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This thesis investigates the design and implementation of 

a simplified standard PIO controller, a method of tuning these 

types of controllers and the implementation of an auto-tuning 

controller. The implementation includes programming the 

control software in "C" language on a personal computer, 

interfacing the software and hardware to analog-to-digital, 

digital-to-analog converters, and programming a plant 

simulation on an analog computer. A method of manually tuning 

the PIO controller, an explanation of the "C" programming 

code, the hardware configuration, and the automatic tuning of 

PIO controllers are discussed and presented. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

I chose this subject for my thesis in order to learn more 

about the methods of tuning proportional, integral, derivative 

(PID) controllers. I work as a consulting engineer for Fluor 

Daniel and provide clients with control system design and 

startup services. As an example of this, I have worked for 

Frito Lay in their Dorita manufacturing plant in Perry, 

Georgia, starting up their kitchen automation. This automation 

consisted of a programmable controller (PLC5) system, color 

graphic operator interfaces, and instrumentation. Imbedded in 

the PLC5 system was PID software that required tuning to 

provide satisfactory control. An example of the use of this 

PID control is illustrated in figure 1. The process under 

control consisted of a vegetable fryer that maintained the 

vegetable oil at 365 degrees Fahrenheit. A steam valve was 

modulated to provide steam heating of the vegetable oil. The 

Dorita chips were conveyed into the vegetable oil and 

circulated around the fryer to a conveyor that slowly elevated 

them out of the oil, allowing the oil to drain from the chips. 

The chips then proceeded ' to the next processing stage. The 

controller had to maintain the oil temperature under the 

disturbances of room temperature makeup oil entering the fryer 

and also as the room temperature chips entered the fryer. I 

had no method at my disposal to properly tune this process and 
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therefore had to manually tune the controller for an 

acceptable control response. 

Temperature Contr-o I I er-

Proc= 
Flurd 

Steam 

Figure 1. Vegetable fryer. 

L(t) 

Steam 
Tr-ap 

Set Poln 

y(t) 

Proportional, integral, derivative controllers are used 

extensively in industry in all types of systems. PIO 

controllers are sufficient for many control problems 

especially processes where there are modest performance 

requirements. Even though PIO controllers are well known, they 

are often poorly tuned (1], (2], (4]. 

This thesis is about the design and tuning of a 
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proportional, integral, derivative (PIO) type of closed loop 

control system. A typical closed loop system is illustrated in 

figure 2 (11]. 

PIO 

Contro I I er 

U(t) 

Feedback 

s1ona1 

Plant 
or 
Process 

Figure 2. Closed loop control system. 

y(t) 

The input or desired setpoint is fed into an error 

detector, where a signal proportional to the difference 

between the input and output is generated. The controller 

drives the plant input to produce an error of zero. Any 

differences between the actual output and desired output 

(setpoint) are automatically corrected in a closed-loop 

control system. A typical example would be a temperature 

controller for a room. The desired temperature would be the 

setpoint, the actual temperature would be the measured output 

and the difference between the two signals would be the error. 
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The three modes of control of feedback are proportional, 

integral, and derivative. Each of these modes introduces an 

adjustable parameter into the tuning operation of the feedback 

controller. The controller can consist of a single mode, a 

combination of two modes, or a combination of all three. 

The purpose of the proportional mode is to cause an 

instantaneous response of the controller output to changes in 

the error. The formula for the proportional mode is [9]: 

(1) 

where Kc is the controller gain, e is the error, and u is the 

controller output. The significance of the controller gain is 

that the larger it is, the larger will be the change in the 

controller output caused by a given error. 

The ~ hrpose of the integral mode is to eliminate the 

offset or steady state error that can occur with proportional 

control used alone. The controller does this by integrating 

the error over time. The formula for the integral mode is [9]: 

u = Kc J edt 
Ti 

(2) 

where tis time and Ti is the integral tuning parameter for the 

integral mode. The smaller the integral time Ti the faster the 

controller output will change for a given error. Al though 

integral mode is effective in eliminating offset, it is slower 

than the proportional mode because it must act over a period 

of time. 

The derivative mode responds to the rate of change of 
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error with time. The formula for the derivative action is [9]: 

de 
u = K Td­

c dt 
(3) 

where Td is the derivative time and de/dt is the rate of 

change of the error. Note that the derivative acts only when 

the error is changing with time. 

The "textbook" equation for the PIO algorithm has the 

following form [10], [11], [12]. 

u(t) = Kc [e(t) + :if e(t)dt+Td~~l (4) 

where u is the control variable and e is the control error, 

the difference between the setpoint and the output. The 

control variable is the sum of three terms: AP-term, (which 

is proportional to error), an I-term (which is proportional to 

integral of error), arid the o-term (which is proportional to 

the derivative of error. Again, the controller parameters are 

the proportional gain Kc, the integral time constant Ti, and 

the derivative time constant Td. 

PIO controllers are implemented in many forms, such as, 

stand alone controllers that can handle multiple loops and as 

software in programmable controllers. These controllers are 

very "robust" and have been around for a long time, originally 

designed using pneumatics, later using electron tubes, 

transistors, integrated circuits, and now microprocessors [ 1], 

[ 14] . 

The adjustment or tuning of single input single output 
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(SISO) controllers is one of the least understood, poorly 

practiced, yet extremely important aspects of the application 

of automatic control theory. In many control rooms the 

derivative action is switched off for the simple reason that 

it is difficult to tune properly [8]. 

The first problem encountered in tuning controllers is to 

define "good" control. This unfortunately differs from process 

to process. It would seem that the best way to present this 

subject in detail would be to discuss only the best way, but 

there is no general agreement as to which method is the best 

method of tuning controllers. Some methods lean heavily on 

experience while others rely on mathematical considerations. 

One of the key concepts of this project is the assumption 

that little or nothing is known about the transfer function of 

the actual plant and this tuning process must find optimum 

values for the controller without the benefit of mathematical 

analysis. This includes the plants that have slowly changing 

parameters where the PID control would slowly degrade over 

time if there were no way to automate the parameter adjustment 

features . 

PIO CONTROLLER TUNING 

One of the methods proposed for tuning controllers was 

the ultimate method, reported by Ziegler and Nichols in 1942 

[1], [4], [9]. The term "ultimate" was attached to the name of 

this method because it requires the determination of the 
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ultimate gain and ultimate period of a process. The ultimate 

gain is defined as the gain of a proportional controller at 

which the control loop oscillates with constant amplitude, and 

the ultimate period is the period of the oscillations. By its 

definition it can be deduced that the ultimate gain is the 

gain at which the control loop is at the threshold of 

instability. At gains below the ultimate gain the control loop 

signals will oscillate with decreasing amplitude, as shown in 

figure 3; at gains above the ultimate, the amplitude of the 

oscillations will increase with time. It is therefore, very 

important when determining the ultimate gain of an actual 

feedback control loop to ensure that it is not exceeded by 

much or the result would be a violently unstable system. The 

procedure for obtaining the ultimate gain and period is 

carried out with the controller in "auto" (automatic output, 

that is, with the loop closed) and with the integral and 

derivative modes turned off. To do this the following steps 

are recom~ended [4]: 

1. Set the integral and derivative modes to off by setting 

the parameters to zero. 

2. Set the proportional gain Kc of the controller to some 

arbitrary value. 

3. Run the controller in automatic and watch the response on 

the oscilloscope. 

4 • Carefully increase the proportional gain of the 

controller in steps until the output of the process 

oscillates without a decreasing amplitude (or 

WILLIAM F MAA 
YOUNGSTOWN . G UBRA"1'\ 

STATE UNJVERSI 
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approximately constant). Record the Kc of the controller at 

this point as the ultimate gain Ku. Measure and record the 

period of oscillations as Tu. 

