
PIO AUTO-TUNE CONTROL

A Practical Implementation

by

STEVEN BATES

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in Engineering

in the

Electrical Engineering

Program

6-J-9~
Date

Date

YOUNGSTOWN STATE UNIVERSITY

June, 1994

ABSTRACT

PID AUTO-TUNE CONTROL

STEVEN BATES

MASTER OF SCIENCE IN ENGINEERING

YOUNGSTOWN STATE UNIVERSITY, 1994

ii

This thesis investigates the design and implementation of

a simplified standard PIO controller, a method of tuning these

types of controllers and the implementation of an auto-tuning

controller. The implementation includes programming the

control software in "C" language on a personal computer,

interfacing the software and hardware to analog-to-digital,

digital-to-analog converters, and programming a plant

simulation on an analog computer. A method of manually tuning

the PIO controller, an explanation of the "C" programming

code, the hardware configuration, and the automatic tuning of

PIO controllers are discussed and presented.

iii

ACKNOWLEDGEMENTS

I wish to express gratitude to several people who have

provided support and inspiration for this work. Dr. Robert H.

Foulkes, Jr. imparted his extensive knowledge of control

design and practical hardware implementation. Professor Samuel

J. Skarote has contributed genius in programming "C", and has

served on my thesis review committee. I am grateful to Dr.

Salvatore R. Pansino for being my advisor throughout the

entire course of study for the master degree and for serving

on my thesis committee. His help in all areas of this endeavor

have been invaluable.

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS.

LIST OF SYMBOLS ..

LIST OF FIGURES ..

LIST OF TABLES

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION AND BACKGROUND

PIO CONTROLLER TUNING

CHAPTER 2 DESIGN AND TUNING OF PIO CONTROLLERS

INTRODUCTION.

OPERATOR INTERFACE

PROGRAM STRUCTURE

CONTROLLER DESIGN EQUATIONS

iv

ii

iii

iv

. . vi

ix

. xi

1

6

14

14

14

15

19

CHAPTER 3 IMPLEMENTATION AND EXPERIMENTAL RESULTS. 21

AUTO-TUNE CONTROLLER DESIGN

INTRODUCTION

CONCEPTS

CONTROLLER SOFTWARE DESIGN.

EXPERIMENTAL RESULTS.

ANALYSIS . . .

CHAPTER 4 SUMMARY.

RECOMMENDATIONS FOR FUTURE STUDY.

APPENDIX A TECHNICAL DETAILS

21

21

21

24

25

57

60

61

62

DASS ~DDRESSES AND OTHER DETAILS. 62

TIMER/ COUNTER DETAILS•... 63

TABLE OF CONTENTS

DETAILS OF PLANT AND COMPUTER CONNECTIONS

APPENDIX B PID AND AUTO-TUNE "C" CODE LISTING

REFERENCES • . .

V

67

. 69

91

SYMBOL

II a II

A2D

II bll

lld II

dB

D (k)

D (k-1)

D2A

e

e (t)

de/dt

G{s)

G (jw)

vi

LIST OF SYMBOLS

DEFINITION UNITS OR REFERENCE

Process amplitude or plant 2 feedback

parameter

Analog-to-digital converter

Setpoint weighting factor

Amplitude of square wave in relay

feedback test

Decibels

Controller derivative term,

discrete time

Controller derivative term,

previous value, discrete time

Digital-to-analog converter

Error signal

Error signal

Exponential representation of

complex phasor, Nyquist plots

Rate of change of error

Plant or process Laplace transfer

function

Plant or process frequency transfer

function

none

none

none

volts

none

volts/sec

volts/sec

none

volts

volts

none

volts/second

none

none

vii

LIST OF SYMBOLS

SYMBOL DEFINITION UNITS OR REFERENCE

i

Plant or process transfer function

Sampling time variable

Imaginary number V(-1)

I(k) Controller integral term,

discrete time

I (k+l)

I/P

QDR

Controller integral term,

next value, discrete time

Current-to-pressure converter

Proportional gain

Ultimate gain

Quarter decay ratio response

Plant or process gain

Regulator or controller gain

Overall system gain

r(k) Controller setpoint,

discrete time

p

PI

PIO

Proportional Controller

Proportional, integral controller

Proportional, integral, derivative

controller

P(k) Controller proportional term,

discrete time

PLC5 Programmable logic controller

none

seconds

none

none

none

ma to psi

none

none

none

none

none

none

% of range

none

none

none

% of range

none

..

viii

LIST OF SYMBOLS

SYMBOL DEFINITION UNITS OR REFERENCE

N Noise gain limiting constant none

s

SISO

TIC

T-
'

TT

Overall system transfer function

Single input single output

Temperature indicating controller

Controller derivative time

Integral time parameter

Temperature transmitter

Ultimate period

u(t) Control output

signal

u(k) Controller output signal,

discrete time

y(t) Process output

signal

y(k) Process output signal,

discrete time

y(k-1)

a

w

Process output signal, previous value,

discrete time

Plant or process phase margin

Overall system phase margin

Regulator or controller phase margin

Frequency

none

none

none

seconds

seconds

degrees - ma

seconds

volts

volts

volts

volts

volts

none

degrees

degrees

degrees

radians/sec

LIST OF FIGURES

FIGURE

Vegetable fryer

Closed loop control system •.

Quarter decay ratio response.

Nyquist diagram

PIO controller diagram.

Relay control diagram

Relay output@ 20%, plot 1, plant 1

p controller plot 2, gain of 5, plant

p controller plot 3' gain of 6, plant

p controller plot 4, gain of 7, plant

PIO auto-tune controller plot 5, plant

P controller plot 6, plant 1
Relay output @ 30%, plot 7, plant 1

QDR p controller, plot 8, plant 1 . .
QOR PI controller, plot 9, plant 1.

1

1

1

1

.

.

QOR PIO controller, plot 10, plant 1.

Step response a= .1, plot 11, plant 2 .

QOR PIO controller, plot 12, plant 2 .

. .

. .

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

PIO Auto-tune controller, plot 13, plant 2 .

Relay output 10%, plot 14, plant 2 .

21. Step response a= .3, plot 15, plant 2 .

22.

23.

QOR P controller, plot 16, plant 2 ..

QOR PI controller, plot 17, plant 2

ix

PAGE

2

3

8

. . . . 10

. 13

. . . 21

. . • . 2 3

. .

. .

. .

. .

. .

. .

. .

. . 28

. . 29

. . 30

. . 32

. . 33

. . 35

. . 37

• 38

• • 39

• 43

. 44

. 45

. 46

• • • • 4 7

• • • • 4 8

• 49

LIST OF FIGURES

FIGURE

24. QOR PIO controller, plot 18, plant 2 ...

X

PAGE

. 50

25. Auto-tune PIO controller, plot 19, plant 2 51

26.

27.

28.

29.

30.

31.

32.

33.

Relay output 10%, plot 20, plant 2 .

Step response a= .1, plot 21, plant 2 .

QOR PID controller, plot 22, plant 2

Auto-tune controller, plot 23, plant 2 .

Relay output 10% plot 24, plant 2

Counter board timing diagram

Plant 1 diagram•.

Plant 2 diagram

• 52

. 53

. 54

. 55

. 56

. 66

• • • • 67

. . . . 68

-

TABLE

1.0

2.0

3.0

4.0

LIST OF TABLES

Quarter decay tuning formulas

Plant 1 data

Plant 2 data.

Model 767 and GP-6 addresses.

5.0 Counter details

xi

PAGE

9

. 26

. 41

. 62

• • 64

p

1

CHAPTER 1

INTRODUCTION AND BACKGROUND

I chose this subject for my thesis in order to learn more

about the methods of tuning proportional, integral, derivative

(PID) controllers. I work as a consulting engineer for Fluor

Daniel and provide clients with control system design and

startup services. As an example of this, I have worked for

Frito Lay in their Dorita manufacturing plant in Perry,

Georgia, starting up their kitchen automation. This automation

consisted of a programmable controller (PLC5) system, color

graphic operator interfaces, and instrumentation. Imbedded in

the PLC5 system was PID software that required tuning to

provide satisfactory control. An example of the use of this

PID control is illustrated in figure 1. The process under

control consisted of a vegetable fryer that maintained the

vegetable oil at 365 degrees Fahrenheit. A steam valve was

modulated to provide steam heating of the vegetable oil. The

Dorita chips were conveyed into the vegetable oil and

circulated around the fryer to a conveyor that slowly elevated

them out of the oil, allowing the oil to drain from the chips.

The chips then proceeded ' to the next processing stage. The

controller had to maintain the oil temperature under the

disturbances of room temperature makeup oil entering the fryer

and also as the room temperature chips entered the fryer. I

had no method at my disposal to properly tune this process and

p

2

therefore had to manually tune the controller for an

acceptable control response.

Temperature Contr-o I I er-

Proc=
Flurd

Steam

Figure 1. Vegetable fryer.

L(t)

Steam
Tr-ap

Set Poln

y(t)

Proportional, integral, derivative controllers are used

extensively in industry in all types of systems. PIO

controllers are sufficient for many control problems

especially processes where there are modest performance

requirements. Even though PIO controllers are well known, they

are often poorly tuned (1], (2], (4].

This thesis is about the design and tuning of a

pa

3

proportional, integral, derivative (PIO) type of closed loop

control system. A typical closed loop system is illustrated in

figure 2 (11].

PIO

Contro I I er

U(t)

Feedback

s1ona1

Plant
or
Process

Figure 2. Closed loop control system.

y(t)

The input or desired setpoint is fed into an error

detector, where a signal proportional to the difference

between the input and output is generated. The controller

drives the plant input to produce an error of zero. Any

differences between the actual output and desired output

(setpoint) are automatically corrected in a closed-loop

control system. A typical example would be a temperature

controller for a room. The desired temperature would be the

setpoint, the actual temperature would be the measured output

and the difference between the two signals would be the error.

4

The three modes of control of feedback are proportional,

integral, and derivative. Each of these modes introduces an

adjustable parameter into the tuning operation of the feedback

controller. The controller can consist of a single mode, a

combination of two modes, or a combination of all three.

