
LOAD FLOW SOLUTION BY APPLYING HYBRID ALGORITHM TO

THE NEWTON-RAPHSON METHOD

by

Chaipant Tappayuthpijarn

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Masters of Science

in the

Electrical Engineering

Program

Advisor

~~Jl~ m. bb±C'cb~
Dean of the Graduate School

06/ct/ 10
Date

L , ~, r ,~ 0

Date

YOUNGSTOWN STATE UNIVERSITY

June, 1990

ii

ABSTRACT

LOAD FLOW SOLUTION BY APPLYING HYBRID ALGORITHM TO

THE NEWTON-RAPHSON METHOD

Chaipant Tappayuthpijarn

Masters of Science in Engineering

Youngstown State University, 1990

The purpose of the HYBRID algorithm, discussed in

this thesis, is to improve the efficiency of the

convergence of the existing NEWTON-RAPHSON method in

solving the system of nonlinear power flow equations, when

its close initial estimates are not available. The

algorithm is based on the interpolation between the fast

convergence standard NEWTON-RAPHSON iteration and the

method of steepest descent applied to the sum of the

square of mismatch fi(x). The balance between these two

methods is governed by introducing the concept of the

trust region to restrict the step predicted by the

classical method to be in the quadratic region and to

switch to the steepest decent method that is better when

the initial values are far from the solution.

Digital computer results and their comparisons of

the 10 bus test system, with different initial values, by

the proposed algorithm and by the standard method are also

discussed in this thesis.

iii

ACKNOWLEDGMENTS

First I wish to thank my thesis advisor, Dr. J.

Jalali, for having given me the opportunity to work on

this thesis project and for his constant support, patience

and the numberless guidance hours.

I thank Dr. Salvatore R. Pansino, Chairman, and Dr.

Matthew Siman for reviewing this thesis and being on my

committee. I must also acknowledge the assistance of Mrs.

Anna Mae Serrecchio who is always willing to help students

without hesitation.

Finally, I dedicate this thesis to my parents,

Dr. Tam and Janjarus Tappayuthpijarn, whose love, support

and encouragement enabled me to complete my studies at

Youngstown State University.

TABLE OP CONTENTS

ABSTRACT

ACKNOWLEDGMENTS .

TABLE OF CONTENTS .

LIST OF SYMBOLS .

LIST OF FIGURES .

.

.

.

LIST OF TABLES

CHAPTER

.

I.

II.

INTRODUCTION

1.1 Background and Objective

1.2 Overview. . . .

LOAD FLOW STUDIES.

2.1

2.2

2.3

2.4

Introduction and background.

Data for Load Flow Studies ..

Load Flow calculation by the
Newton-Raphson method ..•.

Information obtained in Load Flow
Studies

III. ERROR ANALYSIS IN NUMERICAL COMP:c,JTATION.

VI.

3.1

3.2

3.3

Introduction

Sources of error in numerical
computation ..•.•....

Convergence analysis for the
Newton-Raphson method.

HYBRID ALGORITHM.

4.1 Introduction ..

4.2 Background

iv

PAGE

ii

iii

iv

vi

viii

X

1

1

3

4

4

6

11

19

22

22

24

26

26

26

V

4.3 The method of Steepest Descent. . . 29

4.4 Trust region and Switching policies 34

4.5 Hybrid algorithm for Newton-Raphson
Load Flow. 47

4.6 Computer subroutines .. 50

V. EXAMPLE AND NUMERICAL RESULTS

5.1 Introduction 57

57

57

70

70

IV.

5.2 Example

5.3 Results.

CONCLUSION . .

6.1 Summary

10 bus test system.

.

6.2 Recommendations for Future Work. . 71

APPENDIX A. BASIC Program For The HYBRID
Algorithm Applied To The Standard
NEWTON-RAPHSON LOADFLOW. 72

APPENDIX B. System Data For 10 Bus System. . 95

APPENDIX c. Computer Results For 10 Bus
System. 96

REFERENCES . 99

SYMBOL

R

k

f(x>
F (x)

g<x>
X

-0 X

-k X

(J]

(H]

6

dx

u*

T

II • II
I • I
dP· l.

dQi

Pi(cal)

Qi(cal)

Pi(spec)

Qi(spec)

LIST OP SYMBOLS

DEFINITION

trust radius

iteration count (superscript)

a nonlinear vector function

vi

the sum of the square of mismatch f(x)

vector of gradient of F(x)

vector of unknown variables

vector of initial values

vector of predicted values at
iteration k

Jacobian matrix

Hassian matrix

vector of NEWTON-RAPHSON step

vector of predicted step

positive scalar of steepest descent
step predicted at solutions

transpose of matrix (superscript)

euclidean norm

absolute value

·th l. bus real power mismatch

•th l. bus reactive power mismatch

•th l. bus calculated real power

•th l. bus calculated reactive power

·th l. bus scheduled real power

·th l. bus scheduled reactive power

SYMBOL

ei, ej

Yij j.Bij

vii

DEFINITION

voltage magnitude at bus i and j

voltage phase angle at bus i and j

element of bus admittance matrix in
polar form

FIGURE

2.1

2.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

5.2

5.3

5.4

LIST OF FIGURES

One-Line Connection Diagram

Computer flow diagram of the NEWTON-RAPHSON
method applied to Load Flow solutions ..

A straight line in 2-space illustratingk
vector search direction sk and scalar U.

Line searches on a quadratic function ..

The view of quadratic function with 2
variables when the trust region with radius
R is applied•........

The view of the switching policies when
the NEWTON point (NP) is inside the trust
region

The view of the switching policies when
the NEWTON point (NP) and the CAUCHY point
(CP) are both outside the trust region ..

The view of the switching policies when
the NEWTON point (NP) is outside the trust
region but the CAUCHY point (CP) is inside

Computer flow diagram of the HYBRID
algorithm applied to the NEWTON-RAPHSON
Load Flow

one-line diagram for 10 bus tested system

The convergence characteristic comparison
between the HYBRID algorithm and the
NEWTON-RAPHSON method when 1v01=1.o p.u
and e0=o.o rad •.........•...

The convergence characteristic comparison
between the HYBRID algorithm and the
NEWTON-RAPHSON method when 1v01=0.a p.u
and 8 °=-0.5 rad.

The convergence characteristic comparison
between the HYBRID algorithm and the
NEWTON-RAPHSON method when lv01=1.3 p.u
and 8 °=-1.0 rad.

viii

PAGE

9

20

30

34

36

37

39

40

51

57

61

62

63

ix

FIGURE PAGE

5.5 The characteristic of quadratic factor r for
different values of Ro when lv0 1 = 1.0 p.u
and e0 = o.o rad. 64

5.6 The characteristic of quadratic factor r for
different values of Ro when lv0 1 = 0.8 p.u
and e0 = -0.5 rad. 65

5.7 The characteristic of quadratic factor r for
different values of Ro when lv0 1 = 1.3 p.u
and e0 = -1.0 rad. 66

TABLE

2.1

3.1

4.1

4.2

5.1

5.2

5.3

B-1

LIST OF TABLES

Bus classification in Load Flow studies.

Machine Precision

The advantageous and disadvantageous
comparisons between the NEWTON-RAPHSON method
and the method of steepest descent

List of computer subroutines for the HYBRID
algorithm applied to the NEWTON-RAPHSON
load flow

Switchin9 status for the HYBRID algorithm
when lv0 1=1.o p.u and e0=o.o rad

Switchin9 status for the HYBRID algorithm
when lv0 1=0.a p.u and e 0=-0.5 rad. . ..

Switchin9 status for the HYBRID algorithm
when lv0 1=1.3 p.u and e0=-1.0 rad. . ..

Line admittance data for the 10 bus
tested system.

B-2 Operating condition for the 10 bus tested

C-1

C-2

system

The solution of all unknowns for the 10 bus
tested system. •.•.

The list of line flows and line losses for
the 10 bus tested system•

X

PAGE

7

23

28

55

67

68

69

95

95

97

98

1

Chapter I

INTRODUCTION

1.1 Background and Objective

The NEWTON-RAPHSON method is the most widely used

approach for the nonlinear power flow solution in power

system planning largely because of its quadratic

convergence characteristics. This fast convergence

property yields the solutions of the nonlinear system

converged in just a few iterations. However, the possible

range of the initial values by the standard Newton-Raphson

is required to be close to the roots of the system. An

increase of error from neglected higher order terms in the

indefinite Taylor's series can cause system divergence

when the initial values are far from the roots. The

convergence analysis of the standard NEWTON-RAPHSON method

given in this thesis shows that the error on the current

iteration is the function of the square of the error on

a previous iteration. Therefore, the defined error could

make the classical method unreliable on any iteration.

In order to overcome these problems, the method of

steepest descent is introduced. This method has an

important advantage over the Newton-Raphson method because

it is not as sensitive to the initial values. The method

of steepest descent is generally used in nonlinear

optimization problems. It can be expediently used for

2

making solutions more accurate in cases when the Newton­

Raphson method diverges when the initial values are far

from its roots. Despite the advantageous property of this

method, a large quantity of calculations is required to

get the solutions of the system converged. This leads to

the slow convergence of the method of steepest descent.

To obtain the useful properties of both the

Newton-Raphson method and the method of steepest descent,

the HYBRID algorithm has been developed. The purpose is

to improve the convergence of the existing standard

Newton-Raphson iteration when its initial estimates are

far from the roots. The idea is to start with the

steepest descent iteration when necessary, then switch

to the standard Newton-Raphson method for fast convergence

when the predicted values are close to the roots. The

compromise between these two methods is governed by the

concept of the trust region, defined in terms of the trust

radius, and the switching policies. The purpose of the

trust region is to restrict the step predicted by the

standard Newton-Raphson method to be in the region where

a quadratic is available. By the switching policies, if

the predicted step is inside the "trust radius," then the

correction is the full Newton- Raphson step; otherwise,

the classical step is biased toward the steepest-descent

direction. Moreover, the automatic revision of the trust

radius is also provided by the proposed algorithm to

adjust the appropriate quadratic region for the next

iteration at the end of every iteration.

1.2 overview

3

In this thesis, a review of Load Flow studies,

along with a description of Load Flow calculation by the

Newton-Raphson method, is contained in Chapter II.

Chapter III discusses some sources of errors that can

arise in numerical computation. It also includes a

discussion of the effect of these errors on the

convergence of the standard Newton-Raphson method in

solving the system of nonlinear algebraic equations. In

Chapter IV, the Hybrid algorithm is introduced, including

a description of the method of steepest descent, the

concept of the trust region and the switching policies

between the Newton-Raphson and steepest descent iteration.

At the end of the chapter, the application of the Hybrid

algorithm to the standard Newton-Raphson Loadflow is

provided. In Chapter V, numerical results and comparisons

of the 10 bus test system, with different initial values,

using the proposed algorithm and the standard

Newton-Raphson method, are discussed. Finally,

conclusions and recommendations for future research are

provided in Chapter VI.

4

Chapter II

LOAD FLOW STUDIES

2.1 INTRODUCTION AND BACKGROUND

A Load Flow Study [10,11,12,13] is the

determination of the voltage, current, power factor, real

power and reactive power at various points in an

electrical network under existing or contemplated

conditions of normal operation. It is essential in

planning the future development of the system because

satisfactory operation of the system depends on knowing

the effects of interconnecting with other power systems,

new loads, new generating stations and new transmission

lines before they are installed. The mathematical

formulation of the loadflow problem results in a system of

nonlinear algebraic equations. These equations can be

established by using either the bus or the loop frame of

reference. The coefficients of the equations depend on

the selection of the independent variables, .i.e, voltages

or currents. Thus, either the admittance or impedance

matrices can be used.

Most of the early successful digital methods were

based on the Y-matrix of the Gauss-Seidel method [13].

This requires minimum computer storage and uses only a

small number of iterations for a small network.

Unfortunately, as the size of the network is increased,

5

the number of iterations required increases dramatically

for large systems. In some cases, the method does not

provide a solution at all. These difficulties encountered

in load-flow studies led to the development of the Newton­

Raphson method (10,13). The method is based on the

Newton-Raphson algorithm designed to solve the

simultaneous quadratic equations of the power network.

Contrary to the Gauss-Seidel algorithm, it needs a larger

time per iteration, but it can get the solutions in only a

few iterations independent of the network size.

Therefore, most of the load-flow problems that could not

be solved by the Gauss-Seidel method are solved with no

difficulty by this method

However, the recent research efforts have been

concentrated on the development of the decouple Newton­

Raphson method (10) since system planning studies and

system operations may require a multiple-case load flow

solution in some situations. These methods are based on

the fact that in any power transmission network operating

in the steady state, the coupling between P-lvl and Q-8 is

relatively weak, contrary to the strong coupling between

P-8 and between Q-lvl. Therefore, these methods solve the

load-flow problem by decoupling the P-8 and Q-lvl

problem. Thus, the solutions are obtained by applying

approximations to the Newton-Raphson method.

6

2.2 DATA FOR LOAD FLOW STUDIES

The load-flow problem can be defined as the

calculation of the real and reactive powers flowing in

each transmission line, and the magnitude and phase angle

of the voltage of each bus of a given power system network

for specified generation and load conditions. The

information obtained from the load-flow studies can be

used to test the systems 6apability to transfer energy

from generation to load without overloading the line and

to determine the adequacy of voltage regulation by shunt

capacitors, shunt reactors, tap-changing transformer and

the var-supplying capability of generators [12].

2.2.1 TYPE OF BUSES IN LOAD-FLOW STUDIES

In general, there are three types of buses in the

load-flow problem:

a. slack (generator) bus

b. voltage-controlled (generator) buses or P-V buses

c. load buses or P-Q buses

Since the transmission losses in a given system

are associated with the bus profile, until a solution is

obtained, the total power generation requirement of a

system cannot be determined. Therefore, the generator at

the slack bus is used to supply the additional real and

reactive power necessary owing to the transmission losses

7

(12). Thus, at the slack bus, the magnitude and phase

angle of the voltage are known values, and the real and

reactive power generated are the quantities to be

determined. In order to define the load-flow problem to

be solved, it is necessary to specify the real power and

the voltage magnitude at each generator bus. This is

because these quantities are controllable though

excitation controls (12). Since an overexcited

synchronous generator supplies current at a lagging power

factor, the reactive power of a generator is not required

to be specified. The load buses are also known as the P-Q

buses. This is due to the fact that the real and reactive

power are specified at given load buses. Table 2.1 gives

the bus types in load flow studies with corresponding

known and unknown variables.

BUS TYPE

SLACK

GENERATOR (P-V)

LOAD (P-Q)

KNOWNS QUAN.

lvl, e=o

P, lvl
P, Q

UNKNOWN QUAN.

P, Q

Q, 8

lvl, e

TABLE 2.1 Bus classification in Load Flow Studies

,, ~ LLIAM P. MAAG LI BRARY
~ Wli ST.ATE UNIVERSITY

8

2.2.2 POWER SYSTEM EQUATIONS

a. Network performance equations

In load-flow studies in normal operation, the

basic assumption is that the given power system is a

balanced three-phase system operating in its steady state.

Therefore, the system can be represented by a one-line

diagram of its single phase positive-sequence network

(14], and the load-flow problem can be solved either by

using the bus admittance matrix (Ybus> or the bus

impedance matrix (Zbus> representation of the given

network. By using the nodal analysis approach, the

network equation in bus admittance form is

(2.2.1)

or in bus impedance form is

(2.2.2)

b. Bus equations

Each bus of a network has four variable quantities

associated with it: the real and reactive power, the

voltage magnitude and the voltage phase angle. Any two of

the four will be the independent variables and are

specified, whereas the other two remain to be determined.

0;r
~

0-I

e>

e

11£ 11£

llN(LINt. ,

0
•• •V,

0

. e
!!>I (1) 8--B

JJ lla•v ,,,

~T.:~:v
ll>I ll>I .,... 0 I [l,

,. ~ 0 ,, .. v

----------0
~

' ' '0
SvN 0

1 1~0 I I
1 ~I ~ " ~ ~ .. , "

0-+--
••

®• • f ' • 't •0

E)I

@ j u • 11ov G 1.18 1t.V

e~~~
8 ~t-1 lb A

IJ 8 "' \I e

~
..
(0
•• la V

l[G(ND

6
0
•

LINt NUM8t.R

HUS NUM8 EH

LO AD NUMBER

v,...,J..J,.J l RAN S•O AMtR ,..,..,,,.,...
-0-- NO C IR C U IT

..,.. N C C IHCUIT •r SE l t: C l O HS~1T C H
S•tUWN IN

N ORMAL PQ Sll IO N

o .. •'o/.:':\

f)>

€1iv 13 II" v e
LO

1] •• ..,

rlO

~

€}

,CJ
ro

e r
'"

o,

o•• v , eulOUCll

FIG 2.. 1

l ~1 £,,

0 ±VG fve ' ... Il l
[?,

½e ½Ve e
• . 0 ••• "

--,. '-'
~ ...

