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ii 

In this thesis, a step-varying design technique is 

applied to a MIMO continuous time-invariant system. A general 

method of updating one input at a time and measuring one 

output at that time, is presented to convert MIMO continuous 

time-invariant plant into SISO, periodic, step-varying system. 

A step-varying controller consisting of a step-varying state 

feedback design and a step-varying estimator design is 

developed. This step-varying design is applied in real-time 

for an application example and real-time results are compared 

with those of simulation results. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Classical or conventional methods for design and analysis 

of control systems are simple and require only a reasonable 

number of computations. But they are applicable only to 

linear time-invariant systems having a single input and a 

single output. They are based on the input-output 

relationship of the system, that is, a transfer function. 

Modern control systems may have many inputs and many outputs 

and may be time-varying and/or nonlinear. State space methods 

for analysis and design of control systems are better suited 

for such types of systems (l]. 

The state space method is based on the description of 

system equations in terms of n first-order differential 

equations ( for continuous-time system) or difference equations 

( for discrete-time system) , which may be combined into a 

first-order vector-matrix differential or difference equation. 

The use of vector-matrix notation greatly simplifies the 

mathematical representation of systems of equations. 

in state space can be carried out for a class of 

instead of a specific input function such as the 

Design 

inputs, 

impulse 

function, step function or sinusoidal function. It is also 

easy to see the response of the system to initial conditions 

using the state space method. 



-
2 

In the state space method of design, there are three 

types of variables that are involved in the modeling of 

dynamic systems: input variables, output variables, and state 

variables. For a linear continuous time-invariant plant, the 

state space model may be written as 

where 

x( t) = Ax( t) + B u ( t) ......... State Equation 

y( t) = C x( t) + D u ( t) ........ Output Equation 

x(t) = n-vector 

y(t) = m-vector 

u(t) = r-vector 

A= n x n matrix 

B = n x r matrix 

C = m x n matrix 

( state vector) 

( output vector) 

( input vector 

( state matrix 

( input matrix) 

( output matrix) 

(1. 1) 

D = m X r matrix ( direct transmission matrix) 

The state space model or any other mathematical model for 

the plant is usually obtained using physical laws governing 

the system. 

When a digital controller is used to control a 

continuous-time plant, a discrete-time model of the plant must 

be obtained and then the appropriate design techniques must be 

applied in order to get an acceptable response of the 

controlled system. One discrete-time model for the above 

continuous-time plant has the following form: 



where 

x( (k+l) T) = 4> x(kT) + r u (kT) 

y(kT) = C x(kT) + D u (kT) 

3 

A = T - t 

The above discrete-time model is obtained by assuming 

that all the components of the input u(t) are sampled and held 

constant over the interval between any two consecutive 

sampling instants. It is also assumed that all the inputs and 

outputs are sampled simultaneously, and that the sampling is 

periodic. Since the coefficient matrices in the above 

equations are constants, i.e., not functions of the time step 

k, the system is called a discrete time-invariant system or 

step-invariant system. 

Once the mathematical model of the system is determined, 

a designer can apply different design techniques to get an 

acceptable response of the controlled system. If there is a 

requirement that one or more outputs of the system follow a 

specific reference input or inputs, then the control system 

design is called a tracking system design or servo system 

design. 

In a tracking system design, the objective is for the 

system outputs to track (follow) an equal number of reference 

input signals. Regulator design is a special case of tracking 

in which the desired tracking value is zero. In that case, the 

objective is to bring the system tracking outputs near zero in 



-
4 

an acceptable manner, often in the presence of disturbances. 

Thus, in tracking system design, a designer must design a 

controller not only to have specific tracking outputs but also 

to have an acceptable transient response in presence of 

disturbances or initial plant state (2]. 

The tracking system design may be carried out in two 

steps. In the first step, the initial plant state or 

disturbance effect is forced to zero, and, in the second step, 

the tracking outputs are forced to track reference inputs. 

The first step is referred to as regulator design, and the 

response of the controlled system is called a zero-input 

response, since the reference inputs are zero. The second 

step is called tracking system design and the response of the 

controlled system is called a zero-state response, since plant 

state is zero. 

To obtain an acceptable zero-input response, a pole 

placement design technique or optimal control method can be 

used. In these methods, all state variables are fed back to 

form the control signal; such designs are called full state 

variable feedback (SVFB) designs. In practical control 

systems, however, measurement of all state variables may not 

be possible. Then, in order to implement a design based on 

state feedback, it becomes necessary to estimate the state 

variables by using a state observer. 

Once the zero-input design is done, tracking system 

design is carried out using different methods, such as 

integral control, response model design, reference model 
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design, or ideal tracking system design [2]. 

1.2 Objective 

The purpose of this thesis is to design a digital 

controller for a multivariable analog system. We could use a 

discrete step-invariant model for a multiple-input multiple­

output plant (MIMO) by sampling all the outputs simultaneously 

and updating all the inputs simultaneously at the same 

instant. This simultaneous sampling requires as many A/D 

converters as the number of outputs, as many D/A converters as 

the number of inputs, and synchronization of all sampling. 

Because of hardware limitation in the control laboratory, an 

attempt has been made to sample only one output at a time and 

update only one input at the same time. This specific way of 

sampling results in a single-input, single-output (SISO) 

discrete time-varying system. In this case the coefficient 

matrices are function of the time step k, so the system is 

also called a step-varying system. 

The pole-placement method of design for obtaining 

desirable performance cannot be used for a step-varying 

system. Gene Hostetter has introduced step-varying controller 

techniques that can be used for discrete step-varying systems 

[2]. These techniques require a modest addition in knowledge 

and effort. The implementation of step-varying control 

requires a bit more complexity than the step-invariant 

control, a small price to pay for the ability to control step­

varying plants. The additional design freedom can be used to 
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improve controller performance for step-invariant plants. 

The objective of this thesis is to apply Hostetter's design 

technique to the SISO step-varying model of a MIMO analog 

system, and to implement the design in hardware in the control 

laboratory. 

1.3 overview 

In chapter two, basic ideas about step-varying systems and 

step-varying controllers are explained in detail. Application 

of the design technique for a specific MIMO system is carried 

out in chapter 3. The appropriate hardware and software for 

real time implementation of control system are also explained 

in chapter 3. Chapter 4 contains results and conclusions. 
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CHAPTER II 

STEP-VARYING CONTROLLER THEORY 

2.1 Introduction 

In this chapter, we present a procedure for designing a 

SISO digital controller for a MIMO plant. When implemented on 

a single-processor computer, such a design allows the 

processor to handle the I/0 and to evaluate the control 

algorithm in a simple, efficient manner. Using a SISO design 

necessitates multiplexing input-output samples, and hence 

results in a time- (or step-) varying system model of the MIMO 

plant. In section 2.2 some aspects of step-varying systems 

are presented. In section 2.3, a technique for modeling a 

time-invariant M'IMO plant as a step-varying SISO discrete 

system is developed. Finally, the design of a Step-varying 

controller is covered in section 2.4. 

2.2 step-Varying systems 

In this section, some general results about step-varying 

discrete systems are introduced. The presentation here 

follows closely that in Hostetter [2]. Consider a discrete 

step-varying system having a state space model of the form, 

x (k+l) = ~(k) x(k) +r(k) u(k) 

y(k) = C(k) x(k) + D(k) u(k) 

State Equation ... . ( 2 . 1) 

Output Equation .... (2. 2) 

WILLIAM F. MAAG LI BRARY 
YOUNGSTOWN STATE UNIVERSI 
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The coefficient matrices each may vary with step as 

indicated by ~(k), r(k), C{k), D(k). The vector signal delay 

diagram for the system is given in Figure 2.1. 

For step-invariant systems, the coefficient matrices~, 

r, c, Dare constant. Some of the ideas and results for step­

invariant systems have counterparts for step-varying systems; 

the Z-Transform, however, is of no help in finding the 

response of a step-varying system. Also matrix eigenvalues do 

not have same significance for step-varying systems .as they do 

for step-invariant ones. · 

The response of a discrete step-varying system can be 

calculated recursively from the state equation {2 .1) , the 

initial state x{O), and the input u(k) as follows. 

~---------------.tD(k) 
O(k)u(k) 

~----. r<k>u<k> 

u(_k __ ) ~+(k) I ~o X (k) .. elay 
x (k+l) •• C(k)x(k) 

.,___,.y(k) 

t(k)x(k) 

~ (k) 
~ 

~ 

Figure 2.1: Block diagram for a Step-Varying System. 



• 

x(l) = 4>(0) x(0) + r(0) u(0) 

x(2) = 4>(1) x(l) + r(l) u(l) 

= 4> (1) 4> (0) x(0) + 4> (1) r(0) u(0) + r(l) u(l) 

x(k) = <l>(k-1) 'll(k-2) ... 4>(0) x(0) + 'll(k-1) ... 4>(1) r(o) u(0) 

+ <l>(k-1) ... 4>(2) r(l) u(l) + •..•• 

+ <l>(k-1) r(k-2) u(k-2) + r(k-1) u(k-1) 

= rr~-1 ft, (i) x(0) + ~-1 rr~-~ 4> (j) r (i) u (i) 
i - o L1-o 1=i•1 

2.2.1 stability of a step-varying system 

9 

This section presents a basic concept of stability for 

a step-varying system. A system with state equation (2.1) is 

zero-input stable if for every set of finite initial 

conditions xzero-input (0), the zero-input component of the state 

governed by 

Xzero-input(k+l) = <l>(k) X zero - input(K) 

approaches zero with step, that is 

limi t(k -oo) II xzero-input (k) II = 0, 

where the double bars indicate the Euclidean vector norm. 

The system is zero-state stable if and only if for zero 

initial conditions and every bounded input 
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the zero-state component of the state, governed by 

Xzero-state (k+l) = <I> (k) Xzero-state (k) + r (k) u (k} 

Xzero-state ( 0) = 0 

is bounded, that is 

Xzero-state (k) II < P , k=0,1,2 .... 

10 

A linear discrete time system is stable if it is both 

zero-input and zero-state stable. Having defined stabiliti, 

it may not be an easy matter to determine whether a given 

step-varying system is stable. But, whether the system is 

stable or not, there is the possibility of using feedback to 

obtain an acceptable response. 

2.2.2 step-Varying Feedback Control 

Hostetter [2] has developed a design procedure for using 

step-varying feedback control to shape the zero-input response 

of a step-varying plant. Since the design developed in this 

paper is an extension of Hostetter's approach, the basics of 

Hostetter's approach are reviewed here. 

Consider a single-input, n th-order step-varying plant with 

following state equation, 

x (k+l) = <I> (k) x(k) + r(k) u(k) 

for which we need to have an acceptable zero-input response. 
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The SVFB (state variable feedback) control law is given by 

u (k) = -F(k) x (k) 

where F(k) is a step-varying feedback gain matrix. The 

feedback system is 

x(k+l) = [ell (k) - r(k) F(k)] x(k) 

Then zero-input response of the feedback system is 

xzero-input(k) = A(k-1) A(k-2) ... . A(O) x(O) 

where A(i) =cll(i) -r(i) F(i) 

To have the zero-input response of the feedback system 

decay to zero inn steps and beyond, it is required that 

A(n-1) A(n-2) ..... A(O) = 0 

This condition can be met if 

j 11 A(n-1) A(n-2) .... . A(O) = 0 

j 12 A(n-1) A(n-2) .... . A(O) = 0 

j 1 n A(n-1) A(n-2) .... . A(O) = 0 ........ (2.3) 

where j 1 , j 2 , ••• j n are any n linearly independent n-vectors. 

These are called basis vectors because they span the n 

dimensional state space. Relation (2.3) is in turn obtained 

if 
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j\ A(n-1) = 0 

J 1
2 A(n-1) A(n-2) = o 

j 1 n A(n-1) A(n-2) ..... A(O) = 0 
...... (2.4) 

The first equation in relation (2. 4) is in terms of 

feedback gain F(n-1), 

i. e j 1
1 A(n-1) = j 1

1 [4> (n-1) - r(n-1) F(n-1)] = 0 

F(n-1) 
j 1

1 [4>(n-1)] 
= 

J'1 r(n-1) 

Similarly the second equation of relation (2.4) gives 

F(n-2) 
j 1

2 A(n-1) 4>(n-2) 
= 

j 1
2 A(n-1) r(n-2) 

In general, for k th step 

F(k) 
J'n-k A(n-1) .... A(k+l) 4>(k) 

= 
J'n-k A(n-1) .... A(k+l) r(k) 

These computations proceed backward in step. 

After n steps, the zero-input response will ideally been 

driven to zero. However, if there are inaccuracies in the 

equations or disturbances acting on the plant, it is required 

to drive the response towards zero on succeeding steps. This 

can be done by computing gain matrices beyond n steps by 

repeating the algorithm for every group of n steps. Thus 
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F(2n-l) 
j 1

1 ~ (2n-l) 
= 

j 11 r(2n-l) I 

F( 2n-2) 
J 1

2 A(2n-l) ~ (2n-2) 
= 

j 1
2 A(2n-l) r(2n-2) 

and so on. 

The feedback system designed above is called a deadbeat 

design since the zero input response is driven to zero inn 

steps. 

2.2.3 step-Varying Observer 

The design method presented above utilizes the feedback 

of all the state variables. In many practical cases, only a 

few state variables of a system are measurable and the rest 

are not measurable. Hence it is necessary to estimate the 

state variables that are not directly measurable. A state 

observer, also called as a state estimator, is a subsystem in 

the control system that performs an estimation of the state 

variables based on the measurements of the outputs and the 

control variables. A full-order state observation means that 

we observe (estimate) all n state variables regardless of 

whether some statse are available for direct measurement. 

This concept of observer of step-invariant plants is the same 

for step-varying ones. However, the eigenvalue placement 

method does not hold for step-varying case because the 

observer error is not generally governed by powers of a matrix 

for step-varying systems. Also, in the step-invariant case, 
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continuous convergence of the observer is guaranteed, but for 

step-varying observers we must specifically design continued 

convergence; it is not automatic. A step-varying observer may 

also be desirable for a step-invariant plant because it can 

give an error response with a relatively small transient 

response amplitude. 

For the n th order step-varying plant (relation 2 .1), a 

full-order state observer is -another n th order, linear, step­

varying system of the form 

x(k+l) = cl> (k) x(k) + r (k) u (k) + p (k) [y (k) - y(k)] 

y(k) = C(k) x(k) 

The observer gain sequence P(k) should be such that the 

A observer state x(k) converges to that of the plant state 

x(k) in adequate steps. The error between the plant state 

and observer state is governed by 

x(k+l) - x(k+l) = [<I> (k) - P(k) C(k)] [x(k) - x(k)] ... (2. 5) 

= A(k) [x(k)-x(k)] 

where 

A (k) = <I> (k) - P(k) C(k) 

Therefore, at the n th step, the error is 

x(n) - x(n) = A(n-1) A(n-2) ... . . A(O) [x(O) -x(O) J 

If P(O}, P(l), .... P(n-1) are chosen so that 

A(n-1) A(n-2) .... A(O) = 0 
•.••••• (2.6) 
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then the observer state will be equal to the plant state at 

the n th step and beyond. 