Two methods of tuning the controller were proposed by 

Ziegler and Nichols. The first was for a specific response in 

the time domain: the quarter-decay ratio response (QDR). The 

second was a frequency response method based upon a simple 

characterization of the process transfer function (the 

relationship between the process input and output) using the 

Nyquist curve. The QDR response is illustrated in figure 3 for 

a step change in the setpoint. Its characteristic is that each 

oscillation has an amplitude that is one fourth that of the 

previous oscillation. 

8 

a/b = 1/4 
0----------------------'---- time 

Figure 3. Quarter decay ratio response. 



9 

The formulas proposed by Ziegler and Nichols for calculating 

the QDR tuning parameters of P, PI, and PID controllers from 

the ultimate gain Ku and the ultimate period Tu are summarized 

in table 1 below [4] . 

TABLE 1. Quarter decay tuning formulas. 

Controller Gain Integral Time Derivative Time 

p Kc = .5 Ku - -
PI Ku = .45 Ku Ti = Tu I 1. 2 -

PID Kc = .75 Ku Ti = Tu I 1. 6 Td = Tu I 10 

It is intuitively obvious that for the proportional (P) 

controller the gain response should be half the ultimate gain. 

At the ultimate gain, the maximum error in each direction 

causes an identical maximum error in the opposite direction. 

At half the ultimate gain, the maximum error in each direction 

is exactly half the preceding error in the opposite direction 

and one fourth the error in the same direction. This is the 

quarter-decay response. 

The Ziegler-Nichols frequency domain method of tuning a 

controller will be interpreted in terms of moving points on 

the Nyquist diagram. A Nyquist diagram is shown below in 

figure 4 [l]. 
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Im G(it.J/ 

Cr If ia)I ,:,Dint 

-1 

Figure 4. Nyquist diagram. 

The Nyquist curve is a polar plot of the magnitude and phase 

of the open-loop transfer function of the process in the 

complex plane. The tuning method starts with the determination 

of the point (-1/Ku,O} where the Nyquist curve intersects the 

negative real axis. The concepts behind this method can be 

explained as follows. 

Consider a linear process with a sinusoidal input. After 

a transient period, the output of the process is a sinusoid of 

the same frequency as the input. Only the phase and magnitude 

of the output will be different from the input. This means 

that under steady state conditions only two numbers are 

required to describe the output, the quotient "r" between the 

input and the output amplitude and the phase shift "a" between 
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the input and output. Plotting these values for several 

frequencies results in the Nyquist curve, illustrated in 

figure 3. By sending sinusoids of different frequencies into 

a system one can plot the Nyquist response curve (magnitude 

and angle) and the result is a full description of the system. 

The most important part of the system is when there is a phase 

shift of -180 degrees, called the crossover frequency, or 

critical point where the ultimate gain (Ku) and the ultimate 

period (Tu) are determined. 

The Ziegler-Nichols method provides an experimental 

method for determining this critical point on the curve. The 

method is based upon the observation that many systems can be 

made unstable under proportional feedback by choosing 

sufficiently high gain in the proportional feedback. The 

feedback control loop is used to generate sinusoids by 

increasing the gain to where the process oscillates. The 

control variable and the measured variable are then sinusoids 

with a phase shift of -180 degrees and are therefore are 

related by (1) 

u = -ky (5) 

because of the proportional feedback. The gain around the loop 

must be unity in order to maintain the oscillation, (1) 

Ku I G (j W ) I = 1 ( 6 ) 

where the gain, which brings the system to the stability limit 

is called the ultimate gain (Ku) . The advantages of the 

Ziegler-Nichols method is that it is based upon a simple 
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experiment. The disadvantage is that some processes cannot 

tolerate this kind of disturbance without becoming dangerous 

and is therefore not a useful method for auto-tuning of many 

processes. 

Another method for tuning PIO controllers uses the 

process reaction curve, which requires an open loop step test 

on the process [4]. Process gain, time constant and dead time 

can be determined from the results of this test. The purpose 

of an open loop step response test is to determine the 

transfer function of the process. This method determines the 

process dynamic parameters by performing a test with the 

controller in "manual output". This thesis does not present 

this test and will not be discussed further. 

Finally, with the advent of microprocessors new methods 

are starting to appear in products offered on the market with 

auto-tuning capabilities as well as some adaptive and 

heuristic type controllers (3], (4], (5], (7], (13]. 

The project includes the following: 

• Design and implement a simple PIO controller. 

• Design the software in "C" on a microcomputer. 

• Provide a user interface for adjusting parameters. 

• Test and adjust the controller with the ultimate method. 

• Design and test an auto-tuning software routine. 

Figure 5 shows a block diagram of the hardware. 
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Coun~er 
Timer 
Boa.rd 
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Dfg l tal 51grml 
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Analog t.o 
Digit.al Feeclback LOOP -Convarter!iii 

7905 board 

Figure 5. PIO controller diagram. 
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CHAPTER 2 

DESIGN AND TUNING OF PID CONTROLLERS 

INTRODUCTION 

The PID controller designed for this project provides 

several features: an operator interface that permits the 

operator to change the parameters of the controller, the 

capability to run the controller in manual mode and ~et the 

output to a single value, the facility to interrupt the 

controller after it goes into auto using a digital input, and 

the ability to the change setpoint while the controller is 

running by turning a knob on the GP-6 analog computer, 

allowing observation of the response to setpoint changes (see 

appendix A for additional details of the hardware). 

OPERATOR INTERFACE 

The operator interface was programmed on a personal 

computer using "C" language and provides the following 

selections: 

Enter 1 if you wish to enter parameters 

Enter 2 if you wish to run in manual 

Enter 3 if you wish to run in auto 

Enter 4 if you wish to run auto tune 

Enter 5 if you wish to quit the program 
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Running in manual mode means the operator manually sets 

the value of the control output variable and the controller 

holds that value constant until the operator changes it again. 

This allows the operator to run a step response test of the 

process if desired. 

The auto mode provides a PIO controller that runs the 

digital control algorithm described in this chapter in a 

closed loop feedback control system. 

The auto-tune selection allows the operator to initiate 

the PIO controller's automatic tuning feature, that determines 

the parameters of the PIO controller for the process under 

control. .. 

PROGRAM STRUCTURE 

The operator may change the following parameters that the 

software uses to control the operation of the controller. 

Below are listed the parameters and their default values. 

setpoint = 0 initial setpoint value % range 

control uk = 39 initial u(k) control variable % range 

control ukl = 0 initial u(k-1) control variable % range 

output_yk = 0 initial y(k) output variable % range 

output_ykl = 0 initial y(k-1) output variable % range 

pro_gain_Kc = • 2 initial proportional gain variable 

parameter b = 1 initial setpoint weight factor 

integral Ti = 10 initial integral time variable -
integral Ik = 0 initial I(k) integral control variable -



integral_Ikl = O initial I(k-1) integral control variable 

sample_h = 0.2 initial sample period in seconds 

noise N = 1 initial noise level variable 

derivative Td = 1 derivative time variable 

derivative Dk= o derivative D(k) control variable 

derivative Dkl = O derivative D(k-1) control variable 

relay_step = 10 relay step size variable% range 

output_addr = 788 control output address (LDAC = 788) 

process_addr = 2 

setpoint_A2D = 8 

process output address {OP AMP2 = 2) 

analog input A4 = 8 setpoint ctl 

16 

The controller is designed for future expansion if 

desired. Some of the variables with "(k-1)" are not used, and 

therefore, can be utilized by others investigating some of the 

ideas presented in chapter 4 - "recommendations for future 

study". The controller design provides flexibility in its 

design with the ability to modify the output addresses and 

multiplexer addresses from which and to which signals are 

processed by the computer [16). 

