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ABSTRACT

A TWO-PARAMETER COMPENSATOR FOR
SET-POINT CONTROL AND NOISE REDUCTION

Jyan-Bang Chen
Masters of Science in Engineering

Youngstown State University, 1989

This thesis discusses a Two-Parameter method in the
design of control systems. The system considered contains a
linear dynamic analog plant, a digital controller, and
suitable interface hardware. The implementable transfer
function is developed and implemented on a digital computer.
The Two-Parameter configuration is introduced to realize the
implementable transfer function, and two compensator
transfer functions are obtained by solving linear algebraic
equations.

Finally, several examples illustrate the
application of this method and explain how chosen design

parameters affect the reduction of noise.
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Chapter I

Introduction

1.1 Background and Objective

The design method in this thesis is based on an
article by C.T. Chen that appeared in the IEEE Control
Systems Magazine [l1]. Chen discusses some aspects of the
linear algebraic method of control system design as applied
to analog systems. These methods can also be directly
applied to digital control system design. The objective of
the design is concerned with the design configuration shown
as Figure 1.1.1. G(s) 1is a fixed plant with input or
control signal u(t) and C(z) is .a digital controller. The
output signal y(t) is to follow the reference signal r(t)
while satisfying the specifications on such performance

measures as settling time, overshoot, and steady state error

rt)

Ui

yt)

C(z) G¢s)

Figure 1.1.1 Control system block diagram

In the design of control systems, there are two

approaches, inward and outward [1]. In the outward



approach, the first step is to choose a configuration and a
compensator with unspecified parameters. Then the second
step is to search for some parameter values such that the
resulting overall system will meet all the specifications.
Both the root-locus method and the frequency-domain method
are used in this approach.

In the inward approach, the first step is to find an
overall system to meet all the specifications. Then the
compensator configuration is chosen and the required
compensator transfer function is computed algebraically. In
this thesis, a two-degree-of-freedom compensator (or two-
parameter configuration) is used in approach.

The method to be discussed in this thesis will be
called the linear algebraic method, because once an overall
system is chosen, the design can be completed by solving a

set of linear algebraic equations.

1.2 Overview

Chapter II contains the Two-Parameter method design
procedure for discrete controllers. A minimal realization
of the resulting compensator transfer function is also
introduced. In Chapter I1T1, the appropriate hardware
interfacing the digital computer and the analog plant is
introduced. A brief description of a computer program for
real-time implementation of the digital compensator is also
given. 1In Chapter Iv, a variety of open-loop system
examples are explored. Several designs for each example are

Presented and discussed 1in order to illustrate how the



design for a set-point control affects the noise-handling
capability of the closed-loop system.
Finally, Chapter V contains a conclusion along with

recommendations for future work.




Chapter II
THE LINEAR ALGEBRAIC METHOD

2.1 INTRODUCTION

It is the purpose of this chapter to extend the
design procedure in [1] to discrete-time systems. The only
difference is that all poles must be located inside the unit
circle of the z-plane to ensure stability rather than inside
the open left-half s-plane as in the continuous-time case.
Section 2.2 contains the conditions under which a design
will be successful. Section 243 contains the design
procedure. In section 2.4, the minimal realization of the

digital compensator is presented and discussed in detail.

2.2 IMPLEMENTABLE TRANSFER FUNCTION

Before proceeding, it 1is important to realize what
conditions must be satisfied for a control system design to
be successful. To be successful, the design must be capable
of being built with real-world hardware, and the behavior of
the resulting hardware must meet the épecifications. The
first condition is achieved by a suitable choice of the
Closed-loop transfer function G,(z)=N,(z)/Dy(2) . The second
condition is achieved by ensuring that certain constraints
are satisfied by the choice of G,4(z). Chen calls such
transfer functions "implementable" [1].

Consider a plant with a proper transfer function
G(z)=N(z)/D(z), then G, (z)=Ng(z)/Dy(z) 1is implementable if
and only if [1]:



(1) Dy(z) is Hurwitz.

(2) The degree of Dy(z) minus the degree of N (z) is
greater than or equal to the degree of D(z) minus
of N(z).

(3) All zeros of N(z) on or outside the unit circle

are retained in Ng(2) (retainment of nonminimum-

phase zeros).

2.3 DESIGN PROCEDURE: A Two-Parameter CONFIGURATION
Figure (2.3.1) shows a Two-Parameter configuration for
continuous-time systems considered by ¢ i€hent in- 1}, It

consists of a plant G,(s) and a compensator with transfer

functions C;(s) and C,(s) (the " two-parameters").

1ysy| OPEN LOOP Yis),
' GilSI

.ﬂ"_, Cis) \(—#X/\

Fig. 2.3.1. The continuous-time system for a Two-
Parameter configuration

Fig. 2.3.2 shows a similar configuration for sampled-
data control. Here, the plant is interfaced to the digital

controller by means of an A/D converter and a D/A converter.
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Fig. 2.3.2 A Two-Parameter Digital Controller

For the design procedure, a discrete-time model of the
D/A, the plant, and the A/D is needed. The D/A converter
samples and holds the controller output. Mathematically,
the process of sampling signal and holding by means of a
Zero-Order-Hold can be considered equivalent to impulse
sampling followed by a transfer function (1—e'Ts)/s, as

shown as Fig.(2.3.3)

BAgd = m = BBl e ik Ay i A
1 |
= |
ZERO ORDER Y(S) Yz)
RiZ) Caa) UZ): HOLD d GiS) A/D 5
N - :
g :
' 1
1 1 G(S) T i
N R B T DL S, L N R
Ct2)

Fig. 2.3.3. 'Block diagram rearrangéd to show digital
relations.

Finally, the overall discrete-time system is shown in

g, (2.3.4)



RO | @ @Um o) Y(2)
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Fig. 2.3.4. Dpiscrete-time control system for a Two-
Parameter configuration.

G(z) is the Zero-Order-Hold equivalent transfer function
of Gy (s) together with the D/A and A/D converters, and C,(z)
and C,(z) are the two compensator transfer functions. In the

L(z)/A(z) and C,(z)=M(z)/A(z),

design procedure, Cq(2)
where L(z), M(z), and A(z) are polynomials in z. The

compensator output is given by

U(z) = Cy(2)-R(2) = Cy(2) Y (2)
L(z) -M(2) R(2)
= ] [ ] {8elt 1)
A(z) A(z) Y(2)

where L(z), M(2), and A(z) are polynomials to be designed.
To determine L(z), M(z), and A(z), .the overall transfer

function from r to y must be computed. The substitution of

(2.3.1) into Y(z) = G(z) * U(z) yields
N(z) L(z) M(z)
o oy © R(2) - © Y(z)
D(z) A(z) A(z)
HEHCQ’
WILLIAM F. MA/C LIBRARY
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N(z)-M(2) N(z)+*L(2)
Y(z) + —— +« Y¥(2) = ——— +» R(2),
A(z)*D(2) A(z)+*D(2)
and
N(z):-M(2) N(z)+D(z)
1+ — ¢+ Y(2) = =————— + R(2)
A(z)+'D(2z) A(z)+D(2z)
Thus the transfer function from r to y is
D(z)-L(2)
Y(2) A(z)'D(2) N(z) «L(2)
= = (2.3.4)
R(2z) N(z) »M(2) A(z)+D(z)+M(2) ~N(2)
1+
A(z)«D(z)

Adapting Chen’s procedure [1l] to the present case
yields the following procedure to determine L(z), M(z), and
A(z). It is assumed that G(z) is proper.