The desired relation (2.6) is obtained if 

A(n-1) A(n-2) .... A(O) jl = 0 

A(n-1) A(n-2).,, .A(O) j2 = 0 

A(n-1) A(n-2) ... . A(O) jn = 0 
• • • • • • • ( 2 • 7 ) 

where j 1 , •••• jn are any n linearly independent n-vectors. 

The relation (2.7) is in turn obtained, if 

A(O) j 1 = 0 

A(l) A(O) j 2 = 0 

A(n-1) A(n-2) .... A(0) jn = 0 
....... (2.8) 

The first equation of relation ( 2. 8) is 

[4> (0) - P(0) C(0)] J1 = 0 

P(0) 
4> ( 0) J1 .. = 
C(0) J1 

then A ( 0) = 4> (0) - P(0) C(0) 

From the second equation, 

[4> (1) - P(l) C(l)] A(0) j
2 

= 0 

P(l) 
4> (1) A(0) j 2 = 
C(l) A(O) j 2 
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then A (1) = fl, (1) - P(l) C(l) 

Continuing in this fashion, at the k th step, 

P(k) 
'1l(k) A(k-1) A(k-2) .. . A(O) jk+l 

C(k) A(k-1) A(k-2) ... A(O) jk+l 

The resulting observer is termed deadbeat since its error 

is zero inn steps. 

In n steps, the observ.er error will ideally be zero; 

however, if there are inaccuracies we have to drive any 

remaining error towards zero on succeeding steps. This is 

achieved by using the same algorithm for succeeding groups of 

n steps as, 

P(n) 
fl, (n) J1 

= 
C(n) j 1 

then A (n) = '1l (n) - P(n) C(n) 

and so on. 

2.3 Conversion of MIMO plant into SISO system 

Our aim is to design a digital controller for the 

continuous-time plant. Therefore we need to develop a 

discrete-time model of a continuous-time plant. A commonly 

used, linear, continuous, time-invariant system has the state 

space model: 

x(t) =Ax(t) +Bu(t) 

y(t) =Cx(t) 

Assume that the continuous-time system is controllable 
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and observable. A discrete-time model for this continuous-time 

system is given as 

x( (k+i) T) = 4> x(kT) + r u (kT) 

y(kT) = C x(kT) 

Where 

P= foT eATdt . B 

T = Sampling Period 

•••••.. (2.9) 

••••••• (2.10) 

Here coefficient matrices~, rand Care constants for 

the system. Use of this model assumes that we measure all the 

outputs simultaneously as well as update all the inputs at the 

same instant and hold these inputs constant for each sampling 

period. We want a SISO system, because we want to measure 

only one output at a time and update one input at the same 

time as shown in figure ( 2. 2) . Then, with respect to a 

digital controller, the plant to be controlled is SISO step­

varying. 

The sampling mechanism used here is demonstrated by 

considering a simple three-input, two-output, 5 th order 

system as: 

where y 1 , y 2 , y 3 , are Sxl colwnn vectors. 

y(k) = [ ::] x(k) 

where c 1 , c 2 are (lx5) row vectors 
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Figure 2.2: Sampling Mechanism for MIMO plant to convert it to 
SISO Step-Varying System. 

To develop a SISO system we need to update only one input 

at a time and measure only one output at that time. The period 

of the SISO step-varying system can be made equal to the order 

(n=5) of the MIMO step-invariant system. This can be achieved 

if the input update pattern is repeated every five steps and 

the output measurement pattern is repeated every five steps. 

The input update pattern can be selected using controllability 

indices of each input. Also the output sampling pattern may 

be selected using observability indices of each output. This 

is evident from figure (2.3a) and figure (2.3b) which shows 

this sampling mechanism for three-input, two-output, fifth-
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order system for two different patterns. Note that the fifth 

order system is assumed to have controllability indices 2,2,1 

and obervability indices 3,2. Also remember that sampling 

period for both input as well as output must be same. Then 

the state equation for the SISO system can be written as, 

x(k+l) = 4> x(k) + ~1 (k) u(k) + ~2 (k) u(k-1) + ~3 (k) u(k-2) 

where, 

a) For pattern (a) 

k 

k 

k+l 

k+2 

k+3 

k+4 

and so on. 

b> For pattern (b) 

k 

k 

k+l 

k+2 

k+3 

k+4 

and so on. 

Note that ~i has the same dimensions (5xl) as that of yi 

( i=l, 2, 3) . Here u (k) is the input which is updated at a 

particular instant. Also, for simplicity, the sampling period 
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Figure 2.3: Sampling Mechanism for obtaining the period for 
srso System equal to the order of the MIMO System. Two 
~atterns for 3 inputs, 2 outputs, fifth order System are shown 
in (a) and ( b) . 
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Tis omitted from the equation; thus x(k) means x(kT), and so 

on. 

In matrix form, 

x(k+l) l ~ ~2 ~3 

V1(k+l) = 0 0 0 

V2 (k+l) 0 1 0 

where, 

V1 (k) = u (k-1) 

v 2 (k) =u(k-2) 

[

x(k) 

V1 (k) 

V2 (k) 

And the output equation is, 

y(k) = C(k) x(k) 

where, 

a>For pattern (a) 

+ ~11 ~ u (k) 

C (k) =c1 

C (k) =c2 

for k=0,1,2, 5,6,7, 10, ... . 

for k=3,4, 8,9, 13, ... . 

b>For pattern (b) 

C (k) =c1 

C (k) =c2 

for k=0,2,4, 

for k=l,3, 

5,7,9, 10, .... 

6,8, 11, .... 

The above system is SISO step-varying and periodic of 

period five. 

Now consider a general r-input, m-output, n th order system 

of equations (2.9) and (2.10}. These equations can be written 

as 



-

x( (k+l) T) = <l> x(k) + [y 1 Y2 · · • Yr] 

where y is are columns of r (k) 

ur(kT) 

(i=l,2 ... r) 

y(kT) = x(kt') 

where ci s are rows of C(k) ( i =l, 2 ... m) 
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Since we are updating the inputs one at a time, the state 

equation for r-input n th order plant is, 

x(k+l) = <l> x(k) + ~1 (k) u (k) + ~2 (k) u (k-1) + ~3 (k) u (k-2) 

+ .... + ~r-1 (k) u(k-(r-2)) + ~r(k) u(k-(r-1)) (2.11) 

where the values of~,, ~2 , ••• ~r depend on the input update 

pattern and on the controllability indices of the MIMO plant. 

The equation (2.11) can be written as, 

x(k+l) = <l> x(k) + ~1 (k) u (k) + ~2 (k) v 1 (k) + ~3 (k) v 2 (k) 

+ ......... + ~r-1 (k) Vr-2 (k) + ~r (k) Vr-1 (k) 

where, 

v 1 (k) = u(k-1) i.e. v 1 (k+l) = u (k) 

v 2 (k) = u (k-2) i.e. v 2 (k+l) = v 1 (k) 

V3 (k) = u (k-3) i.e. V3 (k+l) = V2 (k) 



• 

vr_2 (k} = u(k- (r-2)) i.e. 

vr-l (k) = u (k- (r-1)) i.e. 

vr-z (k+l) = vr _3 (k) 

vr-l (k+l) = vr-z (k) 

Therefore the state equation for the system in matrix form 

is 

x(k+l) 

v 1 (k+l) 

v2 (k+l) 

= 

(b ~2 ~3 

0 0 0 

0 1 0 

~r 

0 

0 

vr-z (k+l) 

vr-i (k+l) 
0 0 0 . . 1 0 

The output equation is 

y (k) = C(k) x (k) 

x(k) 

v1 (k) 

v 2 (k) 

vr-2 (k) 

vr- 1 (k) 

+ u (k) 

0 
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where C{k) depends on the output measurement pattern and the 

observability indices of the MIMO plant. The above system 

is SISO step-varying and periodic of period n. 

2.4 Tracking system Controller Design 

Tracking system design may have two steps: 

a) zero-input response design (sometimes called regulator 

design), and 

b) Zero-state response design (or steady-state response or 

tracking design). 

In regulator design, the performance objective is to make 

the zero-input response of the system decay to zero in a 

desired manner whatever the initial conditions are. This is 
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achieved using state variable feedback. In tracking system 

design, the objective is to make the tracking outputs track 

the reference inputs once the initial transients die out. 

Friedland [3] combined these two steps by defining error state 

variables and applying regulator design technique to these 

error state variables instead of state variables themselves. 

This reduces the need to design the two responses separately. 

Section 2.4.1 explains the concept of error state variable 

design. This idea is combined with Hostetter's idea of step­

varying feedback in section 2.4.2. 

2.4.1 Error state variable design 

For a linear, continuous time-invariant system (relation 

1.1), it is possible to completely specify the closed loop 

dynamic performance of the system by placing closed loop poles 

(eigenvalues) anywhere in the complex s-plane in principle. 

Practicability depends upon the particular plant, hardware 

available, cost, etc. The method used to achieve this is 

called pole-placement design [3]. 

In this method, a designer determines a gain matrix Fin 

a linear feedback law, 

u(t) = - F x(t) 

which shapes the dynamic response of the process in the 

absence of reference inputs. The designer selects the 

feedback matrix F such that the eigenvalues of the closed loop 

dynamic matrix, 
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Ac = A - BF 

are at desired locations. 

In general the designer not only needs to achieve good 

zero-input response but also needs to design the control so 

that tracking outputs track the reference inputs. In order to 

achieve both the above objectives in one step, Friedland 

defines a error state vector as 

e(t) = x(t) - xr(t) 

where xr is reference input vector that is assumed to satisfy 

a differential equation, 

Xr ( t) = Ar Xr ( t) 

called the reference model. The state equation becomes 

e(t) = x(t) - xr(t) 

= A e ( t) + B U ( t) + (A -Ar ) Xr ( t) 

and the control becomes 

u ( t) = -F e ( t) - G x r ( t) . 

The closed-loop system is shown in figure (2.4). 

When the above control law is used in the process, the 

closed loop system becomes, 

e = (A - BF ) e ( t) + (A - Ar- BG ) xr ( t) 

Then the design objective is to choose the feedback 

gain matrix F so that the closed loop system is asymptotically 

stable and to choose the feedforward gain matrix G so that a 
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Figure 2.4: Block diagram for the System with Control 
Gains designed for Error State Variables. 
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X (I) .. . 

linear combination of the error variables is zero under steady 

state conditions. 

2.4.2 step-Varying Error Design 

From section 2.3, the state-variable model for the SISO 

step-varying system is 

x(k+l) = <I> x(k) + ~1 (k) u (k) + ~ 2 (k) v 1 (k) + ~3 (k) v
2 

(k) 

+ · · · · · · · · · + ~r-1 (k) Vr-2 (k) + ~r (k) Vr-1 (k) 

where, 

v1 (k+l) =u(k) 

v2 (k+l) = v
1

(k) 



and 

VI-2 (k+l) = VI-3 (k) 

VI-1 (k+l) = VI-2 (k) 

y(k) = C(k) x(k) 

Let the reference input vector xr satisfy the difference 

equation 
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where ~r may be step-varying. The selection of ~r depends 

upon the specific reference input. The error vector is then 

given as 

e (k) = x(k) - xr (k) 

e(k+l) = '1> e(k) + ~1 (k) u(k) + ~2 (k) v 1 (k) 

+ .... +~r (k) vr-1 (k) + [ '1> -'1> r ] Xr (k) 

with 

v 1 (k+l) =u(k) 

VI - 1 (k+l) = VI-2 (k) 

Let the feedback law be 

u (k) = -F(k) e (k) - 1 1 (k) v 1 (k) - 1 2 (k) v 2 (k) -

-lr_1 (k) Vr_1 (k) -G(k) xr (k) 

where 

F{k) is a 1 x n feedback gain matrix, 

G(k) is a 1 x n feedforward gain matrix, and 



1 1 , 12 , •• , lr_ 1 are scalar gains on the previous 

inputs. 

In vector form, the closed-loop error state equations are 

e(k+l) = A(k) e(k) + D(k) V(k) + B(k) xr(k) 

v(k+l) = - F(k) e (k) - L(k) v(k) - G(k) xr (k) , 
and 

where, 

V(k) = 

A(k) = [ <I> - ~1 (k) F(k) ] 

D (k) = [ ( ~2 (k) -~ 1 (k) 1 1 (k) ) ....... ( ~r (k) -~
1 

(k) lr-l (k) ) ] 

B(k) = [ <I> - <l>r - ~1 (k) G(k) ] 

L(k) = 

-1 

0 

0 

0 

-1 

0 .. -1 

lr_l (k) 

0 

0 

0 
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G(k) = 

and 

F(k) = 

G(k) 

0 

0 

0 

F(k) 

0 

0 

0 

29 

To have the desired response, the error should be zero at 

step n and beyond, where n is the order of the MIMO discrete 

step-invariant system. At n th step, 

e(n) = A(n-1) e(n-1) + D(n-1) V(n-1) + B(n-1) xr(n-1) 

Choose j 1 , j 2 , ••• , jn as then basis vectors. To have error 

zero in all n directions, 

Ji e(n) = o 

j; e (n) = o 
...... . (2.12) 

Consider first equation in the relation (2.12) 

· I ( . I J1 e n) = J 1 [A(n-1) e(n-1) + D(n-1) V(n-1) 

+ B(n-1) xr(n-1) ] = 0 



Ji A(n-1) = O , which gives F(n-1) = 

Also Ji D(n-1) = o , 

1 2 (n-l) = 

and 

lr-i (n-1) = 

which gives 

Ji ~3 (n-1) 

Ji ~l (n-1) 

Ji ~r (n-l) 

Ji ~l (n-1) 

Ji ~l (n-1) 

Ji ~2 (n-1) 

Ji ~l (n-1) 

Finally Ji B (n-l) = O , which gives G(n-1) 
Ji (~-4>r) 

= 
Ji ~l (n-1) 
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All the above gains can be used to calculate A(n-1), D(n-1), 

and B (n-1) . 

