Q;—"-»%_—CS
Kapy = & 52, Kay= - (FL - § C5)

In order to obtain ¢ in terms of the nodal displacements (ro-
tations), Equation (4.11) is substituted into Ecuation (&.27)

yielding

p= Lozl + s (o (0] kel 121 4} (4.28)



65

or
2 A nr '
"’=B’Z_u"+2—f—pi {8} [Ka) {87 (4.29)

wnere [ka] = [€]7 [ka) [0)7

The terms of matrix [KA] are algebrically enormous and for
this paper they are not calculated. For the problem of an
applied dynamic load F(t) of frequency W they are needed
since, for any case the manipulation of Equation (4.24)
yields an equation containing three unknowns F, k and 02 and
the dynamic load-deflection curve maynot be plotted withcut

the use of the y function.
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CHAPTER V

APPLICATIONS TO THE DYNAMIC INCLINED

BEANM-COLUMN PROBLEM

The same four different combinations of end-support
cenditions examined in the static problem, are considered

for the dynamic problem. Recall that only the free vibration

problem will be examined herein.

A. Both Ends Simply Supported

Fig. 5.1 S.S.-S.S. Beam-Column.
The end forces, and end displacements are shown in Figure 5.1
for a beam-column with both ends simply supported. The re-
lation between the nodal displacements (5) and the end dis-

nlacements matrix {A{} is given by



\1.\ [0 0 0]

Vo 0 0 o

I, f o © ?‘

<ﬁz»= S Va (5.1a)
V2 o 1 o |\®

o) oo 1)

or in symbolic matrix notation

{3} = [A4] {A.} (5+1b)
The relation between nodal forces and end forces is given

in a similar manner as

T
{e} = [A] {3} (5.2)
where @
{P} = ﬁz
Py

The relation between end forces and applied end forces is

given here s

P, 0
{1} =40} = {-F (5.3)
AN

Substituiing Equations (5.2) and (5.1) into Equation (4.24),

one obtains

{1} = [AJ (K] [A) {ad + (AT {0} (5.4)

Substituting Equation (5.3) into the latter equation, per-



68

forming the matrix multiplications and compinations, yields

0 Kag Kis Kse | | ©
s A ‘ N ~
kKis-F ) = -6- Kss\ Kg; V2 (5.5a)
(¢] SYM ‘K“ Oz
or in symbolic matrix notation
Lab
{5} = o [Kd] {44 (5.5b)
Solving for the displacements (&}, one obtains
-1
- _D

where dy = ap D (a*+¢?) (@ES -a33C) 2
Performing the inversion of [Kl] and then multiplying the

matrices, yields

0 | (az+e8)(Rs-f) |
(x*35C -*¢8)c
4?/2\ = <_ («?+e?) 58S (22s-F) } T
_%p («®3C - p*ES) 2
0, («3C +0285) (¥3s-F)
bt \ @WsC-ee8) c |
or for Qz only
v I (a2402)2 S (2% - ) (5.70)
Vz “E(d"s'(‘.-e’aS)cz » /
Since the free vibration problem 1is examined, it is assimad

. & . . 1 ~4 1
that the applied force F is neglected in the analysis. Then,

manipulating Equation (5.7b), it follows that

U xp (@35C-¢2S) 2 =-k2s (a®+ )5S (5.B)

\)
O

Nie”
”
3
I

The y function is given by Hocuation (4.
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sidering the nonlinear term % V?x very small in comparison
with the linear term u,6x, the y function is given by

/ / /
w=-‘*_1:_‘.’~_‘_-_-,ﬁ,'—ﬁ.

or w={-1+ ¢} 111,’} (5.9)

al
where the displacements uy and Gé are the nodal axial dis-
placements in the untransformed system. Their relation with
the nodal displacements of the global system is given by

Equation (3.10a), as

A

a:

&.’} csooo0o] (d)
co00cCs o |V

or in symbolic matrix notation by Equation (3.10b), as

{8/} = [r]{s}

Applying the latter equation, Eguation (5.9) becomes

Y= {"1 1 } [R«] {8}

Then, apvlying Equation (5.1b) the latter equation yields

Y= {'1 i} [R;] [Acl {Aa} (5+10)
Performing the matrix multiplications Equation (5.10) yields
6,

p={o0os o}V
02
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or Y= Vas (5.11)
Equation (5.11) reveals that, without considering the non-
linear term, the axial strain is given by the component of
QZ in the direction of the undeformed beam-column. From
Equation (5.11) using the relation between y and %, one

obtains

Puty s (5.12)

