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Abstract

We consider matrices in the group ' SL(n, 1) of all invertible n x n matrices of determinant 1 with entries
over the field ' that can be written as the product of involutions, and we show that any such matrix can be
written as the product of at most four involutions - We also consider special cases of mntrices in this group that
can be written as the product of exactly two or three involutions, and we show how this concept of factoring

a matrix into a product of involutions can be extended to special classes of rings that are not fields.
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Section 1. Introduction

There are many important and well-known theorems in mathematics that deal with the factorization of
objects into products of special types. For example, the Fundamental Theorem of Arithmetic states that every
positive integer can be factored uniquely, up to order, as a product of prime numbers, and a similar theorem
in algebra states that any polynomial over a field can be factored uniquely, up to order and constant factors,
as the product of irreducible polynomials over the field. Other examples of the same theme include that any
permutation of a ﬁnité set of at least two elements can be factored as a product of transpositions, that any
n x n positive definite matrix can be factored as the product of a lower triangular and upper triangular matrix,
that any n x n matrix can be factored as the product of at most n reflections, and that any invertible matrix

can be factored as the product of elementary matrices.

The problem that we are examining is another type of special factorization of a matrix, this time as
product of involutions, i.e., matrices that are their own inverses. The question that is to be answered is as

follows:

Does there exist a smallest positive integer k, such that for any
matrix A € T SL(n, F) which is a product of involutions, A can
be written as the product of at most k involutions, and, if such an

integer exists, what is it?
(Note: ¥ SL(n, F) is the group of all invertible n x n matrices of determinant * 1 over the field F.)

We will begin our examination of the factorization of matrices as the product of involutions by first stating
precise definitions of basic terms that are to be used in the remainder of the paper. These definitions, along
with examples, are given in Section 2, so the reader might want to skip this section and refer back to it as
needed. Some more introductory material is presented in Section 3, which, as a foundation for the following
sections, contains a general discussion of involutions, their determinants, and how they relate to the groups
GL(n,F) and T SL(n,F).

The main discussion of the problem that we are trying to solve begins in Section 4 and continues in Sections
5 and 6. In Section 4 the special case of matrices that can be written as the product of two involutions is

examined, examples of such matrices are presented, and related theorems are stated and proven.

Section 5 contains examples of matrices that cannot be written as the product of two or three involutions,
and so the number of involutions needed in such a product must be greater than or equal to four, and the
main theorem of this paper, the Four Involutions Theorem, which proves that four involutions suffice in every

case, is stated and proven.

Following the main theorem of Section 5, Section 6 deals with special cases of matrices that can be written
as a product of exactly three involutions, and again examples are given and related theorems are stated and
proven. In Section 7 we discuss how we can generalize this concept of factoring a matrix as a product of
special matrices if we pass to rings of special types which are not fields, and we look at what has to be true
of these rings, and of what form these special matrices must be. Finally, Section 8 contains a summary of the
problem discussed in this paper and of the various results that were presented, and it is mentioned how this

concept of factoring matrices into special products can be extended to other classes of matrices.



Section 2. Definitions and Examples

Definition 1. (Involutory Matrices) Let F' be any field and consider the general linear group GL(n, F) of
all invertible n x n matrices with entries over F', and let A € GL(n, F') such that A*> = I,,. Then A is called

an involutory matriz, or, more simply, an involution. ©

Example 1. (2 x 2 Involutory Matrix)

4 2
9 7

va_ [4 2][4 2] _[3¢ 2
“lo 7)o 7] T |99 67

it follows that Y is an involution. o

Consider the matrix Y = [ ] € GL(2,Z11). Since

Il
Pr=———
O =
—_— O
| S

[
o

Example 2. (3 x 3 Involutory Matrix)

-2 1 3
Consider the matrix A = l: 0 -1 O:I € GL(3, Z7). Since
-1 1. 2

-2 1 3 -2 1 3 44+40-3 -2—-14+3 —-6+0+6 1 0 0

A2=]0 -1 0 0 -1 0|=[040+0 04140 O0+04+0 |=]0 1 0| =1Is,
L e () el 240—-2 —-1—-142 -3+0+14 0 0 1

it follows that A is an involution. o

Definition 2. (Similar Matrices) Two matrices A and B in M (n, F'), the group of all n x n matrices over
a field F, are similar if there exists an invertible matrix X € GL(n, F'), such that A= X~'BX. o

