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ABSTRACT 

LOAD FLOW SOLUTION BY APPLYING HYBRID ALGORITHM TO 

THE NEWTON-RAPHSON METHOD 

Chaipant Tappayuthpijarn 

Masters of Science in Engineering 

Youngstown State University, 1990 

The purpose of the HYBRID algorithm, discussed in 

this thesis, is to improve the efficiency of the 

convergence of the existing NEWTON-RAPHSON method in 

solving the system of nonlinear power flow equations, when 

its close initial estimates are not available. The 

algorithm is based on the interpolation between the fast 

convergence standard NEWTON-RAPHSON iteration and the 

method of steepest descent applied to the sum of the 

square of mismatch fi(x). The balance between these two 

methods is governed by introducing the concept of the 

trust region to restrict the step predicted by the 

classical method to be in the quadratic region and to 

switch to the steepest decent method that is better when 

the initial values are far from the solution. 

Digital computer results and their comparisons of 

the 10 bus test system, with different initial values, by 

the proposed algorithm and by the standard method are also 

discussed in this thesis. 
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Chapter I 

INTRODUCTION 

1.1 Background and Objective 

The NEWTON-RAPHSON method is the most widely used 

approach for the nonlinear power flow solution in power 

system planning largely because of its quadratic 

convergence characteristics. This fast convergence 

property yields the solutions of the nonlinear system 

converged in just a few iterations. However, the possible 

range of the initial values by the standard Newton-Raphson 

is required to be close to the roots of the system. An 

increase of error from neglected higher order terms in the 

indefinite Taylor's series can cause system divergence 

when the initial values are far from the roots. The 

convergence analysis of the standard NEWTON-RAPHSON method 

given in this thesis shows that the error on the current 

iteration is the function of the square of the error on 

a previous iteration. Therefore, the defined error could 

make the classical method unreliable on any iteration. 

In order to overcome these problems, the method of 

steepest descent is introduced. This method has an 

important advantage over the Newton-Raphson method because 

it is not as sensitive to the initial values. The method 

of steepest descent is generally used in nonlinear 

optimization problems. It can be expediently used for 
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making solutions more accurate in cases when the Newton­

Raphson method diverges when the initial values are far 

from its roots. Despite the advantageous property of this 

method, a large quantity of calculations is required to 

get the solutions of the system converged. This leads to 

the slow convergence of the method of steepest descent. 

To obtain the useful properties of both the 

Newton-Raphson method and the method of steepest descent, 

the HYBRID algorithm has been developed. The purpose is 

to improve the convergence of the existing standard 

Newton-Raphson iteration when its initial estimates are 

far from the roots. The idea is to start with the 

steepest descent iteration when necessary, then switch 

to the standard Newton-Raphson method for fast convergence 

when the predicted values are close to the roots. The 

compromise between these two methods is governed by the 

concept of the trust region, defined in terms of the trust 

radius, and the switching policies. The purpose of the 

trust region is to restrict the step predicted by the 

standard Newton-Raphson method to be in the region where 

a quadratic is available. By the switching policies, if 

the predicted step is inside the "trust radius," then the 

correction is the full Newton- Raphson step; otherwise, 

the classical step is biased toward the steepest-descent 

direction. Moreover, the automatic revision of the trust 

radius is also provided by the proposed algorithm to 



adjust the appropriate quadratic region for the next 

iteration at the end of every iteration. 

1.2 overview 

3 

In this thesis, a review of Load Flow studies, 

along with a description of Load Flow calculation by the 

Newton-Raphson method, is contained in Chapter II. 

Chapter III discusses some sources of errors that can 

arise in numerical computation. It also includes a 

discussion of the effect of these errors on the 

convergence of the standard Newton-Raphson method in 

solving the system of nonlinear algebraic equations. In 

Chapter IV, the Hybrid algorithm is introduced, including 

a description of the method of steepest descent, the 

concept of the trust region and the switching policies 

between the Newton-Raphson and steepest descent iteration. 

At the end of the chapter, the application of the Hybrid 

algorithm to the standard Newton-Raphson Loadflow is 

provided. In Chapter V, numerical results and comparisons 

of the 10 bus test system, with different initial values, 

using the proposed algorithm and the standard 

Newton-Raphson method, are discussed. Finally, 

conclusions and recommendations for future research are 

provided in Chapter VI. 
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Chapter II 

LOAD FLOW STUDIES 

2.1 INTRODUCTION AND BACKGROUND 

A Load Flow Study [10,11,12,13] is the 

determination of the voltage, current, power factor, real 

power and reactive power at various points in an 

electrical network under existing or contemplated 

conditions of normal operation. It is essential in 

planning the future development of the system because 

satisfactory operation of the system depends on knowing 

the effects of interconnecting with other power systems, 

new loads, new generating stations and new transmission 

lines before they are installed. The mathematical 

formulation of the loadflow problem results in a system of 

nonlinear algebraic equations. These equations can be 

established by using either the bus or the loop frame of 

reference. The coefficients of the equations depend on 

the selection of the independent variables, .i.e, voltages 

or currents. Thus, either the admittance or impedance 

matrices can be used. 

Most of the early successful digital methods were 

based on the Y-matrix of the Gauss-Seidel method [13]. 

This requires minimum computer storage and uses only a 

small number of iterations for a small network. 

Unfortunately, as the size of the network is increased, 
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the number of iterations required increases dramatically 

for large systems. In some cases, the method does not 

provide a solution at all. These difficulties encountered 

in load-flow studies led to the development of the Newton­

Raphson method (10,13). The method is based on the 

Newton-Raphson algorithm designed to solve the 

simultaneous quadratic equations of the power network. 

Contrary to the Gauss-Seidel algorithm, it needs a larger 

time per iteration, but it can get the solutions in only a 

few iterations independent of the network size. 

Therefore, most of the load-flow problems that could not 

be solved by the Gauss-Seidel method are solved with no 

difficulty by this method 

However, the recent research efforts have been 

concentrated on the development of the decouple Newton­

Raphson method (10) since system planning studies and 

system operations may require a multiple-case load flow 

solution in some situations. These methods are based on 

the fact that in any power transmission network operating 

in the steady state, the coupling between P-lvl and Q-8 is 

relatively weak, contrary to the strong coupling between 

P-8 and between Q-lvl. Therefore, these methods solve the 

load-flow problem by decoupling the P-8 and Q-lvl 

problem. Thus, the solutions are obtained by applying 

approximations to the Newton-Raphson method. 
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2.2 DATA FOR LOAD FLOW STUDIES 

The load-flow problem can be defined as the 

calculation of the real and reactive powers flowing in 

each transmission line, and the magnitude and phase angle 

of the voltage of each bus of a given power system network 

for specified generation and load conditions. The 

information obtained from the load-flow studies can be 

used to test the systems 6apability to transfer energy 

from generation to load without overloading the line and 

to determine the adequacy of voltage regulation by shunt 

capacitors, shunt reactors, tap-changing transformer and 

the var-supplying capability of generators [12]. 

2.2.1 TYPE OF BUSES IN LOAD-FLOW STUDIES 

In general, there are three types of buses in the 

load-flow problem: 

a. slack (generator) bus 

b. voltage-controlled (generator) buses or P-V buses 

c. load buses or P-Q buses 

Since the transmission losses in a given system 

are associated with the bus profile, until a solution is 

obtained, the total power generation requirement of a 

system cannot be determined. Therefore, the generator at 

the slack bus is used to supply the additional real and 

reactive power necessary owing to the transmission losses 



7 

(12). Thus, at the slack bus, the magnitude and phase 

angle of the voltage are known values, and the real and 

reactive power generated are the quantities to be 

determined. In order to define the load-flow problem to 

be solved, it is necessary to specify the real power and 

the voltage magnitude at each generator bus. This is 

because these quantities are controllable though 

excitation controls (12). Since an overexcited 

synchronous generator supplies current at a lagging power 

factor, the reactive power of a generator is not required 

to be specified. The load buses are also known as the P-Q 

buses. This is due to the fact that the real and reactive 

power are specified at given load buses. Table 2.1 gives 

the bus types in load flow studies with corresponding 

known and unknown variables. 

BUS TYPE 

SLACK 

GENERATOR (P-V) 

LOAD (P-Q) 

KNOWNS QUAN. 

lvl, e=o 

P, lvl 
P, Q 

UNKNOWN QUAN. 

P, Q 

Q, 8 

lvl, e 

TABLE 2.1 Bus classification in Load Flow Studies 

,, ~ LLIAM P. MAAG LI BRARY 
~ Wli ST.ATE UNIVERSITY 
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2.2.2 POWER SYSTEM EQUATIONS 

a. Network performance equations 

In load-flow studies in normal operation, the 

basic assumption is that the given power system is a 

balanced three-phase system operating in its steady state. 

Therefore, the system can be represented by a one-line 

diagram of its single phase positive-sequence network 

(14], and the load-flow problem can be solved either by 

using the bus admittance matrix (Ybus> or the bus 

impedance matrix (Zbus> representation of the given 

network. By using the nodal analysis approach, the 

network equation in bus admittance form is 

(2.2.1) 

or in bus impedance form is 

(2.2.2) 

b. Bus equations 

Each bus of a network has four variable quantities 

associated with it: the real and reactive power, the 

voltage magnitude and the voltage phase angle. Any two of 

the four will be the independent variables and are 

specified, whereas the other two remain to be determined. 
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The electrical conditions at each bus are defined in terms 

of active and reactive power because of the physical 

characteristics of generation and load. Thus, the complex 

power flowing into i th bus can be expressed as 

where S· 1 = complex power injected at i th bus 

P· 1 = net real power injected at •th 1 bus 

Qi = net reactive power injected at •th 1 bus 

PGi= real generated power flowing into i th bus 

PLi= real load power flowing out of •th 1 bus 

PTi= real transmitted power flowing out of ·th 1 bus 

QGi= reactive generated power flowing into •th 1 bus 

QLi= reactive load power flowing out of •th 1 bus 

QTi= reactive transmitted power flowing out of •th 1 

bus 

and the bus current related to these variables is 

(2.2.4) 
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c. Line flow equations 

Line flow can be calculated only after the 

solution to the bus voltages is completed. The current at 

bus i in the line connecting bus i to bus j is 

(2.2.5) 

where Yij = line admittance 

Y'ij = total line charging admittance 

and the line power flow from bus i to bus j is 

(2.2.6) 

Similarly, at bus j, the power flow from bus j to bus i is 

(2.2.7) 

Thus, the power loss in line i-j is the sum of the power 

flows determined from eq.(2.2.6) and eq.(2.2.7) 

2.3 LOAD FLOW CALCULATION BY THE NBWTON-RAPHSON METHOD 

2.3.1 NBWTON-RAPHSON METHOD 

The Newton-Raphson method [10,13] is the most 

powerful iterative method for solving the system of 

nonlinear algebraic equations because of its fast 
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convergence. The method is based on approximating a 

nonlinear function to the Taylor's series expansion (5]. 

By giving a set of nonlinear equations. 

f1(X1,X2, • • 'Xn) = K1 

f2(X1,X2, • • 'Xn) = K2 (2.3.1) ............... = 

fn(X1,X2, • • 'Xn) = Kn 

and the initial estimates for the solution vector are 

(2.3.2) 

Assume dx1 , dx2 , .. ,dxn are the corrections required for 

x0
1 , x 0

2 , .. ,x0n, respectively, so that the eq. (2.3.1) 

are solved. Thus 

K1 = f1(x01+dx1, X02+dx2, •. 'XOn+dxn) 

K2 = f2(X01+dx1, 0 x 2+dx2, .. 'xo n+dxn) 
(2.3.3) 

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Kn = fn(X01+dx1, X02+dx2, .. 'xO n+dxn) 

According to Taylor's theorem for a function of 

two or more variables, the right hand side of each 

eq.(2.3.3) can be expanded to 
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f ( 0 0 0 
df1 df1 df1 

K1 = 1 x 1,x 2, .. ,x n>+ dx1- + dx2- + ... + dx - +4>1 n 
dx1 0 dx2 0 dxn 0 

0 0 0 
df2 df2 df2 

K2 = f2(x 1,x 2, .• ,x n>+ dx1- + dx2- + ... + dx - +4>2 n 
dx1 0 dx2 0 dxn 0 

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.3.4) 

f ( 0 0 0 
dfn dfn dfn 

Kn = n x 1,x 2, .. ,x n>+ dx1- + dx2- + ... + dx - +q,n n 
dx1 0 dx2 0 dxn 0 

where q,i;i=l,2 .. ,n is a function of higher order 

terms in the indefinite Taylor series approximate to 

function fi. If the initial estimate x 0 , is near the 1 

solution values, then dxi will be relatively small and all 

terms of higher powers can be neglected. Thus, the 

approximate linear set of eq.(2.3.4), resulting in matrix 

form, is as follows: 

= (2.3.5) 



or 

where 

= 

df = the vector of the mismatch functions 

J = Jacobian matrix 

dx = vector of the corrections 

14 

(2.3.6) 

The elements of the matrix [df] and [J] are 

evaluated by substuting the current values of xi. Hence, 

a solution for the dxi can be obtained by solving a system 

of linear equations. That is 

= (2.3.7) 

and the new values for xi are evaluated from 

x,k+l = x,k + dx· 
1 1 1 (2.3.8) 

The process is repeated until the mismatch 

function [df] is less than the specified tolerance, and 

then the solution of nonlinear system can be obtained. 

2.3.2 APPLICATION OF THE NEWTON-RAPHSON METHOD TO LOAD­

FLOW EQUATIONS IN POLAR COORDINATES USING Ybus 

The Newton-Raphson method is popularly used in 

solving loadflow problems because it is reliable and 

extremely fast in convergence. The rate of convergence of 
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the method is relatively independent of the size of the 

nonlinear system. 

To apply the Newton-Raphson method to loadflow 

problems, the slack bus, at which the magnitude and phase 

angle of the voltage are specified, is not included in the 

iteration process. Therefore, the equation of the complex 

power at bus i in N-bus system can be expressed as 

N 
L IV·V·Y·. I , 1 J 1J 

J=l 
/3 . ·+9·-9· 1J J 1 

Therefore, it can be expressed as 

N 
Pi = .L lvivjYijlcos(/3ij+aj-ai) 

J=l 

N 
= -L IV·V·Y· · lsin(/3· ·+9·-9·) , 1 J 1J 1J J 1 

J=l 

(2.3.9) 

(2.3.10) 

This formulation results in a set of nonlinear 

simutanous equations, two for each P-Q bus and one for 

each P-V bus. The known values for P-Q buses are real and 

reactive load bus powers while the known values for P-V 

buses are bus voltage magnitudes and real generated bus 

power. If the slack bus is set to be bus #1, the 

calculation of the nonlinear loadflow problem will be 

started at bus #2, where bus #2 tog (g = total number of 

generators in system) are P-V buses and bus #g+l ton are 

P-Q buses. Thus, there are 2N-g-1 equations to be solved 
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for a loadflow solution. 

