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ABSTRACT

FORCED VIBRATION OF STRUCTURAL MODELS
WITH EQUAL FREQUENCIES

Nien-Tsu Liu
Master of Science in Engineering

Youngstown State University, 1981

The purpose of this thesis is to present methods for
analyzing the displacements and férces developed in structures
that are subjected to an arbitrary dynamic loadings.

Single-Degree of freedom systems are discussed and
concept of dynamic load factor is introduced.

The response equations of multidegree dynamic systens
are formulated using matrix methods. A computer program
utilizing the Jacobi method is presented which solves for
the natural frequencies and mode shapes of the dynamic
system.,

A Finite Difference technique is introduced which
efficiently solves for maximum response and maximum force
conditions. A computer program is utilized to augment the
procedure,

Finally, the response of a four degree of freedom
system is considered in which two of the natural frequencies

are numerically close.



iii

ACKNOWLEDGEMENTS

The author wishes to express his deep appreciation
and gratitude to Dr. Paul X. Bellini, his thesis advisor,
for his generous time, guidance, and encouragement that made
this thesis possible.

The author is especially grateful to his review
committee, Dr. Richard A. Mirth and Professor John ¥, Ritter,
for giving their valuable time toward the completion of
requirements of this work.

Finally, the author is also indebted to

Miss Hsin-Hsin Lee for her careful typing of -the manuscript.



TABLE OF CONTENTS

iv

PAGE
ABSTRADE ove o o o 5.8 #.0 & v 6 5 & & s & % & » & » s0id
ACKNOWLEDGEMENTS o v ¢ 4 % o » o o ¢ o ©« = s o 3 s « » 1%
PABLE QF CONTERTS s 5 & 5% & & & & » & & % & # % & % 2V
LISE OF SYMBOLS o o o« 54 s o » 5 % o o » 5 » » s+e = ¥id
TIRD UL PIOURER o o winliih 5.8 & & & & 5 & 8 ¥ & '% % Vi3
CHAPTER
To INPRODUCTION v 3 . 5iu 38 o & & w o % & s % w"w w21
Baokground SMES. % 5 o % & 6 is onew 8 vl w9
T2 Defindtion + 5 o« o s .0 5 3. 5. o 5 % % & & o1
BeD Types of Preseribed Ioading . « ¢ ¢ s s ¢ 2
1.4 Essential Characteristics of A Dynamic
Problem, « o v s 5.0 o ¢« s s o 5 3 & sanee o8
1.5 Theals Proo®flile « « s+ s ¢« » s ¢ ¢« s ¢ = s B
II. DYNAMIC RESPONSE OF SINGLE-DEGREE SYSTEMS « v o & 1
A Introduction « « o« o ¢« « o ¢ o ¢ s o ¢« o o T
24e Response of An Undamped System « « ¢« « « « 9
2.2-1 Equation of Motion .+ ¢« ¢« ¢ o o o 9
2.2=2 Frea ¥ibration ., o o+ « o o« s w.s 11
2.2-3 Natural Period and Frequency. . . 13
2.2-4 Porced Vibration, « s « « sss « & 15
2.2-5 Dymeamic Toad Factor « « « » & s « 16
AR Various Forcing Functions (Undamped
SYBLaNB) o s 3 4 b vk ¥ Ee s e kAT

2.%3-1 Generalized Linear-Systems Theory

17



2.3=2 Constant Force With a Finite
Rise Time and Limited Duration 20

2.3-3 Sample Example . . . . e ne L] . . 30

III. DYNAMIC RESPONSE OF MULI'IDEGREE SYSTEM « o« o« o o« 32

Iv.

3.1
Jel
3.3
3.4

e

FINITE
4.1
4.2

4.3
4.4

IntyoduchloBeeyas ¢ s « & ¢ 6 ¥ e ¥5¢ wsa J2
Stiffness and Mass Matrices . « « « « « « 34
Natural Frequencies and Mode Shapes . « ..35
Mathematical Formﬁlation of The Natural
Frequency and Mode Shape Equations wam o B
3e4-1 The Cholesky Transformation. . . 41
3.4=2 Jacobi's Method for Eigenvalue

Eigenvector Computation. . « . « 46
3.4-3  Computer Programs for Natural

Frequencies and Mode Shapes. . . 49
3.4-3,1 Jacobi Method « ¢« eve « ¢« o « o« 49
3.4=%,2 Generalized Eigenvalue,

Eigenvectdr Problem ¢ « v w s w0
Modal Analysis of Multidegree System . . 52
3.5=1 Matrix Method Formulation . . . 52
3e5=2 Sanmple Example o s s ¢« o s » ¢ & 97
DIFFERENCE ANALYSIS OF MULTIDEGREE SYSTEMS
Intreduotion oiv o v s o o o6 o 0w s ssw 103
Mathematical Developement of The Finite
Difference Method + ¢« &« ¢« ¢ ¢« ¢ « « « « « 64
Illustrative Example and Computer Solution69

A System with Close Natural Frequencies 72



V. DISCUSSION AND CONCLUSIONS
51 DisCuSSion ecseeecccsscccscsscsossscsscssscscs 83
5 Conclusions weessssssossscnsssvssvsssnscsce 89
APPENDIX I Computer Program for the Jacobi Method .. 86
-APPENDIX TII Computer program for the Eigenvalue
Problem ccsciveseccssncesssscsccssoascss 89
APPENDIX III Computer Program for the Finite Difference
MatHdl e s na ses v san i ssnsinsiiens s 30

BIBLIOGRAPHY ® 0 0 0 0 ¢ 0 00 ¢ 00 C 0 900 O E S OCT O O EEC S BN OO OCETO OO 10

vi

7



SYMBOL

=]

vii

LIST OF NOTATION

DEFINITION

Cross-sectional area of menber

Dynamic- load factor

Young's modulus of elasticity

Force

Moment of inertia
Stiffness matrix
Spring constant
Length of member
Mass per length
Mass matrix
Degrees of freedom
Rise time

Time duration
Natural period
Mode shape vector
Displacement vector

Weight

- Eigenvector

Displacement
Natural circular frequency

Eigenvalue



viii

LIST OF FIGURES

FIGURE PAGE
Py Characteristics and Sources of Typical Dynamic:
DOBAINES. sns v ois sbsambiv slemsssssenssspossrogssses s F
1.2 Basic Difference Between Static and Dynamic Loads 5
2.1 Structure Idealized As Spring-Mass System .eeeeee 7
& wl Systems with One-Degree of FreedoM ccececescescee 8
2.3 Dynamic Equilibrium=— One-Degree Systeém eceeeeeees 9

2.4 Response of Undamped One-Degree System To Suddenly
Applied Consltant PORGE: cssesesssssssvevssvssonny 19

2.5 Dynamic Load Factor (DLF) for An Undamped One-
Degree System Subject to a Suddenly Applied
Constant Force ® 0 0 ¢ € 08 00 O 0T O OO 0N R OE O CEETEESE O S COe eee 17

2«b Linear-System Theory =— Impulse Element M A
2a7 Controlled Pulses and Rectangular-Pulse Load .... 21
2.8 Triangular Toad PUlEBEE s.vessesssvnvsvovsenvennss 20
2.9 Maximum Response on One-Degree Elastic Systems

Subjected to Rectangular 108d seeeeeesccccsccssecs 28

2.10 Maximum Response of One-Degree Elastic Systems
Subjected to Controlled Loa2d eeeeecoccscscosssces 28

2.1 Maximum Response of One-Degree Elastic Systems
Subjected to Triangular Load with Finite Rise

Time .."l.“.".l...l'..l...l..l.‘..'...'....'... 29

£.12 Sample Eiample of Dynamic Load Factor ceeecceeecses 31
o P Multidegree of Freedom SysBtem seesocssoscccsssces 39
32 Two-Degree of Freedom Dynamic System ceeeeececcceee 33
3.3 = Two-Degree System —— Dynamic EqQuilbrium ..eeee.. 34

3.4 Characteristic Shapes of Normal ModeS eeeeeececes. 41



3.5
3.6
4.1
4.2
4.3
4.4
4.5
4.6
5.1

Three-Degree of Freedom System — Forced Vibration
Dynamic Equilibrium — Three-Degree of Freedom...
Sample Problem Identification sececcscsssscnssssvss
Four-Degree of Freedom Dynamic System .cceeeecscces
Frequency-Stiffness Variation ..sssssossscnsssssse
Forcing Function Associated with Eigenvector .....
Response-Stiffness Variation .ceccecccecccccccccccccs
Maximum Spring Moment vs. 2,......................

Load Function with Different Rising Timé€ .eeeececeee

ix
57
58
69
72
7
79
80
82
83



CHAPTER I

INTRODUCTION

1.1 Background

The primary purpose of this thesis is to present
methods, with primary emphasis on matrix methods, for analy-
zing the displacement and force developed in any given type
of structure when it is subjected to an arbitrary dynamic
loading. The interest in structural design for dynamic
loading has been increasing steadily over the years. This
is in part due to advancing technology, which has made
possible more accurate design. It is also due to the fact
that more daring structures (larger, lighter, etc.) are
being attempted, and tﬁese are more susceptive to dynamic
effects because they are generally more flexible and have
longer periods.

1.2 Definition

The term dynamic may be defined simply as time-
varying, thus, a dynamic load is any load of which the mag-
nitude, direction or position varies with time. Similarly,
the structural response due to a dynamic load (i.e., the
resulting displacement and stresses) is also time-varying
or dynamic. In fact, no structural loads (with the possible
exception of dead load) are really static, since they must be

applied to the structure in some manner, and this involves a time
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variation of force. It is obvious, however, that if the mag-
nitude of force varies slowly enough, it will not have dynamic
effect and can be treated as static. "Slowly enough" is not
definite, and apparently the question of whether or not a

load is dynamic is a relative matter. It turns out that the
natural period of the structure is the significant parameter,
and if the load varies slowly relative to this period, it may
be considered static. The natural period, loosely defined,

is the time required for the structure to go through one cycle
of free vibration, i.e., vibration after the force causing

the motion has been removed or has ceased to vary.

1.3 Types of Prescribed Loading

Almost any type of structural system may be subjected
to'one form or another of dynamic loading during its lifetime.
If the time varition of loading is fully known, even though
it may be highly oscillatory or irregular in character, it
will be referred to herein as a prescribed dynamic loading.

From an analytical standpoint, it is convenient to divide the

1y*

loadings into two basic categories, periodic and nonperiodic
Some typical forms of prescribed loadings and examples of
situation in which such loadings might be developed are shown
in Figure(1.1).

As indicated in Figure(1.1a) and (1.1b), periodic
loadings are repetitive loads which exhibit the same time
varition successively for a large number of cycles. The
Simplest periodic loading is the sinusoidal variation

__ *Number in parenthesis refers to literature cited in
the Bibliography.
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shown in Figure(1.1a) which is termed simple harmonic, such
loadings are characteristic of unbalanced-mass effects in
rotating mechinery. Other forms of periodic loading, e.g.,
those caused by hydrodynamic pressures generated by a prope-
ller at the stern of a ship or by inertial effects in reci-
procating machinery, frequently are more complex. However,
by means of a Fourier analysis any periodic loading can be
represented as the sum of a series of simple harmonic com-
ponents, thus, in principle, the analysis of response to any
periodic loading follows the same general procedure.
Nonperiodic loadings may be either short duration,
impulsive loadings or a long-duration general form of loads.
A blast or explosion is a typical source of impulsive load;
for such short—duration loads, special simplified forms of
analysis may be employed. On the other hand, a general,
long-duration loading such as might result from an earthquake
can be treated completely by general dynamic-analysis procedures.

1.4 Essential Characteristics of A Dynamic Problem

A structural-dynamic problem differs from its static
loading counterpart in two important respects. The first
difference to be noted, by definition, is the time-varying
nature of the dynamic problem. Because the load and the re-
Sponse vary with time, it is evident that a dynamic problem
does not have a simple solution, as a static problem does;
instead the analyst must establish a succession of solutions

Corresponding to all times of interest in the response



history. Thus a dynamic analysis is clearly more complex
and time-consuming than a static problem analysis. However,
a more fundamental distinction between static and dynamic
problems is illustrated in Figure(1.2). If a2 simple beam is
subjected to a static load p, as shown in Figure(1.2a), its
internal moments and shears and deflected shape depend upon
the given load and can be computed from p by established
principles of force equilbrium. On the other hand, If the
load p(t) is applied dynamically, as shown in Figure(1.2b),
the resulting displacement of the beam are associated with
acceleration which produce inertia forces resisting the acce-
leration., Thus the internal moments and shears in the beam
in Figure(1.2b) must equilibrate not only the externally
applied force but also the inertia forces resulting from the

acceleration of the beam.,

alFb %le
N QAT

INERTIA  FORCE
(a) Static Ioading (b) Dynamic ILoading

Figure(1.2) Basic Difference Between Static and Dynamic Loads

Inertia forces which resist accelerations of the
Structure in this way are the most important distinguishing
characteristic of a structural-dynamic problem. In general,

if the inertia forces represent a significant portion of the



total load equilibrated by the internal elastic forces of the
structure, then the dynamic character of the problem must be
accounted for in its solution. On other hand, if the motions
are so slow that the inertia forces are negligibly small,

the analysis for any desired instant of time may be made by
the static structural-analysis procedures even though the

load and response may be time-varying.

1.5 Thesis Procedure

The format of the thesis includes the following
four major areas of investigation:
1. The dynamic analysis of a single degree of freedom
vibratory system is investigated using the concept of dynamic
load factor.
2. The dynamic analysis of multidegree of freedom vibratory
systems is formulated utilizing matrix methods. The concept
of dynamic load factor is introduced into the matrix solu-
tions, analogous to the form obtained for single degree of
freedom systems. A computer program is introduced which
computes the natural frequencies and mode shapes of free
vibration. The mathematical difficulties involved in the
"direct" solution of the family of coupled differential
equations is observed.
3. The "indirect" technique of Finite-Difference analysis
is utilized in a matrix formulation process to obtain the
Tesponse solutions of multidegree of freedom systems. This

Procedure eliminates the need of consideration of the concept
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of DLF. As will be shown, the method is effective and
efficient for the determination of response provided a
digital computer is available.

4, An investigation of a multidegree of freedom system with
two numerically close frequencies is carried out.” Using the
finite difference analysis. The purpose of this particular
problem is to determine the variation of induced structure
forces, illustrating the fact that these forces take on
maximum values as any two of the frequencies approach one
another,

The importance of investigating a structural system
with close vibrational frequencies was brought out dramatically
by a recent highrise building failure. In 1977, because of
inproper design, the John Hancock Building in Boston had a
serious wind force problem. This was primarily due to the
‘fact that the bending natural frequency of the building was
close to the torsional frequency. As a result of excessive
vibratory deformatioﬁs the entire window surface of the
building had to be replaced. A vibration tuner had to be
placed in the building to eliminate torsional frequencies.
The cost of these construction changes was in the order of
twenty five million dollars. Currently pending in court is
a suit against the designer in excess of forty five million

dollars.