Example 3. (Similar Matrices in Z11)

Consider the matrices A = [g g] and B = I:Z ;] both in M (2, Z11). Then A and B are similar since
1 2 4 2

4 7] € GL(2, Z11), with X~ ! = [4 10
e 4 2703 5], _[8 2][1 2]_T[16 30] _[5 8] _
XBX‘[41042X‘10747‘3869‘53‘A'°

Example 4. (Similar Matrices in Zs)

} , such that

there exists an invertible matrix X = [

Consider the matrices A = [i (1)] and B = [i (2)] both in M (2, Z5). Then A and B are similar since
1 2 3

. 3} € GL(2, Zs), with X~ = [_1

e SR ) L | PR R P R

2

there exists an invertible matrix X = [ —12] , such that



Note 1.

Let A€ M(n,F)and D € M(n, F') be similar matrices. So there exists some matrix B € GL(n, F), such
that B! AB = D. Now if A is non-singular then we have

D = B™'AB => det(D) = det(B~') det(A) det(B) # 0,
and so it follows that D is also non-singular. ¢

Definition 3. (Involutorily Similar Matrices) Two matrices A and B in M (n, F') are involutorily similar
if they are similar, and an involution is implementing the similarity (i.e., there exists some involution X €

GL(n, F), such that A= X~'BX). o

Example 5. (Involutorily Similar Matrices)

Consider the matrices A = [(75 {1)] ,B = é g] ,and X = [3 3 which are all in GL(2, Z11).

By Example 1, X is an involution, and since
) T4 2111 8] (7 6][4 2], _]|78 491 _[7 5
o BX_XBX_[Q 7] [5 2_X_[0 8] [9 7]__72 56]_[6 1]

it follows that A and B are involutorily similar. o

A,

Definition 4. (Adjoint of a Matrix) The adjoint, denoted by adj(A) or by A*, of a matrix A € M(n, F),

is the transpose of the matrix with elements v;j, where i,j = 1,2,3,...,n, and v;; = (—1)"* det(4;;). ©

Example 6. (Adjoint of a Matrix)

—_ o
o Nt

2
Consider the matrix A = |: 7 :l € M(3,R).
3

Then

3 0

3 3 2 5 %
711 = (—1)* det [3 0] =—6, 712 =(—1)>det [1 0] =2, m3=(—1)"det [1 3] =2
v21 = (—1)3 det [2 5] =15, 722 =(—1)*det [i g] = -5, 723 =(—1)°det [} g} = -1,

a1 = (=1)*det [2 5] =81, a3 =(—1)° det [; g] =13, and ¥as = (—1)¢ ds [; 3] =1,

7 2
Y11 Y12 713 -6 2 2 -6 15 =31
So,T'=|7921 722 723|=| 15 -5 —1|, therefore adj(A)=TT=|2 -5 13 |. o
Y31 Y32 733 -31 13 1 5 =1 1

3



Definition 5. (Unitary Matrix) A matrix A € M(n, F), is said to be unitary if A*A = I,,, where A* is
the adjoint of A if F' # C, and A* is the transposed conjugate (A)T of Aif F=C. o

Example 7. (2 x 2 Unitary Matrix)

2.7

] € M(2,R).

_Im1 m2] _| 4 -1 B s s _rr_ |4 -7
ThenF_[721 722]_[_7 2],soK =adj(K)=T _[_1 9 |-
Now
e .4 <7102 71 _[8~-7 28—28] -[1 0]_
KK"[—1 2”1 4]—[—2+2 —7+8]_[0 1}‘12'

Hence, K is a unitary 2 x 2 matriz. ©

Example 8. (3 x 3 Unitary Matrix)

-2 2 -1
Consider the matrix A=1| 1 2 2 | € M(3,R).
2.1 =2
711 M2 713 -2 2 -1 -2 1 27
Then ' = | 921 722 723 :% 15202 ,soA*:adj(A):FTzé 2 2 1 |-
Y31 Y32 Y33 2.1 =2 -1 2 -2]

Now

—2°1 2 —9% 9" 44144 —442+42 242—4 ]
AA=L112 2 1|31 2 2 |=%[-4+2+2 44441 -2+4+-2|=

=3
-1 2 -2 242-4 -244+4-2 1+44+4

1 00
0 1 0f=1Is.
0 0 1

Hence it follows that A is a unitary 3 x 3 matriz. o

Definition 6. (Unitary Involution) A matrix A € M(n, F), is said to be a unitary involution if both of
the following hold:

1) A is unitary (i.e., A*A = I,), and
2) A is an involution (i.e., AA = I,),

or, in other words, A is a unitary involution if A* = A= A"1. o

Example 9. (2 x 2 Unitary Involution)

4 2
9 7

Example 1) and also X* = adj(X) = [

Consider the matrix X = [ ] € M(2,Zy;) from Example 1. Now X is an involution (as shown in

7 =2
-9 4

S LA I R B [ B A P

4

] , and so it follows that



Since X*X # I, then X is not a unitary involution, and so not all involutions are unitary involutions.

