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ABSTRACT 

PREDICTING THE FAIL URE RA TE OF ELECTRICAL CONTi\CTS BY 
MODELING THE CONT.A.CT RESISTANCE DISTRIBUTION 

Robert W. Caven, Jr. 

Master of Science in Engineering 

Youngstown State University, 1989 

Several versions of a computer model were developed to predict contact 
resistance distributions for electrical contacts. In the models CR 1, 
CR2, and CR3, it was assumed that the surface asperities of a contact 
metal are spherically shaped and al ways undergo purely elastic 
deformation. ,A. comparison with actual gold contacts showed that CR 1 
and CR3 predicted the resistances of clean contacts reasonably well. 
The largest percent error between the model prediction and an actual 
measurement was 78%. The absolute error in this case was only 
0.097mQ. CR2 has not been tested. 

For the model CR1P, it was assumed that the spherically-shaped 
asperities can undergo plastic deformation if the deformation is large 
enough. CR 1 P is an important step in modeling the degradation of 
contacts: thin films that can contaminate a contact surface are broken, 
and electrical contact made, only where an asperity is plastically 
deformed. 

A failure rate equation and the method of uniform residuals are two 
methods described in this thesis that can predict the failure rate of 
contacts based on the contact resistance distribution. Examples of each 
method are provided. 
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CHAPTER I. 

INTRODUCTION 

1. 1 Objective 

A reliable electrical or electronic system requires reliable 

components, the most numerous of which are electrical contacts. 

Because electrical and electronic systems are becoming more complex, 

the need for a tool to aid in the design of reliable electrical contacts is 

crucial. Thus the author proposed the development of a computer model 

to predict the failure rate (see Appendix A) of electrical contacts. This 

thesis presents one phase of the model development: predicting the 

contact resistance distribution of butt contacts. 

1.2 Scope 

An electrical contact is a releasable junction which is apt to 

carry electric current. 1 A connector is a type of contact designed for 

no relative movement between the contact members while the contact 

members are mated (i.e. connected), and the contact members are 

designed to be separated only when there is no current flowing. 2 An 

example is sho'wn in Fig. 1. One type of connector, called a butt 

contact, is designed so that there is no sliding of the contact surfaces 

while the contact members are being mated. Butt contacts are the 

simplest to model, and thus are the main focus of this thesis. 

Electrical contacts that are not classified as connectors include 

switches, relays, slip rings, commutator/brush assemblies, circuit 

breakers, etc. These devices require modeling of such phenomena as 



arcing and material transfer, and are beyond the scope of this thesis. 

Therefore, with the exception of some isolated examples in the 

introduction, they are generally excluded from the discussions. 

Fig. 1. --A typical connector used in an automobile. 

If a contact is damaged during assembly, it will probably fail 

in service. However, this research is concerned with the more 

interesting and more common cause of contact failure: failure brought 

on by some sort of degradation. Degradation can be classified into two 

groups: ( 1) mechanical degradation, such as a reduction in contact 

2 

force due to relaxation of the metal; and (2) chemical degradation, 

resulting in contamination of the contact interface. Degradation does not 

al ways lead to contact failure; the reader must keep in mind that 

the influential factors that constitute contact failure depend on the 

circuit in which the contact fmctions. 

The phases in predicting failure rate of a contact design are: 

1. Understanding the mechanisms of contact degradation, such as: 

a. stress relaxation of metal, which can reduce the contact normal 
force; 

b. growth of tarnish films on the contact interface, which affects 
the flow of current through the interface; 

c. growth of organic films on the contact interface, which also 
affects the flow of current 

2. Predicting the probability and severity of each type of degradation 

versus age of the contact, such as: 



a. stress relaxation versus age and temperature; 

b. metal corrosion versus age, temperature, metal composition, 
corrosive agents, and humidity; 

c. organic film growth versus age, temperature, type of organic 
contaminants, etc. 

3. Predicting the electrical characteri~tics of contacts, such as a, b, c 

below, as a function of the type and severity of degradation: 

a. contact resistance; 

b. voltage-current characteristic; 

c. number and duration of intermittent open circuit "events." 

4. Corre~ating the electrical characteristics to the age of the contact 

for each type of degradation. This is a problem in probability and 

statistics because of the probabilistic nature of Phase 2. 

5. Given the circuit requirements, defining failure criteria in terms of 

the electrical characteristics of the contact; then predicting the 

probability of failure given the type of degradation and the age of the 

contact. From these data, failure rate can be calculated. Failure 

depends on the circuit in which the contact functions. However, 
11generic failure" can be defined in terms of: increase in contact 

resistance; duration of intermittent open circuit events; or noise 

produced by a nonlinear voltage vs. current characteristic. 

This thesis addresses Phase 3, prediction of electrical 

characteristics. Among these, contact resistance is the most 

fundamental and important. It is used to predict the onset of other 

abnormal behavior; some authors even define failure in terms of contact 

resistance irrespective of the application. Predicting the contact 

resistance of 11 new11 or 11 clean11 contacts became the primary focus of this 

thesis. Prediction of failure rate is an area of research suggested for 

future study. Chapter III provides a starting point for this research. 
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1. 3 Historical Background 

The pioneer of the study of electrical contacts was the Swedish 

physicist Dr. Ragnar Holm (b.1879-d.1970), who worked at Siemens­

Berlin and later at the Stackpole Carbon Company in Pennsylvania. His 

196 7 book, Electric Contacts (which is a revised version of his 1958 

book, Electric Contacts Handbook), is a classic work covering the basics 

of contact phenomena; it will be referenced many times in this thesis. 

An annual meeting, The IEEE Holm Conference on Electrical Contacts, 

developed in part by Holm in 1953, is the forum for the exchange of 

new technical information in the field of electrical contacts. It was 

named in honor of Holm in 1968, and fell LITTder the jurisdiction of the 

IEEE Components, Hybrids, and Manufacturing Technology Society in 

1984. The growth and success of this conference is proof that, as 

electrical and electronic systems become more sophisticated, the study 

of electrical contacts becomes more important. 3 

1. 4 The lmportance of Studying Electrical Contacts 

Now one may well ask 11why put so much effort into studying such 

a simple device as an electrical contact?11 The answer is that electrical 

contacts are not simple, and designing a reliable one is not a trivial 

task. 

In 1987, Dr. Brian Williamson, formerly of Cambridge 

University, England, and the recipient of the 1981 Ragnar Holm 

Scientific Achievement Award, called electrical contacts 11 the most 

failure-prone devices in electrical engineering11 and added, 11 if Star Wars 

ever gets going, I guarantee it will be an electrical connector that 

fails." He backed up his claims by quoting from an article written by an 

automotive expert: 11 ten percent of all failures in automobiles are 

ultimately traced to connectors. 11 Then, with his characteristically-



British dry sense of humour, Williamson remarked, "You press two 

metals together and-by the grace of God-they will continue to pass 

electrons ... Any fool can make a connective device work; what 

separates a good vendor from a not-so-good one is: will it continue to 

work?" 4 

5 

Improving performance and reliability of electrical and electronic 

equipment is obviously the benefit of l.Illderstanding contacts. But to 

convince an engineer of the need for a comprehensive study, it is 

necessary to make known the extent to which electrical and electronic 

systems depend on contacts. In 1987, Dr. Williamson stated that 

"there ar~ more comecti ve devices than any other discrete electrical 

component.'' 5 The following examples help to substantiate his claim: 

In 1957, Professor Frank Llewellyn-Jones of the University of 

Swansea, Wales reported that a local telephone call in the London area 

involved as many as 500 contacts, and that the British Post Office 

telephone system contained "something like 300 million contacts." 6 

Harold Wagar, of Bell Telephone Laboratories (Madison, NJ) 

presented a more recent example (1976) which hints at how electrical 

systems are becoming more sophisticated . 

.. . during one single typical interoffice [telephone] call, 
some 1200 relays, or about 12,000 contacts, are called 
into action. In addition, hl.Illdreds of other contacts are in 
the subscriber's path, or in paths which will be needed on 
another call. 7 

He listed the number of contacts in use in the Bell System in 

1975. The bottom line was: about 1100 contacts per subscriber, with 

2400 being added to the system for every new subscriber. An abridged 

version of his table is shown in Table 1. 8 

Table 1 is based on 67 million subscribers in service in 1975. 

(The heading "comectors'' is apparent! y a less general category than the 

one defined in the Objective and Scope section of this thesis. 
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According to that definition, twisted wires, plug and jack, wire splicing 

sleeves, and solderless wire 'wrap would all fall under the category 

"connectors. 11
) 

In 1975, Jack Wimsey of Wright-Patterson Air Force Base in 

Dayton, Ohio described the electrical system of a portable, deployable­

anywhere air base capable of accommodating five squadrons and 4500 

personnel. The base required, among other things, 20,550 Class L 60-

amp connectors. Each connector contains five contact members. 9 

TABLE 1 

TOT AL -NUMBER OF CONT.ACTS, BY TYPE, IN THE BELL SYSTEM 

Twisted Wires a 

Plug and Jack a 

Wire Splicing Sleeves a 

Connectors b 

Solderless Wire Wrap 

Relays 

1.5 Billion 

1.8 Billion 

5.0 Billion 

9.0 Billion 

30.0 Billion 

16. 9 Billion 

a The author would classify these as connectors. 

b Does not include the devices covered in note (a). 

Closer to home, a 1948 Chevrolet Sedan contained 7 5 automotive 

terminals; a fully equipped 1986 Buick Riviera contains 1610 

terminals. These numbers do not include switch contacts, motor 

brushes/ commutators, nor relay contacts. 

1.5 Contact Failure and the Effects of Degraded Contacts 

Knowing exact! y what has caused a contact to fail can help the 

systems engineer prevent the same problem in the future. This 



section will present several examples of contact failure, and the 

degradation mechanism to which failure was attributed. 

1 . 5. 1 Very High Contact Resistance 

7 

Contact resistance is the resistance added to an electrical path by 

the presence of an electrical contact interface. Two obvious sources of 

contact resistance are: mechanical defects which result in a loss of 

intimate contact; and contamination of the contact surfaces by corrosion, 

organic films, dirt, and dust. 

Everyone has experienced equipment failure which could be traced 

directly to a corroded or dirty electrical contact. For example, the 

author recent! y lost water pressure in his home because the water pump 

switch had severely corroded contacts. 

Sometimes high-resistance contact failure is catastrophic; for 

example one may have heard that aluminum wiring may cause fires in 

buildings. The problem, however, is not with the aluminum wires 

themselves; rather, it has been traced to aluminum wire splices made 

with twist-on connectors. 10 ,i\luminum, as it turns out, develops a 

very tough oxide on its surface when exposed to air. The oxide, which 

reduces the metal-to-metal contact area, is difficult to break and causes 

the contact resistance to be quite high. The result is overheating of the 

contact and the potential for a fire. 11 

1.5.2 Noisy Contacts 

In the October, 1984 issue of Communication International E.M. 

Edwards of Celwave Corp.· wrote a brief article titled 11Comector 

Problems in Two-Way Antennas." He wrote 

Like any other system, a two-way radio system is 
susceptible to degradation. When it is checked by the 
technician the under! ying reason is often found to be the 

WILLIAM F. MAAG UBRARY 
YOUNGSTOWN STATE UNIVERSITY 



same old problem; the dodgy connection. 

Symptoms of connector problems are noisy duplex 
operation, loss of receiver sensitivity, medium to high 
transmitter standing wave ratio. The problem: water gets 
into a connector interface and contaminates the interface or 
may cause the connectors to ruf)ture if they are subjected to 
extremely cold temperatures. 12 
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The connector in question was the u.h.f. connector, or PL259, 

which was chosen as the industry standard in the early days of two-way 

radio. Failure of the connector could be defined quantitatively in terms 

of a noise level, a sensitivity level, or a SWR level; Edwards did not go 

into this. He explained that the apparent! y simple solution, keeping the 

connector-dry, is not at all easy to do, and went on to explain how to do 

it. 

,A.nother description of the noise problem is presented in a 1957 

book by Llewellyn-Jones, who wrote 

Metallic contact. .. may be hampered by tarnish films, which 
may be conducting, semi-conducting, or insulating. A semi­
conducting film may give rise to a rectifying action which 
can distort the wave-form of the current passed. 13 

Unfortunate! y, he did not give any specific examples. 

1.6 Frequency Distribution of Contact Resistance 

The first and most important model developed for this project 

was a computer prediction of the frequency distribution of contact 

resistance as a function of age of the contact for different contact 

designs and applications. Strictly speaking, a frequency distribution is 

"a function which measures the rel~ti ve frequency or probability that a 

[random] variable can take on a set of values." 14 It gives the 

probabilities of a single contact having certain resistances; it also tells 

row the contact resistances of a population of contacts will be 
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distributed. In practice, the frequency distribution is approximated by 

'
1sampling," i.e., by measuring the contact resistance of each of several 

contacts in a sample group, then plotting their contact resistances as 

either a histogram or a normal probability plot. (A normal probability 

plot (NPP) is a cLrrnulati ve frequency distribution scaled such that data 

following a gaussian distribution fall on a straight line; see ,A.ppendix D.) 

The 11sampled'1 distribution is a valid approximation of a true 

frequency distribution only if all contacts in the sample group are of 

identical design and have nearly the same age and application. In the 

author's opinion, the '1sampled11 distribution is only useful insofar as it 

approxim~tes the true frequency distribution. 

Contact resistance is a useful diagnostic tool for measuring the 

progress of degradation of a contact, and the likelihood that the contact 

will soon fail. It will be seen in this section that a high resistance 

etail' in the frequency distribution is a sign of degradation. The 

symptoms -which include unstable contact resistance, nonlinear voltage 

vs. current behavior, intermittent open circuits, and others-may be a 

sign of imminent failure if they do not themselves constitute failure. 

The computer prediction spoken of in this thesis takes the 

practical approach by simulating a 11sample group11 of identical contacts 

and 11measuring" the contact resistance of each. 

A Monte Carlo approach was used for the simulation because 

many of the variables affecting contact resistance are random; for it is 

well established that among a sample of real contacts, no two will have 

identical contact resistances - even if they are all of the same design 

and used in the same application. It is also well known that contact 

resistance can randomly vary with time. 

This section will present some examples of how researchers have 

used contact resistance distribution to detect contact pathologies and to 

quantify the health of contacts. 
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1. 6. 1 Constriction Resistance 

First it is necessary to appreciate the fact that even clean 

contacts have some contact resistance; it is called constriction 

resistance, and it generally varies from contact to contact, even if the 

contacts have identical designs. 

Constriction resistance is due to the fact that, when two contact 

members are in contact, they are actual! y in contact in only a few spots. 

That is because even the smoothest polished surface is quite bumpy on 

the micron scale. Were it not for this fact, the second basic law of 

friction--that frictional resistance is independent of the apparent area of 

contact of the sliding surfaces 15 --would not hold. Referring to Fig. 

2 (a), one can see that the actual contact area is a very small fraction 

(perhaps 1/1000) of the apparent contact area. 15
, 

17 When contact is 

only at a few discrete spots, the current flowing from one contact 

member to the other must bend its path to get through these spots. The 

bending (causing a lengthening of the current path) and the reduced 

conduction area are what cause the resistance; Fig. 2 (b). 18 The value 

of the constriction resistance can be calculated using Laplace's equation 

'v2¢ = 0; constriction resistance depends on the number, sizes, and 

locations of the contact spots and on the material of the contact 

members. 

shaded area 
is insulation 

(incl. air gaps) 

~ 

Fig. 2.--(a) Actual vs. apparent contact area. 
(b) Constriction of current through a contact spot. 
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Constriction resistance varies from contact to contact because no 

two metal surfaces are identical; each has its own topography and 

therefore each contact interface has its own arrangement of contact 

spots. 
Yamada et al. described the frequency distribution of clean 

contacts: 

If the contact part of the contacts is clean, distribution of 
contact resistances approaches normal distribution and the 
normal probability curve approximates a straight line. 19 

1.6.2 Frequency Distribution of Degraded Contacts 

The total contact resistance of a 11 dirty" contact is the sum of 

constriction resistance and film resistance. 2° Films are of two types: 

tarnish films such as oxides and sulfides; and organic films which are 

produced at the contact interface from organic contaminants such as 

processing lubricants, splashed oil, and outgassed polymers. Films 

grow over the life of the contact depending on the environment and any 

contaminating substances (including humidity in the air) present. 

Yamada explained the effect of films on the distribution of contact 

resistance: 

... if the contact part of contacts is contaminated, 
distribution is apart from normal distribution, and the tail 
of the normal probability line is curved, and it is presumed 
that there is an interrelationship between this curve of the 
tail and the degree of contamination. 21 

The following examples are taken from the literature, and show 

how different researchers have used the frequency distribution of contact 

resistances to evaluate the health of the contacts. 
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1. 6. 3 Currence and Rhoades: Laboratory testing 

Figure 3 shows how "aging" affects contact resistance. 

Currence and Rhoades (1983) measured the contact resistance of a 

sample of identical contacts, the design being a tin-plated member 

mated to a gold-plated member. The contact resistance of each contact 

was measured twice: The first measurement was made immediately 

after the initial mating of the contact members; the distribution is 

plotted in Fig. 3 (a). The second measurement was made after unmating 

and remating the contact members nine more times; the distribution is 

plotted in Fig. 3 (b). 