One line connection diagram "°

10

The electrical conditions at each bus are defined in terms

of active and reactive power because of the physical

characteristics of generation and load. Thus, the complex

power flowing into i th bus can be expressed as

where S· 1 = complex power injected at i th bus

P· 1 = net real power injected at •th 1 bus

Qi = net reactive power injected at •th 1 bus

PGi= real generated power flowing into i th bus

PLi= real load power flowing out of •th 1 bus

PTi= real transmitted power flowing out of ·th 1 bus

QGi= reactive generated power flowing into •th 1 bus

QLi= reactive load power flowing out of •th 1 bus

QTi= reactive transmitted power flowing out of •th 1

bus

and the bus current related to these variables is

(2.2.4)

11

c. Line flow equations

Line flow can be calculated only after the

solution to the bus voltages is completed. The current at

bus i in the line connecting bus i to bus j is

(2.2.5)

where Yij = line admittance

Y'ij = total line charging admittance

and the line power flow from bus i to bus j is

(2.2.6)

Similarly, at bus j, the power flow from bus j to bus i is

(2.2.7)

Thus, the power loss in line i-j is the sum of the power

flows determined from eq.(2.2.6) and eq.(2.2.7)

2.3 LOAD FLOW CALCULATION BY THE NBWTON-RAPHSON METHOD

2.3.1 NBWTON-RAPHSON METHOD

The Newton-Raphson method [10,13] is the most

powerful iterative method for solving the system of

nonlinear algebraic equations because of its fast

12

convergence. The method is based on approximating a

nonlinear function to the Taylor's series expansion (5].

By giving a set of nonlinear equations.

f1(X1,X2, • • 'Xn) = K1

f2(X1,X2, • • 'Xn) = K2 (2.3.1) =

fn(X1,X2, • • 'Xn) = Kn

and the initial estimates for the solution vector are

(2.3.2)

Assume dx1 , dx2 , .. ,dxn are the corrections required for

x0
1 , x 0

2 , .. ,x0n, respectively, so that the eq. (2.3.1)

are solved. Thus

K1 = f1(x01+dx1, X02+dx2, •. 'XOn+dxn)

K2 = f2(X01+dx1, 0 x 2+dx2, .. 'xo n+dxn)
(2.3.3)

= .

Kn = fn(X01+dx1, X02+dx2, .. 'xO n+dxn)

According to Taylor's theorem for a function of

two or more variables, the right hand side of each

eq.(2.3.3) can be expanded to

13

f (0 0 0
df1 df1 df1

K1 = 1 x 1,x 2, .. ,x n>+ dx1- + dx2- + ... + dx - +4>1 n
dx1 0 dx2 0 dxn 0

0 0 0
df2 df2 df2

K2 = f2(x 1,x 2, .• ,x n>+ dx1- + dx2- + ... + dx - +4>2 n
dx1 0 dx2 0 dxn 0

= . (2.3.4)

f (0 0 0
dfn dfn dfn

Kn = n x 1,x 2, .. ,x n>+ dx1- + dx2- + ... + dx - +q,n n
dx1 0 dx2 0 dxn 0

where q,i;i=l,2 .. ,n is a function of higher order

terms in the indefinite Taylor series approximate to

function fi. If the initial estimate x 0 , is near the 1

solution values, then dxi will be relatively small and all

terms of higher powers can be neglected. Thus, the

approximate linear set of eq.(2.3.4), resulting in matrix

form, is as follows:

= (2.3.5)

or

where

=

df = the vector of the mismatch functions

J = Jacobian matrix

dx = vector of the corrections

14

(2.3.6)

The elements of the matrix [df] and [J] are

evaluated by substuting the current values of xi. Hence,

a solution for the dxi can be obtained by solving a system

of linear equations. That is

= (2.3.7)

and the new values for xi are evaluated from

x,k+l = x,k + dx·
1 1 1 (2.3.8)

The process is repeated until the mismatch

function [df] is less than the specified tolerance, and

then the solution of nonlinear system can be obtained.

2.3.2 APPLICATION OF THE NEWTON-RAPHSON METHOD TO LOAD­

FLOW EQUATIONS IN POLAR COORDINATES USING Ybus

The Newton-Raphson method is popularly used in

solving loadflow problems because it is reliable and

extremely fast in convergence. The rate of convergence of

15

the method is relatively independent of the size of the

nonlinear system.

To apply the Newton-Raphson method to loadflow

problems, the slack bus, at which the magnitude and phase

angle of the voltage are specified, is not included in the

iteration process. Therefore, the equation of the complex

power at bus i in N-bus system can be expressed as

N
L IV·V·Y·. I , 1 J 1J

J=l
/3 . ·+9·-9· 1J J 1

Therefore, it can be expressed as

N
Pi = .L lvivjYijlcos(/3ij+aj-ai)

J=l

N
= -L IV·V·Y· · lsin(/3· ·+9·-9·) , 1 J 1J 1J J 1

J=l

(2.3.9)

(2.3.10)

This formulation results in a set of nonlinear

simutanous equations, two for each P-Q bus and one for

each P-V bus. The known values for P-Q buses are real and

reactive load bus powers while the known values for P-V

buses are bus voltage magnitudes and real generated bus

power. If the slack bus is set to be bus #1, the

calculation of the nonlinear loadflow problem will be

started at bus #2, where bus #2 tog (g = total number of

generators in system) are P-V buses and bus #g+l ton are

P-Q buses. Thus, there are 2N-g-1 equations to be solved

16

for a loadflow solution.

The Newton-Raphson method requires that a set of

linear equations be formed expressing the relationship

between the changes in real and reactive powers and the

components of bus voltages as follows:

dP2 . . . dP2 dP2_ ... dP2
- - - -
de 2 ... den d lvg+l I dlvnl

.

dPn . . . dPn dPn . . . dPn
- - - -
de 2 den dlVg+l I dlvnl

---= (2.3.11)

dQg+l·••dQg+l dQg+l ... dQg+l
- -
de 2 den dlVg+1I dlvnl

.

dQn . . . dQn dQn ... dQn
- - - -
de2 den dlVg+l I dlvnl

where the coefficient matrix is the Jacobian matrix and

the . 1st bus is the slack bus. The matrix form of

eq.(2.3.11) can be written as

17

de

= (2.3.12)

dlvl

The elements of the Jacobian matrix from eq.(2.3.12)

can be calculated by the following equations:

for J 1

dP· 1
=

d8· J

dP· 1
=

d8· 1

for J 2

. .

- I v · v · Y · · I sin (.8 · · +e • -e •) 1 J 1) 1) J 1

N
L I v · v · Y · · I sin (J3 · • +e · -e •) . 1 J 1) 1) J 1

J=l
j=t=i

. .

i=t=j . for '
(2.3.13)

. for i=j '

dP· 1
= lviyijlcos(J3ij+ej-ei)

dlvjl
; for i=t=j

(2.3.14)
dPi
- =

N
+ L I v · I Y • • cos (Q • • +e • -e •) · , J 1) /J 1) J 1 '
J=l
j=t=i

for i=j

tor J3

dQi
=

d8· J

dQi
=

d8· l

for J 4

• .

-lvil lvjlYijcos(Pij+0j-0i)

N
L IV·V·Y· · lcos(P· ·+8·-8·) . l J lJ lJ J l

J=l
j+i

. .

dQi
= -lvi1Yijsin(~ij+8j-8i)

dlvjl

N

18

i+j . for I

(2.3.15)

. for i=j I

; for i+j

(2.3.16)
dQi

= -21vi1Yiisin(~ii>
di vii

-L IV· I Y · · sin (a· · +8 · -8 ·) · . 1 lJ ,., lJ J l '
J=l

for i=j

j+i

Given an initial set of bus voltages, the real and

reactive power can be calculated by eq.(2.3.10). The

changes in power are the differences between the specified

and the calculated values.

Pi(sch) - pki(cal)

Q • - Qk, i(sch) 1(cal)
(2.3.17)

The estimated bus voltage magnitudes and bus

angles are used to evaluate the elements of the Jacobian

and power mismatch functions. The linear set of

eq.(2.3.11) can be solved for dVi and d8i by a direct or

iterative method. Then, the new estimates of bus voltage

magnitude and angles are

19

v,k+l = v,k + dV·
1 1 1

e,k+l = e,k + d8·
1 1 1

(2.3.18)

The process is repeated until pik and Qik for

all buses are within a specified tolerance. The sequence

of steps for the load flow solution by The Newton-Raphson

method is shown in Fig. 2.2

2.4 INFORMATION OBTAINED IN LOAD FLOW STUDIES

A printout of the load-flow problem results

consists of a number of tabulations. The most important

information to be considered first is the table that lists

each bus numbers, bus voltage magnitude in per unit and

phase angle in degrees, generation and load at each bus in

megawatts and megavars, and line charging. Accompanying

the bus and line information are the power flow from that

bus over each transmission line connected to the bus and

the power losses in the transmission line itself in

megawatts and megavars.

In the operation of power systems, any appreciable

drop in voltage on the primary of a transformer caused by

a change of load may make it desirable to change the tap

setting on transformers provided with adjustable taps in

order to maintain proper voltage at the load. Where a

tap-changing transformer has been specified to keep the

Voltage at a bus within designated tolerance limits, the

K-K+1

START

FORMULATE Ybus

READ Pl.sch & Q1.9Ch

K=O

C.AJ...CULA.TE
Pl':col and Qtco,

CALCULATE

dPt= Pf,sch-P~col
dO = Qi.sch -Q,.ccl

20

CALCULATE LINE FLOW
->--~ AND LINE LOSSES

CALCULATE JA~BIAN
MATRIX J

UP~TING
ek+i • ek+d8
lv~+l • I f +dV

PRINT RESULTS

STOP

FIG. 2. 2 Computer flow diagram of the NEWTON-RAPHSOH
method for loadflow solutions

21

voltage is examined before convergence is complete. If

the voltage is not within the limits specified, the

program causes the computer to perform the new set of

iterations with a one-step change in the appropriate tap

setting. The process is repeated as many times as

necessary to cause the solution to conform to the desired

conditions. The tap setting is listed in the tabulated

results.

A system may be divided into areas. The computer

program will examine the flow between areas, and

deviations from the prescribed flow will be overcome by

causing the appropriate change in generation of a selected

generator in each area. In an actual system, operation

interchange of power between areas is monitored to

determine whether a given area is producing that amount of

power which will result in the interchange.

Among other information that may be obtained is a

list of line loadings megavoltamperes. The printout will

also list the total megawatt and megavar losses in the

system and both dP and dQ mismatch at each bus. Mismatch

is an indication of the preciseness of the solution and is

the difference between P and Q entering and leaving at

each bus.

22

Chapter III

ERROR ANALYSIS FOR NUMERICAL COMPUTATION

3.1 INTRODUCTION

In solving the system of nonlinear algebraic

equations by the iterative method (or numerical method),

the method sometimes might not converge to the solution.

The reason is that some errors can arise to cause an

inaccuracy in the computation during the iterative

process. This makes the predicted values by the iterative

method unreliable at any iteration. Finally, divergence

can occur and the solution of the system may not be found.

In this chapter, the main sources of errors in numerical

computation and convergence analysis of the Newton-Raphson

method are discussed in detail.

3.2 SOURCES OF ERRORS IN NUMERICAL COMPUTATION

In this section, the major errors that can arise

in numerical computation are introduced [6,7]. Some

errors, such as human error, computer hardware error or

some failure in a software system will not be discussed

here because they are supposed to be reliable. The

following list of errors contains the major errors usually

encountered in numerical computation.

23

a. computer Rounding Error

This error can arise when the calculating devices,

such as computers, cannot handle numbers that have more

digits than its finite word length (machine precision).

This makes the product of two or more numbers inaccurate

in subsequent calculations. Thus, the product of the

numbers must be rounded off. The effect of such a

computer rounding error can be significant in an extensive

calculation, or in a calculation in which the least

significant digits of the number become significant.

Table 3.2 shows the machine precision 8m·

computer

IBM 370

IBM PC

IBM PC

HP 85

condition

short precision

Basic DEFSNG

Basic DEFDBL

HP Basic

em in base 10

9.5 E-7

5.96E-8

1.39E-17

3.46E-1

Table 3.1 Machine Precision

b. Truncation Errors

These errors are the errors occur when a limiting

Process is truncated (broken off) before one has come to

tbe limiting value. In the Newton-Raphson method,

24

truncation errors occur when the terms that are the order

greater than one of the indefinite Taylor series are

neglected to approximate the nonlinear function with the

linear function. The resulting defined error is

significant and causes the Newton-Raphson method

divergence whenever the initial estimate value is not

close enough to the roots of the nonlinear equation

system.

3.3 CONVERGENCE ANALYSIS OF THE NEWTON-RAPHSON METHOD

To investigate the effect of the truncation errors

[6], regardless of the effect of the computer rounding

error, on the convergence of the Newton-Raphson method, a

system of a nonlinear function with 1 variable f(x)=O is

expanded to the second-order terms of indefinite Taylor's

series. That is

where x* is the root of the nonlinear system.

After dividing eq.(3.3.1) by f'(xk)

(3.3.2)

let the error in the current iteration and the predicted

value for the next iteration be

and

f(xk)
where --- is the Newton-Raphson step.

f' (xk)

Thus eq.(3.3.2) can be written as

25

(3.3.3)

(3.3.4)

According to eq.(3.3.4), the error on the current

iteration is the function of the square of the error on

the previous iteration. From this relation, it follows

that the Newton-Raphson method will converge to the

solution of the nonlinear equation system if and only if

sufficiently good initial estimate values can be provided;

otherwise, an increase of error can make the predicted

values on the next iteration be worse than the previous

iteration. This leads to the divergence of the Newton­

Raphson method.

26

Chapter IV

THE HYBRID ALGORITHM

4.1 INTRODUCTION

The error analysis that has been discussed in

Chapter III shows that the initial values of all unknowns

by the Newton-Raphson method have to be carefully selected

to be close enough to the roots of the system of nonlinear

algebraic equations. Regardless of the effect of the

computer rounding error, an increase of the defined

truncation error can arise and cause the method to diverge

when the initial values are far from the roots. To solve

this problem, the Hybrid algorithm is introduced in this

chapter. The purpose of the algorithm is to improve the

efficiency in convergence of the existing Newton-Raphson

method to be able to converge to the solutions with a wide

range of initial values. At the end of this chapter, the

proposed algorithm is applied to the Newton-Raphson method

in solving nonlinear power flow problems.

4.2 BACKGROUND

The Hybrid algorithm [l] was developed by M.J.D

Powell (1970). It is based on the idea of the

Lavenberge/Marquart method (2,3] that is generally used in

Solving nonlinear least square problems. The idea of the

Proposed algorithm is to introduce the method of steepest

27

descent (2,3,9] to the existing Newton-Raphson method.

The important advantage of the method of steepest descent

is that the method is not as sensitive to initial values.

This makes the method of steepest descent able to converge

to the solutions of the system of nonlinear equations with

a wide range of initial estimates. By using a gradient

technique [2] in searching for the solutions along

curvature of the nonlinear functions, the defined

truncation error can be reduced and the method can be used

for making solutions of the system of nonlinear equations

more accurate for those cases where the Newton-Raphson

method diverges, when its initial values are far from the

roots. Despite the advantageous property of this method,

a larger number of iterations is required, which leads to

a slow convergence of this method. The comparison of

advantages and disadvantages between the Newton-Raphson

method and the method of steepest descent is shown on

Table 4.1

To obtain the advantages of both Newton-Raphson

method and the method of steepest descent, the concept of

a trust region (2,3] is introduced. The purpose of the

trust region is to restrict the step predicted by the

Newton-Raphson method to be inside the appropriate region,

in which the defined truncation error will not affect and

cause a divergence, and to establish the switching

Policies between these two methods. By using the proposed

28

NBWTOH-RAPBSOH KBTBOD

Advantages

The method has a fast convergence characteristic and
can converge to the solutions of the system of
nonlinear equations in just a few iterations.

The rate of convergence by the method is independent
of the size of the nonlinear system.