Example 10. (3 x 3 Unitary Involution)

-2 1 3
Let A= |: 0 -1 0] € M(3,Z7). Then we know from Example 2 that A is an involution.

-1 1 2
-2 1 3
Now A* =adj(A)= | 0 -1 0| = A, and so A*A = adj(A)A = AA = I3, so it follows that A is a
-1 1 2

unitary involution. o

Definition 7. (Unimodular Matrix) Let A € GL(n, F). Then if det(A) = 1, or det(A) = —1, A is said to

be a unimodular matriz (ie., if A€ t SL(n, F), A is said to be unimodular). o

Example 11. (Unimodular Matrix)

_ o N

1 2 2
Let A= [o 1} & GL3, %),
1 1

Then
1 2

11
and so it follows that A is unimodular (i.e., A € T SL(3, Z3)). ©

det(A):—l‘ =-1(1-2)=-1(-1) =1,

Definition 8. (Characteristic Polynomial) Let A € M(n, R), the group of all n x n matrices with entries

over a ring R. The characteristic polynomial of A, denoted be Cs(z), is defined by
Ca(z) = det(A —zI,),
where C4(z) is of the form

Ca(z)=2" + 12" Y+ an_9z" 2+ ...+ a1z +ag. ©

Example 12. (Characteristic Polynomial)

Let A € M(2, Z5) be defined by A = [i ;] .

Then

cA(z)zdet<[Z ;]—x[(l) ?]):det[zzx 3iw]:(2—x)(3—z)—4:z2—5m+6—4:1:2+2,

is the characteristic polynomial of A. ¢
Note 2.

Since C4(z) is of the form
Ca(z)=2z" + Gaoi8™ L b ay_ g™ S .. .t ayz + ag,

5




for any A € M(n, R), it follows that C4(z) € R[z], the ring of all polynomials in the indeterminate z with
coefficients in R.

Also, every monic polynomial of degree n in R[z] is the characteristic polynomial of some n x n matrix

in M(n, R), as will be seen in the following definition. o

Definition 9. (Companion Matrix) Let f(z) = 2" 4+ @p_12" "' 4+ an_22" "2+ ...+ a1z + ag be a monic
polynomial in R[z], where R is a ring, with deg(f) > 1. Define the n x n matrix Com(f) € M(n, R) by

0 0 -+ 0 —ag
1 0 R 0 —ai
Com(f) = 01 -+ 0 —ap
0 0 T
Then

z 0 0 agp

_1 T e 0 ai

det[zl, — Com(f)] =det | : : . ! : = fz),

0 0 -+ =z An_2

0 0 -+ =1 z4+an_1

and Com(f) is said to be the companion matriz of the monic polynomial f(z). If deg(f) = 0, then Com(f)
does not exist. ©

Note 3.
The characteristic polynomial Ccom(s) of the companion matrix of f(z) is given by

Ccom(s)(2) = det[Com(f) — zI,] = det[-I,(zI, — Com(f))] = det(—1I,) det(zI, — Com(f)) = (—1)" f(z).

Since the characteristic polynomial Com(f), of the companion matrix of f(z), is (—1)" f(z), then every
polynomial of degree n in R[z] with leading coefficient (—1)" is the characteristic polynomial of some matrix
in M(n,R). o

Example 13. (Companion Matrix)

Let f(z) = 23+ 52% + 3z +4 € Z7[z]. Then the companion matriz of f(z) is the 3 x 3 matrix in M (3, Z7)

defined by
0 0 —4 0 0 3
Com(f)y=|1 0 =3[=|1 0 4.