CHAPTER II

DYNAMIC RESPONSE OF SINGLE-DEGREE SYSTEMS

2.1 Introduction

The dynamic response of spring-mass systems with a
single-degree of freedom are discusséd in this chapter. ‘These
problems have found many practical applications in structural
dynamics, since many structural systems in engineering are
idealized conveniently into a spring=-mass system with a
single-degree of freedom, For example, the frame structure
shown in Figure(2.1a) is often represented by the simple

mass-spring system shown in Figure(2.1b)

Ft) w — Y
—’}/
£\
EIL e L FE—»| AW \
QVQVWWVVW\
A

& &
(a) (b)

Fig.(2.1) Structure Idealized As Spring-Mass System

A system generally consists of many, or infinitely many,
mass particles. If the interrelationship of the masses is
Such that only one spatial coordinate is required to define
the configuration of the system, or in other words, the

Position of the system at any instant can be defined in

ARY
WILLIAM F. MAAG LIBR
YOUNGSTOWN STATE UNIVERSITY



terms of a single coordinate, it is said to possess one
degree of freedom, A configuration is defined as the geome-
tric location of all the masses of a system in space.

Several single-degree of freedom systems are shown in

Figure(2.2).
: >y
K K ]\ 2
L L
M M
1 F(t) ‘ Fet) },\ mz

(a)Spring-Mass System (b)Spring in Series (c)Simple Pendulum

Fig.(2.2) Systems with One Degree of Freedom

In Figure(2.2a), the mass is suspended from a coiled spring
with a spring constant k. The mass moves in a vertical
direction only and all the mass in the system deflects by
the same amount(the spring is aséumed massless). This system
is said to possess one degree of freedom,

In Figure(2.2b), the mass-spring-cantilever system has one
degree of freedom, if the cantilever is of negligible mass
and mass I is constrained to move vertically. By neglecting
the inertia effect of the cantilever and considering only
its elasticity, the cantilever is assumed to be a spring
which is placed in series with the other spring k of the

System, A spring, with equivalent stiffness to the two

Springs in series, is defined, and the system reduces to the



case of the spring-mass system of Figure(2.1a)

In Figure(2.2c), a simple pendulum is constrained to move in
the X-Y plane. The configuration is defined either by the
rectangular cartesian coordinates X(t) and Y(t) or by the
angular displacement ©(t) of the pendulum. The X-Y coordi-
nates, however, are not independent; they are related by the

equation of constraint
i o
X2 + y¥¢ =1¢ (2.1)

where L, the length of the pendulum, is assumed to be con-
stant. Thus, if X(t) is chosen arbitrarily, Y(t) is deter-
mined from Equation(2.1). It is more convenient to choose
a single coordinate ©(t) to define the configuration of this

system.

2.2 Response of An Undamped System
2.2-1 Equation of Motion
First, consider the system shown in Figure(2.1a).

One isolates the mass as shown in Figure(?2.2a)

+ Ky
1Ay | My
M M

F(t) l Fit)
(a) (b)

Fig(2.3) Dynamic Equilbrium — One Degree System
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The external forces, which are the applied force F(t) and

the spring force Ky, are applied to the mass, It is assumed
here that the spring is linear (i.e., the force in the
spring is always equal to the spring constant times the
displacement). Note that the weight, or gravity force, does
not appear in the figure. This implies that the displacement
y is measured from the neutral position, that is, the static
position which the mass would take if only the force of
gravity were acting. After isolating the mass, using
NEWTON'S SECOND LAW F=Ma, the equation of motion is determined,
wherein F is the nef or algebraic sum of the forces acting

on the mass, and the positive direction oflforce is the

same as that for displacement or acceleration., Thus, the

equation of motion for this system is
Fit) = Ky =My r5159

This differential equation may be solved to determine the
variation of displacement with time once the loading function,
the initial conditions, and the other parameters are known.
Besideswsing the method above, we can use D'Alembert's
Principle of dynamic equilbrium. The method is illustrated
in Figure(2.3b), where an additional iméginary force is
applied to the mass. This is the inertia force, and is

€qual to the product of the mass and the acceleration, with

direction opposite to positive displacement. Having added
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this force, the situation shown in Figure(2.2b) is exactly
similar to a problem in static equilbrium. The equilbrium

equation becomes

F(£)—ky =My =0 (2.3)

It is seen that this approach resulfs is exactly the same
equation as that previously obtained. In general, the second
approach given is more convenient, especially when aistributed
masses are involved.
2.2=2 Free Vibration

After obtaining the equation of motion, one considers
a special case where F equals zero, Motion will occur only
if the system is given an initial disturbance, which may
take the form of an initial displacement y (i.e., the mass
is displaced and then released at t=0), or an initial velocity
(i.e.,The velocity is produced by an impluse or impact or a
combination of the two). The resulting motion, unaffgcted
by an external force, is called free vibration. The equation

of motion for this case is simply
. K
A v y = 0 (2.4)

and solution of the above differential equation is

y=C/S/N1/ /‘-/—; y +C?CO5/A§ t (2.5)




by letting w’= K/M, we have
7= Cr SINWTE +Cacoswt (2.6)

in which the constants C1 and 02 may be expressed in terms
of the initial condition(i.e., the displacement % and
velocity y, at time t = 0), which initiated the free vibra-
tion of the system.

First, at t = 0, y = y_, Equation(2.6) may be written as
Yo =C1$1n W (o) +C3 Cosw (o>

therefore
g ¥
Differentiating Equation(2.6) and substituting at t = 0;

y = &o’ we obtain

Yo=C, W Cogw (0) 4 Ca w SN wW(o)

therefore
C1 — Yo/w
Substituting these expressions for the constants into

Equation(2.6), yields the solution for zero external load

as

Y = —Z; Sinwt + Y, cos wt (2.7)
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2.2=-3 Natural Period and Frequency
The free vibration discussed above is said to be

harmonic; that is, y varies sinusoidally with t., The motion

is completely repetitive if there is no damping in the system.
Harmonic motion is defined by a maximum amplitude and a natural
period, which is the time required for the motion to complete
one cycle., The initial conditions affect only the amplitude

of the vibration. The parameter w in Equation(2.7) is called

the natural circular frequency, or, Natural circular frequency

K
w = /ﬁ rad/sec (2.8)

Since one complete cycle occurs for each angular increment

w+=2T, the natural period of the system is given by

T:—i—":ZT[/% sec (2.9)

Note that the natural period and frequency are characteristics
of the system and depend only upon the mass and spring
constant. The natural frequency is defined as the inverse

of the natural period, or the number of cycles per unit of

time, or,

== =5[> (2.10)

2.2-4 TForced Vibration
Consider the case in which the motion is the result
of an applied force F(t). It will be assumed that the system

begins at rest; i.e., both the velocity and displacement are
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zero at t = O, Obviously, this is not a necessary condition
and a solutioncould be obtained for the combination of the two
effects.

To begin with a simple case, assumed that F(t) has a constant
magnitude F1 which is suddenly applied and remains constant

indefinitely. For this situation Equation(2.1) becomes

¥ l F
+ Ky = A 2,11
Y M Y K ( )
The solution of this equation is

Y =C Slﬂwt"fzwﬁwf*’% (2.12)

where the constants C1 and 02 are determined by the initial
conditions. Substituting into Equation(2.12), ¥o=0; t =0

one obtains

L, ' =, S!h(D) 1t ¢ cos (0>

therefore

iy
s 7

C, is obtained by substituting &o =0 at t = O into the ditf-

erentiated form of Equation(2.12) giving

) = C w cos(py— Cawsin(o)= o
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therefore C1 =10
If these values of C1 and 02 are substitued into Equation(2.12)

the final solution is obtained as

Fi
Y= (- coswt) (2.13)
Y
A
2 e s -
7
£
-y
2
§

Fig.(2.4 ) Response of Undamped One-Degree System to Suddenly
Applied Constant Force.

This solution for a suddenly applied constant load is plotted
in Figure(2.4). ;

It will be observed that the solution just obtained is very

similar to the previous solution for free vibration(see Figure(
2.2)). The only difference is that the axis of the vibration
has been shifted by the amount equal to F1/k. It should also
be noted that the maximum displacement F1/k is exactly twice
the displacement which would occur if the load F1 were applied
statically, Thus, we reach an elementary but very important
€onclusion : If a constant force is suddenly applied to a
linear elastic system, the resulting displacement is exactly

tWice that for the same force applied statically. The same
b‘Servation is true regarding the dynamic force in the spring,
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which is proportional to the displacement. Furthermore, since
the spring-mass system represents an actual structure, the
same statement may be made regarding both dynamic deflections
and stresses in that structure.
2.2=-5 Dynamic Load Factor

It is now convenient to introduce the concept of the
dynamic load factor (DLF). This factor is defined as the
ratio of the dynamic deflection at any time, to the deflection
which would have resulted from the static application of the
load F1, which is used in specifying the load-time variation(zz
Since deflections, spring forces, and stresses in the structure
are all proportional, the dynamic load factor may be applied
to any of these in order to obtain the ratio of dynamic to

static effects.

In the preceding example, which involved a suddenly
applied constant load, the static deflection is F,/k. Thus

the dynamic load factor is given by

BCP: W RRE SR
d Vst Fefig,  Fe k)

Substituting Equation(2.13) for y gives

OLF = [ - cos wi (2.15)
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otr*
P27 ) el St il i

S T = >
Fig.(2.5) Dynamic Load Factor (DLF) for an Undamped One-

Degree System Subject to 'a Suddenly Applied Constant Force,

Thus, the dynamic load factor for this case is as shown in
Figure(2&5 ). It is apparent that the dynamic load factor is
nondimensional and independent of the magnitude of load. It
is because of this fact that it is convenient to use.

In many structural problems only the maximum value
of the DIF is of interest. In the case just considered, this
maximum is 2, which immediately indicates that all maximum
displacements, forces, and stresses due to the dynamic load
are twice thg values that would be obtained from a static

analysis for the load F1.

2.3 Various Forcing Functions (Undamped Systems)

2.3=-1 Generalized Linear-Systems Theory
Before discussing responses for various load-time
functions, it is convenient to obtain a general solution
a@pplicable to any such a function. First, however, let us

Tecall the concept of impulse, which is defined as the area
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under tha load-time curve.

Suppose that a system at rest is subjected to a constant
force F with a time duration t;. The mass of the system,
having an initial acceleration ¥ = F/M, will begin to move.
If 44 is a very short time relative to the natural period,
little spring resistance will be developed during the time
‘ig- If such resistance is negligible compared with F, the
acceleration can be considered constant and the net effect
will be a velocity imparted to the mass. The value of this
velocity at time £4 will be

)’=}}ta=,%fa= (2.16)

X~

where / is the applied impulse équal to the area under the
load=time curve. If the assumption stated above and implied
by Equation(2.16) is valid, / is said to be a pure impulse.
To give a quantitative feeling for this concept, it may be
said that the error in Equation(2.16) is negligible if td
is smaller than about one-tenth of the natural period.
Obviously, in such cases, the actual shape of the load-time

function during the time 44 is of small importance.

Turning now to a general load function such as shown
in Figure(2.6), consider the area in the element of time d7r

to be a pure impulse.
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F,'H({)] /

:

w4

>

~ ‘_d7.

Fig.(2.6 ) Linear-System Theory — Impulse Element

This causes an increment of velocity at 7 equal to F}fCT)%%

which may be considered as an initial velocity imparted to a
system at rest. The displacement at a later time due to this
single element of impulse is given by Equation(2.4). If i@ is
the initial velocity Jjust defined and if }:is taken as zero
(since there is no initial displacement corresponding to the

effect of this impulse), thus, one obtains

Frtndt
RO )

Which is the displacement at time t due to the load applied
during 49 . Since the system is linear, superposition may
€ employed and the total displacement at t is the sum of the

ffects of all elements of impulse between zero and t, thus

}’:Sf —ﬂkﬂf)if—:mwcf—'r) (2.17a)
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Since the static deflection(due to F1) may be represented by
y S LT - G
st kT Mw?

Equation(2.17a) may also be written as

t
)/ = Je w L £ sint-7>47 - (2+170)

To mak the equation even more general, the effects of initial
displacement and velocity may be included by superimposing

Equations(2.7) and (2.17b) as

Y =), s wt+ '-%"S/nwt + }ét/}fms/nw(ﬁ-m? (2.18)

where . and yo are the displacement and velocity(if any)
at t = 0. Equation(2.18) is a perfectly general expression
for the response of an undamped, linearly elastic one-degree
system subjected to any load function and/or initial condi-
tions. A closed solution is of course possible oniy if the
integral can be evaluated. Applications of Equation(2.18)
are illustrated below.

2.3-2 Constant Force With a Finite Rise Time and Limited

Duration
After formulating the general equation for the

ﬂresponse of an undamped, linearly elastic one-degree system,
one may conveniently investigate a loading with finite rise

time and limited duration as shown in Figure(2.7a), where t:
8 the
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rising time and td is the limited duration.

M) £t

Fo e = Fo

m - o > t =3 > t
" (a) | ~ (v)

Fig.(2.7) (a) Controlled Pulses (b) Rectangular-Pulse ILoad

. First consider the special case t = 0, the case of a suddenly
applied constant load shown in Figure(2.7b). The systém
starts at rest,(i.e., Yo = O, yo = 0), with no damping force
present. One computes the response in two stages.
For the first stage

0t ¢ty £(t) = 1
Substituting f(t) in Equation(2.17b) and integrating the

function from O to t, yields
Xl = —"Z—’c/-wswf) (2.19)

which defines the response t ¢ td.
For the second stage, that is, the response beyond td,

f(t) =0

V2 (b= L [fj S w (E-THd7 J . (2.20)

[cas w (t-ty)— Cagth
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Since é? is the static deflection and the dynamic load

factor is given by‘—z; s We may write
Y5t
DLFy = | —-Coswt & viEE< 14 2. Ma)
DLF, =coSw (t - t4)-coswt t 24y (2.21p)

Substituting w = i¥ginto equation(2.21), one nondimension-

alizes the time parameter as follows

DLF, = /- CoS$ :znf—d% (_2-22a) :

tq t U
DLF;=Coszrr(%%--f)-coszna? (2.22p)

where T is the natural period. This latter form serves to
emphasize the fact that the ratio of the time duration of
the load function to natural period, rather than the actual

: value of either quantity, is the important parameter. The

maximum values of Dynamic ILoad Factor are computed by maxi=-
mizing the respective time functions shown in Equations
(2.22a) and (2.22b).

The results of the maximization process are listed as

td
DLE, = /= CosTl =2 - 2+ (2.23a)
44 <_£_J !
DLF; = —25in T T ol F < 5 (2.2%b)

Equation(2.23) which is plotted in Figure(2.9), shows that

 8s the time duration of the load approachs zero, the maximum
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deflection, or stress, also diminishes to zero. Also for the
case where td/T > 0.5, the maximum response of the system is
the same as if the time duration of the load had been infinite.
For this case the dynamic load factor has a constant value
equal to two.

Graphs such as shown in Figure(2.9) are extremely
useful for design purpose. TFor a given load function one need
know only the natural period in order to read from the chart
the maximum DLF and hence the ratio of maximum dynamic to
static stress., In the derivation of the chart no damping has
been inclued because it would have no significant effect.

The maximum dynamic load factor usually corresponds to the
first peak of response, and the amount of damping normally
encountered in structures is not sufficient to decrease
appreciably this value.

Consider the case shown in Figure(2.7a). The response
is computed by using Equation(2.17b) in three stages.

For the first stage
04 t'S tA

d
74
~F(’7‘)= Y
1=+t .
Yy = ﬁ,%f,,_._, —Z.—:sm w (t-TOd F (2.24)

After integrating we obtain
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pAEE= rr’f&* E: (Wt - Smwt) (2.25a)
and  DLF, =%‘: = wél, (2.25b)

which defines the response for t <t;.

For the second stage t; < t £ ty

tm=
Y, ) = VA e Sinw (-1 + 3 wit-1dr
2 mw Y=0p t / T s’n (
= v—nEu'?’[/ T =t (Smw({' ti)- .fmwt)] (2.26a)
e DLF, = /_fl E%L(J/n (t-ta)-f/nwt)] (2.26D)

which gives the response between t{ and td.