Disadvantages

The initial values of unknowns required by this
method must be close to the roots of the system of
nonlinear equations to avoid the effect of
defined truncation error.

THE METHOD OP STEEPEST DESCENT

Advantages

The method is able to converge to the solutions of
the system of nonlinear equations with a wide range
of initial values.

Disadvantages

- The method has a zigzagging and slow converging
characteristic.

TABLE 4.1 The comparison of the advantages and disadvantages
between the Newton-Raphson method and the method
of steepest descent

29

algorithm, when the initial values are far from the roots,

the iteration obtains the predicted step in the steepest

descent direction, and then switches to the Newton-Raphson

iteration to obtain the Newton-Raphson step for a fast

convergence when they approach the neighborhood of the

solutions.

4.3 'l'BB METHOD OP STEEPEST DESCENT

A typical iteration of a line search algorithm (2]

for optimization, subject to nonlinear constraints,

calculates the predicted step and updates the predicted

value for the next iteration by the line function

where sk = descent direction

uk = positive scalar

(4.3.1)

The relationship in eq.(4.3.1) is shown in Figure

4.1. There are several concepts associated with the line

function. First, it is a vector function of a scalar,

namely, u. Notationally, x*=x*(u). Assuming the

objective function of the optimization problem is F(x),

the scalar function along the line is a function of only

u, when given a starting point x and directions, that is,

F(2*)=F(u). A line search is the process of finding

FIG 4.1

30

x,

A straight line in 2-space illustrating
vector search direction sk and scalar uk

some u, say u*(k) where u*(k) is a positive scalar chosen

at iteration k to minimize F(u). In order to find u*, the

general quadratic function (2] in vector notation is

recalled. That is

where

(4.3.2)

g(x) = gradient of the objective function F(x)

H(x) = Hassian matrix [2]

SUbstituting eq.(4.3.1) in eq.(4.3.2) yields

31

To find u* at minimum F(x), the first derivative of

eq.(4.3.3) with respect to u is set equal to zero. That

yields

u* = (4.3.4)

From eq.(4.3.4), u* is the positive scalar used in

eq.(4.3.1) to find the predicted value at minimum for the

next iteration, and xk+l is called the Cauchy point.

To apply the line search technique for solving the

system of nonlinear algebraic equations, the vector of a

nonlinear system with N equations and N unknowns is given

by

; i=l, 2, •• , N (4.3.5)

and the objective function of eq.(4.3.5) is set to be

N
minimize F(x) = I: f. 2 (x>

. 1
1=1

(4.3.6)

In this instance, F(x) takes on the minimum value

zero at all solutions of the nonlinear equation system.

The descent direction skis the vector of the first

derivatives of eq.(4.3.6). That is

gradient g(x) =
dF(x), •• ,dF(x)

32

(4.3.7)

It is obvious that the direction -g(x) is the

direction in which F(x) decreases most rapidly and the

descent direction sk of the line search is in the

direction of steepest-decent. From eq.(4.3.1), the

predicted value for the next iteration in the steepest­

descent direction is given by

where

(4.3.8)

g(xk) = gradient of F(x) calculated in

eq. (4. 3. 7)

u = a positive scalar that is chosen

in order to reduce F(xk+l) < F(xk)

To find the scalar u* at the predicted minimum or

at the solutions (cauchy point), the vector direction

sk = -gk(x) is substituted into eq.(4.3.4). That is

u*
gT (xk) . g (xk)

=
gT(xk) ·H(xk) ·g(~k)

(4.3.9)

From the Guass-Newton formula (2], The Hassian

llatrix ii (xk) in eq. (4·. 3. 9) can be approximated by

33

(4.3.10)

By substituting eq. (4.3.10) into eq. (4.3.8), the

scalar u* of the line search in the direction of steepest­

descent can be calculated by

u*
gT(xk) ·g(xk)

= (4.3.11)
gT(xk) .~T(xk) ·J(Xk) •g(xk)

That yields

u*
II g (xk) II 2

= (4.3.12)
II J(~k) ·g(xk) II 2

From eq.(4.3.8), the predicted point in the

steepest descent direction, at the solution called the

"Cauchy point", can be found by the following equation

(4.3.13)

where u• and g(xk) can be calculated by eq.(4.3.12) and

eq.(4.3.7), respectively.

Figure 4.2 shows a view of zigzagging and a slow

convergence of the steepest descent method.

X2

7,---------------------,

8

5

4

3

2

1

a

.,,- -
I '
1-, '

\ \ '"' "' \ \ -----, '
\ \ \ '"' "" ' F(x)=35 \\ \ ,,\

\ \ '7+ \ {"(x\=20
'\ "" "' \ , '\

, "-- "-- \ F(x)\:\5 \
' " _..,I "' "" \ \

1 . 2
Xl

" "' \
"'-.........__ '"'-))

........... ___ /
3 4 5 6 7

34

FIG 4.2. Line searches on a quadratic function.
The steepest descent direction usually
causes zigzagging and slow convergence.

4.4 TROST RBGIOB llD SWITCHING POLICIES

The standard Newton-Raphson method converges to

the solutions of the nonlinear equation system at a

quadratic rate, but without restrictions on its predicted

step size, it is often unreliable on any iteration. On

the other hand, when the starting point is well removed

from the solutions, the quadratic of the nonlinear

35

functions becomes no longer valid. An increase of the

defined truncation error of the Newton-Raphson method can

occur and cause the method to diverge. Thus, the concept

of "Trust region" [2,3] is defined to limit step length to

a reasonable maximum to establish the switching policies

[1,2] between the Newton-Raphson iteration and the

steepest descent iteration.

4.4.1 TRUST NEIGHBORHOODS AND TRUST RADIUS

In Figure 4.3, a view of the quadratic function

with 2 variables is shown. The predicted point terminates

at the solutions in the steepest descent direction, called

the "Cauchy point" (CP) while the point at the solutions

predicted by the Newton-Raphson method is called the

- *-"Newton point" (NP), where o and u g are the steps

predicted by the Newton-Raphson method and the method of

the steepest descent, respectively. A circular

neighborhood of radius R about x 0 , called "trust region",

has been added to limit the step predicted by the Newton­

Raphson method to be inside on every iteration. For

example, consider the results of centering that

neighborhood of radius Rat every turning point, xk: the

zigzagging characteristic of steepest descent (Figure 4.2)

is avoided well before arriving in the neighborhood of the

Solutions, and the rapid convergence of the Newton-Raphson

iteration is likely to prevail. In between these two

--

xz

7--------------------,

6

5

4

2

1

0 1 2
X1

3

"'F(x)=100

"--- " "- >--"'F (x) = \

~ NP'-,_'\

"' \ ',J
4 5 6 .. 7

36

FIG. 4.3 The view of quadratic function with 2
variables when the trust region with radius
R is applied

states, the Newton-Raphson step is limited to be less than

the length of the trust radius R, presumably providing a

reasonable rate of progress. In the case when the Newton­

Raphson step is greater than R, the iteration will bias

the predicted step into the steepest descent direction.

37

4.4.2 SWITCHING POLICIES

In the concept of the trust region, the switching

policies [1,2] between the Newton-Raphson and the steepest

descent iteration are stated as

case 1 The Newton point (NP) is inside the trust region,

or 11"6"11 < R.

7.---------------------,

6

/"
5 ~

\
4

"'- F(x)=l0O

' " 3 "' ~ X2 NP "'-F(x)=\

2 "-
"' '\

"' \
1 '- " J

a 1 2 3 4 5 6 7

Xl ...
Fig 4.4 The view of switching policies when the Newton

point (NP) is inside the trust region

In this case, which is illustrated in Figure 4.4,

tbe point at the solution predicted by the Newton-Raphson

(NP) is assumed to be inside the neighborhoods of a

quadratic region, or it is approximately close to the

roots of the nonlinear equation system. Thus, the

iteration obtains the full Newton-Raphson step (&) for

fast convergence. That is

38

(4.4.1)

where xk+l = xk+ax is the predicted value for the next

iteration.

case 2 The Newton point (NP) and the Cauchy point (CP)

are both outside the trust region, or 11111 > R and

llu*g(x) II > R.

From Figure 4.5, the points at the solutions

predicted by both methods are assumed to be far from the

neighborhoods of a quadratic region, or they are assumed

to be far from the roots of the nonlinear equation system.

An increase of truncation error by the standard Newton­

Raphson method can become significant and cause the

predicted value for the next iteration to be unreliable if

the iteration obtains the full Newton-Raphson step. Thus,

the iteration biases the predicted step to be inside the

trust region (llaxll S R) in the steepest descent direction

to reduce the effect of the defined truncation error. To

obtain the predicted step dx to be inside the trust

region, the length of the predicted step is set to be

equal to the trust radius R for a maximum length. From

39

7

e

5
F(x)-100

' cy,
"-

4

"-
3 "' xz "'F(x)=5

2 N~"-
'\

1
\ \

\) --........

0 1 2 3 4 5 6 7
X1 ...

FIG. 4.5 The view of the switching policies when the
Newton point (NP) and the Cauchy point (CP)
are both outside trust region.

eq.(4.3.8), the length of the predicted step in the

steepest descent direction is bound equal to be

llug(x) II = R (4.4.2)

That yields

R
u =---

llg(x) II
(4.4.3)

By SUbstituting the positive scalar u from eq.(4.4.3) to

eq.(4.3.8), the predicted step in the steepest descent

direction with length R is calculated by

40

dx = -[R]g(x)
llgcx> 11

(4.4.4)

case 3 The Newton point (NP) is outside the trust region,

but the Cauchy point (CP) is inside the trust

region, orlrXII > R and llu*g(x) II < R.

7..-------------------,

e

5

4
"- F(i)=10O

" 3 ' ~
X2 'P'(x)=\

2

' "
NP'-

\.
'\. '- \

1 "- '-. ,J " ' a 1 2 3 4 5 6 7
Xl ..

FIG. 4.6 The view of the switching policies when the
Newton point (NP) is outside the trust
region, but the Cauchy point (CP) is inside.

41

In Figure 4.6, the point at the solution predicted

by the Newton-Raphson method (NP) is assumed to be far

from the roots of the nonlinear equation system, but the

Cauchy point (CP) by the method of steepest descent shows

that it is close to the roots. In this case, the

iteration does not preferably bias the predicted step in

only the steepest descent direction even though the Newton

point (NP) is outside the trust region. The reason for

this is that, inside the neighborhoods of the solution of

the nonlinear equation system, the zigzagging

characteristic of the method of steepest descent can arise

and cause the slow convergence before it converges to the

solution. Thus, the iteration calculates the predicted

step with length R by interpolating the step between the

Newton-Raphson step and the step in the steepest descent

direction. The predicted step with length R is assumed to

be on the straight line joining the Newton point (NP) and

the Cauchy point (CP) and is calculated by

dx = (8-l)u*g(x) + 80

where o ~ e ~ 1

(4.4.5)

In order to find the predicted step to be equal to

length R, the right hand side (RHS) terms of eq.(4.4.5)

are bound to be

~(8-l)u*ij(x) + ei~ = R (4.4.6)

By straightforward algebra, e from eq.(4.4.6) can be

calculated by the following equations.

b + /b2 -ac

42

e = ------ (4.4.7)

where

a

a= u* 2 ~ij(x)~ 2 +2u*~igi(x)6i+~I~ 2

b = u*~igi(x)6i+u* 2 llg(x) 11 2

c = u* 2 ~ij(x)~ 2 -R2

4.4.3 THE METHOD FOR REVISING THE TROST RADIOS R

(4.4.8)

The trust radius R can be revised for every

iteration or even during the same iteration [1]. Usually,

the trust radius R is preferably adjusted so that it is as

large as possible to decrease the sum of the square of the

mismatch F(x) for every iteration. This depends on a good

prediction of the mismatch difference fi(x+ax)-fi(x);

i=l,2 .. ,n, without taking an extra small step. However,

the trust radius R can also be reduced if the length Rk,

at the turning point; xk, is so big that the iteration can

not decrease the sum of the square of the mismatch F(x+dx)

to be less than the old one.

To revise the trust radius R, at the end of the

iteration, the test in eq.(4.4.9) is made.

(4.4.9)

If the condition in eq. (4.4.9) fails, the

iteration number is not increased to k+l and the trust

radius R is reduced to be

43

(4.4.10)

The iteration is repeated to calculate the

predicted step dx until the condition in eq.(4.4.9) holds

and then prepare to increase the trust radius R.

The increase of the trust radius R can be provided

due to the following factors

1. A good prediction of the mismatch difference

{fi(x+ax)-fi(X)} ; i=l,2 .• ,N

2. The linearity of the nonlinear function fi(x);

between the turning point xk and xk+ax. That

is approximated to be

ti= fi<x>+ fi(x) = fiCx>+~jJijdxj ~

and ~ = ~iti 2 ~ F(x+ax)

fi(x+ax)
(4.4.11)

The basis of the method for increasing the trust

radius R is that the mismatch difference fi(x+dx)-ti is

attributed to terms that are of the order of R2
• If the

trust radius R is multiplied by the factor n, then the

mismatch difference is also expected to be multiplied by

about n2
• Guided by this assumption, the multiplier n can

be calculated by bounding

44

Lilfi(x+dx) l+(n2 -l) lfi(X+ax)-til = 0.9F(x)-[F(x+ax)-0.1¢]

(4.4.12)

This yields

where

aa
n2 = 1 +

bb + /bb 2 +aa cc

aa = 0.9F(x)-[F(x+ax)-0.1¢]

bb = Lilfi(x+ax) [fi(x+ax)-ti] I

cc= LiCfiCx+ax>-ti> 2

(4.4.13)

(4.4.14)

To avoid an oscillating value of the trust radius

R, it is suggested not to scale R by n directly whenever R

is calculated. The reason for this is that, in cases the

trust radius R is reduced in a previous iteration,

multiplying the reduced R by n would restore the trust

radius R to about its original value. When two values of

n have been calculated, they must both have been obtained

since the last reduction in R. The factor by which R is

multiplied is set equal to the lesser calculated value of

n. Moreover, the factor n is limited being not greater

than 2, and "dmax" is the upper bound of the trust radius

R. To apply this strategy, a parameter r (r 0=1) is

introduced and set to the value one both before the first

iteration and also whenever the trust radius is reduced.

Thus, the trust radius R can be increased by the following

equations:

--
45

Rk+l = min(pkRk, dmax>

where pk = min(2, nk, rk) (4.4.15)

rk
0k-l

=
pk-1

In addition, if consecutive iterations obtain the

full Newton-Raphson step, then the trust radius R is

revised to be equal to the value of 11&11. The reason is

that consecutive successful Newton-Raphson iterations tend

to decrease in the length of predicted steps (due to the

quadratic properties).

4.4.4 SOME INDICATORS USED IN DETERMINING TBB TRUST RADIUS
R

In general, the nonlinear surfaces of nonlinear

functions are approximately quadratic only in the

immediate vicinity of the solution. The trust radius R

has to be chosen with some thought of making the algorithm

converge to the solution without taking extra iterations.

An indicator, used to judge the appropriateness of the

trust radius R, should be provided and is used to report

major decisions.

Thus, the indicator, which is used to determine if

the predicted point is close to a quadratic region of the

nonlinear functions, is introduced. The idea is to

compare the actual reduction of the sum of the square of

tbe mismatch F(x) obtained with each step dx to that which

46

is available from the same step in an ideal quadratic

model (based on data from where the step began). The

reduction of the sum of the mismatch is recalled to be

F(xk)-F(x'), where xk is the predicted value on every

turning point and x' is the solution point of the

quadratic functions based on the gradient g(xk) and the

Newton-Raphson step (6). To find the quadratic factor,

the quadratic form [2] is recalled to be

(4.4.16)

Substituting the Hassian matrix H=JTJ into eq.(4.4.16),

yields

(4.4.17)

Then, the quadratic factor r is defined to be the ratio

r =
F (xk) - F (xk+dx)

F(xk) - F(x')
(4.4.18)

where the denominator of eq.(4.4.18) is calculated by

eq. (4.4.17).

From eq. (4. 4 .18) , the quadratic factor r .-... 1, when

tbe Predicted values approach the solutions of the system

47

nonlinear equations. Thus, the decision of choosing the

trust radius R can be determined by observing the behavior

of the quadratic factor r from iteration to iteration.