The PIO controller is designed with a global PIO data 

structure that contains all the parameters for controlling the 

process. Each function that is called by other functions 

utilizes this data structure and affects those variables it 

needs to affect. 
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The following functions are used in the design of the 

controller. 

data_entry () 

manual() 

automatic() 

relay_test() 

ini _ timer ( ) 

ck_timer() 

A2D_input () 

D2A_output () 

get parameters from operator 

manual control mode function 

auto control mode function 

run relay response test 

initialize timer function 

check for timeout function 

update value of output A2D 

control output function D2A 

display_data() manual ctl display variables function 

Appendix B contains a complete listing of the "C" program 

written for this project. A brief discussion of some of the 

above functions follows. 

The function "ini_timer() ", as its name implies 

initializes the timing for the controller. The software 

actually communicates with the DASS board which has an Intel 

8254 timer/counter providing 3 x 16-bit count down registers, 

deriving its clock from the IBM PC system clock. These 

counters are used in a unique way to detect the rising edge of 

the period for control (see appendix A for further details). 

The counters are configured in such a way that the count must 

be loaded as two bytes, requiring the software to break the 

word into parts for loading into the registers. This is 

accomplished by masking and shifting (division by 256). 
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The function "ck_timer() ", checks the DASS board for the 

rising edge of the clock period counter pulse (see appendix A 

for details) and returns a one (1) if the timeout is true and 

a zero (0) if it is not true. 

The "A2D_input()" communicates with the 7905 A2D / D2A 

interface board, which is connected to the Comdyna GP-6 Analog 

Computer. This function (A2D_input) uses the address stored in 

the PIO structure discussed above ( operator entered parameter) 

as an indirect pointer to the output address of the plant for 

the multiplexer to control the analog-to-digital (A2D) 

conversion. In the process of designing this software it was 

determined that every time the multiplexer address was changed 

that a minimum time for settling was required before starting 

a conversion, as bad results would be obtained otherwise. The 

following code provided this delay, 

/* delay for sample & hold amp*/ 

while(count < 80) 

{ 

count++; 

} 

A count of 70 was found to be insufficient for accurate 

results. 

A similar routine was used, "D2A_output () 11 , to send 

digital data to the 7905 board for digital-to-analog 

conversion (D2A). The signal appears on the Model 767 Analog 

/ Digital Position Control Panel at one of the D2A converter 

outputs. This output was wired to the input of the plant 
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simulator on the Comdyna GP-6 Analog Computer as the control 

signal. 

CONTROLLER DESIGN EQUATIONS 

A number of modifications to the "textbook" equation have 

to be made to provide a digital implementation of the PID 

controller. These changes are detailed below. 

The controller equations utilized in this design were 

selected from a source in the bibliography [l]. The control 

law utilized in this controller is: u = P{k) + I{k) + D{k), 

where Pis the proportional term, I the integral term, and D 

the derivative term. 

The proportional term has an equation as follows: 

P(k)=Kc[br(k)-y(k)] (7) 

where r{k) is the sampled setpoint value, y{k) is the sampled 

process output, Kc is the proportional gain contained in the 

PIO structure discussed above. The parameter b provides an 

additional degree of freedom used to provide a different 

control response to load and setpoint changes. This particular 

parameter was not studied in this project. 

The integral term is calculated from the equation: 

I (k+l) =I (k) + K)'l e (k) 
Ti 

(8) 

Note that the "next" value of the integral term is calculated 

here. "e{k)" is the sampled value of the difference between 

the setpoint and the current output, his the sampling time in 
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seconds, Ti is the integral time in seconds, and I(k) is the 

current value of the integral term. 

The derivative term is calculated from the following 

equation: 

2 T -hN 2KcfiT, 
D(k)= d hD(k-1)- ;;[y(k)-y(k-1)] 

2Td+N. 2Td+ 
(9) 

The above is Tustin's algorithm [1] that is used most often in 

practical controllers and is quite close to the continuous 

time case. Td is the derivative time in seconds, N is a gain 

limiting constant to limit the noise amplification to N. Note 

that the derivative is not calculated from the error between 

the setpoint and the output as is usually shown in the "text 

book" versions of PID software. This is because of the problem 

generated by abrupt changes in the setpoint the de/dt term 

would be very large. Therefore it is common practice to use 

only the process output to apply the derivative term. 
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CHAPTER 3 IMPLEMENTATION AND EXPERIMENTAL RESULTS 

AUTO-TUNE CONTROLLER DESIGN 

INTRODUCTION 

Since the Ziegler-Nichols method of determining PIO 

controller parameters has limitations to processes that can be 

disturbed without causing dangerous or other unacceptable 

conditions, another method has been proposed [ 1, 8] for 

determining these parameters, that of applying a square wave 

to the process input or control and using relay feedback to 

generate a small oscillation. 

CONCEPTS 

Figure 6 illustrates the controller block diagram for the 

relay control. 

PIO 

G(,s) 

rQlay 

Closed Loop System 

Figure 6. Relay control diagram. 
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Refer to the figure 7. For many systems the application 

of a square wave input will produce a nearly sinusoidal 

process output variation. Notice in the plot that the process 

input and output are out of phase and that the amplitude of 

the oscillation is proportional to the amplitude of the relay 

amplitude. 

The relay feedback method is based upon generating an 

oscillation in the process output that is 180 degrees out of 

phase with a square wave input causing the response. If we can 

assume that the process attenuates the higher order harmonics 

of the square wave, then the first harmonic of the Fourier 

series expansion of the relay input square wave, is a 

sinusoid with an amplitude of 4d/n. If the amplitude of the 

process response is "a", then the process gain and ultimate 

gain are [1] 

G(jw) =- 1ta 
4d 

Since KuG(jw) =-1 

K = 4d 
u 1ta 

(10) 

(11) 

(12) 
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CONTROLLER SOFTWARE DESIGN 

The programming "C" code that provides the relay feedback 

auto-tuning function allows the operator to set the level of 

the relay output, runs six cycles of oscillations, averages 

the results, and calculates the ultimate period from a 

measurement of the time between the peaks. The "C" program 

maintains the 180 phase shift by switching the relay whenever 

the process crosses over the axis as it oscillates. 

The "C" code can be broken down into the following steps. 

1.0 Initialize parameters 

1.1 Obtain the current value of the process output and 

store in "current_op". 

1. 2 Initialize the peak value array with the current 

value. 

1.3 Setup the limits of the relay output to be equal to 

the current process output+/- the operator chosen 

relay step size. 

1.4 Turn on the output of the control and wait for the 

response of the plant. 

2.0 When the plant output reaches 1/2 the relay step size 

switch the relay to the lower limit and wait for the 

plant output to return to the "current_op" value. As the 

value changes store the value of the peak and keep track 

of the time by counting the sampling timeouts. 

3 .0 Switch the output to the upper limit and wait for the 

process to again return to the "current_op" value. As the 



• 
25 

value changes store the value of the peak (neg peak) and 

keep track of the time by counting the sampling timeouts. 

When the process output returns to the "current_op" value 

goto step 4.0. 

4.0 Switch the output to the lower limit and wait for the 

process to again return to the "current_op" value. As the 

value changes store the value of the peak (pos peak) and 

keep track of the time by counting the sampling timeouts. 

Increment a cycle counter, check to see if this cycle is 

the last (= 6) if not go to step 4.0 above. Otherwise 

goto step 5.0. 

5. o Analyze the data. The computer takes the peak values 

stored during the run and averages them, averages the 

periods between all peaks and uses the data to calculate 

the parameters from equations 10 and 11 (see the appendix 

B for additional details of the actual implementation of 

the software). 

EXPERIMENTAL RESULTS 

In appendix A two analog computer diagrams are shown that 

represent plant 1 and plant 2 used to simulate two processes 

to be tested under PID control. Figures 7 through 16 are for 

Plant 1 and figures 17 through 30 are for plant 2. 