For the last stage t >‘td

(1 =
T=
) 0= Lw[ —'J‘/nwct -Tay +J g S Wk ?‘)AT]
= W%’[ - Snwt-to) - .rmwt] tcosw(t-ty)
(2.27a)
and OLFy = 3 L[.rmwvc h)-—.r/nwf]fco.fwtt td) (2.270)

which is the response beyond td.

Substituting tU:-%; into Equations(2.25b) (2.26b) (2.27b)

One obtains
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it s
DLF, = 21 3, 3 T——T&TJ

1 ﬁ E 4 ity t tg

DLFZ = [/ + Zﬂt‘ T[S“’)ZW(E e u7—) S/nz‘na?l
/ Eyvki ty ttd W
DLF3 :zwé—«_;[ﬂmﬂ(% =34 TSNy T]+‘°"‘“(t47' T

To determine the maximum dynamic load factor, one differ-
entiates D1, DZ’ and D3 with respect to time parameter —,

and after considerable algebraic manipulation obtains

o Eth
i (2.28a)
- / : t, t4
RiFz =/~ wmm cosnTsina Mg, 7 (2.28b)
: ]
i3 = B (2.28¢)
with
J 2 , %
h = (B +sin B -2B sinﬁag(,x-ﬁ)]
B = 'ﬁgﬁ - wtd

Figure(2.10), shows the plot of the latter factors
(DIF )max for different values of time parameter ( %é%).
Here the effect of rise time is apparent. It is clear from
the Figure(2.10) that when the time parameter ff is decrea-

Sing, then the value of DLFmax is increasing. Also, if




26

is very small compared to the whole time period t;, the aff-
ect is essentially the same as for a suddenly applied load.
This observation is of significance in practical design
since it indicates that smaller rise times may be ignored.

A peculiarity of this type of load pulse is the fact that,
if £ is reciprocal of -%% , the response is the same as

=
if F, had been applied statically. (i.e., DLF=1.0)

Consider now the final case where ;% =1. The load function
starts at zero and reaches a maximum value at t4 , after t4 ,
f(t)=0. This case is shown in Figure(2.8).

AF(E)

,L‘o _______

Fig.(2.8) Triangular Load Pulses

For the first stage, o4& €4

load time function F(7°)= L

—_Ez- s then

it |
L= r% j’)’” TZI Sinw(t- 7 d7y
Fo. 1
= i g (Wt - sinwt) (2.29)
oI, o (Wi - g w > (2.299)

Or the second stage, €2 tg . +{Ti=0
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Lo (=14 ts/ﬂw(-&—’T)AT

<
+
i
3

= mw,[COSW(t )+ gy smwit - o)L swth (2.30a)

and DIF, = COSw (t~td)+ghg Smw(t: t-gg smwt  (2.300)

Substituting w--ﬁ:’-’ in Equation(2.29b) (2.30b) gives
OLF = 2—5'__#_-(2 q_.t—;r‘: —SINZW%%)
L7 7] | ’a-_‘a _
DLFZ‘ COS?TT(‘ﬁ _t-L)-‘-m; S/N?IT('.F )
‘2—]_",%?5/”2" :5'?

Differentiating D1 D2 respect to time parameter %, after

some simplification one obtains

/
%LA,:, = ?‘_ (2.31a)
h
%:—2 = B—' (2.31b)
with h o= (snCB +P2—P5/N2P)/2
0] Wtj
g =

Plot of the maximum Dynamic Load Factor as a function of

-
%‘ 1s shown in Figure(2.11).
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Fig(2.9) Maximum Response of One-Degree Elastic Systems Sub-
jected to Rectangular load pulses,

ted to Controlled Load.
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Fig(2.11)Maximum Response of One-Degree Elastic System Sub-
jected to Triangular Load with Finite Rise Time.
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2.3-3 Sample Example

As an illustration regrading the use of the graphs, let
it be assumed that the member in Figure(2.12a) supporting
the attached load W = 20 kips, is subjected to a suddenly
applied impulsive force F(t) as shown. The variation of this
force with time is shown in Figure(2.12b) and its maximum
value is 40 kips. It is required to find the maximum dynamic
bending stress by assuming that the weight of the member is
negligible., The assumption of negligible beam weight permits
one to treat the member as a one degree of freedom elastic
system, provided that the maximum stress does not exceed
the elastic limit of the material. The idealized one degree
of freedom system is shown in Figure(2.12c). The spring
constant k is determined by applying to the center of the
beam a force p that is capable of producing a unit vertical

displacement at the point, thus

48EL
K= 255

_a U830 x |0 x B0l
IR = 255 S

The natural period of the system is

T = lTTJ%%-

:zﬂJL_
386 X2471

= 0.2%% sec
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18 WF 50
lf?t) 7=800.6 in*
W= 20cips /// 5=89.0 in’

Y R A

30’

N ¥

(a) Beam with Negligible mass

AN

K

[#

A0

y ) b5

tizol Eyau (e
(v) Load Function (¢) Idealized System

Fig.(2.12 )/ Sample Example of Dynamié¢ TLoad Factor

ty _ e
AU

Entering - and %5 into Figure(2.10), one obtain
(DLF) ., = 1.81

The maximum dynamic stress gl is equal to static O _,

X ST

caused by 40 kips force, multiplied by the (DLF) , , that is

M
T ™ T8 T ok P8 may

= é% X36ox 481
K 890

= 73,21 Ksi

1Ch may be greater than the material yield stress.

.
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CHAPTER III

DYNAMIC RESPCNSE OF MULTIDEGREE SYSTEM

3.1 Introduction

The subject of this chapter is the analysis of
discrete-parameter systems. These éystems consgist of a
finite number of lumped mésses connected to one another and
to the foundation by springs. They may also consist of one
mass which is free to move with more than one direction.

The number of degreés of freedom of a physical system is
equal to the number of independent spatial coordinates neces-
sary to define the configuration of the system. Several two-
degree of freedom systems shown in Figure(3.1), are'briefly
described as follows:

1. The two-spring-two-mass system of Figure(3.1a) possesses
two degrees of freedom if the masses are constrained to move
in the vertical direction. The two spatial coordinates
defining the configuration are X1(t) and Xz(t).

2. The spring-mass system shown in Figure(3.1b) was descri-
bed previously as a one-degree-of-freedom system. If the
mass m, howeven is allowed to oscillate along the axis of

the spring as well as to swing from side to side, the system
Possesses two degrees of freedom, r(t) and © (t).

B The pendulum in space shown in Figure(3.1c)can be descri-
bed by the 6(t) and ¢ (t) coordinates as well as by the X(t),

Y(t),'and Z (t) coordinates. The latter are related
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2 2 2

by the equation of constraint X2+ Y+ 2° = L”. Thus,this

pendulum has only two degrees of freedom.

ot Kk

m
: ‘((t\
% lX/(t)
mg; L—l (%)
Xz(t)

(2) 2-mass-2 Spring (b) Spring-mass (c) Spherical

System : System Pendulum
Fig.(3.1) Multidegree Systems

It may be stated that, for each degree of freedom, there

is an independent differential equation of motion. For
example, the equations for the two degrees system shown in
Figure(3.2), obtained by considering the dynamic equilbrium

of the two masses, are

MY, +K ¥, —K(Y,-Y,) = F () (3.1)
MY, + K. (Vi-V,) = K(¢t) (32
R Y
ALt A(2)
o W
x | MRk M

iig-(3.2) Two Degree of Freedom Dynamic System
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My, £Ct) MY,

| - L2 et My [
Ky K(K-¥) KON

Fig.(3.3) Two-degree System-Dynamic Equilbrium

3.2 Stiffness and Mass Matrices

The equations of motion for a system having N masses
and N degrees of freedom but no external force have the

following form:

MY, +K. Y, Y + ———--—-- +KuiY =0
/%Vz Y Ry - —————— Hyvw =0 (3.3)
———————————————————— =0
M Ve RV +Rale + —====—=~ KV =0

where the K's are stiffnesé coefficients, which are spring
constants or combinations thereof, and y's are the displac-
ements of the lumped masses, and M's are masses of the par-
ticles. When dealing with simultaneous equations of this
type, it is convenient to use matrix notation. Equation

(3.3) is rewritten in matrix notation as

( .. f i \ (
m, 0 1 Y 1 K Kig ====~Ky ] Y, o 1
mz 92. /(z, kzz """"""" /(m Y, o
b1 o b th it beem ~ B @ 20 -¢0={ -t
0 - Y = —— e e -- - - -= - =
m)v‘ )’”J Lk/v/ K.vz---_""/fmg L YNJ o |
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or in matrix symbolic form as

W[5} + ({5} = {o] o

where the column matrics{y},{>/}are the acceleration vector
and the displacement vector, respectively, at time t. The

square matrix

m,
o,
m&
[m] = %
\\
0
mN
\ ‘ /
is known as the mass matrix.
The square matrix
¢ G
/(u K/Z _________ /{IN
]
Kz/ Kzz :
k] = i e
: et
‘ R
Kw KNZ_———-_--—-KMVI

is known as the stiffness matrix.
It is very important to note that, for the linear structural
models, (4) is symmetric (i.e., [Aj7=[/(] ), and the mass

matrix is a diagonal matrix, that is,/nﬁj==o , when i xj.

3.3 Natural Frequencies and Mode Shapes

|
If the system is vibrating in a normal mode, one

kes the substitutions

{yl=[aJsMa%t {9}=—uﬁ{aJSMaat
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into Equation(3.4) and obtains

([«] -wim]){a.} =0 (3.5)
where {a»} is a column matrix of amplitudes. It's compo-
nents define the mode shape function of the model. Noting

that {an} can not be zero, then it follows according to

Cramer's rule that

| (k) -wi(m)] = o

or

k - R FE R (3.6)

Kn = == = == = Kyl

From the expansion of this determinant, one obtaiﬁs a freq-
uency equation which can be solved for w . There is one real
root for each normal mode, thus, N natural frequencies are
obtained. Since there is no basic difference in concept
between a two-degreevsystem-and multidegree system, a
ocedure for the determination of the natural frequency is
';lustrated below by involving a two degree‘system.

0 Ssidering the undamped two-degree system shown in Figure
.2), assume there are no external forces:appliedf¢6 the " =~

ses, i,e., F,(t)=0, F,(t)=0.
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Newton's equations of motion require that

—‘éIYI +’éz(}/z_yl) = m,.);,

_éz( yl _ )l,) ==, iz 93 (3-7)
Rearranging Equation(3.7) one obtains
ml-y'l '*46,)’, "1%2()’2"}’1):0
M2Ye + Ra( Y2 —%) =0
which when arranged in matrix form become
m, (o] yl £, +4 ~#s il — e
{" » : —'[ (3.82)
0 mz Y.r. -éz &z YI o .

let {y}= {a.,}sina),,z‘ and {y] ={a,,}-w‘sr'nu,z‘, Equation(3.8)
is written as

(’él‘*&z)—m:w: "'4; al _ 0 (3 8b)
~R2 #,-mun | | &2 0

Since {an}is not equal to {af , we have

(4,"'&;)'”710)»2 'éz

|
Q

_42 '62 -m, ‘an

[(%l-fkl) - m w”z]( ﬁz —mlwhz) _kzz: 0

wlz = m#&, + mz( R, t4#,) ‘ﬁmlkz+m¢(1é/+7€a)]2-4£/762m1m2
2m,m;
£ ] mk: Tmz(kz2+4,) —h/[m'kz +Mz(%,+ kz)]2'415:1f¢M:mz

chmz
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For a special case suppose that all spring constants are equal

to k, and both masses are equal to M then we have

3-J&5 #

wf =22 K=p3g2E w=068)%
2 _ 3+/s £ _ £ - £

wi= 2T £ _pp5 kw2165 [£

These are the natural frequencies or eigenvalues of the two
normal modes. The smaller frequency w,, corresponds to the
fundamental, or first, mode, while w: is the frequency of
the second mode.

Having the natural frequencies of the multidegree system

represented by Equations(3.3), the characteristic shapes of
the modes are obtained by the use of Equations(3.5). If the
value of « for a particular mode is substituted into these

N equations, there are then exactly N unknowns, namely, the
characteristic amplitudes 84 « o . oa of that mode. Since
the right side of Equations(3.5) is zero, unique values of
the a's are not obtained. However, it is possible to obtain
the relative values of all amplitudes, or in other words,

the ratio of any two. If an arbitrary value is given one
amplitude, all others are then fixed in magnitude. A set

of such arbitrary amplitudes defines the characteristic shape,
Since the latter is not dependent upon absolute values of
‘@mplitude. In mathematical terms, a set of modal amplitudes
?s known as a characteristic vector.

t is not surprising that unique values of the characteristic

Mplitudes are unobtainable. We are here dealing with free
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vibration, the cause of which has not been defined by either
initial conditions or forcing functions. The important point
is that the amplitudes of a normal mode are always in the
same proportion; i.e., the shape is maintained, regardless

of the cause of the vibration.

To illustrate the above, consider again the two-degree system
shown in Figure(3.3) for which the natural frequencies or
eigenvalues were found to be 0.6184@? and 1.6184@% .

Since the k's were taken to be egquals, as were the M's,

Equations(3.8b) becomes

2k — m, Wy, -4 Qu| _ |0
-% % _m.&)nz Az 1)
Substituting w, , the frequency of the first mode, into the

first equation yields

(1.6184)Qy~—%Qzy =0 —» Qu=06/8 Rz
(% )Qu +(06184)R; =0

which defines the characteristic shape or eigenvector of the
'_first mode., The same result would have been obtained by
substitution into the second equation. The notation adopted
}8 that the first subscript on the a indicates the mass, or
boint on the structure at which the amplitude occurs, and

the second subscript designates the mode. Substituting w,

nto either equation yields
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(=06/8R)YA,z + (- B) Azs= o

(~)Qiy - ¢/ 61848203 =0 —F A2 =~ 11618 Q33

which defines the characteristic shape of the second mode.
If it is desired to assign arbitrary values to the ampli-
tudes, the two modal shapes could be indicated by

By A /b

A, Qs /618 /
The two characteristic shapes, i.e., the motions associated
with the normal modes, are indicated in Figure(3.4). In
the first mode the two masses move in the same direction
and when my moves one unit then m, moves 1,618 units. ‘In
the second mode when m, moves one unit then m, moves 1.618
units in the opposite direction. In both cases the motions
of the two masses are in phase; i.e., the maximum displace-
ments are attained simultaneously. The neutral point of
the vibration is the static dead-load position, and the a's
are in reality amplitudes of the total motion. It should
be intuitively obvious that the type of distortion associ-
ated with the first mode should as we have shown, have a
lower natural frequency than that associated with the second

mode., We can normalize the vector columns of latter matrix

to obtain

Ui 0% 2857 25%7

2 g ;—;;7 a.8$°7
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It should be noted that the latter matrix [Lﬂ is an ortho-
gonal matrix, that is, [(/]T[(/]:= [[]

a,,I .
Q}J s

[ |
| IRE— |

L First mode Second mode

Fig.(3.4) Characteristic Shapes of Normal Modes

3.4 Mathematical Formulation of The Natural Frequency
And Mode Shape Equations

3.4=-1 The Cholesky Transformation
It will become apparent that solutions of natural
frequency and mode shape function become extremely cumber-
some as the number of modes increases. For this reason
other procedures have been devised. A method utilizing
the digital computer is discussed in this section. |
First consider Equation(3.5), it is a general form of eigen-

value and eigenvetor problem. The expression of the equation
is

(4] {x} =2 (8] {¥] (3.9)

Where matrix [A] is the symmetric stiffness matrix, [B] is

€ Symmetric mass matrix, A's are eigenvalues, and {X}is
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eigenvector. From previous work, we know mass matrix (M]

is a diagonal and positive definite matrix. One may decom-
pose [B] as the product of an upper and lower triangular

matrix as
(8] = [s](s] (3.10)
Equation(3.9) becomes

(4) [2){x ) =rs"six} (3.11)

where upon subétituting for unit matrix it follows that,

AEEP 24 875 x (3.12)
Noting that
(s =(s")"
and premultiply Equation(3.12) by ( ST)_’, one obtains
(s)°as"sx =MS)'STSX =ASX (3.13)
Defining a new vector
{x] =six} (3.14)

Equation(3.13) is written as

((s)] as™lx} =a(x) (3.15)
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Defining
H=(s"as" (3.16)

Equation(3.15) becomes

(7 1x'}= A XY (3.17)

where [/_/],: [/—/]T , that is, (4] is symmetric.