Substitutihg this value of k2 into Equation (5.8), yields
boap (W3C-g*E5) =V K& (4¢3 S
G (aelesc-pes)a-Ra@es) =0 G

For the free vibration problem at the rescnant frequency 62
must be arbitrary. Therefore, the coetfficient of ?2 in

Rquation (5.13) must be zero. It follows that,

- - 2 -

kug(d@sG-g’cS)cz—Rsz(uz-re_‘)ss =0 (5.14)

The latter equation is the frequency equation for the simply
supported inclined beam-column. It is a trancentental

2 and the

equation containing the squared frequency term f w
induced axial force term kK~ in relation with the inclination
angle a and the slenderness ratio R. A plot of axial force
versus the fundamental frequency is constructed for a variety
of inclination angles a and a given R ratio. The computer
orogram used to determine the roots of Equation (5.14) is
given in Appendix A; program Number 3. This program reads
various values of a and R and prints out the & versus the

2

lowest M w< curve as shown in Figure 5.2.

~
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From the plot it's observed that the larger the angle a the
higher the natural frequency for the same k. £l1so, the
larger the k the lower the natursl frequency of the beam-

column.

B. Lower End Fixed-Upper End Simply Supported

A
P 0us|P2 V2
11(”
a
Fig. 5.3 Fixed-Simply Supoorted Beam-Column.

The end forces and end displacements of such a beam-
column are shown in Figure 5.3. The equatinn relating the
nodal displacements to the end displacements is Egquation (3.27z)

and (3.27b). Also, Equation (3.28) relates the nodal forres

0

n the end forces. Substituting the above equations into

{9

ct

ion (4.24), yields

{0} = [ [K) [A2) {8} + [A]" {n} (5.15)

The relation between the end forces matrix (p} and tne ap-

qua

nlied forces is given as

A

'pg -F
=1a)=10

~arnfAarmion o

Applving the latter equation into Zquation (5.15)



the matrix multiplications and marnipulating proverly, yields
A ~
A
kZS- F K55 K5g Vz
- _L \\\ ' r-/ya
0 Disym Keef |8y

or in symbolic matrix form

{H=—‘5 [K,]{A.} (5.16b)

Solving for the displacement matrix {2}, vields

-1
8 = 2 (Ko ¢}
where 0\2 = O(Q D (MQD + (o(!.;.es.)Qa C) .2

N
N
.
|.A
~J
—

Performing the inversion of [‘:’_7] and then multiplying, one

obt2ins for the displacemants

o) (o @s-Flleeed) (aeS - e3C)
_ ) op(ueDd + (+e?eC)
0, " (% - ) [(e-e2) 4-2 C)+20(g‘§S] (5,18z)

(e D +{pt+e?)22G)

A
or for V, only

U= (#e-F)(o+€) (@eS-03C) X
> %0 (dpD + (a2+pt)2EC) c? ‘

n
l..l
@)
s ]

-

A . - \ By .
For F very small, rearrangins Fcuatinn (5.18b), one ohtains

Ve “Q [‘*QD + (2+p2) € Cl&-12s (o4 p?) (a€S-p3C) (519)

From the y function, assuming that the nonlinear
term is small in ccmparison to the linear one, transforming
the resulting g ecuation in a similar manner as in case A,
vields

Y = {-1 1} (R [AZ] {A?-}



where Dﬁ] is defined in Enuation (3.10a) and [92] in Equation
(3.27a). Performing the matrix multiplications the latter

equation becomes
A
\P:Vq_s
which is the same as Equation (5.1). This means that Y is

A
a2 function of V, only and not of any other end displacement

(rotation). It follows that
~ N
'kz.-.’.Vz 225
A
Substituting the value of k2 frem the latter equation into

Equation (5.19) and rearranging, yields

. S

N

20)

A [ue (o(e D+(at+p2)?E C.)(}_ R? & (otg?) (8 ES - p3 C)].-_ o ¢

. . \ 5 o
For the free vibration problem at the resonant frequency,V,
must be arbitrary. Therefore, the folleowing frenquency e-

quation is obtained:

mg(de D+ (d2+gt)? € C)C-R2s? (o4 ‘)(o\ES-QEC) =0 (5.21)
Again, the plot of the induced axial force % versus the

2

] o 4
square of the frequency mw* curve is constructed. The use

of a high-speed digital computer is needed for the plot of

such a curve. The program used is the same as the one used

in case A and is given in the &appendix A3 program No. 3.