Step 1: Compute

oL, - il - i (2.3.5)
N(z) Dy(2) - N(2) Dp(z)

where Np(z) and Dp(z) are coprime. If N (z) and
Dy(z) are coprime, then common factors may exist
only between N, (z) and N(z). Cancel all the common
factors between them. If N, (z) = N(z), then Dp(z)
=Dgy(2) and Np(z)=1.



Step 2: If deg Dp(z) = P < 2n-1, introduce an arbitrary
polynomial ﬁp(z) of degree 2n-1-p. Note that if
deg Dy(z) = deg D(z) = n, then deg ﬁp(z) = n=1,
Because this polynomial will be cancelled in the
design, its roots should be chosen inside an
acceptable pole-zero cancellation region [1].
For the purpose of designing the transient response
from the reference to the output, the cancelled
poles must be stable, i.e. inside the unit circle.
However, not all the stable 1locations give good
results when the system is subjected to noise. The
selection of bandwidth from noise inputs to system
outputs must be done carefully. The effect of the
choice of the control bandwidth and the cancelled
poles on thé system response will be demonstrated

'in the examples presented later.
Step 3: Rewrite Eq. (2.3.5) as:
N(z) D(z) N(z) [Np(z) Dp(z)]

Go(z) = = o (253 .6)
Dp(z) Dp(z) Dp(z)

A comparison of (2.3.4) and (2.3.6) gives

L(z) = Np(z)-:Dp(z) (2. 3:7)
A(z)-D(z)+M(z)-N(z) = Dp(z) Dp(z) = F(z) (2.3.8)

deg Dp(z) + deg Dp(z)

where deg F(z)

(2n-1-p) + p = 2n-1
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For n = deg D(z) > deg N(z) and deg A(z) > deg M(z)
deg F(z) = deg D(z) + deg A(z)
Substituting 2n-1 = n + deg A(2)

yields deg A(z) = n-1

The polynomial equation in (2.3.8) is transferred
into a set of linear algebraic equations in order to solve

it.

Let A(z), M(z) and F(z) be expressed as

A(2) = Ag + Bq2 + Bp22 + * + + + A _,2P71
M(z) = My + Mz + Mpz2 + « . . + M ;2071 (2.3.9)
F(z) = Fg + Fyz + F222 RIS FZn_lzzn"l

then A(z) and M(z) can be solved from the following linear

algebraic equations.

A comparison of (2.3.9) and (2.3.8) gives

(Ag+A1z+A,2z2%+ -« - +A,_12""1)  (Dyz+Dyz+D,2z2+ .. +D,zM)
- (M0+M1z+M2z2+ & +Mn_1zn'1) (N0+N1z+N222+ .« - #Np2z?)
= Fo + Fqz + Fp2z2 + - - - - 4+ Fy_q2071
then,

(AgDg+MgNg) + (AgD+MgN;+A Dy+MiNg)z + - - - -
in~l o s 2n-1
+ (Ap_1Dp+M,_1N, )z = Fg+F12+F2,+ - - +Fyn-12

This polynomial equation holds if and only if:
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. BgDg *+ MgNg = Fy

An-1Dp + Np9Np = Fopg

There are 2n equations in 2n unknowns. These equations can

be arranged in a matrix form as follows:

] Dg Ng | O O+ i | 0. 0 _ FAO o Fog -
Dy Ny | Dp  Ng | I~ by Mo F1
ol D 5k | T A; Fy
SER '} b 5 My :
D, Nj | Doy Nn-ll----l BRI e o
TR PR Z I
e P Ml alihi i : :
Tl . ; e ;

R G i | DMy 4 M LF,

The solution of the above equation (2.3.10) and the
L(z) in (2.3.7) will implement the overall system G (z).
Compensator [C1(2) Cy(2)] will be in the form of

L{2) -M(z)
C(z) = [Cy(2)  C3(z)] =1

A(z) A(z)



2

Np (2) Dy (2) | MgtMyz+. ... +M,_ 2P

Ag+--+A,_q2071 AgtAiz+..... A, 12"

2.4 MINIMAL REALIZATION OF VECTOR TRANSFER FUNCTIONS
To carry out the implementation of the compensator
on a digital computer, the realization problem will be
discussed in this section. It is simpler and more systematic
to simulate transfer ' function by developing the state
variable equations.
To exemplify the process, consider a 4th-order proper
transfer function G(z):
byz4+byz3+b,224b z+by  N(z)  Y(2)

G(z)= 2 3 = = (2.4.1)
asz-+asz +a222+alz+a0 D(z) U(z)

where aj and bj are real constants and ay#0. If b4#0, the
transfer function is proper; if b,=0, it is strictly proper
2] .

First, reduce G(z) to strictly proper form. From Eq.(2.4.1)
G (o) = b,/a, = d, and

b,z4+b~z34b,2z2+b, z+b
G;(2)=G(2)-G (o) = — 2 £ Ll J g
a4 z4+a3z3+a222+alz+a0
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ﬁ323+5222+@12+@0

a4z4+a3z3+a222+alz+ao

Second, the leading coefficient of the denominator is

normalized to 1.

b’3z3+b’2z2+b’lz+b’0 _N'(Z)

G,(z)= =
- z4+a'3z3+a'222+a'1z+a’0 D’ (z)

G(z) in Eq.(2.4.1) can be rewritten as:

Y(2) N’ (z)
= G(o0) +
U(z) D’ (z)

G(z)= =d + G,(2)

or Y(z)=G(2z)U(z)=dU(z)+G,(z)U(2)=Y5(2)+Y,(2) (2.4.2)

b'3z3+b’222+b’1z+b'0

Y, (2)=G,(z)U(z)= U(z)

z4+a'3z3+a'222+a'1z+a'0

_ b’3z'1+b'2z'2+b’1z‘3+b’oz'4
. -1 =2 =3 =7 =
1+a'3z +a'zz +a’1z +a’oz

Yz(z)'(1+a’32—1+a’2Z-2+a’lz_3+a'oz_4)

» Uz(z)'(b'3z'1+b'zz'2+b'lz“3+b’oz‘4)

This may be modified to
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Yo (2)= 2™% [(b’3 U(z)-a’y Y(z))
+ 271 ( (b’, U(2)-a’, Y(z))
+ 271 [(b’; U(2)-a’; Y(2))
+ 271 (b’y U(z)-a’y Y(2))] }]

Now, define the state variables as follows:

Xg = 271 [b’; U(z)-a’; Y(2)+ X5]

X3 = z71 [(b’, U(z)-a’, Y(2))+ X;]

Xy = z71 [(b’y U(2)-a’y Y(2))+ X;]

X, = z"1 (b’y U(z)-a’y ¥(2)) (2.4.3)

Then Eq.(2.4.3) can be written in the form:
Y (2)=X,4 (2.4.4)

