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ABSTRACT

LOAD FLOW SOLUTION BY APPLYING HYBRID ALGORITHM TO

THE NEWTON-RAPHSON METHOD

Chaipant Tappayuthpijarn
Masters of Science in Engineering

Youngstown State University, 1990

The purpose of the HYBRID algorithm, discussed in
this thesis, is to improve the efficiency of the
convergence of the existing NEWTON-RAPHSON method in
solving the system of nonlinear power flow equations, when
its close initial estimates are not available. The
algorithm is based on the interpolation between the fast
convergence standard NEWTON-RAPHSON iteration and the
method of steepest descent applied to the sum of the
square of mismatch fi(i). The balance between these two
methods is governed by introducing the concept of the
trust region to restrict the step predicted by the
classical method to be in the quadratic region and to
switch to the steeéest decent method that is better when
the initial values are far from the solution.

Digital computer results and their comparisons of
the 10 bus test system, with different initial values, by
the proposed algorithm and by the standard method are also

discussed in this thesis.
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Chapter I

INTRODUCTION
1.1 Background and Objective

The NEWTON-RAPHSON method is the most widely used
approach for the nonlinear power flow solution in power
system planning largely because of its quadratic
convergence characteristics. This fast convergence
property yields the solutions of the nonlinear system
converged in just a few iterations. However, the possible
range of the initial values by the standard Newton-Raphson
is required to be close to the roots of the system. An
increase of error from neglected higher order terms in the
indefinite Taylor's series can cause system divergence
when the initial values are far from the roots. The
convergence analysis of the standard NEWTON-RAPHSON method
given in this thesis shows that the error on the current
iteration is the function of the square of the error on
a previous iteration. Therefore, the defined error could
make the classical method unreliable on any iteration.

In order to overcome these problems, the method of
steepest descent is introduced. This method has an
important advantage over the Newton-Raphson method because
it is not as sensitive to the initial values. The method
of steepest descent is generally used in nonlinear

optimization problems. It can be expediently used for



making solutions more accurate in cases when the Newton-
Raphson method diverges when the initial values are far
from its roots. Despite the advantageous property of this
method, a large quantity of calculations is required to
get the solutions of the system converged. This leads to
the slow convergence of the method of steepest descent.

To obtain the useful properties of both the
Newton-Raphson method and the method of steepest descent,
the HYBRID algorithm has been developed. The purpose is
to improve the convergence of the existing standard
Newton-Raphson iteration when its initial estimates are
far from the roots. The idea is to start with the
steepest descent iteration when necessary, then switch
to the standard Newton-Raphson method for fast convergence
when the predicted values are close to the roots. The
compromise between these two methods is governed by the
concept of the trust region, defined in terms of the trust
radius, and the switching policies. The purpose of the
trust region is to restrict the step predicted by the
standard Newton-Raphson method to be in the region where
a quadratic is available. By the switching policies, if
the predicted step is inside the "trust radius," then the
correction is the full Newton- Raphson step; otherwise,
the classical step is biased toward the steepest-descent
direction. Moreover, the automatic revision of the trust

radius is also provided by the proposed algorithm to



adjust the appropriate quadratic region for the next

iteration at the end of every iteration.
1.2 Overview

In this thesis, a review of Load Flow Studies,
along with a description of Load Flow calculation by the
Newton-Raphson method, is contained in Chapter II.

Chapter III discusses some sources of errors that can
arise in numerical computation. It also includes a
discussion of the effect of these errors on the
convergence of the standard Newton-Raphson method in
solving the system of nonlinear algebraic equations. 1In
Chapter IV, the Hybrid algorithm is introduced, including
a description of the method of steepest descent, the
concept of the trust region and the switching policies
between the Newton-Raphson and steepest descent iteration.
At the end of the chapter, the application of the Hybrid
algorithm to the standard Newton-Raphson Loadflow is
provided. In Chapter V, numerical results and comparisons
of the 10 bus test system, with different initial values,
using the proposed algorithm and the standard
Newton-Raphson method, are discussed. Finally,
conclusions and recommendations for future research are

Provided in Chapter VI.




Chapter II
LOAD FLOW STUDIES
2.1 INTRODUCTION AND BACKGROUND

A Load Flow Study [10,11,12,13] is the
determination of the voltage, current, power factor, real
power and reactive power at various points in an
electrical network under existing or contemplated
conditions of normal operation. It is essential in
planning the future development of the system because
satisfactory operation of the system depends on knowing
the effects of interconnecting with other power systems,
new loads, new generating stations and new transmission
lines before they are installed. The mathematical
formulation of the loadflow problem results in a system of
nonlinear algebraic equations. These equations can be
established by using either the bus or the loop frame of
reference. The coefficients of the equations depend on
the selection of the independent variables, i.e, voltages
or currents. Thus, either the admittance or impedance
matrices can be used.

Most of the early successful digital methods were
based on the Y-matrix of the Gauss-Seidel method [13].
This requires minimum computer storage and uses only a
Small number of iterations for a small network.

Unfortunately, as the size of the network is increased,



the number of iterations required increases dramatically
for large systems. 1In some cases, the method does not
provide a solution at all. These difficulties encountered
in load-flow studies led to the development of the Newton-
Raphson method [10,13]. The method is based on the
Newton-Raphson algorithm designed to solve the
simultaneous quadratic equations of the power network.
Contrary to the Gauss-Seidel algorithm, it needs a larger
time per iteration, but it can get the solutions in only a
few iterations independent of the network size.
Therefore, most of the load-flow problems that could not
be solved by the Gauss-Seidel method are solved with no
difficulty by this method

However, the recent research efforts have been
concentrated on the development of the decouple Newton-
Raphson method [10] since system planning studies and
system operations may require a multiple-case load flow
solution in some situations. These methods are based on
the fact that in any power transmission network operating
in the steady state, the coupling between P-|V| and Q-6 is
relatively weak, contrary to the strong coupling between

P-8 and between Q-|V

. Therefore, these methods solve the
load-flow problem by decoupling the P-6 and Q-|V|
Problem. Thus, the solutions are obtained by applying

approximations to the Newton-Raphson method.



2.2 DATA FOR LOAD FLOW STUDIES

The load-flow problem can be defined as the
calculation of the real and reactive powers flowing in
each transmission line, and the magnitude and phase angle
of the voltage of each bus of a given power system network
for specified generation and load conditions. The
information obtained from the load-flow studies can be
used to test the systems capability to transfer energy
from generation to load without overloading the line and
to determine the adequacy of voltage regulation by shunt
capacitors, shunt reactors, tap-changing transformer and

the var-supplying capability of generators [12].
2.2.1 TYPE OF BUSES IN LOAD-FLOW STUDIES

In general, there are three types of buses in the

load-flow problem :

a. slack (generator) bus
b. voltage-controlled (generator) buses or P-V buses

c. load buses or P-Q buses

Since the transmission losses in a given system
are associated with the bus profile, until a solution is
obtained, the total power generation requirement of a
System cannot be determined. Therefore, the generator at
the slack bus is used to supply the additional real and

reactive power necessary owing to the transmission losses



[12]. Thus, at the slack bus, the magnitude and phase
angle of the voltage are known values, and the real and
reactive power generated are the quantities to be
determined. In order to define the load-flow problem to
be solved, it is necessary to specify the real power and
the voltage magnitude at each generator bus. This is
because these quantities are controllable though
excitation controls [12]. Since an overexcited
synchronous generator supplies current at a lagging power
factor, the reactive power of a generator is not required
to be specified. The load buses are also known as the P-Q
buses. This is due to the fact that the real and reactive
power are specified at given load buses. Table 2.1 gives
the bus types in load flow studies with corresponding

known and unknown variables.

BUS TYPE KNOWNS QUAN. UNKNOWN QUAN.
SLACK . |v|, e=0 P, Q
GENERATOR (P-V) P, |Vv| Q, ©

LOAD (P-Q) P, Q |v|, e

TABLE 2.1 Bus classification in Load Flow Studies

. WILLIAM F. MAAG LIBRARY
YOUNGSTOWN STATE UNIVERSITY



2.2.2 POWER SYSTEM EQUATIONS

a. Network performance equations

In load-flow studies in normal operation, the
basic assumption is that the given power system is a
balanced three-phase system operating in its steady state.
Therefore, the system can be represented by a one-line
diagram of its single phase positive-sequence network
[14], and the load-flow problem can be solved either by
using the bus admittance matrix (Yp,g) or the bus
impedance matrix (2p,g) representation of the given
network. By using the nodal analysis approach, the

network equation in bus admittance form is

Ihus = Ybusfbus (2.2.1)

or in bus impedance form is

Epus = ZpusIbus (2.2.2)

b. Bus equations

Each bus of a network has four variable quantities
associated with it: the real and reactive power, the
vVoltage magnitude and the voltage phase angle. Any two of
the four will be the independent variables and are

Specified, whereas the other two remain to be determined.
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The electrical conditions at each bus are defined in terms
of active and reactive power because of the physical
characteristics of generation and load. Thus, the complex

power flowing into ith pus can be expressed as

S; = V*iIi = Pj-JQj = (Pgj-Prj-Ppj)-J(Qgi-Qri-Qri) (2.2.3)

where S; = complex power injected at ith pus
P; = net real power injected at ith pus
Q; = net reactive power injected at ith pus
Pgi= real generated power flowing into ith pus
Py i= real load power flowing out of ith pus
Ppi= real transmitted power flowing out of ith pus
Qgi= reactive generated power flowing into ith pus
Qr,i= reactive load power flowing out of ith pus
:th

Qri= reactive transmitted power flowing out of i

bus

and the bus current related to these variables is

P;j - JQj
I; = T [2.2.4)
i
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c. Line flow equations

Line flow can be calculated only after the
solution to the bus voltages is completed. The current at
bus i in the line connecting bus i to bus j is

Y 15
Ilj = (Vi-vj)yij + ——2_ (2.2.5)

line admittance

where Yii

Y'ij total line charging admittance

and the line power flow from bus i to bus j is
. %
Pij—jQij =V iIij (2.2.6)
Similarly, at bus j, the power flow from bus j to bus i is
. " *. .
P3i-3Q3i = V75144 (2.2.5)

Thus, the power loss in line i-j is the sum of the power

flows determined from eq.(2.2.6) and eq.(2.2.7)

2.3 LOAD FLOW CALCULATION BY THE NEWTON-RAPHSON METHOD
2.3.1 NEWTON-RAPHSON METHOD

The Newton-Raphson method [10,13] is the most
Powerful jterative method for solving the system of

Nonlinear algebraic equations because of its fast
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convergence. The method is based on approximating a
nonlinear function to the Taylor's series expansion [5].

By giving a set of nonlinear equations.

fl(xlrle ..,Xn) = Kl
£5(xq,%5, «+1Xp) f Ko (2.3.1)
fn(xl,xz, ..,Xn) = Kn

and the initial estimates for the solution vector are

0o RN Taie, %9, {2.3.2)

Assume dx,, dx,, ..,dX, are the corrections required for
xol, xoz, ..,xon, respectively, so that the eq. (2.3.1)

are solved. Thus

Kq = fl(x°1+dx1, x°2+dx2, ..,x°n+dxn)

Ky = fz(x°1+dx1, x02+dx2, ..,x°n+dxn)
(2.3.3)

K, = f,(x%+dx,, x0,+dx x0_+dx.)

n n 1 1/ 2 2 LTy n

According to Taylor's theorem for a function of
two or more variables, the right hand side of each

€d.(2.3.3) can be expanded to
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df df df
1 1 1
Ky, = fl(xol,xoz,..,xon)+ dx,— |+ dxp— |+...+ dx,— |[+¢q
dx, |0 dx, |0 dx. |0
1 2 n
df df df
2 2 2
Ky, = fz(xol,xoz,..,xon)+ dxl—— + dxz—— Five it dxn—— +¢,
dx, |0 dx, |0 dx.|0
1 2 n
oo=ooooo'-o..oooQo.oo-oooooo.!'icco.o.....---n. (2.3.4)
df df df
n n n
Kp = fn(xol,xoz,..,xon)+ dx,— |+ dxp— |+...+ dxp— [+¢p
dx410 dx,| 0 dxn 0

where ¢;:i=1,2..,n 1is a function of higher order
terms in the indefinite Taylor series approximate to
function f;. If the initial estimate xoi is near the
solution values, then dx; will be relatively small and all
terms of higher powers can be neglected. Thus, the
approximate linear set of eq.(2.3.4), resulting in matrix

form, is as follows:

Ky-£4 (x%,,%x9%,..,x%,) df,| dfy|.... dfq| [[|dx;
dxl 0 dX2 0 an 0}
Bt (x%,x9%,..,x%) df,| df,|.... df,| |[|dx,
dxq|0 dx5(0 dxp |0
L] . . L] L] = . . . L] . . (2.305)
B (%0, ,x0,,..,x%,) afn| ALy e.. ARSI,
dx, |0 dx,|0 dx, |0
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E Edp e g (2.3.6

the vector of the mismatch functions

where

Jacobian matrix

o o a
x| =
0

vector of the corrections

The elements of the matrix [af] and [J] are
evaluated by substuting the current values of x;. Hence,
a solution for the dxj can be obtained by solving a system

of linear equations. That is

KR [3]'1 | (2.3.7)

and the new values for xi are evaluated from
k+1 _ k
Xi = xX;™ + dx; (2.3.8)

The process is repeated until the mismatch
function [df] is less than the specified tolerance, and

then the solution of nonlinear system can be obtained.

2.3.2 APPLICATION OF THE NEWTON-RAPHSON METHOD TO LOAD-

FLOW EQUATIONS IN POLAR COORDINATES USING Yp,gq

The Newton-Raphson method is popularly used in
Solving loadflow problems because it is reliable and

€Xtremely fast in convergence. The rate of convergence of



15

the method is relatively independent of the size of the
nonlinear systenm.

To apply the Newton-Raphson method to loadflow
problems, the slack bus, at which the magnitude and phase
angle of the voltage are specified, is not included in the
iteration process. Therefore, the equation of the complex

power at bus i in N-bus system can be expressed as

=

= l-' s - *I ] — 3 . L 9 8 s = 3
Si = Pi-3Qj = V' iIj = = |VijV5Yi4]| | Bij+e4-€; (2.3.9)

J=1

Therefore, it can be expressed as

Pj

N

Z |vivy¥;4lcos(Bi5+084-6;)

i=1

(2.3.10)

N
Qj = =-E |VijV4Yj4l|sin(B;jj+e5-0;)
=1

This formulation results in a set of nonlinear
simutanous equations, two for each P-Q bus and one for
each P-V bus. The known values for P-Q buses are real and
reactive load bus powers while the known values for P-V
buses are bus voltage magnitudes and real generated bus
Power. TIf the slack bus is set to be bus #1, the
Calculation of the nonlinear loadflow problem will be
started at bus #2, where bus #2 to g (g = total number of
g€nerators in system) are P-V buses and bus #g+l to n are

P-Q buses. Thus, there are 2N-g-1 equations to be solved



for a loadflow solution.