The Newton-Raphson method requires that a set of 

linear equations be formed expressing the relationship 

between the changes in real and reactive powers and the 

components of bus voltages as follows: 

dP2 . . . dP2 dP2_ ... dP2 
- - - -
de 2 ... den d lvg+l I dlvnl 

. . . . . . . . . . . . . . . . . . . . . . . 

dPn . . . dPn dPn . . . dPn 
- - - -
de 2 den dlVg+l I dlvnl 

---= (2.3.11) 

dQg+l·••dQg+l dQg+l ... dQg+l 
- -
de 2 den dlVg+1I dlvnl 

. . . . . . . . . . . . . . . . . . . . . . . . . 

dQn . . . dQn dQn ... dQn 
- - - -
de2 den dlVg+l I dlvnl 

where the coefficient matrix is the Jacobian matrix and 

the . 1st bus is the slack bus. The matrix form of 

eq.(2.3.11) can be written as 
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de 

= (2.3.12) 

dlvl 

The elements of the Jacobian matrix from eq.(2.3.12) 

can be calculated by the following equations: 

for J 1 

dP· 1 
= 

d8· J 

dP· 1 
= 

d8· 1 

for J 2 

. . 

- I v · v · Y · · I sin (.8 · · +e • -e • ) 1 J 1) 1) J 1 

N 
L I v · v · Y · · I sin ( J3 · • +e · -e • ) . 1 J 1) 1) J 1 

J=l 
j=t=i 

. . 

i=t=j . for ' 
(2.3.13) 

. for i=j ' 

dP· 1 
= lviyijlcos(J3ij+ej-ei) 

dlvjl 
; for i=t=j 

(2.3.14) 
dPi 
- = 

N 
+ L I v · I Y • • cos ( Q • • +e • -e • ) · , J 1) /J 1) J 1 ' 
J=l 
j=t=i 

for i=j 



tor J3 

dQi 
= 

d8· J 

dQi 
= 

d8· l 

for J 4 

• . 

-lvil lvjlYijcos(Pij+0j-0i) 

N 
L IV·V·Y· · lcos(P· ·+8·-8·) . l J lJ lJ J l 

J=l 
j+i 

. . 

dQi 
= -lvi1Yijsin(~ij+8j-8i) 

dlvjl 

N 
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i+j . for I 

(2.3.15) 

. for i=j I 

; for i+j 

(2.3.16) 
dQi 

= -21vi1Yiisin(~ii> 
di vii 

-L IV· I Y · · sin (a· · +8 · -8 ·) · . 1 lJ ,., lJ J l ' 
J=l 

for i=j 

j+i 

Given an initial set of bus voltages, the real and 

reactive power can be calculated by eq.(2.3.10). The 

changes in power are the differences between the specified 

and the calculated values. 

Pi(sch) - pki(cal) 

Q • - Qk, i(sch) 1(cal) 
(2.3.17) 

The estimated bus voltage magnitudes and bus 

angles are used to evaluate the elements of the Jacobian 

and power mismatch functions. The linear set of 

eq.(2.3.11) can be solved for dVi and d8i by a direct or 

iterative method. Then, the new estimates of bus voltage 

magnitude and angles are 
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v,k+l = v,k + dV· 
1 1 1 

e,k+l = e,k + d8· 
1 1 1 

(2.3.18) 

The process is repeated until pik and Qik for 

all buses are within a specified tolerance. The sequence 

of steps for the load flow solution by The Newton-Raphson 

method is shown in Fig. 2.2 

2.4 INFORMATION OBTAINED IN LOAD FLOW STUDIES 

A printout of the load-flow problem results 

consists of a number of tabulations. The most important 

information to be considered first is the table that lists 

each bus numbers, bus voltage magnitude in per unit and 

phase angle in degrees, generation and load at each bus in 

megawatts and megavars, and line charging. Accompanying 

the bus and line information are the power flow from that 

bus over each transmission line connected to the bus and 

the power losses in the transmission line itself in 

megawatts and megavars. 

In the operation of power systems, any appreciable 

drop in voltage on the primary of a transformer caused by 

a change of load may make it desirable to change the tap 

setting on transformers provided with adjustable taps in 

order to maintain proper voltage at the load. Where a 

tap-changing transformer has been specified to keep the 

Voltage at a bus within designated tolerance limits, the 



K-K+1 

START 

FORMULATE Ybus 

READ Pl.sch & Q1.9Ch 

K=O 

C.AJ...CULA.TE 
Pl':col and Qtco, 

CALCULATE 

dPt= Pf,sch-P~col 
dO = Qi.sch -Q,.ccl 

20 

CALCULATE LINE FLOW 
->--~ AND LINE LOSSES 

CALCULATE JA~BIAN 
MATRIX J 

UP~TING 
ek+i • ek+d8 
lv~+l • I f +dV 

PRINT RESULTS 

STOP 

FIG. 2. 2 Computer flow diagram of the NEWTON-RAPHSOH 
method for loadflow solutions 
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voltage is examined before convergence is complete. If 

the voltage is not within the limits specified, the 

program causes the computer to perform the new set of 

iterations with a one-step change in the appropriate tap 

setting. The process is repeated as many times as 

necessary to cause the solution to conform to the desired 

conditions. The tap setting is listed in the tabulated 

results. 

A system may be divided into areas. The computer 

program will examine the flow between areas, and 

deviations from the prescribed flow will be overcome by 

causing the appropriate change in generation of a selected 

generator in each area. In an actual system, operation 

interchange of power between areas is monitored to 

determine whether a given area is producing that amount of 

power which will result in the interchange. 

Among other information that may be obtained is a 

list of line loadings megavoltamperes. The printout will 

also list the total megawatt and megavar losses in the 

system and both dP and dQ mismatch at each bus. Mismatch 

is an indication of the preciseness of the solution and is 

the difference between P and Q entering and leaving at 

each bus. 
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Chapter III 

ERROR ANALYSIS FOR NUMERICAL COMPUTATION 

3.1 INTRODUCTION 

In solving the system of nonlinear algebraic 

equations by the iterative method (or numerical method), 

the method sometimes might not converge to the solution. 

The reason is that some errors can arise to cause an 

inaccuracy in the computation during the iterative 

process. This makes the predicted values by the iterative 

method unreliable at any iteration. Finally, divergence 

can occur and the solution of the system may not be found. 

In this chapter, the main sources of errors in numerical 

computation and convergence analysis of the Newton-Raphson 

method are discussed in detail. 

3.2 SOURCES OF ERRORS IN NUMERICAL COMPUTATION 

In this section, the major errors that can arise 

in numerical computation are introduced [6,7]. Some 

errors, such as human error, computer hardware error or 

some failure in a software system will not be discussed 

here because they are supposed to be reliable. The 

following list of errors contains the major errors usually 

encountered in numerical computation. 
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a. computer Rounding Error 

This error can arise when the calculating devices, 

such as computers, cannot handle numbers that have more 

digits than its finite word length (machine precision). 

This makes the product of two or more numbers inaccurate 

in subsequent calculations. Thus, the product of the 

numbers must be rounded off. The effect of such a 

computer rounding error can be significant in an extensive 

calculation, or in a calculation in which the least 

significant digits of the number become significant. 

Table 3.2 shows the machine precision 8m· 

computer 

IBM 370 

IBM PC 

IBM PC 

HP 85 

condition 

short precision 

Basic DEFSNG 

Basic DEFDBL 

HP Basic 

em in base 10 

9.5 E-7 

5.96E-8 

1.39E-17 

3.46E-1 

Table 3.1 Machine Precision 

b. Truncation Errors 

These errors are the errors occur when a limiting 

Process is truncated (broken off) before one has come to 

tbe limiting value. In the Newton-Raphson method, 
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truncation errors occur when the terms that are the order 

greater than one of the indefinite Taylor series are 

neglected to approximate the nonlinear function with the 

linear function. The resulting defined error is 

significant and causes the Newton-Raphson method 

divergence whenever the initial estimate value is not 

close enough to the roots of the nonlinear equation 

system. 

3.3 CONVERGENCE ANALYSIS OF THE NEWTON-RAPHSON METHOD 

To investigate the effect of the truncation errors 

[6], regardless of the effect of the computer rounding 

error, on the convergence of the Newton-Raphson method, a 

system of a nonlinear function with 1 variable f(x)=O is 

expanded to the second-order terms of indefinite Taylor's 

series. That is 

where x* is the root of the nonlinear system. 

After dividing eq.(3.3.1) by f'(xk) 

(3.3.2) 

let the error in the current iteration and the predicted 



value for the next iteration be 

and 

f(xk) 
where --- is the Newton-Raphson step. 

f' (xk) 

Thus eq.(3.3.2) can be written as 
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(3.3.3) 

(3.3.4) 

According to eq.(3.3.4), the error on the current 

iteration is the function of the square of the error on 

the previous iteration. From this relation, it follows 

that the Newton-Raphson method will converge to the 

solution of the nonlinear equation system if and only if 

sufficiently good initial estimate values can be provided; 

otherwise, an increase of error can make the predicted 

values on the next iteration be worse than the previous 

iteration. This leads to the divergence of the Newton­

Raphson method. 
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Chapter IV 

THE HYBRID ALGORITHM 

4.1 INTRODUCTION 

The error analysis that has been discussed in 

Chapter III shows that the initial values of all unknowns 

by the Newton-Raphson method have to be carefully selected 

to be close enough to the roots of the system of nonlinear 

algebraic equations. Regardless of the effect of the 

computer rounding error, an increase of the defined 

truncation error can arise and cause the method to diverge 

when the initial values are far from the roots. To solve 

this problem, the Hybrid algorithm is introduced in this 

chapter. The purpose of the algorithm is to improve the 

efficiency in convergence of the existing Newton-Raphson 

method to be able to converge to the solutions with a wide 

range of initial values. At the end of this chapter, the 

proposed algorithm is applied to the Newton-Raphson method 

in solving nonlinear power flow problems. 

4.2 BACKGROUND 

The Hybrid algorithm [l] was developed by M.J.D 

Powell (1970). It is based on the idea of the 

Lavenberge/Marquart method (2,3] that is generally used in 

Solving nonlinear least square problems. The idea of the 

Proposed algorithm is to introduce the method of steepest 
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descent (2,3,9] to the existing Newton-Raphson method. 

The important advantage of the method of steepest descent 

is that the method is not as sensitive to initial values. 

This makes the method of steepest descent able to converge 

to the solutions of the system of nonlinear equations with 

a wide range of initial estimates. By using a gradient 

technique [2] in searching for the solutions along 

curvature of the nonlinear functions, the defined 

truncation error can be reduced and the method can be used 

for making solutions of the system of nonlinear equations 

more accurate for those cases where the Newton-Raphson 

method diverges, when its initial values are far from the 

roots. Despite the advantageous property of this method, 

a larger number of iterations is required, which leads to 

a slow convergence of this method. The comparison of 

advantages and disadvantages between the Newton-Raphson 

method and the method of steepest descent is shown on 

Table 4.1 

To obtain the advantages of both Newton-Raphson 

method and the method of steepest descent, the concept of 

a trust region (2,3] is introduced. The purpose of the 

trust region is to restrict the step predicted by the 

Newton-Raphson method to be inside the appropriate region, 

in which the defined truncation error will not affect and 

cause a divergence, and to establish the switching 

Policies between these two methods. By using the proposed 
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NBWTOH-RAPBSOH KBTBOD 

Advantages 

The method has a fast convergence characteristic and 
can converge to the solutions of the system of 
nonlinear equations in just a few iterations. 

The rate of convergence by the method is independent 
of the size of the nonlinear system. 

Disadvantages 

The initial values of unknowns required by this 
method must be close to the roots of the system of 
nonlinear equations to avoid the effect of 
defined truncation error. 

THE METHOD OP STEEPEST DESCENT 

Advantages 

The method is able to converge to the solutions of 
the system of nonlinear equations with a wide range 
of initial values. 

Disadvantages 

- The method has a zigzagging and slow converging 
characteristic. 

TABLE 4.1 The comparison of the advantages and disadvantages 
between the Newton-Raphson method and the method 
of steepest descent 
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algorithm, when the initial values are far from the roots, 

the iteration obtains the predicted step in the steepest 

descent direction, and then switches to the Newton-Raphson 

iteration to obtain the Newton-Raphson step for a fast 

convergence when they approach the neighborhood of the 

solutions. 

4.3 'l'BB METHOD OP STEEPEST DESCENT 

A typical iteration of a line search algorithm (2] 

for optimization, subject to nonlinear constraints, 

calculates the predicted step and updates the predicted 

value for the next iteration by the line function 

where sk = descent direction 

uk = positive scalar 

(4.3.1) 

The relationship in eq.(4.3.1) is shown in Figure 

4.1. There are several concepts associated with the line 

function. First, it is a vector function of a scalar, 

namely, u. Notationally, x*=x*(u). Assuming the 

objective function of the optimization problem is F(x), 

the scalar function along the line is a function of only 

u, when given a starting point x and directions, that is, 

F(2*)=F(u). A line search is the process of finding 



FIG 4.1 

30 

x, 

A straight line in 2-space illustrating 
vector search direction sk and scalar uk 

some u, say u*(k) where u*(k) is a positive scalar chosen 

at iteration k to minimize F(u). In order to find u*, the 

general quadratic function (2] in vector notation is 

recalled. That is 

where 

(4.3.2) 

g(x) = gradient of the objective function F(x) 

H(x) = Hassian matrix [2] 

SUbstituting eq.(4.3.1) in eq.(4.3.2) yields 
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To find u* at minimum F(x), the first derivative of 

eq.(4.3.3) with respect to u is set equal to zero. That 

yields 

u* = (4.3.4) 

From eq.(4.3.4), u* is the positive scalar used in 

eq.(4.3.1) to find the predicted value at minimum for the 

next iteration, and xk+l is called the Cauchy point. 

To apply the line search technique for solving the 

system of nonlinear algebraic equations, the vector of a 

nonlinear system with N equations and N unknowns is given 

by 

; i=l, 2, •• , N (4.3.5) 

and the objective function of eq.(4.3.5) is set to be 

N 
minimize F(x) = I: f. 2 (x> 

. 1 
1=1 

(4.3.6) 

In this instance, F(x) takes on the minimum value 

zero at all solutions of the nonlinear equation system. 

The descent direction skis the vector of the first 

derivatives of eq.(4.3.6). That is 

gradient g(x) = 
dF(x), •• ,dF(x) 
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(4.3.7) 

It is obvious that the direction -g(x) is the 

direction in which F(x) decreases most rapidly and the 

descent direction sk of the line search is in the 

direction of steepest-decent. From eq.(4.3.1), the 

predicted value for the next iteration in the steepest­

descent direction is given by 

where 

(4.3.8) 

g(xk) = gradient of F(x) calculated in 

eq. ( 4. 3. 7) 

u = a positive scalar that is chosen 

in order to reduce F(xk+l) < F(xk) 

To find the scalar u* at the predicted minimum or 

at the solutions (cauchy point), the vector direction 

sk = -gk(x) is substituted into eq.(4.3.4). That is 

u* 
gT (xk) . g (xk) 

= 
gT(xk) ·H(xk) ·g(~k) 

(4.3.9) 

From the Guass-Newton formula (2], The Hassian 

llatrix ii (xk) in eq. ( 4·. 3. 9) can be approximated by 
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(4.3.10) 

By substituting eq. (4.3.10) into eq. (4.3.8), the 

scalar u* of the line search in the direction of steepest­

descent can be calculated by 

u* 
gT(xk) ·g(xk) 

= (4.3.11) 
gT(xk) .~T(xk) ·J(Xk) •g(xk) 

That yields 

u* 
II g (xk) II 2 

= (4.3.12) 
II J(~k) ·g(xk) II 2 

From eq.(4.3.8), the predicted point in the 

steepest descent direction, at the solution called the 

"Cauchy point", can be found by the following equation 

(4.3.13) 

where u• and g(xk) can be calculated by eq.(4.3.12) and 

eq.(4.3.7), respectively. 