In Fig. 3 (a), the distribution is tight, and the contact resistance 

relatively low. The slight dispersion can be attributed to the small 

differences in constriction resistance (no two surfaces are exactly the 

same) and the unavoidable contamination (albeit small amounts) that 

appears even on 11 new11 contact surfaces. In Fig. 3 (b) the distribution 

is more spread out, and this may be attributed to increased corrosion as 

the protective plating wears oL..t and possibly other phenomena. 

I 
NlllaEROF 

lllAIIIROIENlS 

l 

3 5 6 

HIGHEST VALUE 
ORIGINAL RESISTANCE 

l 
7 8 9 10 11 

RUISfAIICl an -

HIGHEST VALUE 
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Fig. 3.--Histograms of contact resistance. 22 

Currence and Rhoades describe another experiment in which a 

sample of tin-plated vs. tin-plated contacts were subjected to simulated 

fretting. Fretting is a small amplitude (a few microns) cyclic rubbing 



-
action between the two contact members. After perhaps several 

thousand fretting cycles, the contact resistance of each contact was 

measured. The histogram is shown in Fig. 4 (a). A normal 

probability plot (NPP) of the same data is shown in Fig. 4 (b). 

13 

A high-resistance "tail" is evident in the aged contacts. According 

to Currence and Rhoades: 

The 11 tail 11 is an indication that the contact system is 
strongly affected by a substantial degradation mechanism 
such as film growth, corrosion effects or surface 
contamination. This 11tait identifies a performance region 
for which we cannot predict contact performance. 23 
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Fig. 4. --Distribution plots of tin-tin contacts after fretting. 24 

1.6.4 Grau: Field Testing 

Tom Grau of Bell Telephone Laboratories in 197 8 described a 

field study of a gold-plated blade mated to a tuning fork terminal used in 

office electronic equipment. He visited several cities to make 

measurements on contacts that were still in the equipment. In his 
Words 



When we arrived at the field site, [equipment] power was 
turned off. We made ... resistance measurements without 
disturbing the contacts, and obtained the distribution called 
'initial' lf ig. S (a)] ... Then we unplugged the circuit 
pack ... and remeasured resistance to obtain the distribution 
called 'final'. 25 

Notice the high-resistance tail on the initial and final curves. 

Grau attributed the tail to contamination from a manufacturing 

lubricant and a printed circuit board lacquer. 26 

14 

A distribution called "delta R" was obtained by subtracting the 

final resistance of a contact from its initial resistance. This 

distribution is shown in Fig. S (b); it is apparent that in some 

contacts, the resistance decreased after LI11plugging and replugging, and 

in other contacts, the resistance increased. Grau's startling (sic) 

conclusion was that "unplugging and replugging does not al ways solve 

contact contamination problems". 27 
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Grau also measured the contact resistance of a batch of factory­

fresh contacts. He states 



These connectors were manufactured, placed on printed 
circuit boards, and were ready to be shipped to the fields to 
be installed in new equipment. 29 

The distribution is labeled 'factory' in Fig. 5 (a). 

Finally, Grau used a Monte Carlo technique to generate a 

simulated distribution of factory-fresh contact resistance (labeled 

cdesign' in Fig. 5 (a)). He states 

To use the method, each part dimension is assumed to come 
from some distribution; e.g., normal, uniform, log normal, 
etc., as are material resistivities. All variables are 
mathematically combined to produce one ... resistance value. 30 

The Monte Carlo method is basic to the modeling described in this 

thesis. 

1.6.5 Yamada and Rowlands: Quantification of the Distribution 

15 

Yamada et al. of the Matsushita Electric Works, Japan, 

attempted to quantify the slope of the tail in the cumulative distribution 

curve. Their idea was to fit straight-line segments through the tail of 

the curve and to calculate the "standard deviation" of each segment, as 

though each segment were its own normal distribution (the slope of a 

cumulative distribution curve is a direct measure of the standard 

deviation). The largest value is a numerical indication of the severity 

of contact degradation. For an example, see Fig. 6. 

. --. -. --

- ·- -=--=:: .. 
-· -· .. .. .. 
... ·:· 

' . -. -. . . ----
Fig. 6. --Standard deviation of a segment of an NPP. 31 



E. Rowlands of TRW applied statistical process control (SPC) 

techniques to monitor contact resistance distributions. He created 

control charts, plotting average contact resistance and standard 

deviation as a function of time. He also applied the criterion of an 

upper control limit to find out when the sample goes "out of control." 

For an example, see Fig. 7. 
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Fig. 7. --Control charts for contact resistance. 32 

1.6.6 Contact Resistance as a General Failure Criterion 

100 

Some authors have even used contact resistance as a general 

failure criterion, even if failure is not a direct result of an increase in 

contact resistance. Whitley and Malucci (AMP Inc.) said 

... it is remarkable that there is such a scarcity of clearly­
defined rational criteria for the performance of contact­
containing devices ... performance criteria ... [are left as] a 
matter to be negotiated between vendor and user. 

Defining complete or catastrophic failure is no problem. 
When a contact fails to conduct current, or when a wire 
~ermination bums off, it has failed. But there is a problem 
m defining limits of satisfactory performance which may be 
far removed from catastrophic failure. And this problem­
of early prediction of impending or ultimate failure-is the 
one of the most interest to those of us who must design, 
test, and use contacts and comectors. 33 



-

They used the ratio R/ Rcmin ) 3 as a criterion for contact 

failure. Here, Rcmin is the theoretical minimum constriction 

resistance (see section 1. 6 .1 ), and R is the actual contact resistance. 

They said 

This criterion, which was at first vigorously opposed by 
both customer and producer (for opposite reasons), has 
proved to be both achievable and truly indicative of quality 
and reliability. 34 

• 

Abbott and Schreiber (Battelle Columbus Laboratories) used the 

ratio ~R/Rci ) 3 as their criterion for contact failure. .6.R is the 

increase in contact resistance (say, over time), and Rei is the initial 

contact resistance. 35 

Rei for a "clean" or new contact is of the order 1-3 milliohms, 

meaning that a contact resistance increase of about 10 milliohms is a 

sign of impending failure. 

Abbott said 

Milliohm level increases ... can seldom account for an 
actual contact or device failure. This is particularly true 
in modern, low-current digital circuitry. It is often 
argued that since ( 1) circuits will often tolerate hundreds 
or thousands of ohms, and/or (2) high open circuit voltages, 
even S volts, may cause films to be electrically destroyed, 
small (milliohm) increases are not significant. 

Field experience, however, has shown that perhaps the most 
common mode of contact failure fall in the intermittent 
category characterized by random, infrequent "events." 36 

Abbott and Schreiber found from lab testing that ~R/Rci ) 3 

implies a "sharply increasing probability for obser.ring short-duration 

'opens' at typical TTL logic levels. 11 37 Abbott found a direct 

correlation between ~R/ Rci and the number and duration of the 

intermittent open circuit events. 38 

17 
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From a frequency distribution of contact resistances, one can see 

how many contacts among the group have "failed," using a criterion such 

as one of those summarized above. Possibly, one can quantify the 

probability of failure for the given design, application, and age of the 

contact. However, one must be cautious when measuring real contacts: 

a contact exhibiting abnormally high contact resistance is usually 

unstable. A slight disturbance such as attaching ohmmeter clips can 

significantly change the contact resistance; meaning that several low 

resistance measurements may have come from failed, but disturbed, 

contacts. One advantage of a computer simulation is that there is no 

need to W?rry about disturbing the contacts. 

1. 7 Future Directions in Contact Modeling 

The models described in this thesis provide a steppingstone for 

more complete and elaborate models. Later models will attempt to 

simulate: 

1) Loss of contact force with time, due to 
stress relaxation, etc. 

2) Corrosion and organic films on the contact interface. 

3) Dust particles and other debris on the interface. 

4) Contact fretting (cyclic rubbing of the contact surfaces) . 

Also, a further study must be made of alternatives to the surface 

model outlined in section 2. 1 of this thesis. Especially important is 

the modeling of contacts in which mating involves sliding of one contact 

surface over another (non-butt contacts). When two contact members 

slide over each other, the tops of the asperities fracture and the contact 

surface topography changes. And, films grown on the surfaces are 
pushed away. 

Modeling of electrical characteristics other than contact 



resistance is another area to be considered in future contact models. 

Any nonlinear effects that may degrade the performance of electronic 

circuitry must be predictable by the contact model. 

Verification of all models is necessary as well. This will 

require measurements of actual contacts in various stages of 

degradation. 

i9 



CHAPTER II. 

CONT ACT RESISTANCE DISTRIBUTION OF CLEAN 
CONT ACTS USING AN ELASTIC MODEL OF lliE INTERFACE 

This chapter describes a series of computer programs, called 

20 

11CR1 ,11 11CR2," and "CR3," that were 'written to predict the distribution 

of contact resistances for a group of 11clean11 electrical contacts. The 

models assume that the asperities or "bumps" on the contacting surfaces 

are spherically shaped and subject to pure elastic deformation. In 

Chapter IV, plastic deformation of the asperities is considered. 

2.1 Model of a Metal Surface 

2. 1.1 Description of a Metal Surface 

The 11 bLrrnpy11 surface of a metal was modeled as a flat smooth 
11base" dotted with spherical asperities whose heights and radii of 

curvature are random (Fig. 8). The nLITTiber of bumps and location of 

bumps are also random. 

z 

X 

base 

y 

r. 
l 

asperity 

width ------- length 

T 
Fig. 8.--Model of a metal surface 
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The height of an asperity is a gaussian random number 39
,
40 

with mean avg(h) and variance var(h). The radius of curvature of an 

asperity is a gaussian random number with mean avg(r) and variance 

var(r). 

2. 1 . 2 Formula for avg (r) 

According to Williamson and Hunt, 11 the slopes on surfaces 

2 1 

rarely exceed ten degrees. 11 41 To approximate this surface feature, a, 

the maximum angle which the bottom of the asperity makes with the 

flat base on which the asperity sits, was chosen as ten degrees (Fig. 9). 

This leads to a formula for avg(r): 

for a s 10° : 

let 

h = r-rcosa = r(1-cosa) 

h/r = 1-cosa 

avg(r) ~ 

r 

r = h/(1-cosa) 

avg(h) 

1-cosa 

avg(h) 

1-cos10 

r cosa 

:::: 66avg(h) 

Fig. 9.--Slopes on surfaces and angle a. 

(1) 
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2.1.3 Distribution of the Number of Asperities 

The author assLrrned that the nLrrnber of asperities on the bLrrnpy 

surface was a Poisson random nLrrnber with a "density" of d asperities 

per mm2. The reasoning for using a Poisson distribution was as 

follows. 

The presence of an asperity at a location (x., y.) on the flat base 
l l 

is given a probability p, O~p~ i. The absence of an asperity at that 

location is given the probability i-p. The random variable Z, 11 presence 

of an asperity/ is called a Bernoulli random variable. Now pick 

U locations on the base, (x1,y1), (x2,Y2), ... , (xu,Yu). 

At each location, the presence of an asperity is modeled by a 

Bernoulli random variable Z. Assign to Z the value 11one11 if an asperity 

is present at (x., y .) , and 11 zero11 if an asperity is not present there. The 
l l 

probability of an asperity being present is p at all locations. Now 

define a random variable N such that 

u 
N=2 Z. 

l 

i=1 

N will have an integer value between zero and U, and is a record 

of the number of asperities present on the base. N is called a binomial 

random variable and behaves according to the binomial distribution: 

U! 
PN (nb) = 

nb! ·(U-nb)! 

nb 
p (i -p) 

PN (n6) reads 11 the probability that the random variable N will equal the 

specific value n b. 11 The subscript 11b11 stands for 11bumps. 11 

The binomial distribution is valid only if the presence or absence 

of an asperity at one location does not affect the probability of the 

presence of asperities at any other location. The bumps were assumed 

to be 
11

spread out11 enough so that they were more or less independent. 



A base having a finite area contains an infinite number of 

locations (x., y .) . Since this base will contain a finite number of 
l l 

asperities, then the probability of an asperity being present at any 

specific location approaches zero. Letting 

u --,. co 
p --,. 0 

but allowing U ·p to be finite, then 

nb (U ) (U·p) · e- ·p 

23 

nb! 
(2) 

Equation (2) is called the Poisson distribution. 42 

U ·p is the average or 11 expected11 number of asperities on the 

base. It can be calculated from the formula 

U ·p = d · (area of surface) 

where d is the average or expected density of asperities. 

The locations of the N asperities are uniform random numbers, 

because there is no reason to believe that the asperities will be 

clustered in any peculiar way. That is, one should not expect the 

probability of the existence of an asperity to decrease as its location 

moves away from the center of the base, as would happen if the 

locations were gaussian random numbers. One should expect the 

density of asperities to be uniform over the base, in the long run at 

least. 

2.2 Elastic Contact of Two Solid Spheres 

The formulas describing the elastic contact of two solid spheres 

were used to model the contact of opposing asperities. These formulas 

were derived by Hertz and are quoted in Holm and Roark. 43 , 44 They are 

given in equations (3) and (4) with reference to Fig. 10. 
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s 

Fig. 10.--Elastic contact between two spheres. 

where: P is the force pressing the two spheres together. 
For eq. (3) and (4) to be valid, P must be parallel 
to the line connecting the centers of the two spheres. 

a is the radius of the circular contact area. 

µ is Poisson's ratio (a property of the material). 

E is Young's modulus of elasticity. 

r is the radius of the sphere. 

c5 is the deformation defined as 

[ 
s-r1-r2 if s(r1+r2 

6= 0 if szr1+r2 

s is the distance separating the centers of the two spheres 

24 

(4) 

2.3 BlIDlpy Surface Contacting a Smooth Flat Surface: Program CR 1 

2. 3. 1 Description of the Model 

In the first and simplest model, i.mplemented in a BASIC 
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computer program called 11 CR 1 , 11 the contact interface was modeled as a 

perfectly smooth and flat surface pressed against a bumpy surface. This 

assumption simplifies equations (3) and (4). The simplifications are as 

follows: 

For a sphere pressed into a flat surface, one can let the flat 

surface be sphere 2 with r 2 = oo. Then P must be perpendicular to the 

flat surface. Also letting r 1 = r. , µ 1 =µ 2 =µ. , E1 = E2 =E. , and P1 = 
l l l 

Pi' one can solve for the force supported by a spherical asperity at 

location i. One obtains 

Solving for Pi: 

a.= 
l 

(4/3) ·a. 3 

l 

P. -----

z 2·( 1-µ2 ]T. 
E. z 

l 

But from eq. (4), Q. = (6. T.) 112 
l l l 

so that 3/2 ( E. l 1 P.=(4/3)·(o.-r.) •(1/2)· z ._ 
Z l l 2 1-µ r. 

l 

= (2/3) ·6_312 r.112 ( Ez ] 
l l 1-µ2 

The deformation oi for an asperity of height h
2 

(Fig. 11) is 
defined as 

0 -i- { 
h. - s if s < h. 

l l 

0 ifs~ h. 
l 

(5) 

(6) 

(7) 
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where s is the separation bet ween the base of the bumpy surface 

and the smooth flat surface that comprises the opposite contact 

member. The form of eq. (7) assures that if an asperity is not making 

contact, then 6 is zero and, by equation (6), P. is also zero. 
z 

Equation (7) may be more conveniently written as 

1 
[ 1 + 

h. - s 

I z 
6. = (h. - s) (8) 

z z 2 I hi - s I 

Each asperity was modeled this way. 

s 

Fig. 11.--Deformation of an asperity. 

2.3.2 Algorithm for calculating the separation of the contact members 

Final contact separation is that which satisfies the equilibrium 

force equation: 

F = 2 P. z 
(9) 

where F is the applied contact force. 

The secant method was used to find the contact separation. The 
algorithm is: 

1) Guess starting values of s. 
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perform steps 2 through 4 for all asperities 

2) Calculate o., using equation (8). 
l 

3) Calculate Pi using 6 i and equation ( 6) 

4) Calculate a. from equation (5) and store for later use. 
l 

5) Calculate E = F - 2 Pi from eq. (9). 

6) If E is less than the allowable error then stop, else 
calculate new s from the secant method formula and go to 
step 2. 

2.4 Two Bumpy Surfaces in Contact with Each Other: Program CR2 

In the second model, implemented in a BASIC program called 
11CR2, 11 both contact surfaces contained a random number of 

hemispherically shaped asperities that had random radii of 

curvature, height above the base, and location in the x-y plane. 

Contact of two opposing asperities is shown in fig. 12. Assume 

that the top asperity is centered at p z = (xi' Yp zi) and the bottom 

asperity is centered at p . = (x . , y. , z . ) , and the asperities are barely 
J J J J 

touching. The x-y component of the distance between centers is 

D .. = v'[(x. - x.) 2 + (y . - y.)2] 
lJ - l J l J 

The directional vector from (x., y.) to (x., y.) is 
z z J J 

(x. - X.) X + (y. - y.) 'i 
J l - J l 

where ~ and 'i are unit vectors. 

The unit directional vector is 

(X. - X.) X + (y. - y. ) 'i 
J l - J l 

•ij 



.. 
,-. C 
I _!! 

'>' 'I... 

~_J 

r-. .., 
:,,i 

.... 
-,c: 
V 

~ ... 
>( 

'-' 

• ..J ,_ --·c ., 
Q... 

"' Ill 
(..., 

0 .., 
"' ll) 

~ 

/ 

... 
...s:: 

(""> 
'-' 

I 
N 

<.:_--. 
--,. 

. .., 
~ 
/', 

·.J 

'-': .. 
I 

\.fl 

."'I 

,--·.: 
"' .... .,. .,, 
~ 

.... 
-S: 

I 
.,:_ .. 