By substituting Eq.(2.4.4) into Eq.(2.4.3) and multiplying

both sides of the equations by z gives:

X4 (k+1)= b’3U0(k)-a’3X, (k)+ X3(k)
X3 (k+1)= b’,U(k)=-a’, X, (k)+ X5 (k

3 ) 2U (k) -a’ X, (k) 2 (k) (2.4.5)
Xy (k+1)= b’ U(k)-a’1X,4 (k) + Xq (k)

X1 (k+1)= b’qU(k)-a’ X4 (k)

which, combined with Eq.(2:4.2) and Eq.(2.4.5), can be

arranged in matrix form as:
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O 0 0 _a’o b'o
1 0 0 -a’y b’y
X (k+1)= X(k) + U(k) —
0 1 0 "‘3’2 b'z
0 0 1 —a’3 b'3

(2.4.6)

¥(k)= [0 O 0 1.1 ~ X(k)"+ @ » B(k) —
The state space model given by Eq.(2.4.6) 1is called an
observable canonical form. Figure 2.4.1 shows the block

diagram of the system given by Eq.(2.4.6)

UR—

O
o
o}
[}
no
o
O

x
-

‘;Xl(KH‘ Xi(K) \ Xz(Kf ) XZ(K“‘XS(KH

)@;0] 'X4( K+| X‘{

——r ¥

(:\
7
o
5
N
G
N,
@

FQO -al ~a.c -al

Figure 2.4.1. Block diagram representation of the system
given by Eq.2.4.6



Consider a two-input one-output system shown as

Fig.2.4.2 =
— CD) :%:E;} . N
> ca
— 8

Fig.2.4.2 Two-input one-output system

The output and inputs can be expressed as:

E(z)= Cy(2)*R(2) + Cy(2) ¥(2)

R(2z)

= [C ¢ (2.4.7)
( 1(2)' 2(2)] ¢(2)

C(z)= [ Cy(2) Cy(2) ]
Expand C(z) as:
C(z)= [dy dpl+[Czy(2) Czy(2)]

N, (2) N5 (2)
D(z) D(z)

= [dy djyl+[

Assume, Nj(z)= byq23+b3;22%+b,y 2+by
= 3 2
D(z) = Z4+a3z3+a222+alz+ao
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then, using the former procedure, a minimal realization of

Eq.(2.4.7) is

1 0 0 -a b,, b r (k)

X(k+1) = el T Rk ik [ ]
0 0 1 -3.3 b41 b42
r (k)

c(=(0 0 o 1] x(+d; 41 [ ] (2408

y (k)

This is a combination of the two observable form

realizations of Cq(z) and C,(z). Also the block diagram of

Eq.(2.4.8) shown as Fig.(2.4.3)
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Y(x)
. 2048, 3. Block diagram representation of the system

given by Eg.(2.4.8)
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Chapter III
REAL TIME IMPLEMENTATION

3.1 Introduction

In this chapter, section 3.2 illustrates the
peripheral devices which provide the 1link between the
digital computer and the analog plant. This 1link must
provide for communication and control. Section 3.3
presents a procedure for using a computer to control an
analog system by writing a software program which
represents the discrete-time state transition matrix of
compensator whose output is the calculated control signal

at discrete-time intervals.

3.2 PERIPHERAL INTERFACE DEVICES

Figure 3.1.1 shows a block diagram for the hardware
implementation. The following paragraphs give a brief
description of the various parts of the interfacing
hardware. »

The 8255A programmable peripheral interface shown:
in Figure 3.2.1 and Figure 3.2.2 is used to interface the
TRS 80 MODEL 4 computer [7] to the real world. The 8255A
contains a control register, a status register, and three
8-bit I/O ports: A , B and C. An 8-bit data bus transfers
data between the external data bus and the control
register, status register, or one of the I/O ports. The

8255A is selected by a "LOW" signal at its chip select



8-bijt

RADIO SHACK
TRS-80 MODEL 4 8255A
COMPUTER 1/0 1/0
Bus PORT
CLOCK
Figa 3.1.)

8-bit

0808 D/A INPUT
COHVERTER | u(t)
0804 A/D | OUTPUT
COHVERTER| Y (t)

COMDYNHA GP-6

AHALOG COMPUTER

Y(U) | u(t) Yt | ety

HONITOR
SCOPE

DISPLAY

PRIMELINE
X-Y
PLOTTER

The organization diagram for hardware interface

oc
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input, CS. The source of the CS signal depends on whether
isolated or memory mapped I/O port is used. For isolated
I/0, bits XA2 to XA7 are decoded to provide CS, and bits
XAl and XA0 are used for selecting the control register,
status register, or one of the ports. However, in order
to condition the selection of I/O port, XIN is connected
to the RD input of the 8255A, and XOUT to the WR input of
8255A and the address bits XA2 to XA7 are decoded by
7415138 to provide the CS signal. When the 8255A is
selected, inputs XAO0 and XAl select the control register
or one of the ports (A,B,C) for the data transfer [9]. As
the system powers up, a reset signal applied to the 8255A
floats all 24 pins associated with the three I/O ports.
The 8255A stays in this condition until the application
program writes a word (ouT 7,:1183) “into sthelvgontrol
register which defines the 8255A’s subsequent mode of
operation. The three basic modes of operation are [9]:

1. mode 0 : basic input-output

2. mode 1 : strobed input—output

3. mode 2 : bidirectional bus
The mode definition format of the control word is shown in’
[9]. Mode 0 provides 8-bit port (A and B) and two 4-bit
ports (C-upper and C-lower). The addresses chosen to

perform the control port and I/O ports are listed below:
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Address Port Function

04 A input port

05 B output port

06 c input port (clock in)
07 control control ports

The digital-to-analog converter (DAC0808) is a device
that will convert a binary word applied to its inputs via
8255A port B to a proportional voltage at the output. The
interfacing diagram shown in Figure 3.2.3. The reference
voltage is a voltage source used to supply power to the
current generators. In many designs the output current
per bit weight is proportional to the reference voltage.
The current summing is achieved by using a current
follower circuit to provide a virtual-common summing point
for the current generators and to convert the current
signal to a proportional voltage [8].