Considering second equation in relation (2.12), we have 

Jt e(n) = j; [A(n-l) e(n-l) + D(n-l) V(n-l) 

+ B (n-l) xr (n-l) ] = 0 

Putting in the expressions for e(n-1), v(n-1), and xr(n-1) 

in terms of e(n-2), v(n-2), and xr(n-2) and simplifying, we 

get 

j£ e(n) = J£ [ [A(n-1) A(n-2) - D(n-l) F(n-2)] e(n -2 ) 

+ [A(n-1) D(n-2) - D(n-l) L(n-2)] V<n-2) 

+ [A(n-1} B(n-2) - D(n-l) G(n-2} + B(n-1) 4>r] xr(n-2) 



This 

and 

gives 

jt A(n-1) <I> 
F(n-2) = . I 

[A (n-1) ~ 1 (n-2) + d1 (n-1)] J2 

• I 
[A (n - 1) ~2 (n-2) + d2 (n-1)] 

1 1 (n-2) J2 = • I [A(n-1) ~ 1 (n-1) + d1 (n-1)] J2 

• I [A(n-1) ~ 3 (n-2) + d3 (n-l)] 
12 (n-2) J2 = • I 

[A (n-l) ~ 1 (n-1) + d1 (n-1) J J2 

lr_1 (n-2) = 
jt [A (n-l) ~1 (n-1) + d 1 (n-1)] 

G(n- 2) = 
j t [A ( n- l) <I> - A ( n -.,. l) <I> r + B ( n- l) <I> r] 

jt [A (n-l) ~1 (n-2) + d1 (n-1)] 
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where di (k) is the i th column of D(k). 

In this way all the gains in step (n-2) are known. 

Proceeding in a similar way, expressions for the gain matrices 

for all then steps are calculated. As noted earlier, the 

resulting design is deadbeat. After n steps, the error 

response will ideally remain zero. However, if there are 

model inaccuracies, disturbance inputs or sensor errors, it is 

necessary to drive the response towards zero on succeeding 

steps. This can be done by computing the gain matrices beyond 

n steps by using the same algorithm for every group of n steps 

as explained in section (2.2.4). The gain matrices obtained 
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for the SISO step-varying system are also periodic. The period 

for gain matrices depends on the period of the SISO step­

varying system. The SISO system period is the order of the 

MIMO system. Therefore, the period for the gain matrices is 

the minimum multiple of SISO system period n and the MIMO 

system period n, that is, the period for the gain matrices is 

also n. Therefore, the period for the gain matrices for the 

example given in the section (2.3) is the minimum multiple of 

5 and 5, i.e., 5. This shows that it is preferable to have 

the SISO step-varying system period to be the order of the 

MIMO discrete step-invariant system. An iterative method for 

calculating the gain matrices is given in appendix A. 

2.4.3 Observer Design 

The state equation for the SISO step-varying system is, 

x(k+l) = ~ x(k) + ~1 (k) u(k) + ~2 (k) v1 (k) + ~3 (k) v 2 (k) 

+ · · · · · · · · · + ~r-1 (k) Vr-2 (k) + ~r (k) Vr-1 (k) 

Let the observer state equation be, 

x(k+l) = ~ x(k) + ~1 (k) u(k) + ~2 (k) vl (k) + ~3 (k) V2 (k) 

+. ·, · .. ,,. + ~r(k) vr_1 (k) + P(k) [y(k) - y(k)] 

where y(k) = C(k) x(k) 

Then the error between the system state equation and the 

observer state equation is, 

x(k+l) - x(k+l) = [~ - P(k) C(k)] [x(k) - x(k)] 
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The above equation is exactly same as the observer error 

equation (2.5) given in section (2.2.3). Therefore 

expressions for the observer gain matrices in section (2.2.3) 

can be used to calculate observer gain matrices for the SISO 

step-varying system. 



34 

CHAPTER III 

Application Design 

3.1 Introduction 

In this chapter, the state variable design technique 

discussed in chapter 2 is applied to a simple two-car train 

system. A mathematical model of the plant is briefly derived 

in section 3.2. Also this multivariable plant is converted 

into the SISO step-varying discrete-time system, and a step­

varying controller is designed using the techniques explained 

in chapter 2. For the step-varying controller as well as the 

observer design, four sets of basis vectors are considered. 

Finally, section 3.3 gives a brief idea about the hardware and 

the software used for the real-time implementation of the 

design. 

3.2. Two-car Train Plant 

In this section a mathematical model for the two-car train 

plant is developed. An idealized two-car train consisting of 

a pair of masses coupled by a spring (shown in figure 3.1), is 

the plant for which a controller is to be designed. The 

wheels of each car are independently driven by a direct 

current electric motor. 

The parameters of the plant are as follow: 

M .... Mass of each car 

K .... spring constant of the spring between two masses 



k .... Motor torque constant 

kb .... Back emf constant 

T .... Motor torque 

fl .... Linear force applied to the car 1 

f2 .... Linear force applied to the car 2 

r •.•. Ratio of the motor torque to the linear force=T/f 

u 1 •••• Input voltage to motor 1 

u
2 
•••• Input voltage to motor 2 

ub .... Back e.m.f. of a d.c. motor 

i .... Armature current of a motor 

R .... Resistance of a motor armature 

(i) .... Angular velocity of a motor. 

Also signals of the plant are, 

X1 ... Displacement of car 1 

X3 ... Displacement of car 2 

Xz ... Velocity of car 1 

X4 ... Velocity of car 2 

X 1-1 

/////////////// 

Figure 3.1: Two-Car Train Plant. 
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To derive the mathematical model for the plant, consider 

the mechanical part of the plant first. Applying Newton's 

second law of motion to the two masses we have 

•••..• (3.1) 

Here a dot is used to indicate differentiation with 

respect to time. 

Now consider an electrical system of the plant. An 

electrical motor is a device that converts electrical energy 

into mechanical energy. Here each electrical motor is assumed 

to be a separately excited, armature controlled, fixed-field 

direct current motor. The torque (T) developed by a motor is 

proportional to the armature current (i) of the motor since 

the field current is held constant. Also an induced back 

e.m.f.(ub) is proportional to the angular velocity (w) of a 

motor. Therefore, 

T=ki 

and 

The emf equation for the armature circuit of a motor 

neglecting the inductance of the circuit is, 

U - Ub = R i 

Putting the expressions for torque and back e.m.f. in the 

above equation and simplifying we get, 
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If the ratio of a motor torque to linear force applied 

to a car is r (=T/f), then a linear force applied by each 

motor is given as 

f = (k/ r R) [u - kb <,.>] 

Also linear velocity 
. 
X = r (i). Therefore final 

expression for a linear force is 

f= (k/rR) [u-kbx/r] 

Therefore for motor 1 and motor 2 

...... (3.2) 

Using the relations 3.1 and 3.2, differential equations 

for car 1 and car 2 are 

Rearranging these equations properly to get mathematical 

model in terms of first-order differential equations for the 

given plant, we have 
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Considering the displacements of the two cars as output 

variables, the state space model for the plant is, 

Xi 0 1 0 0 X1 

X2 -K/M -kkb/MR.1 r2 K/M 0 X2 
= 

X3 0 0 0 1 X3 

X4 K/M 0 -K/M -kkb/ MR.2r2 X4 

0 0 

k/MR1 r O 
+ 

0 0 

o k/MR.2 r 
....... STATE EQUATION 

X1 

[ ;: l = [ ~ 0 0 0 ] X2 

0 1 0 X3 

X4 
....... OUTPUT EQUATION 

Numerical data for the plant is as follows. 

M = 1 Kg R = 1 o o Q r = 4 cm 

K = 20 N/m k = kb = 2 vol ts-sec 

Therefore the numerical state space model of the plant is 

Xl 0 1 0 0 X1 0 0 
x2 -20 -25 20 0 X2 .5 0 [ ~: l = + x3 0 0 0 1 X3 0 0 

x4 20 0 -20 -25 X4 0 .5 



= [ 
1 0 0 0 ] 
0 0 1 0 

This can be written in compact form as 

x(t) =Ax(t) +Bu(t) 

y(t) = C x(t) 

Analog computer simulation of the plant 

39 

In this section the two-car train plant is simulated on 

an analog computer. An analog computer solves a problem or 

provides responses of a plant by solving an analogous problem 

patched on the computer. The mathematical model of an analog 

computer programmed to simulate a specific physical system is 

identical to the mathematical model of the system. The input 

and output voltages (analog computer variables) are analogous 

to the corresponding physical variables of the system. 

Because of limitations of the analog computer or its 

associated input/output equipment, it is usually necessary to 

change the scale of the computer variables, thus forcing the 

values of a computer variable to differ from the corresponding 

problem variable values. More details about simulation of 

mathematical model of a plant on an analog computer can be 

found in the GP-6 analog computer manual [4]. 

To simulate the given plant on an analog computer, 

consider the differential equations of the plant 
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The analog computer simulation diagram is shown on next 

page (Figure 3.2). Because of limited resistances and 

capacitances available on the analog computer (comdyna GP-6), 

there is need to scale the inputs by a factor of 10. 

The system model with scaled inputs is given below. 

0 1 0 0 0 0 

-20 -25 20 0 
x( t) 

5 0 
x( t) = + 

0 0 0 1 0 0 
u ( t) 

20 0 -20 -25 0 5 

y(t) = [~ ~ ~ ~] x(t) 

The open-loop poles for the plant are 0.0, -1.718, 

-23.28, -25, which show that the plant is marginally stable. 

The zero-input response of the plant to the initial condition 

x(0)=[.5 O O OJ' is shown in figure 3.3. Both the tracking 

outputs have smooth transients but they do not go to zero. 

The settling time of each response is 2.5 seconds which may 

not be desirable for some applications. This shows the need 

for a controller to the plant. 
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Discrete-time model of the plant 

The scaled analog mathematical model of the plant is 

known now. To apply the step-varying controller design we 

need to obtain the SISO step-varying discrete-time model for 

the same plant. This requires the application of the 

technique discussed in chapter 2. 

The MIMO discrete-time model of the continuous-time plant 

with sampling period T as .1 sec, is 

where 

'I> = 

r = 

x(k+l) = 'I> x(k) + r u (k) 

y(k) = C(k) x(k) 

9. 507 3E-l 3.5624E-2 

-6. 9066E-1 6. 0113E-2 

4. 9263E-2 1. 0916E-3 

6.9066E-1 2. 197 lE-2 

1. 2486E-2 1. 7 035E-4 

1. 7 812E-1 5. 4584E-3 

1.7035E-4 1.2486E-2 

5. 46 84E-3 1. 7 812E-1 

4. 9263E-2 

6. 9066E-1 

9. 507 3E-1 

-6. 9066E-1 

1. 0916E-3 

2 .1971E-1 

3. 5624E-2 

6. 0113E-2 

where y i is the i th column of the r and ci is the i th row of 

the C. 

To obtain a SISO step-varying system with period equal 

to the order of MIMO system (4), we need to repeat the input 

Update pattern and output sampling pattern every 4 steps. 
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To choose these patterns, consider the controllability and 

observability indices of the MIMO discrete-time system. The 

controllability indices for inputs u
1 

and u 2 of the MIMO 

discrete-time system are 2 each. Also the observability 

indices for outputs y 1 and y 2 of the MIMO discrete-time system 

are 2 each. Therefore we can update inputs u 1 and u 2 twice in 

4 steps and measure outputs y 1 and y 2 twice in 4 steps. The 

sampling mechanism utilized · in this thesis for the given 

system is shown in figure 3.4. Then the SISO discrete-time 

model for the continuous-time two-car train plant in state 

space form is, 

x(k+l) = 4> x(k) + ~1 (k) u (k) + ~2 (k) v(k) 

v(k+l) = u (k) 

y(k) = C(k) x(k) 

Where vis previous input u. Also, 

C(k) = c 1 

for k even 

for k odd 

for k even 

for k odd 

for k even 

= c 2 for k odd 

The discrete-time mathematical model for our continuous 

time-invariant two-car train plant in matrix form is given 



45 

below. 

[ ::t:~: l = [: ~,:k) l [ ::t: l + ,[ ~,:k) ] u(k) 

• ...... STATE EQUATION 

y(k) = [ C(k) 0 ] [ :~~~ l 
........ OUTPUT EQUATION 

Note that it is SISO 5 th-order step-varying system of period 

two. Note that, because of the particular input update 

pattern and output measurement pattern, and values of 

controllability and observability indices, we have period of 

SISO system two instead of four. 

u 
1 

y 
1 

y 
2 

l 1 

0 2 3 4 5 6 7 8 

Figure 3.4: Sampling Mechanism for the Plant. 
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3.2.1 Controller Design 

Once the SISO step-varying model of the plant is 

obtained, the next step is to design a step-varying controller 

for this system. In this section, the error step-varying 

controller design is carried out for the SISO step-varying 

system. 

The tracking outputs are the positions of the two cars; 

therefore, the reference input model chosen for the plant is 

with 

where R1 and R2 are the desired positions for car 1 and car 2, 

respectively. Then the error state equation is 

e(k+l) = x(k+l) - xr(k+l) 

= <I> e (k) + ~1 (k) u (k) + ~2 (k) v(k) + [ <I> - <I> r] xr (k) 

To have acceptable zero input response and zero-state response 

let the control law be 

where 

u(k) = -F(k) e(k) - L(k) v(k) - G(k) xr(k) 

F(k) is a lx4 feedback control matrix, 

G(k) is a lx4 feedforward gain matrix, and 

L(k) is a scalar gain on the previous input. 