Figure 4.2 shows a view of zigzagging and a slow 

convergence of the steepest descent method. 
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FIG 4.2. Line searches on a quadratic function. 
The steepest descent direction usually 
causes zigzagging and slow convergence. 

4.4 TROST RBGIOB llD SWITCHING POLICIES 

The standard Newton-Raphson method converges to 

the solutions of the nonlinear equation system at a 

quadratic rate, but without restrictions on its predicted 

step size, it is often unreliable on any iteration. On 

the other hand, when the starting point is well removed 

from the solutions, the quadratic of the nonlinear 
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functions becomes no longer valid. An increase of the 

defined truncation error of the Newton-Raphson method can 

occur and cause the method to diverge. Thus, the concept 

of "Trust region" [2,3] is defined to limit step length to 

a reasonable maximum to establish the switching policies 

[1,2] between the Newton-Raphson iteration and the 

steepest descent iteration. 

4.4.1 TRUST NEIGHBORHOODS AND TRUST RADIUS 

In Figure 4.3, a view of the quadratic function 

with 2 variables is shown. The predicted point terminates 

at the solutions in the steepest descent direction, called 

the "Cauchy point" (CP) while the point at the solutions 

predicted by the Newton-Raphson method is called the 

- *-"Newton point" (NP), where o and u g are the steps 

predicted by the Newton-Raphson method and the method of 

the steepest descent, respectively. A circular 

neighborhood of radius R about x 0 , called "trust region", 

has been added to limit the step predicted by the Newton­

Raphson method to be inside on every iteration. For 

example, consider the results of centering that 

neighborhood of radius Rat every turning point, xk: the 

zigzagging characteristic of steepest descent (Figure 4.2) 

is avoided well before arriving in the neighborhood of the 

Solutions, and the rapid convergence of the Newton-Raphson 

iteration is likely to prevail. In between these two 
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FIG. 4.3 The view of quadratic function with 2 
variables when the trust region with radius 
R is applied 

states, the Newton-Raphson step is limited to be less than 

the length of the trust radius R, presumably providing a 

reasonable rate of progress. In the case when the Newton­

Raphson step is greater than R, the iteration will bias 

the predicted step into the steepest descent direction. 
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4.4.2 SWITCHING POLICIES 

In the concept of the trust region, the switching 

policies [1,2] between the Newton-Raphson and the steepest 

descent iteration are stated as 

case 1 The Newton point (NP) is inside the trust region, 

or 11"6"11 < R. 

7.---------------------, 

6 

/" 
5 ~ 

\ 
4 

"'- F(x)=l0O 

' " 3 "' ~ X2 NP "'-F(x)=\ 

2 "-
"' '\ 

"' \ 
1 '- " J 

a 1 2 3 4 5 6 7 

Xl ... 
Fig 4.4 The view of switching policies when the Newton 

point (NP) is inside the trust region 

In this case, which is illustrated in Figure 4.4, 

tbe point at the solution predicted by the Newton-Raphson 

(NP) is assumed to be inside the neighborhoods of a 



quadratic region, or it is approximately close to the 

roots of the nonlinear equation system. Thus, the 

iteration obtains the full Newton-Raphson step (&) for 

fast convergence. That is 

38 

(4.4.1) 

where xk+l = xk+ax is the predicted value for the next 

iteration. 

case 2 The Newton point (NP) and the Cauchy point (CP) 

are both outside the trust region, or 11111 > R and 

llu*g(x) II > R. 

From Figure 4.5, the points at the solutions 

predicted by both methods are assumed to be far from the 

neighborhoods of a quadratic region, or they are assumed 

to be far from the roots of the nonlinear equation system. 

An increase of truncation error by the standard Newton­

Raphson method can become significant and cause the 

predicted value for the next iteration to be unreliable if 

the iteration obtains the full Newton-Raphson step. Thus, 

the iteration biases the predicted step to be inside the 

trust region ( llaxll S R) in the steepest descent direction 

to reduce the effect of the defined truncation error. To 

obtain the predicted step dx to be inside the trust 

region, the length of the predicted step is set to be 

equal to the trust radius R for a maximum length. From 
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FIG. 4.5 The view of the switching policies when the 
Newton point (NP) and the Cauchy point (CP) 
are both outside trust region. 

eq.(4.3.8), the length of the predicted step in the 

steepest descent direction is bound equal to be 

llug(x) II = R (4.4.2) 

That yields 

R 
u =---

llg(x) II 
(4.4.3) 

By SUbstituting the positive scalar u from eq.(4.4.3) to 



eq.(4.3.8), the predicted step in the steepest descent 

direction with length R is calculated by 
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dx = -[ R ]g(x) 
llgcx> 11 

(4.4.4) 

case 3 The Newton point (NP) is outside the trust region, 

but the Cauchy point (CP) is inside the trust 

region, orlrXII > R and llu*g(x) II < R. 
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FIG. 4.6 The view of the switching policies when the 
Newton point (NP) is outside the trust 
region, but the Cauchy point (CP) is inside. 
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In Figure 4.6, the point at the solution predicted 

by the Newton-Raphson method (NP) is assumed to be far 

from the roots of the nonlinear equation system, but the 

Cauchy point (CP) by the method of steepest descent shows 

that it is close to the roots. In this case, the 

iteration does not preferably bias the predicted step in 

only the steepest descent direction even though the Newton 

point (NP) is outside the trust region. The reason for 

this is that, inside the neighborhoods of the solution of 

the nonlinear equation system, the zigzagging 

characteristic of the method of steepest descent can arise 

and cause the slow convergence before it converges to the 

solution. Thus, the iteration calculates the predicted 

step with length R by interpolating the step between the 

Newton-Raphson step and the step in the steepest descent 

direction. The predicted step with length R is assumed to 

be on the straight line joining the Newton point (NP) and 

the Cauchy point (CP) and is calculated by 

dx = (8-l)u*g(x) + 80 

where o ~ e ~ 1 

(4.4.5) 

In order to find the predicted step to be equal to 

length R, the right hand side (RHS) terms of eq.(4.4.5) 

are bound to be 

~(8-l)u*ij(x) + ei~ = R (4.4.6) 



By straightforward algebra, e from eq.(4.4.6) can be 

calculated by the following equations. 

b + /b2 -ac 
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e = ------ (4.4.7) 

where 

a 

a= u* 2 ~ij(x)~ 2 +2u*~igi(x)6i+~I~ 2 

b = u*~igi(x)6i+u* 2 llg(x) 11 2 

c = u* 2 ~ij(x)~ 2 -R2 

4.4.3 THE METHOD FOR REVISING THE TROST RADIOS R 

(4.4.8) 

The trust radius R can be revised for every 

iteration or even during the same iteration [1]. Usually, 

the trust radius R is preferably adjusted so that it is as 

large as possible to decrease the sum of the square of the 

mismatch F(x) for every iteration. This depends on a good 

prediction of the mismatch difference fi(x+ax)-fi(x); 

i=l,2 .. ,n, without taking an extra small step. However, 

the trust radius R can also be reduced if the length Rk, 

at the turning point; xk, is so big that the iteration can 

not decrease the sum of the square of the mismatch F(x+dx) 

to be less than the old one. 

To revise the trust radius R, at the end of the 

iteration, the test in eq.(4.4.9) is made. 

(4.4.9) 



If the condition in eq. (4.4.9) fails, the 

iteration number is not increased to k+l and the trust 

radius R is reduced to be 
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(4.4.10) 

The iteration is repeated to calculate the 

predicted step dx until the condition in eq.(4.4.9) holds 

and then prepare to increase the trust radius R. 

The increase of the trust radius R can be provided 

due to the following factors 

1. A good prediction of the mismatch difference 

{fi(x+ax)-fi(X)} ; i=l,2 .• ,N 

2. The linearity of the nonlinear function fi(x); 

between the turning point xk and xk+ax. That 

is approximated to be 

ti= fi<x>+ fi(x) = fiCx>+~jJijdxj ~ 

and ~ = ~iti 2 ~ F(x+ax) 

fi(x+ax) 
(4.4.11) 

The basis of the method for increasing the trust 

radius R is that the mismatch difference fi(x+dx)-ti is 

attributed to terms that are of the order of R2
• If the 

trust radius R is multiplied by the factor n, then the 

mismatch difference is also expected to be multiplied by 

about n2
• Guided by this assumption, the multiplier n can 

be calculated by bounding 
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Lilfi(x+dx) l+(n2 -l) lfi(X+ax)-til = 0.9F(x)-[F(x+ax)-0.1¢] 

(4.4.12) 

This yields 

where 

aa 
n2 = 1 + 

bb + /bb 2 +aa cc 

aa = 0.9F(x)-[F(x+ax)-0.1¢] 

bb = Lilfi(x+ax) [fi(x+ax)-ti] I 

cc= LiCfiCx+ax>-ti> 2 

(4.4.13) 

(4.4.14) 

To avoid an oscillating value of the trust radius 

R, it is suggested not to scale R by n directly whenever R 

is calculated. The reason for this is that, in cases the 

trust radius R is reduced in a previous iteration, 

multiplying the reduced R by n would restore the trust 

radius R to about its original value. When two values of 

n have been calculated, they must both have been obtained 

since the last reduction in R. The factor by which R is 

multiplied is set equal to the lesser calculated value of 

n. Moreover, the factor n is limited being not greater 

than 2, and "dmax" is the upper bound of the trust radius 

R. To apply this strategy, a parameter r (r 0=1) is 

introduced and set to the value one both before the first 

iteration and also whenever the trust radius is reduced. 

Thus, the trust radius R can be increased by the following 

equations: 
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Rk+l = min(pkRk, dmax> 

where pk = min(2, nk, rk) (4.4.15) 

rk 
0k-l 

= 
pk-1 

In addition, if consecutive iterations obtain the 

full Newton-Raphson step, then the trust radius R is 

revised to be equal to the value of 11&11. The reason is 

that consecutive successful Newton-Raphson iterations tend 

to decrease in the length of predicted steps (due to the 

quadratic properties). 

4.4.4 SOME INDICATORS USED IN DETERMINING TBB TRUST RADIUS 
R 

In general, the nonlinear surfaces of nonlinear 

functions are approximately quadratic only in the 

immediate vicinity of the solution. The trust radius R 

has to be chosen with some thought of making the algorithm 

converge to the solution without taking extra iterations. 

An indicator, used to judge the appropriateness of the 

trust radius R, should be provided and is used to report 

major decisions. 

Thus, the indicator, which is used to determine if 

the predicted point is close to a quadratic region of the 

nonlinear functions, is introduced. The idea is to 

compare the actual reduction of the sum of the square of 

tbe mismatch F(x) obtained with each step dx to that which 
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is available from the same step in an ideal quadratic 

model (based on data from where the step began). The 

reduction of the sum of the mismatch is recalled to be 

F(xk)-F(x'), where xk is the predicted value on every 

turning point and x' is the solution point of the 

quadratic functions based on the gradient g(xk) and the 

Newton-Raphson step (6). To find the quadratic factor, 

the quadratic form [2] is recalled to be 

(4.4.16) 

Substituting the Hassian matrix H=JTJ into eq.(4.4.16), 

yields 

(4.4.17) 

Then, the quadratic factor r is defined to be the ratio 

r = 
F (xk) - F (xk+dx) 

F(xk) - F(x') 
(4.4.18) 

where the denominator of eq.(4.4.18) is calculated by 

eq. (4.4.17). 

From eq. ( 4. 4 .18) , the quadratic factor r .-... 1, when 

tbe Predicted values approach the solutions of the system 
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nonlinear equations. Thus, the decision of choosing the 

trust radius R can be determined by observing the behavior 

of the quadratic factor r from iteration to iteration. 

4.5 HYBRID ALGORITHM FOR DWTOB-RAPBSOH LOADFLOW 

The proposed Hybrid algorithm can be easily 

incorporated into the existing Newton-Raphson power flow 

program. Some additional computer subroutines for the 

Hybrid algorithm, such as subroutine for calculating the 

predicted step in the steepest descent direction, 

subroutine that is used to perform the switching policies 

between the existing Newton-Raphson iteration and the 

steepest descent iteration, or even subroutine for 

revising the trust radius R, can be also easily provided 

to improve an efficiency in convergence of the existing 

Newton-Raphson power flow program. By wisely selecting 

the initial value of the trust radius R, extra iterations 

in the steepest descent direction can be avoided and the 

fast convergence of the standard Newton-Raphson method can 

be obtained by the proposed algorithm. 

4.5.1 TRUST RADIUS IHITIALIZATIOH FOR TBB HOHLIHBAR POWER 

FLOW PROBLEM 

The length of the trust radius R varies according 

to the size of the nonlinear equation system. If xis the 
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vector of unknowns of the system of nonlinear algebraic 

equations with N equations, then the initial value of the 

trust radius R can be approximated by 

(4.5.1) 
1 

= (dx2 1,max +dx2 2,max+ •• +dX2 n,max>~ 

where dxi,max = maximum Newton-Raphson step allowed 

for unknown xi; i=l,2, •. ,N for the first 

iteration. 

For the system of the nonlinear power flow 

equations, there are two types of unknowns. One is the 

voltage magnitudes (lvl) on every load bus, and the other 

one is the voltage phase angles (8) on every bus in the 

system (except the slack bus). From eq.(4.5.1), the trust 

radius Ro for the nonlinear power flow equations can be 

initialized by 

(4.5.2) 

where dvmax = maximum Newton-Raphson step allowed for 

voltage magnitude at load buses for the 

first iteration 

d8max = maximum Newton-Raphson step allowed for 

voltage phase angles at all buses 

(except the slack bus) in the system for 
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the first iteration 

m = total number of load buses 

n = total number of system buses (except the 

slack bus) 

4.5.2 Digital steps of Hybrid algorithDl for nonlinear 

power flow problem 

step 1: Read the information required for a power flow 

solutions, such as Y-bus elements, generation and 

load data, etc. 

step 2 : Formulate the system of nonlinear equations for 

the real and reactive bus power mismatch. 

step 3 Initialize all variables, such as unknown bus 

voltage magnitudes (lv0 1), unknown bus voltage 

phase angles ce0) and trust radius Ro, etc. 

step 4 : Perform the standard Newton-Raphson iteration, 

calculate the Newton-Raphson step and obey the 

switching policies. 

- if 11&11 < R, then the iteration obtains the full 

Newton-Raphson step. 

- if 11111 >Rand u*ij(~) > R, then the iteration 

calculates the predicted step with length R in 

the steepest descent direction; otherwise, the 

predicted step is the step interpolated between 



the Newton-Raphson step and the step in the 

steepest descent direction. 
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steps : Calculate F(x+dx) and try the test F(x+ax) < F(x) 

- If F(x+ax) > F(x), then reduce the trust radius 

Rand go to step 4. 

If F(x+dx) < F(x), then increase the trust 

radius Rand prepare for the next iteration. 

step 6: If the mismatch F(x+dx) is less than the 

prespecified tolerance, then stop the iteration 

and calculate all bus powers and line flows; 

otherwise, count to the next iteration and go to 

step 4. 

The iteration might be stopped in the case when 

llg(xk) II = 0 but F(xk) + o. The reason is that the 

iteration has approached a local minimum (not a global 

minimum) [2]. This point is not the solution. Therefore, 

a new set of initial values is tried. FIG 4.7 shows the 

computer flow diagram of the Hybrid algorithm. 