The 1st plant represents an open loop unstable process 

that has an integrator on the output. Table 2 summarizes the 

data: 
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Table 2. Plant 1 data. 

Fig. Control Settling Kc/°Ku TJTu Td 

Time Sec 

7 Relay 20% N/A /7.6 /2.4 

8 p > 20 5.0 /3.0 /0.0 

9 p > 20 6.0 /2.8 0.0 

10 p >> 20 7.0 /2.6 0.0 

11 PID auto-tune 12 2.6 2.7 .48 

12 p 15 2.6 0.0 0.0 

13 Relay 30% N/A /9.3 /2.2 

14 QRD p 20 3.8 0.0 o.o 

15 QRD PI >>20 3.5 2.0 o.o 

16 QRD PID 20 5.8 1.5 .24 

The first three plots represent an attempt to find the 

ultimate period of this process by varying the gain until a 

constant oscillation is obtained. The figure 8 was produced by 

the PID controller using a gain of 5, shows a damped ~esponse 

from the plant settling out in greater than 20 seconds. Figure 

9 was produced from the controller with a gain of 6 and as can 
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be observed the damping is less but still prominent. Figure 10 

is with plot of a gain of 7, where it is extremely difficult 

to tell if damping is occurring. This appears to be 

approximately the ultimate gain we are looking for from the 

above description. From the graphs the period is seen to be 

decreasing from 3 seconds, to 2.8 seconds, and finally to 2.6 

seconds at the final gain of 7. 
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From the relay feedback run of figure 7, the ultimate 

gain and the period were determined and the following formulas 

were used to calculate the PIO parameters for the PIO 

controller of figure 11 (8]. 

(13) 

(14) 

(15) 

The plant response damps out quickly in approximately 8 

seconds. Figure 12 represents the same controller with the 

derivative and integral control turned off for comparison. The 

response has longer oscillations and settles out in 

approximately 12 seconds. 
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The results of the relay auto-tuning agree very closely 

with that obtained from the Ziegler-Nichols ultimate method 

performed above. The computer was run with the relay set at 

5%, 10% and 20% of range with the same results. At 30% the 

process output starts showing signs of nonlinearity, 

indicating that the square wave harmonics are effecting the 

results, see figure 13. 
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The next three plots represent the P, PI, and PIO 

controller responses from the quarter-decay tuning formulas 

(QDR). The P controller gives a response with the shortest 

settling time. The PI controller is marginally stable and the 

PID appears to meet the QDR criterion discussed in chapter 1 

(see figures 14, 15, and 16). 
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The 2nd plant has a variable parameter "a" that makes the 

plant or process more oscillatory as "a" approaches zero. This 

represents a marginally stable process that can demonstrate 

the ability of the PIO controller to control this process. 

Table 3 summarizes the data: 
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Table 3. Plant 2 data. 

Fig. Control Settling a KJK.i TJTu Td 

Time Sec 

17 step response 16 . 7 N/A N/A N/A 

18 QOR PIO 20 .7 3.6 1.75 .28 

19 PIO auto-tune 15 .7 1.7 3.2 .57 

20 Relay 10% N/A .7 /4.8 /2.8 N/A 

21 Step response 40 • 3 N/A N/A N/A 

22 QOR p >> 50 . 3 1.6 0.0 0.0 

23 QOR PI >> 50 . 3 1.5 2.7 0.0 

24 QRO PIO > 50 . 3 2.4 2.0 .32 

25 PIO auto-tune 40 • 3 1.1 3.6 .65 

26 Relay 10% N/A . 3 /3.2 /3.2 N/A 

27 Step response > 50 .1 N/A N/A N/A 

28 QDR PID >> 50 . 1 1.0 2.6 .42 

29 PIO auto-tune > 50 .1 .48 4.8 .85 

30 Relay 10% N/A . 1 /1. 4 /4.2 N/A 

Figures 17 through 30 show an increasingly oscillatory 
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plant with the decreasing factor a. The auto-tuning software 

finds the ultimate gain and period to be decreasing, as a 

decreases. This indicates that a lower gain is required to 

obtain a stable control. In all cases the PIO auto-tune 

controller is stable and controls the process in less time 

than the step response. However, the QDR tuning parameters do 

not provide this type of control. In figure 28 the QDR 

controller is not gaining control of this process in a 

reasonable time. 
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ANALYSIS 

The Ziegler-Nichols method is based on a generalized 

approach to the frequency domain method of design (1]. Points 

are selected on the Nyquist curve that result in a system 

phase and gain margin. The general formulation is to start 

with a point on the open loop plant Nyquist curve for the 

process 

(16) 

and then using the following equation for the final open loop 

compensated system 

(17) 

where the phase margin for the process is ¢p, the phase margin 

of the final system is ¢
8

, the phase margin of the PIO 

regulator is ¢r1 the system equation is 

(18) 

The regulator should be chosen such that 

(19) 

(2 O) 
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resulting in Kc, the gain of the PIO controller, the integral, 

and derivative parameters as follows: 

(21) 

(22) 

(23) 

The gain is uniquely given from the above equation, but the 

parameters Ti and Td have only one equation. A common practice 

to provide a phase lead controller [4, 11, 12) is to specify 

~ in terms of a ratio to Td, such as, 

(24) 

where a is chosen to be some value such as .18. The following 

equations give the~ and Td parameters as follows: 

(25) 

1 
T . = -Td 

.i a (26) 

the parameters used in this PIO controller, 

(27) 

(28) 

(29) 
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will result in the following gain and phase margins: 

Pm = <l>s = 48. 6 degrees (30) 

A = 20log(.J:..) = 6dB (31) 
m r 

s 

where ¢p = 0 is chosen for the ultimate point and rP = 1/'Ku the 

reciprocal of the ultimate gain. 

For example, to illustrate the calculation, let the 

desired phase margin be ¢ 1 = 45 degrees, the plant phase 

margin c/>p = 0, the desired amplitude margin of 2 ==> r 1 = 1/2 

(gain margin= 20 log(2) = 6 dB), a= .25, then 

(32) 

Td 
T. = - = • 768Tu 

.l « 
(34) 

This Ziegler-Nichols frequency response method based upon 

moving one point on the Nyquist curve to a desired position, 

provides simple design rules and is generally sufficient for 

most processes. Control engineers have found in practice that 

a gain margin above 5 dB and a phase margin greater than 30 

degrees generally provides a sufficiently stable system. 
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CHAPTER 4 

SUMMARY 

In this thesis a PIO controller with auto-tuning 

capabilities was presented. "C" software for control and 

tuning of general processes was written and tested and proven 

highly reliable. The controller that resulted produced 

satisfactory control and capabilities. The first plant was 

open loop unstable and was made stable under closed loop 

control. Both tuning methods, QDR and auto-tune, provided 

satisfactory control for this plant. The second plant, 

however, provided some difficulty for both methods in the more 

oscillatory state. The QDR method proved less than 

satisfactory due to the fact that the control was worse than 

the natural settling time of the process. 

Relay auto-tuning was demonstrated as a good method of 

tuning the two plants and provided a stable control with 

minimum disturbance to the process. This method in all cases 

was superior to the QDR tuning method. See figures 11 and 16, 

the two methods provide equal rise times but the auto-tune 

control provides less overshoot (5v versus lOv) and a settling 

time of 10 seconds versus 16 seconds. Again consider figures 

18 and 19 , rise times are equal but the auto-tune method 

provides less overshoot (5v versus 7v) and a settling time of 

ten seconds as compared to fourteen seconds for the QDR 

method. Similar remarks can be made regarding figures 24, 25 
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and 28, 29. 

The project demonstrates the feasibility of using a 

personal computer to control a process, automatically tune the 

parameters, and provide an operator interface for control of 

the PIO controller parameters. 