The purpose of the proportional mode is to cause an

instantaneous response of the controller output to changes in

the error. The formula for the proportional mode is [9]:

(1)

where Kc is the controller gain, e is the error, and u is the

controller output. The significance of the controller gain is

that the larger it is, the larger will be the change in the

controller output caused by a given error.

The ~ hrpose of the integral mode is to eliminate the

offset or steady state error that can occur with proportional

control used alone. The controller does this by integrating

the error over time. The formula for the integral mode is [9]:

u = Kc J edt
Ti

(2)

where tis time and Ti is the integral tuning parameter for the

integral mode. The smaller the integral time Ti the faster the

controller output will change for a given error. Al though

integral mode is effective in eliminating offset, it is slower

than the proportional mode because it must act over a period

of time.

The derivative mode responds to the rate of change of

5

error with time. The formula for the derivative action is [9]:

de
u = K Td­

c dt
(3)

where Td is the derivative time and de/dt is the rate of

change of the error. Note that the derivative acts only when

the error is changing with time.

The "textbook" equation for the PIO algorithm has the

following form [10], [11], [12].

u(t) = Kc [e(t) + :if e(t)dt+Td~~l (4)

where u is the control variable and e is the control error,

the difference between the setpoint and the output. The

control variable is the sum of three terms: AP-term, (which

is proportional to error), an I-term (which is proportional to

integral of error), arid the o-term (which is proportional to

the derivative of error. Again, the controller parameters are

the proportional gain Kc, the integral time constant Ti, and

the derivative time constant Td.

PIO controllers are implemented in many forms, such as,

stand alone controllers that can handle multiple loops and as

software in programmable controllers. These controllers are

very "robust" and have been around for a long time, originally

designed using pneumatics, later using electron tubes,

transistors, integrated circuits, and now microprocessors [1],

[14] .

The adjustment or tuning of single input single output

6

(SISO) controllers is one of the least understood, poorly

practiced, yet extremely important aspects of the application

of automatic control theory. In many control rooms the

derivative action is switched off for the simple reason that

it is difficult to tune properly [8].

The first problem encountered in tuning controllers is to

define "good" control. This unfortunately differs from process

to process. It would seem that the best way to present this

subject in detail would be to discuss only the best way, but

there is no general agreement as to which method is the best

method of tuning controllers. Some methods lean heavily on

experience while others rely on mathematical considerations.

One of the key concepts of this project is the assumption

that little or nothing is known about the transfer function of

the actual plant and this tuning process must find optimum

values for the controller without the benefit of mathematical

analysis. This includes the plants that have slowly changing

parameters where the PID control would slowly degrade over

time if there were no way to automate the parameter adjustment

features .

PIO CONTROLLER TUNING

One of the methods proposed for tuning controllers was

the ultimate method, reported by Ziegler and Nichols in 1942

[1], [4], [9]. The term "ultimate" was attached to the name of

this method because it requires the determination of the

7

ultimate gain and ultimate period of a process. The ultimate

gain is defined as the gain of a proportional controller at

which the control loop oscillates with constant amplitude, and

the ultimate period is the period of the oscillations. By its

definition it can be deduced that the ultimate gain is the

gain at which the control loop is at the threshold of

instability. At gains below the ultimate gain the control loop

signals will oscillate with decreasing amplitude, as shown in

figure 3; at gains above the ultimate, the amplitude of the

oscillations will increase with time. It is therefore, very

important when determining the ultimate gain of an actual

feedback control loop to ensure that it is not exceeded by

much or the result would be a violently unstable system. The

procedure for obtaining the ultimate gain and period is

carried out with the controller in "auto" (automatic output,

that is, with the loop closed) and with the integral and

derivative modes turned off. To do this the following steps

are recom~ended [4]:

1. Set the integral and derivative modes to off by setting

the parameters to zero.

2. Set the proportional gain Kc of the controller to some

arbitrary value.

3. Run the controller in automatic and watch the response on

the oscilloscope.

4 • Carefully increase the proportional gain of the

controller in steps until the output of the process

oscillates without a decreasing amplitude (or

WILLIAM F MAA
YOUNGSTOWN . G UBRA"1'\

STATE UNJVERSI

8

approximately constant). Record the Kc of the controller at

this point as the ultimate gain Ku. Measure and record the

period of oscillations as Tu.

Two methods of tuning the controller were proposed by

Ziegler and Nichols. The first was for a specific response in

the time domain: the quarter-decay ratio response (QDR). The

second was a frequency response method based upon a simple

characterization of the process transfer function (the

relationship between the process input and output) using the

Nyquist curve. The QDR response is illustrated in figure 3 for

a step change in the setpoint. Its characteristic is that each

oscillation has an amplitude that is one fourth that of the

previous oscillation.

8

a/b = 1/4
0----------------------'---- time

Figure 3. Quarter decay ratio response.

9

The formulas proposed by Ziegler and Nichols for calculating

the QDR tuning parameters of P, PI, and PID controllers from

the ultimate gain Ku and the ultimate period Tu are summarized

in table 1 below [4] .

TABLE 1. Quarter decay tuning formulas.

Controller Gain Integral Time Derivative Time

p Kc = .5 Ku - -
PI Ku = .45 Ku Ti = Tu I 1. 2 -

PID Kc = .75 Ku Ti = Tu I 1. 6 Td = Tu I 10

It is intuitively obvious that for the proportional (P)

controller the gain response should be half the ultimate gain.

At the ultimate gain, the maximum error in each direction

causes an identical maximum error in the opposite direction.

At half the ultimate gain, the maximum error in each direction

is exactly half the preceding error in the opposite direction

and one fourth the error in the same direction. This is the

quarter-decay response.

The Ziegler-Nichols frequency domain method of tuning a

controller will be interpreted in terms of moving points on

the Nyquist diagram. A Nyquist diagram is shown below in

figure 4 [l].

10

Im G(it.J/

Cr If ia)I ,:,Dint

-1

Figure 4. Nyquist diagram.

The Nyquist curve is a polar plot of the magnitude and phase

of the open-loop transfer function of the process in the

complex plane. The tuning method starts with the determination

of the point (-1/Ku,O} where the Nyquist curve intersects the

negative real axis. The concepts behind this method can be

explained as follows.

Consider a linear process with a sinusoidal input. After

a transient period, the output of the process is a sinusoid of

the same frequency as the input. Only the phase and magnitude

of the output will be different from the input. This means

that under steady state conditions only two numbers are

required to describe the output, the quotient "r" between the

input and the output amplitude and the phase shift "a" between

11

the input and output. Plotting these values for several

frequencies results in the Nyquist curve, illustrated in

figure 3. By sending sinusoids of different frequencies into

a system one can plot the Nyquist response curve (magnitude

and angle) and the result is a full description of the system.

The most important part of the system is when there is a phase

shift of -180 degrees, called the crossover frequency, or

critical point where the ultimate gain (Ku) and the ultimate

period (Tu) are determined.

The Ziegler-Nichols method provides an experimental

method for determining this critical point on the curve. The

method is based upon the observation that many systems can be

made unstable under proportional feedback by choosing

sufficiently high gain in the proportional feedback. The

feedback control loop is used to generate sinusoids by

increasing the gain to where the process oscillates. The

control variable and the measured variable are then sinusoids

with a phase shift of -180 degrees and are therefore are

related by (1)

u = -ky (5)

because of the proportional feedback. The gain around the loop

must be unity in order to maintain the oscillation, (1)

Ku I G (j W) I = 1 (6)

where the gain, which brings the system to the stability limit

is called the ultimate gain (Ku) . The advantages of the

Ziegler-Nichols method is that it is based upon a simple

12

experiment. The disadvantage is that some processes cannot

tolerate this kind of disturbance without becoming dangerous

and is therefore not a useful method for auto-tuning of many

processes.

Another method for tuning PIO controllers uses the

process reaction curve, which requires an open loop step test

on the process [4]. Process gain, time constant and dead time

can be determined from the results of this test. The purpose

of an open loop step response test is to determine the

transfer function of the process. This method determines the

process dynamic parameters by performing a test with the

controller in "manual output". This thesis does not present

this test and will not be discussed further.

Finally, with the advent of microprocessors new methods

are starting to appear in products offered on the market with

auto-tuning capabilities as well as some adaptive and

heuristic type controllers (3], (4], (5], (7], (13].

The project includes the following:

• Design and implement a simple PIO controller.

• Design the software in "C" on a microcomputer.

• Provide a user interface for adjusting parameters.

• Test and adjust the controller with the ultimate method.

• Design and test an auto-tuning software routine.

Figure 5 shows a block diagram of the hardware.

13

Coun~er
Timer
Boa.rd
DASB

PL"NT

PIO Procatii&

D l o lt.al to
Control O~put. Pereonal

Corrput.er """'loo
Output. Analog Corrc,uter

'IBB DX Convertere Comdyna GP-6
7905 board

Dfg l tal 51grml

Stora,ge Ols,f.,y
Oec I I I o"cooe Screen

Analog t.o
Digit.al Feeclback LOOP -Convarter!iii

7905 board

Figure 5. PIO controller diagram.

14

CHAPTER 2

DESIGN AND TUNING OF PID CONTROLLERS

INTRODUCTION

The PID controller designed for this project provides

several features: an operator interface that permits the

operator to change the parameters of the controller, the

capability to run the controller in manual mode and ~et the

output to a single value, the facility to interrupt the

controller after it goes into auto using a digital input, and

the ability to the change setpoint while the controller is

running by turning a knob on the GP-6 analog computer,

allowing observation of the response to setpoint changes (see

appendix A for additional details of the hardware).

OPERATOR INTERFACE

The operator interface was programmed on a personal

computer using "C" language and provides the following

selections:

Enter 1 if you wish to enter parameters

Enter 2 if you wish to run in manual

Enter 3 if you wish to run in auto

Enter 4 if you wish to run auto tune

Enter 5 if you wish to quit the program

15

Running in manual mode means the operator manually sets

the value of the control output variable and the controller

holds that value constant until the operator changes it again.

This allows the operator to run a step response test of the

process if desired.