0 1 -5 01 2
Note that

0 0 3 z 0 0 —z 0 3
C'cgm(f)(:c):det[C'om(f)—:cIn]:det( 1 0 4(—-(0 z 0 ):det 1 -z 4 =

0 1 2 0 0 =z 0 1 2—-2

—z 4 _ 0 3 Bl 2l B s oo - | \ B

12—z {1 g_g| =220+ -4)—(-3)=-2"+ 22" +4s+3=

—(2z3 —22%2 -4z - 3) = —(23 + 522 + 3z +4) = (-1)3f(z). ©

6




Definition 10. (Cyclic Matrix) A cyclic matriz is a matrix that is similar to the companion matrix of an

irreducible polynomial. ¢

Example 14. (Cyclic Matrix)

Let f(z) = «® + 2z + 1 € Z7[z]. Then, since f(z) has no zeros in Z, it follows that f(z) is irreducible
over Z7, and also the companion matrix Com(f) € M(3, Z7) of f(z) is defined by

0 0 -1
Com(fy=|(1 0 -2{.
01 0

-2 0 -3
Now let the matrix A € M(3,Z7) be defined by A = !0 2 —2] . Then there exists a

-2 -1 0
[ 1 1 1 -2 -1 =2

matrix B = | -1 0 2 € GL(3,Z7), with B™1 = |[-3 1 3 |, such that B-1AB =
-1 -1 =2 -1 0 -1

-2 -1 -27[-2 0 -3 1 0 1 ¢ .4l 00 —1
-5 1 B 0 2 —2(B=[0 -10]|]|-1 0 2|=]|10 -2|=Com().
Ly g ey wi D rge S Ay papeey L8 01 0

Therefore we have shown that A is similar to the companion matrix of an irreducible polynomial, and so

it follows that A is cyclic. ©

Definition 11. (Block Submatrix) Given an m X n matrix A with entries over a ring R, if a number of

complete rows or columns of A are deleted, or if some complete rows and complete columns of A are deleted,

the new matrix that is obtained is called a block submatriz of A. ¢

Example 15. (Block Submatrix)

2 3 5 6
Let A= (7 8 9 10| € M(3 x 4,R).
1 2 8 12
ThenB:[g g],C:[S],D:[2 3 5 6], are some of the block submatrices of A. o

Definition 12. (Block Matrix) A block matriz A € M(m X n, R), where R is a ring, is a matrix of the

form

An A oo A
B Agr Az -+ Aoy
Aml Am2 St Amn

with block submatrices A;; of A, where A;; is an M; x N; matrix. o

Example 16. (Block Matrix)

1 2 38 411
Let A= [18 7 5 9 8 2| e M(3x6,R).
5 7 11 0 1 4




Define A11, A12, A13, A21, Asa, Asz as follows:
1 2 3 4 1
All:[ls 7]EM(2X2,R), A12:[5 9 S]EM(QX3;R):

A13=[;]EM(2X11R), An =[5 T]e M(1x2R),
Azg:[ll 0 I]EM(l)(B,R), Azg:[‘l]EM(le,R)

Then M; = 2,M; =1, and N; = 2, N, = 3, N3 = 1, and also each A;; is a block submatrix of A, and so it

follows that
o [Au A1g AIS]
Azr Azx A

i1s a block matriz. o.

Definition 13. (Block Diagonal or Quasidiagonal Matrix) The matrix A is block diagonal or quasidiagonal,

if it has the partitioned form

A, 0 - 0
- S o R
0 0 - Ay

where the matrices A;; are all square matrices but not necessarily of the same size.
Sometimes the notation diag(Ai1, Asz, ..., App), is used to denote a block diagonal matriz. o

Example 17. (Block Diagonal or Quasidiagonal Matrix)

5 7 0 0 0 0
3 11 0 0 0 O
0 0 40 0 O
Let A = 00 01 9 9 € M(6,R).
0 0 0 2 7 20
0 0 0 3 12 6
Then A is a block diagonal or quasidiagonal matriz composed of the blocks A;; = [g 171] , which is a
109 8
2 x 2 block, Ay = [4], whichisa 1 x 1 block, and A;; = 2 7 20|, whichis a3 x 3 block. o
3 12 6

Note 4.

Let D = diag(D1,Da, ..., Dy) be a block diagonal matrix in GL(n, R), where R is a ring. Then D!

exists, and is defined by
D=t = diaglD; > D3t 40 BN

For example, consider the block diagonal matrix D = diag(D, D2) € GL(6, R), defined by

1110 0 0
0220 0 0

D_003000_[D10]
TN @ ey 0@ T |
0001 -20
0001 -2 2

8



1 11 1 0 0
Then D; = [0 2 2|(,andDy=|1 -2 0].