It should be noted that the eigenvalues of Equation(3.17)
are identical to those of Equation(3.9). Also, the eigen-
vectors of Equation(3.17) are related to those of Egquation
(3.9) through Equation(3.14)

Equation(3.17) is 5 basls Fotk of [A]{xﬂ=aA{A} . Let us
consider the n matrix equations corresponding to each eigen-

value, in terms of the normalized eigenvectors

(4){x}=n, [/}
(4] {xf=A. {x]

(4) {x]=A, {x] (3.18)

or in compact form

[A) (X Xy Xn) = (A X e e AnXa)  (3.19)
letting

e} = (x/ X --------x)

S0

(AKX, A - ds e s AnXn) =Q A (3.20)
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where A is the diagonal matrix of eigenvalues

~ (3.21)

Equation(3.19) can then be written as

(4] (0] =[@][A] (3.22)

Next we examine the matrix product

3 :

[8)=[e] (@] (3.23)
The coefficient of [B] located on the ith row and jth column
are given by

¢+ T ’
bij =X X (3.24)

corresponding to the scalar product of the ith and jth eigen-
vectors, associated with the two different eigenvalues A,

and A; by the expressions

Ay X o )

Stmultiplying the transpose of (3.25a) by X'j, and premul-
Plying (3.25b) by X;', we obtain

T T ’ T .

Xe A X; =X Xo Xj (3.26a)
T 7 z

XeA Xj =X X1 Xg (3.26D)
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Subtracting Equation(3.26a) from Equation(3.26b), and
considering that (4] = (4) for a symmetric matrix A, the

result is
.
( Az A XX & =0 (3.27)
which shows that
» T
Xe X5 =0 (3.28)

Thus, the two eigenvectors X'i, X', for two different eigen-

J
values A; and A; are orthogonal. In the case where i = j

we have,

'T 7
Xy X; %0 (3.29a)

and in particular, if the eigenvectors are normalized

I1 7
Xe X =1 (3.29p)
From this discussion we conclude that

b‘_ji 0 for 143

/ for £=7 (3.30a)
so that (8] is a unit matrix
B=7I=Q°Q
(3.30Db)

and T -]

Or the eigenvector matrix is orthogonal. Premultiplying

th side of equation(3.22) by @  , we obtain
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[&JT[A][leaTm:[/\] (3.31)

which shows that applying to A the orthogonal transforma-
tion Q'[ JQ, produces a diagonal matrix. The diagonal
coefficient of the matrix are then the eigenvalues of system
AX=AX. The colums of matrix Q are the corresponding
eigenvectors. Therefore, our problém reduces to the need

to diagonalize the matrix [(4].

3.4-2 Jacobi's lMethod for Eigenvalue Eigenvector
Computation

The Jacobi method‘3) is an efficient and effective
process of computing eigenvalues and eigenvectors of a symm-
etric matrix. The procedure is to zero selected off diagonal
terms of the given matrix by preforming a sequence of elemen-
~ tary orthogonal transformations. Consider the symmetric

matrix of order 4

a, Qiz Qi3 Qn
Q2 Rez A2z Ay

A=

S e ey an (3.32)

' L Qs R4 QA4 Q“J

and assumed the term Aoy is to be eliminated. Working with

the orthogonal transformation matrix

/ 0 17 1
9, & o -8
R, =
A 0 y 0 {5.53)
0 S o £ J
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where C =cose and s =sine , with © being a rotation angle
to be determined, the result of a matrix operation of type
given in Equation(3.31) is

0 N

Qn | CQntSaw ' Bs L ~SRu *Cl
CQp*SAd, C Ayt SRy +2 54,4; C Qs St -CS Wi~ Rag)+ A y(C=5H)

Qs ' CAn+S@w ' Qs | ~Sau + Cas
=5@,:*C 5-(‘5(42; Q,,W,‘(c‘-:‘)s —54,;*(’@? San+ca u~E5C az.,J
(3.34)

RAR, =

To eliminate the term a24 it follows that

-Cos @ 3/"7 0( Qs yy +d,4(60528 -5/mm®)=0 (3.35a)

which is transformed into
Ay ?an’6 41206 Qs ~Qag) - Aog = O (3.35b)

and

_ _ + B z Z
fang = — Gz~ Ue) "z”{z(:” Aoa) 2 9820 (3.35¢)

Let us restrict oursolves to one of the roots, for instance

Q- Q)+ A an-Qu) +4 Ao
el e r Pam (3.354)

~

Notice that the other root will be 180° out of phase and
would not affect the results. Working with root of Equation .
(3.35d) is equivalent to considering only the (-€}< e< %L)

interval., Having the tan@ one computes

Cose =(1 +tan’6 )% (3.36a)

5/n0 = Cos® 1anb (3.36b)
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Jacobi's method consists in applying the above transforma-
tion to all the off-diagonal terms until all of them are,
to a small error, equal to zero. Normally one starts with
the off-diagonal term with the largest absolute value.
Assuming that it occﬁpies the location (I,J) the Equation

(3.35d) becomes

tang =~ SR =R;) +/(@ui- a5V +44%5 i
o P .37)

from which one evaluates cos® and siné using Equations
(3.%6a) and (3.36b). Next, one builds (R,] taking a unit
matrix and placing -cos 6 in location (I,I) and (J,J),

sin® in location (I,J) and -siné in location (J,I).
Performing the orthogonal transformation is equivalent to
modifying the ith and jth rows and columns of [A] according

tq the following scheme:

Row ; Q= C05°0Qic +5in’0 Aj; —251N6 CoSO A:j
Qij= -Co56 Sn6(Qu-Qj;)+ Aij(Cos5’e -5m°6)
A= Cos 9. Qik + Sin6 Ajk (3.38a)

Row; Qjj= Sin'0 @ + €056 Q5 — 2C0SO5/n6 @
Q= -cosesine (ai - Qjj) +ajc(cose -smn’e)
aj,(v: —S5mM6 Aoy + Ccose Q% (3.38b)

= f.n but Ax( Ax7
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column i
Qpc = CO56 Q4i + SIN6 Qg (3.38¢c)
2=1/,n wiTH R EL, R X7
column j
QA= —SIn6 Qg + CO5 0 Ak5 (3.384d)
£ =1/, n WIH A5, £ X7
Notice that an orthogonal transformation preserves symmetry
which allows us to reduce the number of operation required
by Equations(3.38a) to (3.38d). One again selects the
largest absolute value off-diagonal term, from those that
remain different than zero and repeats the transformations
outlined above. Tﬁese transformations are repeatedly applied
until no other than zero off-diagonal terms remain., After

all transfbrmations have been applied, we obtain

Ry == === Ri R, R AR R.R;=---R, = QAQ =A (3.39)

O :R,RZR3 ______ Rn (3‘40)

3.4-3 Computer Programs for Natural Frequencies and
Mode Shapes

3.4=3,1 Jacobi Method
A computer program which performs the Jacobi Method
On a square symmetric matrix is given in Appendix I. The

alogrithm follows the procedure developed in Section 3.4-2.
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The accompaning solution of the eigenvalues and eigenvectors

is given for a sample problem defined as

4]

where (4] is symmetric.

The resulting elgenvalue matrix becomes

(4]

O Q O o

L TR Bk T <

and the eigenvector matrix is

It should be noted that matrix [(Q] is

2/
0
0

4

R

5
%%

%0

-6 /2
-2 -6
4 A
& 12
0o o
o) o
2 o
(0] 30
0 '/"‘@_/5‘
g 1%,
Py ¥z,
o o

/

orthogonal which

satisfies Equations(3.30a), (3.30b) and (3.30c).

3.4=%.2 Generalized Eigenvalue, Eigenvector Problem

A general computerprogramwhich solves the general form

of Equation(3.9) is given in Appendix II.

The algorithm
Utilizes the Cholesky Transformation technique (see Equation

v(3-10)), and includes the Jacobi Method process as a subrou-
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(3)

tine "« The accompaning solution is given for a sample problem

shown in Figure(3.2), where

(4] E[K] =4

[B]E[M]:m ! 2
/
The eigenvalue matrix becomes,

Ia)=fE

The eigenvector matrix is computed as

[v] =

It should be noted for this special problem that [A][M]=
(M) (k] and, thus, (U] [U]T= (7) or (U] 1is an ortho-

gonal matrix.

03820 0O
0 26/8

0526 0850
0.850 -0.526
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35 od alvsis lultidegree System

3.5=-1 Matrix Method Formulation

Before one uses matrix notation to calculate the
expressions of forced motion of a multidegree system,
there are important relationships among mass, stiffness
and natural frequency matrices which must be known.
free vibration of multidegree systems , it follows from

Newton's ILaw that

[M]{V}+(”J1V}:{0} | (3.41)
Assuming resulting motions are harmonic, one obtains
[ & ][ Ui]z['" ][ U'][A‘”]'z | (3.42)

where [c/] is the matrix of eigenvectors and [/\?]is a

diagonal matrix of natural frequenices in the form
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Letting

|
OES

both [/\M] and [/\K] are also diagonal matrics.
Premultiplying [ U ]Ton both side of equation(3.42) yields

(Y)Y
i voen RS -

The latter equation has a direct analogy with the single-
degree of freedom system where k = mu?.
The matrix equation of motion for forced vibration

takes the form

0 TS 2 I

=
o
ot
ct
[N
)
0Q
—H—
S
——
I
F——
N
. S
Dt Y
X
S
i~
<
|
|
S S
Q
N—
——
X
———

Equation(3.45) becomes

(o)l o te (2 )(o )]

(3.46)

I
——
~
-+
gl
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-
Premultiplying [U on both side of equation(3.46) yields

K
[ ) e (e m)le =l Tod
- ()= o .47)

(
Premultiplying /\MJ'on both side of Equation(3.47) gives

or (Aw{y

O P 15 4

Recalling [Ak] a [Anj [Aw]z

Equation(3.48) reduces to the form

el Tl o
wsins [ J{o Jlo]« 1]

Equation(3.49) becomes

()5} (a7 )= pel
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Or in matrix component form

( 5| [« (v ] [2®
/\ 0 X w, A 32‘*)

\ : s )

N . 1 \\ ) : y — ¥

N I N 1 |

0 AN | N | |

N R N | !
\ // \yﬁ } \ U)")k 701 J 3n(t)

(3.51)

The arbitrary differential equation for the " i " dis-

placement becomes
o0 2 Cs
o +wiy, = b +=/23-----n (3.52)

The solution of Equation(3.52) is determined in Duhamel

Integral form as

Yatt) =@ coswitthisiv w;Hﬁ.fT:f $(mSINwi(£-7)d T (3.53)

in which @a; and b; are constants

determined from initial displacement Yo and initial velocity

&O as
a; =¥
o b .8 Gt
_ i
64— we

Equation(3.53) takes the final matrix form
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Recalling {V(t)]: [ U ]{y(t)} ,the final form of the

response function becomes

[venr} = [U][C]{ }+T|t‘/| s][i (3.55)
(o) (S T8 ) o] (et ar

where

Ccosw,t 0
[\C] " cosuy T
\ - —-—
0 s
L CoSw,t
Stn Wit 0
N\ S/
R 0
0 sinaht
p
SINW,({-7) 0
[\§J 9 SInW,t-7)
0 T =
5//7/(),,(7" 7—)’




=1

and
{a}= {9 92y }T
[ )i %%l

3.5-2 Sample Example

Using the matrix response Equation(3.55) for the

multidegree system, a three-degree system shown in

Figure(3.5) is investigated to determine maximum response

amplitudes.

K,= 6000 /b/in

M,=2 "8 "‘%'n Foy = 3000 Ib
; F(t) =Fu[f(t’] Fz1=4000 16
% K,=4000 '&n flee=2a00 7
M=/ 1656,
| Frct )= Falfct)) G

fety=/-/0C Z< o/

Yy

K3= 2000 ey

AN

fet)=0 Zzo.l

Ms =/ 16-5¢,
? Fsctr=Fy )]

Figure(3.5) Three-Degree of Freedom System —
Forced Vibration
First for free vibration assume all the external forces
are equal to zero., Using the diagrams of dynamic equil-

brium shown in Figure(3.6) we obtain the equations of
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free motion as

m¥ L1600 a0l Mo w3 Thor,
M, MZ M3
] |
K (= Y) K5 Yo)

Fig(3.6) Dynamic Equilbrium — Three-Degree of Freedom

o} Y/"’ K, Y55 KZ(YZ-Y/)z 0
Mplo+ Kol YouY ) K3 €Yy =)5) = 0 (3.56)
My T3+ K3 (5= Yp) = 0
which when set into matrix form becomes
g Mt § T Y( ()
M 0 0 ¥% Kiths -Ko 0 ||V 0
0 My 0 UV tH| K KK K {Val=10 ¢
0o 0 v 0 -K, K J
) Ml It T T 3 "3\ )3 0 |
(3.57)
Taking m, = m, =mz = 2 and k, 6000; ky, = 2k3 4000,
ﬁ it follows that,
1 .
2 0
[M] = lloe 1
o o0 |/
N v




/0000. -4000 O

X
[

-4000 6000 -2000

0o -2000 2000

\ Ve

Utilizing the general computer program in Appendix II, one

obtains v %
| 79095 o 0
[ “’] 0 347356 ©
0 0 873549
N\ 7/

and after normalization the eigenvector matrix becomes
f )
0.2387 0.63/6 0.4566

[U] = |osox o0.4684-08528

0.83/0 -0.6357 0.2533

N 7

Recalling Equation(3.55), with initial conditions as zero

v = (Ol I [0 v ek a7
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The forcing function vector {f«t)} is assumed in the form

shown in Figure(3.5). Noting for the first time interval

F;'
{f‘f’} = (1-10t)\ F,
F3l

{ven) = [U][/\,‘Am]/ “rya 1073 \][U] {Folar
=) aJ ][ mle)ar (v])TA
=(v I[Aw]-'[/\m]-'[l\w]-'[\(/— coswt +/05'—Z,£l-/oz‘)\] [U]T{Fo f
(3.58)
Recalling from Chapter II, the dynamic load factor for the

single-degree system with forcing function Low =/ - % is

smait T

DLF =/-Coswil * 74 E”]

{ver ] = (V1A (aa] (8] (DLF] (U] Fo}

=(v][a] [DLF][U]{F] (3.59)

where matrix [DLF] is a diagonal matrix.
It is very important to note that each normal mode may be
treated as an independent single-degree system. And we can

find the dynamic load factor from Biggs.