Additional goals of this project included learning about 

the physical implementation of a practical PIO controller and 

answering questions relating to the application of theory to 

a practical application. The answers to these questions is 

that the theory closely fits with the practice and produces a 

controller that performs as expected. 

RECOMMENDATIONS FOR FUTURE STUDY 

Students of controls are welcome to take this work and 

improve upon it or experiment with it in additional ways. An 

interesting project for this PIO controller would be to 

construct an actual process of some type, such as a flow, 

pressure or temperature control process and implement PIO 

control. Study the dead time/ transport delay effects and how 

to handle them in the design of the controller. Study step 

response and ultimate gain tuning and the relay auto-tuning to 

compare the differences from that obtained with a simulation. 



APPENDIX A 

TECHNICAL DETAILS 

DASS ADDRESSES AND OTHER DETAILS[15], [16], [17] 

62 

. Important addresses found on page 2 of the Model 767 A2D 

manual (note these addresses do not agree with the manual): 

Table 4. Model 767 and GP-6 addresses. 

Item Multiplexer Address 

GP-6 Amplifier 1 00 

GP-6 Amplifier 2 02 

GP-6 Amplifier 3 04 

GP-6 Amplifier 4 06 

767 A4 08 

767 A5 10 

767 A6 12 

767 A7 14 

Note: the following instructions are required to cause the 

Comdyna GP-6 computer to operate from the computer. The wait 

is required because this looks for the operate pushbutton to 

be pushed in by the operator on the Comdyna. 



outp(7S5,0); /* start GP-6 operate mode*/ 

GP_6 = inp{7S6); 

while{GP_6 != 4) 

{ 

} 

GP 6 = inp{7S6); 

GP 6 &=4; 
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The following instruction is required to put the Comdyna in 

the IC mode: 

outp(7S5,S); /* set CJ high for GP 6 IC mode*/ 

TIMER/ COUNTER DETAILS 

In order to implement the "C" code, software routines 

that access the DASS board must be operating properly. The 

MetraByte manual provides data relating to addresses on the 

DASS board that are summarized here. The following control 

words must be loaded into the control register for each 

counter to be properly initialized. See the "C" program 

"ini_timer(PID_ptr); /* initialize timer function */" for 

additional details regarding the initialization (appendix B). 
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Table 5. Counter details. 

I 
Control Word 

I 
D7 D6 D5 D4 D3 D2 Dl DO VALUE 

SCl sco RLl RLO M2 Ml MO BCD 

0 1 1 1 0 1 1 0 CTR 1 = 

118 

1 0 1 1 0 1 1 0 CTR 2 = 

182 

0 0 1 1 0 0 0 0 CTR 0 = 

48 

Base address+ 7 (768 + 7 = 775) ==> counter control register. 

SCl & SCO ==> COUNTER NUMBER 

RLl & RLO ==> DATA TRANSFER OPERATION= WORD 

Ml, M~, MO==> MODE 011 ==> SQUARE WAVE 

MODE 000 ==> PULSE 

SETUP FOR 200 MILLISECOND==> #395 FOR COUNTER 2: 

The following high byte and low bytes are required for 

the software to proper load the counters. The software obtains 

these values by ANDing and shifting data as can be seem from 

the function "ini_timer() initialize timer". 

WORD VALUE= 395 ==> 18B HEX 

LB= 139 

0000 0001 1000 1011 



SETUP FOR COUNTER 1 200 X 10 = 2000 

2000 = 7D0 HEX 

0000 0111 1101 0000 ==> HB = 7, LB= 208 

SETUP. FOR COUNTER O 200 X 5 = 1000 

1000 = 3E8 ==> HB = 3, LB= 232 

Description of Counter Operation: 
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Counter 2 is setup as the main counter at the frequency 

required to give a period equal to 2000 times the sample 

period. For example, a count of 395 yields a frequency of 

10,000 Hz or .1 milliseconds per cycle. The output of counter 

2 is fed to counter 1 where the count is divided by 2000, 

resulting in a 5Hz (10000/2000) or .2 seconds {200 

milliseconds) cycle. The output of counter 2 is also fed to 

counter o, where it is divided by 1000. This counter counts 

out and goes high allowing the detection of the rising edge of 

counter 1. Counter o is reloaded and restarted with every 

timeout. The wave forms of counter 1 and counter o are input 

to the digital inputs IPl and IP2 for reading by the computer. 

Whenever the IPl and IP2 are equal to three a time out has · 

occurred and the rising edge of counter 2 has been detected, 

indicating the beginning of another timing interval. Below is 

a timing diagram: 



f 

out1 counter 1 = IP2 

outO counter O = IP1 
pulse on terminal count 
stays high unti I loaded 
aga i n 

T = period of control 

~-+------------------------------

' ' -- -- --- --- --- ----------- -------- -----------

1, Counter O goes high after counting out T/2 
2 . Counter O Is then reloaded and goes low untl I count out 
3. When IP2 and IP1 equals 3 a rising edge is detected 

Figure 31. Counter board timing diagram. 
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DETAILS OF PLANT AND COMPUTER CONNECTIONS 

FROM LOAC 

1 

Corrputer ree.da 
addr-••• o2 "fer 
Op-llffl'.) 2 

,..,.. ,. 
Plant 1/s(s + 1) ==> Y + Y 

Figure 32. Plant 1 diagram. 
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a. 

PI ant 2 

Corrput.er- reads 
adcress 02 f"or 
op-a.lr4'.) 2 

1 / (s~ 2 +as+ 1) 

Figure 33. - Plant 2 diagram. 
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APPENDIX B 

PID AND AUTO-TUNE "C" CODE LISTING 

main program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

PID structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

data_ entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

manual ................................................... 44 

automatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

D2A_output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

display __ data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

A2D _ input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

A2D _ setpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 

ini timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

ck timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

relay _test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 



/* Standard PID program module */ 

#include < stdio. h > 

#include < stdlib.h > 

struct PID 

{ 

float setpoint; /* setpoint value variable % of range */ 

float control_uk; I* value of u(k) control variable % of range*/ 

float control_ukl; /* value ofu(k-1) control variable% of range*/ 

float output_yk; /* value of y(k) output variable % of range */ 

float output_ykl; /* value of y(k-1) output variable % of range*/ 

float pro _gain_ Kc; /* value of proportional gain variable */ 

float parameter_ b; /* value of setpoint weight factor */ 

float integral_ Ti; /* integral time variable, seconds */ 

float integral_ Ik; /* value ofl(k) integral control variable */ 

float integral_Ikl; /* value of I(k + 1) integral control variable */ 

float sample_h; /* sample period in seconds */ 

float noise_ N; /* noise level variable */ 

float derivative_ Td; I* derivative time variable */ 

float derivative_ Dk; /* derivative D(k) control variable */ 

float derivative_Dkl; /* derivative D(k-1) control variable*/ 

float relay_ step; /* relay variable output % of range*/ 

int *output_ addr; /* control output address D2A pointer (788, 789 LDAC) */ 

int *process_addr; /* process output address A2D pointer (mux no 0, 2, 4, 6) */ 

int *setpoint_A2D; /* analog input address for A2D for setpoint control */ 

}; 

I* global variables */ 

float VOLTS = 10; 
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int RANGE = 2047; 

struct PID standard_PID; /* declare a structure variable */ 

/* functions required for the standard PID control */ 

void data_ entry(struct PID *PID _ptr); /* get parameters from operator *I 

void manual(struct PID *PID _ptr); /* manual control mode function */ 

void automatic(struct PID *PID _ptr); /* auto control mode function*/ 

void relay _test(struct PID *PID _ptr); I* run relay response test *I 

void ini_timer(struct PID *PID _ptr); /* initialize timer function *I 

int ck_ timer(struct PID *PID _ptr); /* check for timeout function */ 

void A2D _ input(struct PID *PID _ptr); /* update value of output A2D */ 

void D2A _ output(struct PID *PID _ptr); I* control output function D2A */ 

void display_ data(struct PID *PID _ptr); /* manual ctl display variables function */ 