Fig. 12.--Two asperities in contact. 

28 

~ 
0--
c:i. 

'"j::::---~ 



-
The x-y direction from (x ., y. ) to the point of contact is 

l l 

r . cos/3 
l 

D .. 
lJ 

where cos/3 = --­
r. + r. 

l J 
So that the x and y components of the point of contact are 

(x , y ) = [ x. + 
C C l 

x j - xi yj - y i ] 
· r. cos/3 , y. + --- · r. cos/3 

D. . z z D.. z 
lJ lj 
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(10) 

The contact point (xc, y c) must be stored for the constriction resistance 

calculation (section 2.6.3). 

The effective height of the top asperity at (xc, ye) is 

r. - h. 

h ~ = [ r. - z z ] sin/3 
l l . /3 srn 

= r . sin/3 - r. + h. 
l l l 

The effective height of the bottom asperity is similarly calculated 

where 

h '. = h . - r . ( 1 - sin/3) 
J J J 
sin/3 = y'(1 - cos2/3) 

= v'[r. 2 (1 - cos2/3)]/r. - z z 

(11a) 

(11b) 

(12) 

= y'( r . 2 - (r.cos/3)2]/r., r.cos/3 from eq. (10). 
- l l l l 

The vertical deformation is given by 

c5~. = h~ + h~ - s if h~ + h~ ) s 
ZJ Z J l J 

where s is the separation distance between the two bases. 

The deformation along the line from p. to p. is shown in Fig. 13. 
l J 
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c5. . = c5~ . sin/3 
lJ lJ 

Fig. 13.--Deformation of contacting asperities. 
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(13) 

The load P. . acts along the line connecting p. and p., thus it depends on 
lJ l J 

6 . . , not on c5~ .. 
lJ lJ 

pij = (2/3) f,;r ( :. + : r/2 ( 1 :2 l (14) 

l J 
The contact radius is 

1 1 -1 1/2 

°'J = ( 6u (--;:: + --;:: l l 
l J 

The vertical component of P. . helps support the total contact force ZJ 
(see Fig 14). 

P~. = P. . sin/3 ZJ ZJ 

(15) 

(16) 

The algorithm for calculating separation distance is similar to 

that outlined in sec. 2.3.2, but using equations (13), (15), and (16). 

One must, of course, calculate a . . and P .. for every combination 
f . ZJ ZJ 0 z and j. This will require nbi x nbj calculations for every iteration 

of separation distance. But since asperity i will only contact its nearest 



neighbors on the opposite surface, one can save calculation time by 

using a 11 proximity check11
: asperity i cannot contact asperity j on the 

opposite surface if 

r. + r. ) (r.2- (r . - h.)2 ]112 + (r.2- (r.- h.)2 ]112 
l J l l l J J J 

Fig. 14.--Vertical component of asperity load. 

2.5 Dimple in Contact with a BlDTipy Flat Surface: Program CR3 

This is a special case of bumpy flat vs. bumpy flat: the top 

surface contains a single 11asperity" called a dimple. The dimple's 

height is much greater than a regular asperity's (1 or 2 mm vs. 1 to 

31 

15 µm) . The dimple's surface is assumed to be smooth. The equations 

for bumpy flat vs. bumpy flat are used. All one needs to do is make the 

following substitutions into equations ( 10) through ( 16): 

ri = rdimp 

xi = length/2 l 
yi = width/2 

The dimple is centered at the 
center of the top base (Fig. 8). 

where "length" and 11width11 are the length and width of the nominally flat 

bumpy surf ace. This model was implemented in a BASIC program 
called 11CR3." 



2. 6 Calculating the Constriction Resistance 

2. 6. 1 The Contact Spots 

32 

Figures 1 S and 16 show plots of actual contact spots. These 

plots were created as part of the computer simulation, and represent to 

scale the contact spots made \vhen pressing a smooth flat surface and a 

smooth dimple, respectively, onto the same bumpy surface, at different 

applied contact forces. Refer to Fig. 8. 

2.6.2 Solution Using Laplace's Equation 

The "exacf' value for the constriction resistance is solved for by 

using Laplace's equation in three dimensions: 

where cp is the potential at a point (x,y,z) within the contact members or 

at the interface. A numerical approximation of Laplace's equation is 

recommended for this type of problem. 

A numerical solution to a two-dimensional contact interface 

problem was worked out using the usual finite-difference method. To 

summarize this method, recall Laplace's equation in two dimensions: 
azcp azcp 
-+-=0 
ax2 az2 

If one breaks up the two-dimensional area by grids, as in Fig. 

17, one can approximate Laplace's equation at a grid point by the 
formula 

~x 
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(a) 1 N applied contact force 
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(b) 15N applied contact force 

Fig. 1 S. --Contact spots, smooth flat surface on bumpy surface. 
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0 

(a) 1 N applied contact force 

0 

(b) 1 SN applied contact force 

Fig. 16. --Contact spots, smooth 1 mm radius dimple on bumpy surface. 
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or a2cp/ax2 ~ ( <P + <P - 2cp)/(D.x) 2 

e w 
(17) 

cpn z 

.6.z [ 
r D.x LX cpw cpe 

cp 

cps 

Fig. 17. --Grid point in the two-dimensional contact problem. 

Fallowing the same argLDTient for the partial derivatives in the z­

direction, one obtains 

a 2cp/az2 ~ ( cp + cp - 2<P)/(D.z) 2 
n s 

(18) 

Combining eq. (17) and (18) to form Laplace's equation, one gets 

cpe + cpw- 2¢ <Pn + cps - 2cp 
----- + ----- = 0 

(D.x) z (D.z)Z 

Letting .6.x = .6.z = 1, the equation for <P is 

cp = (<P + <P + <P + <P ) /4 e w n s 

At an insulating boundary, the partial derivative of cp in the 

direction normal to the boundary is zero. This boundary condition is 

approximated by reflecting a grid point across the boundary and making 

the reflected grid point have the same value of <P as its image. For 

example, an insulating boundary parallel to the z-axis is shown in Fig. 
18. 



z 

insulation conductor 

acp;ax = 0 

<Pw - - - - - - ------ <Pe (reflected point) 

(image point) <P 

Fig. 18.--An insulating boundary. 

If q,w =<Pe, then acp;ax:::: (<Pe - <PW )//1x = 0, which is the 

requirement. At this point then, the equation is 

<P = (2¢ + ¢ + ¢ )/4 e n s 
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Figures 19 (a) and 19 (b) are contour plots of the potential for 

simple two-dimensional contact regions containing three contact spots. 

The left, right, and bottom boundaries are all insulating, the contact 

spots were assigned a constant ¢ = 0 V, and the top boundary was 

assigned a constant ¢ = 100 mV . 

.A method for calculating the constriction resistance from a 20 

contour plot was given by Francyk and Kulikjan. 45 The disadvantage is 

that this method, when modified for the more realistic 30 case, is very 

cumbersome. The idea is to draw the current lines (al ways 

perpendicular to the potential contour lines) so that one creates 

approximately rectangular boxes (Fig. 20). Define the following : 

dk. = the dimension of box k along potential contour <P. 
Z l 

dk . = the dimension of box k along potential contour ¢ . 
J J 



/00 rn V 

CONTACT 
~POT~ 

/00 !"fl V 

""-+---~------t---1-•--------~---1-~ 

Fig. 19.--Potential contour plots for a 20 contact. 

':l7 
J I 



Jk'• LJ 

Fig. 20.--A box drawn on the contour plot of cp. 

Also define 

lk . . = the dimension of box k from contour cp. to cp . 
ZJ Z J 

Rk . . = the resistance of the kth box bet ween cp . and cp . 
lJ l J 

The resistance of a box is 

2plk . . ZJ 
Rkij = 

dki + dkj 

The parallel combination between contours cpi and cp j is 

1 
R .. =-----

ZJ 2 (1/Rk .. ) 
k ZJ 

The total resistance is then the sum over i of the R . . 's. 
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ZJ 
For this method to work when there are several contact spots, one 

must break up the contour plot into regions in which all current lines 

flow into a single contact spot. Francyk's method is then applied to each 

region, and the total constriction resistance is a parallel combination. 

The author decided that a Laplace's equation solution was not 

practical for implementation in CR 1-CR3, and that a simpler method 

Would be better. This method will now be described. 
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2.6.3 Approximate Constriction Resistance Calculation 46 

In determining constriction resistance, Greenwood assumed 

that each individual contact spot of radius a j which carries current I j 

is an equipotential sphere (see Appendix C). The absolute potential at 

spot i caused by current flowing through spot j is 

p I. 
J 

cp .. =--
lJ 2-rrd .. 

ZJ 

where p is the resistivity of the contact metals; 

d. : is the distance separating spot i and spot j, 
lJ 

d . . = V [ (x. - x . ) 2 + (y. - y . ) 2 ] 
lJ - Z J l J 

The potential at contact spot i due to current through spot i is 

1 p. 
l cp .. = I. - R . = I. -

lZ l 2 CZ Z 4a. 
l 

The quantity R . is called the constriction resistance of spot i and its 
CZ 

formula p/2a. is widely quoted and used. 
z 

By superposition, the total potential at spot i is the sum of all 

individual potentials: 

pl. p I. 
z J 

cp. = cp .. + 2.<P-. = -+-2-
z zz . -+ . ZJ 4 a. 2-rr . d .. 

J -t- l l J ZJ 

Since all the contact spots are in parallel, their potentials must 

all be equal. This gives rise to a set of simultaneous equations: 

cpi = V /2 

where V is an applied contact voltage across the two contact members. 

In matrix form: 



p/4a1 

p/2rrd21 

p/2rrd31 

p/2rrd12 p/2rrd13 11 V/ 2 

12 V/ 2 
p/4a2 p/2rrd23 h V/2 

--
p/2rrd32 p/4a3 

I V/2 n 
C 

where n is the number of contact spots, 
C 

nG < < number of asperities, a fact which has been shown 

many times in the literature. 47 

The constriction resistance is then 

R = 
C 

V 
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(19) 

(20) 

2. 7 Algorithms for Plotting the Cumulative Distribution of Contacts 

To generate a cumulative distribution plot of a group of contacts, 

the user of the programs CR 1, CR2, or CR3 must select: 

a) the number of contacts in the group; 

b) the nominal contact force, F; 

c) the tolerance, "tol, 11 as a fraction 
of the nominal contact force; 

d) the radius of the dimple (CR3 on! y). 



The algorithm for calculating constriction resistance was as 

follows: 

1) Generate a random bumpy surface (Appendix B) . 
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2) Calculate equilibrium separation distance using equation (9), 
the Hertz equations (S)-(6) or (14)-(16), and the secant 
method as described in section 2.3.2. 

3) Calculate constriction resistance using equations (19) and 
(20). 

4) Repeat steps 1-3 for the next contact. 

5) Plot resistance values on normal probability paper. 

N~rmal probability paper is scaled in such a way that, if the data 

being plotted follow a gaussian distribution, then the data will fall on a 

straight line. See Appendix D. The procedure for constructing a plot is 

1) Sort the data in descending order. Assume N data points. 

2) Assign an integer i to each data point, the largest data point 
will be assigned i= 1, and the smallest data point will be 
assigned i=N. 

3) Calculate for each data point 

edf. = i/(N+ 1) 
l 

t . = y' (ln (1 / edf. 2) ) 
l - l 

2.515517 + 0.8028S3 ·t. + 0.010328·t. 2 

Xp.=t.- l l 

l l 1 + 1.432788·t. + Q.189269·t. 2 + Q.QQ13Q8·t. 3 
z z z 

(21) 

Xp i is the number of standard deviations from the mean corresponding to 

the percentile of the data point, assuming a gaussian distribution. 52 

For example, the 73rd lowest data point (i = 73) out of a group 

of 100 will have a percentile of 0. 7 3 and an Xp. of 0. 613. Xp. is such 
l l 

that the area under the gaussian distribution curve from -co to Xp., 
l 

obtained from a standard statistical table, is 0. 7 3. 

Xpz calculated from equation (21) differs slightly from the value 
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in the published statistical tables. The author is helping to develop a 

computer program that accurately matches Xp. with table values. 
l 

2.8 Results from a few Sample Runs 

Cumulative distribution plots were made for different contact 

forces and different diameter dimples (including flat). Several values 

kept constant are shown in Table 2. 

TABLE 2 

DAT A FOR CONT ACT RESISTANCE SIMULATION 49 ,
49 

Surface data: 

average bump density 

apparent contact area 

Asperity data: 

average height 

variance of height 

avg. radius of curvature 

variance of radius 

avg(h) 

var(h) 

avg(r) 

var(r) 

100/mm2 

4 mm2 

5.0µm 

(avg(ht)/3) 2 

0.0005 m 

(avg(r)/3) 2 

Material properties (brass, 70% Cu, 30% Zn): 

Younfs modulus E 1.1x1011 Pa 

Poisson's ratio 

electrical resistivity 

µ 

p 

0.3 

6.2xio-s Q·m 

The justification for these values is as follows: Uppal and 

Probert used 100 asperities/mm2 in experiments in which they bead­

blasted smooth metal surfaces to create an artificial rough contact 

surface. 50 .An apparent contact area of 4mm2 is typical for a small 

connector. Williamson, Pullen, and Hunt showed that typical metals 
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have mean asperity heights in the range 1-Sµm 51
, but CR1 had trouble 

with avg(h) < ~ 3µm at higher forces because too many asperities 

came into contact and the number of contact spots made equation ( 1 9) 

too large for the personal computer. The radius of curvature was 

chosen such that it was 100 times larger than avg(h), in accordance 

with equation (1). The variance of asperity height and radius of 

curvature were chosen such that avg - 3 · (var) 112 = 0 . 

. Applied contact forces ranged from O. 1 N to 10. ON. In some 

groups, the force was normally distributed such that + tol = + 3cr, 

where er is the standard deviation. In other groups, tol was chosen as 

zero, and the force was identical for all contacts in the group. 

The graphs in Figs. 21 through 24 plot resistance on one axis and 

Xp as calculated from eq. (21) on the other, for the cases flat vs. flat, 

1. 0mm radius dimple vs. flat, and 3. 0mm radius dimple vs. flat. In 

each case, one contact member is a bumpy flat and the other member is 

smooth. (That is, the models CR 1 and CR3, but not CR2, were used.) 

Fig. 25 is a plot of average contact resistance for each of the 

three cases and for each force. Notice that the flat vs. flat contact 

design has the lowest resistance for each force; and for the dimple vs. 

flat design, the smaller the radius of the dimple, the higher the 

resistance. That is because the flatter the mating interface, the more 

"spread out" the contact spots are, and the less that the current must 

bend its path to pass through the contact spots. Less bending of current 

leads to lower constriction resistance. Thus, the smaller the dimple's 

radius, the more constriction, and the higher the constriction resistance. 

Then why are dimpled contacts used in practice? Because they 

concentrate the contact force over a smaller apparent area, leading to 

higher pressure on the contacting asperities and a greater chance of 

breaking contaminating films. Films were not considered in the data of 

Figs. 2 1 -2 S. Thin films will be considered in Chapter IV. 
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Fig. 21. --Contact resistance NPP; smooth flat vs. bumpy flat (CR 1). 



--

• e 
.i: 
0 

• 0 
a • .. • .. • • Ill .. 
0 • .. 
i: 
0 u 

• e 
.i: 
0 

• 0 
i:: • .. • .. • • ii: .. 
0 • .. 
s: 
0 u 

0.011 

0.01 

0.009 

0.008 

0.007 

0.006 

0.005 

0.00~ 

0.003 

0.002 

0.001 

0 

-

-2.50 

Contact Resistance NPP 
1.0mm radiu• dimple, 5um bump• 

---

• 
o• D 

++ + -t 

+ + +++--H+Httirtt+ffl+lllli._~-r-Hllllltltflllllltlf+llt+ttl+<>•-f"++ 

0 0 oo«,O,OO,ooa,u----~------,oOOOO 0 

0 

-1.50 -0.50 0.50 1.50 

Ip 
D 0.111 + 1.01' 0 10.011 

• 

+ 

0 

2.50 

(a) + 0% tolerance on nominal force. 

Contact Resistance NPP 
1.0mm radlaa dimple, 10,C lol on force 

0 .011 

0.01 

0.009 

0.008 

0.007 

0.006 

0.005 

O.OM 

0.003 

0.002 

0.001 

0 

• a 
a 

+ + + ++++++Ht 

oO 

-2.50 -1.50 

a 0.111 

-0.50 0 .50 

Ip 
+ I.OIi o 10.01' 

(b) + 10% tolerance on nominal force. 

a 

O 0 
oo 0 

1.50 2.50 

45 

Fig. 22.--Contact resistance NPP; 1.0mm radius dimple vs. bumpy 
flat. 
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Fig. 24.--Contact resistance NPP; 5.0mm radius dimple vs. flat. 
+ 0% tolerance on nominal force. 
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2. 9 Verification of the Model for Gold Contacts 

A set of contact resistance measurements made in the laboratory 

provided a useful benchmark for checking the accuracy of the computer 

models. The basic contact design was a solid gold 1. 6mm radius rod 

whose end was butted to a solid gold, nominally flat coupon. Two 

variations of the basic design were tested: ( 1) a hemispherical! y-ended 

('
1round-ended11

) rod with 1. 6mm radius of curvature; (2) a machine­

ground 11 flat-ended 11 rod (Fig. 26). 

Gold is a good material to study here because of its properties: 

it does not corrode, and it resists growth of organic films. 53 Thus 

gold contacts are general! y 11clean11-and the computer models CR 1, 

CR2, CR3 simulate clean contacts. The physical parameters of Table 2 

remained the same for the simulation, with the exception of Table 3. 