16

The Newton-Raphson method requires that a set of

linear equations be formed expressing the relationship

between the changes in real and reactive powers and the

components of bus voltages as follows :

sz gz DI fz .d—Pz_... Ez dez
‘ de, ... de, d|Vgeq| alvyl ’
dP, dPp ... dPp | dPp ... dPy dey
de, de, d|Vgsp| alvyl
dQg+1 4Qq41--+dQg41 | 9Qqyq---dQg4a | (A Vgysal
. de, den d|Vgs1l alvpl :
dop, dQp ... doy | d@p ...do, d| vyl
de, dep, d|Vg+1| d|vpl

(2.8:31)

wWhere the coefficient matrix is the Jacobian matrix and

the 15t pys is the slack bus.

€d.(2.3.11) can be written as

The matrix form of
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- (2.3.12)

The elements of the Jacobian matrix from eq. (2.3.12)

can be calculated by the following equations

for J, :
dPy
g;— = —IViVjYijISin(ﬂij+8j—Gi) ; for iFj
4 (2.3.33)
dPy N
— = = |VjV4Y;4[sin(B;5+064-6;) ; for i=j
dae; Jj=1
j+i
for J, :
dpP;
)
;T; |= |ViYij|cos(ﬁij+ej-ei) ; for iFj
7 (2.3.14)
Py N
= = 2|Vi|Yiicos(Bii) + = |V5]Yjjcos(Bj+84-64) i for i=]

3



18

for J5 :
in
;—— = -IViI|Vj|Yijcos(Bij+ej—ei) ; for iFj
0.
. (2.3.15)
in N
—_— = .E |ViVjYij|COS(ﬂij+8j-6i) ; for i=j
de J=1
i
for J‘ H
in
— = -|Vi|Yjysin(B;j+64-85) ; for i%j
lejI
(2.3.16)
dQj N
= -2|Vi|YiiSln(ﬁii) TZ IViIYijSin(ﬁij+9j-9i); for i=j
alvy| =1

£}

jFi
Given an initial set of bus voltages, the real and
reactive power can be calculated by eq.(2.3.10). The
changes in power are the differences between the specified
and the calculated values.

x e k
dPX; = Pj(sch) - P~i
i i(sch) i(cal) (2.3.17)

aQk; = Qj (sch) ~ Qki(cal)

The estimated bus voltage magnitudes and bus
angles are used to evaluate the elements of the Jacobian
and power mismatch functions. The linear set of
€d.(2.3.11) can be solved for dV; and de; by a direct or
iterative method. Then, the new estimates of bus voltage

magnitude and angles are
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ktl _ Sk
Vi =V + avy
- X (2.3.18)
04 = 64" + de;

The process is repeated until Pik and Qik for
all buses are within a specified tolerance. The sequence
of steps for the load flow solution by The Newton-Raphson

method is shown in Fig. 2.2
2.4 INFORMATION OBTAINED IN LOAD FLOW STUDIES

A printout of the load-flow problem results
consists of a number of tabulations. The most important
information to be considered first is the table that lists
each bus numbers, bus voltage magnitude in per unit and
phase angle in degrees, generation and load at each bus in
megawatts and megavars, and line charging. Accompanying
the bus and line information are the power flow from that
bus over each transmission line connected to the bus and
the power losses in the transmission line itself in
megawatts and megavars.

In the operation of power systems, any appreciable
drop in voltage on the primary of a transformer caused by
a change of load may make it desirable to change the tap
Setting on transformers provided with adjustable taps in
order to maintain proper voltage at the load. Where a
tap'Changing transformer has been specified to keep the

Voltage at a bus within designated tolerance limits, the
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FIG. 2.2 Computer flow diagram of the NEWTON-RAPHSON
method for loadflow solutions
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voltage is examined before convergence is complete. If
the voltage is not within the limits specified, the
program causes the computer to perform the new set of
iterations with a one-step change in the appropriate tap
setting. The process is repeated as many times as
necessary to cause the solution to conform to the desired
conditions. The tap setting is listed in the tabulated
results.

A system may be divided into areas. The computer
program will examine the flow between areas, and
deviations from the prescribed flow will be overcome by
causing the appropriate change in generation of a selected
generator in each area. In an actual system, operation
interchange of power between areas is monitored to
determine whether a given area is producing that amount of
power which will result in the interchange.

Among other information that may be obtained is a
list of line loadings megavoltamperes. The printout will
also list the total megawatt and megavar losses in the
system and both dP and dQ mismatch at each bus. Mismatch
is an indication of the preciseness of the solution and is
the difference between P and Q entering and leaving at

each bus.
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Chapter III
ERROR ANALYSIS FOR NUMERICAL COMPUTATION
3.1 INTRODUCTION

In solving the system of nonlinear algebraic
equations by the iterative method (or numerical method),
the method sometimes might not converge to the solution.
The reason is that some errors can arise to cause an
inaccuracy in the computation during the iterative
process. This makes the predicted values by the iterative
method unreliable at any iteration. Finally, divergence
can occur and the solution of the system may not be found.
In this chapter, the main sources of errors in numerical
computation and convergence analysis of the Newton-Raphson

method are discussed in detail.
3.2 SOURCES OF ERRORS IN NUMERICAL COMPUTATION

In this section, the major errors that can arise
in numerical computation are introduced [6,7]. Some
errors, such as human error, computer hardware error or
some failure in a software system will not be discussed
here because they are supposed to be reliable. The
following list of errors contains the major errors usually

€ncountered in numerical computation.
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a. Computer Rounding Error

This error can arise when the calculating devices,
such as computers, cannot handle numbers that have more
digits than its finite word length (machine precision).
This makes the product of two or more numbers inaccurate
in subsequent calculations. Thus, the product of the
numbers must be rounded off. The effect of such a
computer rounding error can be significant in an extensive
calculation, or in a calculation in which the least
significant digits of the number become significant.

Table 3.2 shows the machine precision ey.

computer condition em in base 10
IBM 370 short precision 9.5 E=-7
IBM PC Basic DEFSNG 5.96E-8
IBM PC Basic DEFDBL 1.39E-17
HP 85 HP Basic 3.46E-1

Table 3.1 Machine Precision

b. Truncation Errors

These errors are the errors occur when a limiting
Process is truncated (broken off) before one has come to

the limiting value. In the Newton-Raphson method,
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truncation errors occur when the terms that are the order
greater than one of the indefinite Taylor series are
neglected to approximate the nonlinear function with the
linear function. The resulting defined error is
significant and causes the Newton-Raphson method
divergence whenever the initial estimate value is not
close enough to the roots of the nonlinear equation

system.
3.3 CONVERGENCE ANALYSIS OF THE NEWTON-RAPHSON METHOD

To investigate the effect of the truncation errors
[6], regardless of the effect of the computer rounding
error, on the convergence of the Newton-Raphson method, a
system of a nonlinear function with 1 variable f(x)=0 is
expanded to the second-order terms of indefinite Taylor's

series. That is

0 = £(x*) = £(xK)+(x*-xK)£' (xK) + y(x*-xK)2 £ (xK) (3.3.1)

where x* is the root of the nonlinear system.

After dividing eq.(3.3.1) by f£'(xX)

f(xk) g f"(xk)
) = =% (x*-xK)yz ——— (3.3.2)
£ (xk) * £ (Xk)

x*- (xk_

et the error in the current iteration and the predicted
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value for the next iteration be

ok cadii s s

= X
£ (xX)
and xktlz yk _ , (3.3.3)
£1 (xK)
f(xk)
where is the Newton-Raphson step.
£ (xK)
Thus eq.(3.3.2) can be written as
k
£ (xX)
ek*tl = 3. e" (K) .\ —— (3.3.4)
£1 (xK)

According to eq.(3.3.4), the error on the current
iteration is the function of the square of the error on
the previous iteration. From this relation, it follows
that the Newton-Raphson method will convérge to the
solution of the nonlinear equation system if and only if
sufficiently good initial estimate values can be provided:;
otherwise, an increase of error can make the predicted
values on the next iteration be worse than the previous
iteration. This leads to the divergence of the Newton-

Raphson method.
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Chapter IV
THE HYBRID ALGORITHM

4.1 INTRODUCTION

The error analysis that has been discussed in
Chapter III shows that the initial values of all unknowns
by the Newton-Raphson method have to be carefully selected
to be close enough to the roots of the system of nonlinear
algebraic equations. Regardless of the effect of the
computer rounding error, an increase of the defined
truncation error can arise and cause the method to diverge
when the initial values are far from the roots. To solve
this problem, the Hybrid algorithm is introduced in this
chapter. The purpose of the algorithm is to improve the
efficiency in convergence of the existing Newton-Raphson
method to be able to converge to the solutions with a wide
range of initial values. At the end of this chapter, the
proposed algorithm is applied to the Newton-Raphson method

in solving nonlinear power flow problems.

4.2 BACKGROUND

The Hybrid algorithm [1] was developed by M.J.D
Powell (1970). It is based on the idea of the
I-ﬂi'-Wer'nberge/IJIarquart method [2,3] that is generally used in
S0lving nonlinear least square problems. The idea of the

Proposeq algorithm is to introduce the method of steepest
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descent [2,3,9] to the existing Newton-Raphson method.
The important advantage of the method of steepest descent
is that the method is not as sensitive to initial values.
This makes the method of steepest descent able to converge
to the solutions of the system of nonlinear equations with
a wide range of initial estimates. By using a gradient
technique [2] in searching for the solutions along
curvature of the nonlinear functions, the defined
truncation error can be reduced and the method can be used
for making solutions of the system of nonlinear equations
more accurate for those cases where the Newton-Raphson
method diverges, when its initial values are far from the
roots. Despite the advantageous property of this method,
a larger number of iterations is required, which leads to
a slow convergence of this method. The comparison of
advantages and disadvantages between the Newton-Raphson
method and the method of steepest descent is shown on
Table 4.1

To obtain the advantages of both Newton-Raphson
method and the method of steepest descent, the concept of
a trust region [2,3] is introduced. The purpose of the
trust region is to restrict the step predicted by the
Newton-Raphson method to be inside the appropriate region,
in which the defined truncation error will not affect and
Cause a divergence, and to establish the switching

Policies between these two methods. By using the proposed
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NEWTON-RAPHSON METHOD

Advantages

- The method has a fast convergence characteristic and
can converge to the solutions of the system of
nonlinear equations in just a few iterations.

- The rate of convergence by the method is independent
of the size of the nonlinear system.

Disadvantages

- The initial values of unknowns required by this
method must be close to the roots of the system of
nonlinear equations to avoid the effect of
defined truncation error.

THE METHOD OF STEEPEST DESCENT
Advantages
- The method is able to converge to the solutions of
the system of nonlinear equations with a wide range
of initial values.

Disadvantages

- The method has a zigzagging and slow converging
characteristic.

TABLE 4.1 The comparison of the advantages and disadvantages
between the Newton-Raphson method and the method
of steepest descent
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algorithm, when the initial values are far from the roots,
the iteration obtains the predicted step in the steepest
descent direction, and then switches to the Newton-Raphson
iteration to obtain the Newton-Raphson step for a fast
convergence when they approach the neighborhood of the

solutions.
4.3 THE METHOD OF STEEPEST DESCENT

A typical iteration of a line search algorithm [2]
for optimization, subject to nonlinear constraints,
calculates the predicted step and updates the predicted

value for the next iteration by the line function

K+l = gk 4 ykgk (4.3.1)

descent direction

where Ek

uk

positive scalar

The relationship in eq.(4.3.1) is shown in Figure
4.1. There are several concepts associated with the line
function. First, it is a vector function of a scalar,
Namely, u. Notationally, §*=i*(u). Assuming the
objective function of the optimization problem is F(X),
the scalar function along the line is a function of only
U4, when given a starting point X and direction S, that is,

*
F(x )=F(u). A line search is the process of finding
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X2

FIG 4.1 A straight line in 2-space illustrating
vector search direction s™ and scalar u

some u, say u*(K) yhere u*(X) is a positive scalar chosen
at iteration k to minimize F(u). In order to find u*, the
general quadratic function [2] in vector notation is

recalled. That is

c + gL (%) (:§:|+ %[i:lg(?) I:x:] (4.3:2)

) = gradient of the objective function F(X)

)

F(X)

where g(

(

Xl

e ]
x|
I

Hassian matrix [2]

Substituting eq.(4.3.1) in eq.(4.3.2) yields

T
Rrt) . c+g7T (%K) Ek+uk§ﬂ +3 E‘hukgﬂﬁ(ik) #X+uksk| (4.3.3)
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To find u* at minimum F(X), the first derivative of
eqg.(4.3.3) with respect to u is set equal to zero. That

yields

=(k)T5 gk
u* = - g il (4.3.4)
s (k) T (xkys(k)

From eq.(4.3.4), u* is the positive scalar used in
eq.(4.3.1) to find the predicted value at minimum for the
next iteration, and %X*1l is called the Cauchy point.

To apply the line search technique for solving the
system of nonlinear algebraic equations, the vector of a

nonlinear system with N equations and N unknowns is given

by
£i(X) =0 pimti2 0. 0 (4.3.5)
and the objective function of eq.(4.3.5) is set to be

N
minimize F(X) = = £52(%) (4.3.6)
i=1
In this instance, F(X) takes on the minimum value
Zero at all solutions of the nonlinear equation system.

The descent direction 8K is the vector of the first

derivatives of eq.(4.3.6). That is

ar (X), «Aar (X) ..., 4R (x)

gradient g(x) =
dx 1 dx 2 dxn
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T
N dfy(%) N _df;(R)
=2 [ Z £5(X)- reer S £5(X)-
i=1 dx, i=1 dxp
= 2-3T(x) - (%) (4.3.7)

It is obvious that the direction -g(X) is the

direction in which F(X) decreases most rapidly and the
descent direction K of the line search is in the
direction of steepest-decent. From eq.(4.3.1), the
predicted value for the next iteration in the steepest-

descent direction is given by

K+l = gk - 4.g%K(x) (4.3.8)
where §(%K) = gradient of F(X) calculated in
eq.(4.3.7)
u = a positive scalar that is chosen

in order to reduce F(%X*l) < F(%X)

To find the scalar u* at the predicted minimum or

at the solutions (cauchy point), the vector direction

8% = -gk(%) is substituted into eq.(4.3.4). That is

gT (xX) -5 (xK)
u = (4.3.9)
gT(z%) -H(xK) -3 (=kK) :

From the Guass-Newton formula [2], The Hassian

Matrix H(xK) in eqg.(4.3.9) can be approximated by
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H(EK) = 3T (xK) -7 (xK) (4.3.10)

By substituting eq. (4.3.10) into eq. (4.3.8), the
scalar u* of the line search in the direction of steepest-

descent can be calculated by

gT (%X) -3(x¥) o i,
o _ .3.
gT (xk) -3T(zX) -7 (%K) -g(=¥)

I 3¢ |: -
" L. .3.
I 3=K) -3 |-

From eq.(4.3.8), the predicted point in the

steepest descent direction, at the solution called the

“Cauchy point", can be found by the following equation

%K+l = gk - u*3(xK) (4.3.13)

where u* and §(§k) can be calculated by eq.(4.3.12) and

€d.(4.3.7), respectively.