4.6 COMPUTER SUBROUTINE FOR THE HYBRID ALGORITHM APPLIED 

TO THE NEWTON-RAPHSON LOADFLOW 

The listing of the computer program, HYBRID, is 

contained in APPENDIX A. The program is written in BASIC 

language by using the Qbasic compiler. The machine 
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REDUCE 1RUS1' RADIUS 

dx • NTERPOL4TED 
STEP dx - ST[P .. 

DESCENT dlr. 

Sl'OP 

FIG 4. 7 Computer flow diagram of the HYBRID 
algorithm applied to the HEWTOH-RAPHSOH 
loadflow 
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precision is set to be into double precision mode by the 

program to reduce the effect of the computer rounding 

error. 

From the main menu, the Ybus admittance 

formulation is provided. Either data from line admittance 

Yij or line impedance zij can be used (selectable from 

menu). The element Yij of the Ybus admittance matrix is 

formulated in polar form and stored in a file, named 

"admit", that can be recalled later to formulate nonlinear 

power flow equations. The input data from line admittance 

(or line impedance) and line charging is also stored in a 

file named "admitl," which can be also recalled to 

calculate some essential information, such as line flows 

and line losses at a given operating condition. To 

formulate the power flow equations, necessary input data, 

such as load and generation at each bus of the_ system, can 

be supplied through line 3920-4190. The program sets the 

total number of buses in the system equal to n, the 

number of generator buses (P-V buses) equal tog, and the 

nUmber of load buses (P-Q buses) equal tom. Thus, the 

2n-g-l nonlinear power flow equations are formulated by 

the program (2 equations for each P-Q bus, and 1 equation 

for each P-V bus). The program requires the first bus to 

be the slack bus, from bus 2 through bus g to be P-V 

buses, and from bus g+l to bus m tp be P-Q buses, 

respectively. The input data required by the program are 
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voltage magnitude and the real power generation for all 

generator buses (except the slack bus), and real and 

reactive loads for all load buses. However, the real and 

reactive loads can be also supplied at generator buses. 

In order to start the iteration, the initial values of all 

unknowns, such as bus voltage magnitude and bus voltage 

phase angles, can be set to desired values from line 4420-

4310. (default values are set to be equal to lv0 1 = 1 p.u 

and 8 O = 0 rad. ) 

Line 6000 through line 7500 is written to perform 

the Hybrid algorithm. The trust radius R is initialized 

in line 6200 and can be changed to a desired value. The 

variable F contains the value of the sum of the square of 

the power mistmatch while a variable Fl contains the 

preceding value. The elements of the Jacobian matrix 

A(i,j) and the gradient vector GD(i) are provided to 

compute the predicted step in both the Newton-Raphson 

iteration and the steepest descent iteration. Line 6660 

checks the location of the Newton point (NP) at each 

iteration, by comparing the norm of the Newton-Raphson 

step to the length of the trust radius R, while line 6830 

checks the location of the Cauchy point (CP), by comparing 

the value llu~II, calculated from line 6730-6830, to the 

length of the trust r~dius R. The subroutine for revising 

the trust radius R is provided by the program from line 

7160-7460. The trust radius R will be reduced if the 
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condition F >Flin line holds; otherwise, it will be 

increased. Line 7480 checks the convergence. If the sum 

of the square of the power mismatch Fis less than the 

prespecified tolerance E, then the program stops the 

iteration. Line 11000-11650 is provided to calculate the 

results, such as line flows, line losses, and some 

essential imformation for load flow studies. The list of 

subroutines for the program HYBRID is shown in TABLE 4.2. 



NAME 

Formulate Ybus admittance matrix 

Input data for loadflow calculation 

Initialize all unknown lv0 1 and e0 

Initialize all variables for HYBRID 
algorithm, such as Trust radius Ro and 
tolerance limit E 

Compute NEWTON-RAPHSON step (6) and 
its norm 11111 

compute step biased in steepest 
direction and its norm 

Revise Trust radius R 

Test convergence 

Compute the sum of the square 
of the power mismatch 

Compute power mismatch 

Compute gradient g(x) and its norm 
llg<x> 11 
Compute Jacobian matrix 

Compute inverse matrix 

Compute line flows, line losses and 
line current 

Print out results 
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LINE 

1000-2780 

3780-4230 

4240-4310 

6170-6220 

6430-6600 

6720-7150 

7160-7460 

7470-7490 

7510-7660 

8000-8190 

6320-6410 

9000-9590 

10000-10640 

11000-11650 

14000-15140 

TABLE 4.2 List of computer subroutines for the HYBRID 
algorithm applied to NEWTON-RAPHSON loadflow 
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Chapter v 

EXAMPLB AND NUMERICAL RESULTS 

5.1 IlfTRODOCTION 

In this chapter, the 10 bus power system is chosen 

to be investigated. Digital computer results of the test 

system, obtained by the HYBRID algorithm and the standard 

NEWTON-RAPHSON method, along with the effect in choosing 

the different values of Ro are given to be discussed. 

5.2 EXAMPLB: 10 BOS TEST SYSTEM 

One line diagram of the 10 bus power system is 

shown in Fig 5.1. The system data, such as line 

admittance data, load data and generation data are given 

in APPENDIX B. The system consists of a load buses (P-Q 

buses), two generators (one of which performed as the 

slack bus) and 13 lines. Therefore, there are 17 

nonlinear power flow equations obtained for this system. 

(2 equations for each P-Q bus and one for each P-V bus) 

5.3 RESULTS 

To investigate the effect of initial values on the 

convergence of both the HYBRID algorithm and the standard 

NEWToN-RAPHSON method, 3 different sets of initial values 

are given to be: 
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FIG 5. 1 one Line Diagram 0£ 10 bus tested system 
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1. lv0 1 = 1.0 p.u and 90 = 0.0 rad. 

2. lv0 1 = 0.8 p.u and 90 = -0.5 rad. 

3. lv0 1 = 1.3 p.u and 90 = -1.0 rad. 

During the test, variations of RO were tried. 

Numerical results and the comparisons between the proposed 

algorithm and the standard NEWTON-RAPHSON method in terms 

of the convergence characteristics are shown in Fig 5.2, 

5.3 and 5.4, respectively. The sum of the square of real 

and reactive power mismatch F(x) is plotted for each 

iteration of both methods. The solutions of all unknowns 

and some results of the 10 bus test system, such as line 

flows and line losses, are given in APPENDIX C. 

For Jv0 1= 1.0 p.u and 0° = o rad., the results in 

Fig 5.2 show that both methods converge to the solutions. 

The effect of using different Ro can be observed in the 

same Figure. The standard NEWTON-RAPHSON method and the 

HYBRID algorithm both have the same characteristic in 

convergence when RO= 1, while other values of Ro cause 

the proposed algorithm taking extra iterations before the 

solutions are approached. The switching status (0=full 

NEWTON-RAPHSON step, l=full steepest descent step and 

2=interpolated step) , shown in TABLE 5.1, indicates that · 

the predicted NEWTON-RAPHSON step is inside the trust 

region on every iteration when RO=l, while the small 

values of Ro (RO=o.1, Ro=0.3 and Ro=0.5) caused the 
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predicted step to be biased in the direction of the 

negative gradient g(x) (steepest descent direction) before 

the full NEWTON-RAPHSON step can be obtained. 

For lv0 1 = o.a p.u and 0° = -0.5 rad., the results 

in Fig 5.3 show that the proposed algorithm converges to 

the solutions of the system faster than those by the 

standard NEWTON-RAPHSON method. The reduction of the 

mismatch F(x) is oscillatory on the first iteration, 

because of the effect of truncation error before it 

converged to the solutions, while the predicted step on 

the same iteration by the HYBRID algorithm is biased to be 

in the steepest descent direction to reduce F(x+ax) < F(x) 

before it obtained the full NEWTON-RAPHSON step on the 

second iteration (shown in TABLE 5.2). 

Forlv01 = 1.3 p.u and 0° = -1.0 rad., the results 

in Fig. 5.4 does not show any convergence by the standard 

NEWTON-RAPHSON method. The characteristic of the mismatch 

F(x) is oscillatory in nature and it does not approach the 

solutions of the system. By comparison, the HYBRID 

algorithm, with Ro=2, successfully converged to the 

solutions with the fewest iterations. 

In order to select the appropriate value for Ro, 

the behavior of the quadratic factor r, that is favorable 

to be R-1, can be observed. The results, in Fig 5.5, 

5.6 and 5.7, show that the values of quadratic factor r 

for the optimum Ro (Ro=l, Ro=l and Ro=2), are all in the 
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neighborhood of 1 from the beginning of the iteration. 

Compared to those by the other values of Ro, a few more 

iterations are required before they approached the 

neighborhoods of the solutions (R-1). 
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switching status 
iteration no. 

RO:o.1 R0:0.3 a 0=o.s R0:1 

1 1 2 2 2 
2 2 2 2 0 
3 2 2 2 0 
4 2 2 0 0 
5 2 2 0 0 
6 2 0 0 0 
7 2 0 0 
8 2 0 0 
9 2 0 

10 2 0 
11 2 
12 2 
13 2 
14 0 
15 0 
16 0 
17 0 

TABLE 5.1 The switching status for the HYBRID 
algorithm when lv0 1 = 1.0 p.u and 
e0 = o.o rad. 
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switching status 
iteration no. 

R0:0.1 R0:1 R0:4 R0:10 

1 2 2 2 1 
2 2 0 2 2 
3 2 0 2 2 
4 0 0 2 2 
5 2 0 0 2 
6 0 0 0 0 
7 0 0 0 
8 0 0 0 
9 0 0 

10 0 
11 0 
12 0 
13 0 
14 0 
15 0 
16 0 
17 0 
18 0 
19 0 

TABLE 5.1 The switching status for the HYBRID 
algorithm when lv0 1 = 0.8 p.u and 
e0 = -o.5 rad. 
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switching status 
iteration no. 

R0:0.1 R0:0.3 R0:2 

1 1 1 2 
2 1 1 0 
3 1 2 0 
4 1 2 0 
5 1 2 0 
6 1 2 0 
7 1 2 0 
8 2 2 0 
9 2 0 

10 2 0 
11 2 0 
12 2 0 
13 2 0 
14 2 
15 2 
16 2 
17 0 
18 0 
19 0 
20 0 
21 0 

TABLE 5.3 The switching status for the HYBRID 
algorithm when lv0 1 = 1.3 p.u and 
e0 = -1.0 rad. 
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Chapter V:I 

CONCLUS:ION 

6.1 SUMMARY 

The main contribution of this thesis is the 

development of the HYBRID algorithm in order to improve 

the efficiency in convergence of the standard NEWTON­

RAPHSON method in solving nonlinear a power flow problem, 

when its close initial values are not available. A 

defined truncation error from the neglected Taylor's 

series terms of the standard NEWTON-RAPHSON method can 

arise and cause the divergence. By introducing the method 

of steepest descent and the concept of the "trust region", 

the switching policies can be performed. The idea is to 

start the iteration with the method of steepest descent, 

if it is necessary, and then switch to the NEWTON-RAPHSON 

method which is better when the solutions are approached. 

In this thesis, the HYBRID algorithm has been 

applied to the standard NEWTON-RAPHSON loadflow using bus 

admittance matrix. The results of the 10 bus test system 

by using the proposed algorithm, compared with those by 

using the standard NEWTON-RAPHSON method, are quite 

favorable when the different sets of initial values were 

tried. By observing the characteristic of quadratic 

factor, the appropriate values of Ro can be obtained to 

avoid a slow convergence. 
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6.2 RECOMMENDATIONS FOR FUTURE WORK 

To improve the performance of the Hybrid algorithm 

developed in this thesis, the following suggestions are 

made: 

1. It would be valuable to extend the proposed 

algorithm to the fast decouple loadflow method 

that is widely used on a large scale power 

system. In general, the fast decouple loadflow 

obtains the solutions by applying 

approximations to the NEWTON-RAPHSON method. 

2. The method, that can be used to reduce the 

effect of the computer rounding errors and also 

easily incorporated to the proposed algorithm, 

should be provided in order to improve the 

performance of the HYBRID algorithm. The 

effect of the defined computer rounding errors 

can arise and cause the divergence to the 

iterative methods if the power system is 

considered to be an ill-conditioned system 

(15]. 
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APPENDIX A 

Basic Program for HYBRID algorithm applied to 

the standard NEWTON-RAPHSON load flow 

10 
20 
30 

······-············· .................................................... . 
••• •• 
••• ------------------------ PROGRAM II HYBRID II------------------------- •• 

40 ... •• 
100 ........................................................................... . 

110 •---------Create main menu screen 
120 ..................................... . 

130 DEFDBL A-H, M-W 
140 CLEAR 

• specify variables to be in double precision 

150 SCREEN, , 0, 0 
160 Z1S = 11 :::'tt11 

170 Z2S :s •~MW,• 
180 Z3S = STRINGS(57, CHRS(1n)) 
190 Z4S = STRINGS(57, 11 11 ) 

200 ZSS • 11 Loadflow Studies For Power System Network 
210 Z6S :s 11 (1) Create bus acinitance matrix 
220 Z7S • 11 1). From line inpedance < zij > 

230 Z8S • 11 

240 Z9S = 11 

250 Z10S = 11 

260 Z11S = 11 

270 Z12S • 11 

2). Frca line achitance < yij > 

(2) Calculating loadflow problem by 

1). Standard Newton-Raphson method 
2). Applying Hybrid algoritm to standard 

Newton-Raphson method. 
280 Z13S = 11 

290 KEY OFF 
(3) Quit 

300 COLOR 14, 9 
310 CLS 
320 LOCATE 2, 1 
330 PRINT Z1S + Z3S + Z2S 
340 PRINT Z1S + Z3S + Z2S 
350 PRINT Z1S + Z4S + Z2S 
360 PRINT Z1S + ZSS + Z2S 
370 PRINT Z1S + Z4S + Z2S 
380 PRINT Z1S + Z4S + Z2S 
390 PRINT Z1S + Z6S + Z2S 
400 PRINT Z1S + Z7S + Z2S 
410 PRINT Z1S + Z8S + Z2S 
420 PRINT Z1S + Z4S + Z2S 
430 PRINT Z1S + Z9S + Z2S 

II 

II 
II 
II 
II 

II 

II 

II 

II 
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440 PRINT Z1S + Z10S + Z2S 
450 PRINT Z1S + Z11S + Z2S 
460 PRINT Z1S + Z12S + Z2S 
470 PRINT Z1S + Z4S + Z2S 
480 PRINT Z1S + Z13S + Z2S 
490 PRINT Z1S + Z4S + Z2S 
500 PRINT Z1S + Z3S + Z2S 
510 PRINT Z1S + Z3S + Z2S 
520 PRINT 
530 COLOR 12 
540 A• CSRLIN 
550 LOCATE A: PRINT TAB(25); "make a choice between 1, 2 and 3 ••••• <? >"; 
560 KS= INPUTS(1) 
570 KI• VAL(KS) 
580 IF (Kl• 1) OR ((KI• 2) OR (KI= 3)) THEN GOTO 590 ELSE GOTO 610 
590 ON KI GOSUB 1000, 3000 
600 GOTO 140 
610 COLOR 28 
620 SOUND 50, 
630 SOUND 400, 1 
640 SOUND 1000, 1 
650 GOTO 550 
1000 ........................................................................ . 

1010 ••---------------------CREATE BUS ADMITANCE MATRIX----------------------• 
1020 ........................................................................ . 