The auto mode provides a PIO controller that runs the

digital control algorithm described in this chapter in a

closed loop feedback control system.

The auto-tune selection allows the operator to initiate

the PIO controller's automatic tuning feature, that determines

the parameters of the PIO controller for the process under

control. ..

PROGRAM STRUCTURE

The operator may change the following parameters that the

software uses to control the operation of the controller.

Below are listed the parameters and their default values.

setpoint = 0 initial setpoint value % range

control uk = 39 initial u(k) control variable % range

control ukl = 0 initial u(k-1) control variable % range

output_yk = 0 initial y(k) output variable % range

output_ykl = 0 initial y(k-1) output variable % range

pro_gain_Kc = • 2 initial proportional gain variable

parameter b = 1 initial setpoint weight factor

integral Ti = 10 initial integral time variable -
integral Ik = 0 initial I(k) integral control variable -

integral_Ikl = O initial I(k-1) integral control variable

sample_h = 0.2 initial sample period in seconds

noise N = 1 initial noise level variable

derivative Td = 1 derivative time variable

derivative Dk= o derivative D(k) control variable

derivative Dkl = O derivative D(k-1) control variable

relay_step = 10 relay step size variable% range

output_addr = 788 control output address (LDAC = 788)

process_addr = 2

setpoint_A2D = 8

process output address {OP AMP2 = 2)

analog input A4 = 8 setpoint ctl

16

The controller is designed for future expansion if

desired. Some of the variables with "(k-1)" are not used, and

therefore, can be utilized by others investigating some of the

ideas presented in chapter 4 - "recommendations for future

study". The controller design provides flexibility in its

design with the ability to modify the output addresses and

multiplexer addresses from which and to which signals are

processed by the computer [16).

The PIO controller is designed with a global PIO data

structure that contains all the parameters for controlling the

process. Each function that is called by other functions

utilizes this data structure and affects those variables it

needs to affect.

17

The following functions are used in the design of the

controller.

data_entry ()

manual()

automatic()

relay_test()

ini _ timer ()

ck_timer()

A2D_input ()

D2A_output ()

get parameters from operator

manual control mode function

auto control mode function

run relay response test

initialize timer function

check for timeout function

update value of output A2D

control output function D2A

display_data() manual ctl display variables function

Appendix B contains a complete listing of the "C" program

written for this project. A brief discussion of some of the

above functions follows.

The function "ini_timer() ", as its name implies

initializes the timing for the controller. The software

actually communicates with the DASS board which has an Intel

8254 timer/counter providing 3 x 16-bit count down registers,

deriving its clock from the IBM PC system clock. These

counters are used in a unique way to detect the rising edge of

the period for control (see appendix A for further details).

The counters are configured in such a way that the count must

be loaded as two bytes, requiring the software to break the

word into parts for loading into the registers. This is

accomplished by masking and shifting (division by 256).

18

The function "ck_timer() ", checks the DASS board for the

rising edge of the clock period counter pulse (see appendix A

for details) and returns a one (1) if the timeout is true and

a zero (0) if it is not true.

The "A2D_input()" communicates with the 7905 A2D / D2A

interface board, which is connected to the Comdyna GP-6 Analog

Computer. This function (A2D_input) uses the address stored in

the PIO structure discussed above (operator entered parameter)

as an indirect pointer to the output address of the plant for

the multiplexer to control the analog-to-digital (A2D)

conversion. In the process of designing this software it was

determined that every time the multiplexer address was changed

that a minimum time for settling was required before starting

a conversion, as bad results would be obtained otherwise. The

following code provided this delay,

/* delay for sample & hold amp*/

while(count < 80)

{

count++;

}

A count of 70 was found to be insufficient for accurate

results.

A similar routine was used, "D2A_output () 11 , to send

digital data to the 7905 board for digital-to-analog

conversion (D2A). The signal appears on the Model 767 Analog

/ Digital Position Control Panel at one of the D2A converter

outputs. This output was wired to the input of the plant

19

simulator on the Comdyna GP-6 Analog Computer as the control

signal.

CONTROLLER DESIGN EQUATIONS

A number of modifications to the "textbook" equation have

to be made to provide a digital implementation of the PID

controller. These changes are detailed below.

The controller equations utilized in this design were

selected from a source in the bibliography [l]. The control

law utilized in this controller is: u = P{k) + I{k) + D{k),

where Pis the proportional term, I the integral term, and D

the derivative term.

The proportional term has an equation as follows:

P(k)=Kc[br(k)-y(k)] (7)

where r{k) is the sampled setpoint value, y{k) is the sampled

process output, Kc is the proportional gain contained in the

PIO structure discussed above. The parameter b provides an

additional degree of freedom used to provide a different

control response to load and setpoint changes. This particular

parameter was not studied in this project.

The integral term is calculated from the equation:

I (k+l) =I (k) + K)'l e (k)
Ti

(8)

Note that the "next" value of the integral term is calculated

here. "e{k)" is the sampled value of the difference between

the setpoint and the current output, his the sampling time in

20

seconds, Ti is the integral time in seconds, and I(k) is the

current value of the integral term.

The derivative term is calculated from the following

equation:

2 T -hN 2KcfiT,
D(k)= d hD(k-1)- ;;[y(k)-y(k-1)]

2Td+N. 2Td+
(9)

The above is Tustin's algorithm [1] that is used most often in

practical controllers and is quite close to the continuous

time case. Td is the derivative time in seconds, N is a gain

limiting constant to limit the noise amplification to N. Note

that the derivative is not calculated from the error between

the setpoint and the output as is usually shown in the "text

book" versions of PID software. This is because of the problem

generated by abrupt changes in the setpoint the de/dt term

would be very large. Therefore it is common practice to use

only the process output to apply the derivative term.

21

CHAPTER 3 IMPLEMENTATION AND EXPERIMENTAL RESULTS

AUTO-TUNE CONTROLLER DESIGN

INTRODUCTION

Since the Ziegler-Nichols method of determining PIO

controller parameters has limitations to processes that can be

disturbed without causing dangerous or other unacceptable

conditions, another method has been proposed [1, 8] for

determining these parameters, that of applying a square wave

to the process input or control and using relay feedback to

generate a small oscillation.

CONCEPTS

Figure 6 illustrates the controller block diagram for the

relay control.

PIO

G(,s)

rQlay

Closed Loop System

Figure 6. Relay control diagram.

22

Refer to the figure 7. For many systems the application

of a square wave input will produce a nearly sinusoidal

process output variation. Notice in the plot that the process

input and output are out of phase and that the amplitude of

the oscillation is proportional to the amplitude of the relay

amplitude.

The relay feedback method is based upon generating an

oscillation in the process output that is 180 degrees out of

phase with a square wave input causing the response. If we can

assume that the process attenuates the higher order harmonics

of the square wave, then the first harmonic of the Fourier

series expansion of the relay input square wave, is a

sinusoid with an amplitude of 4d/n. If the amplitude of the

process response is "a", then the process gain and ultimate

gain are [1]

G(jw) =- 1ta
4d

Since KuG(jw) =-1

K = 4d
u 1ta

(10)

(11)

(12)

'

-•-z,~ -- -----'--"' . sec. _
-- r /_ " - - - - . ~- -

ourPtJr ' '-, ✓'"""'--~ ~ ~ '-"' ~ i,r ' ~ r --1 -I I r l ' 1 r l r I r ' r
CCNTlrDt. I I T I I I I I l I l I I I -- -

'
~

z 'I " g /CJ /Z, I~ It. l'l 20

Figure 7. Relay output @ 20%, plot 1, plant 1. (Ku = 7. 59, Tu = 2. 40, output = 2
v/division, control= 5 v/division, vertical axis - volts, horizontal axis - seconds.) N

w

•
24

CONTROLLER SOFTWARE DESIGN

The programming "C" code that provides the relay feedback

auto-tuning function allows the operator to set the level of

the relay output, runs six cycles of oscillations, averages

the results, and calculates the ultimate period from a

measurement of the time between the peaks. The "C" program

maintains the 180 phase shift by switching the relay whenever

the process crosses over the axis as it oscillates.

The "C" code can be broken down into the following steps.

1.0 Initialize parameters

1.1 Obtain the current value of the process output and

store in "current_op".

1. 2 Initialize the peak value array with the current

value.

1.3 Setup the limits of the relay output to be equal to

the current process output+/- the operator chosen

relay step size.

1.4 Turn on the output of the control and wait for the

response of the plant.

2.0 When the plant output reaches 1/2 the relay step size

switch the relay to the lower limit and wait for the

plant output to return to the "current_op" value. As the

value changes store the value of the peak and keep track

of the time by counting the sampling timeouts.

3 .0 Switch the output to the upper limit and wait for the

process to again return to the "current_op" value. As the

•
25

value changes store the value of the peak (neg peak) and

keep track of the time by counting the sampling timeouts.

When the process output returns to the "current_op" value

goto step 4.0.

4.0 Switch the output to the lower limit and wait for the

process to again return to the "current_op" value. As the

value changes store the value of the peak (pos peak) and

keep track of the time by counting the sampling timeouts.

Increment a cycle counter, check to see if this cycle is

the last (= 6) if not go to step 4.0 above. Otherwise

goto step 5.0.

5. o Analyze the data. The computer takes the peak values

stored during the run and averages them, averages the

periods between all peaks and uses the data to calculate

the parameters from equations 10 and 11 (see the appendix

B for additional details of the actual implementation of

the software).

EXPERIMENTAL RESULTS

In appendix A two analog computer diagrams are shown that

represent plant 1 and plant 2 used to simulate two processes

to be tested under PID control. Figures 7 through 16 are for

Plant 1 and figures 17 through 30 are for plant 2.

The 1st plant represents an open loop unstable process

that has an integrator on the output. Table 2 summarizes the

data:

•
26

Table 2. Plant 1 data.