Figure 4.2 shows a view of zigzagging and a slow

Convergence of the steepest descent method.
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FIG 4.2 . Line searches on a quadratic function.
The steepest descent direction usually
causes zigzagging and slow convergence.

4.4 TRUST REGION AND SWITCHING POLICIES

The standard Newton-Raphson method converges to

the sSolutions of the nonlinear equation system at a

Quadratic rate, but without restrictions on its predicted
Step size, it is often unreliable on any iteration. On
the other hand, when the starting point is well removed

from the solutions, the quadratic of the nonlinear
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functions becomes no longer valid. An increase of the
defined truncation error of the Newton-Raphson method can
occur and cause the method to diverge. Thus, the concept
of "Trust region" [2,3] is defined to limit step length to
a reasonable maximum to establish the switching policies
[1,2] between the Newton-Raphson iteration and the

steepest descent iteration.

4.4.1 TRUST NEIGHBORHOODS AND TRUST RADIUS

In Figure 4.3, a view of the quadratic function
with 2 variables is shown. The predicted point terminates

at the solutions in the steepest descent direction, called

the "Cauchy point" (CP) while the point at the solutions
predicted by the Newton-Raphson method is called the
"Newton point" (NP), where 3 and u*g are the steps
predicted by the Newton-Raphson method and the method of
the steepest descent, respectively. A circular
neighborhood of radius R about x0 , called "trust region",
has been added to limit the step predicted by the Newton-
Raphson method to be inside on every iteration. For
eéXample, consider the results of centering that
neighborhood of radius R at every turning point, %K: the
Zigzagging characteristic of steepest descent (Figure 4.2)
is avoided well before arriving in the neighborhood of the
SOlutions, and the rapid convergence of the Newton-Raphson

iteration is likely to prevail. In between these two




36

2
X1 —_—

FIG. 4.3 The view of quadratic function with 2
variables when the trust region with radius
R is applied

states, the Newton-Raphson step is limited to be less than
the length of the trust radius R, presumably providing a
reasonable rate of progress. In the case when the Newton-
Raphson step is greater than R, the iteration will bias

1th‘ Predicted step into the steepest descent direction.
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4.4.2 SWITCHING POLICIES

In the concept of the trust region, the switching
policies [1,2] between the Newton-Raphson and the steepest

descent iteration are stated as

case 1 The Newton point (NP) is inside the trust region,

or |3 < R.

Qon Lipses She prBdicted

X1

Fig 4.4 The view of switching policies when the Newton
point (NP) is inside the trust region
In this case, which is illustrated in Figure 4.4,
the point at the solution predicted by the Newton-Raphson

(NP) is assumed to be inside the neighborhoods of a
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quadratic region, or it is approximately close to the
roots of the nonlinear equation system. Thus, the
iteration obtains the full Newton-Raphson step (§) for

fast convergence. That is
= 3K (4.4.1)

where %Xt1 = ¥K43@% is the predicted value for the next

iteration.

case 2 The Newton point (NP) and the Cauchy point (CP)
are both outside the trust region, or |§]| > R and

lu*gx) | > R.

From Figure 4.5, the points at the solutions
predicted by both methods are assumed to be far from the
neighborhoods of a quadratic region, or they are assumed
to be far from the roots of the nonlinear equation system.
An increase of truncation error by the standard Newton-
Raphson method can become significant and cause the
predicted value for the next iteration to be unreliable if
the iteration obtains the full Newton-Raphson step. Thus,
the iteration biases the predicted step to be inside the
trust region ([|dx| < R) in the steepest descent direction
to reduce thé effect of the defined truncation error. To
obtain the predicted step dx to be inside the trust |
Tegion, the length of the predicted step is set to be

€qual to the trust radius R for a maximum length. From
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FIG. 4.5 The view of the switching policies when the
Newton point (NP) and the Cauchy point (CP)
are both outside trust region.

eg.(4.3.8), the length of the predicted step in the

steepest descent direction is bound equal to be

lug(®) | = R (4.4.2)
That yields
R

I3 x)

u (4.4.3)

By Substituting the positive scalar u from eq.(4.4.3) to
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eq.(4.3.8), the predicted step in the steepest descent

direction with length R is calculated by

R

lg

%l
I
|

g(x) (4.4.4)

case 3 The Newton point (NP) is outside the trust region,

but the Cauchy point (CP) is inside the trust

region, or|3]| > R and ||u*3®)| < R.

FIG. 4.6 The view of the switching policies when the
Newton point (NP) is outside the trust
region, but the Cauchy point (CP) is inside.
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In Figure 4.6, the point at the solution predicted
by the Newton-Raphson method (NP) is assumed to be far
from the roots of the nonlinear equation system, but the
Cauchy point (CP) by the method of steepest descent shows
that it is close to the roots. In this case, the
iteration does not preferably bias the predicted step in
only the steepest descent direction even though the Newton
point (NP) is outside the trust region. The reason for
this is that, inside the neighborhoods of the solution of
the nonlinear equation system, the zigzagging
characteristic of the method of steepest descent can arise
and cause the slow convergence before it converges to the
solution. Thus, the iteration calculates the predicted
step with length R by interpolating the step between the
Newton-Raphson step and the step in the steepest descent
direction. The predicted step with length R is assumed to
be on the straight line joining the Newton point (NP) and

the Cauchy point (CP) and is calculated by

dx = (8-1)u*g(x) + % (4.4.5)

where 0 <86 £ 1

In order to find the predicted step to be equal to
length R, the right hand side (RHS) terms of eq.(4.4.5)

are bound to be

| (6-1)u*3 (%) + €3]] = R (4.4.6)
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By straightforward algebra, 6 from eq.(4.4.6) can be

calculated by the following equations.

e = (4.4.7)

where = u**"5(2)H’+2u*zigi(§)5i+"3"’

]
|

b = u*zjg; () é;+u*: |F(X) | (4.4.8)

c = u* |3 (x) | -r:

4.4.3 THE METHOD FOR REVISING THE TRUST RADIUS R

The trust radius R can be revised for every
iteration or even during the same iteration [1]. Usually,
the trust radius R is preferably adjusted so that it is as
large as possible to decrease the sum of the square of the
mismatch F(X) for every iteration. This depends on a good
prediction of the mismatch difference f; (X+dX)-f;(X):
i=1,2..,n, without taking an extra small step. However,
the trust radius R can also be reduced if the length Rk,
at the turning point; %K, is so big that the iteration can
not decrease the sum of the square of the mismatch F (X+dx)
to be less than the old one.

To revise the trust radius R, at the end of the

iteration, the test in eq.(4.4.9) is made.

F(%X+dx) < F (%K) (4.4.9)
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If the condition in eq.(4.4.9) fails, the
iteration number is not increased to k+1 and the trust

radius R is reduced to be
rREK = 4Rk (4.4.10)

The iteration is repeated to calculate the
predicted step dx until the condition in eq.(4.4.9) holds
and then prepare to increase the trust radius R.

The increase of the trust radius R can be provided
due to the following factors

1. A good prediction of the mismatch difference

(£ (X+dx)-£4 (X))} 7 i=1,2..,N

2. The linearity of the nonlinear function f; (X);

between the turning point %K and %K+3d%. That

is approximated to be

& = £ (X)+ £4(X) = fi(§)+2jJijde = £ (X+dXx)
(4.4.11)
and ¢ = T;#;' ~ F(X+dx)

The basis of the method for increasing the trust

radius R is that the mismatch difference fi(§+3§)-ii is
attributed to terms that are of the order of R2. If the
trust radius R is multiplied by the factor 2, then the
mismatch differenée is also expected to be multiplied by
about Q2. Guided by this assumption, the multiplier Q can

e calculated by bounding
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o | £5 (X+dx) |+(02 -1) | £ (X+dx) -85 | = 0.9F(X)-[F(X+dX)-0.1¢]
(4.4.12)
This yields
aa
n =1 + (4.4.13)

bb + ng’+aa cc

where aa 0.9F(X)-[F(X+dX)=-0.1¢]

bb = 3| £; (X+dx) [£; (X+TAX)-8;1| (4.4.14)

cc = z:i(fi(i'+3>'i) -%4)?

To avoid an oscillating value of the trust radius
R, it is suggested not to scale R by 0 directly whenever R
is calculated. The reason for this is that, in cases the
trust radius R is reduced in a previous iteration,
multiplying the reduced R by N would restore the trust
radius R to about its original value. When two values of
2 have been calculated, they must both have been obtained
since the last reduction in R. The factor by which R is
multiplied is set equal to the lesser calculated value of
1. Moreover, the factor N is limited being not greater

than 2, and "dpax" is the upper bound of the trust radius

R. To apply this strategy, a parameter r (T°=1) is
introduced and set to the value one both before the first
iteration and also whenever the trust radius is reduced.

Thus, the trust radius R can be increased by the following

€quations:
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RK*1 = min(BKRK, dpay)
where gk = min(2, akK, r¥) (4.4.15)
Jo st
ﬁk-l

In addition, if consecutive iterations obtain the
full Newton-Raphson step, then the trust radius R is
revised to be equal to the value of ||§]. The reason is
that consecutive successful Newton-Raphson iterations tend
to decrease in the length of predicted steps (due to the
quadratic properties).

4.4.4 SOME INDICATORS USED IN DETERMINING THE TRUST RADIUS
R

In general, the nonlinear surfaces of nonlinear

functions are approximately quadratic only in the

immediate vicinity of the solution. The trust radius R
has to be chosen with some thought of making the algorithm
converge to the solution without taking extra iterations.
An indicator, used to judge the appropriateness of the
trust radius R, should be provided and is used to report
major decisions.

Thus, the indicator, which is used to detefmine if
the predicted point is close to a quadratic region of the
fonlinear functions, is introduced. The idea is to
€Ompare the actual reduction of the sum of the square of

the mismatch F(X) obtained with each step dx to that which
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is available from the same step in an ideal quadratic
model (based on data from where the step began). The
reduction of the sum of the mismatch is recalled to be
F(ik)-F(i'), where %K is the predicted value on every

turning point and X' is the solution point of the

quadratic functions based on the gradient §Y§k) and the
Newton-Raphson step (§). To find the quadratic factor,

the quadratic form [2] is recalled to be

F(ZK)-F(X') = % |:§(>‘< Z'T E(ikﬂ-llg(ikﬂ (4.4.16)

Substituting the Hassian matrix H=J1J into eq. (4.4.16),

yields

F(EN)-FR') =% I:g(kaIT [E:I (4.4.17)

Then, the quadratic factor r is defined to be the ratio

F(%K) - F(@K+dx)
r = (4.4.18)
F(xX) - F(xX")

where the denominator of eq.(4.4.18) is calculated by

€q.(4.4.17).

From eq.(4.4.18), the quadratic factor r — 1, when

the Predicted values approach the solutions of the system
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nonlinear equations. Thus, the decision of choosing the
trust radius R can be determined by observing the behavior

of the quadratic factor r from iteration to iteration.
4.5 HYBRID ALGORITHM FOR NEWTON-RAPHSON LOADFLOW

The proposed Hybrid algorithm can be easily
incorporated into the existing Newton-Raphson power flow
program. Some additional computer subroutines for the
Hybrid algorithm, such as subroutine for calculating the
predicted step in the steepest descent direction,
subroutine that is used to perform the switching policies
between the existing Newton-Raphson iteration and the
steepest descent iteration, or even subroutine for
revising the trust radius R, can be also easily provided
to improve an efficiency in convergence of the existing
Newton-Raphson power flow program. By wisely selecting
the initial value of the trust radius R, extra iterations
in the.steepest descent direction can be avoided and the
fast convergence of the standard Newton-Raphson method can

be obtained by the proposed algorithm.

4.5.1 TRUST RADIUS INITIALIZATION FOR THE NONLINEAR POWER

FLOW PROBLEM

The length of the trust radius R varies according

to the size of the nonlinear equation system. If X is the
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vector of unknowns of the system of nonlinear algebraic
equations with N equations, then the initial value of the

trust radius R can be approximated by

RO = [ &gl (4.5.1)

1
2 2
(dx* 3 pay *+dX* 3 max*--+dX’p max)

where dxXj pay = maximum Newton-Raphson step allowed
for unknown x;; i=1,2,..,N for the first

iteration.

For the system of the nonlinear power flow
equations, there are two types of unknowns. One is the
voltage magnitudes (|v|) on every load bus, and the other
one is the voltage phase angles (©6) on every bus in the
system (except the slack bus). From eq.(4.5.1), the trust
radius RO for the nonlinear power flow equations can be

initialized by

RO = (m(dVpay)? +n(d6pay)?) (4.5.2)
where dVpayx = Maximum Newton-Raphson step allowed for
voltage magnitude at load buses for the
first iteration
dép,y = maximum Newton-Raphson step allowed for

voltage phase angles at all buses

(except the slack bus) in the system for
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the first iteration

total number of load buses

8
I

o
I

total number of system buses (except the

slack bus)

Digital steps of Hybrid algorithm for nonlinear

power flow problem

Read the information required for a power flow
solutions, such as Y-bus elements, generation and

load data, etc.

Formulate the system of nonlinear equations for

the real and reactive bus power mismatch.

Initialize all variables, such as unknown bus
voltage magnitudes (lv°|), unknown bus voltage

phase angles (69) and trust radius R?, etc.

Perform the standard Newton-Raphson iteration,

calculate the Newton-Raphson step and obey the

switching policies .

- if |3]] < R, then the iteration obtains the full
Newton-Raphson step.

- if |3 > R and u*§(X) > R, then the iteration
calculates the predicted step with length R in
the steepest descent direction; otherwise, the

predicted step is the step interpolated between
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the Newton-Raphson step and the step in the

steepest descent direction.

step 5 : Calculate F(X+dx) and try the test F(X+dx) < F(X)
- If F(X+dX) > F(X), then reduce the trust radius
R and go to step 4.
- If F(X+dx) < F(X), then increase the trust

radius R and prepare for the next iteration.

step 6 : If the mismatch F(x+dx) is less than the

prespecified tolerance, then stop the iteration
and calculate all bus powers and line flows;
otherwise, count to the next iteration and go to

step 4.