4.5 HYBRID ALGORITHM FOR DWTOB-RAPBSOH LOADFLOW

The proposed Hybrid algorithm can be easily

incorporated into the existing Newton-Raphson power flow

program. Some additional computer subroutines for the

Hybrid algorithm, such as subroutine for calculating the

predicted step in the steepest descent direction,

subroutine that is used to perform the switching policies

between the existing Newton-Raphson iteration and the

steepest descent iteration, or even subroutine for

revising the trust radius R, can be also easily provided

to improve an efficiency in convergence of the existing

Newton-Raphson power flow program. By wisely selecting

the initial value of the trust radius R, extra iterations

in the steepest descent direction can be avoided and the

fast convergence of the standard Newton-Raphson method can

be obtained by the proposed algorithm.

4.5.1 TRUST RADIUS IHITIALIZATIOH FOR TBB HOHLIHBAR POWER

FLOW PROBLEM

The length of the trust radius R varies according

to the size of the nonlinear equation system. If xis the

48

vector of unknowns of the system of nonlinear algebraic

equations with N equations, then the initial value of the

trust radius R can be approximated by

(4.5.1)
1

= (dx2 1,max +dx2 2,max+ •• +dX2 n,max>~

where dxi,max = maximum Newton-Raphson step allowed

for unknown xi; i=l,2, •. ,N for the first

iteration.

For the system of the nonlinear power flow

equations, there are two types of unknowns. One is the

voltage magnitudes (lvl) on every load bus, and the other

one is the voltage phase angles (8) on every bus in the

system (except the slack bus). From eq.(4.5.1), the trust

radius Ro for the nonlinear power flow equations can be

initialized by

(4.5.2)

where dvmax = maximum Newton-Raphson step allowed for

voltage magnitude at load buses for the

first iteration

d8max = maximum Newton-Raphson step allowed for

voltage phase angles at all buses

(except the slack bus) in the system for

49

the first iteration

m = total number of load buses

n = total number of system buses (except the

slack bus)

4.5.2 Digital steps of Hybrid algorithDl for nonlinear

power flow problem

step 1: Read the information required for a power flow

solutions, such as Y-bus elements, generation and

load data, etc.

step 2 : Formulate the system of nonlinear equations for

the real and reactive bus power mismatch.

step 3 Initialize all variables, such as unknown bus

voltage magnitudes (lv0 1), unknown bus voltage

phase angles ce0) and trust radius Ro, etc.

step 4 : Perform the standard Newton-Raphson iteration,

calculate the Newton-Raphson step and obey the

switching policies.

- if 11&11 < R, then the iteration obtains the full

Newton-Raphson step.

- if 11111 >Rand u*ij(~) > R, then the iteration

calculates the predicted step with length R in

the steepest descent direction; otherwise, the

predicted step is the step interpolated between

the Newton-Raphson step and the step in the

steepest descent direction.

50

steps : Calculate F(x+dx) and try the test F(x+ax) < F(x)

- If F(x+ax) > F(x), then reduce the trust radius

Rand go to step 4.

If F(x+dx) < F(x), then increase the trust

radius Rand prepare for the next iteration.

step 6: If the mismatch F(x+dx) is less than the

prespecified tolerance, then stop the iteration

and calculate all bus powers and line flows;

otherwise, count to the next iteration and go to

step 4.

The iteration might be stopped in the case when

llg(xk) II = 0 but F(xk) + o. The reason is that the

iteration has approached a local minimum (not a global

minimum) [2]. This point is not the solution. Therefore,

a new set of initial values is tried. FIG 4.7 shows the

computer flow diagram of the Hybrid algorithm.

4.6 COMPUTER SUBROUTINE FOR THE HYBRID ALGORITHM APPLIED

TO THE NEWTON-RAPHSON LOADFLOW

The listing of the computer program, HYBRID, is

contained in APPENDIX A. The program is written in BASIC

language by using the Qbasic compiler. The machine

51

REDUCE 1RUS1' RADIUS

dx • NTERPOL4TED
STEP dx - ST[P ..

DESCENT dlr.

Sl'OP

FIG 4. 7 Computer flow diagram of the HYBRID
algorithm applied to the HEWTOH-RAPHSOH
loadflow

•

52

precision is set to be into double precision mode by the

program to reduce the effect of the computer rounding

error.

From the main menu, the Ybus admittance

formulation is provided. Either data from line admittance

Yij or line impedance zij can be used (selectable from

menu). The element Yij of the Ybus admittance matrix is

formulated in polar form and stored in a file, named

"admit", that can be recalled later to formulate nonlinear

power flow equations. The input data from line admittance

(or line impedance) and line charging is also stored in a

file named "admitl," which can be also recalled to

calculate some essential information, such as line flows

and line losses at a given operating condition. To

formulate the power flow equations, necessary input data,

such as load and generation at each bus of the_ system, can

be supplied through line 3920-4190. The program sets the

total number of buses in the system equal to n, the

number of generator buses (P-V buses) equal tog, and the

nUmber of load buses (P-Q buses) equal tom. Thus, the

2n-g-l nonlinear power flow equations are formulated by

the program (2 equations for each P-Q bus, and 1 equation

for each P-V bus). The program requires the first bus to

be the slack bus, from bus 2 through bus g to be P-V

buses, and from bus g+l to bus m tp be P-Q buses,

respectively. The input data required by the program are

•

53

voltage magnitude and the real power generation for all

generator buses (except the slack bus), and real and

reactive loads for all load buses. However, the real and

reactive loads can be also supplied at generator buses.

In order to start the iteration, the initial values of all

unknowns, such as bus voltage magnitude and bus voltage

phase angles, can be set to desired values from line 4420-

4310. (default values are set to be equal to lv0 1 = 1 p.u

and 8 O = 0 rad.)

Line 6000 through line 7500 is written to perform

the Hybrid algorithm. The trust radius R is initialized

in line 6200 and can be changed to a desired value. The

variable F contains the value of the sum of the square of

the power mistmatch while a variable Fl contains the

preceding value. The elements of the Jacobian matrix

A(i,j) and the gradient vector GD(i) are provided to

compute the predicted step in both the Newton-Raphson

iteration and the steepest descent iteration. Line 6660

checks the location of the Newton point (NP) at each

iteration, by comparing the norm of the Newton-Raphson

step to the length of the trust radius R, while line 6830

checks the location of the Cauchy point (CP), by comparing

the value llu~II, calculated from line 6730-6830, to the

length of the trust r~dius R. The subroutine for revising

the trust radius R is provided by the program from line

7160-7460. The trust radius R will be reduced if the

r

54

condition F >Flin line holds; otherwise, it will be

increased. Line 7480 checks the convergence. If the sum

of the square of the power mismatch Fis less than the

prespecified tolerance E, then the program stops the

iteration. Line 11000-11650 is provided to calculate the

results, such as line flows, line losses, and some

essential imformation for load flow studies. The list of

subroutines for the program HYBRID is shown in TABLE 4.2.

NAME

Formulate Ybus admittance matrix

Input data for loadflow calculation

Initialize all unknown lv0 1 and e0

Initialize all variables for HYBRID
algorithm, such as Trust radius Ro and
tolerance limit E

Compute NEWTON-RAPHSON step (6) and
its norm 11111

compute step biased in steepest
direction and its norm

Revise Trust radius R

Test convergence

Compute the sum of the square
of the power mismatch

Compute power mismatch

Compute gradient g(x) and its norm
llg<x> 11
Compute Jacobian matrix

Compute inverse matrix

Compute line flows, line losses and
line current

Print out results

55

LINE

1000-2780

3780-4230

4240-4310

6170-6220

6430-6600

6720-7150

7160-7460

7470-7490

7510-7660

8000-8190

6320-6410

9000-9590

10000-10640

11000-11650

14000-15140

TABLE 4.2 List of computer subroutines for the HYBRID
algorithm applied to NEWTON-RAPHSON loadflow

56

Chapter v

EXAMPLB AND NUMERICAL RESULTS

5.1 IlfTRODOCTION

In this chapter, the 10 bus power system is chosen

to be investigated. Digital computer results of the test

system, obtained by the HYBRID algorithm and the standard

NEWTON-RAPHSON method, along with the effect in choosing

the different values of Ro are given to be discussed.

5.2 EXAMPLB: 10 BOS TEST SYSTEM

One line diagram of the 10 bus power system is

shown in Fig 5.1. The system data, such as line

admittance data, load data and generation data are given

in APPENDIX B. The system consists of a load buses (P-Q

buses), two generators (one of which performed as the

slack bus) and 13 lines. Therefore, there are 17

nonlinear power flow equations obtained for this system.

(2 equations for each P-Q bus and one for each P-V bus)

5.3 RESULTS

To investigate the effect of initial values on the

convergence of both the HYBRID algorithm and the standard

NEWToN-RAPHSON method, 3 different sets of initial values

are given to be:

V = 1.0SLQ.

PL--0.85
OL=-0.40

PL=-0.70
Ol=-0.30

1

4

.45-J

7

1.

.9J

SLACK BUS

1
1.7J2-j4 . .31

0

0.96-J~.8

PL--0.35
QL=-0.25

.4

1.4'-JS.802

PL=-0.65
QL=-0 • .30

-J7.484
1.13-j4.477

9

-jJ.735
. -J2.801

10

8

s-·1s

5

PL=-0.75
QL--0.45

j7.484

2

PL--0.40
QL=-0.05

V - 1.02
Pg • 1.50

57

PL--0.85
OL•-0.J0

3

10 J20

6
F'L=-0.7~
0L--0.25

FIG 5. 1 one Line Diagram 0£ 10 bus tested system

-
58

1. lv0 1 = 1.0 p.u and 90 = 0.0 rad.

2. lv0 1 = 0.8 p.u and 90 = -0.5 rad.

3. lv0 1 = 1.3 p.u and 90 = -1.0 rad.

During the test, variations of RO were tried.

Numerical results and the comparisons between the proposed

algorithm and the standard NEWTON-RAPHSON method in terms

of the convergence characteristics are shown in Fig 5.2,

5.3 and 5.4, respectively. The sum of the square of real

and reactive power mismatch F(x) is plotted for each

iteration of both methods. The solutions of all unknowns

and some results of the 10 bus test system, such as line

flows and line losses, are given in APPENDIX C.

For Jv0 1= 1.0 p.u and 0° = o rad., the results in

Fig 5.2 show that both methods converge to the solutions.

The effect of using different Ro can be observed in the

same Figure. The standard NEWTON-RAPHSON method and the

HYBRID algorithm both have the same characteristic in

convergence when RO= 1, while other values of Ro cause

the proposed algorithm taking extra iterations before the

solutions are approached. The switching status (0=full

NEWTON-RAPHSON step, l=full steepest descent step and

2=interpolated step) , shown in TABLE 5.1, indicates that ·

the predicted NEWTON-RAPHSON step is inside the trust

region on every iteration when RO=l, while the small

values of Ro (RO=o.1, Ro=0.3 and Ro=0.5) caused the

59

predicted step to be biased in the direction of the

negative gradient g(x) (steepest descent direction) before

the full NEWTON-RAPHSON step can be obtained.

For lv0 1 = o.a p.u and 0° = -0.5 rad., the results

in Fig 5.3 show that the proposed algorithm converges to

the solutions of the system faster than those by the

standard NEWTON-RAPHSON method. The reduction of the

mismatch F(x) is oscillatory on the first iteration,

because of the effect of truncation error before it

converged to the solutions, while the predicted step on

the same iteration by the HYBRID algorithm is biased to be

in the steepest descent direction to reduce F(x+ax) < F(x)

before it obtained the full NEWTON-RAPHSON step on the

second iteration (shown in TABLE 5.2).

Forlv01 = 1.3 p.u and 0° = -1.0 rad., the results

in Fig. 5.4 does not show any convergence by the standard

NEWTON-RAPHSON method. The characteristic of the mismatch

F(x) is oscillatory in nature and it does not approach the

solutions of the system. By comparison, the HYBRID

algorithm, with Ro=2, successfully converged to the

solutions with the fewest iterations.

In order to select the appropriate value for Ro,

the behavior of the quadratic factor r, that is favorable

to be R-1, can be observed. The results, in Fig 5.5,

5.6 and 5.7, show that the values of quadratic factor r

for the optimum Ro (Ro=l, Ro=l and Ro=2), are all in the

60

neighborhood of 1 from the beginning of the iteration.

Compared to those by the other values of Ro, a few more

iterations are required before they approached the

neighborhoods of the solutions (R-1).

The sum of the square of mismatch F(x)
1~~~ I I 1---L I

0.1
0.01

1.000E-03
1.000E-04
1.000E-05
1.000E-06
1.000E-07
1.000E-08
1.000E-09
1.000E-10
1.000E-11

0
H YBRID(R•0.1)

• HYBRID(R•0.3)

• HVBRID(R•0.6)

0
-------- HYBRID(R•1)

NEWTON-RAPHSON

1.000E-12 ~----~----~-----~- ---~
0 5 10

iteration no.
15

FIG 5.2 The convergence characteristic comparison between
the HYBRID algoritbm and the IIEWTOH-RAPHSOH method
wb.en 1v<>1 = 1. o p. u and 90 = o. o rad.

20

0\
t-'

,

The sum of the square of mismatch F(x)
1000---------------------~

100 ia ~<-;;.;-- ~
I: "~ 10

1
0.1

0.01
1.000E-03
1.000E-04
1.000E-05
1.000E-06
1.000E-07
1.000E-08

NEWTON-AAPHSON

H VBRID(Jt0.1)

H.VBRID(l-10)

HVBRID(R~-4)

H VBRID(l-1)

1.000E-09 L__ ____ ____ __ ..L_ ____ __ _.___ __ ~-~

0 2 4 6 8 10 12
iteration no.

FIG 5.3 The convereence characteristic comparison between
the HYBRID aleoritbm and the IIEWTON-RAPHSON method
men lyOI = 0.8 p.u and eO = -0.5 rad.

14

0\
tJ

The sum of the square of mismatch F(x)
9999999 r,
999999.9 ,' ' .,__ NEWTON-RAPHSON

I \

99999.99 : , ,
II , •

9999.999 ,' \ : ', .
1000 _,_.__ ' ' ,' ' ,

"- .,.•,
I \ /

I .._.,.. ' '

' .
100 : ' I •- - .. - .. ~

10 - -~
1

0.1
0.01

1.000E-03
1.000E-04
1.000E-05
1.000E-06
1.000E-07

0
HVBRID(R•0.1)

HVBRID(R~0.3)

H VBRID(R'l2)

1.000E-08 L...-___ __,__ ___ ____._ ____ ,____ ___ __,__ ___ ___,

0 5 10 15 20 25

iteration no.

FIG 5.4 "ftle convergence characteristic comparison between
the HYBRID algorit.bm and the IIEWTOH-RAPHSOH met.hod
men l"°I = 1.3 p.u and ao = -1.0 rad. 0\

w

quadratic factor (r)
1.2 ,---------,-------,-------,----~------~---~--~

0
R•1

1 t () ·~ ~~ ~ * *

0.8

0.6

0.4

0.2

0
R•0.3

o~--~--~--~----'~----'~----'~-~--___.
0 2

FIG 5.5

4 6 8 10 12 14

iteration no.

I •
The characteristics 0£ quadratic £actor r £or
d1££erent values 0£ RO when 1v<>1 = 1.0 p.u and
eO = o.o rad.

16

°' ,1:1,,

quadratic factor Cr)
1.2 ,------,---------~----,-------,-----~-----,

0
R•1

1 t= · .. ·1· · fe · t=== ' ~ ~ · * *

0.8

0.6
0 '

R•O. 1 I

0.4

0.2

o.___--~---.___--~---------~----------J
0 2 4 6 . 8 10 12

iteration no.

FIG 6.6 The characteristics of quadratic factor r for
different values of Ro when 1v<>1 = 0.8 p.u and
eO = -0.5 rad.

14

0\
U1

,

quadratic factor (r)
1.2 ~-----------------------~

1

0.8

0.6

0.4

0.2

! ···· · ...

0
R-0.8

0
R,0.1 .. .

o~---~----__.__ ____ --L.--____ ~---~

0 5 10 15 20
iteration no.

FIG 5.7 The characteristic 0£ quadratic £actor r £or
d1££erent values 0£ Ro when 1vo1 = 1.3 p.u and
eO = -1.0 rad.

25

0\
0\

1

switching status
iteration no.

RO:o.1 R0:0.3 a 0=o.s R0:1

1 1 2 2 2
2 2 2 2 0
3 2 2 2 0
4 2 2 0 0
5 2 2 0 0
6 2 0 0 0
7 2 0 0
8 2 0 0
9 2 0

10 2 0
11 2
12 2
13 2
14 0
15 0
16 0
17 0

TABLE 5.1 The switching status for the HYBRID
algorithm when lv0 1 = 1.0 p.u and
e0 = o.o rad.