-

where 

Then, in vector form, the error state equations are 

e (k+l) = A (k) e (k) + D(k) v(k) + B (k) xr (k) 

v(k+l) = - F(k) e (k) - L (k) v(k) - G (k) xr (k) 

A (k) = <l> - ~1 (k) F(k) 

D(k) = ~2 (k) - ~1 (k) L(k) 

B(k) = <l> - I 4 - ~ 1 (k) G(k) 
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Since e(k) is of 4xl dimension, choose j 1 , j 2 , j 3 , j 4 as 

4xl basis vectors. To have the error after four steps to be 

zero in the j 1-direction, 

j{ e(4) = j{ [ A(3) e(3) + D(3) v(3) + b(3) xr(3)] = 0 

The above equation gives 

F(3) = 

L ( 3) 
Ji~2(3) 

= 
Ji~1(3) 

G(3) = 
Ji [<J> - I4] 

Ji ~1 (3) 

This can be used to calculate A(J), D(J) and B(3). To have 

zero error in the j 2-direction, 



j; e ( 4) = j; [ [A ( 3) A ( 2) - D ( 3) F ( 2) ] e ( 2) 

+ [A ( 3) D ( 2) - D ( 3) L ( 2) ] v ( 2) 

+ [A(3) B(2) - D(3) G(2) + B(3) I 4 ] xr(2) ] = 0 

This gives, 

F(2) 
j: A(3) <I> 

= 
• I [A ( 3) ~1 ( 2) + D(3)] J2 

L(2) = 
j£ A(3) ~2 (2) 

• I [A ( 3) ~1 ( 2) + D(3)] J2 

. I [A (3) <I> - A(3) I 4 + B(3) I4] 
G(2) J2 

= j; [A ( 3 ) ~ 1 ( 2 ) +D(3)] 
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Similarly, by forcing the error to go to zero in the j
3 

and j 4 

directions, we get the gain matrices for steps 1 and o as 

F(l) = 
j; [A ( 3 ) A ( 2 ) <I> - D ( 3 ) F ( 2 ) <I> ] 

jt[A(3)A(2) ~1 (1) -D(3) F(2) ~1 (1) +A(3)D(2) -D(3) L(2)] 

j; [A ( 3) A ( 2) ~ 2 ( 1) - D ( 3) F ( 2) ~ 2 ( 1) ] 
L(l) = -------------------------j; [A ( 3) A ( 2) ~ 1 ( 1) - D ( 3) F ( 2) ~ 1 ( 1) + A ( 3) D ( 2) - D ( 3) L ( 2) ] 

G(l) =jt[A(3)A(2) <I> -A(3)A(2)I4 -D(3)F(2) <I> +D(3)F(2)I4 

+ A(3) B(2) I 4 - D(3) G(2) I 4 + B(3) It] 

jt[A(3) A(2) ~1 (1) -D(3) F(2) ~1 (1) +A(3) D(2) -D(3) L(2)] 

F(O) = j
4 

[A(3) A(2) A(l) - D(3) F(2) A(l) - A(3) D(2) F(l) 
+ D(3) L(2) F(l)] <I> 

J: DENOM 



L(0) = Ji [A(3) A(2) A(l) - D(3) F(2) A(l) - A(3) D(2) F(l) 
+ D(3) L(2) F(l)] ~

2
(0) 

Jj DENOM 
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G ( 0 ) = j 1 [ [A ( 3 ) A ( 2 ) A ( 1) - D ( 3 ) F ( 2 ) A ( 1) - A ( 3 ) D ( 2 ) F ( 1 ) + D ( 3 ) L ( 2 ) 

F(l)] (~ -I4 ) + [A(3) A(2) B(l) -D(3) F(2) B(l) -A(3) D(2) 

G(l) +D(3) L(2) G(l) +A(3) B(2) I 4 -D(3) G(2) I
4 

+B(3) I}] I 4 ] 

Ji DENOM 

where 

DENOM = j i [ [A ( 3) A ( 2) A ( 1) - D ( 3) F ( 2) A ( 1) -A ( 3) D ( 2) F ( 1) 

+D(3) £(2) F(l)] (
1 

(0) +A(3) A(2) D(l) -D(3) F(2) D(l) 

-A(3) D(2) L(l) +D(3) L(2) L(l)] 

The calculations for the control gains are backward in step. 

To have continued feedback after the fourth step, 

applying the same technique for next four steps we get, 

but 

similarly, 

Also, 

./ ~ 
F(7) = _J_i __ 

Ji~1(7) 

( 1 (7) = (1(3) 

:. F ( 7 ) = F ( 3 ) 

L(7) = L(3) G(7) = G(3) 



but 

j; A{7) <P 
F{6) = ----------­j; [A{7) ~1 (6) + D{7)] 

A{3) = A{7) 

:. F ( 6 ) = F ( 2 ) 
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D(3) = D(7) 

We can also show that F{5)=F{l) and F{4)=F{O). Because 

~,, ~ 2 are periodic of period two and the error state vector 

is of dimensions 4xl, the period for the gain matrices F(k), 

G(k), L{k) is four, which is the minimum multiple of SISO 

system period (2) and the order of the MIMO system (4). 

That is, 

F(3)=F(7)=F{ll)= ....• 

F(2)=F(6)=F(10)= .... . 

F ( 1) =F ( 5) =F ( 9) = .... . 

F(O)=F(4)=F(8)= •.... 

And the same observations hold for G(k) and L(k). 

The four sets of basis vectors which are considered for 

finding the control gain matrices are given below. 

1) Unit coordinate vectors: 

1 0 

0 1 
J1 = J2 = ]3 

0 0 

0 0 

2) Eigenvectors of the discrete 

7. 071068£-1 

-1. 965913£-15 

7. 07106 8E-1 

2.126375Ee-15 

0 0 

0 0 
= ]4 = 

1 0 

0 1 

MIMO model of the 

3. 557 045E-l 

-6.111255£-1 

-3.557045£-1 

6.111255£-1 

plant: 
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3.034351E-2 -2. 826167 E-2 

]3 
-7 . 064554E-1 

]4 
7.065418E-1 

= = 
-3.034351E-2 -2. 826167 E-2 

7. 064554E-1 7.065418£-1 

3) First four independent column vectors of controllability 

matrix of the discrete MIMO model of the plant. Hereafter, 

these vectors are referred to as the controllability vectors: 

1. 248633E-2 1. 7 03513E-4 

1. 7 81246E-1 
J2 

5. 458400E-3 
J1 = , = 

1. 703513E-4 1. 248633E-2 

5.45840Ee-3 1. 7 81246E-l 

1. 823123E-2 1.165995£-2 

]3 
2. 321339E-3 

j4 
1. 27 4807 E-2 

= = 
1.165995£-3 l.823123E-2 

1. 27 4807 E-2 2. 321339E-3 

4) First four independent row vectors of observability matrix 

of the discrete MIMO model of the plant. These vectors are 

called as observability vectors: 

1 0 

0 1 
J1 = J2 = 

0 0 

0 0 

9.507361£-1 4.926391E-2 

]3 
3. 562492E-2 1. 0916 80E-3 

= ]4 = 
4. 926391E-2 9.507361E-l 

1. 901680E-3 3.563492E-2 

To find the numerical values of gain matrices for each set of 

basis vectors, Program CC macros have been developed (APPENDIX 

BJ. The control gain matrices for the above sets of basis 

Vectors for the dead beat control are given below. 
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1. Control gain matrices when the basis vectors are unit co­

ordinate vectors: 

F(3) = [5. 582713E+3 2. 091892E+2 2. 892772E+2 6. 410335E+O] 

F(2) = [3. 600130E+l 1. 463846E+O 3.879445E+O 1.122515E-1] 

F(l) = [6. 262594E+2 2.573601E+l 9.006203E+l 2. 837284E+O] 

F(O) = [2. 267406E+l 9. 336732E-l 4. 316701E+O 1. 457 069E-l] 

L (3) = 73. 28244 L (2) = 3. 062769E-2 

L (1) = 13. 21242 L(O) = 5. 508251E-2 

G(3) = [-2. 892772E+2 2.091892E+2 2. 892772E+2 6. 410335E+O] 

G(2) = [-3. 879445E+O 2. 708201E+O 3. 879445E+O 1.122515E-1] 

G(l) = [-4. 889294E+l 1. 40937 3E+2 4.889294E+l 2. 837284E+O] 

G( 0) = [-3. 782079E+O 5. 447 524E+O 3. 7 82079E+O 7. 0136 B0E-2] 

2. Control gain matrices when the basis vectors are eigen 

vectors: 

F(3) = [7. 9 049 51E+l 2. 902429E+O 7.904951E+l 2. 9 02429E+O] 

F(2) = [2. 009368E+l 8. 056389E-1 2.627241E+l 1. 036508E+O] 

F(l) = [ -6. 82132E+O -3.13805E-1 2. 256269E+l 9. 4311E-1] 

F( 0) = [2. 267406E+l 9. 336732E-1 4.316701E+O 1. 457 069E-1] 

L(3) = 1 

L(l) = -0.1817109 

L(2) = 0.4855799 

L(O) = 5.508251E-2 

G(3) = [3 . 34153E-13 2.90242E+O -3.14987E-13 2.902429E+O] 

G(2) = [-2.057808E+O -9.66644E-1 2.057808E+O 2.80879E+O] 

G(l) = [4.729583E+O -2.275324E+O -4.729583E+O 2.90463E+O] 

G(O) = [-3.782079E+O 5.447524E+O 3.782079E+O 7.013680E-2] 

3. Control gain matrices when the basis vectors are 

controllability vectors: 
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F(3) = [-5. 51036E+l 5. 784962E+O 6.159895E+l 2. 1869 SE+0] 

F(2) = [-3. 33592E+0 -9. 911961E-2 3. 703149E+O 1. 49598E-1] 

F( 1) = [-5.74848E+3 -2. 36569E+2 -5. 89615E+2 -1. 62358E+l] 

F(O) = [2. 26740E+l 9.336732E-1 4. 316701E+O 1. 457 06E-1] 

L(3) =16.3757 L (2) = 6. 973661E-2 

L(l) = -121. 6584 L (0) = 5. 508251E-2 

G(3) = [ -6. 15115E+l -8. 56267 E+l 6.15115E+l -6 .14206E-1] 

G(2) = [ -3. 7 2144E+0 -5.593035E+0 3. 72144E+0 3. 17 0S0E-1] 

G(l) = [4. 91053E+2 -1. 301127 E+3 -4. 910536E+2 3. 51541E+0] 

G(0) = [-3.78207E+0 5. 44 7 524E+O 3.782079E+O 7.01368E-2] 

4. Control gain matrices when the basis vectors are 

observability vectors: 

F(3) = [5.582713E+3 2.091892E+2 2.892772E+2 6.410335E+0] 

F(2) = [2.870587E+l 1.174457E-0 3.437476E+0 1.026141E-1] 

F(l) = [2.237071E+2 9.171907E+0 4.714172E+l 1.632851E+0] 

F(0) = [2.267406E+l 9.336732E-1 4.316701E+0 1.457069E-1] 

L(3) = 73.28244 

L(l) = 4.695595 

L(2) = . 0298802 

L(0) = 5.508251E-2 

G(3) = [-2.892772E+2 2.091892E+2 2.892772E+2 6.410335E-0] 

G(2) = [-3.882167E+0 1.174457E+0 3.882167E+0 1.026141£-1] 

G(l) = [-1.479639E+l 4.987375E+l 1.479639E+l 2.880107£+0] 

G(0) = [-3.782079E+0 5.447524E+0 3.782079£+0 7.013680£-2] 

An interesting point is that the gain matrices at step o are 

the same for all four sets. 
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3.2.2 Observer Design 

In this section observer design for the SISO step­

varying system is carried out. The state equation for the 

SISO discrete plant is, 

x(k+l) = 4> x(k) + ~1 (k) u(k) + ~2 (k) v(k) 

v(k+l) = u (k) 

Since v is the previous input there is no need to 

estimate it. Therefore the observer state equation has the 

form given below, 

x(k+l) = <J.,x(k) + ~1 (k) u(k) + ~2 (k) v(k) + P(k) [y(k) - y(k)] 

where 

where 

y(k) = C(k) x(k) 

:. e(k+l) = x(k+l) - x(k+l) 

= A(k) e(k) 

A (k) = 4> - P(k) C(k) 

Then applying the technique of section (2.4.3), we have 

P(l) 
4> A(O) j2 = 

C(l) A(O) j
2 

P(2) <f., A(l) A(O) j3 = 
C(2) A(l) A(O) J3 



P(3) = 
~ A(2) A(l) A(0) j 4 

C(3) A(2) A(l) A(0) j 4 
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The calculations for the observer gain matrices are forward in 

step. To have continued observations, the same method is 

applied to calculate the next four observer gain matrices as 

follows: 

but 

but 

P(4) = 

C(4) = C(O) 

:. P ( 4 ) = P ( 0 ) 

P(S) = 
~A(4) J 2 

C(S) A(4) j
2 

C(5) = C(l) A(4) = A(O) 

:. P ( 5 ) = P ( 1 ) 

Similarly we can show that P(6}=P(2}, P(7}=P{3). Again 

since C{k) is periodic of period two and state vector x(k) is 

4xl, the period for the observer gain matrices is four 

(minimum multiple of the SISO period (2) and order of the MIMO 

system (4)). That is, 

P(0}=P{4}=P(8)= ... . 

P(l}=P(5}=P{9}= ... . 

P{2}=P{6}=P(l0}= ... . 

P(3}=P(7}=P(ll)= ... . 
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Here the same four sets of basis vectors for the observer 

gain calculations are used as were used for the control gain 

calculations. To calculate the numerical values for the 

observer gain matrices for the different sets of basis vectors 

Program CC macros have been developed [APPENDIX C]. The 

observer gain matrices for the above sets of basis vectors for 

a deadbeat observer design are as follows: 

1. The observer gain matrices· when the basis vectors are unit 

co-ordinate vectors: 

9.507361E-l 3. 305839E+l 

-6. 906648E-l 
L (1) 

-l.809555E+l 
L ( 0) = = 

4.926391E-2 3. 335496E+O 

6.906648E-l 2. 426764E+l 

9.348520E-l 1. 424716E-l 

-6.578112E-l 6. 747090E-l 
L(2) = L(3) = 

l.451216E-l 9.346653E-l 

6.731942E-l -6. 59 807 lE-l 

2. The observer gain matrices when the basis vectors are eigen 

vectors: 

1 1. 57 8584E-1 

L ( 0) 
1. 1027 56E-l 7 

L (1) 
6 .614367E-1 

= = 
1 9.278345E-1 

1.248038E-16 -6. 614367 E-1 

9. 288806E-l 1. 424 716E-1 

L (2) 
-7. 216324E-1 

L(3) 
6. 747090E-1 

= = 
6. 038664E-2 9. 346653E-1 

7.216324E-l -6. 598071E-l 

3. The observer gain matrices when the basis vectors are 
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observability vectors: 

9.507361E-l l.236146E-l 

L (0) 
-6. 906648E-l 

L (1) 
6. 82584 7 E-1 

= = 
4. 926391E-2 9.282020E-l 

6. 906648E-l -6. 82584 7 E-1 

9.350390E-l 1. 424716E-l 

-6. 558127 E-1 
L(3) 

6. 747090E-l 
L(2) = = 

1. 4 777 50E-l 9.346653E-l 

6. 71677 4E-l -6. 59 807 lE-l 

4. The observer gain matrices when the basis vectors are 

controllability vectors: 

l.460095E-0 l.221390E-l 

l.859104E-l 7.004413E-l 
L ( 0) = L(l) = 

9 .338170E-2 9. 5817 88E-l 

l.020962E-0 -6. 334594E-l 

9. 349149E-l 1. 424716E-l 

-6. 571389E-l 6. 747090E-1 
L (2) = L (3) = 

l.460141E-l 9. 346653E-l 

6.726840E-l -6 . 598071E-l 

The interesting point is the observer gain matrix at the 

fourth step is the same for all the four sets. 

3.2.3 simulation of the Design 

In the design of the step-varying controller, the 

control and observer gain matrices depend on the set of basis 

vectors used to calculate those matrices. We have considered 

4 sets of basis vectors for comparison purposes. To simulate 

the response of the controlled system for different sets of 
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control and observer gain matrices, a simulation program is 

written in C language [APPENDIX D]. 