An A/D 0804 converter shown as Figure 3.3.4.
transforms an analog voltage Vx of a certain range (0 to 5
volts) into an 8-bit binary output at the D7 to DO pins.
A pulse can be applied at the 0804ADC converter’s CS pin
in order to start the conversion. Since the output of the
A/D converter is triggered, the LOW signal start at WR pin
sending the message to the 8255A port’s B. The conversion
is initiated by a starting pulse by the timing and control
Command A/D conversion time depends on the number of bits
desired. Typical figures are 150 microseconds for 8 bits

[9]. The final analog-to-digital voltage can never
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approximate the input voltage with an accuracy greater
than one-half the value of the 1least significant bit.
Therefore, the overall converter accuracy is equal to plus
or minus one-half the voltage values of the least

significant bit.
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3.3 COMPUTER SOFTWARE

Programming a digital compensator with A/D and D/A
capability as a discrete time system is straightforward.
Consider the simulation of a digital control system such
as shown in Figure 2.3.2. The analog parts of the system
are simulated on the analog computer. For example, the

digital compensator is characterized as:

X4 (k)

U(k)= [C; C5] gy

A BASIC program for this system is outlined in the
flow chart shown as Figure 3.3.1. The variables X1D and
X2D are used for X;(k+l) and X,(k+1l). The initial values
of X,, X5, and R are first set to zero. Then an input
value Y is read from the A/D converter. U(k) is
Ccalculated and the values of X,(k), X5(k) and Y(k) are
updated for the next calculation cycle. U(k) 1is then
output to the D/A converter. The program waits for a new
input sample value, computes the next U(k) data, and so
forth. Also, the program supports the function to check
Whether there is sufficient time between samples to

Perform the calculations or not.
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CHAPTER IV

APPLICATION EXAMPLES

4.1 INTRODUCTION

Three examples are investigated in this chapter.
These are a minimum phase type 1 system, a nonminimum
phase type 1 system, and a type 0 system. All these
example designs are achieved by using the two-parameter
method. The design procedures are illustrated step by
step. A BASIC program used for this procedure is 1listed

in appendix A.

4.2 EXAMPLE 1: A MINIMUM PHASE TYPE "1" SYSTEM
Consider an open-loop system

1

G(s)=
s(s+1)

which is implemented on the analog computer as shown as
Fig. 4.1 (all the figures in this chapter start from
page 41). Scaling circuits to accommodate wunipolar A/D
and D/A converters are also included. To complete the
design procedure, the first step 1is to select a closed-
loop transfer function. The standard second-order system
described by the transfer function

W,2

T(s)= (4.2.1)
52+27wns+wn2

{s Selected for the closed-loop transfer function. :f is

;é damping ratio and Wh is the natural frequency. A
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large portion of classical design method 1is, 1in fact,
based on the assumption that the closed-loop system can be
made to behave in a way that closely matches that of the
system function of Eq. 4.2.1 for a certain J and Wh-
Using the developments of Chapter II, the system of Eq.
4.2.1 can be transferred into the =z-plane to determine
equivalent pole locations. To produce a good transient
response, not too much damping and not too much overshoot,
the valuefT=J§/2 is chosen. It also helps the closed-loop
system not to make the speed too much different from the
open-loop system. In the other words, if the open-loop
system is really slow, one can’t expect to speed it up too
much in the closed-loop system. Thus, value of Wp=1 is
chosen. From the Eq. 2.3.8,
A(z)D(2z)+M(z)N(z)=Dp(z)Dp(z)=F(2).
If the computation time in the program is close to one
sampling period, then one choses
deg A(z)= 1+ deg M(Z)

This means that there is a time delay in the compensator
of one sampling period. Thus, all program steps can be
done in one sampling period. Since the degree of D(z) is
2 and the degree of N(z) is equal to 1, the degree of
A(z) will be 2. Also, the degree of Dp (2) is 3 and the
degree of 5p(z) is 1, which implies one more control pole
and one cancelled pole have to be introduced. In the
discrete case, it is possible to put the cancelled pole
and even the additional control pole at the origin (z=0),

Which Corresponds to s approaching to the minus infinity
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in the analog case.
The z transform of the open-loop plant is preceded

by the Zero-Order-Hold equivalent with 0.2 second sampling

period.
1
For G(s)=
s(s+1)
0.01873(2+0.935525) b,z+b
G(z)= At il
(z-1) (z-0.8187308) z%+a 2 + 3,

The closed-loop control poles are s2+J2s+1 and s=-o.
The corresponding z-transform is

k(z+0.9355255)

z(22-1.7189452+0.07536)

For a DC gain of G4,(1) = 1, the value of k is 0.0179085.

Thus, 0.017985(2+0.935525)
G,(2)=
o

z(22-1.7189452+0.7536)

P,z+P,

Z3+C222+C12+C0

The design procedure as follows:
‘Step 1: cChoose the desired Go(2) .

Step 2: compute the following:

Go(z)  Ny(2) Np (2) 0.173605

3 2
N(z) Do (2)N(2) Dy (2) z°+C52%+C12+C
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Step 3: Introduce a polynomial Dp(z)=z+d0 which will be
cancelled in the design procedure. In case 1, do=0.
Step 4: L(z)= Np(z) Bp(z) = L; z+ L,
A(z)~D(z)+M(z)-N(z)=Dp(z)-ﬁp(z)

=4 3
=274 427432, +f 24P
2
Assume A(z)= z +A z+Ag, M(2)=Mjz+Mj

| I Ll
(z2+A12+A() (z +a;z+ag)+(Myz+My) (bg2+bg)

= 2%4p,4274832%48,2+48,

by matching the coefficients:

ag by 0 0 Ag g1
Zin Bpe Forubo M, B2
0 o0 1oiad M 4-a
L Jo- Ae¥ s fonad AR

where a,=0.8187308,a,=-1.8187308,b;=0.0175231
b;=0.01873, ﬁ1=o,pz=o,p3=o.7536705,P4=-1.718945
The solution is
A(=0.05252052 My=-2.453919
A,=0.09978592 M;=3.411789

Then,
L(z) -M(z)
C(z)=[C;y(2) Cy(2)1=([
A(z) A(z)
le+Lo MlZ+M0

Cz)= ——20 — - — ]
V4 +Alz+A0 V4 +AIZ+AO
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The state-variable form for the above compensator

equation is:

i [ 0 -Ao] [ X (k) ]+[Lo M, ] [ R (k) ]

X+ (k)
U(k) = [0 [ 4 ] = X5 (k)
: Xz(k)

The above equation is implemented on a Radio Shack model 4
computer. The BASIC program is shown in Appendix B.
Comparing the results of the CC [14] simulation (Fig. 4.4)
with the result of control system (Fig. 4.6}, rthe
difference in the input signalé u(t) is the noise from the
A/D converter in the actual control system. Fig. 4.22 and
Fig. 4.23 show the noise-to-input signal and the noise-to-
output frequency response. To get a better response, Case
2 and Case 3 illustrate pole assignments that reduce the
noise. All the results are shown as Table 1. From the
Fig. 4.6 to Fig. 4.21, one can easily see how the pole

;assignment affects the noise reduction.