67

switching status
iteration no.

R0:0.1 R0:1 R0:4 R0:10

1 2 2 2 1
2 2 0 2 2
3 2 0 2 2
4 0 0 2 2
5 2 0 0 2
6 0 0 0 0
7 0 0 0
8 0 0 0
9 0 0

10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0

TABLE 5.1 The switching status for the HYBRID
algorithm when lv0 1 = 0.8 p.u and
e0 = -o.5 rad.

68

switching status
iteration no.

R0:0.1 R0:0.3 R0:2

1 1 1 2
2 1 1 0
3 1 2 0
4 1 2 0
5 1 2 0
6 1 2 0
7 1 2 0
8 2 2 0
9 2 0

10 2 0
11 2 0
12 2 0
13 2 0
14 2
15 2
16 2
17 0
18 0
19 0
20 0
21 0

TABLE 5.3 The switching status for the HYBRID
algorithm when lv0 1 = 1.3 p.u and
e0 = -1.0 rad.

69

70

Chapter V:I

CONCLUS:ION

6.1 SUMMARY

The main contribution of this thesis is the

development of the HYBRID algorithm in order to improve

the efficiency in convergence of the standard NEWTON­

RAPHSON method in solving nonlinear a power flow problem,

when its close initial values are not available. A

defined truncation error from the neglected Taylor's

series terms of the standard NEWTON-RAPHSON method can

arise and cause the divergence. By introducing the method

of steepest descent and the concept of the "trust region",

the switching policies can be performed. The idea is to

start the iteration with the method of steepest descent,

if it is necessary, and then switch to the NEWTON-RAPHSON

method which is better when the solutions are approached.

In this thesis, the HYBRID algorithm has been

applied to the standard NEWTON-RAPHSON loadflow using bus

admittance matrix. The results of the 10 bus test system

by using the proposed algorithm, compared with those by

using the standard NEWTON-RAPHSON method, are quite

favorable when the different sets of initial values were

tried. By observing the characteristic of quadratic

factor, the appropriate values of Ro can be obtained to

avoid a slow convergence.

71

6.2 RECOMMENDATIONS FOR FUTURE WORK

To improve the performance of the Hybrid algorithm

developed in this thesis, the following suggestions are

made:

1. It would be valuable to extend the proposed

algorithm to the fast decouple loadflow method

that is widely used on a large scale power

system. In general, the fast decouple loadflow

obtains the solutions by applying

approximations to the NEWTON-RAPHSON method.

2. The method, that can be used to reduce the

effect of the computer rounding errors and also

easily incorporated to the proposed algorithm,

should be provided in order to improve the

performance of the HYBRID algorithm. The

effect of the defined computer rounding errors

can arise and cause the divergence to the

iterative methods if the power system is

considered to be an ill-conditioned system

(15].

-

APPENDIX A

Basic Program for HYBRID algorithm applied to

the standard NEWTON-RAPHSON load flow

10
20
30

······-············· .. .
••• ••
••• ------------------------ PROGRAM II HYBRID II------------------------- ••

40 ... ••
100

110 •---------Create main menu screen
120

130 DEFDBL A-H, M-W
140 CLEAR

• specify variables to be in double precision

150 SCREEN, , 0, 0
160 Z1S = 11 :::'tt11

170 Z2S :s •~MW,•
180 Z3S = STRINGS(57, CHRS(1n))
190 Z4S = STRINGS(57, 11 11)

200 ZSS • 11 Loadflow Studies For Power System Network
210 Z6S :s 11 (1) Create bus acinitance matrix
220 Z7S • 11 1). From line inpedance < zij >

230 Z8S • 11

240 Z9S = 11

250 Z10S = 11

260 Z11S = 11

270 Z12S • 11

2). Frca line achitance < yij >

(2) Calculating loadflow problem by

1). Standard Newton-Raphson method
2). Applying Hybrid algoritm to standard

Newton-Raphson method.
280 Z13S = 11

290 KEY OFF
(3) Quit

300 COLOR 14, 9
310 CLS
320 LOCATE 2, 1
330 PRINT Z1S + Z3S + Z2S
340 PRINT Z1S + Z3S + Z2S
350 PRINT Z1S + Z4S + Z2S
360 PRINT Z1S + ZSS + Z2S
370 PRINT Z1S + Z4S + Z2S
380 PRINT Z1S + Z4S + Z2S
390 PRINT Z1S + Z6S + Z2S
400 PRINT Z1S + Z7S + Z2S
410 PRINT Z1S + Z8S + Z2S
420 PRINT Z1S + Z4S + Z2S
430 PRINT Z1S + Z9S + Z2S

II

II
II
II
II

II

II

II

II

72

440 PRINT Z1S + Z10S + Z2S
450 PRINT Z1S + Z11S + Z2S
460 PRINT Z1S + Z12S + Z2S
470 PRINT Z1S + Z4S + Z2S
480 PRINT Z1S + Z13S + Z2S
490 PRINT Z1S + Z4S + Z2S
500 PRINT Z1S + Z3S + Z2S
510 PRINT Z1S + Z3S + Z2S
520 PRINT
530 COLOR 12
540 A• CSRLIN
550 LOCATE A: PRINT TAB(25); "make a choice between 1, 2 and 3 ••••• <? >";
560 KS= INPUTS(1)
570 KI• VAL(KS)
580 IF (Kl• 1) OR ((KI• 2) OR (KI= 3)) THEN GOTO 590 ELSE GOTO 610
590 ON KI GOSUB 1000, 3000
600 GOTO 140
610 COLOR 28
620 SOUND 50,
630 SOUND 400, 1
640 SOUND 1000, 1
650 GOTO 550
1000 .. .

1010 ••---------------------CREATE BUS ADMITANCE MATRIX----------------------•
1020 .. .

1030 • g = # of generator buses (P-V buses)
1040 • m = # of load buses (P-Q buses)
1050 • n = # of buses in the system
1060 • G(i,j) + jB(i,j) = element of line admittance in rectangular form
1070 • Y(i,j) & DEL(i,j) = element of bus admittance matrix (Ybus) in Polar form
1080 • II(i,j) & EE(i,j) = element of line admittance in Polar form
1090 • r + jx = line i~nce
1100 ,

1110 COLOR 3
1120 LOCATE 7
1130 PRINT Z1S + Z6S + Z2S
1140 PRINT Z1S + Z7S + Z2S
1150 PRINT Z1S + Z8S + Z2S
1160 FOR I= 1 TO 80
1170 LOCATE A, I: PRINT 11 ";

1180 LOCATE A+ 1, I: PRINT 11 ";

1190 NEXT I
1200 LOCATE A

1210 PRINT TAB(25); "make a choice between (1) and (2) •••••• • <? >";
1220 K1S = INPUTS(1)
1230 K1 • VAL(K1S)
1240 IF (K1 = 1) OR (K1 = 2) THEN GOTO 1300
1250 COLOR 19
1260 SOJND 50, 1
1270 S<lJND 400 1
1280 S<lJND 100~
1290 GOTO 1200,

73

1300 COLOR 23, 4
1310 LOCATE 3, 34
1320 PRINT II please wait
1330 SCREEN, , 1, 0
1340 COLOR 14, 4
1350 CLS
1360 Z20S • CHRS(218)
1370 Z21S • CHRS(191)

II

1380 Z22S • STRINGS(67, CHRS(196))
1390 Z23S • CHRS(179)
1400 Z24S • CHRS(192)
1410 Z25S • CHRS(217)
1420 Z26S = 11

1430 Z27S • 11

1440 Z28S • 11

1450 Z29S = 11 Z = R+jX 11

1460 Z30S • 11 Y ,. G+jB 11

1470 ON K1 GOTO 1480, 1510
1480 X1S., Z27S
1490 X2S = Z29S
1500 GOTO 1530
1510 X1S = Z28S
1520 X2S ,. Z30S
1530 COLOR 7
1540 FOR I., 1 TO 24

•• - Create Bus Adnitance Matrix - -
(by using line i~nce zij)
(by using line adnitance yi j)

1550 PRINT STRINGS(79, CHRS(176))
1560 NEXT I
1570 COLOR 14, 4
1580 LOCATE 2, 4: PRINT Z20S + Z22S + Z21S
1590 LOCATE, 4: PRINT Z23S + Z26S + Z23S
1600 LOCATE, 4: PRINT Z23S + X1S + Z23S
1610 LOCATE, 4: PRINT Z24S + Z22S + Z25S
1620 COLOR, 9
1630 LOCATE CSRLIN + 1, 10: PRINT Z20S + STRINGS(60, CHRS(196)) + Z21S
1640 FOR I., 8 TO 20
1650 LOCATE I, 10
1660 PRINT CHRS(179) + STRINGS(60, 11 ") + CHRS(179)
1670 NEXT I
1680 LOCATE, 10: PRINT Z24S + STRINGS(60, CHRS(196)) + Z25S
1690 SCREEN, , 1, 1
1700 COLOR 14, 9

II

II

II

74

1710 LOCATE 8, 11: INPUT 11# of generators (P-V buses) = 11 , G
1nO LOCATE , 11: INPUT 11# of load buses (P-Q buses) = 11 , M

1730 N = M + G

• enter# of generator buses CP-V buses)
1 enter# of load buses (P-Q buses)

1740 LOCATE , 11: PRINT II total # of buses = 11 ; N

1750 DIM Y(N, N), DEL(N, N)
1760 DIM G(N, N), B(N, N)
1770 DIM LL(N, N), EE(N, N)
1780 LOCATE, 11: PRINT STRINGS(60, CHRS(196))
1790 COLOR 14, 4
1800 C z CSRLIN
1810 LOCATE , 11: PRINT II bus no. 11 ;

1820 COLOR, 9: LOCATE, 25: PRINT CHRS(61) + CHRS(62); XZS
1830 FOR I• 1 TON
1840 COLOR , 4
1850 LOCATE C, 11: PRINT II bus no. 11 ;

1860 FOR J •ITO N

1870 COLOR 22, 9
1880 LOCATE C + 2, 11
1890 PRINT STRINGS(50, 11 11)

1900 LOCATE C + 2, 11
1910 PRINT CHRS(61) + CHRS(62);
1920 COLOR 14
1930 ON K1 GOTO 1940, 2050
1940 PRINT N Z(11 ; I; 11 , 11 ; J; 11) = 11 ;

75

1950 INPUT "", R I enter system data from line iff1:)edance (in rectangular form)
1960 LOCATE CSRLIN - 1, 35
1970 INPUT"(+/-) j ", X
1980 IF (R • 0) AND (X = 0) THEN GOTO 1990 ELSE GOTO 2020
1990 G(I, J) = 0

2000 B(I, J) = 0
2010 GOTO 2100
2020 G(I, J) = R / (R. 2 + X. 2)
2030 B(I, J) • -X / (R. 2 + X. 2)
2040 GOTO 2100
2050 PRINT II Y("; I; 11 , 11 ; J; 11) =11 ;

2060 INPUT 11 11 , G(I, J)
2070 LOCATE CSRLIN - 1, 35
2080 INPUT "(+/-) j ", B(I, J)
2090 GOTO 2100
2100 LL(I, J) • SQR(G(I, J) • 2 + B(I, J) . 2)
2110 IF G(I, J) = 0 THEN GOTO 2130
2120 GOTO 2170

1 enter system data from line adnittance (in rectangular form)

' fon11.1late line adnittance matrix in Polar form

2130 IF B(I, J) > 0 THEN EE(I, J) = 3.141592654# / 2
2140 IF B(I, J) < 0 THEN EE(I, J) = -3.141592654# / 2
2150 IF B(I, J) = 0 THEN EE(I, J) = 0
2160 GOTO 2230
2170 IF G(I, J) > 0 THEN GOTO 2190
2180 IF G(I, J) < 0 THEN GOTO 2210
2190 EE(I, J) • ATN(B(I, J) / G(I, J))
2200 GOTO 2220
2210 EE(I, J) • ATN(B(I, J) / G(I, J)) + 3.141592654#
2220 IF I= J THEN GOTO 2250
2230 G(J, I)= G(I, J)
2240 B(J, I)= B(I, J)
2250 NEXT J
2260 NEXT I

#2, 11acnitl 11 1 file 11adnit1 11 contained elements of line adnittance matrix (in Polar form)
#3, 11acni t2" ' file 11adnit2" contained elements of line adnittance matrix (in rectangular form)
TON
TO N

2270 OPEN 110 11 ,

2280 OPEN "o",
2290 FOR I = 1
2300 FOR J = I
2310 WRITE #2,
2320 WRITE #3,
2330 NEXT J

LL(I, J), EE(I, J)
G(I, J), B(I, J)

2340 NEXT I
2350 CLOSE #2
2360 CLOSE #3
2370 FOR I • 1 TO N

2380 FOR J • 1 TON
2390 IF I• J THEN GOTO 2420
2400 G(I, I)= G(I, I)+ G(I, J)
2410 B(I, I)= B(I, I)+ B(I, J)
2420 NEXT J
2430 NEXT I
2440 FOR I• 1 TON
2450 FOR J •ITO N

2460 IF I • J THEN GOTO 2510
2470 G(I, J) " -GO, J)
2480 G(J, I) • G(I, J)
2490 B(I, J) = -B(I, J)
2500 B(J, I) = B(I, J)
2510 NEXT J
2520 NEXT
2530 FOR I• 1 TON
2540 FOR J • 1 TON

• foMILllate bus aanittance matrix Ybus (in Polar fonn)

2550 Y(I, J) • SQR(G(I, J) • 2 + B(I, J) . 2)
2560 IF G(I, J) • 0 THEN GOTO 2580
2570 GOTO 2620
2580 IF B(I, J) > 0 THEN DEL(I, J) = 3.141592654# / 2
2590 IF B(I, J) < 0 THEN DEL(I, J) = -3.141592654# / 2
2600 IF B(I, J) • 0 THEN DEL(I, J) = 0
2610 GOTO 2670
2620 IF G(I, J) > 0 THEN GOTO 2640
2630 IF G(I, J) < 0 THEN GOTO 2660
2640 DEL(I, J) = ATN(B(I, J) / G(I, J))

2650 GOTO 2670
2660 DEL(I, J) = ATN(B(I, J) / G(I, J)) + 3.141592654#
2670 NEXT J
2680 NEXT I

76

2690 OPEN 11011 , #1, "ADMIT"
2700 WRITE #1, G, M, N

• file "aanit" contained elements of bus aanittance matrix Ybus (in Polar form)

2710 FOR I• 1 TON
2no FOR J • 1 TON
2730 WRITE #1, Y(I, J), DEL(I, J)
2740 NEXT J
2750 NEXT I
2760 CLOSE #1
2770 ERASE G, B, Y, DEL, LL, EE
2780 RETURN
3000 ·-------·· .. -··· __

3010 ••-----·--- - ---·---------- LOADFLOW CALCULATION--------------· - -----•
3020 --....................... --............................ .