Fig. Control Settling Kc/°Ku TJTu Td

Time Sec

7 Relay 20% N/A /7.6 /2.4

8 p > 20 5.0 /3.0 /0.0

9 p > 20 6.0 /2.8 0.0

10 p >> 20 7.0 /2.6 0.0

11 PID auto-tune 12 2.6 2.7 .48

12 p 15 2.6 0.0 0.0

13 Relay 30% N/A /9.3 /2.2

14 QRD p 20 3.8 0.0 o.o

15 QRD PI >>20 3.5 2.0 o.o

16 QRD PID 20 5.8 1.5 .24

The first three plots represent an attempt to find the

ultimate period of this process by varying the gain until a

constant oscillation is obtained. The figure 8 was produced by

the PID controller using a gain of 5, shows a damped ~esponse

from the plant settling out in greater than 20 seconds. Figure

9 was produced from the controller with a gain of 6 and as can

27

be observed the damping is less but still prominent. Figure 10

is with plot of a gain of 7, where it is extremely difficult

to tell if damping is occurring. This appears to be

approximately the ultimate gain we are looking for from the

above description. From the graphs the period is seen to be

decreasing from 3 seconds, to 2.8 seconds, and finally to 2.6

seconds at the final gain of 7.

-3,0 ----;
sue.

/' '_ ,/ ~ ~ __,,-- - -
I

-~ i..i:

./
I ./

"' I our,-11,
. . . ,

J t .
1"

·r l f ' .'\ ,I', -'~
~O,V7"'Cl .. \ ; \ / \ J "-.J '-C

\ IJ "V

' , .

C: '7 t, 8' /0 /Z.. /<, /~ /K ZCJ

Figure 8. P controller plot 2, gain of 5, plant 1. (Tu= 3.0, setpoint = 2.6, output= 5
v/division, control= 5 v/division, vertical axis - volts, horizontal axis - seconds). N

CX)

1

-

i-- Z . 'Z -
sec

-

V \ / ~ ~ /' .. _/ ~ rii --_
I - ..

_/
I /

-aurPvr 1

-
l

J _J r\ - ,_ - I~ 17.. A - J I) ~ I \ j \ ~ / -r
cc.-v.trroc \ ; \ . , \ I \ I

L j J V \.l.),

,_

2 q " ~ JO fl IL/ It. /g zo

Figure 9. P controller plot 3, gain of 6, plant 1. (Tu= 2.8, setpoint = 2.6, output= 5
v/division, control= 5 v/division, vertical axis - volts, horizontal axis - seconds). N

I..O

-- 2.,~ -st:,~

-

)
/ '\ ~/ ~ ~ ~ ~ "-./ ~c

-- I
I/ .

ovrPnr

- [\ ("\. n f', (l
,,.

l J ~

·r
c,v✓rR'c,t. ~

~
~

' - r

' f ' f ' I \ I
I C

.. \ I
z. </ ' 8 /0 IL It/ /(. IZ zo

Figure 10. P controller plot 4, gain of 7, plant 1. (Tu= 2.6, setpoint = 2.6, output=
5 v/division, control= 5 v/division, vertical axis - volts, horizontal axis - seconds). w

0

31

From the relay feedback run of figure 7, the ultimate

gain and the period were determined and the following formulas

were used to calculate the PIO parameters for the PIO

controller of figure 11 (8].

(13)

(14)

(15)

The plant response damps out quickly in approximately 8

seconds. Figure 12 represents the same controller with the

derivative and integral control turned off for comparison. The

response has longer oscillations and settles out in

approximately 12 seconds.

..

,r--,.....

I
i,,..__ -

I lo!

I
I/

<>Urr-tr I

l

-,· ' ~ -
Cil,V77ltU

~ J ~ ~ 14'

V ,.

2 </ C, g /0 /l /'T /(, /8 zo

Figure 11. PIO auto-tune controller plot 5, plant 1. (Kc= 2.65, Ti= 2.7, Td = 0.49,
setpoint = 2.6, output= 5 v/div, control= 5 v/div, vertical axis - volts, horizontal
axis - seconds). w

N

/ " ...
_J,.,. - .

j '-- ..
- I
I / -our,-ur

. . - - - A - - - - ---... -
l .

~r \ A. - -
\ ("-._/ 7 - -c.o~rr,o._ ..

j

V -
z 'I ~ 8 /0 /Z IY /(. /tg' 20

Figure 12. P controller plot 6, plant 1. (Kc = 2.65, Ti = o.o, Td = o.o, setpoint = 2.6,
output = 5 v/division, control = 5 v/div, vertical axis - volts, horizontal axis -
seconds). w

w

34

The results of the relay auto-tuning agree very closely

with that obtained from the Ziegler-Nichols ultimate method

performed above. The computer was run with the relay set at

5%, 10% and 20% of range with the same results. At 30% the

process output starts showing signs of nonlinearity,

indicating that the square wave harmonics are effecting the

results, see figure 13.

.i.-- 2.~-
:SQ',:. -

- / ~ -- - - . - - _ _. -- . - ...
"",otrrP11r I "-~-' ~ ' ,,:.,,,,-, w-' ~ ~ ' __,r '-.....,r '4

-
-f- - --- i-- .i.--

CONT/&.'C

- - ~ - - .._ Q

,_

z.. 'I ~ 8 /0 I l. /~ /t, /.i' zo

Figure 13. Relay output@ 30%, plot 7, plant 1. (Ku= 9.29, Tu= 2.2, output= 2 v/div,
control= 5 v/div, vertical axis - volts, horizontal axis - seconds). w

CJl

1

36

The next three plots represent the P, PI, and PIO

controller responses from the quarter-decay tuning formulas

(QDR). The P controller gives a response with the shortest

settling time. The PI controller is marginally stable and the

PID appears to meet the QDR criterion discussed in chapter 1

(see figures 14, 15, and 16).

I ~
~/ ~ - V"

I.I
,

/
' /

u~rpvr /'

.
f\

~

I \ ,r\ -:, ,,-I"_

SlcoAJT~l-''-) \ I '([7 "'- :_,r ~ --~

\ } '-"
-

2 9 C. '! /D I l. /'I /C, /'I -ZLJ

Figure 14. QRD P controller plot 8, plant 1. (~ = 3.84, ~ = o.o, Td = o.o, setpoint =
2.6, output= 5 v/div, control= 5 v/div, vertical axis - volts, horizontal axis -
seconds). w

-...J

-

I \ /'\. ~ .,-~

I \ I \ I \ I I
IJ

/ 'V '-,I~ '-'/

' ,/ vvrpur r

f l r \ (l
,. ~ j \

S'ICLJI~

'
l I \ ~

~

~ ' l) \
-1

z q ~ ~ /0 /2 /3/ /C. /&' zo

Figure 15. QRD PI controller plot~, plant 1. (~ = 3.458, ~ = 2.0, Td = o.o, setpoint = 2.6,
output= 5 v/div, control= 5 v/div, vertical axis - volts, horizontal axis - seconds). w

QX)

-
I \

I \ I ~ ~ I---"

"
,,

~~

I
J ,/

,_
~ OUT.PVT

.. f . r \
':'I \ j\ f_ -

Slc.:,111~L \ J ~
7 ~ V 'I i....

~ ,
V

~

z C/ (, i /0 12.. I¥ I~ ;g zo

Figure 16. QDR PIO controller plot 10, plant 1. (Kc= 5.76, ~ = 1.5, Td = .24, setpoint = 2.6,
output= 5 v/div, control= 5 v/div, vertical axis - volts, horizontal axis - seconds). w

~

jiii>

40

The 2nd plant has a variable parameter "a" that makes the

plant or process more oscillatory as "a" approaches zero. This

represents a marginally stable process that can demonstrate

the ability of the PIO controller to control this process.

Table 3 summarizes the data:

41

Table 3. Plant 2 data.

Fig. Control Settling a KJK.i TJTu Td

Time Sec

17 step response 16 . 7 N/A N/A N/A

18 QOR PIO 20 .7 3.6 1.75 .28

19 PIO auto-tune 15 .7 1.7 3.2 .57

20 Relay 10% N/A .7 /4.8 /2.8 N/A

21 Step response 40 • 3 N/A N/A N/A

22 QOR p >> 50 . 3 1.6 0.0 0.0

23 QOR PI >> 50 . 3 1.5 2.7 0.0

24 QRO PIO > 50 . 3 2.4 2.0 .32

25 PIO auto-tune 40 • 3 1.1 3.6 .65

26 Relay 10% N/A . 3 /3.2 /3.2 N/A

27 Step response > 50 .1 N/A N/A N/A

28 QDR PID >> 50 . 1 1.0 2.6 .42

29 PIO auto-tune > 50 .1 .48 4.8 .85

30 Relay 10% N/A . 1 /1. 4 /4.2 N/A

Figures 17 through 30 show an increasingly oscillatory

p
42

plant with the decreasing factor a. The auto-tuning software

finds the ultimate gain and period to be decreasing, as a

decreases. This indicates that a lower gain is required to

obtain a stable control. In all cases the PIO auto-tune

controller is stable and controls the process in less time

than the step response. However, the QDR tuning parameters do

not provide this type of control. In figure 28 the QDR

controller is not gaining control of this process in a

reasonable time.

/ -......___
......_

IJ I
'/ - ,,

'::!!!?!!.r

T"
~C-0.A/TKOC

,~

2 ~ ro g /6 /Z I~ /C, /8 20

Figure 17. Step response a= .7, plot 11, plant 2. (Step= 2.59, setpoint = 2.6, output
= 5 v/div, control= 5 v/div, vertical axis - volts, horizontal axis - seconds). ~

w

1

t\
I \ ~/ ~--......_ - ~

j

!J) ·
'..,,J

our.Pur r

\ f'\

\ I ~ I \-, ~ -
_,/ ~ -

':'i' -
!5'.J,.L1Nl7P£) \.../

.,.

-
z <,' C. g /D /2 /Y /~ /1' Zt)

Figure 18. QDR PID controller plot 12, plant 2. (Kc= 3.6, ~ = 1.75, Td = .28, a= .7,
setpoint = 2.6, output= 5 v/div, control= 5 v/div, vertical axis - volts, horizontal
axis - seconds). ~

~

'~ I "' -

f.-.__/
j

'1 I
L..t

,,,VT.PU /

n r\
I \ / ~ --7f \

SJ,,-.~.v~«- \ I
\...r'

-
z. c.; ~ ~ /0 /Z /q /Co /8' zo

Figure 19. PIO Auto-tune controller plot 13, plant 2. (Kc = 1. 68, T1 = 3 .16, Td = . 57, a
= .7, setpoint = 2.6, output= 5 v/div, control= 5 v/div, vertical axis - volts,
horizontal axis - seconds).