TABLE 1

THE RESULTS OF 3 CASES IN EXAMPLE 1
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CASE 1 CASE 2 CASE 3
CONTROL 1/s(s? +J23+1) 1/(S+5) (s? +{2s+1) 1/(s+1) (s? +J2s¢1)
POLES
CANCELLED s=- ® 1/(s+5) 1/ (s+1)
POLE
a(z) 0.01873(z+0. 93552) Same as Case | Same as Case |
(z-1) (z-0.8187308)
Go(z) 0.01791 (z+0. 93552) 0.0113(2z+0. 9355) 0.00325(z+0. 9355)
Z2(2z? -1, T71892+0, 0754) (2-0.367) (2? -1.7192+0.753) (2-0.848) (z2? -1.Tz+
0. 7536)
Ci(z) 0. 9561398 0. 604 (z-0. 3679) 0. 173605(z-0.8187)
z! +0, 09972+0. 052 2! -0.63052+0. 1494 2? -1.5372+0. 62
ca2(z) 3.41178z-2. 453919 1. 5403z-1. 1609 0. 173562-0. 142143
z? +0, 099782+0. 05252 z? -0. 630592+0. 149427 2? -1.537642+0. 6201
CASE | CASE 2 CASE3
C.C SIMULATION RESULTS Filg. 4.4 Fig. 4.10 Fig. 4.16

FOR CONTROL SIGNAL U

C.C SIMULATION RESULTS Fig. 4.5 Fig. 4. 11 Fig. 4.17
FOR OUTPUT STEP RESPONSE Y :

PMIMELINE PLOTTER RESULTS Fig. 4.6 Fig. 4.12 Fig. 4,18
FOR CONTROL SIGNAL U Flg. 4.8 Fig. 4.14 Fla. 4.20
PHIMELINE PLOTTER RESULTS Fig. 4.7 Fig. 4.13 Fig., 4.18
FOR QUTPUT STEP RESPONSE Y Fig. 4;9 Fid. 4.15 Figy 4.21
NOISE TO OUTPUT FREQUEHNCY Fig. 4.23 Fig. 4.23 Fiag.. ag
RESPONSE

NOISE TO INPUT FREQUENCY 5 Fig. 4.22 Fig. 4.22 Fig. 4. 22

RESPONSE

—
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4.3 EXAMPLE 2: A NONMINIMUM PHASE SYSTEM
Consider an open-loop plant
G(s)=(s-1)/s/(st2)
which is implemented on the analog computer as shown in
Fig. 4.2. The design procedure follows that of the

Example 1, and the results are shown in Table 2.

4.4 EXAMPLE 3: A TYPE 0 SYSTEM
Consider an open-loop plant:
G(s)= 1/(s%+0.5s+1)

which is implemented on the analog computer, as shown in
Fig. 4.3. A type 0 plant can be made to act as a type
1 system, for type 1 system performance is required to
track a constant reference inpﬁt with zero error. Type 1
behavior can be achieved by requiring that the polynomial
A(z) have the form A(z)=(z-1)A’(z) [6]. Thus, equation

(2.3.8) can be written as
(z-1) A’(z)-D(z)+M(z)-N(z)=Dp(z)* Dp(z)=F(z)

If one follows the procedure of the two previous examples,
the result will be four linear algebraic equations in
three unknowns. For a solution to exist in general, there
MUSt be at least as many unknowns as equations. Thus,

deg A’ (z)=2, deg M(z)=2, deg Dp(z)=3 and deg Dp(z)=2
It means one more cancelled pole and one more control pole

hould be chosen.
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THE RESULTS OF 3 CASES IN EXAMPLE 2
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CASE | CASE 2 CASE 3
CONTROL 1/s(s? +J2s+1) 1/(s+5) (S? +{2s+1) 1/(s+1) (s? +{2s+1)
POLES
CANCELLED s=- o 1/(8+5) 1/(s+1)
POLE
a(z) 0. 14726 (z-1.22387) Same as Case | Same as Case |
(z-1) (z-0.6703208)
Go(2z2) -0. 15511 (z-1.22387) -0.0978(z-1.2238) -0. 0282 (z-1.2238)
Z(2?-1.71892+0.0754) (2-0.367) (22 -1.7192+0.753) (2-0.818) (2? -1.Tz+
0. 7536)
Ci(z) -1.053306x2 -0. 664 (2-0. 3679) -0.191(z-0.8187)
z? -0.00482z+1. 2906 z! -0. 7842z+0. 3354 2? -1.6862+0. 76
ce2 (z) -2.34258z+1. 2908 1. 54032z-1. 1609 0. 173562-0. 142143
z? -0, 0048z+1. 2906 2! -0. 78422z+0. 3354 2? -1, 6862+0.76
CASE 1 CASE 2 CASE3

C.C SIMULATION RESULTS Flg. 4.24 Fig. 4, 30 Fig. 4.36
FOR COHTROL SIGHAL U :

C.C SIHULATION RESULTS Fig. 4.25 Fig. 4. 31 Fig. 4.37
FOR OUTPUT STEP RESPONSE Y ! .

PMIHELINE PLOTTER RESULTS Fig. 4.26 Fig. 4. 32 Fig. 4.38
FOR CONTROL SIGNAL U Fig. 4.28 Fig. 4. 34 Fig. 4.40
PHIMEL [NE PLOTTER RESULTS Fig. 4.27 Fig. 4.33 Fig. 4.39
FOR OUTPUT STEP RESPONSE Y Fig. 4.29 Fig. 4. 35 Fig. 4.41
HOISE TOU OUTPUT FREQUENCY Fig. 4.43 Fig. 4.43 Fig. 4.43
RESPONSE

HOISE TO INPUT FREQUENCY Fig. 4.4e Fig. 4.42 Fig. 4.42

RESPONSE
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Set A(z)=(z-1) - (22+A, *z+A,) ,
M(z)=M222+Mlz+MO,
D(z)=zz+a1z+ao,

N(z)=b,;z+bg,
and F(z)=2+f52%+B,23+p;2%+p,2+B, .

By matching the coefficients, A(z) and M(z) can be found

from the following matrix :

. . v Twr :
- ag b, 0 0o o0 A, #1
R VI Mo T W T My | | P2
By-1 ~5 03 DELRENEIIIE, (DU Ay S AR
1 0 3;-1 0 by M; Pa-a +a;
| 0 0 TG I [ W P P5-a +1 |

Results from four different cases are shown in Table 3.



TABLE 3

THE RESULTS OF 4 CASES IN EXAMPLE 3

CASE 1 CASE 2

CONTROL. 1/(s+5) (s? +{2s+1) 1/(s+1) (s? +{2s+1)
POLES
CANCELLED 1/(s+5)? S=-m
POLES s=-®
a(z) 0.01928(z+0. 96T17) 0.01928(z+0. 96717)

2z? -1, 8668992z+0. 9048374 2! -1, 8668992+0, 9048374
Qo (z) 0.011138(z+0. 96717) 0.0031998 (z+0. 96717)

(z-0. 36788) (2? -1.71892+0. 0754) (2-0.81873) (2?2 -1.718382+0. 7536)
Ci(2) 0.57752? -0. 42492+0. 078161 Q, 1659n2?

23-0. 955627 +0. 17512-0. 21941 23-0. 67072 -0. 49492+0. 16367

ca2(z) 9.98692z? -18. 3882+8. 632319 8. 788682 -16.56252+7. 940732
z°-0, 95562 +0. 17512-0. 21941 23-0. 67072 -0. 49492+0. 16367

CASE 1 CASE 2
C.C SIMULATION RESULTS Fig. 44 Fig. 50
FOR CONTROL SIGNAL U -
C.C SIMULATION RESULTS Filg. 45 Fig. 51
FOR OUTPUT STEP RESPONSE Y
PMIMELINE PLOTTER RESULTS Fig. 46 Fig. 55
FOR COHTROL SIGHAL U Fig. 48 Flg. 54
PHIMELINE PLOTTER RESULTS Fig. 47 Fig. 53
FOR OUTPUT STEP RESPONSE Y Fig. 49 LwFig.55
HOISE TO OUTPUT FREQUENCY Fig. 69 Fig. 69
RESPONSE
HOISE TO INPUT FREQUENCY Fig. 68 Fig. 68

RESPONSE

R




TABLE 3 (CONT.)