TABLE 3 

DATA FOR GOLD CONTACTS 54 

Young's modulus 

Electrical resistivity 

Apparent area 
of bLrrnpy surface 

E 

p 

A app 

8x10 10 Pa 

2.2sx10-e Q·m 

2mm x 2mm* 
round rod 

3.2mm x 3.2mm 
flat ended rod 

* note: since contact is made only near the center of the bLrrnpy 
surf ace by the rounded rod, the apparent area of the bLrrnpy surface is 
not important. 

All lab measurements used the same gold coupon, and only one of 

each type of rod was used. The rod and coupon were cleaned prior to 
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Fig. 26. --Experimental hardware for gold contact resistance 
measurements. 
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each measurement, and the location of contact on the flat coupon was 

different for each measurement. 

50 

The hardware set-ups for the lab measurements are shown 

schematically in Fig. 26. The round-ended rod was held in place by a 

chuck in a Tukon™ hardness testing instrument. The flat-ended rod was 

allowed to stand by itself on the gold coupon. The free-standing 

configuration of the flat-ended rod assured that the flat end of the rod 

butted perfectly flat against the coupon. For the free-standing 

configuration, the weight of the flat-ended rod (0.068N) had to be added 

as part of the contact force, thus a recorded O. 1 N is actually O .168N. 

Me~surements were made using a Hewlett-Packard 4328A 

milliohrnmeter. Contact forces were: 10g (0.1N), 25g (0.25N), 

100g (1.0N), 200g (2.0N), 500g (5.0N) for the round-ended rod; 

and 1 Og (0 .1 N), SOg (0. SN), and 1 OOg ( 1. ON) for the flat-ended rod. 

Twenty lab measurements were made, all at different locations on the 

coupon, at each force for the round-ended rod. Extreme difficulties in 

balancing the weight led to damage to the end of the flat-ended rod, 

limiting the measurements to six at each force for that rod. 

Fifty contacts were 11 measured11 for each type of rod and each 

force by computer simulation. The computer programs used were CR 1 

for the flat-ended rod and CR3 for the round-ended rod. CR 1 had to be 

modified slight! y to account for the round (apparent) contact region. 

This modification was taken care of in the following way: if bump -i is 

located at (x., y.) on the base (refer to Fig. 8), and 
l l 

[ (xi - length/2) 2 + (y z - width/2) 2 ]112 

> radius of rod 

then the bump does not make contact: Pi = 0 (refer to eq. 6). It was 

assumed that the center of the rod was at (x, y) = (length/2, width/2). 

The graphs in Figs. 27 through 30 show how the models compare 

to the lab measurements. 55 



The percent error between the model values and the lab values 

were calculated as follows: 

model value - lab value 
percent error=--------- x 100% 

lab value 

The maximum absolute and percent errors in the mean and the 

median for both the round-ended rod and flat-ended rod are shown in 

Table 4. Each error's counterpart is shown in parentheses. 

TABLE 4 

51 

MAXIMUM ERRORS IN CONT ACT RESISTANCE MEASUREMENTS 

Round-ended rod (Fig. 26a) 

Max absolute error in mean= -0.20 mQ (-13.3%) @ 0.1N 

Max % error in mean = 77. 7% (0.097mQ) @ 10N 

Max absolute error in median= -0.23 mQ (-15. 7%) @ 0.1N 

Max% error in median = 75.8% (0.090mQ) @ 10N 

Flat-ended rod (Fig. 26b) 

Max absolute error in mean= -0.205 mQ (-24.0%) @ 0.1N 

Max% error in mean= -38.9% (-0.179 mQ) @ 0.5N 

Max absolute error in median= -0.264 mQ (-30.5%) @ 0.1N 

Max% error in median= -43.65% (-0.212 mQ) @ 0.5N 

These results are reasonable. The percent errors are large only 

because the values of contact resistance are so small-note how small 

the absolute errors are. The author feels that the absolute error is a 

better measure of the 11goodness11 of the model. Figures 28 and 30 are 

very promising and show that the assumptions for the contact surface 

model are in the ballpark. 
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Fig. 29. --Contact resistance NPP of gold contacts, 1. 6mm flat probe 
vs. flat. 
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CHAPTER III. 

PREDICTING FAILURE RA TE BASED ON CONT ACT 
RESISTANCE DISTRIBUTION 
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In the Introduction, it was mentioned that some authors have used 

contact resistance measurements to predict contact failure, even though 

an increase in contact resistance may not by itself cause the failure. 

The reasoning is that the same phenomena that cause contact 

failure-corrosion, loss of contact normal force, organic film growth, 

etc. -also cause an increase in contact resistance. In this chapter two 

methods for predicting the fraction failed based on the contact 

resistance distribution will be presented. These methods can be 

expanded to predict the failure rate once CR 1-CR3 are developed enough 

to simulate changes in contact resistance over time. This chapter also 

includes a section on developing a polynomial equation to predict the 

parameters of a hypothesized contact resistance distribution. A 

polynomial is desirable because it is easily used by the designer. 

3 .1 Method I: Threshold Resistance 

3.1.1 Threshold Resistance as a Failure Criterion 

Assume that if the contact resistance exceeds a given "threshold" 

value R', then we consider that contact as failed. For example, one may 

use Abbott and Schreiber's failure criterion, 

R' =Rei+ 3·Rci =Rei+ LlR 

where Rei is the initial or 11clean11 contact resistance calculated from 

CR 1 or one of its offspring; or one may use Whitley and Malucci 's 



57 

failure criterion, 

R' = 3·Rcmin 

where Rcmin is a theoretical or ideal minimum contact resistance. One 

may also choose R' based on the application if one knows what value of 

contact resistance may lead to problems; it may be known, for example, 

that a certain contact in a certain application begins to show problems 

when the contact resistance exceeds R milliohms. Then R' = R. 

The expected failure rate of a population of "aging" contacts is 

the fraction of good (R (R ') contacts that fail per unit time interval. 

Now assume that the probability density function of the frequency 

distributi~n of contact resistances for this population of contacts 

is f(r, t), where t is time. Then the failure rate at time t is 

d oo R' 
failure rate = dt { f R' f(r,t) dr } / { f 

O 
f(r,t) dr} 

One estimates the derivative if f(r,t) is known only at discrete times. 

Usually, one does not know the form of f (r, t). However, given a 

sample group of resistance measurements of either real or computer­

generated contacts, one can hypothesize the form of f (r, t) and estimate 

its parameters. For a meaningful estimate, all contacts in the sample 

group should have identical design, application, age, and length of 

service. 

At this point of the research, time, t, is not a variable in the 

models. However, the "infant mortality" at t = 0 can be predicted: 

fraction failed = f 00 

f(r,0) dr = f 00 

f0 (r) dr 
R' R' 

(22) 

It is desirable that f0 (r) be a polynomial function of the 

integrating variable r. This way, eq. (22) is easy to evaluate. Most 

practical probability density functions, however, are not polynomials, 

so one must seek a good polynomial approximation for whatever 
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distribution the contact resistances follow. 

For illustration, let us hypothesize that the contact resistances at 

t = 0 follow a normal (gaussian) distribution. (A commonly occurring 

contact resistance distribution for any time t is the lognormal 

distribution. According to this distribution, the log of contact 

resistance is normally distributed. Thus the gaussian distribution is 

useful to look at here.) The parameters of the gaussian distribution, µ 

and a-, mean and standard deviation, are well known and easy to predict 

from a sample of measurements. The density function is 

f (r) = -- exp ( ] 
1 [ 1 r-µ 

2
] 

0 gaussian - - CJ 
u'-1_(2rr) 2 

which can be approximated by a polynomial given by Chhabra and 

Wenning 56, which the author generalized: 

where 

so that 

valid for 

f o(r) ~ A (r - a) 2 (r - b) 2 

a=µ - 2.63a 

b = µ + 2.63a 

fo(r) ~ A (r - µ + 2.63u) 2 (r - µ - 2.63a) 2 

µ - 2.63u < r ~ µ + 2.63a 

Thus equation (22) becomes 

f 
µ + 2.63a 

fraction failed = A (r - µ + 2.63a-) 2 (r - µ +2.63cr) 2 dr 

R' (23) 

If the density function is found to be lognormal, µ and er must be 

the mean and standard deviation of log(R). Then, one would substitute 

log(r) for r and log(R ') for R' in equation (23). The introduction of the 

logarithmic function does not make eq. (23) a non-polynomial if log (r) 

is treated as a variable unto itself. 

The constant 11 A11 must satisfy 
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which in this example becomes 

( µ + 2.63CT 
J A (r - µ + 2.63CT) 2 (r - µ - 2.63CT) 2 dr = 1 (24) 
µ - 2.63CT 

It is not necessary to compute "A" because eq. (23) can be divided by 

(24) which is the same as dividing (23) by 1. When this is done, the 

"A" is cancelled out of the computation: 

f 
µ + 2.63CT 

A (r - µ + 2.63CT) 2 (r - µ - 2.63CT) 2 dr 
R, 

fraction failed = ------------------­
! µ + 2.63CT 
J A (r - µ + 2.63CT) 2 (r - µ - 2.63CT) 2 dr 
µ - 2.63CT 

(25) 

Note that, by eq. (24), the denominator of eq. (25) equals 1. 

The numerator and denominator of eq. (25) are simple 

polynomials of the integrating variable r. The key now is to find 

functions that relate µ and CT to the variables that describe contact 

design, application, and time or length of service. Otherwise, the 

designer will have to generate several contact resistance values from a 

contact resistance simulation computer program, and then calculate µ 

and CT from the data generated. The designer, without doubt, has better 

things to do. To obtain a simple polynomial function, the method of 

least squares was used. The data for the least squares fit can be 

obtained by running the computer simulation using different values of 

the variables for each run. An example will now be given. 
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3 .1. 2 Designed Experiment for Obtaining Equations for µ and a 

Even though the simulation program CR1 predicts contact 

resistance distributions for "clean'1 contacts, and therefore is not 

expected to produce a 11 failed 11 contact (except, maybe, in the case of an 

extremely critical application requiring a very low contact resistance), 

it can be used in an example to clarify the preceding discussion and to 

demonstrate the use of equation (25). In this example, µ and a were 

modeled in terms of the contact design parameters only. Application 

variables (such as temperature, moisture, environment, et al.) and time 

were not a part of the simulation program CR 1. 

,A.n ·experimental design array based on G. Taguchi's techniques 57 

was used to set values of all variables for each trial of the experiment. 

The values are shown in Tables 5 (a) and 6. The ranges of the variables 

were carefully chosen after a review of the literature and some initial 

trial-and-error to make sure the program would run for all desired 

combinations of the variables. The range for average height is due to 

Williamson, Pullen, and Hunt, who showed that many metals have 

average asperity heights in the range of 1-5 µm (CR 1 had trouble 

converging with ht < 3µm at higher forces such a 10N, so the range 5-

15 µm was selected) ; the range for r /h is due to Williamson and Hunt 

(refer to Chapter II of this report for their criterion r /h ~ 66); m.rrnber 

of asperities per mm 2 is due to Uppal and Probert ( who claimed 

100/mm2 is typical); the contact normal force covers a range typical 

for small automotive terminals; Young's modulus covers the range 

from silver (7x10 10 Pa) to brass (11x10 10 Pa); also resistivity: 

silver (1.8xto-s Q·m) to brass (6.2x10-s Q·m). 

For each of the 27 trials dictated by Taguchi's array, 30 
11

random11 contact resistances were generated by CR 1. The mean and 
standard deviation were calculated for each trial; they are shown in the 



last two columns of Table 6. The average contact resistance at 

each level of each variable was also calculated; plots are shown in 

Figures 31-38. Based on these plots, an analysis of variance on the 

mean contact resistance was conducted to determine which of the 

variables were significant (Table Sb), then a least squares curve fit 
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was made to obtain polynomial equations forµ and u, which can be 

substituted into equation (25). The polynomial equations for µ and u are 

as follows: 

" 
µ = 1.22x10-3 + 6.94x1Q-5 ·(avg(h)) 4.27x1Q-4 ·(r/h) + 

1.35x1Q-5 ·(r/h) 2 + 1.35x1Q-4 ·(shape) - 1.42x1Q-4 ·(shape) 2 + 

6.57x10.:5 ·(area) + 2.08x1Q-4 ·(nb) - 1.21x1Q-3 ·log(F) + 

2.29x1Q-4 ·(E) + 6.54x1Q-4 ·(p) - 2.77x1Q-4 ·log(F)·(p) (26) 

" 
u = 2.69x1Q-4 + 2.84x1Q-5 ·(avg(h)) - 1.09x1Q-4 ·(r/h) + 

3.18x1Q-5 ·(r/h) 2 + 2.53x1Q-5 ·(shape) - S.09x1Q-5 ·(shape) 2 + 

2.38x1Q-5 ·(area) + S.96x1Q-5 ·(nb) - 2.65x1Q-4 ·log(F) + 

6.24x1Q-5 ·(E) +1.29x1Q-4 ·(p) - 1.49x1Q-5 ·log(F) ·(p) (27) 

It is worthwhile to discuss why the terms (r/h)2, (shape) 2
, and 

(log(F) ·p) were included in eq. (26) and (27). The first of these terms, 

(r /h) 2 and (shape) 2 , were included because of the shape of the graphs 

"resistance vs. r/h" (Fig. 33) and "resistance vs. shape" (Fig. 34), 

both of which look significant! y parabolic. No other variable showed 

such a great parabolic tendency. The interaction term, (log(F) · p), was 

included because, by inspection of Table 6, the three "best" contacts 

(lowest µ and u, ) occurred at the three combinations of high force and 

low p: trials S, 18, 19 in column 1 of Table 6. Two of the three 

worst contacts (highest µ and u) occurred at two of the three 

combinations of low force and high p: trials 12 and 22. Thus, force 

and p appeared to show interaction. 
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TABLE 5 

(a) V ARLl\.BLE NAMES 

avg(h) = average height of asperities, units are ,um; 

the variance is (ht/3) 2• 

r /h = (average radius of curvature) / (average height) ratio; 

the variance of curvature is (avg radius of curv /3) 2 

shape = length/width ratio of rectangular apparent contact area. 

Aapp = apparent contact area in mm 2
• 

d = asperities per mm2
• d = nb/ A , nb is not random. app 

F ::!: contact normal force in Newtons. 

E = Younf s modulus of elasticity in 10 10 Pa. 

p = electrical resistivity in 10-a D:m. 
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(b) ANALYSIS OF VARIANCE OF MEAN CONTACT RESISTANCE 

variable sum of squares df mean square f 

avg(h) 8.682x10-0 1 8.682x1Q-0 0.181 
r/h 3.282x'1Q-6 1 3.282x1Q-6 6.853 * 
(r/h) 2 9. 797x10-7 1 9.797x10-7 2.045 

shape 3.287x10-7 1 3.287x10-7 0.686 
(shape) 2 2. 976x1Q-6 1 2. 976x1Q-6 6.214 * 
A 7. 78Sx10-a 1 7. 78Sx10-s 0.162 app 
d 2.162x10-6 1 2.162x1Q-6 4.513 
F 2.646x10-s 1 2.646x10-5 55.239 ** 
E 9.479x10-7 1 9.479x10-7 1.979 

p 7.701x10-6 1 7.701x1Q-6 16.077 ** 
total 9.303x1o-s 27 

residual 7 .664x1Q-6 16 4.790x10-7 

* significant at 95% ** significant at 99% 
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TABLE 6 

TAGUCHI ARRAY FOR CR 1 VARIABLES 57 

no. avg(h) r / h shape A da F E b b 
p µ(mD.) O"(mD.) 

app 

1 s s 1 1 so 0.1 7 1.8 1. 915 0.524 
2 10 so s 2 so 1 9 4 0. 791 0:219 
3 15 100 10 3 so 10 11 6.2 0.354 0.087 

4 s s 1 2 75 1 9 6.2 1.312 0.191 
s 10 so s 3 75 10 11 1.8 0.086 0.019 
6 15 100 10 1 75 0.1 7 4 1.438 0.209 

7 s s 1 3 100 10 11 4 0.175 0.010 
8 10 so s 1 100 0.1 7 6.2 2.766 0.459 

' 

9 15 100 10 2 100 1 9 1.8 0.276 0.097 

10 s so 10 1 100 1 11 1.8 0.369 0.116 
11 10 100 1 2 100 10 7 4 0.142 0.026 
12 15 s s 3 100 0.1 9 6.2 5.744 1.372 

13 s so 10 2 so 10 7 6.2 0.192 0.025 
14 10 100 1 3 so 0.1 9 1.8 0.779 0.136 
15 15 s s 1 so 1 11 4 1.S80 0.435 

16 s so 10 3 75 0.1 9 4 2.253 0.474 
17 10 100 1 1 75 1 11 6.2 1.228 0.267 
18 15 s s 2 75 10 7 1.8 0.107 0.019 

19 s 100 5 1 75 10 9 1.8 0.070 0.013 
20 10 s 10 2 75 0.1 11 4 4.349 0.995 
21 1S 50 1 3 75 1 7 6.2 0.992 0.282 

22 s 100 s 2 100 0.1 11 6.2 3.577 0.766 
23 10 s 10 3 100 1 7 1.8 0.397 0.083 
24 15 so 1 1 100 10 9 4 0.261 0.076 

25 s 100 s 3 so 1 7 4 0.508 0.126 
26 10 5 10 1 so 10 9 6.2 0.479 0.064 
27 15 so 1 2 50 0.1 11 1.8 0.870 0.181 

a . 
b ~ 1s a constant and not Poisson distributed as in Chapter 2. 

based on 30 resistances generated at the given settings. 
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All of the variables, with the exception of force, F, must-be 

transformed before being substituted into equations (26) and (27). 