3030 • V(i) • voltage magnitude at bus i
3040 • se(i) • voltage phase angle at bus i
3050 • PG(i) " real power generation at bus i
3060 'QG(i) = reactive power generation at bus

3070 I PL(f) .. real load supplied at bus i
3080 I QL(i) "' reactive load supplied at bus i
3090 I P(i) • net real power injection at bus i (Pi,spec)
3100 I Q(i) .. net reactive power injection at bus (Qi,spec)
3110 I Pl(i) = Pi,calc
3120 I Ql(i) • Qi,calc
3130 I DP(i) • real power mismatch
3140 I DQ(i) "' reactive power mismatch
3150 '************•----··--··---····-···········--··········· 3160 COLOR 3
3170 LOCATE 11
3180 PRINT Z1S + Z9S + Z2S
3190 PRINT Z1S + Z10S + Z2S
3200 PRINT Z1S + Z11S + Z2S
3210 PRINT Z1S + Z12S + Z2S
3220 FOR I• 1 TO 80
3230 LOCATE A, I : PRINT 11 ";

3240 LOCATE A+ 1, I : PRINT 11 ";

3250 NEXT I
3260 LOCATE A
3270 PRINT TAB(25); "make a choice between (1) and (2) •• ••• •• <? >11 ;

3280 K2S • INPUTS(1)
3290 K2 • VAL(K2S)
3300 IF (K2 • 1) OR (K2 = 2) THEN GOTO 3360
3310 COLOR 19
3320 S<lJNO 50, 1
3330 S<lJND 400, 1
3340 S<lJND 1000, 1
3350 GOTO 3260
3360 COLOR 23, 4
3370 LOCATE 3, 34
3380 PRINT" please wait
3390 SCREEN, , 1, 0
3400 COLOR, 4
3410 CLS
3420 Z40S • CHRS(218)
3430 Z41S = CHRS(191)

II

3440 Z42S = STRINGS(67, CHRSC196))
3450 Z43S • CHRS(179)
3460 Z44S"' CHRS(192)
3470 Z45S • CHRS(217)
3480 Z46S = 11 ** ·
3490 Z47S "' 11

3500 Z48S,. 11

3510 ON K2 GOTO 3520, 3540
3520 X10S = Z47S
3530 GOTO 3550
3540 X10S • Z48S
3550 COLOR 14, 9

input data for loadflow calulation · **
(classical Newton·Raphson loadflow)

(apply Hybrid algoritm to NPL)

3560 LOCATE 2, 6: PRINT Z40S + Z42S + Z41S
3570 LOCATE, 6: PRINT Z43S + Z46S + Z43S
3580 LOCATE, 6: PRINT Z43S + X10S + Z43S

77

II

II

II

3590 LOCATE, 6: PRINT Z44S + Z42S + Z45S
3600 COLOR, 4
3610 OPEN 11 111 , #1, "ADMIT"
3620 INPUT #1, G, M, N
3630 DIM P(N), PG(G), PL(N)
3640 DIM Q(N), QG(G), QL(N)
3650 DIM V(N), SE(N)
3660 DIM AINV(2 * (M + N + 1), 2 * (M + N + 1))
3670 DIM A(M + N + 1, M + N + 1)
3680 DIM DP(N), DQ(N), DSE(N), DV(N)
3690 DIM Pl(N), QI(N), Y(N, N), DEL(N, N)
3700 DIM PLINE(N, N), QLINE(N, N)
3710 DIM PLOSS(N, N), QLOSS(N, N)
3no FOR I• 1 TON
3730 FOR J s 1 TON
3740 INPUT #1, Y(I, J), DEL(I, J)

3750 NEXT J

3760 NEXT I
3770 CLOSE #1
3780 LOCATE CSRLIN + 1, 6: PRINT 11# of generators (P-V buses)= 11 ; G
3790 PRINT TAB(6); 11# of load buses (P-Q buses)= 11 ; M
3800 PRINT TAB(6); "total# of buses = "; N
3810 COLOR , 10
3820 FOR I• 11 TO 22
3830 LOCATE I, 6: PRINT STRINGS(70, 11 11)

3840 NEXT I
3850 SCREEN, , 1, 1
3860 COLOR 14, 9
3870 LOCATE 14, 20: PRINT II P,gen =
3880 LOCATE 20: PRINT II V,bus =
3890 LOCATE, 20: PRINT II P,load =
3900 LOCATE, 20: PRINT II Q,load =
3910 LOCATE 12, 20: PRINT II bus no. (slack bus)

II

II

II

II

II

3920 LOCATE 14, 31: PRINT 11 - 11 ' enter input data for the swing bus

3930 LOCATE, 31: INPUT 11 ", V(1)
3940 LOCATE , 31: INPUT 11 11 , PL(1)
3950 LOCATE, 31: INPUT 1111 , QL(1)
3960 LOCATE 12, 20: PRINT II bus no. 2 (P-V bus (generator bus)) 11

3970 FOR I s 2 TO G ' enter input data for P-V buses
3980 LOCATE 12, 20: PRINT II bus no. 11 ;

3990 LOCATE 14, 31: PRINT STRINGS(20, 11 ")

4000 LOCATE 31: PRINT STRINGS(20, " 11)

4010 LOCATE, 31: PRINT STRINGS(20, 11 11)

4020 LOCATE, 31: PRINT STRINGS(20, 11 11)

4030 LOCATE 14, 31: INPUT 11 11 , PG(I)
4040 LOCATE 31: INPUT 11 11 , V(I)
4050 LOCATE , 31: INPUT 11 11 , PL(I)

4060 LOCATE , 31: INPUT 11 11 , QL(I)
4070 P(I) = PG(I) - PL(I)
4080 NEXT I
4090 LOCATE 12, 20: PRINT II bus no.
4100 FOR I= G + 1 TON

(P-Q bus (load bus)) 11

' enter input data for P-Q buses

78

4110 LOCATE 12, 20: PRINT II bus no.";
4120 LOCATE 14, 31: PRINT STRINGS(20, 11 ")

4130 LOCATE 31: PRINT STRINGS(20, " 11)

4140 LOCATE , 31: PRINT STRINGS(20, 11 11)

4150 LOCATE, 31: PRINT STRINGS(20, 11 11)

4160 LOCATE 14, 31: PRINT 11 - 11

4170 LOCATE 31: PRINT 11 - 11

4180 LOCATE , 31: INPUT 11 ", PL(I)
4190 LOCATE , 31: INPUT 11 11 , QL(I)
4200 P(I) • -PL(I)
4210 Q(I) • -QL(I)
4220 NEXT I
4230 MN• M + N - 1

4240 •- -- set initial condition
4250 SE(1) • 0 • set swing bus angle= O

79

4260 FOR I= 2 TON
4270 SE(I) = 0

' set initial starts for bus voltage phase angles (all buses) in rad.

4280 NEXT I
4290 FOR I• G + 1 TON ' set initial starts for load bus voltage magnitude in p.u
4300 V(I) • 1
4310 NEXT I
4320 •------whether to swicth to Hybrid method or classical Newton-Raphson
4330 DIM R(MN), DX(MN), GD(MN)
4340 GOSUB 15150
4350 IF K2 = 2 THEN GOSUB 6000 ELSE GOSUB 5000
4360 GOSUB 11010
4370 RETURN

5010 •-•------ LOADFLOW BY STANDARD NE\ITON-RAPHSON METHOO -------------••

5020 ·--·--······-···-··------··---·---····················· 5030 GOSUB 15150
5040 •-•--- main program
5050 E • .00000000000001#
5060 IT • 0

5070 IT • IT + 1
5080 GOSUB 7510
5090 GOSUB 15390
5100 GOSUB 9000
5110 FOR I= 1 TO MN
5120 FOR J • 1 TO MN
5130 AINV(I, J) = A(I, J)
5140 NEXT J
5150 NEXT I
5160 GOSUB 10010

• set epselon
• set iteration couit

• calc. residual

' calc. Jacobian matrix
' calc. Inverse Jacobain

5170 FOR I= 1 TO MN ' calc. step dx
5180 DX(I) = 0
5190 FOR J = 1 TO MN
5200 DX(I) = DX(I) + AINV(I, J) * R(J)
5210 NEXT J
5220 NEXT I
5230 NN • O
5240 FOR I = 2 TO N • updating current angle

5250 NN • NN + 1
5260 SE(I) = SE(I) + DX(NN)
5270 NEXT I
5280 FOR I• G + 1 TON
5290 NN • NN + 1

• updating current voltage

5300 V(I) • V(I) + DX(NN)
5310 NEXT I
5320 GOSUB 7510 • calc. current residual
5330 IF F <ETHEN RETURN • test convergence
5340 GOTO 5070

6000 ·-··----··--·--······-·-···········-····-·-·· 6010 ••---- HYBRID ALGORITHM FOR STANDARD NEWTON-RAPHSON LOADFLOIJ ---•••-•

6020 ··--··-······--··---·······-·-···········-······-····· 6030 I A(,) • Jacobian matrix
6040 I Gd(,) = Grandient matrix off
6050 I gt = norm of Gd(,)
6060 I R(,) = residual , dim M

6070 IX(,) = varible vector
6080 • DX(,) = vector of the predicted step
6090 • normx = norm of NEWTON-RAPHSON step
6100 • Ft = sum of residuals in previous iteration
6110 • F = sum of residuals in current iteration
6120 • R = trust radius
6130 'E = specified tolerance limit

6140
1

••··----·-··-···--·-···········--··-····················· 6150 •••••••--•-• -- main program
6160 DIM FEE(MN)
6170 E = .0000000000001#: TMAX = 1000: TINC = 1
6180 DV = .2
6190 DSE = .2
6200 R • SQR(M •

6220 IT = 0
6230 GOSUB 7510
6240 Ft= F

(DV - 2) + N • COSE - 2)) • calc. approx. trust radius R
• set init. iteration no.

• calc. first residual

6250 ••- -------- re-entry point for new iteration
6260IT=IT+1
6270 STATUS= 0
6280 Ft = F
6290 CUT= 0

6300 UG = 0
6310 GOSUB 9000
6320 Gt= 0
6330 FOR I= 1 TO MN
6340 GD(I) = 0

6350 FOR J = 1 TO MN
6360 GD(I) = GD(I) + A(J, I)• R(J)
6370 NEXT J
6380 GD(I) = -2 • GD(I)
6390 Gt= Gt+ GD(I) • GD(I)
6400 NEXT I
6410 Gt= SQR(Gt)

• iteration cou,t

• calc. Jacobian matrix J(,)
• calc. gradient Gd(,) and norm gt

·) ! ~
·..; -

6420 IF G1 = 0 THEN RETURN
6430 •••-------- - Standard Newton-Raphson iteration
6440 FOR I= 1 TO MN
6450 FOR J = 1 TO MN
6460 AINV(I, J) = ACI, J)
6470 NEXT J
6480 NEXT I
6490 GOSUB 10010
6500 FOR I= 1 TO MN
6510 DX(l) = 0
6520 FOR J = 1 TO MN
6530 DXCI) = DXCI) + AINV(I, J) * RCJ)
6540 NEXT J
6550 NEXT I
6560 NORMX a 0
6570 FOR I a 1 TO MN
6580 NORMX a NORMX + DXCI) * DXCI)
6590 NEXT I
6600 NORMX = SQRCNORMX)
6610 DENO= 0
6620 FOR I• 1 TO MN
6630 DENO a DENO+ GD(I) * DXCI)
6640 NEXT I
6650 DENO= -DENO/ 2
6660 IF NORMX > R THEN GOTO 6no

. 6670 GOSUB 7670
6680 GOSUB 7510
6690 IF F < F1 THEN GOTO 7150
6700 R • R / 2: TINC = 1
6710 GOSUB 7780

• calc. inverse Jacobian matrix

• calc. norm of dx

' calc. deno. factor for quadratic factor

' test whether normx is inside R
I ~ting XC,)
• calc. current residual
' test whether current Newton step
' is successful to decrease residual

6no •----------steepest descent iteration
6730 U a O ' calc. predicted step to min. FCx)
6740 FOR I = 1 TO MN
6750 AA= 0
6760 FOR J = 1 TO MN
6770 AA• AA+ A(I, J) * GDCJ)
6780 NEXT J
6790 U a U +AA* AA
6800 NEXT I
6810 U • CG1 * G1) / U
6820 UG = U * G1
6830 IF UG >• R THEN GOTO 7010
6840 GX = 0

6850 FOR I = 1 TO MN
6860 GX = GX + GDCI) * DXCI)
6870 NEXT I

' test whether predicted step> r

6880 A= CU. 2) * CG1 • 2) + CNORMX . 2) + 2 * U * GX
6890 B = U * GX +CU. 2) * CG1 • 2)
6900 C =CU. 2) * CG1 • 2) - CR . 2)
6910 IF CB. 2 - A* C) < 0 THEN GOTO 6960
6920 ALPA =CB+ SQRCCB . 2) - A* C)) / A
6930 IF CALPA > 0) AND CALPA < 1) THEN GOTO 6960

81

6940 ALPA • (B - SQR((B - 2) - A* C)) / A
6950 IF (ALPA > 0) AND (ALPA < 1) THEN GOTO 6960 ELSE GOTO 7010
6960 STATUS a 2
6970 FOR I• 1 TO MN
6980 DX(I) • (ALPA - 1) * U * GD(I) + ALPA * DX(I)
6990 NEXT I

7000 GOTO 7050
7010 STATUS= 1
7020 FOR I• 1 TO MN
7030 OX(I) = -R * (GD(I) / G1)
7040 NEXT I
7050 GOSUB 7670
7060 GOSUB 7510
7070 IF F < F1 THEN GOTO 7150
7080

7090 GOSUB 7780
7100 R • R / 2: TINC •
7110 CUT= CUT+ 1
7120 IF CUT> 1000 THEN RETURN
7130
7140 GOTO 6830
7150 RQ • (F1 - F) / DENO

• calc. pure cauchy step

I updating X(,)

' calc. current residual
' test whether current cauchy step
' is successful to decrease residual

• set X(,) back to last turning pt
• reduce restrict step lenght
1 cut back cou,t
' test whether cauchy step is too
' small

1 updating X(,) and recalc. residual

7160 •-•• --------- revise restrict step lenght
7170 IF F > (F1 - .1 * (F1 - FEE)) THEN GOTO 7180 ELSE GOTO noo
7180 R = R / 2
7190 GOTO 7350
noo AA= F1 - .1 * (F1 - FEE) - F
n10 BB• o
n20 cc• o

• calc. d!ult

7230 FOR I• 1 TO MN 'calc. sp & ss
n40 BB= BB+ ABS(R(I) * (R(I) - FEE(I)))
n50 cc= cc+ (R(I) - FEE(I)) . 2
n60 NEXT I
n70 RAMOA • 1 +AA/ (BB+ SQR(BB *BB+ AA* CC))
n80 RAMDA = SQR(RAMDA)
n90 IF RAMDA < 2 THEN U1 = RAMDA ELSE GOTO 7320
7300 IF RAMDA < TINC THEN U2 = RAMOA ELSE U2 = TINC
7310 GOTO 7330
7320 IF 2 < TINC THEN U2 = 2 ELSE U2 = TINC
7330 TINC • RAMDA / U2
7340 R = U2 * R

7350 FEE = 0
7360 FOR I= 1 TO MN
7370 FEE(I) = 0
7380 FOR J a 1 TO MN
7390 FEE(I) = FEE(I) + A(I, J) * DX(J)
7400 NEXT J
7410 FEE(I) = FEE(I) + R(I)
7420 NEXT I
7430 FOR I= 1 TO MN
7440 FEE= FEE+ FEE(I) * FEE(I)
7450 NEXT I

82

7460 GOSUB 15390

7470 •-- --------- test convegence
7480 JF F <ETHEN RETURN
7490 JF IT> TMAX THEN RETURN
7500 GOTO 6260

1 test whether too many iteration

7510 , ----- subroutine for calc. residual F(x) and RC,)
7520 GOSUB 8000
7530 NN • 0
7540 FOR I• 2 TON
7550 NN • NN + 1
7560 R(NN) • DP(!)
7570 NEXT I
7580 FOR I :s G + 1 TO N
7590 NN • NN + 1
7600 R(NN) :s DQ(I)
7610 NEXT I
7620 F = 0
7630 FOR I = 1 TO MN

7640 F • F + R(I) * R(I)

7650 NEXT I
7660 RETURN
7670 •-••-----subroutine for updating XC,)
7680 NN • 0

7690 FOR I= 2 TON
7700 NN • NN + 1

7710 SE(!)• SE(I) + DX(NN)
mo NEXT I
7730 FOR I= G + 1 TON
7740 NN • NN + 1
7750 V(I) • V(I) + DX(NN)
7760 NEXT I
7770 RETURN
7780 •-••-----subroutine for setting X(,) back to last turning points
7790 NN a 0

7800 FOR I= 2 TON
7810 NN = NN + 1
7820 SE(!)= SE(!) - DX(NN)
7830 NEXT I
7840 FOR I• G + TON
7850 NN = NN + 1
7860 V(I) = V(I) - DX(NN)
7870 NEXT I
7880 RETURN
8000 ••••--- subroutine for calculatiog real and reactive power mismatch
8010 FOR I = 2 TO N I updating real power
8020 Pl(!) = 0
8030 FOR J = 1 TON
8040 Pl(!)= Pl(!)+ V(I) * Y(I, J) * V(J) * COS(DEL(I, J) + SE(J) - SE(I))
8050 NEXT J
8060 NEXT I
8070 FOR I ., G + 1 TO N I updating reactive power
8080 QI(!) = 0

---•······

83

8090 FOR J = 1 TON
8100 Ql(I) = Ql(I) - V(I) • Y(I, J) • V(J) • SIN(DEL(I, J) + SE(J) - SE(I))
8110 NEXT J
8120 NEXT I
8130 FOR I= 2 TON
8140 OP(I) = P(I) - Pl(I)
8150 NEXT I
8160 FOR I• G + 1 TON
8170 OQ(I) = Q(I) - Ql(I)
8180 NEXT I
8190 RETURN