1030 • g = # of generator buses (P-V buses) 
1040 • m = # of load buses (P-Q buses) 
1050 • n = # of buses in the system 
1060 • G(i,j) + jB(i,j) = element of line admittance in rectangular form 
1070 • Y(i,j) & DEL(i,j) = element of bus admittance matrix (Ybus) in Polar form 
1080 • II(i,j) & EE(i,j) = element of line admittance in Polar form 
1090 • r + jx = line i~nce 
1100 , ....................................................................... . 

1110 COLOR 3 
1120 LOCATE 7 
1130 PRINT Z1S + Z6S + Z2S 
1140 PRINT Z1S + Z7S + Z2S 
1150 PRINT Z1S + Z8S + Z2S 
1160 FOR I= 1 TO 80 
1170 LOCATE A, I: PRINT 11 "; 

1180 LOCATE A+ 1, I: PRINT 11 "; 

1190 NEXT I 
1200 LOCATE A 

1210 PRINT TAB(25); "make a choice between (1) and (2) •••••• • <? >"; 
1220 K1S = INPUTS(1) 
1230 K1 • VAL(K1S) 
1240 IF (K1 = 1) OR (K1 = 2) THEN GOTO 1300 
1250 COLOR 19 
1260 SOJND 50, 1 
1270 S<lJND 400 1 
1280 S<lJND 100~ 
1290 GOTO 1200, 
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1300 COLOR 23, 4 
1310 LOCATE 3, 34 
1320 PRINT II please wait 
1330 SCREEN, , 1, 0 
1340 COLOR 14, 4 
1350 CLS 
1360 Z20S • CHRS(218) 
1370 Z21S • CHRS(191) 

II 

1380 Z22S • STRINGS(67, CHRS(196)) 
1390 Z23S • CHRS(179) 
1400 Z24S • CHRS(192) 
1410 Z25S • CHRS(217) 
1420 Z26S = 11 

1430 Z27S • 11 

1440 Z28S • 11 

1450 Z29S = 11 Z = R+jX 11 

1460 Z30S • 11 Y ,. G+jB 11 

1470 ON K1 GOTO 1480, 1510 
1480 X1S., Z27S 
1490 X2S = Z29S 
1500 GOTO 1530 
1510 X1S = Z28S 
1520 X2S ,. Z30S 
1530 COLOR 7 
1540 FOR I., 1 TO 24 

•• - Create Bus Adnitance Matrix - -
(by using line i~nce zij) 
(by using line adnitance yi j) 

1550 PRINT STRINGS(79, CHRS(176)) 
1560 NEXT I 
1570 COLOR 14, 4 
1580 LOCATE 2, 4: PRINT Z20S + Z22S + Z21S 
1590 LOCATE, 4: PRINT Z23S + Z26S + Z23S 
1600 LOCATE, 4: PRINT Z23S + X1S + Z23S 
1610 LOCATE, 4: PRINT Z24S + Z22S + Z25S 
1620 COLOR, 9 
1630 LOCATE CSRLIN + 1, 10: PRINT Z20S + STRINGS(60, CHRS(196)) + Z21S 
1640 FOR I., 8 TO 20 
1650 LOCATE I, 10 
1660 PRINT CHRS(179) + STRINGS(60, 11 ") + CHRS(179) 
1670 NEXT I 
1680 LOCATE, 10: PRINT Z24S + STRINGS(60, CHRS(196)) + Z25S 
1690 SCREEN, , 1, 1 
1700 COLOR 14, 9 

II 

II 

II 
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1710 LOCATE 8, 11: INPUT 11# of generators (P-V buses) = 11 , G 
1nO LOCATE , 11: INPUT 11# of load buses (P-Q buses) = 11 , M 

1730 N = M + G 

• enter# of generator buses CP-V buses) 
1 enter# of load buses (P-Q buses) 

1740 LOCATE , 11: PRINT II total # of buses = 11 ; N 

1750 DIM Y(N, N), DEL(N, N) 
1760 DIM G(N, N), B(N, N) 
1770 DIM LL(N, N), EE(N, N) 
1780 LOCATE, 11: PRINT STRINGS(60, CHRS(196)) 
1790 COLOR 14, 4 
1800 C z CSRLIN 
1810 LOCATE , 11: PRINT II bus no. 11 ; 



1820 COLOR, 9: LOCATE, 25: PRINT CHRS(61) + CHRS(62); XZS 
1830 FOR I• 1 TON 
1840 COLOR , 4 
1850 LOCATE C, 11: PRINT II bus no. 11 ; 

1860 FOR J •ITO N 

1870 COLOR 22, 9 
1880 LOCATE C + 2, 11 
1890 PRINT STRINGS(50, 11 11 ) 

1900 LOCATE C + 2, 11 
1910 PRINT CHRS(61) + CHRS(62); 
1920 COLOR 14 
1930 ON K1 GOTO 1940, 2050 
1940 PRINT N Z( 11 ; I; 11 , 11 ; J; 11 ) = 11 ; 
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1950 INPUT "", R I enter system data from line iff1:)edance (in rectangular form) 
1960 LOCATE CSRLIN - 1, 35 
1970 INPUT"(+/-) j ", X 
1980 IF (R • 0) AND (X = 0) THEN GOTO 1990 ELSE GOTO 2020 
1990 G(I, J) = 0 

2000 B(I, J) = 0 
2010 GOTO 2100 
2020 G(I, J) = R / (R. 2 + X. 2) 
2030 B(I, J) • -X / (R. 2 + X. 2) 
2040 GOTO 2100 
2050 PRINT II Y("; I; 11 , 11 ; J; 11 ) =11 ; 

2060 INPUT 11 11 , G(I, J) 
2070 LOCATE CSRLIN - 1, 35 
2080 INPUT "(+/-) j ", B(I, J) 
2090 GOTO 2100 
2100 LL(I, J) • SQR(G(I, J) • 2 + B(I, J) . 2) 
2110 IF G(I, J) = 0 THEN GOTO 2130 
2120 GOTO 2170 

1 enter system data from line adnittance (in rectangular form) 

' fon11.1late line adnittance matrix in Polar form 

2130 IF B(I, J) > 0 THEN EE(I, J) = 3.141592654# / 2 
2140 IF B(I, J) < 0 THEN EE(I, J) = -3.141592654# / 2 
2150 IF B(I, J) = 0 THEN EE(I, J) = 0 
2160 GOTO 2230 
2170 IF G(I, J) > 0 THEN GOTO 2190 
2180 IF G(I, J) < 0 THEN GOTO 2210 
2190 EE(I, J) • ATN(B(I, J) / G(I, J)) 
2200 GOTO 2220 
2210 EE(I, J) • ATN(B(I, J) / G(I, J)) + 3.141592654# 
2220 IF I= J THEN GOTO 2250 
2230 G(J, I)= G(I, J) 
2240 B(J, I)= B(I, J) 
2250 NEXT J 
2260 NEXT I 

#2, 11acnitl 11 1 file 11adnit1 11 contained elements of line adnittance matrix (in Polar form) 
#3, 11acni t2" ' file 11adnit2" contained elements of line adnittance matrix (in rectangular form) 
TON 
TO N 

2270 OPEN 110 11 , 

2280 OPEN "o", 
2290 FOR I = 1 
2300 FOR J = I 
2310 WRITE #2, 
2320 WRITE #3, 
2330 NEXT J 

LL(I, J), EE(I, J) 
G(I, J), B(I, J) 



2340 NEXT I 
2350 CLOSE #2 
2360 CLOSE #3 
2370 FOR I • 1 TO N 

2380 FOR J • 1 TON 
2390 IF I• J THEN GOTO 2420 
2400 G(I, I)= G(I, I)+ G(I, J) 
2410 B(I, I)= B(I, I)+ B(I, J) 
2420 NEXT J 
2430 NEXT I 
2440 FOR I• 1 TON 
2450 FOR J •ITO N 

2460 IF I • J THEN GOTO 2510 
2470 G(I, J) " -GO, J) 
2480 G(J, I) • G(I, J) 
2490 B(I, J) = -B(I, J) 
2500 B(J, I) = B(I, J) 
2510 NEXT J 
2520 NEXT 
2530 FOR I• 1 TON 
2540 FOR J • 1 TON 

• foMILllate bus aanittance matrix Ybus (in Polar fonn) 

2550 Y(I, J) • SQR(G(I, J) • 2 + B(I, J) . 2) 
2560 IF G(I, J) • 0 THEN GOTO 2580 
2570 GOTO 2620 
2580 IF B(I, J) > 0 THEN DEL(I, J) = 3.141592654# / 2 
2590 IF B(I, J) < 0 THEN DEL(I, J) = -3.141592654# / 2 
2600 IF B(I, J) • 0 THEN DEL(I, J) = 0 
2610 GOTO 2670 
2620 IF G(I, J) > 0 THEN GOTO 2640 
2630 IF G(I, J) < 0 THEN GOTO 2660 
2640 DEL(I, J) = ATN(B(I, J) / G(I, J)) 

2650 GOTO 2670 
2660 DEL(I, J) = ATN(B(I, J) / G(I, J)) + 3.141592654# 
2670 NEXT J 
2680 NEXT I 
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2690 OPEN 11011 , #1, "ADMIT" 
2700 WRITE #1, G, M, N 

• file "aanit" contained elements of bus aanittance matrix Ybus (in Polar form) 

2710 FOR I• 1 TON 
2no FOR J • 1 TON 
2730 WRITE #1, Y(I, J), DEL(I, J) 
2740 NEXT J 
2750 NEXT I 
2760 CLOSE #1 
2770 ERASE G, B, Y, DEL, LL, EE 
2780 RETURN 
3000 ·-------·· .. -··· ........... __ .......................... .. 

3010 ••-----·--- - ---·---------- LOADFLOW CALCULATION--------------· - -----• 
3020 .......... --....................... --............................ . 

3030 • V(i) • voltage magnitude at bus i 
3040 • se(i) • voltage phase angle at bus i 
3050 • PG(i) " real power generation at bus i 
3060 'QG(i) = reactive power generation at bus 



3070 I PL(f) .. real load supplied at bus i 
3080 I QL( i) "' reactive load supplied at bus i 
3090 I P(i) • net real power injection at bus i (Pi,spec) 
3100 I Q( i) .. net reactive power injection at bus (Qi,spec) 
3110 I Pl(i) = Pi,calc 
3120 I Ql(i) • Qi,calc 
3130 I DP(i) • real power mismatch 
3140 I DQ(i) "' reactive power mismatch 
3150 '************•----··--··---····-···········--··········· 3160 COLOR 3 
3170 LOCATE 11 
3180 PRINT Z1S + Z9S + Z2S 
3190 PRINT Z1S + Z10S + Z2S 
3200 PRINT Z1S + Z11S + Z2S 
3210 PRINT Z1S + Z12S + Z2S 
3220 FOR I• 1 TO 80 
3230 LOCATE A, I : PRINT 11 "; 

3240 LOCATE A+ 1, I : PRINT 11 "; 

3250 NEXT I 
3260 LOCATE A 
3270 PRINT TAB(25); "make a choice between (1) and (2) •• ••• •• <? >11 ; 

3280 K2S • INPUTS(1) 
3290 K2 • VAL(K2S) 
3300 IF (K2 • 1) OR (K2 = 2) THEN GOTO 3360 
3310 COLOR 19 
3320 S<lJNO 50, 1 
3330 S<lJND 400, 1 
3340 S<lJND 1000, 1 
3350 GOTO 3260 
3360 COLOR 23, 4 
3370 LOCATE 3, 34 
3380 PRINT" please wait 
3390 SCREEN, , 1, 0 
3400 COLOR, 4 
3410 CLS 
3420 Z40S • CHRS(218) 
3430 Z41S = CHRS(191) 

II 

3440 Z42S = STRINGS(67, CHRSC196)) 
3450 Z43S • CHRS(179) 
3460 Z44S"' CHRS(192) 
3470 Z45S • CHRS(217) 
3480 Z46S = 11 ** · 
3490 Z47S "' 11 

3500 Z48S,. 11 

3510 ON K2 GOTO 3520, 3540 
3520 X10S = Z47S 
3530 GOTO 3550 
3540 X10S • Z48S 
3550 COLOR 14, 9 

input data for loadflow calulation · ** 
(classical Newton·Raphson loadflow) 

(apply Hybrid algoritm to NPL) 

3560 LOCATE 2, 6: PRINT Z40S + Z42S + Z41S 
3570 LOCATE, 6: PRINT Z43S + Z46S + Z43S 
3580 LOCATE, 6: PRINT Z43S + X10S + Z43S 
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3590 LOCATE, 6: PRINT Z44S + Z42S + Z45S 
3600 COLOR, 4 
3610 OPEN 11 111 , #1, "ADMIT" 
3620 INPUT #1, G, M, N 
3630 DIM P(N), PG(G), PL(N) 
3640 DIM Q(N), QG(G), QL(N) 
3650 DIM V(N), SE(N) 
3660 DIM AINV(2 * (M + N + 1), 2 * (M + N + 1)) 
3670 DIM A(M + N + 1, M + N + 1) 
3680 DIM DP(N), DQ(N), DSE(N), DV(N) 
3690 DIM Pl(N), QI(N), Y(N, N), DEL(N, N) 
3700 DIM PLINE(N, N), QLINE(N, N) 
3710 DIM PLOSS(N, N), QLOSS(N, N) 
3no FOR I• 1 TON 
3730 FOR J s 1 TON 
3740 INPUT #1, Y(I, J), DEL(I, J) 

3750 NEXT J 

3760 NEXT I 
3770 CLOSE #1 
3780 LOCATE CSRLIN + 1, 6: PRINT 11# of generators (P-V buses)= 11 ; G 
3790 PRINT TAB(6); 11# of load buses (P-Q buses)= 11 ; M 
3800 PRINT TAB(6); "total# of buses = "; N 
3810 COLOR , 10 
3820 FOR I• 11 TO 22 
3830 LOCATE I, 6: PRINT STRINGS(70, 11 11 ) 

3840 NEXT I 
3850 SCREEN, , 1, 1 
3860 COLOR 14, 9 
3870 LOCATE 14, 20: PRINT II P,gen = 
3880 LOCATE 20: PRINT II V,bus = 
3890 LOCATE, 20: PRINT II P,load = 
3900 LOCATE, 20: PRINT II Q,load = 
3910 LOCATE 12, 20: PRINT II bus no. (slack bus) 

II 

II 

II 

II 

II 

3920 LOCATE 14, 31: PRINT 11 - 11 ' enter input data for the swing bus 

3930 LOCATE, 31: INPUT 11 ", V(1) 
3940 LOCATE , 31: INPUT 11 11 , PL(1) 
3950 LOCATE, 31: INPUT 1111 , QL(1) 
3960 LOCATE 12, 20: PRINT II bus no. 2 (P-V bus (generator bus) ) 11 

3970 FOR I s 2 TO G ' enter input data for P-V buses 
3980 LOCATE 12, 20: PRINT II bus no. 11 ; 

3990 LOCATE 14, 31: PRINT STRINGS(20, 11 ") 

4000 LOCATE 31: PRINT STRINGS(20, " 11 ) 

4010 LOCATE, 31: PRINT STRINGS(20, 11 11 ) 

4020 LOCATE, 31: PRINT STRINGS(20, 11 11 ) 

4030 LOCATE 14, 31: INPUT 11 11 , PG(I) 
4040 LOCATE 31: INPUT 11 11 , V(I) 
4050 LOCATE , 31: INPUT 11 11 , PL( I) 

4060 LOCATE , 31: INPUT 11 11 , QL(I) 
4070 P(I) = PG(I) - PL(I) 
4080 NEXT I 
4090 LOCATE 12, 20: PRINT II bus no. 
4100 FOR I= G + 1 TON 

(P-Q bus ( load bus )) 11 

' enter input data for P-Q buses 

78 



4110 LOCATE 12, 20: PRINT II bus no."; 
4120 LOCATE 14, 31: PRINT STRINGS(20, 11 ") 

4130 LOCATE 31: PRINT STRINGS(20, " 11 ) 

4140 LOCATE , 31: PRINT STRINGS(20, 11 11 ) 

4150 LOCATE, 31: PRINT STRINGS(20, 11 11 ) 

4160 LOCATE 14, 31: PRINT 11 - 11 

4170 LOCATE 31: PRINT 11 - 11 

4180 LOCATE , 31: INPUT 11 ", PL(I) 
4190 LOCATE , 31: INPUT 11 11 , QL(I) 
4200 P(I) • -PL(I) 
4210 Q(I) • -QL(I) 
4220 NEXT I 
4230 MN• M + N - 1 

4240 •- -- set initial condition 
4250 SE(1) • 0 • set swing bus angle= O 
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4260 FOR I= 2 TON 
4270 SE(I) = 0 

' set initial starts for bus voltage phase angles (all buses) in rad. 