The iteration might be stopped in the case when
IgxX)| = o but F(XX) + 0. The reason is that the
iteration has approached a local minimum (not a global
minimum) [2]. This point is not the solution. Therefore,
a new set of initial values is tried. FIG 4.7 shows the

computer flow diagram of the Hybrid algorithm.

4.6 COMPUTER SUBROUTINE FOR THE HYBRID ALGORITHM APPLIED

TO THE NEWTON-RAPHSON LOADFLOW

The listing of the computer program, HYBRID, is
Contained in APPENDIX A. The program is written in BASIC

language by using the Qbasic compiler. The machine
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dx = FULL NEWTON— dx = INTERPOLATED dx = STEP N STEEPES]
RAPHSON STEP DESCENT dir.
| PRINT RESULTS STOP

TRY A NEW SET OF
v & @°

FIG 4.7 Computer flow diagram of the HYBRID
algorithm applied to the NEWTON-RAPHSON

loadflow
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precision is set to be into double precision mode by the
program to reduce the effect of the computer rounding
error.

From the main menu, the Yp,g admittance
formulation is provided. Either data from line admittance
Yij or line impedance zj4 can be used (selectable from
menu). The element Yij of the Yp,g admittance matrix is
formulated in polar form and stored in a file, named
"admit", that can be recalled later to formulate nonlinear
power flow equations. The input data from line admittance
(or line impedance) and line charging is also stored in a
file named "admitl," which can be also recalled to
calculate some essential information, such as line flows
and line losses at a given operating condition. To
formulate the power flow equations, necessary input data,
such as load and generation at each bus of the system, can
be supplied through line 3920-4190. The program sets the
total number of buses in the system equal to n, the
number of generator buses (P-V buses) equal to g, and the
number of load buses (P-Q buses) equal to m. Thus, the
2n-g-1 nonlinear power flow equations are formulated by
the program (2 equations for each P-Q bus, and 1 equation
for each p-v bus). The program requires the first bus to
be the slack bus, from bus 2 through bus g to be P-V
buses, and from bus g+l to bus m tp be P-Q buses,

Fespectively. The input data required by the program are
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voltage magnitude and the real power generation for all
generator buses (except the slack bus), and real and
reactive loads for all load buses. However, the real and
reactive loads can be also supplied at generator buses.

In order to start the iteration, the initial values of all
unknowns, such as bus voltage magnitude and bus voltage
phase angles, can be set to desired values from line 4420-
4310. (default values are set to be equal to |V°| = 1 p.u
and 80 = o rad.)

Line 6000 through line 7500 is written to perform
the Hybrid algorithm. The trust radius R is initialized
in line 6200 and can be changed to a desired value. The
variable F contains the value of the sum of the square of
the power mistmatch while a variable F1 contains the
preceding value. The elements of the Jacobian matrix
A(i,j) and the gradient vector GD(i) are provided to
compute the predicted step in both the Newton-Raphson
iteration and the steepest descent iteration. Line 6660
checks the location of the Newton point (NP) at each
iteration, by comparing the norm of the Newton-Raphson
Step to the length of the trust radius R, while line 6830
Checks the location of the Cauchy point (CP), by comparing
the value |u*g|, calculated from line 6730-6830, to the
length of the trust radius R. The subroutine for revising
the trust radius R is provided by the program from line

7160-7460. The trust radius R will be reduced if the
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condition F > F1 in line holds; otherwise, it will be
increased. Line 7480 checks the convergence. If the sum
of the square of the power mismatch F is less than the
prespecified tolerance E, then the program stops the
iteration. Line 11000-11650 is provided to calculate the
results, such as line flows, line losses, and some
essential imformation for load flow studies. The list of

subroutines for the program HYBRID is shown in TABLE 4.2.
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NAME LINE
Formulate Y, admittance matrix 1000-2780
Input data for loadflow calculation 3780-4230
Initialize all unknown |V0| and &° 4240-4310
Initialize all variables for HYBRID 6170-6220
algorithm, such as Trust radius RO and
tolerance limit E
Compute NEWTON-RAPHSON step (&) and 6430-6600
its norm | 3|
Compute step biased in steepest 6720-7150
direction and its norm
Revise Trust radius R 7160-7460
Test convergence 7470-7490
Compute the sum of the square 7510-7660
of the power mismatch
Compute power mismatch 8000-8190
Compute gradient g(X) and its norm 6320-6410
lg ) |l
Compute Jacobian matrix 9000-9590
Compute inverse matrix 10000-10640
Cgmpute line flows, line losses and 11000-11650
line current
Print out results 14000-15140

TABLE 4.2 List of computer subroutines for the HYBRID
algorithm applied to NEWTON-RAPHSON loadflow
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Chapter V
EXAMPLE AND NUMERICAL RESULTS

5.1 INTRODUCTION

In this chapter, the 10 bus power system is chosen
to be investigated. Digital computer results of the test
system, obtained by the HYBRID algorithm and the standard
NEWTON-RAPHSON method, along with the effect in choosing

the different values of R? are given to be discussed.
5.2 EXAMPLE : 10 BUS TEST SYSTEM

One line diagram of the 10 bus power system is
shown in Fig 5.1. The system data, such as line
admittance data, load data and generation data are given
in APPENDIX B. The system consists of 8 load buses (P-Q
buses), two generators (one of which performed as the
slack bus) and 13 lines. Therefore, there are 17
nonlinear power flow equations obtained for this system.

(2 equations for each P-Q bus and one for each P-V bus)
5.3 RESULTS

To investigate the effect of initial values on the
convergence of both the HYBRID algorithm and the standard
NEWTON-RAPHSON method, 3 different sets of initial values

are given to be:
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SLACK BUS e
= 1.08 1
L A - 1.732-j4.31 e
10§20 120
0.96-4.8
[
[ o PL=-0.35 -
N  QL=-0.25 6
] PL=-0.75 PL=-0.75
AS—jp.4 QL=-0.45 QL=—0.25
1.4-]5.802 ——=  PL=-0.40
[Fe o5, S 38 uil QL=-0.05
7 QL=-0.30 8
1.44-]7.484 1.84-]7.484
1.13—)4.477
PL=—0.85
QL=—0.40

=-=0.70
QAL=-0.30

TR

FIG 5.1 One Line Diagram of 10 bus tested system
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1. |v%| = 1.0 p.u and 6° = 0.0 rad.
2. |v9 = 0.8 p.u and 89 = -0.5 rad.
3. |v°| = 1.3 p.u and 6% = -1.0 rad.

During the test, variations of RO were tried.
Numerical results and the comparisons between the proposed
algorithm and the standard NEWTON-RAPHSON method in terms
of the convergence characteristics are shown in Fig 5.2,
5.3 and 5.4, respectively. The sum of the square of real
and reactive power mismatch F(X) is plotted for each
iteration of both methods. The solutions of all unknowns
and some results of the 10 bus test system, such as line
flows and line losses, are given in APPENDIX C.

For |v9|= 1.0 p.u and 8% = 0 rad., the results in
Fig 5.2 show that both methods converge to the solutions.
The effgct of using different RO can be observed in the
same Figure. The standard NEWTON-RAPHSON method and the
HYBRID algorithm both have the same characteristic in
convergence when RO = 1, while other values of RO cause
the proposed algorithm taking extra iterations before the
solutions are approached. The switching status (0=full
NEWTON-RAPHSON step, 1l=full steepest descent step and
=interpolated step) , shown in TABLE 5.1, indicates that-
the predicted NEWTON-RAPHSON step is inside the trust
region on every iteration when R°=1, while the small

values of RO (R?=0.1, RY9=0.3 and R0=0.5) caused the
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predicted step to be biased in the direction of the
negative gradient g(X) (steepest descent direction) before
the full NEWTON-RAPHSON step can be obtained.

For |V%| = 0.8 p.u and 82 = -0.5 rad., the results
in Fig 5.3 show that the proposed algorithm converges to
the solutions of the system faster than those by the
standard NEWTON-RAPHSON method. The reduction of the
mismatch F(X) is oscillatory on the first iteration,
because of the effect of truncation error before it
converged to the solutions, while the predicted step on
the same iteration by the HYBRID algorithm is biased to be
in the steepest descent direction to reduce F(X+dx) < F(X)
before it obtained the full NEWTON-RAPHSON step on the
second iteration (shown in TABLE 5.2).

For [V9 = 1.3 p.u and 6% = -1.0 rad., the results
in Fig. 5.4 does not show any convergence by the standard
NEWTON-RAPHSON method. The characteristic of the mismatch
F(ii is oscillatory in nature and it does not approach the
solutions of the system. By comparison, the HYBRID
algorithm, with RO=2, successfully converged to the
solutions with the fewest iterations.

In order to select the appropriate value for Ro,
the behavior of the quadratic factor r, that is favorable
to be R — 1, can be observed. The results, in Fig 5.5,
5.6 and 5.7, show that the values of quadratic factor r

for the optimum R (R®=1, RO=1 and RO=2), are all in the
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neighborhood of 1 from the beginning of the iteration.
Compared to those by the other values of R°, a few more
iterations are required before they approached the

neighborhoods of the solutions (R=——e1).
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FIG 5.2 The convergence characteristic comparison between
the HYBRID algorithm and the NEWTON-RAPHSON method
when |v°<| - 1.0 p.u and 62 - 0.0 raa.
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FIG 5.3 The convergence characteristic comparison between
the HYBRID algorithm and the NEWTON-RAPHSON method
when |v°| = 0.8 p.u and 69 - -0.5 rad
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FIG 5.4 The convergence characteristic comparison between
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when |v°| = 1.3 p.u and 69 = -1.0 raa.
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FIG 5.5 The characteristics of quadratic factor r for
different values of RO when |V°| = 1.0 p.u and
60 - 0.0 rad.
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FIG 5.6 The characteristics of quadratic factor r for
different values of RO when |V°| = 0.8 p.u and
eQ - -0.5 rad
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FIG 5.7 The characteristic of quadratic factor r for
different values of RO when [vo| = 1.3 p.u and
60 - -1.0 rad.

99



switching status

iteration no.
R%=0.1 R?=0.3 R9=0.5 RO=1

VWONOTLdWN PR
cooococoNNMNNNNN
[eNeNolNoNol SN SNV
ocoooomwnNn

COO0OONNNNDNNDNNNDNDNNDNDNRE

TABLE 5.1 The switching status for the HYBRID
algorithm when |v?| = 1.0 p.u and
8% = 0.0 rad.




switching status
iteration no.
R%=0.1 R9=1 RO=4 RO=10

1 2 2 2 1
2 2 0 2 2
3 2 0 2 2
4 0 0 2 2
5 2 0 0 2
6 0 0 0 0
7 0 0 0
8 0 0 0
9 0 0

10 0

11 0

12 0

13 0

14 0

15 0

16 0

17 0

18 0

19 0

TABLE 5.1 The switching status for the HYBRID
algorithm when |v0| = 0.8 p.u and
8% = -0.5 rad.
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iteration no.

switching status

R%=0.1 R%=0.3 RO=2

VOO WN R

[eNeNolNeNoNoNoN V)

COO0OOONNNNNMNRERE

COOCOONNNNNNNNNRRERRPRRER R

TABLE 5.3

The switching status for the HYBRID

algorithm when |V0| = 1.3 p.u and

g0

= =1.0 rad.
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Chapter VI
CONCLUSION
6.1 SUMMARY

The main contribution of this thesis is the
development of the HYBRID algorithm in order to improve
the efficiency in convergence of the standard NEWTON-
RAPHSON method in solving nonlinear a power flow problem,
when its close initial values are not available. A
defined truncation error from the neglected Taylor's
series terms of the standard NEWTON-RAPHSON method can
arise and cause the divergence. By introducing the method
of steepest descent and the concept of the "trust region",
the switching policies can be performed. The idea is to
start the iteration with the method of steepest descent,
if it is necessary, and then switch to the NEWTON-RAPHSON
method which is better when the solutions are approached.

In this thesis, the HYBRID algorithm has been |
applied to the standard NEWTON-RAPHSON loadflow using bus
admittance matrix. The results of the 10 bus test system
by using the proposed algorithm, compared with those by
using the standard NEWTON-RAPHSON method, are quite
favorable when the different sets of initial values were
tried. By observing the characteristic of quadratic
factor, the appropriaﬁe values of RO can be obtained to

avoid a slow convergence.
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6.2 RECOMMENDATIONS FOR FUTURE WORK

To improve the performance of the Hybrid algorithm
developed in this thesis, the following suggestions are

made:

1. It would be valuable to extend the proposed
algorithm to the fast decouple loadflow method
that is widely used on a large scale power
system. In general, the fast decouple loadflow
obtains the solutions by applying

approximations to the NEWTON-RAPHSON method.

2. The method, that can be used to reduce the
effect of the computer rounding errors and also
easily incorporated to the proposed algorithm,
should be provided in order to improve the
performance of the HYBRID algorithm. The
effect of the defined computer rounding errors
can arise and cause the divergence to the
iterative methods if the power system is
considered to be an ill-conditioned system

[15].