~
(J"1

II

-r ... r ~7UTPU1

-:"r
~ea.lVl"IUV..

\ I \ :f \ I \ I \ I \ r- ~

-
z C/ ~ 8' /0 I l. /'I / f, IY zo

Figure 20. Relay output 10%, plot 14, plant 2. (l<u = 4.8, Tu= 2.8, a= .7, setpoint = 2.6,
output= 5 v/div, control= 5 v/div, vertical axis - volts, horizontal axis - seconds). ..i:,.

O'\

r \ ,I ~ -

IJ J '--/

I'
OOTPU, F

•

T
Sl-oJVTl?OL

~

? /0 /S- zo ZS- :so "$'<,;,- qt] 'TS- so

Figure 21. Step response a= .3, plot 15, plant 2. (Step= 1.0, output= 5 v/div, control
= 5 v/div, vertical axis - volts, horizontal axis - seconds).

~
-..J

5 /0 IS- za zs- 50 3S- o/C} "'YS- s--~

Figure 22. QDR P controller plot 16, plant 2. (~ = 1.6, ~ = O.O, Td = o.o, a= .3,
setpoint = 2.6, output= 5 v/div, control= 5 v/div, vertical axis - volts, horizontal
axis - seconds). ~

(X)

I\ {\ {\ (\ " I\ (\ r\ {;\
(\ I \ ' \ \

,
I \ \ \

1 1

'
I '

\ \

IJ

J
' j

\) ' \ J J J \ ' ,
V J \' \.. V V V V V - r ov~r,

1 n r7 r l . ,... -, ,-1 -- r7 n rl

..... .
~,aNT.0,(.

\ \ \ \ \ \ \

~ \ \ \J \ \ \ \ \ \
~

S" /0 / :;- zo ZS- '!JO 3S- qo ~s- s-~

Figure 23. QDR PI controller plot 17, plant 2. (~ = 1.45, ~ = 2.67, Td = o.o, a= .3,
setpoint = 2.6, output= 5 v/div, control= 5 v/div, vertical axis - volts, horizontal
axis - seconds). ~

I.O

('\ (\ /'\

I I ,f\J ~ L/v ~ V"-...r ~I,.,

IJ J -' u \J "'

" - ,
L:X/T7"Ur

- -- ~ ~- " (\ (\ I"\

... ~ \ \ I\ !\ I \!\ /V I'\
~

~rour.cc<

\) V V V V -

l -
\j

,~

5 /0 1-S- .ZLJ z~ 30 35" qo 1/S- 5"0

Figure 24. QDR PIO controller plot 18, plant 2. (~ = 2.42, ~ = 2.0, Td = .32, a= .3,
setpoint = 2.6, output= 5 v/div, control= 5 v/div, vertical axis - volts, horizontal
axis - seconds). (.J1

0

{\
I /\ (v ~ --

j

IJ V

V - r ou,Pur

n \ I"

.... - \ I \ (\ ~ ~-

!Eho.vrrO£ V
....,

V
-

5 /0 15" ZtJ ZS- ~l) 3S- o/0 &/S- so

Figure 25. Auto-tune PID controller, plot 19, plant 2. (Kc = 1.13 T1 = 3. 6, Td = . 65, a =
.3, setpoint = 2.6, output= 5 v/div, control= 5 v/div, vertical axis - volts, horizontal
axis - seconds) . (J1

......

"' -
' ~-

b«rPur- r

•

--r
!a--01.JTIW(

\ r \ r r \ r l \....: -
-

2 q ~ ~ /CJ fl /~ /{, /~ zo
'

Figure 26. Relay output 10%, plot 20, plant 2. (Ku= 3.23, Tu= 3.2, a= .3, output= 5
v/div, control= 5 v/div, vertical axis - voltsw horizontal axis - seconds). (.J1

N

r\ r\ --
I \ I \ I\ I" "/ ~ ~ v-"---

1,1 j V \..) ",-/

r
72,/:rPtt r r

-:r-
~rUAJTB'

~

~ /0 /S- Zo z~ 3~ '$S- <,t'L? e,,'!, S-0

Figure 27. step response a= .1, plot 21, plant 2. (Step= 2.59, output= 5 v/div, control
= 5 v/div, vertical axis - volts, horizontal axis - seconds). <.Tl

w

,, (\ (\ {\ r\ r \ r\ - A

' \
I I / \ 7 ' \/\ /\ l\1 I/' I ' '.I \j \ J ~ V V V V ' J """'

....,

J
T -

tl!?vrPU, r

n
I ~ n r (\ (\ (\ (\ r\ r r"'\.

\ l ' / \ J \ I \ I \ I \ / ' ...
\ \ -

l('l,·· D.IJ T7ZC(.

\ i \) \) 0 \ I \J V V V

D V V -

-
-s- /C) /~ ZtJ ZS- 30 , S- 4,,"0 ~s- ~~

Figure 28. QDR PIO controller plot 22, plant 2. (Kc= 1.022, ~ = 2.63, Td = .42, a= .1,
setpoint = 2.6, output= 5 v/div, control= 5 v/div, vertical axis - volts, horizontal
axis - seconds). l,.,

~

f'\
-

I \ /\ (\ f\ A /". ~ v--'- .,,,,--__.,,.
I.) J V V V

,.
OVT"P«T r

\

-\ f\ (\ I '\ I ~ ~ ~ ~ -- - -
""I
-.1

!:'.l~.u~oc.. V V
........,

~

-:;- /0 Ir zo ZS- ~o "3~ ~o ~~ ~-v

Figure 29. Auto-tune controller plot 23, plant 2. (~ = .477, Ti= 4.75, Td = .854, a= .1,
setpoint = 2.6, output= 5 v/div, control= 5 v/div, vertical axis - volts, horizontal
axis - seconds).

(J1
(J1

'.I

-

' -----.....___
uvr.l"""t,, ~

-:-r
g..,..,v.1'727X

I
\ f \ f ' f \ I L -

-
'C ~ G 8 /CJ /e, /~ /~ /~ zo

Figure 30. Relay output 10%, plot 24, plant 2. (Ku= 1.36, Tu= 4.2, a= .1, output= 5
v/div, control= 5 v/div, vertical axis - volts, horizontal axis - seconds).

(J"1

en

1

57

ANALYSIS

The Ziegler-Nichols method is based on a generalized

approach to the frequency domain method of design (1]. Points

are selected on the Nyquist curve that result in a system

phase and gain margin. The general formulation is to start

with a point on the open loop plant Nyquist curve for the

process

(16)

and then using the following equation for the final open loop

compensated system

(17)

where the phase margin for the process is ¢p, the phase margin

of the final system is ¢
8

, the phase margin of the PIO

regulator is ¢r1 the system equation is

(18)

The regulator should be chosen such that

(19)

(2 O)

58

resulting in Kc, the gain of the PIO controller, the integral,

and derivative parameters as follows:

(21)

(22)

(23)

The gain is uniquely given from the above equation, but the

parameters Ti and Td have only one equation. A common practice

to provide a phase lead controller [4, 11, 12) is to specify

~ in terms of a ratio to Td, such as,

(24)

where a is chosen to be some value such as .18. The following

equations give the~ and Td parameters as follows:

(25)

1
T . = -Td

.i a (26)

the parameters used in this PIO controller,

(27)

(28)

(29)

59

will result in the following gain and phase margins:

Pm = <l>s = 48. 6 degrees (30)

A = 20log(.J:..) = 6dB (31)
m r

s

where ¢p = 0 is chosen for the ultimate point and rP = 1/'Ku the

reciprocal of the ultimate gain.

For example, to illustrate the calculation, let the

desired phase margin be ¢ 1 = 45 degrees, the plant phase

margin c/>p = 0, the desired amplitude margin of 2 ==> r 1 = 1/2

(gain margin= 20 log(2) = 6 dB), a= .25, then

(32)

Td
T. = - = • 768Tu

.l «
(34)

This Ziegler-Nichols frequency response method based upon

moving one point on the Nyquist curve to a desired position,

provides simple design rules and is generally sufficient for

most processes. Control engineers have found in practice that

a gain margin above 5 dB and a phase margin greater than 30

degrees generally provides a sufficiently stable system.

60

CHAPTER 4

SUMMARY

In this thesis a PIO controller with auto-tuning

capabilities was presented. "C" software for control and

tuning of general processes was written and tested and proven

highly reliable. The controller that resulted produced

satisfactory control and capabilities. The first plant was

open loop unstable and was made stable under closed loop

control. Both tuning methods, QDR and auto-tune, provided

satisfactory control for this plant. The second plant,

however, provided some difficulty for both methods in the more

oscillatory state. The QDR method proved less than

satisfactory due to the fact that the control was worse than

the natural settling time of the process.

Relay auto-tuning was demonstrated as a good method of

tuning the two plants and provided a stable control with

minimum disturbance to the process. This method in all cases

was superior to the QDR tuning method. See figures 11 and 16,

the two methods provide equal rise times but the auto-tune

control provides less overshoot (5v versus lOv) and a settling

time of 10 seconds versus 16 seconds. Again consider figures

18 and 19 , rise times are equal but the auto-tune method

provides less overshoot (5v versus 7v) and a settling time of

ten seconds as compared to fourteen seconds for the QDR

method. Similar remarks can be made regarding figures 24, 25

61

and 28, 29.

The project demonstrates the feasibility of using a

personal computer to control a process, automatically tune the

parameters, and provide an operator interface for control of

the PIO controller parameters.

Additional goals of this project included learning about

the physical implementation of a practical PIO controller and

answering questions relating to the application of theory to

a practical application. The answers to these questions is

that the theory closely fits with the practice and produces a

controller that performs as expected.