The transformation for a variable x is as follows: 

x - avg(x) 
X -transformed - max(x) - avg(x) 

For example, p = 1. 8 x 1 o-s transforms into 

Pt f d = ( 1. 8 X 1 o-s - 4 X 1 o-8) / ( 6. 2 X 1 o-a - 4 X 1 o-a) = -1. rans orme 

3. 1.-3 Example: Fraction Failed Using Threshold Resistance 
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For the values of the design variables listed in row 1 of Table 6, 

the transformed values for all of them is -1. Substituting -1 into 

equations (26) and (27), one obtains µ = 1.22 mil (as compared to the 

data value in Table 6 of 1. 915 mQ) and a= 0.281 mQ (as compared to 

the data value in Table 6 of 0.524 mQ). Picking R' = 0.010Q as a 

threshold for failure, one obtains a fraction failed of zero indirect! y 

from equation (3.4); it turns out that R' ) µ + 2.63a = 0.00196, the 

upper limit of the density function f(r) (Fig. 39). As expected, this 

result is not surprising because these are clean contacts. Picking R' = 

0.0016Q (1.6mQ), one calculates the fraction failed to be 0.097 or 

9. 7%. The integrals of equation (25) were evaluated numerically. A 

value of R' = 1. 6mQ represents a very stringent requirement and was 

chosen in this example for demonstration only. Such a requirement 

may or may not be realistic. 
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Fig. 3 9. --Normal distribution. 

3.2 Method II: Uniform Residuals 

Yamada et al. give a clue for determining fraction failed based 

direct! y on the contact resistance distribution of a sample group. 

Repeating their quotes from sections 1. 6. 1-1. 6. 2 of this thesis: 

If the contact part of the contacts is clean, distribution of 
contact resistance approaches normal distribution and the 
normal probability curve approximates a straight line . 
. . . if the contact part of contacts is contaminated, 
distribution is apart from normal distribution, and the tail 
of the normal probability line is curved ... 58 
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A method is desired to determine how many contacts in a group 

fall off the normal distribution. These contacts, according to Yamada, 

can be considered as failed or doomed for failure. Quesenberry's 

Method of Uniform Residuals is the type of method required. 

In the Method of Uniform Residuals 59 , one calculates either the 

value of the statistic z(i) or the value of the Student's t statistic, t(i), 

for every value of resistance R (i) in the group. 

Case 1 . Ideally, one knows the parameters µ and CJ of the normal 

distribution that R (i) is prest.rrned to follow. In this case, one calculates 

R(i) - µ 
z(i) = ---a 
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Then the uniform residual is 

f 
z(i) 

N(z(i)) = -ro n(z) dz 

where n(z) is the density function of the gaussian distribution. 

Case 2. If µ and CJ are not kno\\/0, one can sacrifice the first two 

values from the data to estimate µ and a, then update the estimate 

with each successive value of R (i). In this case, one calculates 

i - 1 R (i) - Ra vg (i -1) 
t(i) = -- . ----­

s. 1 z-
(28) 

Here, R (· l) is the average, and s. 1 the standard deviation, of the avg z- z-

preceding (i-1) values of R. 

1 
Ravg(i-1) = -­

i - 1 

i-1 
2 R(j) 

j=1 

1 z-1 
sz-1 = -- 2 [ R(j) - Ravg(i-1) ] 2 

i - 2 
j=1 

(29) 

(30) 

From the value of t(i), one looks up the "uniform residual" in the 

statistical tables. The uniform residual is 

t(i) 
G (t(i)) = f g (t) dt 

J/ J/ -ro 

where gv(t) is the density function of the t-distribution with v degrees of 

freedom, v = i - 2. G (t) is the ct.rrnulative distribution function. 
J/ 

Case 2 will be more common, because given a set of resistance 

data, one usually has no knowledge ofµ and CJ. Therefore, the rest of 

this discussion will use the terminology of case 2, although the 



arguments translate easily to case 1. 

G (t (i)) is, loosely translated, a "percentile," meaning that 
J/ 

100 · G (t (i)) % of the resistances following the presumed normal 
J/ ✓ 
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distribution are expected to be smaller than R (i). G (t (i)) increases as 
J/ 

R (i) increases. 

An unreasonably large G
11

(t(i)) means that R(i) is probably too 

large to be part of the normal distribution that it was presumed to 

follow; the probability that R (i) can be part of the presumed normal 

distribution is 1-G
11

(t(i)), which will be very small. Taking a hint from 

Yamada, one can say that contact i has failed; R (i) is part of the "tail11 

of the NPP. This is consistent with the know ledge that high resistances 

indicate failure. 

How large G (t (i)) must be before one says contact i has failed 
J/ 

depends on the expected fraction failed. If one of every Nf contacts is 

expected to fail, then the expected reliability is defined as 

1 - expected fraction failed = 1 - 1 /Nf = = f3 

f3 is the fraction of contacts expected to not fail. f3 can be 

thought of as 

or as 

1/Nf = 1 - {3 = f 00 

g (t) dt. 
t* ]/ 

See Figure 40. 

(31) 

If G 
11 

(t (i)) ) f3, then contact i is expected to fail (Fig. 40), and 

any other contact with a resistance greater than or equal to R (i) is also 
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expected to fail. On the contrary, if G v ( t (i) ) ) f3 and contact i is not 

expected to fail, then f3 was Lmderestimated, because if contact i is not 

expected to fail, neither is any contact whose resistance is less than 

R(i), and the expected reliability is at least equal to G (t(i)). 
J/ 

f3 = Lmshaded area 
g (t) 

}) . shaded area = 
fraction of contacts 
expected to fail 

j 
t 

t* t(i) 

Figure 40. --Student's 11 t11 -distribution. 
Note that t (i) is just a linear transformation of R (i). 

The procedure recommended for the Method of Uniform Residuals 

is as follows: 

1) List the resistance data in ascending order. Resistance data 

can be obtained through measurements of actual contacts or 

through simulation by a computer program. Assign a value i 

to each resistance, the lowest resistance assigned i= 1 and 

the highest resistance, z=N. AssLDTie N resistance values. 

2) Using the first two resistance data R(1) and R(2), calculate 

Ravg(2) and s(2), using equations (29) and (30). 

3) Calculate t(3) for the resistance value R(3) using equation 

(28), then look up and record Gi(t(3)). 

4) Use R(3) (along with R(i) and R(2)) to calculate Ravg(J) and 

s(J)' then calculate t(4) for the resistance value R(4) and 

look up G2 (t(4)). 
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S) Continue in this fashion for all i, using R ( 1) ... R (i-1) to 

calculate Ravg(i-i) and s(i-i); then calculate t(i) and look up 

Gi_2 (t(i)) for the resistance value R(i). 

6) Calculate f3 from equation (31) and compare G
1
_
2

(t(i)) to f3 
for each i. The estimated fraction failed is that fraction of 

data for which Gi_2 (t(i)) ) {3. 

The reason the resistance data should be sorted in ascending 

order is so that R and s are initially estimated from the lowest avg 
values of resistance, which have the greatest chance of actual! y being 

normally distributed. 

A simpler application of the Method of Uniform Residuals is 

inspection of the normal probability plot. A straight line is drawn 

to fit the lowest values of resistance on the plot. The contacts that fail 

are those with high values of resistance that fall off the line. An 

example is shown in Fig. 41, where the contact surface data is the 

same as that in Table 2, and the contact force is nominally 1N with 

an 11out-of control" variation of+ 30% (standard deviation of the force is 

such that +3u = 0.3 times the nominal force= 0.3N, or <T = 0.1N). In 

the example, there are six 11outliers11 (six high resistance values that 

fall off the straight line) for an estimated fraction failed of 6 / 100 = 
0.06 or 6%. 

In this example, it was assumed that the high resistance of the 

outliers was due to a manufacturing defect that led to an abnormally 

low contact force; and that this defect will worsen as the contacts age, 

eventually leading to contact failure . 

..., 
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Fig. 41. --Graphical representation of the Method of Uniform 
Residuals. 
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CHAPTER IV. 

PLASTIC DEFORMATION OF ASPERITIES 

4 .1 The Significance of a Plastic Deformation Model 

In this chapter the effects of thin films on electrical contacts 

will be considered. Films are a major cause of contact degradation and 

failure. This chapter does not describe films themselves; rather, it 

describes· an important phenomenon-plastic deformation of the surface 

asperities-that often occurs at the contact interface. Plastic 

deformation of the asperities is directly related to the electrical 

properties of a thin-film-covered contact: if thin films are present, 

electric contact will be made only where the asperities deform 

plasticall y--this is where the films are broken. 60 

In the computer models CR 1, CR2, and CR3, described in 

Chapters II and III, the asperities are made of solid metal and are 

subject to purely elastic deformation as given by the Hertz equations. 

However, in a real contact, the stresses may be high enough to cause 

plastic deformation of the individual asperities. This chapter addresses 

the issue of plasticity on a contact surface and describes a modified 

computer model, CR1P, which accounts for plastic deformation of the 

asperities. 

Historically it was thought that at small contact forces, a contact 

would undergo purely elastic deformation, and at higher contact forces, 

that same contact would undergo purely plastic deformation. However, 

the transition force (the force at which the contact's deformation 

changes from elastic to plastic) has been found to be either extremely 
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high or negligibly low. 

A negligibly low transition force means that, even at the smallest 

force, the contact will undergo significant plastic deformation. An 

extremely high transition force means that no matter how hard the 

contact members are pressed together, elastic deformation dominates at 

the contact points. 61 

A probabilistic model of the contact interface by Greenwood and 

Williamson was developed to predict the transition force. Their model 

outlines one basic approach to modeling plasticity. In developing their 

model, Greenwood and Williamson obtained a relation which tells at 

what valu~ of asperity deformation (c5) plastic flow begins. It is called 

the critical deformation, c5*. Another relation, quoted by Chhabra and 

Wenning, gives the load which an asperity can bear while under plastic 

deformation. These relations are the basis of the program CR 1 P. 

An important intermediate relationship in Greenwood and 

Williamson's model tells us how large the maximLITTI contact pressure 

(q0 ) must be to cause plastic deformation. Several steps from 

different sources were pieced together in this chapter to reach their 

conclusion that the contact pressure must reach a certain fraction of the 

hardness (H) of the metal: q0 ) 0.6H. Following a necessary 

background section on plasticity (sec. 4.2-4.3), this chapter is devoted 

to first deriving this criterion (sec. 4.4), then describing Greenwood 

and Williamson's model (sec. 4.5). 

4.2 Description of Plastic Deformation 

First it is necessary to define two terms: (1) normal stress is 

the stress perpendicular (normal) to a plane; (2) shear stress is the 

stress tangential or parallel to a plane. 

Holm says that "plastic deformation of crystalline solids 
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proceeds by slips". 62 A slip, also called a plastic shear by Van Vlack, 

is the sliding of one plane of atoms over an adjacent plane of atoms. 63 

The interface between the two planes of atoms is called the "slip plane. 11 

A shear force along a slip plane will cause shear: the displacement of 

one plane of atoms over the other. 

If after the removal of the shear stress, the two planes of atoms 

remain displaced relative to each other, then the shear is called a slip 

or a plastic shear. If the two planes of atoms return to their original 

positions relative to each other, the shear is called elastic. 

The "strength" of a metal depends on how well it resists plastic 

shear. Real metals are much weaker than metals made up of ideal 

crystal lattices. That is because real metals contain defects called 

"dislocations" that weaken the real metal by producing slip planes that 

slip easily. Shearing perpendicular to an edge dislocation or parallel to 

a screw dislocation is much easier than shearing in any direction in an 

ideal defect-free crystal lattice. 

Depending on the type of dislocation, one defines a "slip vector" ~, 

which is the displacement of atoms from their hypothetical position in 

an ideal lattice due to a dislocation. 64 ~ for an edge dislocation is 

illustrated in Fig. 42. 