APPENDIX A

Basic Program for HYBRID algorithm applied to
the standard NEWTON-RAPHSON load flow

10 1RRARERREAFRRRREEARERRAREATARRERRRERARARRRARRRRRRRRRRRARRR TR AR R bbb hddrdd

20 1 %% i
30 %W ccecccceeccencceeanonea. PROGRAM " HYBRID " -=---======-==eececcccon- .-
‘0 1% *k

100 'ERddkdkdhhtt AR rrR R At R R R Rk hh AR Rk d AR Rt dddd ke d i dddr

110 159RetR.anon- Create main menu screen

120 1 RRRh et ddddhthdtddiddidddddddiiiddd

130 DEFDBL A-H, M-W ' specify variables to be in double precision
140 CLEAR

150 SCREEN , , 0, O

160 218 = ¢

170

180 23$ = STRING$(57, CHR$(177))
190 Z4$ = STRINGS(57, " ™)

200 258 = v Loadflow Studies For Power System Network "
210 268 = v (1) Create bus admitance matrix "
220 278 = v 1). From line inpedance < zij > "
230 288 = v 2). From line admitance < yij > "
240 298 = (2) Calculating loadflow problem by "
250 2108 = » 1). Standard Newton-Raphson method "
260 2118 = » 2). Applying Hybrid algoritm to standard "
270 2128 = » Newton-Raphson method. "
280 2138 = » (3) Quit "
290 KEY OFF

300 COLOR 14, 9

310 cLs

320 LOCATE 2, 1

330 PRINT 218 + 238 + 228
340 PRINT 218 + 238 + 228
350 PRINT 218 + 248 + 228
360 PRINT 218 + 258 + 228
370 PRINT 218 + 248 + 228
380 PRINT 218 + 248 + 228
390 PRINT 218 + 268 + 228
400 PRINT 218 + 278 + 228
410 PRINT 218 + 288 + 228
420 PRINT 218 + 248 + 228
430 PRINT 218 + 298 + 22%




440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
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PRINT 218 + 210% + 22%

PRINT 218 + 211% + 228

PRINT 218 + 2128 + 22%

PRINT 218 + 24$ + 22%

PRINT 218 + 2138 + 22%

PRINT 218 + 24$ + 228

PRINT 218 + Z3% + 228

PRINT 218 + Z3% + 228

PRINT

COLOR 12

A = CSRLIN

LOCATE A: PRINT TAB(25); "make a choice between 1, 2 and 3 .....< ? >u;
K$ = INPUTS(1)

KI = VAL(KS)

IF (KI = 1) OR ((KI = 2) OR (KI = 3)) THEN GOTO 590 ELSE GOTO 610
ON KI GOSUB 1000, 3000 '
GOTO 140

COLOR 28

SOUND 50, 1

SOUND 400, 1

SOUND 1000, 1

GOTO 550

1 devle e o sl o s s e e e o e e e o e o e e e e e ol e sk o e ol e ok ok ke e ol e e ol ol ke i o o e ol e o e o ol o o ok s o e e e e o e o e e o e e e e

0 e e s e e e e e o o ok e e e e o ol ok e o ol ol o o o o ool ol ol ol e e o o o ool o o ol o e o vk ol e e ol o o o e ol ol e e o ol e o o ol e e e o o vl e o

'g = # of generator buses (P-V buses)

'm = # of load buses (P-Q buses)

'n = # of buses in the system

' G(i,j) + jB(i,j) = element of line admittance in rectangular form
' Y(i,j) & DEL(i,j) = element of bus admittance matrix (Ybus) in Polar form
' 1I1¢i,j) & EE(i,j) = element of line admittance in Polar form

iR X = line impedance

1o e v e o o e e e e e e v e o 2 e v e e ok ol e v e o 2 e o o o o ok o e o o e v vl o o e o o e o o e o e o e o o e e o e o e e o e e e e e e e o
COLOR 3

LOCATE 7

PRINT 21$ + 26% + 22%

PRINT 218 + 27% + 22%

PRINT 21$ + 28% + 22%

FOR I =1 TO 80

LOCATE A, I: PRINT u u.

LOCATE A + 1, I: PRINT " »;

NEXT 1

LOCATE A

PRINT TAB(25); "make a choice between (1) and (2) .......< ? >¥;

K1$ = INPUTS(1)

K1 = VAL(K1S)

IF (K1 = 1) OR (K1 = 2) THEN GOTO 1300

COLOR 19

SOUND 50, 1

SOUND 400, 1

SOUND 1000, 1

GOTO 1200
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1300 COLOR 23, 4

1310 LOCATE 3, 34

1320 PRINT * please wait .. "
1330 SCREEN , , 1, O

1340 COLOR 14, 4

1350 CLS

1360 220% = CHR$(218)

1370 221$ = CHR$(191)

1380 222% = STRING$(67, CHR$(196))
1390 223$ = CHR$(179)

1400 224% = CHR$(192)

1410 225% = CHR$(217)

1420 226% = * ** - Create Bus Admitance Matrix - ** "
1430 227% = » (by using line impedance zij) "
1440 2288 = v (by using line admitance yij) "

1450 229% = " Z = R+jX "

1460 2308 = " Y = G+jB "

1470 ON K1 GOTO 1480, 1510

1480 X1$ = 227%

1490 X28 = 229%

1500 GOTO 1530

1510 X1$ = 228%

1520 x2$ = 2308

1530 COLOR 7

1540 FOR I = 1 TO 24

1550 PRINT STRINGS$(79, CHR$(176))

1560 NEXT 1

1570 COLOR 14, 4

1580 LOCATE 2, 4: PRINT Z20$ + 222% + 221%

1590 LOCATE , 4: PRINT 223% + Z26% + 223%

1600 LOCATE , 4: PRINT 223% + X1$ + 223%

1610 LOCATE , 4: PRINT 224$ + 222% + 225%

1620 COLOR , 9

1630 LOCATE CSRLIN + 1, 10: PRINT Z20% + STRING$(60, CHR$(196)) + 221%
1640 FOR I = 8 TO 20

1650 LOCATE I, 10

1660 PRINT CHR$(179) + STRING$(60, " ") + CHR$(179)

1670 NEXT 1

1680 LOCATE , 10: PRINT 224$ + STRINGS(60, CHR$(196)) + 225%
1690 SCREEN , , 1, 1

1700 COLOR 14, 9

1710 LOCATE 8, 11: INPUT "# of generators (P-V buses) =", G ' enter # of generator buses (P-V buses)
1720 LOCATE , 11: INPUT "# of load buses (P-Q buses) =", M ' enter # of load buses (P-Q buses)
170 N =M+ G

1740 LOCATE , 11: PRINT " total # of buses =" N
1750 DIM Y(N, N), DEL(N, N)

1760 DIM G(N, N), B(N, N)

1770 DIM LL(N, N), EE(N, N)

1780 LOCATE , 11: PRINT STRINGS(60, CHRS(196))

1790 coLor 14, 4

1800 ¢ = csRLIN

1810 LOCATE , 11: PRINT " bus no. “;




1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
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COLOR , 9: LOCATE , 25: PRINT CHR$(61) + CHR$(62); X2%
FORI =1TON

COLOR , 4

LOCATE C, 11: PRINT " bus no. "; I

FOR J =1 TON

COLOR 22, 9

LOCATE C + 2, 11

PRINT STRINGS$(50, " ")

LOCATE C + 2, 11

PRINT CHR$(61) + CHR$(62);

COLOR 14

ON K1 GOTO 1940, 2050

PRlNT " z(ll; l; II'II: J; ll) = ll;

INPUT "n R ' enter system data from line impedance (in rectangular form)
LOCATE CSRLIN - 1, 35

INPUT "(+/-) j ", X

IF (R = 0) AND (X = 0) THEN GOTO 1990 ELSE GOTO 2020
G(I, J) =0

B(I, J) =0

GOTO 2100

G(I, JD)=R/ (R 2+X"2)

BCI, ) =-X/(R"“2+X"2)

GOTO 2100

pRlNT n Y(ll; l'- ll'll’- J; ll) =ll;

INPUT * v G(I, J) ' enter system data from line admittance (in rectangular form)
LOCATE CSRLIN - 1, 35

INPUT “(+/-) j ", B(I, J)

GOTO 2100

LLCI, J) = SQR(G(I, J) ~ 2 + B(I, J) ~ 2) ' formulate line admittance matrix in Polar form
IF G(I, J) = 0 THEN GOTO 2130

GOTO 2170

IF BCI, J) > O THEN EECI, J) = 3.141592654# / 2

IF B(I, J) < O THEN EECI, J) = -3.141592654# / 2

IF B(I, J) = 0 THEN EECI, J) =0

GOTO 2230

IF GC(I, J) > 0 THEN GOTO 2190

IF G(I, J) < 0 THEN GOTO 2210

EECI, J) = ATN(B(I, J) / G(I, J))

GOTO 2220

EECI, J) = ATN(BCI, J) / GCI, J)) + 3.141592654#
IF I = J THEN GOTO 2250

G(J, 1) = G(I, J)

B(J, I) = B(I, J)

NEXT J

NEXT 1

OPEN "o", #2, "admitl" ' file "admit1" contained elements of line admittance matrix (in Polar form)

OPEN “oM, #3, "“admit2" ' file "admit2" contained elements of line admittance matrix (in rectangular form)

FORI =1TON

FOR J =1TON

WRITE #2, LL(I, J), EECI, J)
WRITE #3, G(I, J), B(I, J)
NEXT J



2340
2350

2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
3000
3010
3020
3030
3040
3050
3060
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NEXT 1

CLOSE #2

CLOSE #3

FORI =1TON

FOR J =1 TON

IF I = J THEN GOTO 2420
G(I, I) = GCI, I) + GCI, J)
B(I, I) = B(I, I) + B(I, J)
NEXT J

NEXT 1

FORI =1TON

FOR J =1 TON

IF I = J THEN GOTO 2510
GCI, J) = -G(CI, J)

G(J, I) = 6(I, N)

B(I, J) = -B(I, J)

B(J, I) = B(I, J)

NEXT J

NEXT 1

FOR I =1TON ' formulate bus admittance matrix Ybus (in Polar form)
FOR J =1TON

Y(I, J) = SQR(G(I, J) 2 + B(I, J) "~ 2)

IF G(I, J) = 0 THEN GOTO 2580
GOTO 2620

IF BCI, J) > O THEN DEL(I, J)
IF BCI, J) < O THEN DEL(I, J)
IF BCI, J) = O THEN DEL(I, J)
GOTO 2670

IF GCI, J) > O THEN GOTO 2640
IF GCI, J) < O THEN GOTO 2660
DEL(I, J) = ATN(B(I, J) / G(I, J))

GOTO 2670

DEL(I, J) = ATN(B(I, J) / G(I, J)) + 3.141592654#

NEXT J

NEXT 1

OPEN “O", #1, "ADMIT" ' file "admit" contained elements of bus admittance matrix Ybus (in Polar form)
WRITE #1, G, M, N

FORI =1TON

FOR J =1TON

WRITE #1, Y(I, J), DEL(I, J)

NEXT J

NEXT 1

CLOSE #1

ERASE G, B, Y, DEL, LL, EE

RETURN

1 9ol o ol v e ol o e ol o e e o ol ol o o o e e o e o e ke e ol o e e o gl e e e ol e o o o ok o e e e o e e ol o e e e e e e e o e e s e e s e e o

LR TR R LOADFLOW CALCULATION ==-==-=-==-sseezenz-- *
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3.141592654# / 2
-3.141592654# / 2
0

V(i) = voltage magnitude at bus i

''se(i) = voltage phase angle at bus i

' PG(i) = real power generation at bus i

' QG(i) = reactive power generation at bus i
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3070 * PL(i) = real load supplied at bus i
3080 ' QL(¢i) = reactive load supplied at bus i
3090 ' P(i) = net real power injection at bus i (Pi,spec)
3100 * Q(i) = net reactive power injection at bus i (Qi,spec)
3110 * PICi) = Pi,calc

3120 * QI(i) = Qi,calc

3130 ' DP(i) = real power mismatch

3140 ' DQCi) = reactive power mismatch

31 so 0 Sevie e e e o e e e ol o vk e o e e o e o i e o o e o e e o ok ol o ol e o e e o o o o o ol e o ol o ok o ol e ol ol e o ol o ol ol o o o e e o e e e o o
3160 COLOR 3

3170 LOCATE 11

3180 PRINT 21$ + 29% + 22%

3190 PRINT 21$ + 2108 + 228

3200 PRINT 21$ + 2118 + 228

3210 PRINT 218 + 2128 + 228

3220 FOR I = 1 TO 80

3230 LOCATE A, I: PRINT " »;

3240 LOCATE A + 1, I: PRINT " n;

3250 NEXT I

3260 LOCATE A

3270 PRINT TAB(25); "make a choice between (1) and (2) .......< ? >";
3280 K28 = INPUTS(1)

3290 K2 = VAL(K2%)

3300 IF (K2 = 1) OR (K2 = 2) THEN GOTO 3360

3310 COLOR 19

3320 SOUND 50, 1

3330 SOUND 400, 1

3340 SOUND 1000, 1

3350 GOTO 3260

3360 COLOR 23, 4

3370 LOCATE 3, 34

3380 PRINT " please wait .. "

3390 SCREEN , , 1, 0

3400 COLOR , &

3410 CLS

3420 2408 = CHR$(218)

3430 241$ = CHR$(191)

3440 242% = STRINGS(67, CHR$(196))

3450 243$ = CHRS$(179)

3460 2448 = CHRS(192)

3470 245% = CHR$(217)

3480 2468 = v ** - input data for loadflow calulation - ** "
3490 2478 = v (classical Newton-Raphson loadflow) "
. 3500 2488 = » (apply Hybrid algoritm to NPL) "

3510 ON K2 GOTO 3520, 3540

3520 X108 = 247%

3530 GoTo 3550

3540 X108 = 2488

3550 COLOR 14, 9

3560 LOCATE 2, 6: PRINT 2408 + 2428 + 241%
3570 LOCATE , 6: PRINT 2438 + 246$ + 2438

3580 LOCATE , 6: PRINT 2438 + X108 + 2438




3590 LOCATE , 6: PRINT 244$ + 242% + 2458

3600 COLOR , &

3610 OPEN "I, #1, “ADMIT"

3620 INPUT #1, G, M, N

3630 DIM P(N), PG(G), PL(N)

3640 DIM Q(N), QG(G), QL(N)

3650 DIM V(N), SE(N)

3660 DIM AINV(2 * (M + N+ 1), 2* (M+ N + 1))

3670 DIMAC(M + N+ 1, M+ N+ 1)

3680 DIM DP(N), DQ(N), DSE(N), DV(N)

3690 DIM PI(N), QI(N), Y(N, N), DEL(N, N)

3700 DIM PLINEC(N, N), QLINE(N, N)

3710 DIM PLOSS(N, N), QLOSS(N, N)

3720 FOR I = 1 TON

3730 FOR J = 1 TON

3740 INPUT #1, Y(I, J), DEL(I, J)

3750 NEXT J

3760 NEXT I

3770 CLOSE #1

3780 LOCATE CSRLIN + 1, 6: PRINT "“# of generators (P-V buses) = "; G
3790 PRINT TAB(6); "# of load buses (P-Q buses) = "; M
3800 PRINT TAB(6); “total # of buses =u. N
3810 COLOR , 10

3820 FOR I = 11 TO 22

3830 LOCATE I, 6: PRINT STRINGS(70, " ")

3840 NEXT I

3850 SCREEN , , 1, 1

3860 COLOR 14, 9

3870 LOCATE 14, 20: PRINT " P,gen = "

3880 LOCATE , 20: PRINT " V,bus = "

3890 LOCATE , 20: PRINT * P,load = n

3900 LOCATE , 20: PRINT " Q,load = =

3910 LOCATE 12, 20: PRINT " bus no. 1 (slack bus) "

3920 LOCATE 14, 31: PRINT " -n ' enter input data for the swing bus

3930 LOCATE , 31: INPUT ™ ", V(1)

3940 LOCATE , 31: INPUT " ", PL(1)

3950 LOCATE , 31: INPUT ™ » QL(1)

3960 LOCATE 12, 20: PRINT " bus no. 2 (P-V bus (generator bus) ) "
3970 FOR I =2 TO G ' enter input data for P-V buses
3980 LOCATE 12, 20: PRINT " bus no."; I