0 0 3 1 -2 2
1 -1/2 0
Now both D; and D, are non-singular, with D' = 0 1/2 -1/3|, and D;' =
0 0  1/3
1 0 0
1/2 —-1/2 0 |, and so it follows that
0 -1/2 1/2
1 -1/2 0 0 0 0
0 1/2 -1/3 0 0 0
) ra 1 wadi [0 @ /3 0 0 o) _[b;t 0
D™ =diag(Dr,Dy)=13 o o 1 o o|=|0 by
0 0 0 1/2 -1/2 0
0 0 0 0 -1/2 1/2

To verify that D~! = diag(Dl_l,Dz"l), as defined, is indeed that inverse of D = diag(D;, D;), we can
quickly compute that

1 _[Dr o][DfY o 1_[DiDf? 0 _[r o0
s ‘[o pll 0 BT B pupt|=|e 1] o0 et

an_|[DfY 0 1[D1 0] _[DriDy 0 _[r 0
DD_[O p;*llo po|=| o Dpyipy|Tlo 1] °

Definition 14. (Direct Sum of Matrices) The direct sum of n matrices, M1, My, ..., My,, in this order, is
the matrix M of the form

M, 0 - 0
0 M - 0
0 0 --- M,

denoted by
M=M &M ®M3®---® My,

where the main diagonal of each M; lies on the main diagonal of M. ¢

Example 18. (Direct Sum of Matrices)

2 -1 3 1 5
LetA_[_4 2]EM(2X2,R),andB_[0 9 9]EM(2><3,R).Then
2 -1 00 0
-4 2 000
A®B=|7 4 3 1 5|€M@x5R),
0 0 0 2 9

is the direct sum of the matrices A and B. ¢

Definition 15. (Diagonalizable Matrix) A matrix A € M(n,R), where R is a ring, is said to be
diagonalizable, if there exists a matrix B € GL(n, R), such that B~ AB = C, where C is a diagonal matrix
(i.e., C = (cij) is an n x n matrix with ¢;; =0, for all i # j). ©




Example 19. (Diagonalizable Matrix)

-19 6
-35 10

B! = [ 2 _32] , such that

7
m [5 —2][-19 6], [-25 107[3 2] _[-5 0] _
e AB‘[—7 3”—35 10[B= 28 —12||7 5] |0 -4|=C

where C' € M(2,R) is a diagonal matrix, it follows that A is a diagonalizable matriz. o

3 2

LetA:[ 7 5

] € M(2,R). Then since there exists a matrix B = [ ] € GL(2,R), with

Definition 16. (Block Decomposable Matrix) A matrix A € M(n, F), where F is a field, is said to be
block decomposable if it is similar to a block diagonal matrix, diag(A11, Asz), of more than one block, where
A € M(nl,F), Agp € M(nz,F), and niy,ng >0, with ny + ny = n.

Otherwise the matrix A is said to be block indecomposable. ©

Example 20. (Block Decomposable Matrix)

LetA:[

-2 2
B1=L15 —1 -1],such that
1 -5 3

0
—1} € GL(3,R), with

} € M(3,R). Then since there exists a matrix B = {
1

O =
O N Ot
DN = = O
L DN =
— = N

—

| |
&
[l
Q0| =

14 -6 —6 1 2 0 1 —-16 16 0
-3 23 23 2 -1| = 3 112 40 0| =
1 -5 3 3 1 1 0 0 8

-2 2

where C = diag(C11,Ca2) € M(3,R) is a block diagonal matrix with blocks Cy; = [ 4 5

Cy2 =[1] € M(1,R), it follows that A is a block decomposable matriz. o

] € M(2,R), and

Example 21. (Block Indecomposable Matrix)

2 1
0 2
in Definition 17). Then if A is block decomposable, it follows that there exists some non-singular matrix

Consider the matrix A = € M(2,R) (note that A is a Jordan canonical matriz as defined

b L | d —b
B = I:((I: d] € GL(2,R), with B 1 adibc [_c a ] € GL(2,R), such that
B 1AB =P,

where P € M(2,R) is a block diagonal matrix of the form P = [pél PO ] '
22

So we have

10



d -b][2 1 9d  d—2b][a b
-1 — 1 PRSI | HER) —
B AB=gy [-—-c a ] [0 2]3‘ ad-Tc [—20 —c+2a] [c d] =

1 2ad + cd — 2bc d? _|pun O
ad—be —c? 2ad—cd—2bc| | 0 pog
which means that the following equations must both hold:
1 2y _ 5l -
ad_bc(d)_0:>d =0=>d=0, and
1 2y _ 2 _ -
ad_bc(c)-0:>—c =0=ec=0.