RECOMMENDATIONS FOR FUTURE STUDY

Students of controls are welcome to take this work and

improve upon it or experiment with it in additional ways. An

interesting project for this PIO controller would be to

construct an actual process of some type, such as a flow,

pressure or temperature control process and implement PIO

control. Study the dead time/ transport delay effects and how

to handle them in the design of the controller. Study step

response and ultimate gain tuning and the relay auto-tuning to

compare the differences from that obtained with a simulation.

APPENDIX A

TECHNICAL DETAILS

DASS ADDRESSES AND OTHER DETAILS[15], [16], [17]

62

. Important addresses found on page 2 of the Model 767 A2D

manual (note these addresses do not agree with the manual):

Table 4. Model 767 and GP-6 addresses.

Item Multiplexer Address

GP-6 Amplifier 1 00

GP-6 Amplifier 2 02

GP-6 Amplifier 3 04

GP-6 Amplifier 4 06

767 A4 08

767 A5 10

767 A6 12

767 A7 14

Note: the following instructions are required to cause the

Comdyna GP-6 computer to operate from the computer. The wait

is required because this looks for the operate pushbutton to

be pushed in by the operator on the Comdyna.

outp(7S5,0); /* start GP-6 operate mode*/

GP_6 = inp{7S6);

while{GP_6 != 4)

{

}

GP 6 = inp{7S6);

GP 6 &=4;

63

The following instruction is required to put the Comdyna in

the IC mode:

outp(7S5,S); /* set CJ high for GP 6 IC mode*/

TIMER/ COUNTER DETAILS

In order to implement the "C" code, software routines

that access the DASS board must be operating properly. The

MetraByte manual provides data relating to addresses on the

DASS board that are summarized here. The following control

words must be loaded into the control register for each

counter to be properly initialized. See the "C" program

"ini_timer(PID_ptr); /* initialize timer function */" for

additional details regarding the initialization (appendix B).

64

Table 5. Counter details.

I
Control Word

I
D7 D6 D5 D4 D3 D2 Dl DO VALUE

SCl sco RLl RLO M2 Ml MO BCD

0 1 1 1 0 1 1 0 CTR 1 =

118

1 0 1 1 0 1 1 0 CTR 2 =

182

0 0 1 1 0 0 0 0 CTR 0 =

48

Base address+ 7 (768 + 7 = 775) ==> counter control register.

SCl & SCO ==> COUNTER NUMBER

RLl & RLO ==> DATA TRANSFER OPERATION= WORD

Ml, M~, MO==> MODE 011 ==> SQUARE WAVE

MODE 000 ==> PULSE

SETUP FOR 200 MILLISECOND==> #395 FOR COUNTER 2:

The following high byte and low bytes are required for

the software to proper load the counters. The software obtains

these values by ANDing and shifting data as can be seem from

the function "ini_timer() initialize timer".

WORD VALUE= 395 ==> 18B HEX

LB= 139

0000 0001 1000 1011

SETUP FOR COUNTER 1 200 X 10 = 2000

2000 = 7D0 HEX

0000 0111 1101 0000 ==> HB = 7, LB= 208

SETUP. FOR COUNTER O 200 X 5 = 1000

1000 = 3E8 ==> HB = 3, LB= 232

Description of Counter Operation:

65

Counter 2 is setup as the main counter at the frequency

required to give a period equal to 2000 times the sample

period. For example, a count of 395 yields a frequency of

10,000 Hz or .1 milliseconds per cycle. The output of counter

2 is fed to counter 1 where the count is divided by 2000,

resulting in a 5Hz (10000/2000) or .2 seconds {200

milliseconds) cycle. The output of counter 2 is also fed to

counter o, where it is divided by 1000. This counter counts

out and goes high allowing the detection of the rising edge of

counter 1. Counter o is reloaded and restarted with every

timeout. The wave forms of counter 1 and counter o are input

to the digital inputs IPl and IP2 for reading by the computer.

Whenever the IPl and IP2 are equal to three a time out has ·

occurred and the rising edge of counter 2 has been detected,

indicating the beginning of another timing interval. Below is

a timing diagram:

f

out1 counter 1 = IP2

outO counter O = IP1
pulse on terminal count
stays high unti I loaded
aga i n

T = period of control

~-+------------------------------

' ' -- -- --- --- --- ----------- -------- -----------

1, Counter O goes high after counting out T/2
2 . Counter O Is then reloaded and goes low untl I count out
3. When IP2 and IP1 equals 3 a rising edge is detected

Figure 31. Counter board timing diagram.

66

DETAILS OF PLANT AND COMPUTER CONNECTIONS

FROM LOAC

1

Corrputer ree.da
addr-••• o2 "fer
Op-llffl'.) 2

,..,.. ,.
Plant 1/s(s + 1) ==> Y + Y

Figure 32. Plant 1 diagram.

67

y(t.)

u(t)

3

a.

PI ant 2

Corrput.er- reads
adcress 02 f"or
op-a.lr4'.) 2

1 / (s~ 2 +as+ 1)

Figure 33. - Plant 2 diagram.

68

y(t)

69

APPENDIX B

PID AND AUTO-TUNE "C" CODE LISTING

main program . 40

PID structure . 40

data_ entry . 41

manual ... 44

automatic . 45

D2A_output . 47

display __ data . 48

A2D _ input . 48

A2D _ setpoint . 49

ini timer . 50

ck timer . 51

relay _test . 51

/* Standard PID program module */

#include < stdio. h >

#include < stdlib.h >

struct PID

{

float setpoint; /* setpoint value variable % of range */

float control_uk; I* value of u(k) control variable % of range*/

float control_ukl; /* value ofu(k-1) control variable% of range*/

float output_yk; /* value of y(k) output variable % of range */

float output_ykl; /* value of y(k-1) output variable % of range*/

float pro _gain_ Kc; /* value of proportional gain variable */

float parameter_ b; /* value of setpoint weight factor */

float integral_ Ti; /* integral time variable, seconds */

float integral_ Ik; /* value ofl(k) integral control variable */

float integral_Ikl; /* value of I(k + 1) integral control variable */

float sample_h; /* sample period in seconds */

float noise_ N; /* noise level variable */

float derivative_ Td; I* derivative time variable */

float derivative_ Dk; /* derivative D(k) control variable */

float derivative_Dkl; /* derivative D(k-1) control variable*/

float relay_ step; /* relay variable output % of range*/

int *output_ addr; /* control output address D2A pointer (788, 789 LDAC) */

int *process_addr; /* process output address A2D pointer (mux no 0, 2, 4, 6) */

int *setpoint_A2D; /* analog input address for A2D for setpoint control */

};

I* global variables */

float VOLTS = 10;

70

int RANGE = 2047;

struct PID standard_PID; /* declare a structure variable */

/* functions required for the standard PID control */

void data_ entry(struct PID *PID _ptr); /* get parameters from operator *I

void manual(struct PID *PID _ptr); /* manual control mode function */

void automatic(struct PID *PID _ptr); /* auto control mode function*/

void relay _test(struct PID *PID _ptr); I* run relay response test *I

void ini_timer(struct PID *PID _ptr); /* initialize timer function *I

int ck_ timer(struct PID *PID _ptr); /* check for timeout function */

void A2D _ input(struct PID *PID _ptr); /* update value of output A2D */

void D2A _ output(struct PID *PID _ptr); I* control output function D2A */

void display_ data(struct PID *PID _ptr); /* manual ctl display variables function */

/* main program */

main()

{

/* other variables */

int select; /* operator selection *I

struct PID standard_PID; /* declare a structure variable */

struct PID *PID _ptr; /* declare pointer to PID structure */

PID _ptr = &standard _PID; /* assign address of PID structure to pointer */

/* initialize PID structure to default values */

PID _ptr-> setpoint = O; /* initial setpoint value */

PID _ptr-> control_ uk = 39; I* initial u(k) control variable */

PID _ptr-> control_ukl = O; /* initial u(k-1) control variable */

PID _ptr- > output_yk = O; /* initial y(k) output variable */

PID _ptr-> output_ykl = O; I* initial y(k-1) output variable */

PID_ptr->pro_gain_Kc = .2; /* initial proportional gain variable*/

71

PID _ptr- >parameter_ b = 1; /* initial setpoint weight factor */

PID _ptr- > integral_ Ti = 10; /* initial integral time variable */

PID _ptr- > integral_ 1k = O; /* initial I(k) integral control variable */

PID_ptr->integral_Ikl = O; I* initial l(k-1) integral control variable*/

PID_ptr->sample_h = 0.2; I* initial sample period in seconds *I

PID _ptr- >noise_ N = 1; /* initial noise level variable */

PID _ptr- >derivative_ Td = 1; /* derivative time variable */

PID _ptr- >derivative_ Dk = O; /* derivative D(k) control variable */

PID_ptr->derivative_Dkl = O; /* derivative D(k-1) control variable*/

PID_ptr->relay_step = 10; /* relay step size variable % range */

PID _ptr-> output_addr = 788; / control output address (LDAC = 788) */

PID _ptr- >process_ addr = 2; / process output address (OP AMP2 = 2) *I

PID_ptr->setpoint_A2D = 8; / analog input A4 = 8 setpoint ct!*/

/* determine operator desires *I

while (select ! = 5)

{

printf("Enter 1 if you wish to enter parameters\n");

printf("Enter 2 if you wish to run in manual\n ");

printf("Enter 3 if you wish to run in auto\n ");

printf("Enter 4 if you wish to run auto tune\n ");

printf("Enter 5 if you wish to quit the program\n ");

scanf(" %d", &select);

switch(select)

{

case 1:

/* enter parameters function */

data_ entry(&standard _PID);

72

}

}

break;

case 2:

I* go to manual mode */

manual(&standard _FIO);

break;

case 3:

I* go to auto mode function */

autornatic(&standard _PIO);

break;

case 4:

}

/* relay feedback function*/

relay_test(&standard_PID); /* run relay response test*/

break;

void data_ entry(struct PID *PID _ptr) /* get parameters from operator */

{

int select, address;

float value;

while (select ! = 12)

{

printf("Select the parameter to be changed\n\n");

printf(" 1. Setpoint = %f\n", PIO _ptr-> setpoint);

printf("2. Proportional Gain= %f\n", PIO_ptr->pro_gain_Kc) ;

printf("3. Setpoint weight factor b = %f\n" , PIO_ptr->parameter_b);