3990 LOCATE 14, 31: PRINT STRINGS$(20, " ™)

4000 LOCATE , 31: PRINT STRING$(20, " ™)

4010 LOCATE , 31: PRINT STRING$(20, " ™)

4020 LOCATE , 31: PRINT STRINGS(20, " ")

4030 LOCATE 14, 31: INPUT " ", PG(I)

4040 LOCATE , 31: INPUT " ®, V(I)

4050 LOCATE , 31: INPUT ™ ", PL(I)

4060 LOCATE , 31: INPUT ™ %, QL(I)

4070 P(1) = PGCI) - PLCI)
4080 NEXT I
4090 LOCATE 12, 20: PRINT " bus no. (P-Q bus (load bus )) "

4100 FOR I =G+ 1 TON ' enter input data for P-Q buses




4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
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LOCATE 12, 20: PRINT ™ bus no."; 1

LOCATE 14, 31: PRINT STRING$(20, ™ v)

LOCATE , 31: PRINT STRING$(20, " w)

LOCATE , 31: PRINT STRING$(20, " ")

LOCATE , 31: PRINT STRING$(20, " »)

LOCATE 14, 31: PRINT # - »

LOCATE , 31: PRINT * - ®

LOCATE , 31: INPUT " ", PL(I)

LOCATE , 31: INPUT " n  QL(I)

P(1) = -PL(I)

QCI) = -aL(I)

NEXT 1

MN =M+ N -1

I*¥%® .- get initial condition

SE(1) = 0 ! set swing bus angle = 0

FORI =2TON ' set initial starts for bus voltage phase angles (all buses) in rad.
SECI) =0

NEXT I

FORI =G+ 1TON ' set initial starts for load bus voltage magnitude in p.u
W = 1

NEXT 1

I%%*% ---- whether to swicth to Hybrid method or classical Newton-Raphson
DIM R(MN), DX(MN), GD(MN)

GOSUB 15150

IF K2 = 2 THEN GOSUB 6000 ELSE GOSUB 5000

GOsuB 11010

RETURN

1 e e e e vir vl o o o e o e e e e e o e e o o e e o o e ol o e o o e e o o e o e e e o e e e e e o e T e o e e e e e e e e e e e e e e e e e
e LOADFLOW BY STANDARD NEWTON-RAPHSON METHOD --==--=---=-= ik

0 el e s e e v o o v e o o e o o ol o e e o o o o ool e o o o o e o o o ol e ol e o e o e o e e o e e e e e e e e e e e e e e e e e e e o

GOsuB 15150

\**%*--- main program

E = .00000000000001#

' set epselon
! set iteration count

' calc. residual

' calc. Jacobian matrix
' calc. Inverse Jacobain

' calec. step dx

DX(CI) + AINV(CI, J) * R(J)

IT=0

IT=1T + 1
GOsuB 7510
GOSUB 15390
GOSuUB 9000

FOR I =1 TO MN
FOR J =1 TO MN
AINV(I, J) = A(I, J)
NEXT J

NEXT 1

GOsuUB 10010

FOR I =1 TO MN
DX(I) = 0

FOR J =1 TO MN
DX(I) =

NEXT J

NEXT 1

NN =0

5240 FOR 1 = 2 TO N

' updating current angle



5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
6160
6170
6180
6190
6200
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350
6360
6370
6380
6390
6400
6410

NN = NN + 1

SE(I) = SE(1) + DX(NN)

NEXT 1

FORI =G+ 1TON ' updating current voltage

NN = NN + 1

V(I) = V(I) + DX(NN)

NEXT 1

GOSuUB 7510 ' calc. current residual

IF F < E THEN RETURN ' test convergence

GOTO 5070

0 e e s e e ol ol e e vl vl ol ol e o e o e e e ol ol o e e ok ol ol ol o ol e e o o v o o o ol e e o o o ok e o o o e e ol ol o e o o e e e ol e e e e o
I*%%--- HYBRID ALGORITHM FOR STANDARD NEWTON-RAPHSON LOADFLOW == -k
1 e e e o s o e e e e o o vl ol e e o e ok e e e e ol o o o o o ol o o ol o e o o o e e e e e o o o o e e o e o e o e e e e e o e e e e e e e e e
' AC,) = Jacobian matrix

' Gd(,) = Grandient matrix of f

' g1 = norm of Gd(,)

' R(,) = residual , dim M

' X(,) = varible vector

' DX(,) = vector of the predicted step

' normx = norm of NEWTON-RAPHSON step

'F1 = sum of residuals in previous iteration

URE = sum of residuals in current iteration

BR = trust radius

VE = specified tolerance limit

0 e e o e e e e e o o e o e o e o e e o o o o ol ol o o o o o o o o e o o o o ol ol o ol e e ol o o e vl e o o e o o ol o ol o o e e e e e e e e e e o
IhikkkkkkAA*A*® -~ main program

DIM FEE(MN)

E = .0000000000001#: TMAX = 1000: TINC = 1

DV = .2

DSE = .2

R = SQR(M * (DV ~ 2) + N * (DSE - 2)) ' calc. approx. trust radius R
IT=0 ! set init. iteration no.
GOSUB 7510 ' calc. first residual

F1 =F

IRENE Seonnsns re-entry point for new iteration

IT=1T +1 ' iteration count

STATUS = 0

F1=F

CuT =0

UG =0

GOsSuB 9000 ' calc. Jacobian matrix J(,)
Gl1 =0 ' calc. gradient Gd(,) and norm g1
FOR I =1 TO MN

GD(I) =0

FOR J 1 TO MN

GDCI) = GDCI) + ACJ, I) * R(J)

NEXT J

GD(I) = -2 * GD(I)

G1 = G1 + GD(I) * GD(I)

NEXT I

G1 = SQR(G1)



6420
6430

6450

6690
6700
6710
6720
6730
6740
6750
6760
6770

6800

IF G1 = 0 THEN RETURN

e Standard Newton-Raphson iteration

FOR I =1 TOMN

FOR J = 1 TO MN

AINV(I, J) = ACI, J)

NEXT J

NEXT 1

GOSUB 10010 ' calc. inverse Jacobian matrix
FOR I =1 TO MN

DX(I) = 0

FOR J =1 TO MN

DX(I) = DX(I) + AINV(I, J) * R(J)

NEXT J

NEXT I

NORMX = 0 ' calc. norm of dx
FOR I =1 TO MN

NORMX = NORMX + DX(I) * DX(I)

NEXT 1

NORMX = SQR(NORMX)

DENO = 0 ' calc. deno. factor for quadratic factor
FOR I =1 TOMN

DENO = DENO + GD(I) * DX(I)

NEXT I

DENO = -DENO / 2

IF NORMX > R THEN GOTO 6720 ' test whether normx is inside R
GOSUB 7670 ' updating X(,)

GOSUB 7510 ' calc. current residual

IF F < F1 THEN GOTO 7150 ' test whether current Newton step
R=R/ 2: TINC = 1 ' is successful to decrease residual
GOSUB 7780

gk et ST A steepest descent iteration

Uu=20 ' calc. predicted step to min. F(x)
FORI =1 TO MN

A =0

FOR J = 1 TO MN

AA = AA + A(I, J) * GD(J)

NEXT J

U=U+AA * AA

NEXT 1

U=(G1 *G1) /U

UG =U *G1

IF UG >= R THEN GOTO 7010 ' test whether predicted step > r
GX =0

FOR I =1 TO MN

GX = GX + GD(I) * DX(I)

NEXT 1

A=(U"2)* (Gl ~2) + (NORMX ~ 2) + 2 * U * GX
B=U*GX+ (U"2) * (G1 " 2)

C=( " 2) *(G1 “2) - (R " 2)

IF (B " 2 - A * C) <0 THEN GOTO 6960

ALPA = (B + SQR((B “2) - A*C)) /A

IF (ALPA > 0) AND (ALPA < 1) THEN GOTO 6960

81



6940
6950
6960
6970
6980
6990
7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7220

7240
7250
7260
7270
7280

7300
7310
7320
7330
7340
7350

7370
7380
7390
7400
7410
7420
7430
7440
7450
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ALPA = (B - SQR((B " 2) - A*C)) /A

IF (ALPA > 0) AND (ALPA < 1) THEN GOTO 6960 ELSE GOTO 7010
STATUS = 2

FOR I =1 TO MN

DX(I) = (ALPA - 1) * U * GD(I) + ALPA * DX(I)

NEXT 1

GOTO 7050

STATUS = 1

FOR I =1 TOMN ' calc. pure cauchy step

DX(I) = -R * (GD(CI) / G1)

NEXT 1

GOSUB 7670 ' updating X(,)

GOSuUB 7510 ' calc. current residual

IF F < F1 THEN GOTO 7150 ' test whether current cauchy step
' is successful to decrease residual

GOSUB 7780 ' set X(,) back to last turning pt

R=R/ 2: TINC = 1 ' reduce restrict step lenght

CUT = CUT + 1 ' cut back count

IF CUT > 1000 THEN RETURN ' test whether cauchy step is too
' small

GOTO 6830 ' updating X(,) and recalc. residual

RQ = (F1 - F) / DENO

IANAN coneeee-- revise restrict step lenght

IF F> (F1 - .1 * (F1 - FEE)) THEN GOTO 7180 ELSE GOTO 7200

R=R/2

GOTO 7350

AA= F1 - .1 * (F1 - FEE) - F ' calc. dnult

BB=0

cc=0

FOR I =1 TO MN ' calc. sp & ss

BB = BB + ABS(R(I) * (R(I) - FEE(I)))

CC = CC + (R(I) - FEE(I)) ~ 2

NEXT I

RAMDA = 1 + AA / (BB + SQR(BB * BB + AA * CC))
RAMDA = SQR(RAMDA)

IF RAMDA < 2 THEN U1 = RAMDA ELSE GOTO 7320

IF RAMDA < TINC THEN U2 = RAMDA ELSE U2 = TINC
GOTO 7330

IF 2 < TINC THEN U2 = 2 ELSE U2 = TINC

TINC = RAMDA / U2

R=0U2*R

FEE = 0

FOR I =1 TO MN

FEECI) = 0

FOR J = 1 TO MN

FEE(I) = FEE(I) + A(I, J) * DX(J)

NEXT J

FEECI) = FEE(I) + R(I)
NEXT 1

FOR I =1 TO MN

FEE = FEE + FEE(I) * FEE(I)
NEXT 1



7460
7470
7480
7490
7500
7510
7520
7530
7540
7550
7560
7570
7580
7590
7600
7610
7620
7630
7640
7650
7660
7670
7680
7690

7880
8000
8010
8020
8030
8040
8050
8060
8070
8080

GOSuB 15390
URANN v i test convegence
IF F < E THEN RETURN

IF IT > TMAX THEN RETURN
GOTO 6260
IRRRN eeeo subroutine for calc. residual F(x) and R(,)

! test whether too many iteration

FORI =2TON

NN = NN + 1

R(NN) = DP(I)

NEXT 1

FORI =G+ 1TON
NN = NN + 1

R(NN) = DQ(I)

NEXT I

F=0

FOR I =1 TO MN
F=F + R(I) * R(I)
NEXT 1

RETURN

IEBEE o subroutine for updating X(,)

FORI =2TON

NN = NN + 1

SE(I) = SE(I) + DX(NN)

NEXT 1

FORI =G+ 1TON

NN = NN + 1

V(I) = V(I) + DX(NN)

NEXT I

RETURN

IR cowae subroutine for setting X(,) back to last turning points
NN =0

FORI =2TON

NN = NN + 1

SE(I) = SE(I) - DX(NN)

NEXT I

FORI =G+ 1TON

NN = NN + 1

V(I) = V(I) - DX(NN)

NEXT I

RETURN

!##%---  subroutine for calculatiog real and reactive power mismatch ---####wuw
FOR 1 =2TON ' updating real power

PI(I) =0

FOR J =1 TON

PICI) = PICI) + V(I) * Y(I, J) * V(J) * COS(DEL(I, J) + SECJ) - SE(I))
NEXT J

NEXT 1

FORI =G+ 1TON ' updating reactive power

QI(I) =0

83
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8090 FOR J
8100 QI(I)
8110 NEXT J
8120 NEXT I
8130 FOR I = 2 TO N

8140 DP(1) = P(I) - PI(I)
8150 NEXT I

8160 FOR 1 =G+ 1 TON
8170 pa(I) = Q(I) - QI(I)
8180 NEXT I

8190 RETURN

Q000 ! ¥ddkdkdekdhdkd

9010 '#wwwwdk--- subroutine for calc. Jacobian matrix ---**kwkikkikiaditiat

1TON
QICI) - VCI) * Y(I, J) * V(J) * SIN(DEL(I, J) + SE(J) - SE(I))

9020 ERASE A
9030 DIM AC2 * (M+ N+ 1), 2* (M+ N+ 1))
9040 FOR I = 2 TON 'form submatrix J1

9050 FOR J = 2 TON

9060 IF I <> J THEN GOTO 9120

9070 FOR JJ = 1 TON

9080 IF I = JJ THEN GOTO 9100

9090 ACI, I) = ACI, I) + VCI) * Y(I, JJ) * V(JJ) * SINCDEL(I, JJ) + SE(JJ) - SE(I))
9100 NEXT JJ

9110 GOTO 9130

9120 ACI, J) = -V(I) * Y(I, J) * V(J) * SINC(DEL(CI, J) + SE(J) - SE(I))

9130 NEXT J

9140 NEXT 1

9150 FOR I = 2 TO N 'form submatrix J2

9160 FOR J =G + 1 TON

9170 IF I <> J THEN GOTO 9260

9180 FOR JJ = 1 TON

9190 IF I = JJ THEN GOTO 9210

9200 GOTO 9230

9210 ACI, N + J - G)
9220 GOTO 9240

9230 ACI, N + J - G)
9240 NEXT JJ

9250 GOTO 9270

9260 ACI, N+ J - G)
9270 NEXT J

9280 NEXT 1

9290 FOR 1 =G+ 1 TON 'form submatrix J3

9300 FOR J = 2 TO N

9310 IF I <> J THEN GOTO 9370

9320 FOR JJ = 1 TO N

9330 IF I = JJ THEN GOTO 9350

9340 ACN + 1 -G, J) =AN+1 -G, J)+ V(I) * Y(I, JJ) * V(JJ) * COS(DEL(I, JJ) + SE(JJ) - SE(I))
9350 NEXT JJ

9360 GOTO 9380

9370 ACN + I - G, J) = =V(I) * Y(I, J) * V(J) * COS(DEL(I, J) + SE(J) - SE(I))

9380 NEXT J

9390 NEXT I

9400 FOR I =G+ 1 TON 'form submatrix J&

ACI, N+ J - G) +2*Y(I, JJ) * V(JJ) * COS(DEL(I, JJ))