METAL 
ATOM 

b-.--+- ~~~ 
~~~""""'"'"""'""~~~~-

Fig. 42.--Edge dislocation and the slip vector. 

For the edge dislocation, ~ is perpendicular to the dislocation. 

The edge dislocation is the extra plane of atoms; its edge is a line into 

the paper at point x. 
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Slip occurs most easily in a direction parallel to ~' so that 

plastic deformation depends on the shear stress parallel to ~- In a real 

metal, there are enough dislocations in enough directions so that 

shearing of the metal lattice can occur in any direction. That is why 

macroscopic properties like hardness are practically isotropic. 

4.3 Huber-van Mises Equation: Criterion for Plastic Deformation 

4. 3. 1 Principal Stresses 

The amount of stress required for plastic deformation was 

empirically determined by Huber in 1904 and independently by von 

Mises in 1913. This equation is fundamental to any discussion of 

plastic deformation, and since it is used extensively in the ensuing 

calculations, it is worthwhile to derive and explain it now. The 

derivation is adapted from Tabor. 

Before entering the following discussion, three terms must be 

defined. ( 1) A principal plane (of stress) is a plane in an elastic body 

across which the shearing stress is zero. 65 (2) A principal axis is a 

line normal to a principal plane. (3) ,6.. principal stress is a stress 

acting normal to a principal plane. 

For a general three-dimensional internal stress problem, there 

are three principal axes normal to each other at every point. The 

orientation of the principal axes varies from point to point, and the 

principal axes are generally not parallel to the global axes x, y, and z. 66 

4. 3. 2 Development of the Basic Equation 

According to Tabor 

Hydrostatic pressure will not of itself produce plastic 
deformation. 67 
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Hydrostatic pressure is the pressure that presses on all sides of a 

body equally, such as that when a body is submersed in a pressurized 

water tank. This pressure is described in Pascal's law. 

Tabor continues: 

.. . if a metal is subjected to combined stresses e.g. 
components in the x,y,z directions], the only part of the 
stresses which will be effective in producing plastic 
deformation will be the part left after the hydrostatic 

component has been subtracted. 68 

79 

Take a small cube of metal whose sides are principal planes of 

stress, subjected to principal stresses Pt, p2 and p3 (Fig. 43 (a)). The 

hydrostatic component is 

Ph= (pt + P2 + p3)/3 

The hydrostatic component ph is subtracted the principal stresses to get 

the reduced stresses (Fig. 43 (b)). 

(b) 

Pt / 

Fig. 43. --Principal stresses and reduced stresses on a cube. 

The criterion for producing plastic deformation was determined 

experimental! y as 
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This equation can be written as 69 

In pure tension, p 1 = Y, p2 = p3 = 0 produces plastic deformation 

along the x-axis only (Fig. 44). Y is the yield stress of the metal. 

(For an ideal metal, Y equals the elastic limit. For a real metal, 

Y is slightly larger than the elastic limit.) 

s 
t Y1 
r 
e 
s 
s 

ideal metal 

s t r a i n Y 1 = elastic limit, Y 2 = yield stress 

Fig. 44.--Plastic deformation along the x-axis. 

substituting, 

(1/3) [ (Y - 0) 2 + (0 - 0) 2 + (0 - Y) 2 ] = K 

(1/3) ·2 ·Y2 = K or K = (2/3) Y2 

Then the Huber-von Mises equation 70 is 

4.3.3 Principal Shear Stresses 

According to Roark 

The maximum shear stress [in the cube of metal] occurs on 
each of two planes inclined at 45° to the two principal 
stresses whose algebraic difference is greatest and is equal 
to one-half that algebraic difference. 71 

80 

Pt 

That is, the maximum shear stress in the cube is the largest of 



-
the three stresses given in equations (33). 

P 12 = (p 1 - P2 ) /2 
P23 = (p2 - p3 )/2 

p31 = (p3 - P1 )/2 

81 

(33) 

The stresses p12, p23 and p31 are called principal shear stresses by Holm 

and by Tabor. 72 Holm notes that, for plastic deformation, at least one 

of eq. (33) must be nonzero, else (32) will not be satisfied. That is, 

plastic deformation requires some component of shear. Pure 

hydrostatic pressure (p 1 = p2 = p3 = ph) will make all of (33) equal to 

zero; thus, as Tabor mentioned before, hydrostatic pressure alone 

cannot produce plastic deformation. 

The author felt that it was beyond the scope of this thesis to 

derive equations (33), however, some insight can be obtained by 

considering the example in Appendix E. 

4. 4 Contact Pressure and Deformation Required for Plastic Yielding 

4. 4. 1 Hardness as a Function of Yield Stress 

Holm used the following informal discussion to roughly show how 

hardness (H) is related to the yield stress (Y) of a metal. 

Imagine an indentation made in a nominal! y flat slab of metal by a 

smooth, hard ball (Fig. 4S). The indentation is a plastic deformation 

caused by shear stresses in the slab. The ratio of the depth to the 

radius of curvature of the indentation (called the "specific depth") is 

approximately 0.03 (an important fact, but not a number which will be 

used in any calculations here). 
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X 
p 

Fig. 45.--Indentation made by a hard ball in a metal slab. 

Pick a point x near the rim of the indentation, the outer edge of 

plastic deformation. There is no vertical deformation at x, therefore no 

vertical stress at x. There are only horizontal stresses: one component 

is tangential to the mouth of the indentation, the other is normal to the 

mouth. The principal stresses p1, p2, p3 at x must satisfy the Huber-van 

Mises equation. 

If one assumes that the horizontal principal stresses are at least 

approximately equal, then one can let p1 = p2 = p, and p3 = 0 in eq. (32): 

(p - p)2 + (p - 0)2 + (O - p) 2 = 2Y2 

2p2 = 2Y2 or p = y 

which makes intuitive sense: the principal stresses in the horizontal 

directions must equal the yield stress before plastic deformation can 

occur. 

At point y, near x, the horizontal stresses are of the same order 

of magnitude as those at x. However, a vertical stress p3 is also 

present. Its value is given by the Huber-van Mises equation (32). 73 

(Y - Y)2 + (Y - p3)2 + (p3- Y)2 = 2y2 

2 · (p3- Y) 2 = 2Y2 

2p/ - 4p3Y + 2Y2 = 2Y2 

2p3· (p3 - 2Y) = 0 

p3 = 2Y 
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The vertical stress given by this ballpark calculation is twice the yield 

stress. It should be noted that p3 increases as we move toward the 

center of the indentation. Thus, the average pressure q across the 
m 

indentation is greater than 2Y. Tabor states that q ~ 2.8Y. 74
,
75 

m 
If the indentation has a specific depth ) 0.03, then q equals the 

m 
Meyer's hardness (approx. equal to Brinell hardness), H. 76 Thus, 

H = q ~ 2.8Y m 

4. 4. 2 Maximum Shear Stress Under an Elastic Indentation 

(34) 

For the same ball indenter problem, Davies (1949) calculated the 

stresses inside the slab-as a function of the maximum pressure (q0) on 

the surface of the slab-prior to the onset of plastic deformation. His 

result and Holm's (eq. 34) are used to find the pressure at which plastic 

deformation will begin. 

He selected a global coordinate system x,y,z (Fig. 46). The 

plane perpendicular to the y-axis and passing through the center of the 

indentation is the "y0 plane. 11 At every point (x, 0 ,z) in the y0 plane there 

are normal stress components parallel to the x-, y-, and z-axes: 

respectively they are Xx, Yy, Zz. There is also one component of 

shear stress parallel to the x-axis and acting along the x-y plane: call 

it Xz. 77 If at (x,O,z) the shear stress Xz is zero, the principal 

stresses are simply Xx, Yy, and Zz. This follows from the definition 

of principal stress. In general, however, the principal stresses are 

given by the following equations: 78 

Pt= Xx 

P2 = (1 /2) [(Yy + Zz) - {(Zz - Yy) 2 + 4Xz2} 112] (35) 

p3 = (1/2) [(Yy + Zz) + {(Zz - Yy) 2 + 4Xz2
}

112
] 
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Fig. 46--Coordinate system and stresses in Davies' problem. 
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Davies plotted the "maximt.rrn difference between principal 

stresses" versus (r / a) and e, a being the radius of contact. The overall 

maximt.rrn occurred at (r / a) ~ 0. 48 and e = 0. At this point, which 

will be called s, 79 

max IP- - P-1 
1 J 

9o 
= 0.63 i=i ,2,3; j=i ,2,3 

where q0 is the pressure at point O' in Fig. 46. q0 is the maximt.rrn 

pressure on the surface of the slab. 

Thus, 

According to Tabor 

q0 = (3/2) q m where q is the average m pressure over the contact 
area. 80 

max I Pi - pj I = 0.63·(3/2) ·qm 

(36) 

It follows from eq. (33) that the maximt.rrn shear stress in the slab is 

max shear= (1 / 2) max I Pi - pj I 
= (1/2) ·0.63 · (3/2) ·q 

= 0.473 qm 

m 
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4.4.3 Direct Yield Stress and Contact Pressure 

According to the Guest-Mohr hypothesis, plastic deformation at s 
occurs when the maximum shear stress occurring in the slab 

(0.473qm) exceeds the 11direct yield stress11 (the minimum shear stress 

required for plastic deformation). 81 Davies calculated the direct yield 

stress from the Huber-von Mises equation as follows: at s (i.e., (r / a) 

= 0. 48 and 0=0) , Y y = Xx and Xz=O. 82 Substituting into eq. ( 3 S) 

Pt= Xx 

P2 = (1/2) [(Xx+ Zz) - [(zz - Xx) 2 + 4•02]112
] 

= (1/2) [Xx+ Zz - Zz +Xx] 

= Xx 

p3 = (1/2) [ (Xx + Zz) + [(zz - Xx)2 + 4 ·02 l l/2 ] 

= (1/2) [Xx+ Zz + Zz - Xx] 

= Zz 

Thus one obtains the important result Pi = P2 . 

Letting p1 = p2 = p in the Huber-von Mises equation (32), one 

obtains the criterion for plastic deformation at ( 

that is, 

(p - p) 2 + (p - p3 ) 2 + (p3 - p) 2 = 2y2 

2·(p3 - p)2 = 2y2 

lp3 - p I = Y 

In terms of the principal shear stresses (eq. 33) the criterion is 

P12 = Ip - p 1/2 = O 

P23 = Ip - p3 1/2 = Y /2 

p31 = lp3 - p 1/2 = Y /2 

These stresses are shown in Fig. 47. Y /2 is the 11direct yield stress11 

mentioned in the Guest-Mohr hypothesis. 
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~I 

Fig. 47 .--Principal shear stresses at S· 

4.4.4 Contact Presssure Required for Plastic Deformation 

Now the Guest-Mohr hypothesis can be used to obtain the value of 

contact pressure, in terms of the yield strength and the hardness, 

required for the onset of plastic deformation. 

According to the Guest-Mohr hypothesis, plastic deformation 

should occur when 83 , 84 

0.473 qm ~ Y / 2 

or qm ~ 1. 1 Y for the onset of plastic deformation. (3 7) 

It was found that H = qm ~ 2.8Y for full plastic deformation, 

and q0 = (3/2) qm' 

Taking the ratio, 

one gets the criterion 

9o 

H 

(3/2) qm 
----

H 

(3/2)·(1.i)Y 

2.8Y 
- 0.59 

q0 ) ~ 0.6H for plastic deformation to begin. 85 (38) 
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4.4.S Greenwood and Williamson,s Derivation of the Formula for 6* 86 

The results f ram sections 4. 4. 1 -4. 4. 4 are now used to develop a 

formula for the minimum deformation an asperity must undergo before 

it begins to plastically yield. But first, one must show that (38) and 

(34) apply to the problem of a deforming asperity. 

Inequality (38) was derived by considering the stresses inside a 

flat slab of metal when indented by a very hard ball indenter. However, 

(38) is valid even if the ball is not "hard"-it does not matter what kind 

of ball produces the pressure q0, plastic deformation will begin in the 

slab as long as (38) is met. And if the flat slab is hard and the ball is 

soft, we expect plastic deformation to begin in the ball when (38) is 

met (H being the hardness of the ball). Thus by this informal argument, 

one can generalize (38) to apply to the onset of plastic deformation 

inside a spherically-shaped asperity, which is actually a "ball indenter." 

Also, it is interesting to use a thought experiment similar to 

the one Holm used in deriving (34), but for the case of a hard flat slab 

plastically deforming a soft asperity (Fig. 48). 

One uses the Huber-van Mises equation at x and then at y to show 

that the average pressure qm on the contact surface of the asperity is 

~ 3Y, so that eq. (34) applies to the problem shown in Fig. 48. 87 

;( -----P 
Fig. 48.--Full plastic deformation of an asperity. 
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Now recall the Hertz equation for the load supported by a single 

asperity under elastic deformation: 

P = (4/3) 6312 r 112 E', E' = (1/2) 

6312 = (3/4) P r-112 (E't1 

E 

1 - µ2 
(6) 

= (3/4) q A r- 112 (E')-1 '..vriere q is the mean pressure m · m 
on the contact spot; q = P / A. 

m 

but from (36) it is known that 

but A= rrrc5 

q = (2/3) go m 

6312 = (3/4) (2/3) q0 A r-112 (E't 1 

(5312 = (1/2) 9o 7f r112 c5 (E')-1 

c5112 = (1/2) go 7f r112 (E'tt 

c5 = (1/2) 2 rr2 qa2 r (E't2 

It was found that (eq. 38) plastic deformation commences when 

q0 ) ~ 0.6H where H is the hardness of the metal 

substituting: c5 = (1/2) 2 rr2 (0.6H) 2 r (E't2 

letting r = r. and c5 = c5. for asper1 t y i 
l l 

o. = 
l 

0.888 H2 ri 

(E') z 
(39) 

so when c5. ) ~ H2r./(E')2, asperity i will yield plastically. Call the 
l l 

term 6.* = H2r./(E') 2 the "critical deformation" for plastic flow of 
l l 

asperity i. 

(The critical deformation formula, eq. (39), has been 

programmed into the computer program CR 1 P to determine which 

contacting asperities are under plastic deformation.) 
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4.5 Greenwood and Williamson's Elastic Deformation Model 88 

4.5.1 Surface Model 

Assume a contact interface in which one surf ace is smooth and 

flat and the other is bumpy and nominally flat. The bumpy surface 

contains asperities which have identical radii of curvature, r. The 

probability that an asperity's height h is between z and z+dz above the 

base is <P(z)dz. 

Recall the Hertz equations: 

p = (4/3) c5312 r112 E' 

a= c5112 r112 

(6) 

(5) 

Let us take "s" as the separation between the face of the smooth 

flat surface and the base of the bumpy surface. Then the probability 

that an asperity will be in contact is the probability that its height will 

be greater than 11s 11 (Fig. 49). 

prob(h)s) = t:s q>(z) dz 

Fig. 49. --Height and separation. 

The total number of asperities in contact is the total number of 

asperities times the probability that an asperity is in contact. 

(40) 

The area of contact of an asperity is 

A = rr a2 = rr (6112 r 112
)

2 = rr6r 

but 6 = z-s from (14), using z for h .. 
l 



so that A = rr (z-s) r 

The total area of contact depends on the 11expected value11 of 

A = rr-r· (z-s) taken over all asperities: 

At= nb ·µA = nb rr r f 00 

(z-s) ¢(z) dz 
z=s 

90 

(41) 

Notice that eq. (41) implies that µA, the average area of contact 

of a single asperity, is At/ nb and not At/nc. That is, the average area 

of contact is for all asperities, not just those asperities in contact. 

The total value of the load supported by all asperities depends on 

the expected value of (z-s) 312 and is 

(42) 

This is an important relationship between Pt and separation, s. 

If one looks at the stress vs. deformation diagram (Fig. SO) of a 

typical metal one sees that . for h-s) 6* (or h)s+6*), plastic deformation 

should occur. One expects the number of asperities undergoing plastic 

deformation to be given by 

n = ~f 00 

¢(z) dz 
pc z=s+6* 

That is, any asperity having a height greater than s+6* should experience 

some plastic deformation. If an asperity is deformed by less than 6*, it 

will experience only elastic deformation and will return to its original 

shape when the contact force is released. 

From equation (39), one can write 

n - n f 00 

¢ (z) dz 
pc - b z=s+H2r/(E') 2 

The total contact area under plastic deformation is 
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stress 

6* 

original shape - --=:--._------r-------.-----r---
~ / -- ........ , 6* 

flattened / 
h 

I s 

Fig. 50. --Plastic deformation of an asperity. 

Atp = ~ 1r r J 
00 

(z-s) ¢ (z) dz 
z=s+H2r / (E') 2 

(43) 

assuming, as Greenwood and Williamson do, that (5) still holds under 

plastic deformation. 

Greenwood and Williamson arbitrarily pick At / A ) 0.02 as p app 

a criterion for "significant amount of plastic deformation. 11 For a given 

surface, this inequality is solved for the separations. From s and the 

equation for Pt, one can calculate the force required for the transition 

from elastic to plastic deformation. It turns out that the transition 

force is either extremely high (on the order of 50kg for a 1cm2 nominal 

contact area) or negligibly low (on the order of 1mg for a 1 cm2 nominal 

contact area). This means that a given surface undergoes either elastic 

or plastic deformation at all practical loads with no transition. 



4.S.2 Plasticity Index 

Greenwood and Williamson defined a "plasticity index" that 

predicts whether a contact interface were under mainly plastic 

deformation or mainly elastic deformation. The development is as 

follows. 
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Using 6*, Greenwood and Williamson define the plasticity index as 

[ 

ah (E')
2 l 112 E' [ ah l 112 

\Jl=(a/6*)112 = --- =- -
h r H2 H r 

where ah is the standard deviation of the asperity heights, ah = 
(var(h)) 112• A detailed look at the terms in \JI is appropriate at this 

point. 

a) E', Yomg's modulus of elasticity. 

(44) 

At strains' (Fig. S 1), metal 11a11 will deform plastically and 

metal "b" will deform elastically. A large value of E' (the slope of the 

stress vs. deformation curve) is more likely to result in plastic 

deformation. (A rubber band has a very small E', and is very elastic.) 

s 
t 
r 
e 
s 
s 

s' 

Fig. S 1. --Stress vs. strain. 

b) H, hardness. 

Hardness is a measure of the size of the plastic indentation left 
by a diamond or ball shaped indenter. H = P / A, where P is the force of 
the indenter and A is the area of the mouth of the indentation. So more 
plastic deformation means larger A and smaller H. 
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standard deviation of the heights of asperities 

radius of curvature of asperities 

If uh/r is large, the asperities tend to be tall and thin rather than 

short and stumpy. Large uh/r is more likely to result in plastic 

deformation. When uh/r is large, there are many tall asperities and 

many more occurrences of 6 > 6* (Fig. 52). 

Fig. 52.--Metal surface with large uh/r. 

When ah/r is small, the asperities are short and the occurrence 

of 6) 6* is rare (Fig. 53). 

1- - - - - - - - - - - - - - - - - - - f ~~o~ -

Fig. 53.--Metal surface with small ah/r. 

Viewing all these terms together, a large value of IJl indicates 

plastic deformation at the contact interface. Greenwood and 

Williamson found that: 

if IJ!> 1.0, then the transition load is small ( (2mg/cm2 nominal 
pressure) and plastic deformation will occur at all practical loads (that 
is, all loads above 2mg for a 1cm2 apparent contact area); 