The only difference is that the functicn given in Fquation
21

(5.21) ie utilized. A plot of the results is shown in

™3
1 Vo -\,LL,
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Again, the values of m w? in the plot represent the lowest
square natural frequency that satisfies the frequency equation

A
for a given value of k.

C. Lower End Simply Supported-Upper End Fixed

]m

Fig., 5.5 S.3.-Fixed Beam-Column.

The end displacements (rotations) and end forces
(moments) for the bteam-column under ccnsideration are shown
in Figure 5.5. The matrix equation relating the nodal dis-
placements matrix {8} with the end displacement matrix {Aﬁ is
given by Equation (3.46a) and (3.46b). Also, the relation
between the nodal forces and the end forces is given by
Equation (3.47). Applying those two equations into Equation

(4.24), yields

T
{1} = [Ad) [K] [As]{as) + [AS {n (5.22)
The relation between the end forces and the applied forces

is given as

A

Pz ] ?
A

P, 0

{et =

(5.23)
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Performing the matrix multiplications in Equation (5.22),
substituting into Equation (5.23), and after manipulations,

one obtains,

=] s (5.24a)
0 Dlsym Kas| |6
or in symbolic matrix notation
{f} = -é— [Ks) {As} (5.24b)

Solving the above equation for the displacement matrix {Aak,

vields

(s = 2 [k s} (5.25)

2 ~
where dy =g D (w24 p2)" 2C &
Performing the matrix inversion and the resulting matrix

multiplication in Equation (5.25), yields

U, _ (% -F) (x2S -e3Q)
" ®p (x2+02) EC 2 (5.26a)
0, _ _(&s-F)(C-%)
(w2+e?)eC c

or for Vz only,

U= — (% -F) (42 S-e3C) (5.26b)
% (w*+e*)eC <

Neglecting P, which is assumed to be small, Equation (5.26b)

vields

\n
™
~J
~

Uy ap (a4 ¢) € C ¢ = -i*s (a€S-p3C) (
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Observing from the previous cases that the function,
neglecting the nonlinear term % V?x' is only a function of

7,, it follows that
\V:VQ,S
or similarly to the previous cases
-i2= V} Rs
Substituting the latter equation into Equation (5.27), one

obtainrs
Vz[ue(a’ﬂ})i(lcz-kzs’ («ES-QEC)]=0 (5.28)

From Equation (5.28) one obtains the frecuency equation for

the free vibration problem, as

O(Q(o(ziv ")EC CZ—R"S"(OLES—Q§C)=O (5.29)
Similar to the previous cases, the k versus f w? plot is

constructed. The computer program used for this case 1s the
same as 1in previous cases with the exception of frequency
function given in Equation (5.29). The plot of the re-

sulting curves are shown in Figure 5.6.

D. Both Ends Fixed

Fig. 5.7 Fixed-Fixed Beam-Column
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The end displacements and end forces for the fixed-
fixed beam-column are shown in Figure 5.6. Following the
same procedure as in the previous cases, the following e-

auation is obtained:
{@s-F} = & {up (at+ ) (e28 +u3C) 2} {0} (5.30)

Using the assumption of small # and the previously derived

relation between y and 02 in Equation (5.30), ohe obtains
A
Va [0\9(0&‘+Q1)(QES +a3C) - R*s? D] =0 (5.31)

For the free vibration. problem from Equation (5.31), one

obtains the frequency equation as
o(e(o&%g‘)(g_‘és+«§C)c2—R_zs’D=° (5.32)

As in previous cases, computer program No. 3, listed in Ap-

pendix A, 1is used, with the frequency function of Equation
‘ 0 . .