ACI, N+ J - G) + Y(I, JJ) * V(JJ) * COS(DEL(I, JJ) + SE(JJ) - SE(I))

V(I) * Y(I, J) * COS(DEL(I, J) + SE(J) - SE(I))
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910 FOR J =G+ 1 TON

9420 IF 1 <> J THEN GOTO 9510
9430 FOR JJ = 1 TO N

9440 1F I = JJ THEN GOTO 9460
9450 GOTO 9480

9460 ACN + 1 -G, N+J
9470 GOTO 9490

9480 ACN + 1 -G, N+ J
9490 NEXT JJ

9500 GOTO 9520

9510 ACN + 1 - G, N+ J - G)
9520 NEXT J

9530 NEXT I

9540 FOR I =
9550 FOR J =
9560 ACI, J)
9570 NEXT J

9580 NEXT I

9590 RETURN
10000 ! #idddddedien

G) =A(N+1-G, N+J-G) - 2*V(I)* Y(I, JJ) * SINCDEL(I, JJ) + SE(JJ) - SE(I))

G)

ACNN+1 -G, N+J-G) - Y(I, JJ) * V(JJ) * SIN(DEL(I, JJ) + SE(JJ) - SE(I))

=V(I) * Y(I, J) * SIN(DEL(I, J) + SE(J) - SE(I))

TO MN
TO MN
AL +1, 0+ 1)

H = -

10010 '*¥***..--gubroutine for calc. Inverse matrix

10020 K = 0
10030 FOR X = 1 TO MN 'form RHS unity matrix
10040 FOR Y = 1 TO MN

10050 IF X = Y THEN GOTO 10080

10060 AINV(X, Y + MN) = 0

10070 GOTO 10090

10080 AINV(X, Y + MN) = 1

10090 NEXT Y

10100 NEXT X

10110 FOR L = 1 TO MN

10120 K = K + 1

10130 IF AINV(L, K) <> 0 OR L <> MN THEN GOTO 10160
10140 K = K + 1

10150 GoTOo 10130

10160 IF AINV(L, K) = 0 AND L <> MN THEN GOTO 10510
10170 FOR X = 2 * MN TO 1 STEP -1

10180 AINV(L, X) = AINV(L, X) / AINV(L, K)

10190 NEXT X

10200 FOR J = 1 TO MN

10210 IF J = L THEN GOTO 10260

10220 FOR X = 2 * MN TO 1 STEP -1

10230 AINV(J, X) = AINV(J, X) - AINV(J, K) * AINV(L, X)
10240 IF ABSCAINV(J, X)) < ABSCAINV(J, X + 1)) / 100000000000# THEN AINV(J, X) = 0
10250 NEXT X

10260 NEXT J

10270 NEXT L

10280 FOR Y = 1 TO MN

102905:0

10300 FOR X = 1 TO MN

10310 IF AINVCY, X) <> O THEN S = 1

10320 NEXT X
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10330 FOR XX = MN + 1 TO 2 * MN

10340 IF S = 0 AND AINVCY, XX) <> O THEN GOTO 10640

10350 NEXT XX

10360 NEXT Y :

10370 FOR L = 1 TO MN

10380 IF AINVCL, L) <> 1 THEN GOTO 10630

10390 NEXT L

10400 FOR Y = 1 TO MN

10410 FOR X = 1 TO MN

10420 IF X <> Y AND AINVCY, X) <> O THEN GOTO 10630

10430 NEXT X |

10440 NEXT Y E
l

10450 FOR X = 1 TO MN

10460 FOR Y = 1 TO MN

10470 AINV(X, Y) = AINV(X, Y + MN)
10480 NEXT Y

10490 NEXT X

10500 RETURN

10510 FOR H = L + 1 TO MN

10520 IF AINV(H, K) <> 0 THEN GOTO 10570
10530 NEXT H

10540 K = K + 1

10550 IF K > 2 * MN THEN GOTO 10280
10560 GOTO 10130

10570 FOR Z = 1 TO 2 * MN

10580 T = AINV(L, 2)

10590 AINVCL, Z) = AINVCH, 2)

10600 AINV(H, 2) = T

10610 NEXT 2

10620 GOTO 10130

10630 CLS : PRINT “NOT INDEPENDENT": END

10640 CLS : PRINT "CONTRADICTORY": END
R e T

11010 (#wdddddr..... subroutine for calc. lineflow and line loss---------- bbb bl b
11020 1 e e e sie v s s e e e e vl e vl o o o o e e e e e e v v ol e e e o ol e vl o e e e ol o ol e o e o ol ol e e e e e v o S o e e o e o e e e o o e e e o e e e e o

11030 ' PLINE(Ci,])

real power flow from bus i to bus j

11040 ' QLINE(i, ) reactive power flow from bus i to bus j

11050 * PLOSS(i,]j) real power loss along line i,j

11060 ' QLoss(i,j) = reactive power along line i,]j ‘\
\

11070 1§ desedesieoiesedesiese ek s de ok s e e e e e e e el de e ol e e de e s de e e e e e e e e o e e e e e e ol e e e e e e e e e e e s e e e s e e e e e e e e e o

11080 FOR J = 1 TO N ' compute net real and reactive power injected at the swing bus
11090 PC1) = PC1) + V(1) * Y(1, J) * V(J) * COS(DEL(1, J) + SE(J) - SE(1))

11100 QC1) = QC1) - V(1) * Y(1, J) * V(J) * SINCDEL(1, J) + SE(J) - SE(1))

11110 NEXT J “
11120 FOR I = 2 TO G ' compute reactive power injected at P-V buses ‘
11130 FOR J = 1 TON

11140 QCI) = QCI) - VCI) * Y(I, J) * V(J) * SIN(DEL(I, J) + SE(J) - SE(I))

11150 NEXT J

11160 NEXT 1

11170 PG(1) = P(1) - PL(1) ' compute real and reactive power generation at swing bus
11180 aG(1) = (1) - aL(1)

190 FOR 1 =2 TO G ' compute reactive power generation at P-V buses




11200
11210
11220
11230
11240
11250
11260
11270
11280
11290
11300
11310
11320
11330
11340
11350
11360
11370
11380
11390
11400
11410
11420
11430
11440
11450
11460
11470
11480
11490
11500
11510
11520
11530
11540
11550
11560
11570
11580
11590
11600
11610
11620
11630
11640
11650
12000
12010
12020
12030
12040
12050
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QG(I) = Q(I) - aL(I)

NEXT I

ERASE A, DP, DQ, PI, QI, Y, DEL

DIM PLINE, QLINE, PLOSS, QLOSS

DIM G(N, N), B(N, N), LL(N, N), EEC(N, N), IC(N, N), AICN, N)
OPEN "i", #2, “admitL"

OPEN "i", #3, "admit2"

FORI1 =1TON

FOR J =1 TON

INPUT #2, LL(I, J), EECI, J)

INPUT #3, G(CI, J), BCI, J)

NEXT J

NEXT 1

CLOSE #2

CLOSE #3

FORI =1TON

FORJ=1TON

IF I = J THEN GOTO 11640

VR =
vl =
W =
DV =
VR = V(I) * COS(SE(I)) - V(J) * COS(SE(J))
VI = V(I) * SINCSE(I)) - V(J) * SINCSE(J))
VW = SQR(WVR ~ 2 + VI ~ 2)

IF VR = 0 THEN GOTO 11470

GOTO 11510

IF VI > O THEN DV
IF VI < O THEN DV
IF VI = 0 THEN DV
GOTO 11560

IF VI > 0 THEN GOTO 11530

(=20 = T — B I |}

3.141592654# / 2
-3.141592654# / 2
0

IF VI < 0 THEN GOTO 11550

DV = ATN(VI / VR)

GOTO 11560

DV = ATN(VI / VR) + 3.141592654#

ICI, J) =W * LL(I, J) ' calc. current magnitude along line i,]j

AICI, J) = DV + EE(I, J) ' calc. current phase angle along line i,]j

PLINECI, J) = V(I) * I(I, J) * COS(SE(I) - AI(I, J)) ' calc. real and reactive power flow from bus i to bus

QLINECI, J) = V(I) * I(I, J) * SIN(SE(I) - AI(I, J))
PLINECJ, I) = V(J) * I(I, J) * COS(SE(J) - AI(I, J))' calc. real and reactive power flow from bus j to bus
QLINE(J, I) V(J) * I(I, J) * SINCSE(J) - AICI, J))

PLOSS(I, J) = ABS(PLINECI, J) - PLINEC(J, 1)) ' calc. real & reactive power losses along line i,]j
QLOSS(I, J) = ABS(QLINE(I, J) - QLINE(J, 1))

NEXT J

NEXT I

1 Rdrdrdd kil

1%%*%....gubroutine for display. or print out the result

COLOR , 0

CLs

COLOR , &

FOR I = 6 TO 16



12060
12070
12080
12090
12100
12110
12120
12130
12140
12150
12160
12170
12180
12190
12200
12210
12220
12230
12240
12250
12260
12270
12280
12290
12300
12310
12320
12330
12340
12350
12360
12370
12380
12390
12400
12410
12420
12430
12440
12450
12460
12470
12480
12490
12500
12510
12520
12530
12540
12550
12560
12570

LOCATE I, 12: PRINT STRING$(55, " ")

NEXT I

COLOR 3

LOCATE 7, 15: PRINT "Show the results from calculation .... "
LOCATE 9, 35: PRINT "1.) on screen"

LOCATE 10, 35: PRINT "2.) by printer"

LOCATE 11, 35: PRINT "3.) go back to main menu"
LOCATE 13, 35: PRINT "select options ..... ";
S$ = INPUTS(1)

S = VAL(SS)

IF (S = 1) OR ((S = 2) OR (S = 3)) THEN GOTO 12170 ELSE GOTO 12200
IF S = 3 THEN RETURN

ON S GOSUB 12270, 14000

GOTO 12020

SOUND 100, 1

SOUND 500, 1

SOUND 1000, 1

LOCATE 13, 35: PRINT STRINGS$(25, " ")

COLOR 19

GOTO 12130

RETURN

1 Fededededededr v de e e v e e de e e e

\#¥k%--- display the result on screen

Gosus 13500

PRINT TAB(3); "1 ."; TAB(11); "SW."; TAB(17);
PRINT USING “##.###"; V(1);

PRINT TAB(24);

PRINT USING "“###.###"; SE(1);

PRINT TAB(37);

PRINT USING "“##.#####"; PG(1);

PRINT TAB(47);

PRINT USING “##.#####"; QG(1);

PRINT TAB(61);

PRINT USING “##.####H"; PL(1);

PRINT TAB(71);

PRINT USING "##.#####"; QL(1)

FORI =2TOG

IF CSRLIN > 22 THEN GOTO 12450

GOTO 12490

PRINT

PRINT TAB(25); "press anykey to see more ..";
KK$ = INPUTS(1)

GOSUB 13500

PRINT TAB(2); I; "."; TAB(11); "P-V"; TAB(17);
PRINT USING “##.##"; V(1);

PRINT TAB(24);

PRINT USING "¢ ###"; SE(I1) * 57.3;

PRINT TAB(37);

PRINT USING "“##.#####"; PG(I1);

PRINT TAB(47);

PRINT USING "“##.####"; QG(1);

PRINT TAB(61);
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IO S8



12580
12590
12600
12610
12620
12630
12640
12650
12660
12670
12680
12690
12700
12710
12720
12730
12740
12750
12760
12770
12780
12790
12800
12810
12820
12830
12840
12850
12860
12870
12880
12890
12900
12910
12920
12930
12940
12950
12960
12970
12980
12990
13000
13010
13020
13030
13040
13050
13060
13070
13080
13090

PRINT USING "##.##H"; PL(1);
PRINT TAB(71);

PRINT USING "##.##H#"; QL(1);

NEXT I

FORI =G+ 1TON

PRINT TAB(2); I; “."; TAB(11); "P-Q"; TAB(17);
PRINT USING “##.###"; V(I1);

PRINT TAB(24);

PRINT USING “###.###"; SE(I) * 57.3;
PRINT TAB(40); "-"; TAB(50); "-";
PRINT TAB(61);

PRINT USING "“##.#HHE#Y; -P(1);
PRINT TAB(71);

PRINT USING “##.###HH#"; -Q(1)

IF CSRLIN > 22 THEN GOTO 12740

GOTO 12770

PRINT TAB(25); "press anykey to see more ..";
KKS$ = INPUTS(1)

GOsSuB 13500

NEXT I

PRINT

FOR I =1 TO 80

LOCATE CSRLIN, I

PRINT CHR$(95);

NEXT I

PRINT

PRINT TAB(25); "press anykey to see lineflows and lineloss"
KK$ = INPUTS(1)

GOsuB 13270

FORI =1TON

FOR J =1TON

IF I = J THEN GOTO 13150

IF GCI, J) = 0 AND B(I, J) = O THEN GOTO 13150
IF CSRLIN > 22 THEN GOTO 12930

GOTO 12970

PRINT

PRINT TAB(25); "press anykey to see more ..";
KK$ = INPUTS(1)

GOsuB 13310

PRINT USING "##"; I;

PRINT n-u;

PRINT USING “##v; J;

LOCATE CSRLIN, 9

PRINT USING "##.##"; G(1, J);

IF B(I, J) >= O THEN PRINT "+ju;

IF B(I, J) < O THEN PRINT "-ju.
PRINT USING “##.##"; ABS(B(I, J));
LOCATE CSRLIN, 23

PRINT USING "##.###v; 1(1, J);
LOCATE CSRLIN, 33

PRINT USING "###.###"; PLINECI, J);
LOCATE CSRLIN, 43
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13100
13110
13120
13130
13140
13150
13160
13170
13180
13190
13200
13210
13220
13230
13240
13250
13260
13270
13280
13290
13300
13310
13320
13330
13340
13350
13360
13370
13380
13390
13400
13410
13420
13430
13440
13450
13460
13470
13480
13490
13500
13510
13520
13530
13540
13550
13560
13570
13580
13590
13600
13610

PRINT USING “###.#HH"; QLINECI, J);

LOCATE CSRLIN, 59

PRINT USING "###.#HH#"; PLOSS(I, J);

LOCATE CSRLIN, 69

PRINT USING "###.##H#"; QLOSS(I, J)

NEXT J

NEXT I

PRINT

FOR I =1 TO 80

LOCATE CSRLIN, I

PRINT CHR$(95);

NEXT I

PRINT

PRINT TAB(25); "press anykey to go back to menu"

KK$ = INPUT$(1)

RETURN

L}

COLOR , &

CLS

COLOR 14, 9

2608 = " <<.. Report From Loadflow Calculation ..>>
LOCATE 2, 2: PRINT CHR$(218) + STRINGS(75, CHR$(196)) + CHR$(191)
LOCATE , 2: PRINT CHR$(179) + 260% + CHR$(179)