However, since d = ¢ = 0, then ad — bc = 0, so B is singular, and so we have a contradiction. So it follows
that there can not exist any matrix B € GL(2,R), such that B"!AB = P, where P is a block diagonal matrix
of more than one block, and so, by Definition 16, A is block indecomposable. ©

Note 5.

If two block diagonal matrices are similar, and their blocks are block indecomposable, then their blocks

are similar in pairs.

6 0 0
For example the block diagonal matrices C' and D, both in M(3,R), defined by C = |:4 6 0:| , and
0 6

0

O N =
W N =

10 -2 0 1
D=8 2 0| are similar since there exists a matrix B = | 0
0 0 6 0

} € GL(3,R), with

1 -1/2 0
B1=1|(0 1/2 -1/3|, such that
0 0 1/3

1 -1/2 0 10 -2 0 6 -3 0][1 1 1 6 0 0
B 'DB=|0 1/2 -1/3||8 2 0|B=|4 1 2|0 2 2|=|4 6 0|=C.
0 0 1/3 0 0 6 0 0 2|0 0 3 006

Now the blocks of D are D; = [180 —22] , which can be shown to be block indecomposable just as we did

for the matrix in Example 21, and D, = [6], which is clearly block indecomposable, and the blocks of C are
C, = 2 (6)] , which can be shown to be block indecomposable, and C = [6], which is block indecomposable.
Clearly D, is similar to Cs, since they are equal, and so it follows that D; must be similar to C;. This is easy

11 I i Ty
0 2]EG’L(2,R),w1thK _[0 1/2],suchthat

12 —1][10 -2 1[12 -6 6 —3][1 1] _[6 0
r—1 i — — = = =
% Dl[‘_2[o 1”8 2]K 2[8 2]K [4 1”0 2] [4 6] Gy

and so D is indeed similar to C' by blocks. ¢

to verify, since there exists a matrix K = [

Note 6.

If every block of a block diagonal matrix M € M (n, F') can be written as the product of two involutions
in * SL(n, F), then so can the matrix M.

11




For example consider the block diagonal matrix M € M(n, F') defined by

A1By 0 0 - 0

0 AB, 0 -+ 0
M=| O 0 AsBs -~ 0 |

0 0 0 - ABi

where each A; and each B; are involutions, and let

Ay 0 0 = B B, 0 0 - 0
0 A, 0 --- 0 0 B, 0 -+ 0
A=|0 0 As -+ O andgB=|0 0 By --- 0
0 0 0 - A 0 0 0 --- By
where A, B € M(n, F).
Then we have
Ay O 0 0 A, 0 0 0
0 A; O 0 0 Ay 0 0
A2=|0 0 A o | ko 0 A 0|
U, <0410 . Ag 0 0 0 Ay
A2 00 0 100 --- 0
0 A2 0 0 0 1 G =« ©
0 0 As? 0 [=f0 01 - 0] =rp,
0 0 0 A2 000 ]
and
B, 0 0 0 By 0 0 0
0 B, 0 0 0 By, 0 0
pz—|0 0 Bs 0 0 0 Bs 0| —
0 0 O . By 8 0 0 s B
B2 0 0 0 1 00 0
0 B2 0 0 6.1 0
0 0 Bj? 0 =0 8 1 == 0|=57,
0 6 6 B},Z 000 --- 1

Now
A 0 o --- 0 By 0 o --- 0 A1 B, 0 0 0
0 A, 0 --- 0 0 B, 0 --- 0 0 Ay By 0 0
AB=1| 0 0 Aj 0 0 0 Bs G | = 0 0 A3B3 0
0 0 0 --- A 0 0 0 -+ Bg 0 0 0 «- AR B

and so it follows that the block diagonal matrix M can be written as the product of two involutions.
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Definition 17

. (Jordan Canonical Matrix) A Jordan canonical matriz is an n X n matrix

ag by 0 - 0 0
0 as bz 0 0
0 0 0 - an—1 bn-1
0o 0 0 --- 0 an
such that for each s =1,2,3,...,n—1, either by, =0, or by = 1 and a;41 = a;. ©

Example 22.