9000 ·-·····-···
9010 ••••••••--- subroutine for calc. Jacobian matrix---••••••••-•••-•••
9020 ERASE A
9030 DIM A(2 •CM+ N + 1), 2 •CM+ N + 1))
9040 FOR I = 2 TO N 'form submatrix J1
9050 FOR J = 2 TON
9060 IF I <> J THEN GOTO 9120
9070 FOR JJ = 1 TON
9080 IF I= JJ THEN GOTO 9100
9090 A(I, I)• A(I, I)+ V(I) • Y(I, JJ) • V(JJ) • SIN(DEL(I, JJ) + SE(JJ) • SE(I))
9100 NEXT JJ
9110 GOTO 9130
9120 A(I, J) = ·V(I) • Y(I, J) • V(J) • SIN(DEL(I, J) + SE(J) - SE(I))
9130 NEXT J
9140 NEXT I
9150 FOR I• 2 TON
9160 FOR J = G + 1 TON
9170 IF I <> J THEN GOTO 9260
9180 FOR JJ = 1 TON
9190 IF I• JJ THEN GOTO 9210
9200 GOTO 9230

•form submatrix J2

9210 A(I, N + J - G) = A(I, N + J - G) + 2 • Y(I, JJ) • V(JJ) • COS(DEL(I, JJ))
9220 GOTO 9240
9230 A(I, N + J - G) = A(I, N + J - G) + Y(I, JJ) • V(JJ) • COS(DEL(I, JJ) + SE(JJ) - SE(I))
9240 NEXT JJ
9250 GOTO 9270
9260 A(I, N + J - G) = V(I) • Y(I, J) • COS(DEL(I, J) + SE(J) - SE(I))
9270 NEXT J
9280 NEXT I
9290 FOR I• G + 1 TON
9300 FOR J = 2 TON
9310 IF I<> J THEN GOTO 9370
9320 FOR JJ • 1 TON
9330 IF I= JJ THEN GOTO 9350

'form submatrix J3

84

9340 A(N + I - G, J) = A(N + I - G, J) + V(I) • Y(I, JJ) • V(JJ) • COS(DEL(I, JJ) + SE(JJ) - SE(I))
9350 NEXT JJ
9360 GOTO 9380
9370 A(N + I - G, J) = ·V(I) • Y(I, J) • V(J) • COS(DEL(I, J) + SE(J) - SE(I))
9380 NEXT J
9390 NEXT I
9400 FOR I = G + 1 TO N 'form submatrix J4

9410 FOR J • G + 1 TON
9420 IF I <> J THEN GOTO 9510
9430 FOR JJ s 1 TON
9440 IF I s JJ THEN GOTO 9460
9450 GOTO 9480

85

9460 A(N + I • G, N + J • G) • A(N + • G, N + J • G) • 2 * V(I) * Y(I, JJ) * SIN(DEL(I, JJ) + SE(JJ) · SE(!))
9470 GOTO 9490
9480 A(N + I • G, N + J · G) = A(N + I • G, N + J • G) · Y(I, JJ) * V(JJ) * SIN(DEL(I, JJ) + SE(JJ) · SE(I))
9490 NEXT JJ
9500 GOTO 9520
9510 A(N + I • G, N + J · G) = ·V(I) * Y(I, J) * SIN(DEL(I, J) + SE(J) · SE(I))
9520 NEXT J
9530 NEXT I
9540 FOR I a 1 TO HN
9550 FOR J a 1 TO HN
9560 A(I, J) • A(I + 1, J + 1)
9570 NEXT J
9580 NEXT I
9590 RETURN

10000 ··-·---
10010 •------subroutine for calc. Inverse matrix
1D02D IC• D
10030 FOR X = 1 TO HN 'form RHS Lnity matrix
10040 FOR Y = 1 TO HN
10050 IF X = Y THEN GOTO 1008D
1D060 AINV(X, Y + HN) = 0
10070 GOTO 10D90
10080 AINV(X, Y + HN) = 1
10090 NEXT Y
10100 NEXT X
10110 FOR L • 1 TO HN
10120 IC s IC+ 1
10130 IF AINV(L, K) <> 0 OR L <> HN THEN GOTO 10160
10140 IC• K + 1
10150 GOTO 10130
10160 IF AINV(L, K) = 0 AND L <> HN THEN GOTO 10510
10170 FOR X = 2 * HN TO 1 STEP ·1
10180 AINV(L, X) = AINV(L, X) / AINV(L, IC)
10190 NEXT X
10200 FOR J = 1 TO HN
10210 IF J = L THEN GOTO 10260
10220 FOR X = 2 * HN TO 1 STEP ·1
10230 AINV(J, X) = AINV(J, X) · AINV(J, IC)* AINV(L, X)
10240 IF ABS(AINV(J, X)) < ABS(AINV(J, X + 1)) / 100000000000# THEN AINV(J, X) = 0
10250 NEXT X
10260 NEXT J
10270 NEXT L
10280 FOR Ya TO HN
10290 s • O
10300 FOR X = 1 TO HN
10310 IF AINV(Y, X) <> 0 THENS=
10320 NEXT X

10330 FOR XX= MN+ 1 TO 2 • MN
10340 IFS a O AND AINV(Y, XX)<> 0 THEN GOTO 10640
10350 NEXT XX
10360 NEXT Y
10370 FOR L = 1 TO MN
10380 IF AINV(L, L) <> 1 THEN GOTO 10630
10390 NEXT L
10400 FOR Y = 1 TO MN
10410 FOR X = 1 TO MN
10420 IF X <> Y AND AINV(Y, X) <> 0 THEN GOTO 10630
10430 NEXT X
10440 NEXT Y
10450 FOR X = 1 TO MN
10460 FOR Y = 1 TO MN
10470 AINV(X, Y) = AINV(X, Y + MN)
10480 NEXT Y
10490 NEXT X
10500 RETURN
10510 FOR H = L + 1 TO MN
10520 IF AINV(H, K) <> 0 THEN GOTO 10570
10530 NEXT H
10540 K = K + 1
10550 IF K > 2 • MN THEN GOTO 10280
10560 GOTO 10130
10570 FOR Z = 1 TO 2 • MN
10580 Ta AINV(L, Z)
10590 AINV(L, Z) = AINV(H, Z)
10600 AINV(H, Z) = T
10610 NEXT Z
10620 GOTO 10130
10630 CLS: PRINT "NOT INDEPENDENT": END
10640 CLS: PRINT "CONTRADICTORY": END
11000 - _._

11010 ••-----subroutine for calc. lineflow and line loss----------•••••••••
11020 - -

11030 • PLINE(i,j)
11040 • QLINE(i,j)
11050 • PLOSS(i,j)
11060 • QLOSS(i,j)

=
=
=
=

11080 FOR J = 1 TON
11090 P(1) = P(1) + V(1)
11100 Q(1) = Q(1) - V(1)
11110 NEXT J
11120 FOR I= 2 TOG
11130 FOR J = 1 TON

real power flow from bus i to bus j
reactive power flow from bus i to bus j
real power loss along line i,j
reactive power along line i,j

• coq,ute net real and reactive power injected at the swing bus
• Y(1, J) * V(J) • COS(DEL(1, J) + SE(J) - SE(1))
• Y(1, J) • V(J) • SIN(DEL(1, J) + SE(J) - SE(1))

• coq,ute reactive power injected at P-V buses

11140 Q(I) = Q(I) - V(I) * Y(I, J) • V(J) • SIN(DEL(I, J) + SE(J) - SE(I))
11150 NEXT J
11160 NEXT I
11170 PG(1) = P(1) - PL(1) • coq,ute real and reactive power generation at swing bus
11180 QG(1) • Q(1) - QL(1)
11190 FOR I• 2 TOG • coq,ute reactive power generation at P-V buses

86

11200 QG(I) = Q(I) - QL(I)
11210 NEXT I
11220 ERASE A, OP, DQ, PI, QI, Y, DEL
11230 DIM PLINE, QLINE, PLOSS, QLOSS
11240 DIM G(N, N), B(N, N), LL(N, N), EE(N, N), ICN, N), AI(N, N)
11250 OPEN "i", #2, 11aanitL"
11260 OPEN "i", #13, 11aanit211

11270 FOR I = 1 TO N

11280 FOR J = I TO N

11290 INPUT #2, LLCI, J), EE(I, J)
11300 INPUT #13, G(I, J), B(I, J)
11310 NEXT J
11320 NEXT I
11330 CLOSE #2
11340 CLOSE #13

11350 FOR I• 1 TON
11360 FOR J =ITO N

11370 IF I= J THEN GOTO 11640
11380-VR "'0
11390 VI= 0
11400 W • 0
11410 DV"' 0
11420 VR "'V(I) * COS(SE(I)) - V(J) * COS(SE(J))
11430 VI• V(I) * SIN(SE(I)) - V(J) * SIN(SE(J))
11440 W • SQR(VR " 2 + VI "2)
11450 IF VR = 0 THEN GOTO 11470
11460 GOTO 11510
11470 IF VI> 0 THEN DV = 3.141592654# / 2
11480 IF VI< 0 THEN DV • -3.141592654# / 2
11490 IF VI• 0 THEN DV = 0
11500 GOTO 11560
11510 IF VI> 0 THEN GOTO 11530
11520 IF VI < 0 THEN GOTO 11550
11530 DV • ATN(VI / VR)
11540 GOTO 11560
11550 DV • ATN(VI / VR) + 3.141592654#
11560 1(1, J) = W * LL(I, J) ' calc. current magnitude along line i , j
11570 AICI, J) = DV + EE(I, J) 'calc. current phase angle along line i,j

87

11580 PLINE(I, J) = V(I) • 1(1, J) • COS(SE(I) - Al(I, J)) ' calc. real and reactive power flow from bus i to bus
11590 QLINE(I, J) = V(I) * 1(1, J) * SIN(SE(I) - Al(I, J))

11600 PLINE(J, I) .. V(J) • 1(1, J) • COS(SE(J) - AI(l, J))' calc. real and reactive power flow from bus j to bus
11610 QLINE(J, I)• V(J) * 1(1, J) * SIN(SE(J) • Al(I, J))
11620 PLOSS(I, J) = ABS(PLINE(I, J) - PLINE(J, I)) ' calc. real & reactive power losses along line i,j
11630 QLOSS(I, J) = ABS(QLINE(I, J) - QLINE(J, I))
11640 NEXT J

11650 NEXT I
12000 ,

12010 ••-•----subroutine for display. or print out the result
12020 COLOR , ·O
12030 CLS
12040 COLOR , 4
12050 FOR I• 6 TO 16

12060 LOCATE I, 12: PRINT STRING$(55, 11 11)

12070 NEXT I
12080 COLOR 3
12090 LOCATE 7, 15: PRINT "Show the results from calculation 11

12100 LOCATE 9, 35: PRINT 111.) on screen"
12110 LOCATE 10, 35: PRINT 112.) by printer"
12120 LOCATE 11, 35: PRINT 113.) go baclt to main menu"
12130 LOCATE 13, 35: PRINT "select options ••••• ";
12140 S$ = INPUT$(1)
12150 Sa VAL(S$)
12160 IF (S s 1) OR ((Sa 2) OR (S = 3)) THEN GOTO 12170 ELSE GOTO 12200
12170 IFS= 3 THEN RETURN
12180 ON S GOSUB 12270, 14000
12190 GOTO 12020
12200 SOUND 100, 1
12210 SOUND 500, 1
12220 SOUND 1000, 1
12230 LOCATE 13, 35: PRINT STRING$(25, 11 11)

12240 COLOR 19
12250 GOTO 12130
12260 RETURN
12270
12280 ___ display the result on screen

12290 GOSUB 13500
12300 PRINT TAB(3); 111 •11 ; TAB(11); "SW."; TAB(17);
12310 PRINT USING 11##.###'•; V(1);
12320 PRINT TAB(24);
12330 PRINT USING 11###.###"; SE(1);
12340 PRINT TAB(37);
12350 PRINT USING 11##.#####"; PG(1);
12360 PRINT TAB(47);
12370 PRINT USING 11##.#####'1; QG(1);
12380 PRINT TAB(61);
12390 PRINT USING 11##.##fl##'•; PL(1);
12400 PRINT TAB(71);
12410 PRINT USING 11##.#####11 ; QL(1)
12420 FOR I= 2 TOG
12430 IF CSRLIN > 22 THEN GOTO 12450
12440 GOTO 12490
12450 PRINT
12460 PRINT TAB(25); "press anyltey to see more
12470 KKS a INPUT$(1)
12480 GOSUB 13500

...
•• I

12490 PRINT TAB(2); I; II II•
• I TAB(11); "P·V"; TAB(17);

12500 PRINT USING 11##.###'•; VCI);
12510 PRINT TAB(24);
12520 PRINT USING 11###.###'1 ; SE(I) • 57 .3;
12530 PRINT TAB(37);
12540 PRINT USING 11##.#####'1 ; PG(I);
12550 PRINT TAB(47);
12560 PRINT USING 11##.#####11 ; QG(I);
12570 PRINT TAB(61);

88

12580 PRINT USING 11##.#####'1; PLCI);
12590 PRINT TAB(71);
12600 PRINT USING 11##.#####'1; QL(I);
12610 NEXT I
12620 FOR I• G + 1 TON
12630 PRINT TAB(2); I; 11 • 11 ; TAB(11); "P·Q"; TAB(17);
12640 PRINT USING 11##.###t'; VCI);
12650 PRINT TAB(24);
12660 PRINT USING 11###.###'1; SECI) * 57.3;
12670 PRINT TAB(40); "·"; TAB(50); "·";
12680 PRINT TAB(61);
12690 PRINT USING 11##.#####'1; ·PCI);
12700 PRINT TAB(71);
12710 PRINT USING 11##.#####"; ·Q(I)
12720 IF CSRLIN > 22 THEN GOTO 12740
12730 GOTO 12770
12740 PRINT TAB(25); "press anykey to see more
12750 ICICS • INPUTS(1)
12760 GOSUB 13500
12770 NEXT I
12780 PRINT
12790 FOR I • 1 TO 80
12800 LOCATE CSRLIN, I
12810 PRINT CHRS(95);
12820 NEXT I
12830 PRINT

...
•• I

12840 PRINT TAB(25); "press anykey to see lineflows and lineloss"
12850 KKS = INPUTS(1)
12860 GOSUB 13270
12870 FOR I• 1 TON
12880 FOR J • 1 TON
12890 IF I= J THEN GOTO 13150
12900 IF G(I, J) = 0 AND B(I, J) = 0 THEN GOTO 13150
12910 IF CSRLIN > 22 THEN GOTO 12930
12920 GOTO 12970
12930 PRINT
12940 PRINT TABC25>; "press anykey to see more
12950 ICICS • INPUTS(1)
12960 GOSUB 13310
12970 PRINT USING 11##'1 ; I;
12980 PRINT 11 • 11 ;

12990 PRINT USING 11##"; J;
13000 LOCATE CSRLIN, 9
13010 PRINT USING 11##.##'1 ; G(1, J);

13020 IF BCI, J) >= 0 THEN PRINT 11+j 11 ;

13030 IF BCI, J) < 0 THEN PRINT "· j";
13040 PRINT USING 11##.##"; ABS(BCI, J));

13050 LOCATE CSRLIN, 23
13060 PRINT USING 11##.###'1 ; 1(1, J);

13070 LOCATE CSRLIN, 33
13080 PRINT USING 11###.fl###t'; PLINE(!, J);

13090 LOCATE CSRLIN, 43

...
•• I

89

13100 PRINT USING 11###.####'1 ; QLINECI, J);

13110 LOCATE CSRLIN, 59
13120 PRINT USING 11###.####'1; PLOSSCI, J);

13130 LOCATE CSRLIN, 69
13140 PRINT USING 11###.####"; QLOSSCI, J)

13150 NEXT J

13160 NEXT I
13170 PRINT
13180 FOR I = 1 TO 80
13190 LOCATE CSRLIN, I
13200 PRINT CHRS(95);
13210 NEXT I
13220 PRINT
13230 PRINT TAB(25); "press anykey to go back to menu"
13240 KKS • INPUTS(1)
13250 RETURN
13260 I