The following equations are used in the simulation program to 

find control inputs and tracking outputs at each step. 

u(k) = -F(k) x(k) - L(k) v(k) - G(k) XI(k) 

y(k) = C(k) x(k) y(k) = C(k) x(k) 

x(k+l) = ~ (k) x(k) + ~1 (k) u(k) + ~2 (k) v(k) 

x(k+l) = ~ (k) x(k) + ~1 (k) u (k) + ~ 2 (k) v(k) + P (k) [y(k) -y(k) ] 

Since there are four sets of the basis vectors for 

calculations of the control as well as observer gain matrices, 

there are sixteen possible combinations of gains to compare. 

The results for output and control input responses from 

the simulation program are plotted and compared. The 

simulation responses for all the above combinations are 

carried out and compared. Using a simulation program, we get 

values of outputs and control inputs only at the sampling 

steps (time steps). In simulation plots, straight lines are 

drawn between the sampling values, in order to read the values 

easily. Also, in the following discussion you will encounter 

terms like "eigen controller", "coordinate observer", etc. 

The term "eigen controller" means the controller for which the 

eigenvectors are used as the basis vectors to calculate the 

control gain matrices. Also the term "coordinate observer" 

means the observer for which coordinate vectors are used as 
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the basis vectors to calculate the observer gain matrices. 

From these responses it is clear that eigen controller is 

the best for the given system. Also, the coordinate observer 

is not desirable for the given system. A few of these results 

are shown in figures 3. 5 .1 to 3. 8. 2, which illustrate the 

preference for the eigencontroller and eigen observer. 

Figures 3.5.1 and 3.5.2 show the zero state response of 

the controlled system without observer error for the four sets 

of control gain matrices obtained using the four sets of basis 

vectors. The desired reference state vector xr is (.1 O .2 

OJ'· Both the output and control input responses are shown. 

When the observer error is zero, the observer state 

vector is exactly equal to the plant state vector at each 

step, then observer gains do not contribute in shaping the 

system response. Therefore there are only four responses to 

compare. 

From the output responses (figure 3.5.1), it is clear 

that each set of control gain matrices gives a very good 

output response. Each response goes to the desired state in 

an acceptable manner and in four steps as we have designed 

(i.e., a deadbeat design). Also, all four output responses 

are quite similar. One reason might be that the control gain 

matrices are the same for each set of the basis vectors at the 

0th step. The plots of control inputs (figure 3.5.2) for all 

four sets of control gain matrices are also similar due to the 

same reasons. Also each control input for all the four sets 

is reasonable. This response does not help us in selecting 
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the best controller. 

Figures 3.6.1 and 3.6.2 show the responses of the system 

with the observer error in initial step as, x(0}=(.03 O O OJ' 

"' and x(O}= (.01 o o OJ'. The desired reference input xr is 

(.1 0 .2 OJ'. 

When the observer error is present, the observer gain 

matrices have an effect in shaping the response of the 

controlled system. Therefore, in order to decide the best set 

of control gain matrices, same set of observer gain matrices 

must be used with the four sets of control gain matrices. 

In figures 3.6.1 and 3.6.2, the observer gain matrices 

used are the ones which are calculated using unit coordinate 

vectors as the basis vectors. Each output response (figure 

3.6.1} takes eight or more steps depending on the control 

used, to reach the desired steady state. 

a> Figures 3.6.1 (a} and 3.6.2 (a} show the responses of the 

controlled system when unit coordinate vectors are used as the 

basis vectors to calculate the control gain matrices. There 

are oscillations in both y 1 and y 2 outputs (figure 3.6.1 (a)). 

The transient response of y 2 is not acceptable because it has 

large overshoot and it also goes in the negative direction for 

the first few steps, which is undesirable. The response takes 

twelve steps (1.2 seconds} to reach the steady state. The 

control input u 1 is reasonable but control input u 2 is high 

(Figure 3.6.2}. 

b> Figures 3.6.1 (b} and 3.6.2 (b} show the responses of the 

controlled system when eigenvectors are used as the basis 
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vectors to calculate the control gain matrices. Both the 

outputs (figure 3.6.1 (b)) have acceptable transient response. 

The response takes eight steps (. 8 seconds) to reach the 

desired steady state. Also both the control inputs u 1 and u2 

are reasonable (figure 3.6.2 (b)). 

c> Figures 3.6.1 (c) and 3.6.2 (c) show the responses of the 

controlled system when controllability vectors are used as the 

basis vectors to calculate the control gain matrices. The 

output response for y 1 is acceptable but output y2 has very 

high overshoot which is not at all acceptable (figure 3.6.1 

( C) ) • The output response takes twelve steps to reach the 

desired steady state. Also control input u 1 is reasonable but 

control input u2 is very high (figure 3.6.2(c)). 

d> Figures 3.6.l (d) and 3.6.2 (d) show the responses of the 

controlled system when observability vectors are used as the 

basis vectors to calculate the control gain matrices. The 

output y 1 has acceptable transient response but y 2 has very 

high overshoot which is not acceptable (figure 3.6.1 (d)). 

The output response takes twelve steps to reach the desired 

steady state. Also the control input u 1 is reasonable and 

control input u2 is acceptable (figure 3. 6. 2 ( d) ) but is 

higher than the control input u
2 

required when the 

eigenvectors are used as basis vectors for the control gain 

calculations. Note that the control input u 2 in this case is 

better than the control input u
2 

when controllability 

controller and the unit coordinate controller are used. 

Comparing Figures 3.6.1 and 3.6.2 (a), (b), (c), (d), it 
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is clear that for the two car train system when eigenvectors 

are used as the basis vectors for calculating control gain 

matrices, the desired response is obtained. Therefore 

eigencontroller is selected out of the four controllers for 

trying the design in real time. The next step is to choose a 

better observer design. 

Figures 3. 7 .1 and 3. 7. 2 show the responses of the 

controlled system with observer error in initial state as, 

x(O)= [.03 0 0 OJ' " and x ( o ) = [ • o 1 o o o J ' • The desired 

reference input xr is [ .1 O. 2 OJ'. The controller is the 

eigen controller while four sets of observer gain matrices are 

considered. 

a> Figures 3.7.1 (a) and 3.7.2 (a) show the responses of the 

controlled system when unit coordinate vectors are used as the 

basis vectors to calculate the observer gain matrices. 

b> Figures 3.7.1 (b) and 3.7.2 (b) show the responses of the 

controlled system when eigenvectors are used as the basis 

vectors to calculate the observer gain matrices. 

c> Figures 3.7.1 (c) and 3.7.2 (c) show the responses of the 

controlled system when controllability vectors are used as the 

basis vectors to calculate the observer gain matrices. 

d> Figures 3.7.1 (d) and 3.7.2 (d) show the responses of the 

controlled system when observability vectors are used as the 

basis vectors to calculate the observer gain matrices. 

Since all the output responses (figure 3.7.1) go to the 

desired steady state and have preferable transients, it is 

difficult to choose the best response. To choose a better 
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observer, zero input responses with different initial 

conditions with observer error are carried out. One of these 

responses is shown in figures 3.8.1 and 3.8.2, which show that 

coordinate observer is not desirable for the given system. 

Figures 3.8.1 and 3.8.2 show the zero input responses of 

the controlled system with observer error in initial state as 

x(O)=[O O 1 OJ' and x(O)=[O O .5 OJ'. The controller used is 

eigen controller with 4 observers. 

(a) Figures 3.8.l(a) and 3.8.2 (a) show the responses of the 

controlled system when coordinate observer is used. 

(b) Figures 3.8.l(b) and 3.8.2 (b) show the responses of the 

controlled system when eigen observer is used. 

(c) Figures 3.8.l(c) and 3.8.2 (c) show the responses of the 

controlled system when controllability observer is used. 

(d) Figures 3.8.l(d) and 3.8.2 (d) show the responses of the 

controlled system when observability observer is used. 

From the output response (figure 3.8.1), it is clear that 

coordinate observer is not desirable since it gives very high 

overshoot in outputs y 1 and y2 • The other observers give 

almost the same output response. The output responses 

obtained using different initial conditions do show some 

difference for these three observers, but very little. 

From the control input response (figure 3.8.2), it is 

clear that control inputs required are very high when 

coordinate observer is used. The control inputs for all the 

other observers are reasonable and similar. The control 

inputs required for different initial conditions are also 
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comparable for these three observers. 

3.3 Real Time Implementation. 

In this section the hardware and the software required 

for the real time implementation of the control design are 

discussed. The hardware consists of an analog computer, a 

digital computer, and the required interfacing units that 

contain the A/D and D/A converters and the timers. The 

presentation here closely follows that in the respective 

manuals and reference [5]. For the real-time implementation, 

the continuous-time two-car train plant is simulated on an 

analog computer (Comdyna GP-6) and is controlled by a digital 

computer. The digital controller takes the output signals 

from the plant and calculates the control signals, which are 

applied to the plant. Since the plant is continuous-time and 

the controller is discrete-time, there is need of A/D and D/A 

converters. 

The hardware implementation is shown in figure (3.9). 

The EVEREX 286 (IBM PC/AT compatible) computer is used to run 

the design software as well as the digital control simulation 

program. It is also used as a digital controller to control 

the analog plant build on GP-6. In order to have AD/ DA 

conversion facility 7905 board is fixed in a slot of EVEREX 

286. The DAS-8 board is also fixed in a slot of the EVEREX 

286 to have counter/timer facility. The EVEREX 286 has system 

bus of 62 bits. Following sections gives the brief 

explanations for the various parts of the hardware. 
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3.3.1 Interface between GP-6 analog computer and EVEREX 286 

digital computer 

The interfacing between the GP-6 analog computer and the 

EVEREX 286 digital computer is achieved using model 767 

analog/digital position control panel and 7905 AD/DA interface 

board. 

The 767 control panel is mainly used for the 

interconnection of an analog computer GP-6 and a 7905 AD/DA 

Board. The operation of 767 requires the connection of two 

cables, the 7905 cable and the GP-6 cable. The details of the 

interconnection between the GP-6, 767 panel and 7905 cable are 

given in reference [6]. 

The 7905 board is inserted into the EVEREX 286 computer's 

peripheral slot. Its inputs and outputs are terminated in a 

25 pin Data Connector, which is connected to the 767 panel. 

The board has following functions. 

1. A/D conversion ...... 12-bit successive approximation 

converter with eight multiplexed input channels. 

2. D/A conversion ...... Three 12 bits DAC's 

3. Logic Sense ...... Three (input) logic sense lines. 

4. Logic Control ...... Four (output) logic control lines. 

The analog multiplexer on 7905 board selects the input 

signal to the A/D converter out of eight signals which are 

outputs of first four operational amplifiers of the GP-6 and 

A4 , A5 , A6 , A7 connectors on 767 control panel. 

The A/D and D/A conversion requires two data bytes since 



75 

the computer has 8 bits data lines. The communications 

between 7905 board and the digital computer are conducted via 

two bilateral tranceiver TH and TL. The 8 bits data bus of 

the microprocessor is time shared by the tranceivers. The TH 

transmits high order 8 bits and the TL low order 8 bits. The 

high byte, data bits D0-D7 are A/D or D/A data bits B4-B11 • Out 

of low byte, data bits D4-D7 are A/D or D/A data bits B0-B3 • 

The address location and whether the instruction is either 

input (IN) or output (OUT) determines the function to be 

executed. During an input instruction, data is transmitted 

from either TH or TL into the AL accumulator. Then the low 

order data bits of the low byte are the three logic sense bits 

c0-c2 and the end-of-conversion signal from the A/D if address 

line A1 is 1. During an output instruction, data is 

transmitted from the AL accumulator to either TH or TL. Then 

the data bits of the low byte are the four logic control bits. 

Address words begins at 310hex (784 decimal) where A4 

through ~ and AEN are fixed as the board code and address 

bi ts A0 through A3 and the instruction IN or OUT determines the 

function to be executed as shown in TABLE 3.1. 

To control the GP-6 operation modes from the 7905 board, 

the GP-6 control push button must be in the OP (operation) 

position. Then in mode control (that is during OUT 

instruction), control bit c
3 

is used to pull the GP-6 bus from 

operation state to an initial condition state. In mode sense 

(that is during IN instruction), control bit c2 is used to 

check the status of the GP-6 operation bus. This is shown in 
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TABLE (3.2). More details of 7905 AD/DA board can be found in 

the reference manual [6]. 

3.3.2 The Metrobyte DAS-8 Interface Board. 

This board is used to provide internal timing, which is 

required to run the control algorithm in real time. The 

discussion presented here closely follow that in reference 

[ 7] • 

The board has a highly advanced Intel 8254 timer/counter 

providing 3, 16-bit count-down registers. The DAS-8 derives 

its clock cycle from the IBM PC system clock. The connections 

are made via a standard 37 pin D male connector projecting 

through the rear of the computer. Each timer/counter has a 

clock input, a gate input that controls the counting and 

triggering, and an output. Counter two clock input is 

internally connected to the computer bus clock. The DAS-8 can 

be programmed using input and output instructions, but use of 

these functions usually requires formatting data and dealing 

with absolute I/0 addresses. To simplify program development, 

a special I/0 driver routine "DAS-8.BIN" is included in the 

DAS-8 software package. This can be accessed from the 

interpreter BASIC by a single CALL statement, where DAS8 is a 

variable that specifies the memory offset of the starting 

address of the CALL routine. Also a "DAS8. OBJ" driver routine 

is available to link with compiler BASIC, in which case DAS8 

becomes the public name of the subroutine that can be called 

,, 
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TABLE 3.1 [5] 

List of available functions of 7905 board 

A3 A2 A1 Ao Address I/0 Description 

Locations 

Hex (Dec) 

0 0 0 0 310 (784) OUT Set Mux only. 

0 0 0 1 311 (785) OUT Set Control byte only. 

0 0 1 0 312 (786) OUT Set Mux and starts ADC. 

0 0 1 1 313 (787) OUT Also starts ADC. 

0 1 0 0 314 (788) OUT Set low byte of LDAC. 

0 1 0 1 315 (789) OUT Set LDAC only. 

0 1 1 0 316 (790) OUT Set low byte and starts 
LADC. 

0 1 1 1 317 (791) OUT Set LDAC and starts ADC. 

1 0 0 0 318 (792) OUT Set low byte of RDAC. 

1 0 0 1 319 (793) OUT Set RDAC only. 

1 0 1 0 31A (794) OUT Set low byte and starts 
ADC. 

1 0 1 1 31B (795) OUT Set RDAC and starts ADC. 

1 1 0 0 31C (796) OUT Set low byte of VDAC. 

1 1 0 1 31D (797) OUT Set VDAC only. 

1 1 1 0 31E (798) OUT Set low byte and starts 
ADC 

1 1 1 1 31F (799) OUT Set VDAC and starts ADC. 

0 0 1 0 312 (786) IN Read ADC data bits 0-3 as 
D4-D7 and logic sense as 
Do-D3. 