4280 NEXT I 
4290 FOR I• G + 1 TON ' set initial starts for load bus voltage magnitude in p.u 
4300 V(I) • 1 
4310 NEXT I 
4320 •------whether to swicth to Hybrid method or classical Newton-Raphson 
4330 DIM R(MN), DX(MN), GD(MN) 
4340 GOSUB 15150 
4350 IF K2 = 2 THEN GOSUB 6000 ELSE GOSUB 5000 
4360 GOSUB 11010 
4370 RETURN 

5010 •-•------ LOADFLOW BY STANDARD NE\ITON-RAPHSON METHOO -------------•• 

5020 ·--·--······-···-··------··---·---····················· 5030 GOSUB 15150 
5040 •-•--- main program 
5050 E • .00000000000001# 
5060 IT • 0 

5070 IT • IT + 1 
5080 GOSUB 7510 
5090 GOSUB 15390 
5100 GOSUB 9000 
5110 FOR I= 1 TO MN 
5120 FOR J • 1 TO MN 
5130 AINV(I, J) = A(I, J) 
5140 NEXT J 
5150 NEXT I 
5160 GOSUB 10010 

• set epselon 
• set iteration couit 

• calc. residual 

' calc. Jacobian matrix 
' calc. Inverse Jacobain 

5170 FOR I= 1 TO MN ' calc. step dx 
5180 DX( I) = 0 
5190 FOR J = 1 TO MN 
5200 DX(I) = DX(I) + AINV(I, J) * R(J) 
5210 NEXT J 
5220 NEXT I 
5230 NN • O 
5240 FOR I = 2 TO N • updating current angle 



5250 NN • NN + 1 
5260 SE(I) = SE(I) + DX(NN) 
5270 NEXT I 
5280 FOR I• G + 1 TON 
5290 NN • NN + 1 

• updating current voltage 

5300 V(I) • V(I) + DX(NN) 
5310 NEXT I 
5320 GOSUB 7510 • calc. current residual 
5330 IF F <ETHEN RETURN • test convergence 
5340 GOTO 5070 

6000 ·-··----··--·--······-·-···········-····-·-·· 6010 ••---- HYBRID ALGORITHM FOR STANDARD NEWTON-RAPHSON LOADFLOIJ ---•••-• 

6020 ··--··-······--··---·······-·-···········-······-····· 6030 I A(,) • Jacobian matrix 
6040 I Gd(,) = Grandient matrix off 
6050 I gt = norm of Gd( , ) 
6060 I R(,) = residual , dim M 

6070 IX(,) = varible vector 
6080 • DX(,) = vector of the predicted step 
6090 • normx = norm of NEWTON-RAPHSON step 
6100 • Ft = sum of residuals in previous iteration 
6110 • F = sum of residuals in current iteration 
6120 • R = trust radius 
6130 'E = specified tolerance limit 

6140 
1

••··----·-··-···--·-···········--··-····················· 6150 •••••••--•-• -- main program 
6160 DIM FEE(MN) 
6170 E = .0000000000001#: TMAX = 1000: TINC = 1 
6180 DV = .2 
6190 DSE = .2 
6200 R • SQR(M • 

6220 IT = 0 
6230 GOSUB 7510 
6240 Ft= F 

(DV - 2) + N • COSE - 2)) • calc. approx. trust radius R 
• set init. iteration no. 

• calc. first residual 

6250 ••- -------- re-entry point for new iteration 
6260IT=IT+1 
6270 STATUS= 0 
6280 Ft = F 
6290 CUT= 0 

6300 UG = 0 
6310 GOSUB 9000 
6320 Gt= 0 
6330 FOR I= 1 TO MN 
6340 GD(I) = 0 

6350 FOR J = 1 TO MN 
6360 GD(I) = GD(I) + A(J, I)• R(J) 
6370 NEXT J 
6380 GD(I) = -2 • GD(I) 
6390 Gt= Gt+ GD(I) • GD(I) 
6400 NEXT I 
6410 Gt= SQR(Gt) 

• iteration cou,t 

• calc. Jacobian matrix J(,) 
• calc. gradient Gd(,) and norm gt 

·) ! ~ 
·..; -



6420 IF G1 = 0 THEN RETURN 
6430 •••-------- - Standard Newton-Raphson iteration 
6440 FOR I= 1 TO MN 
6450 FOR J = 1 TO MN 
6460 AINV(I, J) = ACI, J) 
6470 NEXT J 
6480 NEXT I 
6490 GOSUB 10010 
6500 FOR I= 1 TO MN 
6510 DX(l) = 0 
6520 FOR J = 1 TO MN 
6530 DXCI) = DXCI) + AINV(I, J) * RCJ) 
6540 NEXT J 
6550 NEXT I 
6560 NORMX a 0 
6570 FOR I a 1 TO MN 
6580 NORMX a NORMX + DXCI) * DXCI) 
6590 NEXT I 
6600 NORMX = SQRCNORMX) 
6610 DENO= 0 
6620 FOR I• 1 TO MN 
6630 DENO a DENO+ GD(I) * DXCI) 
6640 NEXT I 
6650 DENO= -DENO/ 2 
6660 IF NORMX > R THEN GOTO 6no 

. 6670 GOSUB 7670 
6680 GOSUB 7510 
6690 IF F < F1 THEN GOTO 7150 
6700 R • R / 2: TINC = 1 
6710 GOSUB 7780 

• calc. inverse Jacobian matrix 

• calc. norm of dx 

' calc. deno. factor for quadratic factor 

' test whether normx is inside R 
I ~ting XC,) 
• calc. current residual 
' test whether current Newton step 
' is successful to decrease residual 

6no •----------steepest descent iteration 
6730 U a O ' calc. predicted step to min. FCx) 
6740 FOR I = 1 TO MN 
6750 AA= 0 
6760 FOR J = 1 TO MN 
6770 AA• AA+ A(I, J) * GDCJ) 
6780 NEXT J 
6790 U a U +AA* AA 
6800 NEXT I 
6810 U • CG1 * G1) / U 
6820 UG = U * G1 
6830 IF UG >• R THEN GOTO 7010 
6840 GX = 0 

6850 FOR I = 1 TO MN 
6860 GX = GX + GDCI) * DXCI) 
6870 NEXT I 

' test whether predicted step> r 

6880 A= CU. 2) * CG1 • 2) + CNORMX . 2) + 2 * U * GX 
6890 B = U * GX +CU. 2) * CG1 • 2) 
6900 C =CU. 2) * CG1 • 2) - CR . 2) 
6910 IF CB. 2 - A* C) < 0 THEN GOTO 6960 
6920 ALPA =CB+ SQRCCB . 2) - A* C)) / A 
6930 IF CALPA > 0) AND CALPA < 1) THEN GOTO 6960 
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6940 ALPA • (B - SQR((B - 2) - A* C)) / A 
6950 IF (ALPA > 0) AND (ALPA < 1) THEN GOTO 6960 ELSE GOTO 7010 
6960 STATUS a 2 
6970 FOR I• 1 TO MN 
6980 DX(I) • (ALPA - 1) * U * GD(I) + ALPA * DX(I) 
6990 NEXT I 

7000 GOTO 7050 
7010 STATUS= 1 
7020 FOR I• 1 TO MN 
7030 OX(I) = -R * (GD(I) / G1) 
7040 NEXT I 
7050 GOSUB 7670 
7060 GOSUB 7510 
7070 IF F < F1 THEN GOTO 7150 
7080 

7090 GOSUB 7780 
7100 R • R / 2: TINC • 
7110 CUT= CUT+ 1 
7120 IF CUT> 1000 THEN RETURN 
7130 
7140 GOTO 6830 
7150 RQ • (F1 - F) / DENO 

• calc. pure cauchy step 

I updating X(,) 

' calc. current residual 
' test whether current cauchy step 
' is successful to decrease residual 

• set X(,) back to last turning pt 
• reduce restrict step lenght 
1 cut back cou,t 
' test whether cauchy step is too 
' small 

1 updating X(,) and recalc. residual 

7160 •-•• --------- revise restrict step lenght 
7170 IF F > (F1 - .1 * (F1 - FEE)) THEN GOTO 7180 ELSE GOTO noo 
7180 R = R / 2 
7190 GOTO 7350 
noo AA= F1 - .1 * (F1 - FEE) - F 
n10 BB• o 
n20 cc• o 

• calc. d!ult 

7230 FOR I• 1 TO MN 'calc. sp & ss 
n40 BB= BB+ ABS(R(I) * (R(I) - FEE(I))) 
n50 cc= cc+ (R(I) - FEE(I)) . 2 
n60 NEXT I 
n70 RAMOA • 1 +AA/ (BB+ SQR(BB *BB+ AA* CC)) 
n80 RAMDA = SQR(RAMDA) 
n90 IF RAMDA < 2 THEN U1 = RAMDA ELSE GOTO 7320 
7300 IF RAMDA < TINC THEN U2 = RAMOA ELSE U2 = TINC 
7310 GOTO 7330 
7320 IF 2 < TINC THEN U2 = 2 ELSE U2 = TINC 
7330 TINC • RAMDA / U2 
7340 R = U2 * R 

7350 FEE = 0 
7360 FOR I= 1 TO MN 
7370 FEE( I) = 0 
7380 FOR J a 1 TO MN 
7390 FEE(I) = FEE(I) + A(I, J) * DX(J) 
7400 NEXT J 
7410 FEE(I) = FEE(I) + R(I) 
7420 NEXT I 
7430 FOR I= 1 TO MN 
7440 FEE= FEE+ FEE(I) * FEE(I) 
7450 NEXT I 
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7460 GOSUB 15390 

7470 •-- --------- test convegence 
7480 JF F <ETHEN RETURN 
7490 JF IT> TMAX THEN RETURN 
7500 GOTO 6260 

1 test whether too many iteration 

7510 , .... ----- subroutine for calc. residual F(x) and RC,) 
7520 GOSUB 8000 
7530 NN • 0 
7540 FOR I• 2 TON 
7550 NN • NN + 1 
7560 R(NN) • DP(!) 
7570 NEXT I 
7580 FOR I :s G + 1 TO N 
7590 NN • NN + 1 
7600 R(NN) :s DQ(I) 
7610 NEXT I 
7620 F = 0 
7630 FOR I = 1 TO MN 

7640 F • F + R(I) * R(I) 

7650 NEXT I 
7660 RETURN 
7670 •-••-----subroutine for updating XC,) 
7680 NN • 0 

7690 FOR I= 2 TON 
7700 NN • NN + 1 

7710 SE(!)• SE(I) + DX(NN) 
mo NEXT I 
7730 FOR I= G + 1 TON 
7740 NN • NN + 1 
7750 V(I) • V(I) + DX(NN) 
7760 NEXT I 
7770 RETURN 
7780 •-••-----subroutine for setting X(,) back to last turning points 
7790 NN a 0 

7800 FOR I= 2 TON 
7810 NN = NN + 1 
7820 SE(!)= SE(!) - DX(NN) 
7830 NEXT I 
7840 FOR I• G + TON 
7850 NN = NN + 1 
7860 V(I) = V(I) - DX(NN) 
7870 NEXT I 
7880 RETURN 
8000 ••••--- subroutine for calculatiog real and reactive power mismatch 
8010 FOR I = 2 TO N I updating real power 
8020 Pl(!) = 0 
8030 FOR J = 1 TON 
8040 Pl(!)= Pl(!)+ V(I) * Y(I, J) * V(J) * COS(DEL(I, J) + SE(J) - SE(I)) 
8050 NEXT J 
8060 NEXT I 
8070 FOR I ., G + 1 TO N I updating reactive power 
8080 QI(!) = 0 

---•······ 

83 



8090 FOR J = 1 TON 
8100 Ql(I) = Ql(I) - V(I) • Y(I, J) • V(J) • SIN(DEL(I, J) + SE(J) - SE(I)) 
8110 NEXT J 
8120 NEXT I 
8130 FOR I= 2 TON 
8140 OP(I) = P(I) - Pl(I) 
8150 NEXT I 
8160 FOR I• G + 1 TON 
8170 OQ(I) = Q(I) - Ql(I) 
8180 NEXT I 
8190 RETURN 

9000 ·-·····-··· 
9010 ••••••••--- subroutine for calc. Jacobian matrix---••••••••-•••-••• 
9020 ERASE A 
9030 DIM A(2 •CM+ N + 1), 2 •CM+ N + 1)) 
9040 FOR I = 2 TO N 'form submatrix J1 
9050 FOR J = 2 TON 
9060 IF I <> J THEN GOTO 9120 
9070 FOR JJ = 1 TON 
9080 IF I= JJ THEN GOTO 9100 
9090 A(I, I)• A(I, I)+ V(I) • Y(I, JJ) • V(JJ) • SIN(DEL(I, JJ) + SE(JJ) • SE(I)) 
9100 NEXT JJ 
9110 GOTO 9130 
9120 A(I, J) = ·V(I) • Y(I, J) • V(J) • SIN(DEL(I, J) + SE(J) - SE(I)) 
9130 NEXT J 
9140 NEXT I 
9150 FOR I• 2 TON 
9160 FOR J = G + 1 TON 
9170 IF I <> J THEN GOTO 9260 
9180 FOR JJ = 1 TON 
9190 IF I• JJ THEN GOTO 9210 
9200 GOTO 9230 

•form submatrix J2 

9210 A(I, N + J - G) = A(I, N + J - G) + 2 • Y(I, JJ) • V(JJ) • COS(DEL(I, JJ)) 
9220 GOTO 9240 
9230 A(I, N + J - G) = A(I, N + J - G) + Y(I, JJ) • V(JJ) • COS(DEL(I, JJ) + SE(JJ) - SE(I)) 
9240 NEXT JJ 
9250 GOTO 9270 
9260 A(I, N + J - G) = V(I) • Y(I, J) • COS(DEL(I, J) + SE(J) - SE(I)) 
9270 NEXT J 
9280 NEXT I 
9290 FOR I• G + 1 TON 
9300 FOR J = 2 TON 
9310 IF I<> J THEN GOTO 9370 
9320 FOR JJ • 1 TON 
9330 IF I= JJ THEN GOTO 9350 