THE RESULTS OF 4 CASES IN EXAMPLE 3

CASE 3

CASE 4

RESPUNSE

CONTROL 1/(s+1) (s? +{2s+1) 1/(s+1) (s? +{2s+1)
POLES
CAHCELLED 1/(s+5)? 1/(s+1)?
POLES
G(z) 0.01928(2+0. 96717) 0.01928(2+0. 96717)
2 -1, 8668992+0. 9048374 2? -1, 8668992+0. 9048374
Go(z) 0.0031998(z+0. 96715) 0.0031998(Zz+0. 96715)
(z-0.81873) (2? -1. 71892+0. 7536) (z-0.81873) (2? -1. 71892+0. 7536)
C1t(z) 0.1659%(2-0, 367879)2 0.1659(2? -1. 637462+0. 67032)
z3-1, 406527 +0. 565412-0. 1569  z3-2. 3082z +1. 76932-0. 46111
ca(z) 3,49172 -6. 65742+3. 231989 0.1677122 -0. 356742+0. 19945
z3-1, 406522 +0. 565412-0, 1589  z3-2, 308227 +1. 76932-0. 46111
CASE 3 CASE 4
C.C SINULATION RESULTS ' Fig. 56 Fig. 62
FOR CONTROL SIGNAL U
C.C SIMULATION RESULTS Fig. 57 Fig. 63
FOR OUTPUT STEP RESPONSE Y
PMIMELINE PLOTTER RESULTS Fig. 58 Fig. 64
FOR CONTROL SIGHAL U Fig. 60 Fig. 66
PMIMELINE PLOTTER RESULTS Fig. 59 Fig. 65
FOR OUTPUT STEP RESPONSE Y Fig. 61 Fig. 67
HOISE TO OQUTPUT FREQUENCY Fig. 69 Fig. 69
RESPONSE
NOISE TO INPUT FREQUENCY Fig. 68 Fig. 68
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CHAPTER V

CONCLUSION

5.1 SUMMARY

The main purpose of this thesis was to present the
development of a digital control algorithm using the Two-
Parameter method. This algorithm was implemented on a
Radio Shack TRS-80 model 4 computer.

The design method presented in this thesis was
adapted from reference [1]. The procedure appears to be
simpler than the state-variable approach. It also appears
to be simpler than the traditional root-locus method and
the frequency-domain method. In the root-locus and
frequency-domain methods, computer simulations are carried
out after the completion of a design. I£ ‘it i\ not
satisfactory, one must then repeat the design. In the
Two-Parameter method, one carries out the simulations
first. Once an overall system is found, the design can be
completed without any more trial-and-error. Moreover,
this method can be used to achieve pole assignment and
zero assignment simultaneously. The root-locus and
frequency-domain methods do not consider the zeros of the
resulting system. Since the Two-Parameter method
considers both poles and zeros, it is suitable for the
design of more complex systems. The results of the three
€Xamples of Chapter IV show that the Two-Parameter method
is simple and straightforward. Although the pole-and-zero

aSsignment is arbitrary, the results of the three examples
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show how the assignment affects the noise reduction.

5.2 RECOMMENDATIONS FOR FUTURE WORK

To improve the results of the digital controller
presented in this thesis, a faster computer can be used to
make the sampling period as short as possible. In fact,
making the sampling period shorter and shorter tends to
make the system behave more 1like the continuous-time
system. To reduce the quantization error in A/D and D/A
converters, A/D and D/A converters with higher resolution
are also needed.

For noise rejection, a prefilter can be placed
before the analog plant. The study of the effects of a
prefilter bandwidth is presented in the reference [12].
In the digital case, the prefilter may also be implemented
digitally. However, it would probably be sampled at a
faster rate than the rate at which the controller operates
This results in a multirate design in which the control
signal is updated at the faster rate, while the output is
sampled at the slower rate. See [17] for one design of
such a controller. The opposite multirate sampling has
also been considered [13]; here the control is updated at
the slower rate and the output is sampled at the faster
rate. Both types of multirate designs could be considered

in conjunction with the Two-Parameter method.
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APPENDIX A

The Two-Parameter design procedure, which discussed
in Chapter II and Chapter IV, can be accomplished by using

the following BASIC program.

10 ‘ENTER THE COEFFICIENTS FOR THE EQUATION G(z) and
20 ‘'Go(z).

30 ’where bl*z+bo

40 ! G(z)= is open-loop transfer
50 / 22+a1*z+ao function

70 1

8o !/

90 £ kZ+Zo

100 ’ Go(2)= is closed-loop
110 ¢ z3+a’2*zz+a’l*z +a’o transfer function
120 /

130 KEY OFF:COLOR 14,1,1:CLS
140 DATA C=A/,C=C*B,END
’

142 ’ENTER THE COEFFICIENTS FOR EACH EQUATION
’

150 INPUT "Input from keyboard --- ",6A$
160 IF A$="Y" OR AS$="y" THEN 180
180 INPUT "Input bl --- ", Bl

190 INPUT "Input b0 --- ",BO

210 INPUT "Input al --- " Al

220 INPUT "Input a0 --- ",A0

230 INPUT "Input a’2--- ",6AP2
240 INPUT "Input a’l--- " ,AP1
250 INPUT "Input a’0--- ",APO
260 INPUT *®*Input dl ~--— ",D1

261 '/

262 :input the data to matrix a
263

280 OPEN "A.MAT" FOR OUTPUT AS #1

290 PRINT #1,5,5

300 iRINT #1,A0: PRINT #1,BO:PRINT #1,0 :PRINT #1,0 :PRINT
1,0

310 iRiNT #1,A1:PRINT #1,B1:PRINT #1,A0:PRINT #1,BO:PRINT
1,0

320 ﬁRiNT #1,1 :PRINT #1,0 :PRINT #1,A1:PRINT #1,B1l:PRINT
1,A0

330 iRINT #1,0 :PRINT #1,0 :PRINT #1,1 :PRINT #1,0 :PRINT
1,A1

340 §RINT #1,0 :PRINT #1,0 :PRINT #1,0 :PRINT #1,0 :PRINT
1L




360

361
362
363
370
380
390
400
410
420
430
450
455
460
465
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
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CLOSE #1

’

’ enter the data for matrix b
’

OPEN "B.MAT" FOR OUTPUT AS #1
PRINT #1,5,1

PRINT #1,D1*APO

PRINT #1,AP0+AP1*D1

PRINT #1,AP1+AP2*D1

PRINT #1,AP2+D1

PRINT #1,1

CLOSE #1

’

REM --=--- MATRIX OPERATION -----

’