0 0 1 1 313 (787) IN Read high order ADC data 
bits 4-11. 
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TABLE (3.2) 

Logic condition of GP-6 

GP-6 Control OP Bus State Logic Control Logic Sense 

Push Button C3 c2 

OP IC high low 

OP OP low high 

in compiled BASIC program. These routines also save a lot of 

programming time. 

follows: 

The format of the CALL statements is as 

CALL DASS (MD%,IP%,FLAG%) 

where MD% is a data to select particular mode, IP% is a data 

which may be count value, configuration number, etc., and 

FLAG% is a error flag value. 

The various operating modes of the CALL routine select 

the functions of DAS8. For our application we need four 

operation modes, as follow. 

1. Mode O (Initialize DAS8 board) has to be set before other 

modes are selected. The initialization is required only once 

and is done by setting base address 300Hex for DAS-8 board. 

2. Mode 10 (configure Timer/Counter) is used to configure 

Timer/counter. For our application counter 2 and counter 1 

are set in configuration 3 while counter o is set in 

configuration o. 

discussed below. 

These two configurations are briefly 

Configuration o (Pulse high on terminal count): 

When this configuration is set, output of a counter goes 
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low. After count is loaded, the output remains low until 

counter decrements through zero; then it goes high and remains 

high until the counter is reloaded. 

Configuration 3 (Square wave generator): 

After loading the counter output goes high half the 

count and low for the other half. If the count N is even, 

symmetrical square wave output is obtained. 

3. Mode 11 (Load timer/counter) is used to load the selected 

timer/counter with a count. 

4. Mode 13 (Read digital inputs IPl-3) is used to read the 

state of digital inputs which is necessary to check whether 

the sampling period is over or not. In this thesis, the 

output of counter 1 is connected to IP2, the output of counter 

0 is connected to IPl, and IP3 is grounded. Thus, the 3-bit 

word IP= IP3 IP2 IPl can take on the values o, 1, 2, or 3. 

Concerning the sampling period setting and checking, 

counter 2 configuration 3 is set to generate a square wave. 

Counter 2 is loaded with count 396 to obtain a frequency of 

approximately l0KHz, which is used as clock input to the 

counter 1 and counter o. The counter 1 configuration 3 is set 

and is loaded with count equal to 10 times the sampling period 

in ms. The counter 0 configuration 0 is set and is loaded 

with count equal to 5 times the sampling period. This 

arrangement is shown in figure (3.10). 

From the figure it is clear that, if IP is 3 immediately 

after completion of control algorithm, the sampling period is 

too short for the calculations. But, if IP is 1 and then 3, 
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then the sampling period is long enough for the control 

algorithm. 

3.4 Real-Time Software 

This section presents a brief explanation of the control 

program and also gives the real time plots of the closed-loop 

system. A few simulation results are also presented for 

comparison to the real-time results. 

There is need of writing a control program, in order to 

control the analog plant using the digital computer. This 

program 9 lso carries out communication between the digital 

computer and interfacing boards. The communication between 

the 7905 board and the digital computer is carried out using 
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IN and OUT instructions, while for communication between the 

DAS-8 board and the digital computer, DAS-8 machine language 

routine is used. The control program used for the real-time 

implementation of the control algorithm is given in APPENDIX 

E. The main steps of the program are as follows: 

1. Initialize DAS-8 board. 

2. Set counter 2 and counter 1 in configuration 3 to generate 

square wave and load the count values. Set counter O in 

configuration O and set the count value for it. 

3. Initialize control inputs ul and u2 and set GP-6 in initial 

condition mode. 

4. Load the data about control gain matrices, observer gain 

matrices, initial observer state vector, coefficient 

matrices in observer state equation and output equation, 

reference state vector and calculate initial control input ul. 

5. 

6. 

Set GP-6 in operation mode. 

a) 

b) 

Load the counter 0 with count value. 

Find the step is even or odd and accordingly 

i) send control input ul to RDAC or u2 to LDAC. 

ii) mea-sure output yl or y2 . 

iii) calculate the next observer state and control 

input. 

iv) update the values of observer state and previous 

input. 

c) Check the sampling period. 

7. If "Fl" key is pressed, set GP-6 in initial condition mode 

and stop the program run. 
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This program also has a few subroutines to perform 

certain tasks. These subroutines are briefly explained below. 

1. Scale data subroutine ..... The above program carries out 

calculations in decimal numbering system. But the program 

gets digital output from A/D converter which is in bipolar 

{2'complement) binary which needs to be converted into its 

equivalent decimal value in order to use it for calculations. 

This subroutine converts the binary output into its 

equivalent decimal value on lOv scale. Then that output value 

is utilize to calculate next control input. 

2. Prepare data subroutine ........ The control input calculated 

in the program is in decimal system. To send it to the D/A 

converter, it needs to be converted into its equivalent binary 

form. This subroutine converts that decimal value of control 

input into 12 bit digital data word and sends it to D/A 

converter. The output of D/A converter is the control input 

to the analog plant. 

Using the interfacing program, real time results for the 

controlled system are obtained. Some of these results along 

with simulated results are given below. The controller used 

to do real time results is the eigen- controller with the 

eigen-observer, (see section 3.2.3). 

Figure 3.11.1 shows simulated output response and figure 

3 .11. 2 shows real time output response of the controlled 

system. The responses are zero-input responses with plant 

state and observer state as x(O)=[O O .5 OJ' and x(O)=[O O .3 

Q] I • 
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Figure 3.12.1 shows simulated control input response and 

figure 3 . 12.2 shows real time control input response of the 

controlled system. The responses are plotted for the same 

conditions as that of figures 3.11.1 and 3.11.2. 

Figure 3.13.l shows zero state output responses obtained 

from the simulated results and figure 3.13.2 shows the same 

from the real time results. The reference input state xr is 

A 
[.2 o .3 OJ' and the initial observer state x(O) is (.5 O O 

Q ] I • 

Figure 3.14.1 shows simulated control input response and 

figure 3.14.2 shows real time control input response of the 

controlled system for the same conditions as those of figure 

3.13.1 and 3.13.2. 

Figures 3.15.1 and 3.15.2 show the combination of zero 

input and zero state output response of the controlled system. 

The reference input xr is [.2 o .3 OJ'and plant and observer 

initial state vectors are [.03 o o OJ', [.01 O O OJ' 

respectively. Figure 3.15.1 shows simulated output response 

and figure 3.15.2 shows real time output response. 

Figure 3.16.1 shows simulated control input response and 

figure 3.16.2 shows real time control input response for the 

same conditions as those of figures 3.15.1 and 3.15.2. 

All the real time results are comparable to simulation 

results. The real time results show disturbance or noise 

which might have occurred because of ocilloscope circuitry, 

connection leads, etc. 
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CHAPTER IV 

DISCUSSION 

4.1 summary 

In this thesis, a state space continuous-time MIMO model 

for the plant is developed. This model is then converted into 

a SISO step-varying system by updating one input at a time and 

sampling an output at that time. Then a step-varying design 

technique is applied to obtain a desired performance of the 

closed-loop system. Four step-varying control gains and four 

step-varying observer gains are designed and simulated in 

order to have a comparison of different responses. The best 

controller is implemented in real time, using the hardware 

available in the control laboratory. The simulation responses 

and the real-time responses obtained for the application plant 

using the step-varying controller are satisfactory and 

comparable to each other. 

4.2 Discussion 

The MIMO continuous-time plant is marginally stable. The 

real-time plots of the MIMO analog plant show that tracking 

outputs of the system do not track the reference inputs, which 

explains the need for a controller for the plant. 

From the simulation results, it is concluded that, for 

the two-car train plant, the eigen-controller is the best 

among the four sets of control gains. 
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When there is no observer error, all the sets of control 

gains give the same results. But when there is initial 

observer error, each set of control gains gives different 

results with the same set of observer gains. This helps us in 

deciding the best set of control gains among the four sets. 

Also it has been observed that initial observer error in x 1 

and x3 directions shows different results for a same set of 

control gain matrices with the same observer and with initial 

conditions of the same size (for example, response to x(0)=[.1 

" 0 0 0]', x(0)=[.2 0 · 0 0]' and response to x(0)=[0 0 .1 0]', 

x(O)=[O 0 .2 0] '). The results are different in that the 

response for the first case may be satisfactory but, for the 

second case, they may not be satisfactory. One reason for 

this behavior might be that we update input u 1 and measure 

output y 1 (i.e., x 1 ) first. Therefore, the observer error in 

x1 direction is taken into account by the controller before 

the error in the x3 direction. Secondly, the order of basis 

vectors might have some effect. This odd behavior is present 

only in the eigen-controller with the coordinate observer. 

Therefore, the coordinate observer is not preferable for the 

plant under consideration. 

The real-time results of the closed-loop system obtained 

using real-time step-varying controller are comparable to 

those results obtained using computer simulation. The real­

time results also indicate that step-varying controller works 

well in real-time for the two-car train plant. However, there 

are some problems discovered during experiments which are due 
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to limitations of the hardware used in this thesis. 

First, since the GP-6 analog computer restricts the 

maximum voltage to +/- 10 v, there is need to limit the 

control inputs applied to the plant implemented on an analog 

computer. It has been observed that when the control inputs 

are limited to+/- 10v, although actual values needed for the 

control purpose are higher, the controller fails to control 

the plant. Simulation results for the same conditions are 

satisfactory when no limit is used. 

A second problem is that the real-time results (input and 

output responses) show the presence of noise. The presence of 

noise at steady state may be due to quantization error 

associated with AD/DA converters. The 7905 board has 12 bits 

successive approximation converters which allow error to be 

20/2 12 =4. 88 mv for 20 v (+/- 10 v) span. The real-time 

results also show some noise in the transient as well as 

steady state response, which might have occurred because of 

oscilloscope circuitry, connection leads, etc. 

A third problem deals with the sample period. Although 

precaution is taken to have the sampling period exactly equal 

to .1 seconds, sometimes the sampling period is observed to be 

slightly smaller or larger. 

In general, the deadbeat step-varying controller worked 

well for the two-car train plant. 

While designing the step-varying controller we have 

experienced some differences in 

techniques and step-varying design 

step-invariant design 

techniques. In step-
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invariant feedback control design, a designer selects 

eigenvalues or poles of the closed-loop system according to 

design specifications, such as settling time and maximum 

overshoot. He may try different eigenvalues depending upon 

the closed-loop response obtained and control required for 

that purpose. So, in step-invariant design, there is a 

definite first step and then the designer may have to follow 

trial-and-error procedure. 

In the step-varying design method also, we use feedback 

but it is step-varying. Since the system is a step-varying 

system, the designer does not select eigenvalues of the 

closed-loop system. However, he must select a set of basis 

vectors to use in calculating the gains. Since no rules exist 

for selecting the basis vectors, a trial-and-error procedure 

is used. 

4.3 suggestions for future study 

Conversion of MIMO continuous time-invariant plant into 

SISO step-varying system and then application of step-varying 

design technique is a vast subject. There is need of 

research on lots of topics. Some of those are given below. 

1. To convert the MIMO plant under consideration, into SISO 

step-varying system a specific input update pattern and output 

sampling pattern is tried. Another type of input update 

pattern and output sampling pattern can be tried and results 

can be compared. 

2. For the given plant, the eigen-controller is the best. 
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More application examples have to be tried to generalize this 

conclusion. Also eigenvalues of the MIMO discrete time-

invariant system are real for our system, so that we can use 

eigenvectors as the basis vectors, but for a system with 

complex eigenvalues, it is not possible. 

3. To calculate control and observer gains only one order of 

the basis vectors is tried. Further analysis is needed to 

determine what effect the order of the basis vectors has on 

control and observer gain matrices and also on the responses 

of the controlled system. 

4. In this thesis, only a deadbeat step-varying controller 

design is tried, in which case, the error between tracking 

outputs and the reference inputs goes to zero inn steps. 

Hostetter [ 2] has suggested another step-varying controller in 

which error goes to zero progressively depending upon the 

value of a parameter a. Effect of a on the response of the 

close-loop system is an another topic for further study. 

5. An interesting point noted in deadbeat step-varying control 

and observer design is that control gain matrices at oth step 

are same for all four sets of basis vectors and observer gain 

matrices are same at the oth step for all four sets of basis 

vectors. This might be a general theoretical property, which 

needs to be investigated. 

6. Sampling period of .1 second is selected under the 

assumption that it might take . 1 second to run the step­

varying control algorithm in real time. It has been observed 

that using QBASIC only 20 milliseconds sampling time is 
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sufficient to run the algorithm in real time if EVEREX-286 (16 

Mhz) computer is used. Improvement in closed-loop system 

response can be observed by designing the system for a smaller 

sampling period. 
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APPENDIX A 

This appendix gives the iterative method of calculating 

the control gain matrices for the SISO step-varying system 

developed by Dr. Foulkes. 

In vector form, the error state equation for SISO, step­

varying system are (from section 2.4.2) 

and 

e(k+l) = A(k) e(k) + D(k) v(k) + B(k) xr(k), 

v(k+l) = - F(k) e (k) - L(k) v(k) - G(k) xr (k) , 

........................ (a.1) 

where 

e(k), xr(k), E1 (k), ... , Er(k) each is an x 1 vector, 

v(k) is a (r-1) x 1 vector, 

F(k) is a (r-1) x n matrix, 

G(k) is a (r-1) x n matrix, 

L(k) is a (r-1) x (r-1) matrix, 

F(k) is a 1 x n feedback gain matrix, 

G(k) is a 1 x n feedforward gain matrix, 

v 1 , ••• , v r-1 are previous scalar inputs, 

11 (k) , .. , lr_ 1 (k) are scalar gains on the previous 

inputs. 



Also, 

v(k) = 

vr-1 (k) 

A (k) = [ 4> - ~1 (k) F(k) ] 

B(k) = [. 4> - 4>r - ~1 (k) G(k) ] 

L(k) = 

G(k) 

-1 

0 

0 

= 

F(k) = 

0 

-1 

0 

G(k) 

0 

0 

0 

F(k) 

0 

0 

0 

. -1 

lr-1 (k) 

0 

0 

0 
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Note that n is the order of MIMO step-invariant system. 

At n th step, 

e(n} = A(n-1} e(n-1} + D(n-1} v(n-1} + B(n-1} xr(n-1} 
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•• (a.2} 

Now suppose, 

e (n) = Tl (k) e (n-k) + e (k) V(n-k) + 'V (k) xr (n-k) 

where 

ry(k) is an x n vector, 

0(k) is an x (r-1) vector, 

t(k) is an x n vector. 