'form submatrix J3 
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9340 A(N + I - G, J) = A(N + I - G, J) + V(I) • Y(I, JJ) • V(JJ) • COS(DEL(I, JJ) + SE(JJ) - SE(I)) 
9350 NEXT JJ 
9360 GOTO 9380 
9370 A(N + I - G, J) = ·V(I) • Y(I, J) • V(J) • COS(DEL(I, J) + SE(J) - SE(I)) 
9380 NEXT J 
9390 NEXT I 
9400 FOR I = G + 1 TO N 'form submatrix J4 



9410 FOR J • G + 1 TON 
9420 IF I <> J THEN GOTO 9510 
9430 FOR JJ s 1 TON 
9440 IF I s JJ THEN GOTO 9460 
9450 GOTO 9480 
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9460 A(N + I • G, N + J • G) • A(N + • G, N + J • G) • 2 * V(I) * Y(I, JJ) * SIN(DEL(I, JJ) + SE(JJ) · SE(!)) 
9470 GOTO 9490 
9480 A(N + I • G, N + J · G) = A(N + I • G, N + J • G) · Y(I, JJ) * V(JJ) * SIN(DEL(I, JJ) + SE(JJ) · SE(I)) 
9490 NEXT JJ 
9500 GOTO 9520 
9510 A(N + I • G, N + J · G) = ·V(I) * Y(I, J) * SIN(DEL(I, J) + SE(J) · SE(I)) 
9520 NEXT J 
9530 NEXT I 
9540 FOR I a 1 TO HN 
9550 FOR J a 1 TO HN 
9560 A(I, J) • A(I + 1, J + 1) 
9570 NEXT J 
9580 NEXT I 
9590 RETURN 

10000 ··-·---
10010 •------subroutine for calc. Inverse matrix 
1D02D IC• D 
10030 FOR X = 1 TO HN 'form RHS Lnity matrix 
10040 FOR Y = 1 TO HN 
10050 IF X = Y THEN GOTO 1008D 
1D060 AINV(X, Y + HN) = 0 
10070 GOTO 10D90 
10080 AINV(X, Y + HN) = 1 
10090 NEXT Y 
10100 NEXT X 
10110 FOR L • 1 TO HN 
10120 IC s IC+ 1 
10130 IF AINV(L, K) <> 0 OR L <> HN THEN GOTO 10160 
10140 IC• K + 1 
10150 GOTO 10130 
10160 IF AINV(L, K) = 0 AND L <> HN THEN GOTO 10510 
10170 FOR X = 2 * HN TO 1 STEP ·1 
10180 AINV(L, X) = AINV(L, X) / AINV(L, IC) 
10190 NEXT X 
10200 FOR J = 1 TO HN 
10210 IF J = L THEN GOTO 10260 
10220 FOR X = 2 * HN TO 1 STEP ·1 
10230 AINV(J, X) = AINV(J, X) · AINV(J, IC)* AINV(L, X) 
10240 IF ABS(AINV(J, X)) < ABS(AINV(J, X + 1)) / 100000000000# THEN AINV(J, X) = 0 
10250 NEXT X 
10260 NEXT J 
10270 NEXT L 
10280 FOR Ya TO HN 
10290 s • O 
10300 FOR X = 1 TO HN 
10310 IF AINV(Y, X) <> 0 THENS= 
10320 NEXT X 



10330 FOR XX= MN+ 1 TO 2 • MN 
10340 IFS a O AND AINV(Y, XX)<> 0 THEN GOTO 10640 
10350 NEXT XX 
10360 NEXT Y 
10370 FOR L = 1 TO MN 
10380 IF AINV(L, L) <> 1 THEN GOTO 10630 
10390 NEXT L 
10400 FOR Y = 1 TO MN 
10410 FOR X = 1 TO MN 
10420 IF X <> Y AND AINV(Y, X) <> 0 THEN GOTO 10630 
10430 NEXT X 
10440 NEXT Y 
10450 FOR X = 1 TO MN 
10460 FOR Y = 1 TO MN 
10470 AINV(X, Y) = AINV(X, Y + MN) 
10480 NEXT Y 
10490 NEXT X 
10500 RETURN 
10510 FOR H = L + 1 TO MN 
10520 IF AINV(H, K) <> 0 THEN GOTO 10570 
10530 NEXT H 
10540 K = K + 1 
10550 IF K > 2 • MN THEN GOTO 10280 
10560 GOTO 10130 
10570 FOR Z = 1 TO 2 • MN 
10580 Ta AINV(L, Z) 
10590 AINV(L, Z) = AINV(H, Z) 
10600 AINV(H, Z) = T 
10610 NEXT Z 
10620 GOTO 10130 
10630 CLS: PRINT "NOT INDEPENDENT": END 
10640 CLS: PRINT "CONTRADICTORY": END 
11000 .................. - ........ _._ .................................... . 

11010 ....... ••-----subroutine for calc. lineflow and line loss----------••••••••• 
11020 ................. - ............... - ................................... . 

11030 • PLINE(i,j) 
11040 • QLINE(i,j) 
11050 • PLOSS(i,j) 
11060 • QLOSS(i,j) 

= 
= 
= 
= 

11080 FOR J = 1 TON 
11090 P(1) = P(1) + V(1) 
11100 Q(1) = Q(1) - V(1) 
11110 NEXT J 
11120 FOR I= 2 TOG 
11130 FOR J = 1 TON 

real power flow from bus i to bus j 
reactive power flow from bus i to bus j 
real power loss along line i,j 
reactive power along line i,j 

• coq,ute net real and reactive power injected at the swing bus 
• Y(1, J) * V(J) • COS(DEL(1, J) + SE(J) - SE(1)) 
• Y(1, J) • V(J) • SIN(DEL(1, J) + SE(J) - SE(1)) 

• coq,ute reactive power injected at P-V buses 

11140 Q(I) = Q(I) - V(I) * Y(I, J) • V(J) • SIN(DEL(I, J) + SE(J) - SE(I)) 
11150 NEXT J 
11160 NEXT I 
11170 PG(1) = P(1) - PL(1) • coq,ute real and reactive power generation at swing bus 
11180 QG(1) • Q(1) - QL(1) 
11190 FOR I• 2 TOG • coq,ute reactive power generation at P-V buses 
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11200 QG(I) = Q(I) - QL(I) 
11210 NEXT I 
11220 ERASE A, OP, DQ, PI, QI, Y, DEL 
11230 DIM PLINE, QLINE, PLOSS, QLOSS 
11240 DIM G(N, N), B(N, N), LL(N, N), EE(N, N), ICN, N), AI(N, N) 
11250 OPEN "i", #2, 11aanitL" 
11260 OPEN "i", #13, 11aanit211 

11270 FOR I = 1 TO N 

11280 FOR J = I TO N 

11290 INPUT #2, LLCI, J), EE(I, J) 
11300 INPUT #13, G(I, J), B(I, J) 
11310 NEXT J 
11320 NEXT I 
11330 CLOSE #2 
11340 CLOSE #13 

11350 FOR I• 1 TON 
11360 FOR J =ITO N 

11370 IF I= J THEN GOTO 11640 
11380-VR "'0 
11390 VI= 0 
11400 W • 0 
11410 DV"' 0 
11420 VR "'V(I) * COS(SE(I)) - V(J) * COS(SE(J)) 
11430 VI• V(I) * SIN(SE(I)) - V(J) * SIN(SE(J)) 
11440 W • SQR(VR " 2 + VI "2) 
11450 IF VR = 0 THEN GOTO 11470 
11460 GOTO 11510 
11470 IF VI> 0 THEN DV = 3.141592654# / 2 
11480 IF VI< 0 THEN DV • -3.141592654# / 2 
11490 IF VI• 0 THEN DV = 0 
11500 GOTO 11560 
11510 IF VI> 0 THEN GOTO 11530 
11520 IF VI < 0 THEN GOTO 11550 
11530 DV • ATN(VI / VR) 
11540 GOTO 11560 
11550 DV • ATN(VI / VR) + 3.141592654# 
11560 1(1, J) = W * LL(I, J) ' calc. current magnitude along line i , j 
11570 AICI, J) = DV + EE(I, J) 'calc. current phase angle along line i,j 
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11580 PLINE(I, J) = V(I) • 1(1, J) • COS(SE(I) - Al(I, J)) ' calc. real and reactive power flow from bus i to bus 
11590 QLINE(I, J) = V(I) * 1(1, J) * SIN(SE(I) - Al(I, J)) 

11600 PLINE(J, I) .. V(J) • 1(1, J) • COS(SE(J) - AI(l, J))' calc. real and reactive power flow from bus j to bus 
11610 QLINE(J, I)• V(J) * 1(1, J) * SIN(SE(J) • Al(I, J)) 
11620 PLOSS(I, J) = ABS(PLINE(I, J) - PLINE(J, I)) ' calc. real & reactive power losses along line i,j 
11630 QLOSS(I, J) = ABS(QLINE(I, J) - QLINE(J, I)) 
11640 NEXT J 

11650 NEXT I 
12000 , ............ 

12010 ••-•----subroutine for display. or print out the result 
12020 COLOR , ·O 
12030 CLS 
12040 COLOR , 4 
12050 FOR I• 6 TO 16 



12060 LOCATE I, 12: PRINT STRING$(55, 11 11 ) 

12070 NEXT I 
12080 COLOR 3 
12090 LOCATE 7, 15: PRINT "Show the results from calculation 11 

12100 LOCATE 9, 35: PRINT 111.) on screen" 
12110 LOCATE 10, 35: PRINT 112.) by printer" 
12120 LOCATE 11, 35: PRINT 113.) go baclt to main menu" 
12130 LOCATE 13, 35: PRINT "select options ••••• "; 
12140 S$ = INPUT$(1) 
12150 Sa VAL(S$) 
12160 IF (S s 1) OR ((Sa 2) OR (S = 3)) THEN GOTO 12170 ELSE GOTO 12200 
12170 IFS= 3 THEN RETURN 
12180 ON S GOSUB 12270, 14000 
12190 GOTO 12020 
12200 SOUND 100, 1 
12210 SOUND 500, 1 
12220 SOUND 1000, 1 
12230 LOCATE 13, 35: PRINT STRING$(25, 11 11 ) 

12240 COLOR 19 
12250 GOTO 12130 
12260 RETURN 
12270 ................. .. 
12280 ..... ___ display the result on screen 

12290 GOSUB 13500 
12300 PRINT TAB(3); 111 •11 ; TAB(11); "SW."; TAB(17); 
12310 PRINT USING 11##.###'•; V(1); 
12320 PRINT TAB(24); 
12330 PRINT USING 11###.###"; SE(1); 
12340 PRINT TAB(37); 
12350 PRINT USING 11##.#####"; PG(1); 
12360 PRINT TAB(47); 
12370 PRINT USING 11##.#####'1; QG(1); 
12380 PRINT TAB(61); 
12390 PRINT USING 11##.##fl##'•; PL(1 ); 
12400 PRINT TAB(71); 
12410 PRINT USING 11##.#####11 ; QL(1) 
12420 FOR I= 2 TOG 
12430 IF CSRLIN > 22 THEN GOTO 12450 
12440 GOTO 12490 
12450 PRINT 
12460 PRINT TAB(25); "press anyltey to see more 
12470 KKS a INPUT$(1) 
12480 GOSUB 13500 

... 
•• I 

12490 PRINT TAB(2); I; II II• 
• I TAB(11); "P·V"; TAB(17); 

12500 PRINT USING 11##.###'•; VCI); 
12510 PRINT TAB(24); 
12520 PRINT USING 11###.###'1 ; SE( I) • 57 .3; 
12530 PRINT TAB(37); 
12540 PRINT USING 11##.#####'1 ; PG(I); 
12550 PRINT TAB(47); 
12560 PRINT USING 11##.#####11 ; QG(I); 
12570 PRINT TAB(61); 
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12580 PRINT USING 11##.#####'1; PLCI); 
12590 PRINT TAB(71); 
12600 PRINT USING 11##.#####'1; QL(I); 
12610 NEXT I 
12620 FOR I• G + 1 TON 
12630 PRINT TAB(2); I; 11 • 11 ; TAB(11); "P·Q"; TAB(17); 
12640 PRINT USING 11##.###t'; VCI); 
12650 PRINT TAB(24); 
12660 PRINT USING 11###.###'1; SECI) * 57.3; 
12670 PRINT TAB(40); "·"; TAB(50); "·"; 
12680 PRINT TAB(61); 
12690 PRINT USING 11##.#####'1; ·PCI); 
12700 PRINT TAB(71); 
12710 PRINT USING 11##.#####"; ·Q(I) 
12720 IF CSRLIN > 22 THEN GOTO 12740 
12730 GOTO 12770 
12740 PRINT TAB(25); "press anykey to see more 
12750 ICICS • INPUTS(1) 
12760 GOSUB 13500 
12770 NEXT I 
12780 PRINT 
12790 FOR I • 1 TO 80 
12800 LOCATE CSRLIN, I 
12810 PRINT CHRS(95); 
12820 NEXT I 
12830 PRINT 

... 
•• I 

12840 PRINT TAB(25); "press anykey to see lineflows and lineloss" 
12850 KKS = INPUTS(1) 
12860 GOSUB 13270 
12870 FOR I• 1 TON 
12880 FOR J • 1 TON 
12890 IF I= J THEN GOTO 13150 
12900 IF G(I, J) = 0 AND B(I, J) = 0 THEN GOTO 13150 
12910 IF CSRLIN > 22 THEN GOTO 12930 
12920 GOTO 12970 
12930 PRINT 
12940 PRINT TABC25>; "press anykey to see more 
12950 ICICS • INPUTS(1) 
12960 GOSUB 13310 
12970 PRINT USING 11##'1 ; I; 
12980 PRINT 11 • 11 ; 

12990 PRINT USING 11##"; J; 
13000 LOCATE CSRLIN, 9 
13010 PRINT USING 11##.##'1 ; G(1, J); 

13020 IF BCI, J) >= 0 THEN PRINT 11+j 11 ; 

13030 IF BCI, J) < 0 THEN PRINT "· j"; 
13040 PRINT USING 11##.##"; ABS(BCI, J)); 

13050 LOCATE CSRLIN, 23 
13060 PRINT USING 11##.###'1 ; 1(1, J); 

13070 LOCATE CSRLIN, 33 
13080 PRINT USING 11###.fl###t'; PLINE(!, J); 

13090 LOCATE CSRLIN, 43 

... 
•• I 
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13100 PRINT USING 11###.####'1 ; QLINECI, J); 

13110 LOCATE CSRLIN, 59 
13120 PRINT USING 11###.####'1; PLOSSCI, J); 

13130 LOCATE CSRLIN, 69 
13140 PRINT USING 11###.####"; QLOSSCI, J) 

13150 NEXT J 

13160 NEXT I 
13170 PRINT 
13180 FOR I = 1 TO 80 
13190 LOCATE CSRLIN, I 
13200 PRINT CHRS(95); 
13210 NEXT I 
13220 PRINT 
13230 PRINT TAB(25); "press anykey to go back to menu" 
13240 KKS • INPUTS(1) 
13250 RETURN 
13260 I 