/* main program */ 

main() 

{ 

/* other variables */ 

int select; /* operator selection *I 

struct PID standard_PID; /* declare a structure variable */ 

struct PID *PID _ptr; /* declare pointer to PID structure */ 

PID _ptr = &standard _PID; /* assign address of PID structure to pointer */ 

/* initialize PID structure to default values */ 

PID _ptr-> setpoint = O; /* initial setpoint value */ 

PID _ptr-> control_ uk = 39; I* initial u(k) control variable */ 

PID _ptr-> control_ukl = O; /* initial u(k-1) control variable */ 

PID _ptr- > output_yk = O; /* initial y(k) output variable */ 

PID _ptr-> output_ykl = O; I* initial y(k-1) output variable */ 

PID_ptr->pro_gain_Kc = .2; /* initial proportional gain variable*/ 
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PID _ptr- >parameter_ b = 1; /* initial setpoint weight factor */ 

PID _ptr- > integral_ Ti = 10; /* initial integral time variable */ 

PID _ptr- > integral_ 1k = O; /* initial I(k) integral control variable */ 

PID_ptr->integral_Ikl = O; I* initial l(k-1) integral control variable*/ 

PID_ptr->sample_h = 0.2; I* initial sample period in seconds *I 

PID _ptr- >noise_ N = 1; /* initial noise level variable */ 

PID _ptr- >derivative_ Td = 1; /* derivative time variable */ 

PID _ptr- >derivative_ Dk = O; /* derivative D(k) control variable */ 

PID_ptr->derivative_Dkl = O; /* derivative D(k-1) control variable*/ 

PID_ptr->relay_step = 10; /* relay step size variable % range */ 

*PID _ptr-> output_addr = 788; /* control output address (LDAC = 788) */ 

*PID _ptr- >process_ addr = 2; /* process output address (OP AMP2 = 2) *I 

*PID_ptr->setpoint_A2D = 8; /* analog input A4 = 8 setpoint ct!*/ 

/* determine operator desires *I 

while (select ! = 5) 

{ 

printf("Enter 1 if you wish to enter parameters\n"); 

printf("Enter 2 if you wish to run in manual\n "); 

printf("Enter 3 if you wish to run in auto\n "); 

printf("Enter 4 if you wish to run auto tune\n "); 

printf("Enter 5 if you wish to quit the program\n "); 

scanf(" %d", &select); 

switch(select) 

{ 

case 1: 

/* enter parameters function */ 

data_ entry(&standard _PID); 
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} 

} 

break; 

case 2: 

I* go to manual mode */ 

manual(&standard _FIO); 

break; 

case 3: 

I* go to auto mode function */ 

autornatic(&standard _PIO); 

break; 

case 4: 

} 

/* relay feedback function*/ 

relay_test(&standard_PID); /* run relay response test*/ 

break; 

void data_ entry(struct PID *PID _ptr) /* get parameters from operator */ 

{ 

int select, address; 

float value; 

while (select ! = 12) 

{ 

printf("Select the parameter to be changed\n\n"); 

printf(" 1. Setpoint = %f\n", PIO _ptr-> setpoint); 

printf("2. Proportional Gain= %f\n", PIO_ptr->pro_gain_Kc) ; 

printf("3. Setpoint weight factor b = %f\n" , PIO_ptr->parameter_b); 
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printf("4. Integral time variable Ti = %f\n", PID_ptr->integral_Ti); 

printf("S. Sample time in seconds= %f\n", PID_ptr->sample_h); 

printf(" Sample time in seconds= %f\n", PID_ptr->sample_h); 

printf("6. Noise level variable N = %f\n", PID_ptr->noise_N); 

printf("7. Derivative time constant Td = %f\n", PID_ptr->derivative_Td); 

printf("8. Step size output value= %f\n", PID_ptr->relay_step); 

printf("9. Control output address = %d\n", *PID_ptr->output_addr); 

printf(" 10. Process output address = %d\n", *PID _ptr- >process_ addr); 

printf(" 11. Setpoint input address = %d\n", *PID _ptr-> setpoint_A2D); 

printf(" 12. Exit - finished\n "); 

scanf(" %d", &select); 

switch(select) 

{ 

case 1: 

/* Change setpoint */ 

printf("Enter new setpoint between O and 10\n"); 

scanf(" %f", &value); 

PID _ptr- > setpoint = value; 

break; 

case 2: 

/* Change proportional gain */ 

printf("Enter new proportional gain greater than 0\n"); 

scanf(" %f", &value); 

PID _ptr- > pro _gain_ Kc = value; 

break; 

case 3: 

/* Setpoint weight factor */ 
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printf("Enter new weight factor from 0 to 1 \n "); 

scanf(" %f", &value); 

PIO _ptr- >parameter_ b = value; 

break; 

case 4: 

/* Integral time variable */ 

printf("Enter new integral time variable or O for none\n"); 

scanf(" %f", &value); 

PIO _ptr- > integral_ Ti = value; 

break; 

case 5: 

/* Sample period in seconds */ 

printf("Enter new sample period in seconds from .020\n"); 

scanf(" %f", &value); 

PIO _ptr- >sample_ h = value; 

break; 

case 6: 

I* Noise level variable */ 

printf("Enter new noise level variable N\n "); 

scanf(" %f", &value); 

PIO _ptr- >noise_ N = value; 

break; 

case 7: 

I* Derivative time variable */ 

printf("F.nter new derivative time variable or 0 for none\n "); 

scanf(" %f", &value); 

PIO _ptr- >derivative_ Td = value; 
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} 

break; 

case 8: 

I* Step size for step response *I 

printf("Enter new step size > O\n"); 

scanf(" %f", &value); 

PID _ptr- >relay_ step = value; 

break; 

case 9: 

I* Control output address */ 

printf("Enter new control address\n "); 

scanf(" %d", &address); 

*PID _ptr- > output_ addr = address; 

break; 

case 10: 

I* Process output address */ 

printf("Enter new process address\n"); 

scanf(" %d", &address); 

*PID _ptr- >process_ addr = address; 

break; 

case 11: 

I* Setpoint input address */ 

} 

printf("Enter new setpoint input address\n "); 

scanf(" %d", &address); 

*PID _ptr- > setpoint_ A2D = address; 

break; 
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} 

void manual(struct PID *PID _ptr) /* run in manual */ 

{ 

int HB, LB, U, a, b, digital_inp; 

int select, address; 

float value; 

while (select ! = 3) 

{ 

printf("Select the desired option:\n\n"); 

printf("l. Set control output= %f\n", PID_ptr->control_uk); 

printf("2. Run in manual\n"); 

printf("3. Exit - finished\n "); 

scanf(" %d", &select); 

switch(select) 

{ 

case 1: 

/* Change control output *I 

printf("Enter new control output value in percent\n"); 

scanf(" %f", &value); 

PIO _ptr- > control_ uk = value; 

break; 

case 2: 

I* Run in manual */ 

D2A _ output(PID _ptr); I* control output function */ 

A2D _ input(PID _ptr); I* update value of output variable for display */ 

display __ data(PID _ptr); /* display variables function *I 

break; 
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} 

} 

} 

void automatic(struct PID *PID _ptr) I* run in automatic */ 

{ 

float integral_gain, derivative_gainl, nd, dd, derivative_gain2, ndl, dd2; 

float Proportional_op, a, b, c, d; 

float temp_ op, e, error; 

int done= 1, timer_flag = 0, digital_inp=0, GP_6; 