........ (a.3} 

Putting the expressions for e(n-k), v(n-k), xr(n-k) in terms 

of e(n-k-1), v(n-k-1), xr(n-k-1) by using the relation 

(a.1), and simplifying, 

e(n) = [ti (k) A(n-k-1) - 0(k) F(n-k-1)] e(n-k-1) 

+ [fl (k) D(n-k-1) - 0 (k) L(n-k-1)] v(n-k-1) 

+[,i(k) B(n-k-1) -6(k) G(n-k-1) +"1(k) <llr] xr(n-k-1) 

Comparing the above equation with equation (a.3}, we have 

e(n) = Tl (k+l} e(n-k-1) + 0(k+l) v(n-k-1) + "1(k+l} xr(n-k-1) 

which gives the following recursive expressions for ry(k), 

8(k), t(k) : 

Tl (k+l) = 11 (k) A (n-k-1) - 8 (k) F(n-k-1)] e (n-k-1) 

8 (k+l) = [11 (k) D(n-k-1) - 8 (k) L(n-k-1)] v(n-k-1) 

"1(k+l} = [ti(k) B(n-k-1) -8(k} G(n-k-1) +"1(k) <llr] xr(n-k-1} 

•••••••••••••••••••••••••••••••••••• (a.4) 



To find out boundary conditions, that is, expressions for 

ry(0), 0(0), ~(O), put k=O in equation (a.3) 

:. e (n) = fl ( o) e (n) + 8 ( o) v(n) + 1'r ( o) xr (n) 

Therefore to have e(n)= e(n) choose 

fl (0) = I, 8(0) = 0, llr(O) = 0 
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Now, in order for the error to go to zero inn steps, choose 

j 1 , ••• jn as n basis vectors. Then use, 

Jte(n) =0 for k = 1, 2, 3, .... n 

to calculate the gain matrices at all then steps. 

For example, consider k=l 

• I ( ) • / [ ( ) ( ) 8 ( ) -( ) ( ) ( ) ] :. J 1 e n = J 1 fl 1 e n-1 + 1 v n-1 + 1'r 1 x r n-1 = O 

Ji fl (1) = 0 

Then using equation (a.4) and boundary conditions we have, 

J i [T) (0) A(n-1) - 8 (0) F(n-1)] = 0 

which gives 

Also 

F(n-1) = 
Ji[<I> - I a] 

Ji ~l (n-1) 

Ji e (1) = o 

:. Ji [ [~ 2 (n-1) -~ 1 (n-1) 11 (n-1)] .. [~r(n-1) -~ 1 (n-1) lr- i (n-1)]] =0 

which gives 



Also 

1 1 (n-1) = 

lr-l (n-1) = 

ji ~2 (n-1) 

ji ~l (n-1) 

ji ~I (n-1) 

ji ~l (n-1) 

ji B(n-1) = 0 

Ji [<I> - <I>r - ~1 (n-1) G(n-1)] = 0 

which gives 

G(n-1) = 
ji [<I> - <I>r] 

Ji ~1 (n-1) 
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Once F(n-1), L(n-1), G(n-1) are known, we can find A(n-1), 

D(n-1), B(n-1) and hence n(l), 0(1), *(l}. Then putting k=2 

in equation (a.3) we have, 

Jte(n) = [T)(2) e(n-2) +0(2) v(n-2) +\fr(2) xr(n-2)] =0 

which gives, 

F(n-2) 
J; T) (1) <I> 

= • I 
[T) (1) ~ 1 (n-2) + 01 ( 1) ] J2 

1 1 (n-2) 
Jt[TJ(l) ~2 (n-2) + 02 ( 1) ] 

= 
Jt[TJ(l) ~ 1 (n-2) + 01 ( 1) ] 



Jt[11(l) ~r(n-2)] 

G(n-2) 
== Jt [fl (1) <l> - 11 (1) <l>r + V (1) <l>r] 

Jt[T)(l) ~l(n-2) +81(1)] 

where 8 1 (1) is the i~ column of 8(1). 

In general, at (k+l) th step, 

Jk+ 1 e(n) == jfc+1 [11 (k+l) e(n-k-1) + e (k+l) v(n-k-1) 

+ "1 (k+l) xr(n-k-1)] == 0 

Jk+1 11 (k) <l> 
F(n- (k+l) ) == --------------

J k+1 [11 (k) ~l (n- (k+l)) + el (1)] 

11 (n- (k+l) ) 

lr-i (n- (k+l)) == 

G(n-(k+l)) == 

Jk+1 [fl (k) ~2 (n- (k+l)) + e 2 (k)] 

J/c.d11(k) ~1 (n-(k+1)) + e1 (k)J 

jfc.1 [11 (k) C (n- (k+l))] 

jk+l [ri (k) ~l (n - (k+l)) + el (k)] 

Jk.1 [fl (k) <l> - 11 (k) <l>r + "1 (k) <l>r] 

Jk.1 [11 (k) ~1 (n- (k+1) + e 1 (k) J 
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•••.• (a.5) 

Therefore to calculate the gain matrices in iterative way, 

follow the following steps, start with k=O, 

1. Then use equation (a.4) with boundary conditions to find 

~(k+l), 8(k+l), t(k+l). 
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2. Compute F(n-(k+l)), L(n-(k+l)), G(n-(k+l)) using equation 

(a.5). 

3. Increase k by 1 and go back to step 1 if k is less than 

n. 
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APPENDIX B 

Listing of a Program cc macro used to calculate the control 
gain matrices for a set of unit coordinate vectors. 

state 
p1z 
cc 
j1=(1,0,0,0) 
j2=(0, 1,0,0) 
j3=(0,0,1,0) 

· j4=(0,0,0,1) 
zeta2e=(1.703e·4;5.458e-3;1.248e-2;1.781e-1) 
zeta2o=(1.248e-2;1.781e-1;1.703e-4;5.458e-3) 
zeta1e=zeta2o 
zeta1o=zeta2e 
f3=(j1*p1z(a))/(j1*zeta1o) 
f3 
l3=(j1*zeta2o)/(j1*zeta1o) 
l3 
g3=(j1*(p1z(a)-i))/(j1*zeta1o) 
g3 
pause 
a3=p1z(a)-zeta1o*f3 
d3=zeta2o-zeta1o*l3 
b3=p1z(a)-i-zeta1o*g3 
f2=(j2*a3*p1z(a))/(j2*(a3*zeta1e+d3)) 
f2 
l2=(j2*a3*zeta2e)/(j2*(a3*zeta1e+d3)) 
l2 
g2=(j2*(a3*p1z(a)-a3*i+b3*i))/(j2*(a3*zeta1e+d3)) 
g2 
pause 
a2=p1z(a)-zeta1e*f2 
d2=zeta2e-zeta1e*l2 
b2=p1z(a) - i-zeta1e*g2 
f1=(j3*(a3*a2*p1z(a)-d3*f2*p1z(a)))/(j3*(a3*a2*zeta1o-d3*f2*zeta1o+a3*d2-d3*l2)) 
f1 
l1=(j3*(a3*a2*zeta2o-d3*f2*zeta2o))/(j3*(a3*a2*zeta1o-d3*f2*zeta1o+a3*d2-d3*l2)) 
l1 
g1=(j3*(a3*a2*p1z(a)-a3*a2*i-d3*f2*p1z(a)+d3*f2*i+a3*b2*i-d3*g2*i+b3*i*i))/(j3*(a3*a2*zeta1o-d3*f2*z 
eta1o+a3*d2-d3*l2)) 
g1 
a1=p1z(a)-zeta1o*f1 
d1=zeta2o-zeta1o*l1 
b1=p1z(a)-i-zeta1o*g1 
pause 
fO=(j4*(a3*a2*a1*p1z(a)-d3*f2*a1*p1z(a)-a3*d2*f1*p1z(a)+d3*l2*f1*p1z(a))) 
denom=j4*((a3*a2*a1-d3*f2*a1-a3*d2*f1+d3*l2*f1)*zeta1e+a3*a2*d1-d3*f2*d1-a3*d2*l 1+d3*l2*l1) 
fO=fO/denom 
LO=(j4*(a3*a2*a1-d3*f2*a1-a3*d2*f1+d3*l2*f1)*zeta2e)/denom 
g0=(j4*((a3*a2*a1-d3*f2*a1-a3*d2*f1+d3*l2*f1)*(p1z(a) - i)+(a3*a2*b1-d3*f2*b1-a3*d2*g1+d3*l2*g1+a3*b2* 
i-d3*g2*i+b3*i*i)*i))/(denom) 
to 
LO 
gO 
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APPENDIX C 

Listing of a Program cc macro used to calculate the observer 
gain matrices for a set of obsevability vectors. 

state 
plz 
cO=(l,O,O,O) 
cl=(0,0,1,0) 
jl=(l.248633e-2;1.781246e-l;l.703513e-4;5.4584e-3) 
jl 
j2=(1.703513e-4;5.4584e-3;1.248633e-2;1.781246e-l) 
j2 
j3=(1.823123e-2;2.321339e-3;1.165995e-3;1.274807e-2) 
j3 
j4=(1.165995e-3;1.274807e-2;1.823123e-2;2.321339e-3) 
j4 
pO=(plz(a)*jl)/(cO*jl) 
po 
aO=plz(a)-pO*cO 
ao 
pl={plz(a)*aO*j2)/(cl*aO*j2) 
pl 
al=plz(a)-pl*cl 
p2=(plz(a)*al*aO*j3)/(cO*al*aO*j3) 
p2 
a2=plz(a)-p2*c0 
p3=(plz(a)*a2*al*aO*j4)/(cl*a2*al*aO*j4) 
p3 
a3=plz(a)-p3*cl 
a3*a2*al*aO*jl 
a3*a2*al*aO*j2 
a3*a2*al*aO*j3 
a3*a2*al*aO*j4 
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APPENDIX D 

Simulation program for 

/******* SIMULATION PROGRAM FOR STEP-VARYING CONTROLLER*******/ 

#include<stdio.h> 

main() 

/* standard 1/0 header file*/ 

C 

float x1C4J,zeta1C4J,zeta2C4l; 
float xrC4l=C0.10,0,.100,0}; 
float x0C4l=C.O,O,.OO,O}; 
fl oat xe1 C4l; 
float xe0C4l=C.100,0,.0,0}; 

/* array of control gains */ 

float f[4] [4]={{2.267406e1,9.336732e-1,4.316701,1.457069e-1}, 
C· 6.821325,-3.138055e-1,2.256269e1,9.431117e-1}, 
C2.009368e1,8.056389e-1,2.627241e1,1.0336508}, 
{7.904951e1,2.902429,7.904951e1,2.902429}}; 

/* array of gains from referense */ 

float g[4l C4l=CC-3.782079,5.447524,3.782079,7.01368e-2}, 
{4.729583,-2.275324,-4.729583,2.90463}, 
C-2.057808,-9.666447e-1,2.057808,2.808792}, 
C3.341534e-13,2.902429,-3.149877e-13,2.902429}}; 

/* array of gains from v */ 

float lC4l=C5.508251e-2,-.1817109,.4855799,1}; 

float phi [4] C4l=CC9.507361e-1,3.562492e-2,4.926391e-2, 1.09168e-3}, 
C-6.906648e-1,6.011309e-2,6.906648e-1,2.197191e-2}, 
{4.926391e-2,1.09168e-3,9.507361e-1,3.562492e-2}, 
{6.906648e-1,2.197191e-2,-6.906648e-1,6.011309e-2}}; 

float zeta2eC4l=C1.703513e-4,5.4584e-3,1.248633e-2,1.781246e-1}; 
float zeta2oC4]={1.248633e-2,1.781246e-1,1.703513e-4,5.4584e-3}; 
float zeta1oC4]={1.703513e-4,5.4584e-3,1.248633e-2,1.781246e-1}; 
float zeta1eC4]={1.248633e-2,1.781246e-1,1.703513e-4,5.4584e-3}; 
int ce[4]={1,0,0,0}; 
int co(4]={0,0, 1,0},c[4]; 

/* array of observer gains */ 

float pC4J [4] =«1, 1.5768584e-1,9.2888806e-1, 1.424716e-1}, 
{-2.895292e- 15,6.614367e-1,-7.216324e-1,6.74709e-1}, 
{1,9.278345e-1,6.038664e-2,9.346653e-1}, 
{3.031123e-15,-6.614367e-1,7.216324e-1,-6.598071e-1}}; 

int i, j, n, r, s; 
float *ptrz1,*ptrz2; 
int *ptrc; 
float u0,v1,y0,ye0; 
float vO=O.O; 
FILE *fptr; 

/* pointer to array zeta1 and zeta2 */ 
/* pointer to array c */ 

/* fptr is a file pointer*/ 

/* FILE is a structure defined in STDIO.h*/ 

fptr=fopen("a:big2.data 11
,

11 w11
); /* open a file*/ 
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/****** starting of calculations********/ 

for (r=O;r<6;r=r+1) 

{ 

for (n=O;n<4;n=n+1) /* starting of main loop */ 

{ /* choose even & odd n */ 

if (nX2) 
( /* odd choice */ 

ptrz1=zeta1o;ptrz2=zeta2o;ptrc=co; 

} 

for Ci=O;i<4;i=i+1) 

{ 

zeta1(il=*Cptrz1+i); 
zeta2(il=*Cptrz2+i); 
c (il =*Cptrc+i ); 

} 

else 

{ /* even choice*/ 

ptrz1=zeta1e;ptrz2=zeta2e;ptrc=ce; 
for (i=O;i<4;i=i+1) 

} 

} 

{ 

zeta1 (il=*Cptrz1+i); 
zeta2(i]=*(ptrz2+i); 
c(il=*Cptrc+i); 

/* calculation for uo */ 

uO=O; 
for (i=O;i<4;i=i+1) 

{ 

uO=uO-f [nl [il*xeO(i]+(f(n] [i]-g(n] (il )*xr[il; 
} 

uO=uO- l (n] *vO; 
yO=O;yeO=O; 

for (i=O;i<4;i=i+1) 
{ 

yO=yO+c[iJ*xO[il; 
yeO=yeO+c[iJ*xeO[il; 

) 

for (i=O;i<4;i=i+1) 
{ 

x1 Cil =O; 
for (j=O;j<4;j=j+1) 

} 

v1=u0; 

{ 

x1 [il=x1 [il+phi Ci] [jJ*xO[j]; 
) 

x1[i]=x1[i]+zeta2[i]*v0+zeta1[il*u0; 

for (i=O;i<4;i=i+1) 
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r 

} 

} 

} 

fclose(fptr); 

s=4*r+n; 

{ 

xe1[il=O; 
for (j=O;j<4;j=j+1) 

{ 

xe1 [il=xe1 [i]+phi [i] [j]*xeO[j] • 
} , 

xe1[il=xe1[i]+zeta2[il*vO+zeta1[i]*uO+p[il [n]*(yO·yeO); 

} 

fprintf (fptr, 11 \nXd X2.Sf X2.Sf X2.Sf X2.Sf X2 .Sf\n ", 
s,xO[O] ,x0[1] ,x0[2] ,x0[3] ,uO); 

printf C"\n %d X2.Sf X2.Sf X2.Sf X2.Sf X2.Sf\n ", 
s, xeO[Ol ,xe0[1] ,xe0[2] ,xe0[3] ,uO); 

vO=v1; 
/* values are updated */ 

for (i=O;i<4;i=i+1) 
{ 

x0Cil=x1Cil; 
xeO[i]=xe1 [il; 

} 

/* loop for n ends */ 

/* loop for rends*/ 

/* file a:big2.dat is closed*/ 

/* main ends */ 
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APPENDIX E 

Listing of QUICKBASIC Program for Real-Time Implementation of 
a step-Varying controller. 