(5.12), to plot the k vs. A w® curve., This plot for dif-

LA ]

ferent angles is shown in Figure

\n

The resonant frequencies of the vibrating beam-column
for the four different end support conditions are compared.
The change of the resonant frequency as the end fixity changes

~
is graphically illustrated. The k versus fw® curve, for each

case of end support condition for the sloped beam-column
with an inclination angle of 15 degrees, is plotted in
Figure 5.9. From the plot it is observed that as the end

fixity stiffens the resonant frequency incre=zses. Also, the

Fixed-S.S. support condition yields higher resonant fre-
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quencies than the S.S.-Fixed. As the frequency decreases,
the values of Q for these two cases approacn each other.
This convergence is confirmed in the static solution by the
condition that they have the same load-defleétion curves.

2 on the curves shown in

The values of % and mw
Figures 5.2, 5.4, 5.6, and 5.8 have certain limits. When the
inclination angle 2 is zero degrees the beam-column becomes
abeam; when a is ninety degrees it becomes a column. For

2

h . Fo ~ ~ .,
these two cases the limiting values of k and mw® @re shown

in Table 5.1 below for each end support conditions

S5.8. - Fixed

=0 in a=0° i
I m i

mw?=6.038 wt=3{ 28
i ! I .
{k=° {k=o
i Sl o e 1
o= goo mw*=237.8 o= 90° mwc=500_5
{Q=449 {Q:zx
A 9 o
Mmwes=0 mw== 0
e h d il
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CHAPTER VI
DISCUSSICN AND CONCLUSIONS

This thesis solves the static stability problem and
the resonant frequency dynamic problem of an inclined beam-
column using an approximate large deflection theory. The
solutions are obtained utilizing modern matrix techniques.
The stiffneés matrices, for both problems, are derived
using Castigliano's Theorem in a rather unique way, utili-
zing the solutions of the associated differential equa-
tions.

The developed solution of the static stabllity problem,
allows one to fully intepret the relationship between the
mathematical and physical parameters employed. Secondly,
the utilization of this stiffness matrix approach and =zna-
logous solution procedures is possible for all combinations
of node load conditions and all boundary conditions. The
classic mathematical approach (via differential equations
and boundary conditions) requires a reformulation of the
problem from the potential energy function.

For the static stability problem, this thesis de-
termines the critical buckling load from the lozd-deflection
curve for any possible end support condition. The simply
supported beam-column is of prime interest, since for this

case either a bifurcation point or 1limit point instability
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may occur. The limit point instability or direct thrust type
of buckling occurs whenever the maximum point of the load-
deflection curve 1is reached without the induced axial com-
pressive force exceeding the Euler's buckling load of the
vertical column. This occurs for certain combinations of
the slenderness ratio R and inclination angle a (mezasured
from the horizontal line). It usually occurs for very small
angles a (d(za(Sﬁ,when the beam-column is closer to the beam
vosition (horizontal). The bifurcation type of buckling
occurs whenever the Euler's buckling load is reached before
the corresponding load-deflection curve has reached its
maximum point. It usually occurs for slanted beam-columns
with a medium-to-steep angle =z (25°<a (90°), when it is closer
to a column. The physical meaning of the bifurcation point
is that although the mathematical equations are following
the load-deflection curve, the induced axial force may never
exceed Euler's buckling load.

For the fixed-simply supported and the simply sup-
ported-fixed cases the respective load-deflection curves are
the same, There is no bifurcation point for either case.
The instability occurs as direct thrust buckling. For the
case of both ends fixed (no rotation), direct thrust
buckling controls. A very interesting observation is msade
in this case. When the applied force F is normalized to the
Euler's buckling load for the first mode shapne Be = 27, the
normalized values of ?n for part of the curve exceed the
value of one; when the function 1s normalized to the second

mode shape value Bo = 8.98682, it never exceeds the value of
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one. This means that the deflection function of the beam-
column is that determined by the second mode shape. For
all four cases it 1is observed that as the inclination angle
a increases,the critical buckling load (ﬁn) increases.
Also, as the end fixity increases, the critical buckling
load increzases.