13270 COLOR, 4 
13280 CLS 
13290 COLOR 14, 9 
13300 Z60S =" << •• Report From Loaclflow Calculation •• >> 

13310 LOCATE 2, 2: PRINT CHRS(218) + STRINGS(75, CHRS(196)) + CHRS(191) 
13320 LOCATE, 2: PRINT CHRS(179) + Z60S + CHRS(179) 
13330 LOCATE, 2: PRINT CHRS(192) + STRINGS(75, CHRS(196)) + CHRS(217) 
13340 COLOR, 4 
13350 PRINT 
13360 PRINT STRINGS(79, CHRS(196)) 
13370 PRINT TAB(3); "bus"; TAB(10); "acinitance"; 
13380 PRINT TAB(26); 11 1"; 
13390 PRINT TAB(32); 11

- -- Line Flow -- - 11
; 

13400 PRINT SPACES(5); "** -- Line Loss -- **" 
13410 LOCATE CSRLIN, 32: PRINT STRINGS(20, CHRS(196)); 
13420 LOCATE, 58: PRINT STRINGS(20, CHRS(196)) 
13430 LOCATE CSRLIN, 36 
13440 PRINT "P(p.u)"; SPACES(8); 11Q(p.u)"; 
13450 LOCATE CSRLIN, 62 
13460 PRINT "P(p.u)"; SPACES(8); "Q(p.u)" 
13470 PRINT STRINGS(79, CHRS(196)) 
13480 PRINT 
13490 RETURN 
13500 I 

13510 COLOR, 4 
13520 CLS 
13530 COLOR 14, 9 
13540 Z60S • 11 « .. Report From Loaclflow Calculation •• » 

13550 LOCATE 2, 2: PRINT CHRS(218) + STRINGS(75, CHRS(196)) + CHRS(191) 
13560 LOCATE, 2: PRINT CHRS(179) + Z60S + CHRS(179) 
13570 LOCATE, 2: PRINT CHRS(192) + STRINGS(75, CHRS(196)) + CHRS(217) 
13580 COLOR , 4 
13590 PRINT 
13600 PRINT STRINGS(79, CHRS(196)) 
13610 PRINT "Bus no."; SPACES(2); "Type"; 
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13620 PRINT SPACES(3); "Volts"; SPACES(3); "Angle"; 
13630 PRINT SPACES(5); "**----Generation----**"; 
13640 PRINT SPACES(2); "**-------Load-------**"; 
13650 LOCATE, 35: PRINT STRINGS(45, CHRS(196)) 
13660 PRINT TAB(40); "P(p_u)"; SPACES(7); 11Q(p.u)"; 
13670 PRINT SPACES(11); "P(p.u)"; SPACES(7); "Q(p.u)" 
13680 PRINT STRINGS(79, CHRS(196)) 
13690 PRINT 
13700 RETURN 
14000 '************* 
14010 •••-----printout the result 
14020 CLS 
14030 LOCATE 12, 25 
14040 COLOR 0, 7 
14050 PRINT 11- -- printing the results -- **-
14060 LPRINT CHRS(27); 11 - 11 ; CHRS(1); "RESULT OF POWER FLOW CALCULATION"; 
14070 LPRINT CHRS(27); 11 - 11 ; CHRS(O); 
14080 LPRINT TAB(50); 11# of iterations• 11 ; IT 
14090 LPRINT 
14100 FOR I= 1 TO 80 
14110 LPRINT CHRS(95); 
14120 NEXT I 
14130 LPRINT 
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14140 LPRINT "BUS N0. 11 ; SPACES(2); "TYPE"; SPACES(3); "VOLTS"; SPACES(3); "ANGLE"; SPACES(5); 
14150 LPRINT "**----GENERATION----**"; SPACES(2); 11••-------LOAD-------**11 ; 

14160 LPRINT TAB(35); 
14170 FOR I = 34 TO 79 
14180 LPRINT CHRS(95); 
14190 NEXT I 
14200 LPRINT TAB(38); "P(p.u)"; SPACES(7); "Q(p.u)"; SPACES(10); "P(p.u)"; SPACES(7); "Q(p.u)" 
14210 FOR I= 1 TO 80 
14220 LPRINT CHRS(95); 
14230 NEXT I 
14240 LPRINT 
14250 LPRINT TAB(3); 11 1 •11 ; TAB(11); 115\111 ; TAB(17); 
14260 LPRINT USING 11##.###"; V(1); 
14270 LPRINT TA8(24); 
14280 LPRINT USING 11###.###'1; SE(1); 
14290 LPRINT TAB(37); 
14300 LPRINT USING 11##.#####"; PG(1); 
14310 LPRINT TAB(47); 
14320 LPRINT USING 11##.#####'1 ; QG(1); 
14330 LPRINT TAB(61); 
14340 LPRINT USING 11##.#####''; PL(1); 
14350 LPRINT TAB(71); 
14360 LPRINT USING 11##.#####"; QL(1); 
14370 FOR I= 2 TOG 
14380 LPRINT TAB(2); I; 11 • 11 ; TAB(11); "P-V"; TAB(17); 
14390 LPRINT USING 11##.###'1; V(I); 
14400 LPRINT TAB(24); 
14410 LPRINT USING 11###.###'1; SE(I) * 57.3; 
14420 LPRINT TAB(37); 



14430 LPRINT USING 11##.#####'1; PG(I); 
14440 LPRINT TAB(47); 
14450 LPRINT USING 11##.#####'1; QG(I); 
14460 LPRINT TAB(61); 
14470 LPRINT USING 11##.#####'1; PL(I); 
14480 LPRINT TAB(71); 
14490 LPRINT USING 11##.#####"; QL(I); 
14500 NEXT I 
14510 FOR I• G + 1 TON 
14520 LPRINT TAB(2); I; 11 • 11 ; TAB(11); "P-Q"; TAB(17); 
14530 LPRINT USING 11##.###"; V(I); 
14540 LPRINT TAB(24); 
14550 LPRINT USING 11###.###"; SE(I) * 57.3; 
14560 LPRINT TAB(40); 11 - 11 ; TAB(50); 11 - 11 ; 

14570 LPRINT TAB(61); 
14580 LPRINT USING 11##.#####N; -P(I); 
14590 LPRINT TAB(71); 
14600 LPRINT USING 11##.#####'1; -Q(I); 
14610 NEXT I 
14620 LPRINT 
14630 FOR I = 1 TO 80 
14640 LPRINT CHRS(95); 
14650 NEXT I 
14660 LPRINT: LPRINT 
14670 LPRINT TAB(13); "---------- - ----------- LINEFLOW --------- - ------------ - -" 
14680 FOR I • 1 TO 80 
14690 LPRINT CHRS(95); 
14700 NEXT I 
14710 LPRINT 
14720 LPRINT TAB(3); "BUS"; TAB(10); "ADMITANCE"; 
14730 LPRINT TAB(26); 11 111 ; 

14740 LPRINT TAB(32); "** -- LINE FLOW -- **"; 
14750 LPRINT SPACES(5); "** -- LINE LOSS -- **" 
14760 LPRINT TAB(32); 
14770 FOR I = 1 TO 46 
14780 LPRINT 11 - 11 ; 

14790 NEXT I 
14800 LPRINT TAB(36); "P(p.u)"; SPACES(S); "Q(p.u)"; 
14810 LPRINT TAB(62); "P(p.u)"; SPACES(S); "Q(p.u)" 
14820 FOR I = 1 TO 80 
14830 LPRINT CHRS(95); 
14840 NEXT I 
14850 LPRINT : LPRINT 
14860 FOR I = 1 TON 
14870 FOR J = 1 TON 
14880 IF I= J THEN GOTO 15080 
14890 IF G(I, J) = 0 AND 8(1, J) = 0 THEN GOTO 15080 
14900 LPRINT USING 11##"; I; 
14910 LPRINT 11 - 11 ; 

14920 LPRINT USING 11##'1; J; 
14930 LPRINT TAB(S); 
14940 LPRINT USING 11##.##'1; G(I, J); 
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14950 IF B(I, J) >= 0 THEN LPRINT 11+j 11 ; 

14960 IF B(I, J) < 0 THEN LPRINT 11 -j"; 
14970 LPRINT USING 11##.#r; ABS(B(I, J)); 

14980 LPRINT TABC23); 
14990 LPRINT USING 11##.###'1 ; 1(1, J); 

15000 LPRINT TAB(33); 
15010 LPRINT USING 11###.####'1; PLINE(), J); 

15020 LPRINT TAB(43); 
15030 LPRINT USING 11###.####"; QLINE(I, J); 

15040 LPRINT TAB(59); 
15050 LPRINT USING 11###.####'1; PLOSS(), J); 

15060 LPRINT TAB(69); 
15070 LPRINT USING .. ###.####"; QLOSS(I, J) 

15080 NEXT J 

15090 NEXT I 
15100 LPRINT 
15110 FOR I= 1 TO 80 
15120 LPRINT CHRS(95); 
15130 NEXT I 
15140 RETURN 

15150 ·--····-·····---·--········--····················--· 15160 •••------SUBRUTINE FOR GENERATING SCREEN DURING COMPUTING---------------• 

15170 ·-···--··-·-·········----·-···---·-····················· 15180 Z90S • .. 
15190 SCREEN, , 3, 
15200 COLOR 4, 2 
15210 CLS 
15220 COLOR 14, 6 

•• -- Convegence Test During Computing -- ** 

15230 LOCATE 2, 6: PRINT CHRS(218) + STRINGS(67, CHRS(196)) + CHRS(191) 
15240 LOCATE, 6: PRINT CHRS(179) + Z90S + CHRS(179) 
15250 LOCATE, 6: PRINT CHRS(192) + STRINGS(67, CHRS(196)) + CHRS(217) 
15260 LOCATE CSRLIN + 2, 6: PRINT .. iteration no. ..; 
15270 COLOR 20, 2 
15280 LOCATE, 50: PRINT ......... computing" 
15290 COLOR 14, 9 
15300 FOR I= 9 TO 22 
15310 LOCATE I, 6: PRINT STRINGS(67, .... , 
15320 NEXT I 
15330 COLOR 14, 6 
15340 LOCATE 10, 10 

.. 

15350 PRINT .. IC .. ; SPACES(9); .. F(X) .. ; SPACES(9); .. CSTEP .. ; SPACES(10); .. NEWTON-GRAD ... 
15360 PRINT 
15370 SCREEN, , 3, 3 
15380 RETURN 
15390 ••-••----show convegence test on screen 
15400 COLOR 14, 9 
15410 IF CSRLIN > 21 THEN GOTO 15420 ELSE GOTO 15460 
15420 FOR I= 12 TO 21 
15430 LOCATE I, 6: PRINT STRINGS(67, .... ) 
15440 NEXT I 
15450 LOCATE 12, 11 
15460 LOCATE, 11 
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15470 PRINT IT; TAB(19); 
15480 PRINT USING 11####.######11; F; 
15490 LOCATE, 35: PRINT USING 11##.#ll##f'; R; 
15500 LOCATE , 55: PRINT USING 11##.il##f#t•; UG 
15510 LPRINT IT; : LPRINT USING "t##f.##Jfl##U##U##"; F1; LPRINT STATUS; 
15520 RETURN 
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LPRINT USING 11###.#il##f#t'; N0RMX, R, RQ 
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APPEIIDIX B 

System Data for 10 Bus Test System 

i-j Gij Bij i-j Gij Bij 

1-1 0.0000 0.0550 4-7 0.4500 -2.4000 
1-3 1. 7320 -4. 3100 5-5 0.0000 o. 0650 
1-4 10.0000 -20.0000 5-6 5.0000 -15. 0000 
2-2 0.0000 0.0650 6-6 0.0000 0.0400 
2-8 1. 8400 -7.4840 7-7 0.0000 0.0750 
2-9 1. 1300 -4.4770 7-8 1. 4000 -5. 6020 
2-10 o. 7000 -2. 8010 7-9 1.8400 -7.4840 
3-3 0.0000 0.0850 8-8 0.0000 0.0650 
3-5 o. 8200 -2. 1900 9-9 0.0000 0.0850 
3-6 10.0000 -20.0000 9-10 o. 9340 -3. 7350 
4-4 0.0000 0.0750 10-10 0.0000 0.0300 

TABLE B-1 Line admittance data for 10 bus system 

bus no. 1v1cp.u) 8(rad.) generation (p.u) Load (p.u) 

p Q p Q 

1 1. 08 0.0 0.00 0.00 
2 1. 02 1. 50 0.00 0.00 
3 0.00 0.00 -0.85 -0. 30 
4 o.oo 0 . 00 -0. 35 -0. 25 
5 0.00 0.00 -0. 75 -0.45 
6 o.oo o. 00 -0.75 -0. 25 
7 o.oo 0.00 -0.65 -0. 30 
8 0.00 0.00 -0.40 -0.05 
9 o.oo 0.00 -0.85 -0.40 

10 o.oo 0.00 -0.70 -0. 30 

TABLE B-2 Operating condition o-f 10 bus system 
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APPEIIDIX C 

Computer Results for the 10 Bus Tested System -------



~RESULT OF POWER FLOW CALCULATION # of iterations= 6 

BUS NO. TYPE VOLTS ANGLE **----GENERATION----** **-------LOAD-------** 

P(p.u) Q(p.u) P(p.u) Q(p.u) 

1 . SW 1.080 0.000 4.80769 3.30281 0.00000 0.00000 
2 • P-V 1.020 -50.408 1.50000 1.92042 0.00000 0.00000 
3 • P-Q 0.757 -17.677 - - 0.85000 0.30000 
4 • P-Q 0.947 -4.492 - - 0.35000 0.25000 
5 • P-Q 0.744 -18.383 - - 0.75000 0.45000 
6 • P-Q 0.733 -19.570 - - 0.75000 0.25000 
7 • P-Q 0.811 -49.405 - - 0.65000 0.30000 
8 • P-Q 0.923 -51.975 - - 0.40000 0.05000 
9 • P-Q 0.830 -55.772 - - 0.85000 0.40000 
10. P-Q 0.824 -60.146 - - 0.70000 0.30000 

TABLE C-1 The solution of all unknowns for 10 bus tested system 

\0 
...J 



BUS ADMITTANCE I ** -- LINE FLOW -- ** ** -- LINE LOSS -- ** 

P(p.u) Q(p.u) P(p.u) Q(p.u) 

1- 3 1.73-j 4.31 1.979 1.7410 1. 2403 0.3145 0.7825 
1- 4 10.00-j20.00 3.456 3.0667 2.1267 0.2388 0.4776 
2- 8 1.84-j 7.48 0.777 -0.3758 -0.6981 0.0187 0.0761 
2- 9 1.13-j 4.48 0.964 -0.5776 -0.7960 0.0493 0.1952 
2-10 0.70-j 2.80 0.722 -0.5466 -0.4939 0.0438 0.1753 
3- 5 0.82-j 2.19 0.038 0.0235 0.0164 0.0002 0.0006 
3- 6 10.00-j20.00 0.773 0.5530 0.1900 0.0119 0.0239 
4- 5 0.96-j 4.80 1.408 1.0168 0.8629 0.0794 0.3970 
4- 7 0.45-j 2.40 1.669 1.4611 0.6035 0.2102 1.1208 
5- 6 5.00-j15.00 0.298 0.2107 0.0677 0.0018 0.0053 
7- 8 1.40-j 5.60 0.681 -0.0624 0.5493 0.0195 0.0780 
7- 9 1.84-j 7.48 0.716 0.5385 -0.2186 0.0159 0.0647 
9-10 0.93-j 3.74 0.244 0.2010 -0.0240 0.0038 0.0150 

TABLE C-2 The list of line flows and line losses. for 10 bus tested system 

"' 0) 
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