/* calculate regulator coefficients */ 

if(PID_ptr->integral_Ti != 0) /* is integral function on? *I 

integral_gain = PID _ptr- > pro _gain_ Kc*PID _ptr- >sample_ h/PID _ptr- > integral_ Ti; 

else 

{ 

integral_gain = 0; 

PID _ptr- >integral_ Ik = 0; 

} 

if(PID _ptr- >derivative_ Td ! = 0) /* is derivative function on ? */ 

{ 

nd = 2 * PIO _ptr- >derivative_ Td - PID _ptr- >sample_ h*PID _ptr- >noise_ N; 

dd = 2 * PID_ptr->derivative_Td + PID_ptr->sample_h*PID_ptr->noise_N; 

derivative_gainl = nd/dd; 

ndl = 2 * PID_ptr->pro_gain_Kc * PID_ptr->noise_N * PID_ptr->derivative_Td; 

dd2 = 2 * PID _ptr- >derivative_ Td + PID _ptr- >noise_ N * PID _ptr- > sample _h; 

derivative_gain2 = ndl/dd2; 

} 

else 
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{ 

derivative _gainl = 0; 

derivative _gain2 = 0; 

} 

/* Check to see if program is to stop running *I 

outp(785,0); I* start GP-6 operate mode */ 

GP_ 6 = inp(786); 

while(GP _ 6 ! = 4) 

{ 

GP_ 6 = inp(786); 

GP_6 &=4; 

} 

ini_timer(PID _J>tr); /* initialize timer function */ 

while (digital_inp = = 0) 

{ 

digital_inp = inp(770); /* DASS status register */ 

digital_inp = (digital_inp & 0x0040)/16; /* isolate IP3 */ 

A2D _input(PID _J>tr); /* update value of output variable */ 

A2D _setpoint(PID _J>tr); /* update value of setpoint variable */ 

timer_flag = ck_timer(PID_J>tr); /* check for timeout function*/ 

if(timer_flag = = done) 

{ 

digital_inp = inp(770); /* DASS status register */ 

digital_inp = (digital_inp & 0x0040)/16; I* isolate IP3 */ 

system("cls"); 

printf("Setpoint \tControl \tProcess O/P\n"); 

printf(" % f \t % f \t % f\n", PID _J>tr- > setpoint, PID _J>tr- >control_ uk, 
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PIO _ptr- > output_yk); 

/* calculate proportional output */ 

a = PIO _ptr- >parameter_ b * PIO _ptr- > setpoint; 

b = PIO _ptr- > output_yk; 

Proportional_op = PIO _ptr->pro_gain_Kc * (a - b); 

/* calculate derivative output */ 

if(PIO _ptr- >derivative_ Td ! = 0) 

{ 

c = derivative _gain 1 * PIO _ptr- >derivative_ Dk; 

d = derivative _gain2 * (PIO _ptr-> output_yk -PIO _ptr-> output_ykl); 

PIO _ptr- >derivative_ Dk = c - d; 

} 

else 

PIO _ptr- >derivative_ Dk = O; 

temp_ op = Proportional_ op + PIO _ptr- >derivative_ Dk + 

PIO _ptr- >integral_ Ik; 

/* check value for saturation */ 

if (temp_op > 100) 

temp_op = 100; 

if (temp_op < -100) 

temp_op = -100; 

PID_ptr->control_uk = temp_op; 

/* calculate new integral control value */ 

error = PIO _ptr- > setpoint - PIO _ptr- > output_yk; 

PIO _ptr- > integral_ Ik + = integral _gain * error; 

/* update old output variable */ 

PIO _ptr- > output_ykl = PIO _ptr- > output_yk; 
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} 

} 

D2A_output(PID_ptr); I* control output function*/ 

} 

printf("\n"); I* new line*/ 

outp(785,8); /* put GP _6 in IC mode*/ 

PID _ptr- > control_ uk = O; /* set control variable */ 

D2A _ output(PID _ptr); /* control output function */ 

void D2A _ output(struct PID *PID _ptr) I* control output function */ 

{ 

} 

int HB, LB; 

float U , rndHB; 

/* convert to data for D2A */ 

U = (PID_ptr->control_uk/100) * RANGE; 

rndHB = U/16; 

if(U < 0) 

rndHB -=.5; 

RB= rndHB; 

LB = (U - 16 * HB) * 16; 

I* output to /\ddresses for D2A */ 

outp(*PID _ptr-> output_addr, LB); 

outp(*PID _ptr-> output_ addr+ 1, HB); 

void display_ data(struct PID *PID _ptr) I* manual ctl display variables function */ 

{ 

int digital_inp, GP _6; 

/* Check to see if program is to stop displaying data */ 
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digital_inp = inp(770); I* DASS status register *I 

digital_inp = (digital_inp & 0x0040)/16; I* isolate IP3 */ 

outp(7S5,0); I* start GP-6 operate mode *I 

GP_ 6 = inp(7S6); 

while(GP _ 6 ! = 4) 

{ 

GP_ 6 = inp(7S6); 

GP_6 &=4; 

} 

while (digital_inp = = 0) 

{ 

system("cls"); 

printf("Setpoint \tControl \tProcess O/P\n "); 

printf(" %f \t%f \t%f\n" , PID _ptr-> setpoint, PID _ptr-> control_uk, 

PID _ptr-> output_yk); 

} 

} 

digital_inp = inp(770); /* DASS status register *I 

digital_inp = (digital_inp & 0x0040)/16; /* isolate IP3 */ 

A2D _ input(PID _ptr); I* update value of output */ 

printf("\n "); I* new line */ 

outp(785,S); I* set C3 high for GP_6 IC mode*/ 

void A2D _input(struct PID *PID _ptr) I* update value of output*/ 

{ 

int status, HB, LB, count=0; 

outp(7S4,*PID_ptr->process_addr); /* set mux *I 

/* delay for sample & hold amp */ 
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} 

while( count < 80) 

{ 

count + +; 

} 

outp(786, *PID _ptr-> process_addr); /* start A2D *I 

status = inp(786); /* get status byte */ 

status &=8; /* isolate EOC bit */ 

while(status ! = 8) /* wait for EOC */ 

{ 

status = inp(786); /* get status byte */ 

status &=8; 

} 

HB = inp(787); 

LB = inp(786); 

I* isolate EOC bit */ 

PID_ptr->output_yk = HB*l6 + LB/16; /* convert to a word of data*/ 

if(PID _ptr- > output_yk > 2047) 

PID _ptr-> output_yk -=4096; 

PID _ptr-> output_yk = PID _ptr-> output_yk * 100 / 2047; I* % of range */ 

A2D _setpoint(struct PID *PID _ptr) I* update value of setpoint variable */ 

{ 

int status, HB, LB, count=0; 

outp(784,*PID_ptr->setpoint_A2D); /* set mux */ 

/* delay for sample & hold amp */ 

while( count < 80) 

{ 

count++; 
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} 

} 

outp{786, *PID _ptr-> setpoint_ A2D); /* start A2D */ 

status = inp(786); /* get status byte */ 

status &=8; /* isolate EOC bit */ 

while(status ! = 8) /* wait for EOC *I 

{ 

status = inp(786); /* get status byte */ 

status &=8; 

} 

HB = inp(787); 

LB = inp(786); 

/* isolate EOC bit */ 

PID _ptr- > setpoint = HB*16 + LB/16; /* convert to a word of data */ 

if(PID _ptr- > setpoint > 2047) 

PID _ptr-> setpoint -=4096; 

PID _ptr- > setpoint = PID _ptr- > setpoint * 100 I 2047; /* % of range */ 

void ini_timer(struct PID *PID _ptr) I* initialize timer function*/ 

{ 

int count0, countl, count2, time_sample; 

unsigned int low_ byte, high_ byte; 