if IJ!<0.6, then the transition load is large ()50kg/cm2 nominal 
pressure) and elastic deformation will occur at all practical loads (that 
15, all loads below 50kg for a 1cm2 apparent contact area). 89 
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4.5.3 Load Supported by a Plastically Deformed Asperity 

According the Chhabra and Wenning, an asperity under plastic 

deformation supports a load given by 90 

P. 1 =rrr.Y6. (45a) zp z z 

where r is the radius of curvature of the asperity 

Y is the elastic limit (or yield strength) of the metal 

6 is the deformation. 

There is a problem with equation (45a). It appears that Chhabra 

and Wenning derived it from eq. (5) and the relation 
, 

P. 1 = (average pressure) · (contact area) zp 
= Y · rra. 2 = Y · rr · (r. 6 .) . 

l l l 

implying that the average pressure on the face of the plastically 

deformed asperity is equal to the yield stress. However, it was shown 

in equation (34) and section 4.4.5 (Figure 48) that the average 

pressure on the contact face is actually about three times the yield 

stress (~ 2.8 ·Y). 

To correct this dilemma, (45a) could be modified using eq. (34): 

P.
1

= H·rra. 2 = (2.8·Y)·rra. 2 = (2.8·Y)·rr·(r.6.) (45b) zp z z z z 

The problem with making this modification to eq. (45a) is that the 

"constant" 2.8 actually changes with P. 1 in a nonlinear way between 1.1 zp 
(see eq. 37) and 2.8 (see eq. 34) until full plastic yielding takes 

place. Ignoring the nonlinearity may or may not be important in light 

of the other simplifications in CR 1 P (one must also consider the validity 

of eq. (5) within eq. (45a and 6)). The author tried both (45a) and 

(45b) in the CR1P model. 

Therefore, in the program CR 1 P, the load supported by a single 

asperity is 



{ 

(4/3) 6. 312 r .112 E/(1-µ2
) 

l l 

P. = 
z rr r . (K · Y) 6. , K = 1 or 2. 8 

l l 

if 6 i 6* 

if 6 > 6* 

(6 ) 

(45) 

4.5.4 Contact Area vs. Load for Plastic and Elastic Surfaces 

95 

This section is important because contained in it are some useful 

benchmarks for checking the adequacy of the elastic model CR 1. This 

section is based on the same Greenwood and Williamson contact model 

described in the previous section, and uses results from their 

model de'{elopment. 

It has been shown that the asperity heights follow a gaussian 

probability distribution. 91 Greenwood and Williamson claim that the 

right ail of the gaussian distribution, which represents the tallest 

asperities-those which are likely to make contact-may be 

approximated by an exponential distribution. The exponential 

distribution in z must first be scaled properly before it can be 

substituted into the formulas ( 41) and ( 42) for total contact area 

and total contact load. It is most convenient to use the normalized 

variables z'=z/oh and s'=s/ah and the distribution of z': 

-z' -z/a 
c/)(z') = e = e h 

Letting z = z' ·ah and s = s' ·ah in eq. (41) and (42): 

f
ro ' -z 

Pt= ~-(4/3)·E'-r112
• ah312 (z'-s') 312 e dz' 

z'=s' 
(42) 

from i\ppendix F, 

and f 
00 ' -z 

A = n ·rr-r· a (z'-s') ·e dz' 
t b z'=s' h 

(41) 

(46) 



from ,<\ppendix F, 

dividing, 

(3/4) ·wr112 

(3/2) ! ·a-h112 ·E' 

therefore the relation obtained is 

= a constant 

96 

(47) 

(48) 

- a propo_rtional relationship that has been observed in real contacts. 

This proportionality was derived using a purely elastic model, 

however, if one assLITT1es full plastic deformation, one is led to the 

famous relation stated in Tabor 92 

pt 

which is the definition of hardness, H. 

1 

H 
(49a) 

In fact, if one looks at equation (45a), one can also derive the 

proportionality between Pt and At for full plastic deformation: 

P.
1

=rrr.Y6. (45a) 
zp z z 

P =::EP. =Y::Errr . 6. =Y::Err[(r . 6.) 112 ] 2 
t . zpl . z z . z z 

l l l 

= Y L 1r (a .) 2 from eq. (5) 
. l 
l 

= Y·A (QED). t 
(49b) 

Thus, Ao::P assLITT1ing either elastic or plastic deformation. 

There is an apparent contradiction between eq. (49a) and (49b). 

Eq. (49a) says that Pt= H·At whereas (49b) says that Pt= Y·At" 

Solving, one obtains H = Y, which contradicts eq. (34): H ~ 2.8Y. The 
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problem, as was mentioned before, is that eq. (45b) may be more 

correct than eq. (45a), since the average pressure on the contact face of 

a plastically deformed asperity is ~ 2.8Y. (Section 4.4.S, Fig. 48). 

Equation (49a) can now be used to support this claim. 

Early attempts at using an elastic model failed to give the 

proportionality between At and Pt. That is because if one assumes that 

contact is made at one large single asperity, one is led to the result 

P = (4/3) 6312 r 112 E' t 

but At= rr-r·6 gives us 6 = At/rrr, which when substituted yields 

Pt= (4/3) (At/rrr) 312 r 112 E' 

= constant· A 312 

for the relation A ex P213 • 

The proportionality between A and P arises because new contact 

spots form as P is increased: a phenomenon not accounted for in the 

early models, but accounted for in the programs CR 1-CR3 and CR 1 P 

and in Greenwood and Williamson's model. 

4. S. S Contact Resistance 

The resistance of a single contact spot is given by Holm's formula 

R = p/2a spot 

where a is the radius of the spot. For "n11 spots having mean radius µ , 
a 

the total parallel resistance is 

R = p/2nµa. 

The mean value of the contact radius is derived from equation 

(5). Letting 6 = z-s, 

µa= r 112 f\z - s) 112 ¢(z} dz (50) 
s 



--
98 

Greenwood and Williamson say that the total contact resistance is 93 

p p 
(S 1a) 

(z - s) 112 cp(z) dz 

However, µ is the average contact radius of nb asperities, not n 
a C 

contact spots (compare eq. 40 to 41). Resistance should be a function 

of nc, not nb. To circumvent this difficulty, the author suggests 

redefining µ using equations ( 40) and ( 41): · 
a 

Then 

and 

n6 rr r f" (z - s) cj,(z) dz 
s 

µ A = --------- -

nb f 00 cp (z) dz 
s 

total contact area 

number of contact spots 

r f 00 

(z - s) cp (z) dz 
1/2 

[µAr s 
µ' = - --

a rr f 00 

cp (z) dz 
s 

[ I 00 l 112 
cp(z) dz 

p p s 
R2=- --

2nµ' [ nd 00 

cj, (z) dz] [ r r/2 a 2 r · (z - s) cp(z) dz 
s s 



p 

2 i-
112 n6 [ r <P(z) dz ] 11

2 

[ r (z - s) ,P(z) dz ] '
12 

Rt and R2 can be compared by assl.ll11ing an exponential 

distribution for the height z. As before, one uses the normalized 
-z, 

exponential q.>(z') = e , where z'=z/ o-h and s'=s/o-h. 

Eq. (51a) becomes 

p 
Rt=---------------

f 
00 

a- t/2 (z' - s') t/2 e -z' dz' 
s' h 

2 n rt12 

b 

p 

99 

(51 b) 

---------------,--s' 2 n r 112 O" 112 r(i/2 + 1) e 
(see Appendix F) 

b h 

p 
- ----------,-----s, 

2 ~ (r·o-h) uz e (0 .89) 

Eq. (Sib) becomes: 

Rz=---------------------

2 r-112 'b u:. e-z' dz'J'12 

( t: "h (z' - s') e-z' dz'r2 

p 

p 
-------------------

2 r 112 ~ O"h e-s r(1+1) (- e-z' I ros' ] 112 ( , ] u2 

p p 
- ------------ -----------s, u2 _

5
, 112 

2rt12 ~(e ) (a-he ·1) 
-s, 

2 n (r·o- ) 112 e (1) 112 
b h 
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Comparing, one gets R 1 ~ 1. 13 · R2 , a difference which, 

considering all the assumptions and approximations, is practically 

negligible. 
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If thin insulating films are present on the metal surface, then 

only those asperities that yield plastically will be able to conduct 

current, because only at those asperities will the film be cracked. To 

account fo lj' this, one replaces s with s+6* in the lower integral limits­

assuming, once again, that eq. (S) still holds for an asperity under 

plastic deformation. 

4.S.6 Summary of Greenwood and Williamson's Model 

(Jreenwood and Williamson's elastic deformation model is valid 

only if the asperities are far enough apart to be considered independent. 

If they are clustered closely together, mechanical and electrical 

interactions must be taken into account. This restriction was stated by 

Greenwood and Williamson themselves. 

As a summary of their model, let us review the procedure for 

calculating contact resistance: 

(1) Given the contact force F, let Pt = F and use equation (42) 

to calculate the contact separation, s (= s' ·ah). It is assumed that all 

other data required for (42) are known. 

(2) Having calculated s, use equation (Sia) or (Sib) to 

calculate the constriction resistance. This is an 11expected value11 of the 

constriction resistance. 

(3) Having calculated s, one may, if desired, use equation ( 41) 

to calculate the contact area. 

4.6 Results from CR!, CR!P, and Greenwood and Williamson 

(For notational purposes, if the contact pressure of an asperity 
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under plastic deformation is assumed to be "Y ," then the plastic 

deformation model will be called "CR1P<1>"; if the contact pressure is 

assumed to be 2.8·Y, then the model will be called "CR1p<2 -8>
11

• If the 

reference pertains to both models, the notation will be "CR1P" without a 

superscript.) 

The results from CR 1 and CR 1 P are shown in Figures 54 and 

55. The surface model is the same as that in Table 2 with the 

exception that nb = 400 asperities is constant and not a Poisson random 

number. And in CR1P, values for yield stress (Y = 260 MPa) and 

hardness (H = 74 kg/mm2 = 726 MPa) were used 94 (fortunately, the 

data for li and Y support eq. (34): H = 2.79·Y). 

There were 10 "measurements" made at each force. For the 

elastic deformation model CR 1 ~ P. was calculated by eq. (6) for all 
l 

asperities. For CR1Pm, P. was calculated by eq. (4Sa) if 6. ) 6*; and 
l l -

by eq. (6) if 6i < 6*. For CR1P<2
-
9>, P

2 
was calculated by eq. (45b) if 

c5. ) c5* and eq. (6) if 6. < 6*. An interesting note: when CR1P was run 
l - l 

using the values of Table 2, all contact spots were in plastic 

deformation at all contact forces. 

In Fig. 54(a), note how the linear relationship between actual 

contact area and contact force holds for both elastic and plastic 

deformation models. These plots demonstrate equations (48), (49a), 

and (49b). Also from these plots, it is interesting to calculate the 

ratio of actual to apparent contact area; and compare it to the comment 

in section 1. 6. 1 (in the Introduction) that claimed the ratio was 

"perhaps 1/1000." At SN, the ratios are [2x10-s m2/4x10-5 m2] ~ 

1/200 for the plastic deformation model CRiP<1> and 

[0.8x1Q-8/4x10-6] ~ 1/500 for both the plastic deformation model 

CR 1 P <2 
· 
9

> and the elastic model CR 1. These numbers are definite! y in 

the ballpark. 

Fig. SS (b) is a plot of contact resistance vs. contact force on a 
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log-log graph. Note the linear shape of the curves. By linear 

regression, the slopes of the lines were found to be -0. 6 7 8 for the 

elastic model CR 1; -0. 7 2 8 for the plastic model CR 1 P rn; and O. 7 46 

for the plastic model CR 1 P <2 ·a>. Thus, one has the relations 

Rex F-0 ·
678

, Rex F-0 •728 , and Rex F-0
·
746

, respectively, for the three 

models. 

Upon inspection of Figures 54 (a) and (b) and 55 (a), it appears 

CRiP<z.a> is closer in behavior to the elastic deformation model CR1 

than to CR1Prn. However, the slopes in Fig. 55(b) show that the two 

plastic deformation models behave similarly (they have slopes that are 

nearly eqval) and that the elastic deformation model behaves different! y 

from these. 

To compare the elastic model CR 1 to Greenwood and 

Williamson's model, data from Greenwood and Williamson were used. 

Their data were not complete enough to use in CR 1 (much of the data 

were given in dimensionless form, so some of their values had to be 

guessed at and the rest of the values were calculated to agree with their 

formulas. 

The data finally used in CR 1 are shown in Table 7. 

Greenwood and Williamson found a linear relationship between 

log (R) and log (F) for their elastic deformation model. Using equations 

(42) and (51a) developed in the preceding sections of this chapter, they 

found R ex F-0 · 9 for an apparent contact area of 1 cm 2 and a range of 

0.1 to 1000 N contact force. 95 By comparison, data generated by CR1 

(also using the values in Table 7) gave the relation R ex F-0 •51 over the 

range O. 1 to 3. 16 N and an apparent contact area of 1 mm 2• A 

comparison is shown in Fig. 56. CR1 could not calculate resistance 

when the force exceeded about 10N because of memory limitations (Note 

the large value of d in Table 7). 
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TABLE 7 

VALUES USED IN GREENWOOD AND WILLIAMSON'S MODEL 95 

da bump density 300/mm2 

avg(h) avg. asperity height 0.15 µm 

r avg radius of curvature 2.041 mm 

ah std dev of asperity heights 4.9x10-a m 

E Young's modulus 9.1x10 10 Pa 

p electrical resistivity 2.4x10-a Q·m 

a ~ was not a random number in this experiment 
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CHAPTER V. 

SUMMARY AND CONCLUSIONS 

5.1 Summary 

This thesis describes a series of computer models that predict 

contact resistance and contact resistance frequency distributions of 
11clean11 electrical contacts. By knowing the frequency distribution at 

different stages in the life of a contact, and by being able to predict the 

fraction of failed contacts based on a contact resistance failure 

criterion, one can predict the failure rate of the contact design at any 

time in its life. Thus, this work will lead to a model that can predict 

contact failure rate and contact reliability. 

The present models are: 

CR 1--Calculates constriction resistance for a contact consisting of 

a flat "bumpy11 surface in contact with a flat smooth surface. 

CR2--Calculates constriction resistance for a contact consisting of 

two '1burnpy11 surfaces in contact with each other. 

CR3--Calculates constriction resistance for a contact consisting of 

a flat '1bumpt surface in contact with a rounded smoooth surface. 

CR 1, CR2, and CR3 assume that the bumps are al ways under 

purely elastic deformation. 

CR 1 P--Calculates constriction resistance for a contact consisting 

of a flat "bumpy" surf ace in contact with a flat smooth surface; if 

the deformation of a 11bump11 is great enough, then the bump 

undergoes plastic deformation, and the equations for plastic 
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deformation apply. 

CR 1 P was \vritten to predict the constriction resistance of thin­

film-covered contacts. The assumption was made that the film is broken 

only at those asperities that are plastically deformed, and electrical 

contact is made only where the film is broken. 

Two methods for predicting the fraction failed based on the 

contact resistance distribution were also described. ( 1) The threshold 

resistance equation assumes that if a contact resistance exceeds a 

certain value R', then the contact has failed. From a contact resistance 

distribution, the fraction failed at time t can be predicted knowing R'. 

(2) The method of uniform residuals assumes that the "failed'' contacts 

at time t are those that are part of the high-resistance "tail" of a 

normal probability plot. In other words, failed contacts are those that 

do not follow a gaussian distribution. 

To predict the failure rate, either of these two methods can be 

used on time-varying contact resistance distributions using a discrete­

time approximation to the failure rate equation. 

5.2 Conclusions 

(Unless otherwise noted, the results from CR1 and CR1P are 

based on the contact surface data shown in Table 2; the hardness and 

yield strength data used in CR1P are those of brass, 70% Cu, 30% Zn.) 

(1) From Fig. 25, it is seen that for "clean" contacts, the flatter 

the apparent mating interface, the lower the constriction resistance, all 

else equal. A dimple vs. flat contact has a higher constriction 

resistance than a flat vs. flat contact. This result makes sense because 

the dimpled design-by reducing the apparent contact area-induces a 

further constriction of current that is added on to the constriction 

produced by the individual contact spots. In practice, however, the 
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dimple vs. flat design is used to concentrate the contact normal force to 

break down the insulating films that appear on most real contact 

surfaces. 

(2) Also from Fig. 25, it is seen that log(R) vs. log (F) is a 

straight line with a negative slope. Thus the relationship is 

R ex F-a where "R" is contact resistance (specifically, constriction 

resistance), "F" is contact normal force, and -a is the slope. 

(3) From Figs. 28 and 30, it is seen that the models CR1 and 

CR3 can predict the contact resistance of actual gold contacts 

reasonably well. The percent errors are sometimes large, but the 

absolute errors are small. Gold contacts in real life are the closest 

things to "clean contacts" because gold does not corrode and it resists 

organic film growth. Contact surface data used in CR 1 are shown in 

Tables 2 and 3. 

(4) It is seen from Table Sb and Figs. 31-38 that contact normal 

force has the greatest influence on contact resistance. The next most 

influential parameters are, in order: electrical resistivity; the ratio of 

average radius of curvature to the average height of asperities; and the 

shape factor length/width of the apparent contact area. The other 

parameters listed in Table Sb have little or no influence on the contact 

resistance. This conclusion is valid for the ranges of parameters given 

in Table 6. 

(5) From Fig. 54a, it is seen that, whether the elastic model 

CR1 or the plastic model CR1P is used, actual contact area vs. contact 

normal force is a linear relationship. The relationship is easily proven 

for the plastic deformation model by using eq. (45a) and eq. (5); and 

was proven for the elastic deformation model by Greenwood and 

Williamson in eq. (46)-(48). 

(6) CR1P was written to predict the contact resistance of 

thin-film-covered contacts. The author expected that the m.rrnber of 
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contacting asperities under plastic deformation would be less than the 

total number of asperities in contact. That is, CR 1P was expected to 

predict a higher contact resistance for a film-covered contact than for a 

clean contact under the assumption that, for a film-covered contact, 

only those asperities under plastic deformation can conduct electrical 

current; while for a clean contact, all contacting asperities can conduct 

electrical current. This makes sense, because a film-covered contact 

should have a higher contact resistance than a clean contact. 

However, in Section 4.6, it was pointed out that, under all contact 

forces studied (0.1-15N), CR1P predicted that all asperities would be 

under plastic deformation. Thus, it appears impossible for CR1P, in 

its present state, to predict a difference in contact resistance between 

clean and film-covered contacts. A new model may be necessary. 

(7) Like CR 1, CR 1 P predicts a negative linear correlation 

between log(R) and log(F). This is seen in Fig. 55. However, linear 