In Equation(3.59)

0.238] o.s5024 0.83/0

=06736 0.4684 -0635]

0.4566 -0.8528 0.2523

/o000 -4o00

-4oop 6Gooo

0 -2o00 2000

5!

835.97 0 0
s o 4782 o
L o o /0556 ;
/
Fiear. O
=1 2 2 7/3?. o
= o /05’56

-1

vty = (0] [Ad

0.2381 0.6/36 o45¢||35a1 © ° || D © ©
= 05024 04484 —0.5528)| O ‘4# ol||lo D: o
0.8310 ~0.6357 0.2533)| 0 wsglo © D
1
0.3036 D, +0.6398D;: — 0./102 Ds
=\ 0.63% D, +0488/D: +0.2059D; [
1.0574D, — 0.6627D: -0.06/1D; ‘

o

-2000

(2¢7) [v] 1%}

0.2387 0,6/36 0.9566
0.5024 04684 -0.8528

0.83/0 -0.635] 0.2533

0.238] o.5024 0.8310

04566 -0.8528 0.2533

7\

0.6136 0.4684 -0.635] 4ooo[

61

\‘I

\

3000

-2000

(3.60)
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The determination of maximum deflection at any point of the
system would involve differentiation of Equation(3.60) with
respect to time in order to find the time of maximum response.
This is obviously a very difficult process. In many cases the
practical solution is to proceed graphically and from a plot
approximately deduce the time of maximum responses. An upper
limit for the maximum response may be obtained by adding
numerically the maximum of the modes taken seperately. For

example, the upper bound of V2 can be obtained as follows

From Biggs, (DLF1)max = T.1¢
(DIFp Jpax = 1.53
(DLF3)max =11.,68

so the upper bound of V2 is

Vo, max £ G637 (112> + 0.4881(/¢3)7 0295 (h68)= 8084 n

For the example, the value just computed is a rather conser-
vative estimate of the maximum displacement. In fact, the
true value of the maximum displacement at point 2, as one will

see in next chapter, occuring at about 0.044 sec, is 1.%096 in.
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CHAPTER IV

FINITE DEFFERENCE ANALYSIS OF MULTIDEGREE SYSTEM

4,17 Introduction

For many dynamic problems of considerable practical
interest, analytic solutions to the-governing differential
equations are very complicated as shown in Chapter III.
Fortunately, numerical treatment of these kinds of differen-
tial equations can be yield approximate results, acceptable
for most practical purposes. Among the numerical techniques
presently available, the Finite Difference method is one of
the most general. The Finite Difference procedure produces
a direct éolution to the differential equations for a given
set of forcing functions. A time step incrementation pro-
cess is implemented yielding a direct calculation of the
system response parameters. The method involves, at most,
simple algebraic procesées eliminating the need of integra-
tion procedures or the use of the concept of Dynamic Load
Factor. The determination of maximum response, the time of
maximum response, and the resulting maximum structure forces
are simple, direct outputs of the mathematical processes.

In this chapter a FORTRAN program of the Finite Di-
fference method originally formulated by Phimphilia(4) is
used to determine the response of a multidegree of freedom

structural modles. The program is augmented to include as
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output the actual internal structural forces so that the
maximum values of structure forces are determined.,

4.2 Mathematical Developement Of The Finite Difference
Method

Recalling from Chapter 3, the governing differential
equation of a multidegree of freedom structure for forced

vibration is

[ {7 [ v ol w

" where [A7J is mass.matrix, [k’] is stiffness matrix, { V’}
and {(} } are displacement and acceleration vector at time t,
and {th% is the external force applied on the system which
is vary with time. A vector iteration method is utilized to
determiné the response vector {l/ } of the dynamic system.
Since of mass matrix is a positive definite matrix, its
determinant is nonzero, and the inverse of the mass matrix

exists. Rearranging Equation(4.1) as follows

(o)=(w ]l ()R]0}

recalling the Taylor Series expansion of a function with one

variable, it follows that

/M+,=Hym+dx> ,

= Yo, rym, 5T y “)//x)*-““
(4.3)
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By using direct analogy to the . Taylor expansion for - -the -time
varying vector {V7f4 , by analogy to Equation(4.2), the dis-

placement vector is expanded as follows,

R T
- r 1 ' (

where 4t is time difference between any two continous stations

and A_f =_6nﬂ_ f”

Differentiating Equation(4.4) with respect to time t one

obtains

3
- »_t{ { so_ﬂ{ } il ] ginTt
At pt) [ ] QEV- } AR
{[/(t)}‘ (t)}v‘ /i {]/(t)}u %{[/{t) ‘_+ T V(t),{-f— (4.6)

The number of terms in the expansion may be arbitrarily chosen.
However, the accuracy of this method is dependent on the terms
in the expansion one chooses; the more terms that are chosen
the more accurate the results. The simplest solution may be
found by neglecting terms on the right hand side of the
expansion which contain derivatives higher than the second
order. After eliminating these higher order dervatives from

Equations(4.4)(4.5)(4.6), we obtain

- at |- @gf{”
{WﬁLﬂ—%mﬁz+N{Wﬂi+2!V“%; (4.72)
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{m = IVW}]‘AJL {fo’}‘ (4.7p)
1+1 . 1

{V{t)LH: {W“}é (i 70

For a given value of {V(t)} {V(t’} {Wt)} , one obtains
{V(tlz},; {V(t)}w; {l}‘t) L'directly from Equations(4.72)(4.7b)
(4.7c) respectively. Note from Equation(4.7c) that the acce-
" leration at the end of the time interval is exactly the same
as the acceleration at the beginning of the time interval,
(i.e., no change of acceleration through whole time period).
One defines this procedure as the "Constant Acceleration

Method" of iteration. Now permutting the value of n to (n-1)

and (n-1) to n in Equations(4.72)(4.7b)(4.7c) one obtains

- st . (o1)
{l/(t) ;_[V(t’L ’—/-{V‘t)};ﬂ i {y(_tﬂl—’ (4.88)
' = 4t
= 4
{V{t)}: {V(t)}t—l {V(t)}‘_‘ (4.8b)
Vetry = V(t)} :
{ ] { A (4.8¢)

Rearranging the terms in Equation(4.8b)

{l/(t)}: Z/T{l}(t)}d\— A_{t— {l/'(t)};-( » (4.9)
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Substituting the latter equation into Equation(4.8a) gives

{l/lt)“ = {V(t) ® 43{1'/&)} v L {Vm |
n A-l z! i1 2/ 4 ‘

st {. At [. —
or (V(t)gi_ {Vlt)};_l = -; {l/(f)}‘ + ;‘{Vtﬂ}; =0 (4.10)

1-1

Now, permutting n to (n+1) in Equation(4.10), one obtains

h“‘
{V(t);‘ 3 {vm}‘ g Az—t,[ {\'/(ﬂ;. * {\}(t’}i ] =¥ (4.11) M
it 1 : 4 +!

Subtracting Equation_(4.10) from Equation(4.11) yields

{Wc)}m— z ivm}dﬁ {\/(*)}4_—|3 AZ—{”\'/m}h—g\’/mi_J (4.12)

Combining Equation(4.12) with Equation(4.9), one obtains

{(/I(ﬂ}iﬂ: (;/5,[ {V(t)}i-n_/ 2 SVM}{ + !Wt)}; J (4.13)

Then, permutting the form of Equation(4.7c) yields

it = = |
{V(t)}; = (ZE)_’[ {V(t)LH— 2 {V(t)};r {V(u }24] (4.14)

The convenient form of Equation(4.13) for calculation purposes

. . il
is written as Il

2 Il
\ %V(t\L =2 {vm}; = {vm}‘_j lot) {Vm} (4.15) i

1
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Finally, at any time t, it follows from Equation(4.2) that

ol (e e lbd

From the above equations, the following steps are taken in the
iteration procedure :

step(1) at t=0, n=0

oo o] fro

and by choice

revk= e

step(2) at t= ty=4t, n=1

Lo o o )]
{V{zm}= z {V(A t>§ - ( V(O)g +(ot)’{1? (4 t)}

step(3) at t=t

and

o=24%, N=2

onff] e o
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and

{v(;at)}: 2 { V(lbt)}— {vmt)} + t)l{\'/'(zAt)}

Additional steps similar to the latter steps are taken up to
the value of ., and in general

v/, 2/

[K ]{mm} +[MJ {-F(ut)}

- —~/

{vwv»t}b[/w\ (/( ]{V(x;'l)AtK +[M ] { P(Ut)}

7/

o

7

4,3 TIllustrative Example and Computer Solution

The computer program is utilized to solve a problem
which is defined below. Considering the spring-mass system
shown in Figure(4.1), this problem is identical to that of

Chapter 3 which was solved using the eigenvalue; eigenvector;

matrix approach.

/F-{-‘(t}
Ki=6ore “%n Fu
Fa

E(t)l M/:zl&-sec’/m A3

K=t 000 t&/in
+4=0 rsac t
A l My=1 b=, '
Fr1=%e°e (b
Kzz,-oll%n ﬁ,:l}.oou 16
i /C;‘ = -2000 (}

el |M=1reg,

Fig(4.1) Sample Problem Identification
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The governing differential equation of response of the system

e

is

pr—
N
— e~
Kn
Seg—
+
£
X
N —

(M’ o 0 \ | 2 0" "o ‘
[A4 ]:: Q. icMeivs Qodent o, / 0
|0 o My J o 0 a
/k;‘sz -k, 0 p os00 _yooo @
[K ] = |-K Kk k| = [ beer -2
gl ~Ky ks i Snsaen Bt

It follows that

(_L N : : )
M, 0 O /Z
~/ /.
[MJ = 0 Ma 0 — 0 ; "
L
0 0 /
( i |0 /
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and from giving data we have td = 0.1 sec and
_500” ¥ T(m) + 3o00o

{‘F(t)/g = \—loooo X T (M) + Y{oo°

ZDO.. x T (m) -— 2000

A requirement of this method is a need to define as input data
the time interval 4t. The general‘pecommendation(S) is that
it be at least less than one tenth of the lowest value of the
structure natural period. This requires a precalculation of
the natural frequencies of the structure. For the problem
under consiaeration the lowest value of natural frequency was
determined(see chapter 3) to be w, = 28.12 rad/sec, and
lowest natural period T1 = 0,22%4 sec.,

Assuming A2t = 00,0005 secy, n = 3 and putting [Mri[ K] ,{f(t)}
and ty as data into the program, the complete program solution
is given in Appendix III. From the computer solution we can
easily find out that the time of haximum response is 0.,044sec

and the maximum response is 1.3096 in,



12

4.4 A System with Close Natural Frequencies

In some structural systems a possibility exists that

two of the natural frequencies of free vibration may be
numerically close to one another. Although most well engi-
neered and designed structures are not subject to this condi-
tion, many improperly designed structures currently exist.
It is, therefore, important to be able to determine the
response characteristic of these stfuctures when subjected
to typical dynamic force conditions.

Consider a four-degree of freedom dynamic system in

Figure(4.2)

*
MZVW m Fact)
4 7 ! '

&
F*NWM%—' Fs(t)
£
a2,
Etﬁ? Fi(t)
b & m, —>

X7

Fig.(4.2) Four-Degree of Freedom Dynamic System
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The Kinetic Energy of the system is
2 2 g b 2 i h 2 ] s L
KE: _Zl.— miX + 1.—1"17()("’[[ 91 )z‘f'sz;(Xff/B.+!zﬂz)2+?lMu(x+l.0.+!zea+130a)
(3.16)
The Poential Energy of the system is

V = e 0.+ G4t 0r-0F+ 545t (05-0" + 54X Hh0000,0)" +
T R (K0t 0,6:)+ L4, (X 44,04 4,6.+0,8) (4.17)

Lagrange equation of conservative elastic systems takes the

form
d aL 2L <
:Iz'(e;az)" YT 0 A=/ 2-~-~-- h
(4.18)
where L = KE-V (4.19)

L = ‘zL[WhY:'/' Ma ()'(4'!10.: )z'f'm’ ()'(-'P:S'ﬁ[:é.)‘fma (*4!,03,4&’5,4'[,&,)2] -

2
L[h1e07 + 40t (02-0,5+ £y (02- 05 )z] - L [# £y oxet0fs

%3 (x-rl,9,+!>0.)2+&,,(a(+[,0,+1,¢9= +£,6: )" (4.20)

From Equation(4.18)

o ol 4

gt Gx 7 T x T 0

d ,oL S W

dt (aal) o0, o - ( )
_d— QL i gi i ( 4.21
it o6 w 7

B I

dt 6; 28, )
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After differentiating, one obtains

MK+ M2 (406, F My (X + 0081t £uBe) +Mu (X4 16,4 B Bse £y 63) + b ool 804
£3(x4£,001 100 +fou (X+ £. 011 .65+ B8, ) = 0

mafi(£40,:0)+ms g, (X+£,6) th )+ m,,[,()?+!1§,+{> -;+!3é)‘{lt9’+ﬁt(6’-€')4g: kb0 +
s (X016 10,.0.)+ Ry (x+£,0,+*06,+ 66, )= 0

ms lz()?+f,d;~f7:9;)+m#[;()?+l.51+&5;+ !sb))" {;¢(9: '9|)+“t (53— 0;)*6(%[,0,-}[,&)*
%y X+ 081+ £, 6 1 £38) =0
My by (5 +0,8+ CBas G @) - kyu(Br-0)+ A, (X + L8014 £,0:+58)=C (4.22)

which possesess the matrix form

rx % 0-
RN MR
\é% ) [ O3 o }

where

(MMatmztme) (Matmsem)fe (Ma*mu)fa Muls

2
[M] (Mamz+m) 2, (mxrmzema) b (Mzrmaf, b myel hy

(M3 + my) 2y (mztmy)f, fz (M3+ma) Pz muls s

my {3 mal) f3 My f2 95 my f;

(
(£1+ &2t 43+ k) (katfes tR)0) (&5t %u) fs #y Ls

[/‘/ J_ (’ﬁ;‘l"‘;f{u}f, (&,f{&fzk)pﬁrﬂpf,‘ (&;fk'r)ﬂpz' {’t ﬁ«"?&
Bt b (Br Bl Aok (Ryibe) b +harthe bl ot

fu £ '&#gl & ANN -&1 ﬁf:*cst |
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For convenience, let

m, = M, = M = Mme = m
’il = {x = "g — ’Lq = ’é
Li= &K =y h'= i

£r = fe = ke = 4e

Substituting these conditions into [A/][/(] of Equation(4.23)

A

and defining %?4}’=”£ one obtains

|}

sz Iml  2ml ] */,q Lt 300 R &) %’ [ 1
gmd smf am® of| | B skt ACGesRMeR) ] | B 0
>ml  2mf zml'z mi B, fe £ ereR) {a ey | 6, e | o
mg m* mvj &) | 4 Ao el | o, o

After nondimensionalizing, one obtains

N r . - ( ‘1 L
(4 3 2 (%) (e 5 2 |(%) (o
2 3 g 3 3200 1|8 0
th" 4 ‘I »_{.{[z _ ) : ) = (
z 2z | 6, 2 -9 a2p) -7l | o, 0
/ / o \93 [0 -2 (tR) l 0; 2
\ / . / !

Using the latter equation the natural frequenices and mode

shapes of the system are obtained. Setting

( \
4 32 2

[AJE [KJ= 3 Braf)e—h)
2 2929
/R 2)J

~
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the computer program of Chapter 3 is used to obtain a plot

for w?vs % , which'gshown in Figure(4.3). From the figure,

it is determined that asf increases, the values of w’ increases.
In the process as ‘/(”\ decreases toward zero the values of W,zand

w, approach the same value, that is unity.