/* Setup counter 2 in configuration 3: square generator */ 

outp(775,182); /* control word for counter 2 */ 

/* Load counter 2 */ 

count2 = PID _ptr-> sample_ h * 395 / .200; /* 395 counts for 200 milliseconds */ 

low_ byte = count2 & 0xOOFF; 

high_byte = (~ount2 & 0xFF00)/256; 
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} 

outp(774,low_byte); /* Low byte for counter 2 */ 

outp(774,high_byte); /* High byte for counter2 *I 

I* Setup counter 1 in configuration 3: square wave generator */ 

outp(775,118); /* control word for counter 1 */ 

/* Load counter 1 */ 

time_sample = PID_ptr->sample_h * 1000; /* sample period in milliseconds*/ 

countl = 10 * time_ sample; 

low_ byte = countl & 0x00FF; 

high_byte = (countl & 0xFF00)/256; 

outp(773,low_byte); /* Low byte for counter! */ 

outp(773,high_byte); /* High byte for counter! */ 

I* Setup counter 0 in configuration 0 */ 

outp(775,48); /* control word for counter 0 */ 

/* Load counter 0 *I 

count0 = 5 * time_ sample; 

low_ byte = count0 & 0xOOFF; 

high_byte = (countO & 0xFF00)/256; 

outp(772,low_byte); I* Low byte for counterO *I 

outp(772,high_byte); /* High byte for counterO */ 

int ck_ timer(struct PID *PID _ptr) /* check for timeout function */ 

{ 

int count0, digital_inp, time_sample; 

unsigned int low_ byte, high_ byte; 

digital_inp = inp(770); /* DASS status register *I 

digital_inp = (digital_inp & 0x0070)/16; I* isolate the inputs*/ 

if (digital_inp = = 3) /* check for counter 0 done *I 
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} 

{ 

time_ sample = PID _ptr- >sample_ h * 1000; /* sample period in milliseconds */ 

count0 = 5*time_sample; 

low_byte = count0 & 0x00FF; 

high_byte = (count0 & 0xFF00)/256; 

outp(772,low _ byte); I* Low byte for counterO */ 

outp(772,high_byte); /* High byte for counterO */ 

return 1; /* timer done and reloaded */ 

} 

else 

return 0; /* timer not done */ 

void relay _test(struct PIO *PIO _ptr) /* run relay response test */ 

{ 

int peak_count = 0, time_counter = 0, peak_time[12], j; 

int cycle_count = 0, initialize= 0, neg_cycle, done = 1, first_pass = 0; 

int timer_flag, digital_inp, GP _6, period_sum=0; 

float current_op, upper_limit, lower_limit, period_ave=0; 

float neg_peak_ave=0, neg_peak_sum=0, pos_peak_ave, pos_peak_sum; 

float ultimate_gain, peak_value[12]; 

• I* Initialize test parameters and start test */ 

if(initialize = = 0) 

{ 

A2O _input(PID _ptr); I* update value of output */ 

current_ op = PIO _ptr- > output_yk; /* store current output */ 

/* initialize the peak_value array*/ 

for(j = 0; j < 13; j + +) 
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peak_ value[j] = current_ op; 

/* establish limits of relay output *I 

upper_ limit = PID _ptr- > relay_ step; 

lower_limit = - PID_ptr->relay_step; 

PID_ptr->control_uk = upper_limit; /* set control variable*/ 

D2A_ou1put(PID_ptr); I* control output function*/ 

/* wait for output to exceed half the relay step size */ 

outp(785,0); I* start GP-6 operate mode */ 

GP_ 6 = inp(786); 

while(GP _ 6 ! = 4) 

{ 

} 

GP_ 6 = inp(786); 

GP_6 &=4; 

while(PID _ptr- > output_yk < = current_ op + PID _ptr- >relay_ step / 2 ) 

A2D _input(PID _ptr); I* update value of output*/ 

/* switch output to lower limit*/ 

PID _ptr- >control_ uk = lower _limit; 

D2A_ output(PID _ptr); I* control output function */ 

I* monitor output for crossover at the original output value */ 

while(PID _ptr- > output_yk > current_ op) 

A2D _input(PID _ptr); /* update value of output*/ 

I* start test - initialize timer, counters *I 

ini_timer(PID _ptr); /* initialize timer function*/ 

initialize = 1; /* end of initialize routine *I 

neg_cycle = 1; /* start negative cycle */ 

} /* end of initialize */ 
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while (cycle_count < 7) /* run 6 cycles and stop */ 

{ 

/* negative peak, 1/2 cycle */ 

while(neg_cycle = = 1) 

{ 

/* switch output to upper limit *I 

if(first_pass = = 0) 

{ 

{ 

} 

PID _ptr- > control_ uk = upper _limit; /* set control variable */ 

D2A_ output(PID _ptr); I* control output function */ 

first_pass = 1; 

timer_flag = ck_timer(PID_ptr); 

if(timer_flag = = done) 

/* check for timeout function */ 

{ 

A2D _ input(PID _ptr); /* update value of output */ 

time_ counter + = 1; 

if(PID _ptr- > output_yk < peak_ value[peak _ count]) 

{ 

} 

peak_value[peak_count] = PID_ptr->output_yk; /* store new peak value*/ 

peak_time[peak_count] = time_counter; /* store time of peak*/ 

if(PID_ptr->output_yk > current_op) /* check for crossover*/ 

neg_ cycle = O; /* terminate negative cycle */ 

peak_ count + +; /* increment peak counter */ 

first_pass = O; I* update flag */ 
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} 

} 

} 

/* positive peak 1/2 cycle - neg */ 

while(neg_ cycle = = 0) 

{ 

/* switch output to lower limit *I 

if(first_j,ass = = 0) 

{ 

} 

PID _ptr-> control_ uk = lower _limit; /* set control variable */ 

D2A_output(PID_ptr); I* control output function*/ 

first_pass = 1; 

timer_ flag = ck_ timer(PID _ptr); 

if(timer_flag = = done) 

/* check for timeout function */ 

{ 

A2D _input(PID _ptr); /* update value of output*/ 

time_ counter + = 1; 

if(PID _ptr-> output_yk > peak_ value[peak_ count]) 

{ 

/* store new peak value */ 

peak_ value[peak _ count] = PID _ptr- > output_yk; 

peak_time[peak_count] = time_counter; /* store time of peak*/ 

} 

if(PID_ptr->output_yk < current_op) /* check for crossover *I 

{ 

neg_ cycle = 1; /* terminate positive cycle */ 
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} 

} 

} 

} 

} 

peak_ count + +; /* increment peak counter */ 

first_pass = O; /* update flag */ 

cycle_ count + +; /* increment cycle counter */ 

PID _ptr-> control_ uk = O; I* set control variable */ 

D2A _ output(PID _ptr); I* control output function */ 

/* analyze the data and calculate the PID parameters */ 

for (j = O; j < 11; j + +) 

period_sum + = (peak_timeu + 1] - peak_timeu]); 

period_ ave = period_ sum * 2 / 11; 

period_ ave * = PID _ptr- >sample_ h; 

for (j = O;j < ll;j+=2) 

neg_peak_sum + = peak_valueLi]; /* even numbers in array*/ 

neg_peak_ave = neg_peak_sum / 6; 

for (j = l;j < 12;j+=2) 

pos_peak_sum + = peak_ valueLi]; /* odd numbers in array */ 

pos_peak_ave = pos_peak_sum / 6; 

/* calculate PID parameters */ 

ultimate _gain -= 4*(PID _ptr- >relay_ step * 2) I (3 . 14159 * (pos _peak_ ave -

PID _ptr- > pro _gain_ Kc = . 35 * ultimate _gain; 

PID _ptr- > integral_ Ti = 1. 13 * period_ ave; 

PID _ptr-> derivative_ Td = .18 * PID _ptr-> integral_ Ti; 

outp(785,8); I* set C3 high for GP _6 IC mode */ 
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