regression analysis showed that the slopes predicted by CR 1 and CR 1 P 

are different. When the average contact pressure on a plastically 

deformed asperity was assumed to be equal to Y (yield strength), the 

slope predicted by CR 1 P was -0. 7 2 8; when the pressure was assumed 

to be equal to 2. 8 Y, the slope was -0. 7 46. These slopes are closer to 

each other than the slope predicted by CR 1 for pure elastic deformation: 

-0.678. 

(8) Fig. 56 shows how the elastic deformation model CR 1 

compares with Greenwood and Williamson's elastic deformation model. 

The data were taken from Greenwood and Williamson's paper. The 

discrepancy in the results is apparently due partially to the fact that 

some of the data required by CR1 were not supplied by Greenwood and 

Williamson, thus requiring guessing at one or two values of the 

parameters and forcing the rest of the parameters to follow their 

equations. The contact surface data used in CR 1 are shown in Table 7. 
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S. 3 Recommendations 

The next step in this research may be to predict the change in the 

contact resistance distribution as a function of time (or age of the 

contacts). From the data obtained, one could then predict the failure 

rate, d (failures)/ dt, using contact resistance as the failure criterion. 

However, to predict the true failure of an electrical contact 

within a given circuit, one must know how the contact will affect the 

circuit. Knowledge of only the contact's resistance is not sufficient: 

electronic circuits can tolerate several hmdreds of ohms of contact 

resistance. Thus, a more complete description of the contact's 

electricar characteristics are required. Two possible approaches are: 

modeling the voltage vs. current characteristic of a degraded contact; 

and predicting the probability, duration, and magnitude of intermittent 

open circuits at the contact. The models could then be used in a circuit 

analysis package such a SPICE to predict the effect of the contact on the 

circuit. Once this step is done, it may be possible to correlate the 

increase in contact resistance to probability of actual failure. Given 

this data and the time-varying contact resistance distributions, a true 

failure rate can be calculated. 

Predicting these electrical characteristics will require some 

means of modeling a degraded contact surface. For example, predicting 

the voltage vs. current characteristic requires modeling of both the 

conduction and electrical breakdown properties of the contaminating 

films at the contact interface, and modeling of the distribution of the 

films over the metallic surfaces. Even the prediction of contact 

resistance distribution vs. time requires some means of modeling the 

insulating effects of those same films. Such modeling requires 

knowledge of chemistry (e.g. oxidation of metals, polymer film growth, 

diffusion of metal atoms, formation of metal phases, etc.), friction and 
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wear (and the consequent chemical reactions taking place), mechanical 

properties of thin films (such as oxides, tarnish, and pol yrners) , and an 

intimate knowledge of electromagnetics (how is the electrical field 

disturbed by the films?). 

The focus of the more advanced work should be on contacts 

designed for low voltage/low current/high data rate digital electronics. 

The possibility of electromagnetic emissions from the contact 

should also be looked at, as dirty metallic junctions have been shown to 

act as mixers and antennas, 96 and because crosstalk between nearby 

circuits can be detrimental. 
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APPENDIX A 

Failure Rate and System Reliability 
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The reliability of a series electrical circuit, such as a flashlight 

circuit (Fig. 1), is the product of the reliabilities of each of the 

components. 

-/.-1\/'/\..---) ---
(ONTM:T..).__ SWITCH R E51 STO~ 

1 
BATTERY 

Fig. 1--Flashlight Circuit 

Du~ to degradation of the components, the component reliabilities 

are generally functions of time; denote the reliability function of 

component i as R
2 
(t). Then the circuit reliability (n components) is 

n 
Rsystem (t) = TI R i (t) 

i=i 

(1) 

The reliability function of a component is uniquely determined by 
-

its failure rate function hi (t). The failure rate of a component is the 

number of failures of that component per unit time. It turns out that the 

probability of a component failing during the interval t and t+~t is 

hi (t) · ~t. 

In many practical engineering analyses, the failure rate function 

for a component is a constant, h. (t) = A .. Then the probability that the 
l l 

component will fail between t and t+~t is>... -~t; this probability 
l 

depends only on ~t and not on t. 

The question to be asked now is: given a constant failure rate, 

what is the reliability function of component i? (The reliability function 

is not constant when the failure rate is constant.) 

Define the probability that a component will have failed by 
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time t as Pf (t). Also, assuming that the component has a constant 

failure rate A., then the probability that the component will fail between 
l 

t and t+.6.t, assuming it was still functioning at time t, is A. ·.6.t. 
l 

Now the probability that the component will have failed by the 

time t+.6.t is equal to the probability that it failed by time t plus the 

probability that it was functioning at time t and then failed between t and 

t+.6.t (equation 2). 97 

(2) 

where R. (t) is the probability that the component was functioning at t. 
l 

Equation (2) can be rearranged: 

pf (t+.6.t) - pf (t) 

.6.t 
= A. ·R. (t) 

l l 

In the limit as .6.t --+ 0, one gets the differential equation 

dPf(t)/dt = \.·R. (t) 
l l 

(3) 

The probability that the component is still working at t+.6.t is 

equal to the probability that it was working a t and does not fail 

between t and t+.6.t (equation 4). 

R. (t+.6.t) = R. (t)·(i - \.·.6.t) 
l l l 

Rearranged, this is 

R. (t+.6.t) - R. (t) 
l l 

.6.t 

In the limit at .6.t --+ 0, 

dR. (t) / dt = -\. ·R. (t) 
l l l 

- -\. R.(t) 
l l 

(4) 

(5) 
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Equations (3) and (5) are a set of ordinary differential equations 

that can be solved using Laplace transform methods: 

sP f (s) - Pf (0) = ,\ Ri (s) 

sR. (s) - R. (0) = -)\. R. (s) 
l l l l 

(3 ') 

(5') 

Assuming that the component was functioning at t=O, one uses 

Pf (0) = 0 and Ri (0) = 1. Then one gets, in matrix form: 

-\2 l [Pf(s) ]-lo l 
s+\ . R. (s) 1 

l l 

The reliability R. (s) is solved for by Cramer's rule: 
l 

s 0 

0 1 s 
R. (s) = - -- -

l -)\. s (s+\.) s 
l l 

0 s+)\ . 
l 

Then Ri (t) = e 
-)\. t 

z 

1 

s+\. 
l 

(6) 

Thus if all components of the series circuit have constant failure 

rates, it follows from equations (1) and (6) that 

n -)\ (t) [ n ] R (t) = TI e i = exp - t 2 )\ . system z 
z=i z=i 

The ultimate goal of this research is to find h(t). h(t) may or 

may not be a constant \; the author guesses that h(t) will not be 

constant. 
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APPENDIX B 

Generation of Random NLDTlbers having a Specific Distribution 
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( 1) Gaussian Random Numbers 

Let X(i) be a uniformly distributed random number, 0 < x(i) ~ 1, 

such as that produced by a standard computer random number generator. 

(Fig. 1). By the Central Limit Theorem, a random number Y given by 

1 n 

Y = - 2 [ a·X(i) + b], where a and bare constants, 
n 

i=i 

has a distribution which approaches a normal (gaussian) distribution as n 

gets large. 

f(x) 

X 
0 

Fig. 1--0istribution of a Uniform Random Number 

The mean or expected value of Y (denoted µy or E (Y)) is 

µy= E(Y) = E ( ~ i [ a·X(i) + b] l 
z=1 

1 n 

= - 2 [ E{a·X(i)} + E{b}] 
n 

i=1 

since E{a·X(i)} = a·E{X(z)} = a·µX(i) and E(b) = b, one can write 

1 n 1 
µ y = n 2 ( a· µX (i) + b ) = n · n (a· µX (i) + b ) 

i=i 



The variance of Y is 

var(Y) = var I : _i [ a · X (i) + b ] ) 

z=i 

One uses the property var{c·X} = c2 var(X) where c is a constant: 

1 n 
var(Y) = - 2 var { a·X(i) + b} 

2 
· n i=i 

1 n 
= - 2 (a2 ·var{X(i)} + var{b}) 

2 
n . 1 z= 

1 
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(1) 

= - · a2 
• n var{X(i)} , var{b} = 0 since b is a constant. 

n2 

Then 

= a2 ·var{X(i)} In (2) 

Since X(i) is uniformly distributed, its density function is 

f(x(i)) = 1 for O s_ x(i) s_ 1 

= 0 elsewhere 

f co f I x2 (i) 1 

µX(i) = x(i) ·f(x(i)) dx(i) = x(i) dx(i) = - = 1/2 
-co O 2 0 

var{X (i)} = t: (x(i) - µX (;) ) 2 dx (;) 



-
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1 

= L (x(i) - 0.5) 2 dx(i) 

1 

= L (x2 (i) - x(i) + 0.25) dx(i) 

1 

= x3 (i) / 3 - x2 (i ) / 2 + 0.25x(i) I 
0 

= 1/3 - 1/ 2 + 1/ 4 = 1/12 

Substituting these values into equations ( 1) and (2): 

E(Y) = µy = a(i / 2) + b (1) 

2 

var(Y) = a-y = a2/12n (2) 

We can generate a normally distributed random number Y using a 

uniform random number generator. We select a, 6, and n to get suitable 
2 

values of µy and a-y, 

(2) Poisson Random Numbers 

Let X be a uniformly distributed random number with density 

function f(x). To generate Y, a random number with an arbitrary 

distribution., we need to find a transformation y = g(x) (Fig. 2). 

The function y = g (x) must be monotonically increasing so that 

p (X < x) = p (Y ~ y) 

will al 'J./ays be satisfied. 

Now if X is uniformly distributed, 0 < x < 1, then 

p(X < x) = F(x) = L: dx = Lx dx = x 

(3) 

(4) 
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y y 

y = g(x) 

t I 

shaded areas~(x) 
are equal 

--......,,_,._,.c-........,,_...-_____ __._ ___ x 
0 

Fig. 2--A Transformation y = g(x) 

Take Y as a Poisson-distributed random number. 

y -µ i 
e µ 

P(Y ~ y) = 2 
i! i=1 

Substituting (4) and (5) into (3), we get 

y -µ i 
e µ 

x= 2--., 
i=i l. 

which must be solved for y. 

(5) 

(6) 

Since y = g(x) is unique, equation (6) is the desired 

transformation. The easiest way to solve (6) is by iteration. Equation 

(6) cannot in general be satisfied exactly because Y, being a Poisson 

random number, is an integer. Thus the right side of (6) can only 

take on a discrete number of values once the parameter µ is chosen. 

The left side of (6), in contrast, can take on any value between zero and 

one. 
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APPENDIX C 

Derivation of GreenwocxPs Potential Equation 
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In this appendix an equation will be derived for the potential at a 

contact spot caused by current flowing through another spot a distance d 

away. This equation was used by Greenwood and in Section 2.6.3 in this 

thesis. 

Referring to Fig. 1, it is given that contact spot j conducts a 

current I .. The goal is to calculate the potential at point i, which may 
J 

or may not be another contact spot (it does not matter). Point i is a 

distance d. . from spot j. 
ZJ 

For simplification, assume that the region around spot j is a 

spherical equipotential volume. Current I . will flow radially into the 
J 

volume fr_om the bottom contact member, and out of the volume into the 

top contact member. Hemispherical equipotential surfaces will 

appear in each of the contact member. Current lines are perpendicular 

to the equipotential surfaces everywhere. 

~PHERE:, e,u;pJ-e,.~i.11. 
Fig. 1--Contact Spot and Equipotential Surfaces. 

Consider the top contact member only (Fig. 2). Current passes 

through hemispherical 11shells," normal to the surface of the shells. A 

shell has the incremental resistance 



Jr 

Ill //I ~ 

a11.1ifofe,,,+id/ sp~ere 

Fig. 2--Shell having incremental resistance and voltage drop. 

p dr 
dR = -- , where 2 rrr2 is the surface area 

2rrr2 

The potential difference across the shell is given by Ohm's Law: 

p dr 
cl¢= - I . --

J 2rrr2 

Note from Fig. 2 that d¢ and dr point in opposite directions. 

The potential at the equipotential sphere located a distance d . . 
ZJ 

from contact spot j is found by integrating d¢ from ground (r = oo), 

toward the contact spot to r = d
2 
J 

f 
d.. p dr 

<P. . = ZJ - I . --
ZJ r=oo J 2rrr2 

p 
= I . ­

J 2rr 

- p Ij [-1- - 0 J - _P_IJ_· 

2rr d. . 2rrd . . 
ZJ ZJ 

Q.E.D. 

124 



APPENDIX D 

Normal Probability Plot 
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(This appendix will use the standard convention of naming a 

random variable with an uppercase letter--e.g., X--and denoting specific 

values of that random variable with the respective lowercase italicized 

letter--i.e., x. If the values of the random variable occur in a set, then 

the lowercase letter will include an index--e.g. x(i) .) 

Let Xp be a gaussian-distributed random variable having a mean µ 

of zero and a variance CT2 of one (written Xp = N (0, 1)). If a plot of r 

versus x is a straight line, then R is also gaussian-distributed. 98 This 
p 

will be proven here. 

The distribution of Xp is shown in Fig. 1. If Xp = N (0, 1) then 

the value x = 1 is one standard deviation from the mean. The - p 
probability density function of x is given by equation (1). 

p 

1 (1/2) 2 
f(x ) = --e- xp 

P '{(2rr) 

--1 (T--

Fig. 1--Distribution of Xp = N(O, 1) 

(1) 

The cumulative distribution is the integral of f (x) from -oo to x 
p 

(equation (2)) and is the 11 percentile11 of x divided by 100. 
p 
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X 
def 1 f p 

p (Xp < x ) = F (x ) = 
P P J_(2rr) -co 

-(1/2) x2 d e X (2) 

where p(Xp < xp ) is read "the probability that the random variable Xp 

is less than or equal to the specific value xp . 11 

Now assl.llTie that r(i) vs. x (i) is a straight line (Fig. 2). This 
p 

means that R = a·Xp + b where a and bare constants. One can write 

or 

r(z) = a·x (i) + b 
p 

r(i) - b 
X (i) =--
p a 

Substituting equation (3) into equation (2) : 

1 J (r(i)-b) / a [ 1 r,(i)-b · 2 l r,(i)-b 
F(x (i)) = - exp - - [-j · d [-] 

p v'(2rr) 2 a a 
- -co 

[
r,(i)-b] 1 

But d --- = - · dr, (i) , thus equation (4) becomes a a . 

1 J (r(i)-b) / a [ 1 r'(i)-b ]2 
F(x (i)) = -- exp - - [--] dr'(i) 

P av'(2rr) 2 a 
- -a, 

= p(R < r(i)) = F(r(i)). 

(3) 

(4) 

(5) 

It follows from equation (5) and the definition of a gaussian distribution 

that R is gaussian-distributed with variance a2 (or standard deviation a) 

and mean b. We would write R = N(b, a2
). Thus a liner= a·x + b 

p 
has a slope equal to the standard deviation of R (Figure 2). 

To create a normal probability plot (NPP) of data r(t), one must 

satisfy (S) by finding corresponding values xp (i) such that 
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r 

I 
I 
I 

I I 
'-10-- I 
I I 
I I 

X 
-3 -2 -1 0 2 3 p 

Fig. 2--r vs. x ·showing how the slope is the standard deviation of R. 
p 

for all i. 

F(x (i)) = F(r(i) ) 
p 

To do this, use the following steps: 

(6) 

1) List the n values of r in ascending order and index them such that 

the smallest r is assigned i=L Then find the percentile of each r(i). 

The percentile is 100 i/n . The percentile divided by 100 is F (r(i)). 

2) Find the value of xp(i) from a standard normal probability table 

• that satisfies equation (6). 

As an example, assl.llTie one collected and ordered 160 resistance 

measurements in accordance with step 1 above; and r(150) =1.35 mQ. 

The percentile is (1S0/160)·100% = 93.75% and F(r(150)) = 0.937S. 

The x that gives an area of 0. 937S under the normal curve is 1.S342 
p 

(Figure 3). Thus on an NPP one would plot a point at 1.3S on the 

resistance axis and 1.S342 on the x axis. Equation (21) in section 
p 

2. 7 in the main body of this thesis gives an approximate value of x that 
p 

is much easier to calculate in a computer program. 



shaded area 

= 0.937S 

-3.0 -2.0 -1.0 0 1.5342 

Fig. 3 .Area under a Normal Curve 

129 

3.0 



APPENDIX E 

Principal Shear Stress Example 
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Fig. 1 shows a cubic block whose sides of area A are principal 

planes. The block is compressed by a force F 3 on the top plane TI3. 

The plane of maximum shear stress (i.e., the angle 0) is found by 

maximizing 

F3 F3 sin0 F 3 

0- = - = --- = - sine case = P3 sine case 
A' A/case A 

One shows that TI 1 and TI 3 are principal planes by letting e = 90° 

and 0° respectively and discovering that a-, the shear stress on these 

planes, is zero. 

d [ F3 l - - sine case 
de A 

F3 [ ] set = A cas2e - sin2e = o 

shear plane 

principal plane 

TI3 

principal plane 

TI1 

Fig. 1--Block subjected to a force F 3 • 

cos2e = sin2e 
case = + sine or e = + 45° 
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The second derivative is 

:, [ 2 cose (-sine) - 2 sine (case) J < a for a < e < go•. 

Thus the maximum shear stress due to F 3 occurs on a plane oriented at 

e = 45°; e is positive in the clockwise direction from TI3• This 

is the angle of the plane of maximum shear stress for the case of one 

principal stress. 

The value of the maximum shear stress is obtained by letting 

e = 45°: 

F3 F3 1 1 1 
u = - sin 45° cos 45° = - · - · - = - PJ 

A A ~ ~ 2 

Fig. 2 shows the effect of two "principal" forces F 1 and F 2 • 

The plane of the maximum shear stress (the angle 0) is found by 

maximizing 

F3 ' F1 ' F3 sin0 F1 case 
G=j1 = -- -= 

A3' A1' A3/cose A1 / sine 

= PJ sin0 case - p1 case sine 

Taking the derivative of a-31 with respect to e and setting equal to zero: 

set 
p3 (cos20 - sin20) - p1 (cos20 - sin20) = 0 

we again obtain the result e = 45° for maximum shear stress. 

The value of the shear stress acting along the 45° shear plane is 

1 1 1 1 1 

P3t = 0'"31 I 0=450 = p3 Y__2 . Y__2 - Pt Y__2 . Y__2 = 2 (p3 - P1) 

which is the principal shear stress due to p 1 and p3 . 
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principal plane TI 3 

principal plane TI 1 

• 

Fig. 2--Combined forces on a cube of principal planes. 
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APPENDIX F 

Calculation of a Gamma Function-Related lntegral 
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In this appendix the following definite integral will be calculated 

f 
00 a -z 

z=s (z-s) e dz for s and a 2 0 (1) 

To accomplish this, first recall the definition of the gamma fllllction: 

f
a:, 

-x a-1 r(a) = e X dx 
x=O 

let fJ = a-1 or a = {J+ 1 and substitute 

r({J+1) = f 00 

e-x x {J dx 
x=O 

now make· a variable substitution so that ( 1) looks like (3) 

x = z - s or z = x + s 

dz= dx 

and the limits on the integral 

when z = s, x = 0 

when z = ro, x = ro 

substituting (4) and (5) into (1) 

f 
00 

a -(x + s) d -s f 00 
a -x x e x=e x e dx 

x=O x=O 

(2) 

(3) 

(4) 

(5) 

(6) 

now the right side of (6) looks like (3) except for the factor exp(-s). 

So the right side of (6) is equal to 

-s 
e r(a+1) 

Therefore, f
a:, 

a -z -s (z-s) e dz= e r(a+1) 
z=s 

QED. 
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