In general, the natural frequenices of this system are

T w,mé)— /

e D) a);(»é) /+0/23?,€
(() wj(‘&)_ /+2?$6/&
(7)474(,&)_/+/0?24€

and mode shape function matrix of the system is

’ N

| 05957 0.3694 -0.1645
[U] _ -0.279/ 0.619] 0.5467

-0.4844 0./1475 -0.7030
~0.576] -0.6766 0.424//

L T B

The dynamic response and spring forces of the system are now

determined , using

JRR—
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/ .
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Fig(4.3) Frequency

Stiffness Variation
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4 3 2 4
3 3 2
(m] = aE

2 2 2 /

[ / / / )

r N
/ =/ 0 0

-1

17 =f * e §
o o -/ 2

m =/ /b6 "SZC)Z//',;
R = /000 6/in, 2=

4 jealiiia g

(k) =ro0s| 3 212h 2k 1
2 2-k/ 2+k /-4

| Fossolp i p=k ek

( / =1 o o ]

-1

[M]= - lges =l @
o =1 2 a4

DA o A

For four degrees of freedom n = 4, taking td = 0.1 sec and
defining four nodal forces as proportional to the associated

eigenvector of the second eigenvalue(see Figure(4.4a)),one

obtains

{
5849 X Tem) - 584.9

-2740 X T(m)+274.
(f,m}# ;i e (4.24)

-

~4756 XTcm) +475.6

-5¢6/ XTerm +56¢.] |
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Substituting the numerical values of [p1]-,,[/(] s N, td
into the program, and obtaining the numerical results one
may plot the parameter T’Mx vs. ’& ; 9,',"“ vs. 2, 9,:‘" vs.ﬁ
9.";"\/;,@. The results are shown in Figure(4.5a).

For the purposes of comparison, the forcing functions
are changed such as to be proportional to the reciprocal of
the second eigenvector components (see Figure(4.4b)). 1In
addition the net force for these forcing function is chosen

as to be similar to the net force of the previous set of

forcing functions, that is

-r2WIY T (md>—2151
-us9a2xw T (my+us] 2
{-Fz(tD} =4 , (4.25)

363X T (mM)+ 2643

=232y T (m) +233. 4

mAxX
From the computer output one may plot —%L vS. 2 ’

mA
MAX
H \

mAX
9:-1 V“ﬁ, 911 Vs.ﬁ, 93
in Figure(4.5b).

X
VS, ﬁ . The results are shown

' I A ; )

| |
— {3t et £t
| |
| Aty ! > £ty
| I
I |
| j'i | ' fi)
Mode Force Mode Force
Shape Distribution Shape Distribution
(a) (b)

Fig.(4.4) Forcing Function Associated with Second Eigenvector
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Fig.(4.5) Response-Stiffness Variation



81

The plots in Figure(4.5) define absolute values of displace-
ments and rotations. TFor the system with close frequencies,
the important parameters are spring force and spring moments

which are related to relative displacements and rotations.

To illustrate the variation of spring moment with the con-

dition of closeness of frequency, the maximum moments in
springs five and six are determined from the computer output
information in Appendix III. A plot of maximum spring
moment verses parameter £ is shown in Figure(4.6) for the
forcing function of Equation(4.24).

Figure(4.6) shows uniquely that as two frequencies approach
eachother numerically (i.e., £ decreases), the internal
spring moments (forces) increase dramatically. Refering to
Figure(4.3) and (4.6), parameter % =20, yields w,=1,

w, =1.865, and <% =0,042. Also when 2 =1, w,=1, ws=1.060
and {%?=O.153. Thus, as the rat;o ‘ﬁ% decreases from 1.865
to 1.06 the inducéd spring moments increases by a factor of
3.64 which is greater a threefold increase. As the value

of %’ decreases below unity the spring factor continues to

increase,
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CHAPTER V

DISCUSSION AND CONCLUSION

5.1 Discussion
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From the resulting equations of dynamic response of

single and multiaegree of freedom systems in Chapter 2 and

3, one obtains the response of dynamic systems defined in

terms of dynamic load factor. The analysis of dynamic load

factor in Chapter 2 provided a very clear relationship
between time parameters td/T, ti/td, and (DLF)max, From
Figure(2.9)(2.10)(2.11), it is apparent that for a given
time parameter (td/T), as (ti/td) reduces the (DLF)maX
increases. Alternately, as the rise time ratio (ti/td)
increases the response of the system decreases. This is
proven by observing the area of the load-time function
curve. For the same time duration and the same maximum

force shown in Figure(5.1) the area in Figure(5.1a) is

larger than in Figure(5.1b). Secondly, it should be noted

that the slope of the load function is increasing as the

rise time decreases which in the limit reduced to a direct

impulse load.

v

I e £
(a) (b)

Fig(5.1) Load Function with Different Rising Time

td
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A n-degree of freedom system possess n dynamic load
factors. If one applies the same load functions to all the
masses, the n dynamic load factors can be represent by an
(n x n) diagonal matrix(see Equation 3.59). From Equation
(3.55) it follows that the equation of motion for a multi=-
degree of freedom system has a similar form as a single
degree system. The response for each mass point is the
product of the associated normalized eigenvector, times the
dynamic load factor, times the modal static deflection given
by the product of [A,,] [U]'T {{(t)} . TFrom the modal static
deflection equation uvue deteriines that the vibratiocnal is
response greatly affected by the distribrtion of applied
load. The fact is reflected in the matrix product [u}'{ﬂt)}_
The more nearly the load distribution is in proportion to
the corresponding eigenvector, the greater the mode parti-
cipation. In fact, if the load at all points were propor-
tionai to the eigenvector of the‘associated mode, then the
response would be entirely in that mode and that mode alone.

The results of Chapter 3 illustrate the fact that
the dynamic response of a multidegree systemare expressed in
terms of dynamic load factors. These =xpressions make it
analytically difficult to determine the maximum structure
response which happens to be the most important concern.
Fortunately, since early 1950, the introduction of digtal
computer has made the use of finite difference methods a

practical analytical tool. As a result as shown in Chapter 4
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the maximum displacement and time of maximum displacement

may be effectively and efficiently determined. This con-
clusion is illustrated by the solution of the close frequency
system discussed in Chapter 4. The finite-difference solu-
tion precisely showed that as any two frequengies approach
oneanother, the induced internal spring moments/forces
increase by a significant factor which in certain cases

may be in the order of three to fivefold.

5.2 Conclusions

It is concluded from this study that the dynamic
load factor is the most important factor in the analysis of
structures subjected to dynamic load.

For multidegree of freedom systems, the dynamic load
factor matrix is a diagonal matrix only in the speéial case-
where the components of the load vector are identical in
the time variable. Otherwise, the matrix of dymamic load
factors is an (n x n) matrix with a full complement of terms.

The dynamic response of a multidegree dynamic system
possesses a very complicated numerical formulation and com-
putation for the determination of maximum displacements.

It has been shown that reliance on the computer techniques

is an absolute necessity.
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FILE: SS aATFIV A YOUNGSTOWN STATE JUNIVERSITY COMPUTck CENTER

SUBROUTINE JACOB(AeV+ERRsN)

ERR:ERROR ALLOWED

A:SYSTEM MATRIX. AFTER THE COMPUTATIONS ARE CGMPLETED [TS DIAGONAL TERMS
wilL BE THE EIGENVALUES

VIEACH COLUMN OF THIS ARRREY AILL CONTAIN A 3ET OF EIGeNVECTCRS

OO0

JOUBLE PRECISION A{LlO+L10) sV (10s1L0)
DOUBLE PRECISION TeT1yPSyTASeCe?
ERR=0.00000V01

1TM=200

IT=0

PUT A UNIT MATRIX LN ARRAY V

OO0

00 L0 I=1l,N
DO 10 J=1l.N
[F(I=-J)34s1,3
3 V(I4Jd)=0.
GO 10 10
L VII+Jdi=1.
10 CONTINUE

FIND- LARGEST QOFF OIAGONAL COEFFICIENT

OO

13 T=Q
M=N—-1
00 20 [=1l,M
Jil=I[+1l
DO 20 J=Jl.N
IF(DABS(A(I,J))-=T)120,2042

2 T=DABS(A(L+4d))
IR=1I
IC=J

20 CONTINUE
[F(IT)Se445

TAKE FIRST LARGEST OFF UIAGONAL COEFFICIENT
TIMES ERR AS COMPARISON VALUE FOR ZERO

(Il o g ]

4 Tl=T*ERR
5 IF(T-T1)999+999+6

COMPUTE TAN(TA),SIN(S)+AND CUSINE(C) OF KOTATION ANGLE

a0

6 PS=A(IRyIR)=A(IC,IC)
TA=(=PS+OSQRT(PS*PS+4*T*T))/(2*A(Ik,1IC))
C=1./DSQRT(1+TA*TA)

S=C*TA

MULTIPLY ROTATION MATRIX TIMES V AND STURE IN V

[N g

00 50 I[=LsN
P=V(1+IR}
VILsIR)=C*P+S*V([,IC)



rl

(el aNal

Iz

LE:

50

L00

SS nATFIV A

VII1C)=C*V(I1,IC)=5*P
I=1
IF(1I-IR) 7520047

m
m

YOUNGSTOaN STATE UNIVEKSITY COMPUlck CENTER

APPLY ORTHOGLUNAL TRANSFURMATIUN TO A AND STORE IN A

7
200

3990

400
500

600

999

P=A(1,IR)
A(l9IR)=C#P+S*A([,iC)
A(I,IC)=C*A(]1,IC)=5%P
I=1+1

GO TO 100

I=IR+1
IFUI-IC)8+400,8
P=A(IR,1)

A(IR I )=C*P+S*A([,41C)
AlIIC)=C*A([,1C)—=5%P
I=i+L

GO TO 300

I=IC+1

[F(I-N)9+9+600
P=A(IR,1)

ACIRy [ )=C*P+S*A(IC,1I)
A(IC,L)=C*A(ICsI)=-5%P
I=1+1

GO TQ 500

P=A(IR¢IR)

A(IRyIR)=CH.CXP+2. 3L *¥S*A(IRyIC)I+5*5%A(IC,IC)
ACIC,IC)=C*C*A(IC,IC)+S*S*¥P=2 %(*S*A(IR,yIC)

AlIR,IC)=0.
A(ICsIR)=0.

I[T=1T+1
IF(IT-ITM)L3+13+999
RETURN

sTOP

END
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VoEOE~NOUVHEWN P+

31

32

33

34

35

$J08
c
C THIS PROGRAM COMPUTES THE EIGENVALUES AND EIGENVECT3RS
C OF AN EQUATION OF TYPE A *X = LAMBDA * B * X
C N : ACTUAL ORDEkK OF A AND B
C EKRZERROR LIMIT USED IN SUBROUTINE JACOB
C V : AUXILIARY ARRAY
c
DOUBLE PRECISION A(10,10)+8(10,10)4H(10+10),V(10)
READ(5¢1)N
1 FORMAT(12)
WRITE(6422)

22 FORMAT('1'////7T20,' ERROR ALLOWED=0.00000001 *)
DO 10 I=1,N
READ(5+2)(A(19¢d) 9J=1eN)
WRITE(6+4) (AlL9J)eJ=1sN)

2 FORMAT(BF10.5)

10 CONTINUE
DO 20 I=1sN
READ(592)(B(19d) 9J=L1LeN)
WRITE(6v4) (BlIsJ)eJ=1eN)

4 FORMAT (21X48(Fl0e442X))

20 CONTINUJE
CALL EIGGl(A¢BoHsVy Ny ERR)
WRITE(6+5)

5 FORMAT(/T20,"' EIGENVALUE MATRIX ')
DO 30 I=1lsN
WRITE(694)(A(IsJ)eJd=1sN)

30 CONTINUE
WRITE(6,7)

7 FORMAT(/T20s"' EIGENVECTIGR MATRIX ')
DO 40 I=1.N
WRITE(6+s4) (BlIeJ)ed=1sN)

40 CONTINUE
sSTQP
END

SUBROUTINE EIGG(A¢BeHsVeNsERR)
DOUBLE PRECISION A(10+10)9B8(10+40)+sH{L10+10)sV (L)

DECOMPOSE MATKIX B USING CHGLESKI'S METHOD
CALL DECOuw(BsN)
INVERT MATRIX B
CALL INVCH(BereN)
MULTIPLY TRANSPOSE(H) *A * H
CALL BTAB3(AsHsVeN)
COMPUTE THE EIGENVALUES
CALL JACOB(AsBsERRyN)

COMPUTE THE EIGENVECTORS

o060 o000 oo [sNaNg! (2N aX gl

CALL MATMB(HsBsVeN)
RETURN



37

38

71

T2
73

T4

76
7
78

[sNaNaNaNaN ol

oO00 (aNeNaNal

o000

END

SUBROUTINE DECOG(A,N)

91

THIS PROGRAM PERFORMS THE DECOMPOSITION OF A SYMMETRIC MATRIX,
INTL AN UPPER TRIANGULAR MATRIX,FOR PUSITIVE DEFINITE MATRICES.
ARRAY UORIGINALLY CONTAININuL THE MATRIX TO BE OcCOMPUSED.

AT THE END LT CONTAINS THE UPPER TRIANGULAR MATRIX

A 3

10

20

21

30
4J
41

50

31
200

THIS PROGKAM COMPUTES THE INVERSE GF AN JPPER

OO0OUBLE PRECISION A(10,10)
DOUBLE PRECISIUN D
IF(ALLsLl))1lel,3
WRITE(6+2)
FORMAT (' ZERO OR NEGATIVE RADICAND')
GO TO 200
A(Lel)=DSQRT(A(L,1))
DO 10 J=2,N
AlleJd)=Al1+J)/A(Ls1)
DO 40 I=2sN

I1=I-1 .
D=A(I,1)

DO 20 L=1,11
D=D-A(Ls 1) *A(L,I)
IF(A(Is1))1s1,21
A(I¢1)=DSQRTI(D)
12=1+1

IF(12.GT.N)GO TO 41
DO 40 J=124N
D=A(1.J)

DO 30 L=1,11
D=D-A(L,1)*A(L,J)
Al(I4,J)=D/A(1,1)

DO 50 I=24N

Il1=I-1

00 50 J=1l,11
AlleJ)=0.

DO 31 I=1«N
CONTINUE

RETURN

END

SUBROUTINE INVCH(SsAsN)

STORE IN "S",PLACING THE RESULTS IN "A"™.