ON ERROR GOTO 2140

DEFINT I,J,K

READ AAS

IF AAS="END" OR AAS$="end" THEN 2560
GOSUB 540

N=LEN (AA$)
N1=INSTR(AAS$,"="):IF N1>0 THEN 570
NUM=1:GOTO 720
N2=INSTR(AA$,"=-"):IF N2=0 THEN 590
NUM=3:GOTO 720
N2=INSTR(AAS,"’") :IF N2=0 THEN 610
NUM=4:GOTO 720
N2=INSTR(AAS,"/"):IF N2=0 THEN 630
NUM=5:GOTO 720
N2=INSTR (AA$,"+") :IF N2=0 THEN 650
NUM=6:GOTO 720
N2=INSTR(AAS$,"-"):IF N2=0 THEN 670
NUM=7 : GOTO 720
N2=INSTR (AA$,"*"):IF N2=0 THEN 690
NUM=8 : GOTO 720
N2=INSTR(AAS,";") :IF N2=0 THEN 710
NUM=8 : GOTO 720
NUM=2
IF N1=0 THEN A1$=AAS$ :A2$="" :A3$="" :GOTO 800
A3$=LEFTS (AAS$,N1-1) -
IF N2=0 THEN A1$=RIGHTS (AA$,N-N1) :A2$="" :GOTO 800
IF N2=N1 THEN A1$=RIGHTS (AAS$,N-N2-1) :A2$="" :GOTO 800
A1$=MIDS (AAS,N1+1,N2-N1-1)
IF N2=N THEN A2$="" :GOTO 800
A2$=RIGHTS (AAS,N-N2)
IF NUM=8 AND VAL(A1$)><0 THEN NUM=9 :GOTO 870
OPEN A1S$+".MAT" FOR INPUT AS #1
INPUT #1,I1,J1
DIM GAUA(I1,J1)
FOR I=1 TO Il
FOR J=1 TO J1 :INPUT #1,GAUA(I,J) :NEXT J
NEXT I
CLOSE #1



870 IF A2S$="" THEN 950

880 OPEN A2S$+".MAT" FOR INPUT AS #1

890 INPUT #1,I2,J2

900 DIM GAUB(I2,J2)

910 FOR I=1 TO I2

920 FOR J=1 TO J2 :INPUT #1,GAUB(I,J) :NEXT J

930 NEXT I

940 CLOSE #1

950 P=0

960 ON NUM GOSUB
1130,1230,1300,1370,1440,1720,1800,1880,1990

970 IF P=1 THEN 1090

980 OPEN A3S$+".MAT" FOR OUTPUT AS #1

990 PRINT #1,I3,J3

1000 PRINT "Matrix ";A3$;" is:"

1010 FOR I=1 TO I3

1020 FOR J=1 TO J3

1030 PRINT USING " ##.###~~~~";GAUC(I,J):;

1040 PRINT #1,GAUC(I,J)

1050 NEXT J

1060 PRINT: PRINT

1070 NEXT I

1080 CLOSE #1

1090 ERASE GAUA

1100 IF A2$><"" THEN ERASE GAUB

1110 IF A3$><"" THEN ERASE GAUC

1120 RETURN

1130 REM -=-=--- ERASE A MATRIX =-==--

1140 FOR I=1 TO I1

1150 FOR J=1 TO J1 :PRINT USING "

##.###~~~A";GAUA(I,J); :NEXT J

1160 PRINT

1170 NEXT I

1180 PRINT :PRINT "Erase Matrix ";Al1$; :INPUT " or not?

" AS

1190 PRINT

1200 IF AS$="Y" OR AS$="y" THEN KILL A1lS$+".MAT"
1210 P=1

1220 RETURN

1230 REM ==-=-- EQUIVALENT =-===-

1240 I3=I1:J3=J1

1250 DIM GAUC(I3,J3)

1260 FOR I=1 TO I3

1270 FOR J=1 TO J3 :GAUC(I,J)=GAUA(I,J) :NEXT J
1280 NEXT I -

1290 RETURN

1300 REM =-=--- NEGATIVE ===--

1310 I3=I1:J3=J1

1320 DIM GAUC(I3,J3)

1330 FOR I=1 TO I3

1340 FOR J=1 TO J3 :GAUC(I,J)=-GAUA(I,J) :NEXT J
1350 NEXT I

1360 RETURN

1370 REM -=--- TRANSPOSE ==-=--

1380 I3=J1:J33=I1

1390 DIM GAUC(I3,J3)




FOR I=1 TO I3
FOR J=1 TO J3 :GAUC(I,J)=GAUA(J,I) :NEXT J
NEXT I

RETURN
REM ----- INVERSE MATRIX -----
IF I1><J1 THEN 2090

I3=I1:J3=J1
DIM GAUC(I3,J3)
FOR I=1 TO I3
FOR J=1 TO J3 :GAUC(I,J)=0 :NEXT J
GAUC(I,I)=1
NEXT I
FOR I=1 TO Il
IF GAUA(I,I)><0 THEN 1610
K=I+1:IF K>I1 THEN 1570
IF GAUA(K,I)><0 THEN 1580
K=K+1:IF K<=I1 THEN 1550

PRINT :PRINT "No inverse exists." :PRINT :P=1

: RETURN
FOR J=1 TO J1
GAUA (I, J)=GAUA(I,J)+GAUA (K,J)
:GAUC (I,J)=GAUC(I,J)+GAUC (K,J)
NEXT J
X=1/GAUA (I, I)
FOR J=1 TO J1 :GAUA(I,J)=GAUA(I,J)*X
:GAUC(I,J)=GAUC(I,J)*X :NEXT J
FOR K=1 TO Il
IF K=I THEN 1690
X=-GAUA (K, I)
FOR J=1 TO J1
GAUA (K, J) =GAUA (K, J) +GAUA (I, J) *X
:GAUC (K, J) =GAUC (K, J) +GAUC (I, J) *X
NEXT J
NEXT K
NEXT I
RETURN
REM ----- ADDITION —-----
IF I1><I2 OR J1><J2 THEN 2090
I3=I1:J3=J1
DIM GAUC(I3,J3)
FOR I=1 TO I3
FOR J=1 TO J3 :GAUC(I,J)=GAUA(I,J)+GAUB(I,J)
J
NEXT I
RETURN
REM ----- SUBSTRACTION =--=---
IF I1><I2 OR J1><J2 THEN 2090
I3=I1:J3=J1
DIM GAUC(I3,J3)
FOR I=1 TO I3
FOR J=1 TO J3 :GAUC(I,J)=GAUA(I,J)-GAUB(I,J)
J
NEXT I
RETURN
REM —----- MULTIPLICATION -----
IF J1><I2 THEN 2090 -
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:NEXT

:NEXT



2410
2420
2430

I3=I1:J3=J2
DIM GAUC(I3,J3)
FOR I=1 TO I3
FOR J=1 TO J3
GAUC(I,J)=0
FOR K=1 TO J1
tGAUC(I,J)=GAUC(I,J)+GAUA(I,K)*GAUB(K,J)
NEXT J
NEXT I
RETURN
REM ====- MULITPLY A CONSTANT -----
M=VAL(A1$)
I1=I2:J1=I2
DIM GAUA(I1,J1)
FOR I=1 TO I1
FOR J=1 TO J1 :GAUA(I,J)=0 :NEXT J
GAUA(I,I)=M
NEXT I
GOSUB 1880
RETURN
REM ====- DIMENSION INCONSISTENCY —---—--
BEEP
PRINT "Dimension inconsistency."
=1