REM*******************************************"'"'*,..***,..***** 
REM* INTERFACING PROGRAM * REM***********************************************..,,********* 

INPUT "TSAMP=", T 
DIM 010%(5) 
ON KEY(1) GOSUB lable10: KEY(1) ON 
REM STEP 1- -- INTIALIZE DAS8 IJITH MOOE 0 
MD%= 0 
BASADR% = &H300 
FLAG%= 0 
CALL DAS8(MD%, BASADR%, FLAG%) 

1 TO STOP THE RUN 

If FLAG%<> 0 THEN PRINT "INSTALLATION ERROR 11 

REM STEP2--- SET UP COUNTER 2 IN CONFIGURATION 3 
MD%= 10 'MOOE 10 IS SELECTED 
010%(0) = 2 'SELECT COUNTER 2 
010%(1) = 3 'SELECT CONFIGURATION 3 
CALL DAS8(MD%, D10%(0), FLAG%) 
MD%= 11 'MOOE 11 IS SELECTED TO LOAD COUNTER IJITH COUNT 
D IO%( 1 ) = 395 
CALL DAS8(MD%, 010%(0), FLAG%) 
REM STEP3· ·· SET UP COUNTER 1 
MD%= 10 

IN CONFIGURATION 3 ••••• 

DI0%(0) = 1 

D I0%(0), FLAG%) 

'MOOE 10 IS SELECTED 
'SELECT COUNTER 1 
' SELECT CONFIGURATION 3 D IO%( 1) = 3 

CALL DAS8(MD%, 
MD% = 11 ' MOOE 11 IS SELECTED TO LOAD COUNTER IJITH COUNT 
D10%(1) = 10 * T 
CALL DAS8(MD%, 010%(0), FLAG%) 
REM STEP4--- SET UP COUNTER O IN 
MD% = 10 
DI0%(0) = 0 

DI0%(0), FLAG%) 

1 COUNT FOR COUNTER 1 

CONFIGURATION O -----
' MOOE 10 IS SELECTED 
1 SELECT COUNTER 1 
' SELECT CONFIGURATION 0 D IO%( 1) = 0 

CALL DAS8(MD%, 
MDL%= 11 
MD%= 13 
D IQ%( 1 ) = 5 * T 
REM STEP 5-- -
0UT 788, 0: 

' MODE 11 IS SELECTED TO LOAD COUNTER IJITH COUNT 
• MOOE 13 IS SELECTED TO READ DIGITAL INPUTS IP1-IP3 

1 COUNT FOR COUNTER 0 

OUT 792, 0: 

INITIALIZE CONTROL 
OUT 789, 0 
OUT 793, 0 

INPUTS AND GP-6 ···· 
' INITIALIZE U1=0 
1 INITIALIZE U2=0 
' SET C3 HIGH··> GP-6 IC MODE OUT 785, 8 

IJAIT 786, 4, 4 
OUT 784, 2 
GOSUB lable1 

1 IJAIT FOR C2 TO HIGH ( i.e till ic mode is set) 
• SET HUX ADDRESS TO OPM 2 

GOTO lable2 
lable1: REM---- DATA SUB-ROUTINE 
DIM XE0(4), F(4, 4) 
DIM L(4), G(4, 4), M(4, 4) 
DIM XE1(4), PHI(4, 4), ZETA1E(4) 
DIM ZETA10(4), ZETA2E(4) 
DIM ZETA20(4), CE(4) 
DIM C0(4), P(4, 4) 
DIM XR(4) 
DATA .0,0, .0,0 
FOR I = 1 TO 4 
READ XEO(I) 
NEXT I 
DATA . 1 ,0, .2,0 
FOR I = 1 TO 4 

'XEO 

'Xr 



READ XR(I) 
NEXT I 
DATA 2.267406e1,9.336732e-1,4.316701,1.45069e-1 
DATA -6.821325,-3.138055e-1,2.256269e1,9.431117e-1 
DATA 2.009368e1,8.056389e-1,2.627241e1,1.0336508 
DATA 7.904951e1,2.902429,7.904951e1,2.902429 
FOR I = 0 TO 3 'F(O) TO F(3) 
FOR J = 1 TO 4 
READ F(I, J) 
NEXT J 
NEXT I 
DATA 5.508251e-2,-.1817109,.4855799,1 
FOR I = 0 TO 3 
READ L(I) 'L(O) TO L(3) 
NEXT I 
REM DATA FOR G(O) TO G(3) 
DATA -3.782079,5.447524,3.782079,7.01368e-2 
DATA 4.729583,-2.275324,·4.729583,2.90463 
DATA ·2.057808,·9.666447e-1,2.057808,2.808792 
DATA 3.341534e-13,2.902429,-3.1498ne-13,2.902429 
FOR I= 0 TO 3 
FOR J = 1 TO 4 
READ G(I, J) • G(O) to G(3) 
NEXT J 
NEXT I 
FOR I= 0 TO 3 
FOR J = 1 TO 4 
M(l, J) = F(I, J) - G(l, J) 1 M(O) to M(3) 
NEXT J 
NEXT I 
DATA 1,1.5768584E-1,9.2888806E-1,1.424716E-1 
DATA -2.895292E-15,6.614367E-1,-7.216324E-1,6.74709E-1 
DATA 1,9.278345E-1,6.038664E-2,9.346653E-1 
DATA 3.031123E-15, -6.614367E-1,7.216324E·1,·6.598071E·1 
FOR I = 1 TO 4 
FOR J = 0 TO 3 
READ P(I, J) 1 P(O) to P(3) 
NEXT J 
NEXT I 
DATA 9.507361E·1,3.562492E -2,4.926391E-2,1.09168E-3 
DATA -6.906648E-1,6.011309E-2,6.906648E-1,2.197191E-2 
DATA 4.926391E-2, 1.09168E-3,9.507361E-1,3.562492E-2 
DATA 6.906648E-1,2.197191E-2,·6.906648E-1,6.011309E·2 
FOR I = 1 TO 4 1 PH I 
FOR J = 1 TO 4 
READ PH I (I, J) 

NEXT J 
NEXT I 
DATA 1.248633E·2, 1.781246E-1,1.703513E-4,5.4584E-3 
FOR I = 1 TO 4 'ZETA1E 
READ ZETA1E(I) 
NEXT I 
DATA 1.703513E·4,5.4584E-3,1.248633E·2, 1.781246E-1 
FOR I = 1 TO 4 'ZETA10 
READ ZETA10(1) 
NEXT I 
DATA 1.703513E-4,5.4584E-3, 1.248633E-2,1.781246E-1 
FOR I = 1 TO 4 'ZETA2E 
READ ZET A2E (I) 
NEXT I 
DATA 1. 248633E-2, 1.781246E-1,1.703513E-4,5.4584E-3 
FOR I = 1 TO 4 'ZETA20 
READ ZETA20(1) 
NEXT I 
DATA 1,0,0,0 
FOR J = 1 TO 4 
READ CE(J) 
NEXT J 
DATA 0,0,1,0 
FOR J = 1 TO 4 

'CE 

•co 
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READ CO(J) 
NEXT J 
VO= 0 
uo = 0 
FOR I= TO 4 
UO = UO - F(O, I)* XEO(I) + (F(O, I) - G(O, I))* XR(I) 
NEXT I 
UO = UO - L(O) * VO 
RETURN 

lable2: REH--- -- - PERFORM CONTROL ROUTINE 
INPUT "press enter to start", SS 
OUT 785, 0 
IJAIT 786, 4 

lable3: N = 0 
lable4: CALL DAS8(HDL%, DI0%(0), FLAG%) 

1 SET GP-6 IN OP HOOE 
1 IJAIT UNTIL OP HOOE IS SET 

REH ----SELECTION OF ODD AND EVEN ZETA1,ZETA2,C 
IF (N / 2 = INT(N / 2)) THEN GOTO lable6 ELSE GOTO lable5 

lable5: GOSUB lable11 1 PREPARE DATA TO SEND TO DAC 
OUT 792, ULB I RDAC LOI.I BYTE 
OUT 795, UHB I RDAC high byte & START ADC 
GOSUB lable12 1 SCALE DATA subroutine 
OUT 784, 2 ' SET HUX ADDRESS TO OPH 2 
YEO O • calculations for next step 
FOR I = 1 TO 4 
YEO= YEO+ CO(!)* XEO(I) 
NEXT I 
FOR I = 1 TO 4 
XE1(I) = 0 
FOR J = 1 TO 4 
XE1(1) = XE1(1) + PHl(I, J) * XEO(J) 
NEXT J 
XE1(1) = XE1(1) + ZETA20(1) *VO+ ZETA10(1) * UO + P(I, N) * (YO - YEO) 
NEXT I 
GOTO lable7 

lable6: GOSUB lable11 
OUT 788, ULB 
OUT 791, UHB 
GOSUB lable12 
OUT 784, 6 
YEO= 0 
FOR I= 1 TO 4 
YEO= YEO+ CE(I) * XEO(I) 
NEXT I 
FORI=1T04 
XE1(1) = 0 
FOR J = 1 TO 4 
XE1(1) XE1(1) + PHI(!, J) * XEO(J) 
NEXT J 

• next line for even choice 
' PREPARE DATA TO SEND TO DAC 

' LDAC HIGH BYTE & start adc 
' SCALE DATA SUB-ROUTINE 
1 SET HUX ADDRESS TO OPM 4 
• calculations for next step 

XE1(1) 
NEXT I 

XE1(1) + ZETA2E(I) *VO+ ZETA1E(I) * UO + P(I, N) * (YO - YEO) 

GOTO lable7 
lable7: REM-- --­

VO = UO 
FORl=1T04 

updation of values------

XEO(I) = XE1(1) 
NEXT I 
N = N + 1: IF N > 3 THEN N = 0 
uo = 0 
FOR I= TO 4 

' FIRST V1=UO THEN VO=V1 

UO = UO - F(N, I)* XEO(I) + H(N, I)* XR(I) 
NEXT I 
UO = UO - LCN) * VO 
REH---- CHECK TIMING REQUIRED FOR CALCULATIONS 
CALL DAS8(MD%, IP%, FLAG%) 
IF IP%= 3 THEN PRINT "TOO SHORT": GOTO lable4 

i .e 

lable8: CALL DAS8(HD%, IP%, FLAG%) ' READ IP AGAIN 
IF IP%= 3 GOTO lable4 
IF IP%= 1 GOTO lable9 
GOTO lable8 

lable9: CALL DAS8(HD%, IP%, FLAG%) ' READ IP AGAIN 

VO=UO 
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IF IP¾= 1 GOTO lable9 
IF N < 4 GOTO lable4 
GOTO lable3 

lable10: GOSUB lable13 
END 

lable11: REM----- PREPARE DATA TO SEND (DAC) 
UK= (UO * 2048) / 10 
IF UK> 2047 THEN UK= 2047 
IF UK< -2048 THEN UK= -2048 
IF UK< 0 THEN UK= 4096 + UK 
UHB = INT(UK / 16) 
ULB = (UK - UHB * 16) * 16 
IF ULB > 255 THEN ULB = 255 
RETURN 

' FINALLY IPX=3 IS OK 

' FORM BINARY DATA \JORD 

' FOR 2 1 COMPLIMENT \JORD 
1 SERERATE HIGH BYTE 
1 SEPERATE L~ BYTE 

lable12: REM -------SUBROUTINE SCALE DATA--------
QA = INP(787) * 16 1 GET DATA H.BYTE & SCALE 
QB= INP(786) / 16 ' GET DATA L.BYTE & SCALE 
AA= QA+ INT(QB) 'DROP SENSE BITS & COMBINE H&L 
IF AA> 2047 THEN AA= AA - 4096 ' SCALE NEGATIVE DATA 
YO= (AA/ 2048) * 10 1 SCALE TO 10 V REF 
RETURN 

lable13: REM-----­
OUT 785, 8 
~AIT 786, 4, 4 
RETURN 

PUT GP-6 IN IC MOOE AT THE END 
1 SET C3 HIGH FOR GP·6 IC MOOE 

1 ~AIT TILL IC MOOE IS SET 

117 



118 

REFERENCES 

[1] Ogata Katsuhito, Discrete-Time Control systems, New 
Jersey: Prentice-Hall, Inc., 1987. 

[2] Hostetter Gene H., Digital Control System Design, New 
York: Holt, Rinehart and Winston, Inc., 1988. 

[3] Friedland Bernard, Control System Design (An 
Introduction to State-Space Methods), New York:McGraw­
Hill, Inc., 1986. 

[4] Hass Violet B., Analog and Digital Computer Handbook, 
Indiana: College Town Press, 1985. 

[5] Chungcharoen Ekachidd, A Multiple Sampled-Data 
Controller with Multiplexed Inputs and Outputs, Masters 
Thesis, Electrical Engineering Department, Youngstown 
State University, 1990. 

[6] Model 767 Analog/Digital Positional Control Panel 
~0 .. P~e~r~a=t~o=r-=s'---=a=n=d=--=M=a=i=n~t~e=n=a=n-=c~e'--~M=a=n=u=a=l , I 11 ino is : Comd yna , 
Inc. 

[7] DAS-8 and DAS-8PGA User's 
MetraByte Corporation, 1988. 

Manual, Taunton, MA: 

[8] Thompson Peter M., Program CC Version 4 Reference 
Manual, Hawthorne, CA: Systems Technology, Inc., 1989. 

[9] Lien David A., The Basic Handbook (Encyclopedia of 
the BASIC Computer Language), San Diego, CA: Compusoft 
Publishing, 1986. 

[10] Microsoft QuickBASIC (Learning to use Microsoft 
QuickBASIC) version 4.5, Microsoft Corporation, 1990. 

[11] Microsoft Quick C ( C for yourself) Version 2.0, 
Microsoft Corporation, 1988. 

[12] Lafore Robert, The Waite Group's Microsoft 
(Programming for IBM), Indiana: Howard W. Sams and 
Company, 1988. 

[13] Tomkins Willis J., Webster John G., Interfacing 
to the IBM PC, New Jersey: Prentice-Hall, 1988. 

C 

[ 14] Eggebrecht Lewis C. , Interfacinq to the IBM Personal 
Computer, Indianapolis, IN: Howard w. Sams and Company, 
Inc., 1983. 