LOCATE , 2: PRINT CHR$(192) + STRING$(75, CHR$(196)) + CHR$(217)
COLOR , &

PRINT

PRINT STRINGS$(79, CHR$(196))

PRINT TAB(3); "bus"; TAB(10); "admitance";

PRINT TAB(26); "I“;

PRINT TAB(32); "** -- Line Flow -- **»;

PRINT SPACE$(5); "** -- Line Loss -- **n

LOCATE CSRLIN, 32: PRINT STRING$(20, CHR$(196));

LOCATE , 58: PRINT STRING$(20, CHR$(196))

LOCATE CSRLIN, 36

PRINT "P(p.u)"; SPACE$(8); "Q(p.u)";

LOCATE CSRLIN, 62

PRINT "P(p.u)"; SPACE$(8); "Q(p.u)"

PRINT STRINGS(79, CHR$(196))

PRINT

RETURN

]

COLOR , &

CLS

COLOR 14, 9

2608 = " <<.. Report From Loadflow Calculation ..>>
LOCATE 2, 2: PRINT CHR$(218) + STRINGS(75, CHR$(196)) + CHR$(191)
LOCATE , 2: PRINT CHR$(179) + 260$ + CHR$(179)

LOCATE , 2: PRINT CHR$(192) + STRINGS(75, CHR$(196)) + CHR$(217)
COLOR , 4

PRINT

PRINT STRING$(79, CHR$(196))

PRINT "Bus no."; SPACE$(2); "Type";
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13620
13630
13640
13650
13660
13670
13680
13690
13700
14000
14010
14020
14030
14040
14050
14060
14070
14080
14090
14100
14110
14120
14130
14140
14150
14160
14170
14180
14190
14200
14210
14220
14230
14240
14250
14260
14270
14280
14290
14300
14310
14320
14330
14340
14350
14360
14370
14380
14390
14400
14410
14420

91

PRINT SPACES$(3); "Volts"; SPACE$(3); "Angle";
PRINT SPACE$(5); "**----Generation----**u;
PRINT SPACES$(2); "W¥*------- Load------- AR
LOCATE , 35: PRINT STRINGS(45, CHR$(196))
PRINT TAB(40); "P(p.u)"; SPACES(7); "Q(p.u)";
PRINT SPACES(11); "P(p.u)"; SPACE$(7); "Q(p.u)"
PRINT STRING$(79, CHR$(196))

PRINT

RETURN

1 Sedeodedevede de e v o e e e

i*k**-.-.-- print out the result

CLS

LOCATE 12, 25

COLOR 0, 7

PRINT "** -- printing the results -- *#*n
LPRINT CHR$(27); “-"; CHR$(1); "RESULT OF POWER FLOW CALCULATION";
LPRINT CHR$(27); "-"; CHR$(0);

LPRINT TAB(50); "# of iterations = “; IT
LPRINT

FOR I =1 TO 80

LPRINT CHR$(95);

NEXT 1

LPRINT

LPRINT "BUS NO."; SPACE$(2); "TYPE"; SPACE$(3); "VOLTS"; SPACES$(3); “ANGLE"; SPACES(S);
LPRINT "e#-..-GENERATION--=--**1: SPACES(2); "*¥------- LOAD--=--==~ *n,

LPRINT TAB(35);

FOR I = 34 T0 79

LPRINT CHRS$(95);

NEXT I

LPRINT TAB(38); "P(p.u)"; SPACES(7); "a(p.u)"; SPACE$(10); "P(p.u)"; SPACES(7); "Q(p.u)"
FOR I = 1 TO 80

LPRINT CHR$(95);

NEXT I

LPRINT

LPRINT TAB(3); "1 ."; TAB(11); "SW"; TAB(17);
LPRINT USING “##.###%; V(1);

LPRINT TAB(24);

LPRINT USING “###.###"; SE(1);

LPRINT TAB(37);

LPRINT USING "##.#####"; PG(1);

LPRINT TAB(47);

LPRINT USING "“##.#####"; QG(1);

LPRINT TAB(61);

LPRINT USING “##.#s#n; PL(1);

LPRINT TAB(71);

LPRINT USING “##.#####v; aL(1);
FORI=2T0G

LPRINT TAB(2); I; "."; TAB(11); “P-V"; TAB(17);
LPRINT USING “##.###"; V(1);

LPRINT TAB(24);

LPRINT USING "###.###n; SECI) * 57.3;

LPRINT TAB(37);




14430
14440
14450
14460
14470
14480
14490
14500
14510
14520
14530
14540
14550
14560
14570
14580
14590
14600
14610
14620
14630
14640
14650
14660
14670
14680
14690
14700
14710
14720
14730
14740
14750
14760
14770
14780
14790
14800
14810
14820
14830
14840
14850
14860
14870
14880
14890
14900
14910
14920
14930
14940

LPRINT USING "“##.####4"; PG(I1);
LPRINT TAB(47);

LPRINT USING "##.####4": QG(I);
LPRINT TAB(61);

LPRINT USING "##.###"; PL(1);
LPRINT TAB(71);

LPRINT USING "##.#####"; aQL(1);
NEXT 1

FORI=G+1TON

LPRINT TAB(2); I; "."; TAB(11); "P-Q"; TAB(17);
LPRINT USING "“##.%##%; V(1);
LPRINT TAB(24);

LPRINT USING “###.###"; SECI) * 57.3;
LPRINT TAB(40); "-"; TAB(50); "-";
LPRINT TAB(61);

LPRINT USING "##. %444 ; -P(1);
LPRINT TAB(71);

LPRINT USING "##.#n; -a(1);
NEXT I

LPRINT

FOR I = 1 TO 80

LPRINT CHRS$(95);

NEXT 1

LPRINT : LPRINT

LPRINT TAB(13); Me-=s=--momeccmccanaa-s LINEFLOW

FOR I = 1 TO 80

LPRINT CHRS$(95);

NEXT 1

LPRINT

LPRINT TAB(3); “BUS"; TAB(10); "ADMITANCE™;
LPRINT TAB(26); "I";

LPRINT TAB(32); "#** -- LINE FLOW -- **u;
LPRINT SPACES(5); "** -- LINE LOSS -- **n
LPRINT TAB(32);

FOR I = 1 TO 46

LPRINT w-u;

NEXT 1

LPRINT TAB(36); "P(p.u)"; SPACES(8); "a(p.u)";
LPRINT TAB(62); "P(p.u)"; SPACES(8); "Q(p.u)"
FOR I =1 TO 80

LPRINT CHR$(95);

NEXT I

LPRINT : LPRINT

FORI=1TON

FORJ=1TON

IF I = J THEN GOTO 15080

IF GCI, J) = 0 AND B(I, J) = O THEN GOTO 15080
LPRINT USING "##%; I;

LPRINT #-u;

LPRINT USING “##"; J;

LPRINT TAB(8);

LPRINT USING “##.##"; G(I, J);
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14950 IF BCI, J) >= O THEN LPRINT "+ju;
14960 IF BCI, J) < O THEN LPRINT "-jw;
14970 LPRINT USING "##.##"; ABS(B(I, J));
14980 LPRINT TAB(23);

14990 LPRINT USING "##.###%; 1(1, J);

15000 LPRINT TAB(33);

15010 LPRINT USING "###.###; PLINECI, J);
15020 LPRINT TAB(43);

15030 LPRINT USING "###.#%###"; QLINECI, J);
15040 LPRINT TAB(59);

15050 LPRINT USING "###.####"; PLOSSCI, J);
15060 LPRINT TAB(69);

15070 LPRINT USING "###.####"; QLOSSCI, J)
15080 NEXT J

15090 NEXT I

15100 LPRINT

15110 FOR I = 1 TO 80

15120 LPRINT CHRS$(95);

15130 NEXT I

15140 RETURN

15150 1 e oie v e o vl e v e o vl e o e ol o e e o e o o ol o e e e ol o e e e o o e e o o o ol ol o vl e v e ol o ol e o o o ol e o e e o e o e o o e e o e e e e

15160 '4¥%<canaa SUBRUTINE FOR GENERATING SCREEN DURING COMPUTING--===<<========= *
15170 1 evle s e e vl ol o ok ol o ol e o ol o e ol o ol e o o ol v ol e e ol ol o e e o o e o ol e v ol e o o e o ol o o e o o e o o o e e o o o o e o e e e e e e e o
15180 2908 = » ** .- Convegence Test During Computing -- ** "
15190 SCREEN , , 3, 1

15200 COLOR 4, 2

15210 CLS

15220 COLOR 14, 6

15230 LOCATE 2, 6: PRINT CHR$(218) + STRING$(67, CHR$(196)) + CHR$(191)

15240 LOCATE , 6: PRINT CHR$(179) + Z90$ + CHR$(179)

15250 LOCATE , 6: PRINT CHR$(192) + STRING$(67, CHR$(196)) + CHR$(217)

15260 LOCATE CSRLIN + 2, 6: PRINT " iteration no. ";

15270 COLOR 20, 2

15280 LOCATE , 50: PRINT ".......computing"

15290 COLOR 14, 9

15300 FOR I = 9 TO 22

15310 LOCATE I, 6: PRINT STRING$(67, " ")

15320 NEXT I

15330 COLOR 14, 6

15340 LOCATE 10, 10

15350 PRINT " K"; SPACES$(9); "“F(x)"; SPACE$(9); " CSTEP "; SPACE$(10); "NEWTON-GRAD. "
15360 PRINT

15370 SCREEN , , 3, 3

15380 RETURN

15390 t'**#*%-.-.ghow convegence test on screen

15400 COLOR 14, 9

15410 IF CSRLIN > 21 THEN GOTO 15420 ELSE GOTO 15460

15420 FOR I = 12 TO 21

15430 LOCATE I, 6: PRINT STRING$(67, " ™)

15440 NEXT 1

15450 LOCATE 12, 11

15460 LOCATE , 11




15470 PRINT IT; TAB(19);

15480 PRINT USING “####.A#sss#"; F;

15490 LOCATE , 35: PRINT USING “##.###v; R;
15500 LOCATE , 55: PRINT USING "##.####v; UG
15510 LPRINT IT; : LPRINT USING " . Aitiitittitnn ;
15520 RETURN

F1;

LPRINT STATUS;
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LPRINT USING "#:H¥.###HH"; NORMX, R, RQ




APPENDIX B
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System Data for 10 Bus Test System
i-J GiJ Bij i-j GiJ Bij
1-1 0. 0000 0. 0550 4-7 0. 4500 -2. 4000
1-3 1. 7320 -4, 3100 5-5 0. 0000 0. 0650
1i-4 10. 0000 -20. 0000 5-6 5. 0000 15. 0000
2-2 0. 0000 0. 0650 6-6 0. 0000 0. 0400
2-8 1. 8400 -T7. 4840 T-7 0. 0000 0. 0750
2-9 1. 1300 -4, 4770 7-8 1. 4000 -5, 6020
2-1 0. 7000 -2. 8010 7-9 1. 8400 -T7. 4840
3-3 0. 0000 0. 0850 8-8 0. 0000 0. 0650
3-5 0. 8200 -2. 1900 9-9 0. 0000 0. 0850
3-6 10. 0000 -20. 0000 9-10 0.9340 -3. 7350
4-4 0. 0000 0. 0750 10-10 0. 0000 0. 0300
TABLE B-1 Line admittance data for 10 bus system
bus no. |V|(p.u) ©(rad.) generation (p.u) Load (p.u)
P Q P Q
i 1. 08 0.0 - - 0. 00 0. 00
2 1. 02 - 1. 50 - 0. 00 0. 00
3 - - 0. 00 0. 00 -0. 85 -0. 30
4 - - 0. 00 0. 00 -0. 35 -0. 25
5 - - 0. 00 0. 00 -0.75 -0. 45
6 - - 0. 00 0. 00 -0. 75 -0. 25
7 - - 0. 00 0. 00 -0. 65 -0. 30
8 - - 0. 00 0. 00 -0. 40 -0. 05
9 - - 0. 00 0. 00 -0. 85 -0. 40
10 - - 0. 00 0. 00 -0. 70 -0. 30

TABLE B-2 Operating condition of 10 bus system



APPENDIX C

Computer Results for the 10 Bus Tested System
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ORESULT OF POWER FLOW CALCULATION # of lterations = 6
BUS NO. TYPE VOLTS ANGLE AKX e == —~GENERATION====** AKX LOAD-~====- k%
P(p-u)  Q(p.u) P(p.u)  Q(p-u)
1= SW 1.080 0.000 4.80769 3.30281 0.00000 0.00000
2% P-V 1.020 -50.408 1.50000 1.92042 0.00000 0.00000
3% P-Q 0.757 -17.677 - - 0.85000 0.30000
4 . P-Q 0.947 -4.492 - - 0.35000 0.25000
58 P-Q 0.744 -18.383 - - 0.75000 0.45000
6 . P-Q 0.733 -19.570 - - 0.75000 0.25000
¥ P-Q 0.811 -49.405 - - 0.65000 0.30000
8 . P-Q 0.923 -51.975 - - 0.40000 0.05000
9 . P-Q 0.830 -55.772 - - 0.85000 0.40000
10 . P-Q 0.824 -60.146 - - 0.70000 0.30000
TABLE C-1 The solution of all unknowns for 10 bus tested system
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BUS  ADMITTANCE I x* —— LINE FLOW =-=- *% x% —— LINE LOSS -- **
P(p.u) Q(p.u) P(p.u) Q(p-u)
1- 35 [1.33=1 B.81 1.979 1.7410 1.2403 0.3145 0.7825
1- 4 10.00-320.00 3.456 3.0667 2.1267 0.2388 0.4776
2- 8 1.84-3 7.48 0.777 -0.3758 -0.6981 0.0187 0.0761
2- 9 1.13-3 4.48 0.964 -0.5776 -0.7960 0.0493 0.1952
2-10 0.70-3 2.80 0.722 -0.5466 -0.4939 0.0438 0.1753
3- 5 0.82-3 2.19 0.038 0.0235 0.0164 0.0002 0.0006
3- 6 10.00-320.00 0.773 0.5530 0.1900 0.0119 0.0239
4- 5 0.96-3 4.80 1.408 1.0168 0.8629 0.0794 0.3970
4- 7 0.45-3 2.40 1.669 1.4611 0.6035 0.2102 1.1208
5- 6 5.00-315.00 0.298 0.2107 0.0677 0.0018 0.0053
7- 8 1.40-3 5.60 0.681 -0.0624 0.5493 0.0195 0.0780
7- 9 1.84-3 7.48 0.716 0.5385 -0.2186 0.0159 0.0647
9-10 0.93-3 3.74 0.244 0.2010 -0.0240 0.0038 0.0150

TABLE C-2 The list of line flows and line losses for 10 bus tested system
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