In order to solve the dynamic problem, two necessary
assumptions are made. First, the assumption that the
externally annlied load F is relatively small. The second
assumption is that the nonlinear term in the axial strein
expression is relatively small in comparison to the linezr term.
This assumption leads to @ classical type formulation of a
transcendental equation for determination of naturzl fre-
cuency. These two assumptions are made after the derivation
of the dynamic stiffness matrix and the applicatiocon of the
end conditions. The second assumption is valid for large
values of the inclination angle a. Thus, the values obtained

: & i o ‘ ~
relating k¥ and mw*® for complete range of values k are more
accurate for large vzlues of inclination angle a. The values
of the natural frequency for small values k and for angle a
close to 0° or to 90° zre the same as the values found in
the literature for such cases. Thus. these results are ac-
curate over the comnlete range of a (0€a<90). From the
curves it is observed that the natural freguency decreacses
ee the axial force increases and it becomes Zzero wheﬁ the
axial feorce is equal to the Euler's buckling load for each
case. Also, it is observed that as the end fixity increases

the natural freguency increases.
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The following conclusions are drawn from this study:
The matrix approach lends itself to an efficient math-
ematical process for obtaining solutions to the inclined
beam-column problem.
Solutions obtained in the static stability problem are
more mathematically compact and more easily formulated
and intepreted than in the classical differential equa-
tions appreachs
Some solutions of the natural frequency problem have in-
herint errors due to the linearization techniques re-
quired by the solution procedures. The combination of
large axial force and small angle of inclination yields
the largest degree of inaccuracy.
Recommendations for future work performed on this topic
take the following directions:

a. An attempt should be made to incorporate the non-
linear axial strain term for the determination of
natural frequency. This may possibly be performed
by utilizing the exact nonlinear strain energy for
the problem (6) and incorporating a matrix series
formulation to obtain a solution.

b. An alternate procedure to the above may be to

utilize a modern perturbation technique on the exact

energy function - sometimes referred to as the
"eigenvalue method"” in its linearized form. Since
the problem is highly nonlinear, at least second

order perturbations would be required.

For either of the latter recommendations the solutions

. . 5
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Computer Program Number 1 - Fixed-S.S.

Solution of the parametric equations:

100
101

102
7

8

. 1/2
io - Laalleoea 8o TYR] o)
Bie (%)z (5_\_12'-_3) (3alsls)

DOUBLE PRECISION PI,HK,A,DTAN,DSIN,DCGCS,DSQRT,R,S,T,

1V2HP,V2HN, FHNP, FHNN, TIRT, BC

READ(5,100) AD,R

PI=3.141592654D0

BO=4.4934094579D0

WRITE(6,101)

HK=0.1DO

A=AD*PI/180.

TNK=DTAN(HK)

T=1.-(TNK/HK)

S=(3+*T+(TNK)#**2) /4,
TIRT=(T**U)*(DSIN(A)**2)-(u.*(DCGS(A)**Z)*(HK**Z)*S*

1(T#%2))/(R%*%2)

IF(TIRT)7,6,6
ROOT=DSQRT(TIRT)
V2HP=(-(T%%2)#DSIN(A)+R0OQT
V2HN=(-(T##2)#DSIN(A)=-ROOT
)
)

/(2.%(DCOS(a)##2)%3)
/(2.%#(DCOS(A)*%2)%3)

FHNP=( (HK/BO)*#2)* (DSIN(A)+( (DCOS(A)*%*2)*V2HP/T))

FHNN=( (HK/BO)#*%#2)# (DSIN(A)+( (DCOS(A)*%2)*V2HN/T) )

WRITE(6,102) HK,FHNP,V2HP,FHNN,V2HN

FORMAT(F10.1,F10.1)

FORMAT('1',5X,"AXIAL FORCE',10X,'APPII*D FORCE',7X,'VER

)
)
-+
-

1TICAL DEFL',10X,'APPLIED FORCE',7X,'VERTICAL DEFL')

FORMAT(6X,F8.5,12X,F12.9,8%,F12.9,11%X,F12.9,8%,F12.9)
HK=HK+0.1

IF(HK-2.%PI)5,8,8

CONTINUE

STOP

END



Computer Program Number 2 - Fixed-Fixed.

Solution of the parametric equations:

SR tJT‘s”SZ';z ¢ STY/R?) / (3.65)
c .
Be A A2
A M ks C
Fn = (3:)2 (5+V2 T ) s

DOUBLE PRECISION PI,BO,HK,A,DC0S,TIRT,DSQRT,V2HN,V2HE,
1DSIN, FHNP, FHNN,S, T
READ(5,100) AD,R
PI=3.141592654D0
HK=0.1DO0
BO=2.%4,4934094579D0
WRITE(6,101)
A=AD*PI/180.
CHK=DCOS(HK)
SHK=DSIN(HK)
T=HK*SHK-2.%(1.-CHK)
S=HK#* (1 +-CHK )% (2, %*HK+HK*CHK-3.%SHK)
TIRT=(T#%4 )% (DSIN(A)#%2)=-2,% (HK*%2 )% (DCOS(A)%#2)*S%
1(T#*#2)/(R¥*%#2)
IF(TIRT)7,6,6
6 ROOT=DSQRT(TIRT)
V2HP=(- (T#%2)*DSIN(A)+ROCT)/(S* (DCOS(A)**2))
V2HN=(-(T%%2)%DSIN(A)-ROOT)/(S*(DCCS(A)**2))
FHNP=( (HK/BO )%*2 )% (DSIN(A)+(V2HP*HK*SHK* (DCCS(A)%¥#2)/T)
FHNN=( (HK/BO)#%2 )% (DSIN(A )+( V2HN*HK*SHK* (DCOS (A )*#%2)/T)
WRITE(6,102) HK,FHNP,V2HP,FHNN,V2HN
7 HK=HK+0.1
IF(HK-3.#*PI) 5,8,8
100 FORMAT(F10.1,F10.1)

\n

101 FORMAT('1',5X,'AXIAL FORCE',10X,'APPLIED FORCE',7X,'VER

1TICAL DEFL',10X,'APPLIED FORCE',7X,'VERTICAL DEFL')
102 FORMAT(6X,F12.9,12X,F12.9,8X,F12.9,11X,F12.9,8X,F12.9)
8 CONTINUE
STOP
END

)
)
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Computer Program Numher 3

Selution of the transcendental equations:
ue(m‘%C-e‘ES) - R (a%+¢*) 38 =0 (5.14)
up (ctp D + (o(z-\-ei)z (4 C) - R (atag?) (22S-p3 G)=0 (5.21)
xp (a*+¢?)TC - R*s? (a&8-p3C) =0 (5.29)
ue(o&2+€z)(€ES+u§C) 2 -R’s*D =0 (5.32)

DOUBLE PRECISION DSQRT,A,PI,C,SQKK,RT,DEXP,SH,CH,D,
1ALPHA,RO,DSIN,DCOS, FUNC,HK,SQ,FREQ
B0=4,493409L57AD0

READ(5,101) AD,R

WRITE(6,100) AD

PT=3,141592654D0

A=AD*PI/180.

WRITE(6,102)
HK=0.1DO
2 FREQ=1.DO
b3 ©=1.D0
L=0

SQHK=(HK*%*2)/2,

IF(FREQ) 20,4,4

RT=DSQRT( (SQHK**2)+FREQ)

ALPHA=DSQRT(RT+SQHK)

RO=DSQRT(RT-SQHK )

ERO=DEXP(RO)

SH=(ERO-(1./ERQ))/2.

CH=(ERO+(1./ERQ))/2.
D=(RO*¥*2-ALPHA##2 )% DSTIN(ALPHA )*SH+2.*ALPHA*RO (1.~
1DCOS(ALPHA)*CH)

SQ=ALPHA*#*24+R 0% %2
FUNC=ALPHA*RO#*SQ* (RO¥DCOS (ALPHA )*SH+ALPHA*DSIN(ALPHA)
1¥CH)* (DCOS(A)#*%2 )+D* (R¥*%2 )% (DSIN(A)#*2)
FUNC=FUNC/1000. :

IFUNC=FUNC

FFUNC=FUNC-IFUNC

AFFUNC=ABS(FFUNC)

IF(AFFUNC-0.,001) 31,31,32

W

31 FFUNC=0.

32 CFUNC=IFUNC+FFUNC
IF(I~-1) 18,17,18

17 TFUNC=FUNC

18 TIF(TFUNC) 5,10,6



o
6
12

10

100

101
102
103

20

IF(CFUNC) 12,10,8
TF(CFUNC) 8,10,12

FREQ=FREQ+(10./C)

GO TO 3

FREQ=FREQ-(10./C)

C=0%10,

GO TO 3

WRITE(6,103) HK,FREQ

HK=HK+0.1

IPLHE-7.) 2:2,20

FORMAT('1','THE INCLINATION ANGLIE IS ',F5.1,
1' DEGREES')

FORMAT(F10.1,F10.1)

FORVMAT(///,10X, ' AXIAL FORCE',10X, 'NATURAL FREQUENCY')
CONTINUE

STOP

END

92
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