13270 COLOR, 4
13280 CLS
13290 COLOR 14, 9
13300 Z60S =" << •• Report From Loaclflow Calculation •• >>

13310 LOCATE 2, 2: PRINT CHRS(218) + STRINGS(75, CHRS(196)) + CHRS(191)
13320 LOCATE, 2: PRINT CHRS(179) + Z60S + CHRS(179)
13330 LOCATE, 2: PRINT CHRS(192) + STRINGS(75, CHRS(196)) + CHRS(217)
13340 COLOR, 4
13350 PRINT
13360 PRINT STRINGS(79, CHRS(196))
13370 PRINT TAB(3); "bus"; TAB(10); "acinitance";
13380 PRINT TAB(26); 11 1";
13390 PRINT TAB(32); 11

- -- Line Flow -- - 11
;

13400 PRINT SPACES(5); "** -- Line Loss -- **"
13410 LOCATE CSRLIN, 32: PRINT STRINGS(20, CHRS(196));
13420 LOCATE, 58: PRINT STRINGS(20, CHRS(196))
13430 LOCATE CSRLIN, 36
13440 PRINT "P(p.u)"; SPACES(8); 11Q(p.u)";
13450 LOCATE CSRLIN, 62
13460 PRINT "P(p.u)"; SPACES(8); "Q(p.u)"
13470 PRINT STRINGS(79, CHRS(196))
13480 PRINT
13490 RETURN
13500 I

13510 COLOR, 4
13520 CLS
13530 COLOR 14, 9
13540 Z60S • 11 « .. Report From Loaclflow Calculation •• »

13550 LOCATE 2, 2: PRINT CHRS(218) + STRINGS(75, CHRS(196)) + CHRS(191)
13560 LOCATE, 2: PRINT CHRS(179) + Z60S + CHRS(179)
13570 LOCATE, 2: PRINT CHRS(192) + STRINGS(75, CHRS(196)) + CHRS(217)
13580 COLOR , 4
13590 PRINT
13600 PRINT STRINGS(79, CHRS(196))
13610 PRINT "Bus no."; SPACES(2); "Type";

90

II

II

13620 PRINT SPACES(3); "Volts"; SPACES(3); "Angle";
13630 PRINT SPACES(5); "**----Generation----**";
13640 PRINT SPACES(2); "**-------Load-------**";
13650 LOCATE, 35: PRINT STRINGS(45, CHRS(196))
13660 PRINT TAB(40); "P(p_u)"; SPACES(7); 11Q(p.u)";
13670 PRINT SPACES(11); "P(p.u)"; SPACES(7); "Q(p.u)"
13680 PRINT STRINGS(79, CHRS(196))
13690 PRINT
13700 RETURN
14000 '*************
14010 •••-----printout the result
14020 CLS
14030 LOCATE 12, 25
14040 COLOR 0, 7
14050 PRINT 11- -- printing the results -- **-
14060 LPRINT CHRS(27); 11 - 11 ; CHRS(1); "RESULT OF POWER FLOW CALCULATION";
14070 LPRINT CHRS(27); 11 - 11 ; CHRS(O);
14080 LPRINT TAB(50); 11# of iterations• 11 ; IT
14090 LPRINT
14100 FOR I= 1 TO 80
14110 LPRINT CHRS(95);
14120 NEXT I
14130 LPRINT

91

14140 LPRINT "BUS N0. 11 ; SPACES(2); "TYPE"; SPACES(3); "VOLTS"; SPACES(3); "ANGLE"; SPACES(5);
14150 LPRINT "**----GENERATION----**"; SPACES(2); 11••-------LOAD-------**11 ;

14160 LPRINT TAB(35);
14170 FOR I = 34 TO 79
14180 LPRINT CHRS(95);
14190 NEXT I
14200 LPRINT TAB(38); "P(p.u)"; SPACES(7); "Q(p.u)"; SPACES(10); "P(p.u)"; SPACES(7); "Q(p.u)"
14210 FOR I= 1 TO 80
14220 LPRINT CHRS(95);
14230 NEXT I
14240 LPRINT
14250 LPRINT TAB(3); 11 1 •11 ; TAB(11); 115\111 ; TAB(17);
14260 LPRINT USING 11##.###"; V(1);
14270 LPRINT TA8(24);
14280 LPRINT USING 11###.###'1; SE(1);
14290 LPRINT TAB(37);
14300 LPRINT USING 11##.#####"; PG(1);
14310 LPRINT TAB(47);
14320 LPRINT USING 11##.#####'1 ; QG(1);
14330 LPRINT TAB(61);
14340 LPRINT USING 11##.#####''; PL(1);
14350 LPRINT TAB(71);
14360 LPRINT USING 11##.#####"; QL(1);
14370 FOR I= 2 TOG
14380 LPRINT TAB(2); I; 11 • 11 ; TAB(11); "P-V"; TAB(17);
14390 LPRINT USING 11##.###'1; V(I);
14400 LPRINT TAB(24);
14410 LPRINT USING 11###.###'1; SE(I) * 57.3;
14420 LPRINT TAB(37);

14430 LPRINT USING 11##.#####'1; PG(I);
14440 LPRINT TAB(47);
14450 LPRINT USING 11##.#####'1; QG(I);
14460 LPRINT TAB(61);
14470 LPRINT USING 11##.#####'1; PL(I);
14480 LPRINT TAB(71);
14490 LPRINT USING 11##.#####"; QL(I);
14500 NEXT I
14510 FOR I• G + 1 TON
14520 LPRINT TAB(2); I; 11 • 11 ; TAB(11); "P-Q"; TAB(17);
14530 LPRINT USING 11##.###"; V(I);
14540 LPRINT TAB(24);
14550 LPRINT USING 11###.###"; SE(I) * 57.3;
14560 LPRINT TAB(40); 11 - 11 ; TAB(50); 11 - 11 ;

14570 LPRINT TAB(61);
14580 LPRINT USING 11##.#####N; -P(I);
14590 LPRINT TAB(71);
14600 LPRINT USING 11##.#####'1; -Q(I);
14610 NEXT I
14620 LPRINT
14630 FOR I = 1 TO 80
14640 LPRINT CHRS(95);
14650 NEXT I
14660 LPRINT: LPRINT
14670 LPRINT TAB(13); "---------- - ----------- LINEFLOW --------- - ------------ - -"
14680 FOR I • 1 TO 80
14690 LPRINT CHRS(95);
14700 NEXT I
14710 LPRINT
14720 LPRINT TAB(3); "BUS"; TAB(10); "ADMITANCE";
14730 LPRINT TAB(26); 11 111 ;

14740 LPRINT TAB(32); "** -- LINE FLOW -- **";
14750 LPRINT SPACES(5); "** -- LINE LOSS -- **"
14760 LPRINT TAB(32);
14770 FOR I = 1 TO 46
14780 LPRINT 11 - 11 ;

14790 NEXT I
14800 LPRINT TAB(36); "P(p.u)"; SPACES(S); "Q(p.u)";
14810 LPRINT TAB(62); "P(p.u)"; SPACES(S); "Q(p.u)"
14820 FOR I = 1 TO 80
14830 LPRINT CHRS(95);
14840 NEXT I
14850 LPRINT : LPRINT
14860 FOR I = 1 TON
14870 FOR J = 1 TON
14880 IF I= J THEN GOTO 15080
14890 IF G(I, J) = 0 AND 8(1, J) = 0 THEN GOTO 15080
14900 LPRINT USING 11##"; I;
14910 LPRINT 11 - 11 ;

14920 LPRINT USING 11##'1; J;
14930 LPRINT TAB(S);
14940 LPRINT USING 11##.##'1; G(I, J);

92

14950 IF B(I, J) >= 0 THEN LPRINT 11+j 11 ;

14960 IF B(I, J) < 0 THEN LPRINT 11 -j";
14970 LPRINT USING 11##.#r; ABS(B(I, J));

14980 LPRINT TABC23);
14990 LPRINT USING 11##.###'1 ; 1(1, J);

15000 LPRINT TAB(33);
15010 LPRINT USING 11###.####'1; PLINE(), J);

15020 LPRINT TAB(43);
15030 LPRINT USING 11###.####"; QLINE(I, J);

15040 LPRINT TAB(59);
15050 LPRINT USING 11###.####'1; PLOSS(), J);

15060 LPRINT TAB(69);
15070 LPRINT USING .. ###.####"; QLOSS(I, J)

15080 NEXT J

15090 NEXT I
15100 LPRINT
15110 FOR I= 1 TO 80
15120 LPRINT CHRS(95);
15130 NEXT I
15140 RETURN

15150 ·--····-·····---·--········--····················--· 15160 •••------SUBRUTINE FOR GENERATING SCREEN DURING COMPUTING---------------•

15170 ·-···--··-·-·········----·-···---·-····················· 15180 Z90S • ..
15190 SCREEN, , 3,
15200 COLOR 4, 2
15210 CLS
15220 COLOR 14, 6

•• -- Convegence Test During Computing -- **

15230 LOCATE 2, 6: PRINT CHRS(218) + STRINGS(67, CHRS(196)) + CHRS(191)
15240 LOCATE, 6: PRINT CHRS(179) + Z90S + CHRS(179)
15250 LOCATE, 6: PRINT CHRS(192) + STRINGS(67, CHRS(196)) + CHRS(217)
15260 LOCATE CSRLIN + 2, 6: PRINT .. iteration no. ..;
15270 COLOR 20, 2
15280 LOCATE, 50: PRINT computing"
15290 COLOR 14, 9
15300 FOR I= 9 TO 22
15310 LOCATE I, 6: PRINT STRINGS(67, ,
15320 NEXT I
15330 COLOR 14, 6
15340 LOCATE 10, 10

..

15350 PRINT .. IC .. ; SPACES(9); .. F(X) .. ; SPACES(9); .. CSTEP .. ; SPACES(10); .. NEWTON-GRAD ...
15360 PRINT
15370 SCREEN, , 3, 3
15380 RETURN
15390 ••-••----show convegence test on screen
15400 COLOR 14, 9
15410 IF CSRLIN > 21 THEN GOTO 15420 ELSE GOTO 15460
15420 FOR I= 12 TO 21
15430 LOCATE I, 6: PRINT STRINGS(67,)
15440 NEXT I
15450 LOCATE 12, 11
15460 LOCATE, 11

93

15470 PRINT IT; TAB(19);
15480 PRINT USING 11####.######11; F;
15490 LOCATE, 35: PRINT USING 11##.#ll##f'; R;
15500 LOCATE , 55: PRINT USING 11##.il##f#t•; UG
15510 LPRINT IT; : LPRINT USING "t##f.##Jfl##U##U##"; F1; LPRINT STATUS;
15520 RETURN

94

LPRINT USING 11###.#il##f#t'; N0RMX, R, RQ

95

APPEIIDIX B

System Data for 10 Bus Test System

i-j Gij Bij i-j Gij Bij

1-1 0.0000 0.0550 4-7 0.4500 -2.4000
1-3 1. 7320 -4. 3100 5-5 0.0000 o. 0650
1-4 10.0000 -20.0000 5-6 5.0000 -15. 0000
2-2 0.0000 0.0650 6-6 0.0000 0.0400
2-8 1. 8400 -7.4840 7-7 0.0000 0.0750
2-9 1. 1300 -4.4770 7-8 1. 4000 -5. 6020
2-10 o. 7000 -2. 8010 7-9 1.8400 -7.4840
3-3 0.0000 0.0850 8-8 0.0000 0.0650
3-5 o. 8200 -2. 1900 9-9 0.0000 0.0850
3-6 10.0000 -20.0000 9-10 o. 9340 -3. 7350
4-4 0.0000 0.0750 10-10 0.0000 0.0300

TABLE B-1 Line admittance data for 10 bus system

bus no. 1v1cp.u) 8(rad.) generation (p.u) Load (p.u)

p Q p Q

1 1. 08 0.0 0.00 0.00
2 1. 02 1. 50 0.00 0.00
3 0.00 0.00 -0.85 -0. 30
4 o.oo 0 . 00 -0. 35 -0. 25
5 0.00 0.00 -0. 75 -0.45
6 o.oo o. 00 -0.75 -0. 25
7 o.oo 0.00 -0.65 -0. 30
8 0.00 0.00 -0.40 -0.05
9 o.oo 0.00 -0.85 -0.40

10 o.oo 0.00 -0.70 -0. 30

TABLE B-2 Operating condition o-f 10 bus system

96

APPEIIDIX C

Computer Results for the 10 Bus Tested System -------

~RESULT OF POWER FLOW CALCULATION # of iterations= 6

BUS NO. TYPE VOLTS ANGLE **----GENERATION----** **-------LOAD-------**

P(p.u) Q(p.u) P(p.u) Q(p.u)

1 . SW 1.080 0.000 4.80769 3.30281 0.00000 0.00000
2 • P-V 1.020 -50.408 1.50000 1.92042 0.00000 0.00000
3 • P-Q 0.757 -17.677 - - 0.85000 0.30000
4 • P-Q 0.947 -4.492 - - 0.35000 0.25000
5 • P-Q 0.744 -18.383 - - 0.75000 0.45000
6 • P-Q 0.733 -19.570 - - 0.75000 0.25000
7 • P-Q 0.811 -49.405 - - 0.65000 0.30000
8 • P-Q 0.923 -51.975 - - 0.40000 0.05000
9 • P-Q 0.830 -55.772 - - 0.85000 0.40000
10. P-Q 0.824 -60.146 - - 0.70000 0.30000

TABLE C-1 The solution of all unknowns for 10 bus tested system

\0
...J

BUS ADMITTANCE I ** -- LINE FLOW -- ** ** -- LINE LOSS -- **

P(p.u) Q(p.u) P(p.u) Q(p.u)

1- 3 1.73-j 4.31 1.979 1.7410 1. 2403 0.3145 0.7825
1- 4 10.00-j20.00 3.456 3.0667 2.1267 0.2388 0.4776
2- 8 1.84-j 7.48 0.777 -0.3758 -0.6981 0.0187 0.0761
2- 9 1.13-j 4.48 0.964 -0.5776 -0.7960 0.0493 0.1952
2-10 0.70-j 2.80 0.722 -0.5466 -0.4939 0.0438 0.1753
3- 5 0.82-j 2.19 0.038 0.0235 0.0164 0.0002 0.0006
3- 6 10.00-j20.00 0.773 0.5530 0.1900 0.0119 0.0239
4- 5 0.96-j 4.80 1.408 1.0168 0.8629 0.0794 0.3970
4- 7 0.45-j 2.40 1.669 1.4611 0.6035 0.2102 1.1208
5- 6 5.00-j15.00 0.298 0.2107 0.0677 0.0018 0.0053
7- 8 1.40-j 5.60 0.681 -0.0624 0.5493 0.0195 0.0780
7- 9 1.84-j 7.48 0.716 0.5385 -0.2186 0.0159 0.0647
9-10 0.93-j 3.74 0.244 0.2010 -0.0240 0.0038 0.0150

TABLE C-2 The list of line flows and line losses. for 10 bus tested system

"' 0)

99

REFERENCES

[1] Philip Rabinowitz (1970). Numerical method for
nonlinear algebraic equation, Gordon and Breach,
London.

[2] Thomas R. CUthbert, Jr (1987). Optimization using
personal computer, Wiley, New York.

[3] A. Iserles and M.J.D. Powell (1987). The state of
art in numerical analysis, Oxford University Press,
New York.

[4] George D. Byrne and Charles A. Hall (1973).
Numerical solution of system of nonlinear algebraic
equation, Academic Press, New York.

[5] c. Phillips and B. Cornelius (1986). Computational
numerical methods, Ellis Horwood, Chichester.

[6] Germund Dahlquist and Ake Bjorck. Numerical methods
, Prentice-Hall, New Jersey.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

John L.I. Morris (1983). Computational methods in
elementary numerical analysis, Wiley, New York.

Richard W. Daniels (1978). An introduction to
numerical methods and optimization techniques,
North-Holland, New York.

V.L Zaguskin (1961). Handbook of numerical methods
for the solution of algebraic and transcendental
equations, Pergamon Press, London.

George L. Kusic (1986). Computer-aided power system
analysis, Prentice-Hall, New Jersey.

G.T Heydt (1986). Computer analysis methods for
power systems, Macmillan, New York.

William D. Stevenson, Jr (1982). Elements of power
system analysis, McGraw-Hill, New York.

Stagg and Ei-Abiad (1968). Computer methods in
power system analysis, McGraw-hill, New York.

The Institute of Electrical and Electronics
Engineers, Inc. IEEE Recommended Practice for
Industrial and Commercial Power System Analysis

[15]

100

S.C Tripathy, G.D Prasad, O.P Malik and G.S Hope.
Load-flow solution for ill-conditioned power system
QY g Newton-Like method", IEEE Trans.,1982, pp
3648-3657

II