DOUBLE PRECISION A(10+10)95(10910)

COMPUTE DIAGONAL TERMS OF A

10

DO 10 I=1,N
A(Isl)=1./5(1,1)

COMPUTE THE TERMS OF KTH DIAGONAL OF A

Nl=N-=1

D0 100 K=1sNl
NK=N=K

DO 100 I=1sNK
J=1+K

TRIANGULAR MATKIX,



102
103
104
105
106
107
108
109
110

112
113

115
116
117
118
119

o000

(g s X gl

(aNeNaNaRaN el

o000

D=0.
ll=]+1
IK=1+K
D0 20 L=IllyIKk
20 D=D+S(lsL)*A(LsJ)
100 A(I¢Jd==0D/S(Lsi)
DO 42 I=2,N
I1=i-1
D0 42 J=1l.11
42 A(l+4J)=0.
DO 21 I=1l.N
21 CONTINUE
RETURN
END

SUBROUTINE BTAB3(Ae¢BevsN)

THIS PROGRAM COMPUTES THE HATRIX OPERATION A=TRANSPOSE(B)*A*B,
WHERE A AND B ARE SQUARE MATRICES
CUMPUTE A*B AND STORE IN A

DOUBLE PRECISIUN A(104i0)+8(10+19),V(10)
DO 10 i=1«N
DO 5 J=L.N
ViJi=0.
DO 5 K=1lsN
5 VIJI=VIJI+A(L +K)I*B(Kyd)
DO 10 J=1,N
LO A(l,J)=V(J)

CUMPUTE TRANSPUSE(B)*A AND STORE IN A

DO 20 J=1sN

DO 15 I=1.N

vil)=0

vil)=0

DU L5 K=1,N
15 VII)I=V(I)+B8(Ke1)*A(KoeJ)

DO 20 I=1yN
20 AlI.J)=Vv(I)

DO 25 I[=1,N
25 CONTINUE

RETURN

END

SUBROUTINE JACOB(AsVscRR9N)

ERR:ERROR ALLUWED

A:SYSTEM MATRIX. AFTER THE COMPUTATIONS ARE COMPLET=D ITS DIAGUNAL TERM
WiLL BE THE EIGENVALUJUES

V:EACH COLUMN OF THIS ARRREY WILL CONTAIN A ScT OF EIGENVECTORS

DOUBLE PRECISION A(10+¢10)5VI10s10)
DOUBLE PRECISION TeTLlePSeTAySeCsP
ERR=0.00000001

1TH=200

1T=0

PUT A UNIT MATRIX [N ARRAY V



120
121
122

124
125
126

138
-139

140
141
142
143

144
145

147
148
149

150
151
152
153
154
155
156
157
158
159
160
161
162
L63

0O
N

DO 10 I=1l.N
D0 10 J=1,N
IF(I=J13+1,3
VileJ)=0.
GO TO 10
VilesJdi=l.
CONTINUE

C FIND LARGEST OFF DIAGONAL COEFFICIENT

T=0

M=N-1

DO 20 I=1.M
Jl=l+1

DO 20 J=Jl,yN
IF(DABS(A(L+J))-T)20+20,2
T=DABS(A(I+4))
IR=1]

1C=J

CONTINUE
IF(IT)Ss4s5

TAKE FIRST LARGEST OFF DIAGONAL COEFFICIENT

TIMES ERR AS CLOMPARISON VALUE FOk ZERO

T1=T#ERR
IF({T=TL1)999,999+6

COMPUTE TAN(TA)SIN(S)9yAND COSINE(C) OF ROTATION ANGLE

PS=A(IRyIR)=-A(IC,IC)
TA=(=PS+DSUQRT(PS*PS+4*T*T) )/ (2*A(IR,IC))
C=1./DSQRT (1+TA*TA)

S=C*TA

MULTIPLY ROTATION MATRIX TIMES V AND STORE IN V

3

1

10
Cc
c

13

2

20
C
c
C
c

4

5
c
C
(o

6
Cc
C
(2

(aNaNgl

50

100

DO 50 I=1lsN

P=VlI+IR)
VI(I,IR)=C*P+S*V(I,IC)
VII,IC)=C*V(I,IC)-5%P
I=1

IF(I=-IR)7,200,7

APPLY ORTHOGONAL TRANSFORMATIUN TO A AND STORE IN A

7

200
300

400
500

P=A(ly1IR)
Al(l,IR)=C*P+S*A(I,1IC)
A(L,IC)=C*A(l,IC)=5%P
I=l+l

GO0 TO 100

I=IR+1
IF(1-1C)8,400,8
P=A(IRsI)

A(IR I )=C*P+S*A([,1IC)
A(I.IC)=C*A(Il,IC)-S*P F
I=1+1

GO TO 300

I=IC+1

IF(I-N)9,+9,600



L64 9 P=A(IR,I)

165 ACIRy I )=C*P+S*A(IC,1)
166 A(ICs1)=C*A(IC,1)-5*P
167 I=1+1
168 GO TO 500
169 600 P=A(IR,IR)
170 A(IR9IR)=CHC*P+2 . #C*S*A( IRy IC)+S*S*A(IC,IC)
171 A(IC,IC)=C*C*A(IC,IC)+S5*5%P-2,*¥C*S*A(IR,IC)
172 A(IR.IC)=0.
173 ALIC,IR)=0.
174 1T=iT+1
175 IF(IT-ITM)13,13,999
176 999 RETURN
177 END
178 SUBROUTINE MATMB(A,ByVeN)
c
C THIS PROGRAM PERFORMS THE MATRIX OPERATION A = A
c
L79 DOUBLE PRECISION A(10¢10)9B(10+10)4V(10)
180 DO 20 J=1sN
18l DO 16 I=1sN
182 ViI)=0.
183 DO 16 K=1sN
184 16 VII)=V(I)+A(L+K)*B(KyJ)
185° DO 20 I=1.N
186 20 B(1,Jd=Vl)
187 RETURN
188 END

SENTRY



STATEMENTS EXECUTED=

ERROR ALLOWED=0.00000001

10000.0000 =-4000.0000
-4000.0000 6000.0000
V.0000 -2000.0000
2.0000 0.0000
0.0000 1.0000
0.0000 0.0000

EIGENVALUE MATRIX
8735.4895 -0.0000
0.0000 3473.5603
0.0000 0.0000

EIGENVECTOR MATRIX
0«4154 0.5230
-0.7758 0.3992
0.2304 -0.5418

806

0.0000
-2000.0000
2000.0000
0.0000
0.0000
1.0000

0.0000
-0.0000
790.9502

0.2322
0.4887
0.8083

O

\n
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O

~J

$J408

C THIS IS A COMPUTER PROGRAM USINs FINITE DIFFERENCE METHOD TO OETERMINE
C THE RESPONSE OF A MULTIDEGREE SYSTEM.

C S(I,J) IS THE INVERSE OF MASS MATRIX.

C XK{I,sJJ IS THE STIFFNESS MATRIX.

1 DIMENSION XK(5¢5)9S(545) ¢ XXM(5,5),FM(500)
2 DIMENSION FO(500)¢XDDO(500),T(500)+X1(500) 4F(500),PXDD1(530)
3 DITMENSION PXDL1(500),FF(500,51,XP(500)
LY DIMENSION PX{(500+5)9PDDX(50095)9XX(500+5)+PX0OD(500+5)yPXD(500,5)
5 DIMENSION XDD(50045)

6 READ(5,2I)N

7 READ(5,99)TD

8 READ(5499)DT7

9 wRITE{6,99)0T

10 READ(54100)({S(LsJd)eJd=1sN)sI=1,N)

11 ARITE(649100)({S(I9J)sJ=LsN)sI=1yN)

12 READ(5,100) ((XK({1eJd) eJ=1L,N),I=1sN)

13 WRITE(69100) ((XK(I sd)sJ=1yN)sl=14N)

14 2 FORMAT(I2)

15 100 FORMAT(30X,3F10<2%]

16 99 FORMAT(30X,Fl0e5)

17 DO 110 J=1N

18 DO II0 I=I,N

19 110 XXM(I,J4)=0

20 DO 120 M=l,N

2l U0 130 1I=1.N

22 DO 140 K=1,N

23 140 XXM(MeI)=S(MyKI®XK(Kol)+XXM(My1)

2% T30 CUNTINUE

25 120 CONTINUE

26 WRITE(6,200)

2T 200 FUORMATUIS5H PRUJUCT MATRIX]J

28 WRITE(69100) ((XXM(I19J)sJ=LeN)yI=1sN) ~
29 T0=0.0

30 FO(I1J=-30000. ¥I0¥3000U. -
31 FO(2)=—=40000.*TO0+400UV. ¢
32 FO(3)=20000.*T0-2000.

33 DO [8U I=LwN

34 180 XDDO(I1)=0.0

35 DO 190 I=Ll,N

36 DO 22U K=IN

37 220 XDOO(I)=S(I,K)*FO(K)+XDDO(I)

38 190 CONTINUE

39 DU Z2%0 I=1,N

40 240 XP(I)=0.0

4l DO 260 I=1,N

T4 Z60 XILUIT=((OT**Z.17 2. 1¥X000(1]

43 F(1L)=-30000.*%0T+30u0.

44 F(2)==40000.*%0T+4000.

b ] FTLlOI=cUUUULFUT=LUUU

46 DO 270 M=1,N

47 PXDD1l({M)=0.0

0 &IV PAULIMI=UsU

49 DO 280 I=1,N

50 DO 290 K=l,N

24 PAUDULVIT=AAMULNITALINITPFADOU LN L)

52 PXD1{I)=S(1,K)*F(K)+PXD1(1)

53 290 CONTINUE

5% 280 CONTINUE

55 DO 301 I=1,N




56 L=1

57 301 XDD(Lo1)=-PXDD1(1)+PXD1LI)
58 M=2

59 T(M)=2%0T

60 DO 310 I=1,N

ol PX(Lyl)=2.%X1 (1)

62 PODX(L,I)=(DT*%2,)%*XDD(L,y[)
63 XX(Mel)=PX(Lol)+PDDX(LsI)
64 310 CONTINUE

65 L=2

66 360 CONTINUE

67 XX(ls1)=X1(1)

68 XX(le2)=X1(2)

69 XX(le3)=X1(3)

70 FF(My1)==-30000.*T(M)+3000.
Tl FF{My21==40000.*T(M)+4000
72 FF(Me3)=20000*1(M)-2000.
73 DO 315 I=1lsN

T4 PXDD(L,1)=0.0

75 315 PXD(Les1)=0.0

76 DO 320 I=1.N

77 DO 330 K=L,N

78 PXOO(L o1 )==XXM(I ¢K)®EXX(MyK)+PXDD(L 1)
79 PXDUL21)=S(1+K)®FF(Ms1)+PXD(Lyl)
80 330 CONTINUE

81 320 CONTINUE

82 DO 340 I=1lsN

83 XDD(LyI)=PXDD(L,1)+PXD(L,1I)
84 340 CONTINUE

85 LX=(TD/DT)+1

86 LY=2%LX

87 DO 350 I=1.N

88 J=L+1

89 JJd=L-1

90 XX(Jol)=2.%XX (Lol )=XX(JJo1)+0T*%2,XDD(L,1)
91 350 CONTINUE

92 M=pM+]

93 T(M)=M=xDT

9% L=L+1

95 IF{L-LX) 360,360,370

96 370 CONTINUE

97 L=LX

98 801 CONTINUE

39 DO 803 I=L,N

100 803 PXDD{(L+I)=0.0

101 DO 80U [=1,N

102 DO 310 K=[,N

103 PXDD(LoIl)==XXM(I sK)®XX(LoK)+PXDDIL 1)
104 810 CONTINUE

TUS 800 COUNTINUE

106 DO 820 I=1,N
107 FF(LsI)=v.0
TO08 J=LC+1[
109 JJ=L-1
i10 XX(Jdel)=2.¥XX(Lol)=XX{JJol)+DT*%2 P XDD(L,1)
TII BZ2U CUNTINUE
112 L=L+1
113 IF(L-LY)BD01,802,802

T1% 802 CUNTINUE

115

DO 807 I=1,N




116

O
LO

807 FF(L,1)=0.

117 MX0=0
118 Y=0.0
119 WRITE(6,500)
’ v ’ ’ Ee/Xe3H FI1,7X,3H X1,8X,
*¥3H F248X93H X2,8X93H F3,8X,3H X3)
121 WRITE(64600)MX0yY9FO(L)yXP(L)oFUL2)9XP(2),FQ(3),XP(3)
L22 MX0=1
123 Y=0T
124 WRITE(69600)MX0sYoF( L) oXLUL)yF(2)eXL{2)sF(3),X1(3)
125 600 FORMAT(4X I3 :3XsFb6<402X93(FLl0<%s2XsFBeDe2X]]
126 D0 700 1=24LY
127 Y=1*0T
128 I1=1
129 12=2
130 [3=3
131 700 WRITE(6¢6d0 I Yo FF{I sTIT s XXTT o I1T o FF{I o I2) o XXTUT+I2T FFU{T 130 XX(1,
*[3)
132 sSTOP
L33 END
SENTRY
0.0U0050

05000 0.0000 0.0000

0. 000V 1.0000 0.0000

U UUUU Ue UUUU 1.0U0U0U

10000.0000—4000.0000 0.0000

-40UV.0000 6000.0000-2000.0000

RODUCT MATRIX

U.UUUU=20UU.UUUU JUUU.UUUU

5000.0000-2000.0000 0.0000

=%400U0.UJUU 600U.00U00=2000.0U0UU
0.0000-2000.0000 2000.0000




100

NUMB ER TIME Fl X1 F2 X2 F3 X3
0 0. 0000 3000.0000 0.00000 4000.0000 0.00000 -2000.0000 0.00000
1 0.0005 2985.0000 0.00019 3980.0000 0.00050 -1990.0000 -0.00025
2 00010 2970. 0000 000075 3960.0000 0.00199 -1980.0000 =-0.00100
3 0.0015 2955.0000 0.00168 3940.0000 0«00448 -1970.0000 =-0.00224
4 0.0020 2940.0000 0.00298 3920.0000 0.00794 -1960.0000 =-0.00397
5 0.0025 2925.0000 000465 3899.9990 001237 -1950.0000 =-0.00618
6 0.0030 2910.0000 0.00669 3879.9990 0.01775 -1940.0000 =-0.00887
7 0.0035 2894.9990 000909 3859.9990 0.02409 =-1930.0000 =-0.01204
8 00040 2879.9990 0.01185 3839.9990 0.03135 -1920.0000 =-0.01567
9 00045 2865.0000 0.01497 3820.0000 003953 -1910.0000 =-0.01975
10 00050 2850.0000 0.01845 3800.0000 0.04862 -1900.0000 -0.02428
11 0« 0055 2835.0000 0.02229 3780.0000 0.05858 -1890.0000 =-0.02925
12 V. 0060 2819.9990 0.02649 3759.9990 0.06941 -1879.9990 -0.03465
13 0.0065 2805.0000 0.03104 3740.0000 0.08109 =-1870.U000 =0.04047
l4 00070 2790.0000 003594 3720.0000 009359 -1860.0000 =-0.04669
15 0.0075 2775.0000 004119 3700.0000 0.10689 -1850.0000 =-0.05331
16 0.0080 2759.9990 0.04679 36800000 012097 =-1839.9990 =-0.06032
17 0.0085 2745.0000 0.05274 3660.0000 0.13581 -1830.0000 =-0.0676Y
18 0.0090 27300000 005903 3640.0000 Ue15138 -1820.0000 =-0.07541
19 0.0095 2715.0000 0.06567 3620.0000 0.16765 -1810.0000 =-0.08348
20 0.0100 27000000 0.07265 3600.0000 018460 -1799.9990 -0.09188
21 Je 0105 2685.0000 007996 3580.0000 020219 =-1790.0000 =0.10058
22 0.0110 2670.0000 0.08762 3560.0000 0.22041 =-1780.0000 =-0.10958
23 - 0.0115 2655. 0000 009560 3540.0000 023922 =-1769.9990 =-0.11887
24 00120 2640.0000 010392 3520.0000 025860 -1759.9990 -—-0.12841
25 0.0125 2625.0000 0.11257 3500.0000 0.27850 -1750.0000 =-0.13821
26 00130 2610.0000 0«.12155 3480.0000 029891 -1740.0000 =-0.14823
27 0.0135 2595. 0000 Qe13085 3460.0000 0631979 -1730.0000 -0el5840
28 0.0140 2580.0000 014047 3440.0000 034110 -1720.0000 =-U.l6889
29 0e.0145 2565.0000 015040 3420.0000 0.36282 =-1710.0000 =0.17949
- ‘. 0.0000 0.16 66 4 - - & - - Ve
31 0.0155 2535.0000 Del7122 33800000 040733 -1690.0000 =-uUe.20l14
32 0.0160 25200000 0.18209 3360.0000 0.43006 -1680.0000 =-0.21216
33 0.0165 2505.0000 0.19326 3340.0000 0.45306 -1670.0000 -0.22327
34 0.0170 2490.0000 0.20473 33200000 0.47630 =-1660.0000 =0e23446
35 00175 2475.0000 0.21649 3300.0000 0.49974 =—-1650.0000 =—-0e24571
36 0.0180 2460.000u 022854 3280.0000 0.52335 -1640.0000 -=0.25700
37 0.0185 2445.0000 0.24087 3260.0000 054710 -1630.0000 -0.26831
38 0.0190 2430. 0000 0.25348 3240.0000 0.57094 =-1620.0000 =-0.27962
39 00195 2415.0J00 0.26637 32200000 0.59486 -1610.0000 =-U.Z29091
40 0« 0200 2400.0000 027952 3200.0000 0.61880 -1600.0000 -0.302106
41 00205 2385.0000 029293 3180.0000 0.64275 =-1590.0000 =-0e31335
42 00210 23700000 03066V 3160.0000 066666 =-1580.00U00 =Ue32446
43 0.0215 2355.0000 032051 3140.0000 0.69051 =1570.0000 -0.33547
44 00220 2340.0000 0334606 3120.0000 O0e71426 =1560.0000 =-0.346306
45 Ve 0225 2325.U0000 Ue34904 310U.0000 0e 73787 -=1550.0000 =U.3571v
46 0.0230 2310.0000 O0e36364 3080.0000 0.76133 -1540.0000 -0.36769
47 00235 2295.0000 Q37846 3060.0000 078459 -1530.0000 =-0.37810
%8 0.0240 2280.0000 U0.393438 3040.0000 U-8076%4 -1520.0000 -U.38831L
49 0.0245 2265.0000 0.40871 3020.0000 0.83042 -1510.0000 -0.39830
50 0.0250 2250.0000 Qe42411 30000000 0.85293 -1500.0000 -0.40805
51 U< 0255 Z2235.0J4uu Je439170 Z98U<00J0 U.B87513 -1490.0000 -U.4L75>5
52 Ve 0260 2220.0000 0<455406 2960.0000 0.89698 -1480.0000 -0.42678
53 0.0265 2205.0000 047137 2940.0000 0.91848 -1470.0000 =-0.43571
5% U0.0Z270 Z190.0000 U<28742 2920.0000 U.93959 -1460.0000 —-U.%%433
55 00275 2175.0000 050361 2900.0000 0.96028 =-1450.0000 -0.45263
56 00280 2160.0000 . 0.51993 2880.0000 0.98053 =-1440.0000 =-0.46058
57 U. 0285 Z2145.0000 Je53635  Z2B6U.U0000 I-00032 -1430.0000 -—-U<%6817
58 00290 2130.0000 0.55287 2840.0000 101963 =-1420.0000 -0.47539