73

printf("4. Integral time variable Ti = %f\n", PID_ptr->integral_Ti);

printf("S. Sample time in seconds= %f\n", PID_ptr->sample_h);

printf(" Sample time in seconds= %f\n", PID_ptr->sample_h);

printf("6. Noise level variable N = %f\n", PID_ptr->noise_N);

printf("7. Derivative time constant Td = %f\n", PID_ptr->derivative_Td);

printf("8. Step size output value= %f\n", PID_ptr->relay_step);

printf("9. Control output address = %d\n", *PID_ptr->output_addr);

printf(" 10. Process output address = %d\n", *PID _ptr- >process_ addr);

printf(" 11. Setpoint input address = %d\n", *PID _ptr-> setpoint_A2D);

printf(" 12. Exit - finished\n ");

scanf(" %d", &select);

switch(select)

{

case 1:

/* Change setpoint */

printf("Enter new setpoint between O and 10\n");

scanf(" %f", &value);

PID _ptr- > setpoint = value;

break;

case 2:

/* Change proportional gain */

printf("Enter new proportional gain greater than 0\n");

scanf(" %f", &value);

PID _ptr- > pro _gain_ Kc = value;

break;

case 3:

/* Setpoint weight factor */

74

printf("Enter new weight factor from 0 to 1 \n ");

scanf(" %f", &value);

PIO _ptr- >parameter_ b = value;

break;

case 4:

/* Integral time variable */

printf("Enter new integral time variable or O for none\n");

scanf(" %f", &value);

PIO _ptr- > integral_ Ti = value;

break;

case 5:

/* Sample period in seconds */

printf("Enter new sample period in seconds from .020\n");

scanf(" %f", &value);

PIO _ptr- >sample_ h = value;

break;

case 6:

I* Noise level variable */

printf("Enter new noise level variable N\n ");

scanf(" %f", &value);

PIO _ptr- >noise_ N = value;

break;

case 7:

I* Derivative time variable */

printf("F.nter new derivative time variable or 0 for none\n ");

scanf(" %f", &value);

PIO _ptr- >derivative_ Td = value;

75

}

break;

case 8:

I* Step size for step response *I

printf("Enter new step size > O\n");

scanf(" %f", &value);

PID _ptr- >relay_ step = value;

break;

case 9:

I* Control output address */

printf("Enter new control address\n ");

scanf(" %d", &address);

*PID _ptr- > output_ addr = address;

break;

case 10:

I* Process output address */

printf("Enter new process address\n");

scanf(" %d", &address);

*PID _ptr- >process_ addr = address;

break;

case 11:

I* Setpoint input address */

}

printf("Enter new setpoint input address\n ");

scanf(" %d", &address);

*PID _ptr- > setpoint_ A2D = address;

break;

76

}

void manual(struct PID *PID _ptr) /* run in manual */

{

int HB, LB, U, a, b, digital_inp;

int select, address;

float value;

while (select ! = 3)

{

printf("Select the desired option:\n\n");

printf("l. Set control output= %f\n", PID_ptr->control_uk);

printf("2. Run in manual\n");

printf("3. Exit - finished\n ");

scanf(" %d", &select);

switch(select)

{

case 1:

/* Change control output *I

printf("Enter new control output value in percent\n");

scanf(" %f", &value);

PIO _ptr- > control_ uk = value;

break;

case 2:

I* Run in manual */

D2A _ output(PID _ptr); I* control output function */

A2D _ input(PID _ptr); I* update value of output variable for display */

display __ data(PID _ptr); /* display variables function *I

break;

77

}

}

}

void automatic(struct PID *PID _ptr) I* run in automatic */

{

float integral_gain, derivative_gainl, nd, dd, derivative_gain2, ndl, dd2;

float Proportional_op, a, b, c, d;

float temp_ op, e, error;

int done= 1, timer_flag = 0, digital_inp=0, GP_6;

/* calculate regulator coefficients */

if(PID_ptr->integral_Ti != 0) /* is integral function on? *I

integral_gain = PID _ptr- > pro _gain_ Kc*PID _ptr- >sample_ h/PID _ptr- > integral_ Ti;

else

{

integral_gain = 0;

PID _ptr- >integral_ Ik = 0;

}

if(PID _ptr- >derivative_ Td ! = 0) /* is derivative function on ? */

{

nd = 2 * PIO _ptr- >derivative_ Td - PID _ptr- >sample_ h*PID _ptr- >noise_ N;

dd = 2 * PID_ptr->derivative_Td + PID_ptr->sample_h*PID_ptr->noise_N;

derivative_gainl = nd/dd;

ndl = 2 * PID_ptr->pro_gain_Kc * PID_ptr->noise_N * PID_ptr->derivative_Td;

dd2 = 2 * PID _ptr- >derivative_ Td + PID _ptr- >noise_ N * PID _ptr- > sample _h;

derivative_gain2 = ndl/dd2;

}

else

78

{

derivative _gainl = 0;

derivative _gain2 = 0;

}

/* Check to see if program is to stop running *I

outp(785,0); I* start GP-6 operate mode */

GP_ 6 = inp(786);

while(GP _ 6 ! = 4)

{

GP_ 6 = inp(786);

GP_6 &=4;

}

ini_timer(PID _J>tr); /* initialize timer function */

while (digital_inp = = 0)

{

digital_inp = inp(770); /* DASS status register */

digital_inp = (digital_inp & 0x0040)/16; /* isolate IP3 */

A2D _input(PID _J>tr); /* update value of output variable */

A2D _setpoint(PID _J>tr); /* update value of setpoint variable */

timer_flag = ck_timer(PID_J>tr); /* check for timeout function*/

if(timer_flag = = done)

{

digital_inp = inp(770); /* DASS status register */

digital_inp = (digital_inp & 0x0040)/16; I* isolate IP3 */

system("cls");

printf("Setpoint \tControl \tProcess O/P\n");

printf(" % f \t % f \t % f\n", PID _J>tr- > setpoint, PID _J>tr- >control_ uk,

79

PIO _ptr- > output_yk);

/* calculate proportional output */

a = PIO _ptr- >parameter_ b * PIO _ptr- > setpoint;

b = PIO _ptr- > output_yk;

Proportional_op = PIO _ptr->pro_gain_Kc * (a - b);

/* calculate derivative output */

if(PIO _ptr- >derivative_ Td ! = 0)

{

c = derivative _gain 1 * PIO _ptr- >derivative_ Dk;

d = derivative _gain2 * (PIO _ptr-> output_yk -PIO _ptr-> output_ykl);

PIO _ptr- >derivative_ Dk = c - d;

}

else

PIO _ptr- >derivative_ Dk = O;

temp_ op = Proportional_ op + PIO _ptr- >derivative_ Dk +

PIO _ptr- >integral_ Ik;

/* check value for saturation */

if (temp_op > 100)

temp_op = 100;

if (temp_op < -100)

temp_op = -100;

PID_ptr->control_uk = temp_op;

/* calculate new integral control value */

error = PIO _ptr- > setpoint - PIO _ptr- > output_yk;

PIO _ptr- > integral_ Ik + = integral _gain * error;

/* update old output variable */

PIO _ptr- > output_ykl = PIO _ptr- > output_yk;

80

}

}

D2A_output(PID_ptr); I* control output function*/

}

printf("\n"); I* new line*/

outp(785,8); /* put GP _6 in IC mode*/

PID _ptr- > control_ uk = O; /* set control variable */

D2A _ output(PID _ptr); /* control output function */

void D2A _ output(struct PID *PID _ptr) I* control output function */

{

}

int HB, LB;

float U , rndHB;

/* convert to data for D2A */

U = (PID_ptr->control_uk/100) * RANGE;

rndHB = U/16;

if(U < 0)

rndHB -=.5;

RB= rndHB;

LB = (U - 16 * HB) * 16;

I* output to /\ddresses for D2A */

outp(*PID _ptr-> output_addr, LB);

outp(*PID _ptr-> output_ addr+ 1, HB);

void display_ data(struct PID *PID _ptr) I* manual ctl display variables function */

{

int digital_inp, GP _6;

/* Check to see if program is to stop displaying data */

81

digital_inp = inp(770); I* DASS status register *I

digital_inp = (digital_inp & 0x0040)/16; I* isolate IP3 */

outp(7S5,0); I* start GP-6 operate mode *I

GP_ 6 = inp(7S6);

while(GP _ 6 ! = 4)

{

GP_ 6 = inp(7S6);

GP_6 &=4;

}

while (digital_inp = = 0)

{

system("cls");

printf("Setpoint \tControl \tProcess O/P\n ");

printf(" %f \t%f \t%f\n" , PID _ptr-> setpoint, PID _ptr-> control_uk,

PID _ptr-> output_yk);

}

}

digital_inp = inp(770); /* DASS status register *I

digital_inp = (digital_inp & 0x0040)/16; /* isolate IP3 */

A2D _ input(PID _ptr); I* update value of output */

printf("\n "); I* new line */

outp(785,S); I* set C3 high for GP_6 IC mode*/

void A2D _input(struct PID *PID _ptr) I* update value of output*/

{

int status, HB, LB, count=0;

outp(7S4,*PID_ptr->process_addr); /* set mux *I

/* delay for sample & hold amp */

82

}

while(count < 80)

{

count + +;

}

outp(786, *PID _ptr-> process_addr); /* start A2D *I

status = inp(786); /* get status byte */

status &=8; /* isolate EOC bit */

while(status ! = 8) /* wait for EOC */

{

status = inp(786); /* get status byte */

status &=8;

}

HB = inp(787);

LB = inp(786);

I* isolate EOC bit */

PID_ptr->output_yk = HB*l6 + LB/16; /* convert to a word of data*/

if(PID _ptr- > output_yk > 2047)

PID _ptr-> output_yk -=4096;

PID _ptr-> output_yk = PID _ptr-> output_yk * 100 / 2047; I* % of range */

A2D _setpoint(struct PID *PID _ptr) I* update value of setpoint variable */

{

int status, HB, LB, count=0;

outp(784,*PID_ptr->setpoint_A2D); /* set mux */

/* delay for sample & hold amp */

while(count < 80)