CLOSE #1

PRINT ERL

IF ERL=800 THEN 2210

IF ERL=880 THEN 2390

BEEP

PRINT "Something wrong!" :STOP
IF NUM><1 THEN 2230

:NEXT K
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PRINT "Matrix ";Al1$;" is NOT exists." :PRINT :RESUME

1210

PRINT "Input Matrix ";Al$ :PRINT
INPUT "i0f-POW)\om—=——ea= neal
INPUT "# of column ------- w,Jl

DIM GAUA(I1,J1)
FOR I=1 TO Il
FOR J=1 TO J1

PRINT A1S$;"(";I;",";J; :INPUT ") = ",6GAUA(I,J)

NEXT J
NEXT I
OPEN Al1$+".MAT" FOR OUTPUT AS #1
PRINT #1,I1,J1
FOR I=1 TO Il

FOR J=1 TO J1 :PRINT #1,GAUA(I,J) :NEXT J

NEXT I

CLOSE #1

RESUME 870

PRINT "Input Matrix ";A2$ PRINT
INPUT "# Or row ==—=—===—===- " T2
INPUT "# or column ------- " J2

DIM GAUB(I2,J2)
FOR I=1 TO I2



2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2545
2550
2550
2560
2570
2580
2581
2582
2583
2590
2600
2610
2620
2630
2640

2650
2660
2661
2662
2663
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790

FOR J=1 TO J2

PRINT A2$;"(";I;",";J; :INPUT ") = ",GAUB(I,J)

NEXT J
NEXT I
OPEN A2$+".MAT" FOR OUTPUT AS #1
PRINT #1,I2,J2 -
FOR I=1 TO I2
FOR J=1 TO J2 :PRINT #1,GAUB(I,J) :NEXT J
NEXT I
CLOSE #1
RESUME 950

’

'm===galculate the value of Np-—-=—s=scec—cw=--

’

P=(1+AP2+AP1+APO0) / (B1+B0)
PRINT

PRINT "Np =";P

’

’ the polynomial L(2z)
’

L2=P

L1=P*D1

LO=P*DO

OPEN "C.MAT" FOR INPUT AS #1
INPUT #1,A,A

87

INPUT #1,A0:INPUT #1,MO:INPUT #1,A1l:INPUT #1,M1:INPUT

#1,A2

CLOSE #1

IF A2><1 THEN BEEP:BEEP
’

:--realization of Cl(2), C2(z)
PRINT

PRINT "All =";0

PRINT "Al2 =";-A0

PRINT "A21 =";1

PRINT "A22 =";-Al

PRINT
PRINT "B1ll =";LO
PRINT "Bl12 =";-MO

PRINT "B21 =";L1
PRINT "B22 =";-M1l
PRINT

PRINT "Cl1 =
PRINT "C2 =
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APPENDIX B

Following is a listing of program for the digital

controller used in Example 1 and Example 2.

*This program is written for plant G(s)=(s-1)/s(s+2)
*ADDRESS 04 FOR PORT A AS INPUT PORT

*ADDRESS 05 FOR PORT B AS OUTPUT PORT

*ADDRESS 06 FOR PORT C AS CLOCK INPUT PORT

*ADDRESS 07 FOR CONTROL PORT

*Sampling time=0.2

10 CLS

20 OUT 236,16
30 REM---ENABLE 8255A

35 OUT 7,153

40 A12=-0.7614  :A22=6.834608

60 B11=0.15632  :B12=-0.28649

70 B21=-0.190932 :B22=0.06313

100 INPUT"ENTER REFERENCE VALUE (-2.5 TO 2.5);R
110 NBITS=8:VOLTS=5

120 D2A=2~NBITS/VOLTS:A2D=VOLTS/2~NBITS

130 X1=0:X2=0:REM INITIAL COMPENSATOR STATE

135 INPUT"ENTER INITIAL VALUE OF CONTROL (-2.5 TO 2.5)
140 UA=UA+2.5:REM SCALE CONTROL SIGNAL FOR D/A
150 U%=D2A*UA

160 OUT 5,U%

170 U%=D2A* (X2+2.5)

180 IF U%>255 THEN U%=255:IF U%<0 THEN U%=0

190 INPUT"HIT A KEY TO START";S$

200 C%=INP(6)

210 IF C%=0 THEN GOTO 200

220 REM THE LOOP STARTS HERE

230 OUT 5,U%

240 Y$=INP(4):Y=A2D*Y%-2.5:REM SCALE OUTPUT FROM A/D
250 NX1=A12*X2+B1l1*R+B12*Y

260 NX2=X1+A22*X2+B21*R+B22*Y

270 X1=NX1:X2=NX2

280 U$=D2A* (X2+2.5)

290 PRINT U%

300 IF U%>255 THEN U%=255

310 IF U%<0 THEN U%=0

320 C%=INP(6)

330 IF C%=0 THEN PRINT "TOO SHORT"

340 GOTO 200
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APPENDIX C

Following is a listing of program for the digital
controller used in Example 3.

*This program is written for plant G(s)=1/(Sz+0.SS+1)
*ADDRESS 04 FOR PORT A AS INPUT PORT

*ADDRESS 05 FOR PORT B AS OUTPUT PORT

*ADDRESS 06 FOR PORT C AS CLOCK INPUT PORT

*ADDRESS 07 FOR CONTROL PORT

*Sampling time=0.2

10 CLs

20 OUT 236,16
30 REM---ENABLE 8255A

35 OUT 7,153

40 A13=0.589496 :B11=0 :B12=-28.5964

60 A23=0.15632 :B21=0 :B22=61.4775

70 A33=-0.190932 :B31=0.91531 :B32=-35.4379

100 INPUT"ENTER REFERENCE VALUE (-2.5 TO 2.5);R
110 NBITS=8:VOLTS=5

120 D2A=2~NBITS/VOLTS:A2D=VOLTS/2~NBITS

130 X1=0:X2=0:REM INITIAL COMPENSATOR STATE

135 INPUT"ENTER INITIAL VALUE OF CONTROL (-2.5 TO 2.5)
140 UA=UA+2.5:REM SCALE CONTROL SIGNAL FOR D/A
150 U$=D2A*UA

160 OUT 5,U%

170 U$=D2A* (X2+2.5)

180 IF U%>255 THEN U$%=255:IF U%<0 THEN U%=0

190 INPUT"HIT A KEY TO START";SS$

200 C%=INP(6)

210 IF C%=0 THEN GOTO 200

220 REM THE LOOP STARTS HERE

230 OUT 5,U%

240 Y%=INP(4):Y=A2D*Y%-2.5:REM SCALE OUTPUT FROM A/D
250 NX1=A13*X3+B11*R+B12*Y

260 NX2=X1+A23*X3+B21*R+B22*Y

265 NX3=X2+A33*X3+B31*R+B32*Y

270 X1=NX1:X2=NX2:X3=NX3

280 U%=D2A* (X3+2.5)

290 PRINT U%

300 IF U%>255 THEN U%=255

310 IF U%<0 THEN U%=0

320 C%=INP(6)

330 IF C%=0 THEN PRINT "TOO SHORT"

340 GOTO 200
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