59 Ve0295 2115.0000 0e50947 2820.9000 Led3843 =-l4luevlduu =u.4ocll
60 0.0300 2100.0000 0.58615 2800.0000 1.05671L =1400.0000 =Ue43802
61 Jed305 2085.0000 0.00284 2780.0000 le07444 -1390.0000 =J.45461
62 Je0310 2070.0000 Jeb61960 27600000 Leu9161 =-1380.0UJd0 =J.50Ul7
63 JeUW3ld 20550000 Ueb364( 21400000 110820 =1[370.0J00 =U.5U5427
64 0e0320 20400000 0ea5329% 27200000 lel2423 =-1360.000U0 =Ue5u3931l
Q5 Qe0325 2025.0000 Jeb6T011 2700.UU0J 1e13960 -1350.0000 =0.51407
66 Ve J33J 2UlJeUJdJuJ Ve D867 208 Ueuuull lal5437 =1340.0000 =J.5177%4
67 0.0335 1995.0000 0«70370 2600490000 lelod50 =133U.00V0 =-ue52091L
68 Qel34u 198JUeJuuv vel2043 2640.0U00 lelB8199 =-1320.0000 =-0.52357
69 Ue U345 195.00J0 Ue 73710 £62JUedUUU Lel9483 =1310.000U0 =U52570
70 Ve 0350 19500000 0.75363 260062300V 120700 =-1300.0000 =U.5273J
71 Jeu355 1935.0u00 Jve77013 25804U0U0 121850 -1290.0000 =0.52830
2 Ve J3oU 15ZJeJduJu Je /03650 250U« UJJU0 Ledd93Z2 =123J.00J0 =J.523887
73 Ve 0305 1905.3020 0.80231 25400000 le23947 -1270.0000 =-0.52382
74 Je U370 L89JVeuuuuy Je81892 252U 0000 Le240G2 =1260.0000 -0.52820
E i Vel 75 Lu /2«00 0U VedJi«do Z25U0JeJJul Llel5705 =125U0.0000 =J.52701
76 Qed3by 1860.0000 Je 85062 2479.9990 Le256577 -1240.0000 =-Q.52523
77 0.0385 L845.0000 Je80619 2460.0030 127315 =-1230.0000 =-0.52288
L) Jed3GU L83V uJul JeBB8LlD53 2494J.0U0U L«Z27985 =1lZ22UJJJl =Jed1995
79 0.0395 1815.0000 Ue89665 2420.0000 le28585 =-12100000 =-0.51638
8V 0.0400 1800.000u 0.911L51 2399.99%90 le29117 =1200.0000 =-0.51223
8l Ueuwedd l/85%.Juuv PEEZAIYE 238U «JJud lelY50l =117Fdeuddu =UedJdi%a7
82 JeU«l0 1L770.0000 Je94041 2360.0000 1e29977 =-1160.000C =U.50213
83 0.0415 1755.0030 Je95441l 2340.3000 Le30306 ~-1170.0000 =Ce4vol3
- 23 Ue U4l Li«J.UJUUJ Ue 703U%Y 231999590 Le3J20Y =110Jd.UJJlU —Je209Y0L
85 0.0425 1725.0000 098142 2300.9900 1.30766 =-1150.0000 =-U.48244
86 Je0430 17100000 0e 99440 2280.0000 Le30899 =-1140.0000 =0.47%606
ol UeU%35 1095.0Uuul lLeduU/lUL 2409« 999U Le30UY0OO =113UeJJuu =Ve®00<2/
48 Je 04«0 1680.00V0 l.01922 2239.9990 Le30974 -11l2UeVduu =Ue45T720
89 0eQ4«45 1665.0000 l.03102 22200000 130919 =-1110.J000 =0.447605
YU Je U420 165J.UJUU LeJ4cl4U ceJU.UuUU 130803 =L1I0U0.UUJU =U.23743
91 Je0455 Le35.0000 le05333 2179.9990 le3W629 =1U9Ce0QUU =ue420669
92 0«0460 1620.0000 L.06380 2159.999%0 130397 -1080.0000 =-0.41530
EE] Ue U465 L6U5.0000 l.U/l38Y Zlevue.JdulU 1.301U0% =1lU/U.UUJuU =Ue4U337
9% Qe 0470 159G« 000U levwo330 2120.0000 Lad9767 =106UedIVUJ =Ueis9U75
95 0e 0475 L575.0300 led5230 2U99.99SV 129372 =-1050.0000 =G.37761
J0 Ve UedU L5060 vJlUU lelJdlo UTS9YYU LeZTBSL0O =1lU&JeJduuu =Leo03BY
97 Oed485 15450000 le10872 206UV le28430 =-1030eV0UUu =—uae34«90l
98 Ve 0490 153G« 0300 lellblu 2039.9990 Le27886 =10200000 =U.33477
I35 U J&9I> I515.000J T-12293 ZULl5. 9990 127297 =101I0.00UJUc —-vs31933
100 C. 0529 1499.9930 lal2917 L9995« 9990 le26663 =1030.00U0 =0.30344
101 0.0505 1485.0000 lel34d3 lYydueu0UO le25987 =990 0000 =0.286%0
TOZ Jedo1lu T4 TU.uJu0 T-13788 1955 7990 125270 =980. 90CeC —U<26997
103 Ue 0515 L455. 0000 lal4431l 1959.9990 le24515 -970.00u0 =-0.25245
LUus 00520 1439.9990 lel4d12 191 5.9990 le23724 =960.0uud =0.23443
LUD Ve UDCZDO LecOeuJJJ Lel2lZY L90ve.JUUJ lecdlBY0 =90V UUUJ =Ue<slOYT
106 0.0530 1410e0ud0 lel3332 13799990 1.22040 -940.0000 =0.19691
107 0.0535 1395.0000 lelb5069 1853.9990 la21151 =-93U. 0000 =UelT7743
TO8 0L USE0 13799990 -1 S689  —I539.9990 1520233 92U 00U U t5 749
10y 0.0545 1363.0000 lel5742 L81L9.9990 l.19239 -910.J00U =-0el13711L
110 03550 1350.0000 l.15728 L799.999u 1l.18320 -900.00U0 =-uellels
TTT T U39 T335. 9990 o 1I55%% T779°9990 1517329 89U 0000 o= 09503
112 QeU500 13199990 lel 5491 1759.9990 lela3l7 -880euUJU0 =Ua07357
113 0e0%65 1305.0000 la15269 1739.99%0 L.15287 -870.0000 =-0.05131
TS 00570 TZ290S 0000 1= I3975 T7TI9-9990 TS 139239 8500000030288 ——
115 Oeu575 1274.5990 lel4613 1699.9999 lel3177 -850.00UU0 =UJUbUS
l1lo 0.0580 1259.9990 lelal79 1679.9990 lel2102 -840.0000 JeOl712
17 00589 1259+ 0000 IS 13671 65359590 I TR Y R 3 =3305000¢C T OHUTH
L18 0e05390 12300000 lel 3093 16599990 l.09919 -820. 000V Je 6445




102

LlS V059> L2l+.5%90 Lal2451 lol9.999%0 l.08816 -8lJeJulu veld0od3
129 Ja 060U 1195.999u loali7a3 1599. 9954 leu?707 =3UJeduuy Gelsbdgs
L21 Je08&J5 1185.0090 lelUuds~ 15799990 l.00593 ~790eQUuu JelB3Tee
122 0.2610 1170.0000 L.1003> 1559.99%0 1.05477 =78CeulJu Ueloéoui
123 0.0615 1154 .99 9u Levyl55 153999990 L.U436u =TTuveuudu VeliB85Un
L2« Ve0020 L139.9990 LeVdl 50 1519.99%0 L.03243 =10J.0092 veldl3ss
125 Ja U625 LL25e0uidd lewluad? 15UV e wuly lod2i29 =75 adJdJu Ue2393¢
[ JeVb 30 lllseCllv l.d5949 14800012 L.Jl0L7 = TauedUIT A2 GoLE -
127 Jevo35 1U¥2.3Juv LeOa743 l«6U0.00U00 0.99910 =730.0005 Je29128
128 Je UG 4U 1079.999J lau3aTy 1439.9990 Je9881lU = 72U uuvy veldl75:
129 Je 0645 LU65e0JJJ L.021l30 14200010 0.97716 =710e.09u? Jedw395
130 Je 0650 195032390 1.03725 L400.0000 Ue96630 =700e0Ju2 e300t
L3l Je U055 103500 LJ Ue?39255 ls3dUeJuUL Je. 945554 “09%Ueddiv Je397.%
132 Je 0602 1J2J.9300 Qa9 7722 13600000 Je94483 -6dU.uUuJ> SR
133 JeJuad L0U5. 0200 Uevall? 1339.999u Jed3433 =070 0U00v Je45557
L3« Jeub (u 390eUu Ly Ueduéall 132U.uUuiQ Je9259v -0bUeUuu 7 CaelTS2
L35 Jedo 75 975.00J2 J.92750 L300.0ulV J.91360 -250.0002 ST
130 JeVod2 960.00i5 Je 70902 1250.0040 JeYU343 -04J.0J10 0«53i4%
137 Ceod5 Y42.3047 UeB89L52 L1260« 2000 Ued9340 ~63ueviud D550 47
L33 Jedb7J G3JeJdudU Jed 2060 1240eJUuuy Je0dB352 ~0cUsUJduy O0-50C.2
139 Jedo 3 915 LY UeB532sn 12c0eWuly Ve37379 ~€iDe T Ceoll2 14
149 Ce.Q7R0 50940222 Je333 30 L 20U eudY J.30%21 -0dJ.uduld 0.0643.0
L&l Jed 75 385.3J15 Oedl2%90 LioUedulu Ue35479 -59ueddio DdaBitze
L+2 Veullu 873390 siw P21 tloueudlu Je04552 =533eJJuU5 CeS94is
L4&3 09715 d55.3200 e lil0 T l1l40.0000 J.33042 =37 30000 Uie 22009

1l o Jed 720 34Jedl L2 Jel4d9v Ll20«Jduly Ved2T4o0 =30Geduu( 319190
L45 0eu 725 825.0005 JaT72079 L1100eJdu0 U.8la70 -550.4J32 B.7746.

L 46 0.0730 d1J.001L5 UeTU420 1080.uUl0 S.8Ll008 -54U.00ld G.80leL
La7 Ued 735 T95.30dJ 7 Jabdl2« LubUedUUU v-80162 =53J.9uud  G.82787"
l«3 Ced74u 78043030 0e62792 LU4U.Quuv J.79331 =520+ Uuul C.8539
149 Jed 745 765.331¢2 Ueb34ln Lu20.udlV Ue785117 -5ideWd07 Ue88C132
150 0.0750 7500095 Y EE] 10JU0. 0000 O« L TCET ~500e0J02 GeJuc L3
L51 0.0755 T34.9990 ve54d610 97 95« 9993 0.76932 -43J.0000 3e931i73
152 Je W76y 72Jde9ulu v.506l61 9600012 J. 76161 -460.0007 Ce9575¢
153 Ue01705 T05.0uue Ce53537 94Ceduud V. 75404 ~470.uJdJ’ 0.98239 — ~
L54 JeOTT0 69u.0012 Qedlly7? ¥20.0Jl7 Je 74600 -46Jelull 1.00683
155 Jeu 715 6750595 0.%0600 90Q0.00u7 UaT3929 =250eJ30> 1.03292
150 GeU 7Dy 659+ 99 90 Je46lou 371999908 O« 752093 —edCevsdu LrEs
L57 C.074d5 645.0010 De43621 300.0012 0e72501 ~w3deduuT LeGbl6G L
158 Ued79u 03Je.udJ2 Jedlul2 84UevUU2 Jellsua -%20.Ju3c i.1355854
159 Jel 7195 8lo.J0ulc UeldBO4D 0lJdeUdl? J.llllo =3lcewulo Teldwns —
LoU Je 2800 60J.Jd007 J+.35954 8003037 0.70a36 =4 30,8905 Lels 32 !
Lol J. 0305 58540092 Ue 33390 779.99938 0.69765 =33vebiul 117633
162 JeJdalu 57Tueuuly Je3duall Todeuwdl2 JeOJluUl —38Ge.uuu [ el 99LS
l63 Jeddl5 55549902 Je2b266 T4u.0005 Je 68442 -373.000¢ e 22160
low J.uB2y 542.0015 J.25712 720.0017 U.b7789 -360.dulJ le2e509
165 Jeudld 5Z25e4000 1 Je25106 Tdde.uulu Jeollal —350e0UUD  Le26340
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