{

count++;

83

}

}

outp{786, *PID _ptr-> setpoint_ A2D); /* start A2D */

status = inp(786); /* get status byte */

status &=8; /* isolate EOC bit */

while(status ! = 8) /* wait for EOC *I

{

status = inp(786); /* get status byte */

status &=8;

}

HB = inp(787);

LB = inp(786);

/* isolate EOC bit */

PID _ptr- > setpoint = HB*16 + LB/16; /* convert to a word of data */

if(PID _ptr- > setpoint > 2047)

PID _ptr-> setpoint -=4096;

PID _ptr- > setpoint = PID _ptr- > setpoint * 100 I 2047; /* % of range */

void ini_timer(struct PID *PID _ptr) I* initialize timer function*/

{

int count0, countl, count2, time_sample;

unsigned int low_ byte, high_ byte;

/* Setup counter 2 in configuration 3: square generator */

outp(775,182); /* control word for counter 2 */

/* Load counter 2 */

count2 = PID _ptr-> sample_ h * 395 / .200; /* 395 counts for 200 milliseconds */

low_ byte = count2 & 0xOOFF;

high_byte = (~ount2 & 0xFF00)/256;

84

}

outp(774,low_byte); /* Low byte for counter 2 */

outp(774,high_byte); /* High byte for counter2 *I

I* Setup counter 1 in configuration 3: square wave generator */

outp(775,118); /* control word for counter 1 */

/* Load counter 1 */

time_sample = PID_ptr->sample_h * 1000; /* sample period in milliseconds*/

countl = 10 * time_ sample;

low_ byte = countl & 0x00FF;

high_byte = (countl & 0xFF00)/256;

outp(773,low_byte); /* Low byte for counter! */

outp(773,high_byte); /* High byte for counter! */

I* Setup counter 0 in configuration 0 */

outp(775,48); /* control word for counter 0 */

/* Load counter 0 *I

count0 = 5 * time_ sample;

low_ byte = count0 & 0xOOFF;

high_byte = (countO & 0xFF00)/256;

outp(772,low_byte); I* Low byte for counterO *I

outp(772,high_byte); /* High byte for counterO */

int ck_ timer(struct PID *PID _ptr) /* check for timeout function */

{

int count0, digital_inp, time_sample;

unsigned int low_ byte, high_ byte;

digital_inp = inp(770); /* DASS status register *I

digital_inp = (digital_inp & 0x0070)/16; I* isolate the inputs*/

if (digital_inp = = 3) /* check for counter 0 done *I

85

}

{

time_ sample = PID _ptr- >sample_ h * 1000; /* sample period in milliseconds */

count0 = 5*time_sample;

low_byte = count0 & 0x00FF;

high_byte = (count0 & 0xFF00)/256;

outp(772,low _ byte); I* Low byte for counterO */

outp(772,high_byte); /* High byte for counterO */

return 1; /* timer done and reloaded */

}

else

return 0; /* timer not done */

void relay _test(struct PIO *PIO _ptr) /* run relay response test */

{

int peak_count = 0, time_counter = 0, peak_time[12], j;

int cycle_count = 0, initialize= 0, neg_cycle, done = 1, first_pass = 0;

int timer_flag, digital_inp, GP _6, period_sum=0;

float current_op, upper_limit, lower_limit, period_ave=0;

float neg_peak_ave=0, neg_peak_sum=0, pos_peak_ave, pos_peak_sum;

float ultimate_gain, peak_value[12];

• I* Initialize test parameters and start test */

if(initialize = = 0)

{

A2O _input(PID _ptr); I* update value of output */

current_ op = PIO _ptr- > output_yk; /* store current output */

/* initialize the peak_value array*/

for(j = 0; j < 13; j + +)

86

peak_ value[j] = current_ op;

/* establish limits of relay output *I

upper_ limit = PID _ptr- > relay_ step;

lower_limit = - PID_ptr->relay_step;

PID_ptr->control_uk = upper_limit; /* set control variable*/

D2A_ou1put(PID_ptr); I* control output function*/

/* wait for output to exceed half the relay step size */

outp(785,0); I* start GP-6 operate mode */

GP_ 6 = inp(786);

while(GP _ 6 ! = 4)

{

}

GP_ 6 = inp(786);

GP_6 &=4;

while(PID _ptr- > output_yk < = current_ op + PID _ptr- >relay_ step / 2)

A2D _input(PID _ptr); I* update value of output*/

/* switch output to lower limit*/

PID _ptr- >control_ uk = lower _limit;

D2A_ output(PID _ptr); I* control output function */

I* monitor output for crossover at the original output value */

while(PID _ptr- > output_yk > current_ op)

A2D _input(PID _ptr); /* update value of output*/

I* start test - initialize timer, counters *I

ini_timer(PID _ptr); /* initialize timer function*/

initialize = 1; /* end of initialize routine *I

neg_cycle = 1; /* start negative cycle */

} /* end of initialize */

87

while (cycle_count < 7) /* run 6 cycles and stop */

{

/* negative peak, 1/2 cycle */

while(neg_cycle = = 1)

{

/* switch output to upper limit *I

if(first_pass = = 0)

{

{

}

PID _ptr- > control_ uk = upper _limit; /* set control variable */

D2A_ output(PID _ptr); I* control output function */

first_pass = 1;

timer_flag = ck_timer(PID_ptr);

if(timer_flag = = done)

/* check for timeout function */

{

A2D _ input(PID _ptr); /* update value of output */

time_ counter + = 1;

if(PID _ptr- > output_yk < peak_ value[peak _ count])

{

}

peak_value[peak_count] = PID_ptr->output_yk; /* store new peak value*/

peak_time[peak_count] = time_counter; /* store time of peak*/

if(PID_ptr->output_yk > current_op) /* check for crossover*/

neg_ cycle = O; /* terminate negative cycle */

peak_ count + +; /* increment peak counter */

first_pass = O; I* update flag */

88

}

}

}

/* positive peak 1/2 cycle - neg */

while(neg_ cycle = = 0)

{

/* switch output to lower limit *I

if(first_j,ass = = 0)

{

}

PID _ptr-> control_ uk = lower _limit; /* set control variable */

D2A_output(PID_ptr); I* control output function*/

first_pass = 1;

timer_ flag = ck_ timer(PID _ptr);

if(timer_flag = = done)

/* check for timeout function */

{

A2D _input(PID _ptr); /* update value of output*/

time_ counter + = 1;

if(PID _ptr-> output_yk > peak_ value[peak_ count])

{

/* store new peak value */

peak_ value[peak _ count] = PID _ptr- > output_yk;

peak_time[peak_count] = time_counter; /* store time of peak*/

}

if(PID_ptr->output_yk < current_op) /* check for crossover *I

{

neg_ cycle = 1; /* terminate positive cycle */

89

}

}

}

}

}

peak_ count + +; /* increment peak counter */

first_pass = O; /* update flag */

cycle_ count + +; /* increment cycle counter */

PID _ptr-> control_ uk = O; I* set control variable */

D2A _ output(PID _ptr); I* control output function */

/* analyze the data and calculate the PID parameters */

for (j = O; j < 11; j + +)

period_sum + = (peak_timeu + 1] - peak_timeu]);

period_ ave = period_ sum * 2 / 11;

period_ ave * = PID _ptr- >sample_ h;

for (j = O;j < ll;j+=2)

neg_peak_sum + = peak_valueLi]; /* even numbers in array*/

neg_peak_ave = neg_peak_sum / 6;

for (j = l;j < 12;j+=2)

pos_peak_sum + = peak_ valueLi]; /* odd numbers in array */

pos_peak_ave = pos_peak_sum / 6;

/* calculate PID parameters */

ultimate _gain -= 4*(PID _ptr- >relay_ step * 2) I (3 . 14159 * (pos _peak_ ave -

PID _ptr- > pro _gain_ Kc = . 35 * ultimate _gain;

PID _ptr- > integral_ Ti = 1. 13 * period_ ave;

PID _ptr-> derivative_ Td = .18 * PID _ptr-> integral_ Ti;

outp(785,8); I* set C3 high for GP _6 IC mode */

90

neg_peak_ave));

91

REFERENCES

[1 J Astrom, Karl J. , Automatic Tuning of PIO Controllers.

Instrument Society of America, NC, 1988.

[2] Brogan, William L., Modern Control Theory. Prentice Hall,

N. J., 1991.

[3] Carthers, Felix P., Adaptive Control Systems, The

Macmillian Company, N.Y., 1963.

[4] Corripio, Armando B., Tuning of Industrial Control

Systems, Instrument Society of America, NC, 1990.

[5] Davies, W. D. T., System Identification for Self-Adaptive

Control, Wiley-Interscience, N. Y. 1970.

(6) Eveleigh, Virgil W., Adaptive Control and Optimization

Techniques, McGraw-Hill Book Co., N. Y. 1967.

[7] Gupta, Madan, Adaptive Methods for Control System Design,

IEEE Press, N. Y. 1986.

(8) Hang, Chang c., Adaptive Control, Instrument Society of

America, NC, 1993.

92

REFERENCES

[9] Liptak, Bela G., Instrument Engineer's Handbook, Chilton

Book Company, Penn., 1982.

[10) Ogata, Katsuhito, System Dymamics, Prentice Hall, N. J.

1992.

[11] Phillips, Charles L., Feedback Control Systems, Prentice

Hall, 1991.

[12) Shinners, Stanley M., Modern Control System Theory and

Design, John Wiley and Sons, N. Y., 1992.

[13] Slotine, Jean-Jacques E., Applied Non-Linear Control,

Prentice Hall, N. J. 1991.

(14) Truxal, John G., Control Engineer's Handbook, McGraw-Hill

Book Co., N. Y., 1958.

(15] Operator's Manual, GP-6 Analog Computer, Corndyna, Inc.,

IL.

[16 J Operator and Maintenance Manual, Model 767 Analog /

Digital Position Control Panel, Comdyna Inc, IL.

(17] DASS User's Manual, MetraByte Corporation, Ma.