(3 x 3 Jordan Canonical Matrices)

The following are all possible examples of a 3 x 3 Jordan canonical matriz J € M(3,F) :

-

a 0 0
(a) J=|[0 a 0|, foranya € F, where a is an eigenvalue with multiplicity 3. Here the Jordan blocks
0 0 a
(see Definition 18) are J; = [a], J2 = [a], and J3 = [a].
[a 1 07
(b) J=10 a 0], foranya € F, where a is an eigenvalue with multiplicity 3. Here the Jordan blocks
0 0 a
1
arele[g aj,anszz[a].

—
(g}
~—
<
Il
e

are J;

a 1 0]
(d) J:!O a 1

is a Jordan block.

(e) J =

O O/
o Q O
| = O

:[a]aa‘

0 0 a

:I , for any a € F, where a is an eigenvalue with multiplicity 3. Here the Jordan blocks
1
nd J2 = I:g a] 8

, for any a € F, where a is an eigenvalue with multiplicity 3. Here the whole matrix

P

, for any a,b € F', a # b, where a is an eigenvalue with multiplicity 2 and b is an

eigenvalue with multiplicity 1. Here the Jordan blocks are J; = [a], J2 =[a], and J3 = [b].

f) J =

, for any a,b € F', a # b, where a is an eigenvalue with multiplicity 2 and b is an

eigenvalue with multiplicity 1. Here the Jordan blocks are J; = [a], Jo = [b], and Js = [a].

(8) J =

eigenvalue wi

(h) J =

eigenvalue with multiplicity 1. Here the Jordan blocks are J; = [

a 0 O
0 a O
[0 0 b
[a 0 O
0 b O
|0 0 a
(b6 0 0
0 a O
0 0 a

th
[a 1 0
0 a 0
[0 0 b

, for any a,b € F', a # b, where a is an eigenvalue with multiplicity 2 and b is an

multiplicity 1. Here the Jordan blocks are J; = [b], Jo = [a], and J3 = [a].

, for any a,b € F, a # b, where a is an eigenvalue with multiplicity 2 and b is an

a

’ i],and];;:[b].
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b 0 0
1 J = l:O a 1] , for any a,b € F, a # b, where a is an eigenvalue with multiplicity 2 and b is an
0 0 a

eigenvalue with multiplicity 1. Here the Jordan blocks are J;, = [b], and J, = [8 i] ¢

a 0 0
G) J = l:O b 0] , for any a,b,c € F, a # b # ¢ # a, where a,b and c are all eigenvalues with
0 0 ¢
multiplicity 1. Here the Jordan blocks are J; = [a], Jo = [b], and J3 =[c]. o

Definition 18. (Jordan Canonical Form of a Matrix) Any matrix A € M(n,R), where R is a ring, Is

similar to a block diagonal matrix of the form
J = diag(J1,Ja, ..., Jp),

where each J; is an r; X r; matrix of the form

A1 0 0 0
0 A 1 0 0
=l BT
0 0 O A1
0 0 O 0 X\

P
where each \; is an eigenvalue of A and ) r; = n.
i=1

The matrix J is called the Jordan canonical form of A, and the r; x r; matrices J; are called Jordan

blocks. o

Example 23. (Jordan Canonical Form of a Matrix)

The following are examples of the possible Jordan canonical forms of a matrix A € (4,R) with an

eigenvalue 2 of multiplicity 4:

2 0 0 07

(a) J= g (2) g 8 . Here the Jordan blocks (see Definition 18) are J; = [2], J» = [2], J3 = [2],
LO 0 0 2.

and Jy = [2].

2 0 0 07

(b) J= Q38,0 Here the Jordan blocks are J; = [2], J, =[2], and J3 = -

“l10 0 2 1|° S b =10 2)°

[0 0 0 2l
r2 0 0 07
o 20 1.0 2 1

(c) J= 00 2 0 .HeretheJordanblocksareJ1:[2],]2:[0 2],andJ;;:[?].
[0 0 0 2.
72 1 007
0. 2.0 0 2 1

(d) J= 00 2 0 .HeretheJordanblocksareJ1:[0 2],J2:[2],and Js =[2].
L0 00 2
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(2 1 0 07
({0 2 0 O {21 121
(e) J = 00 2 1 .HeretheJordanblocksareJ1—[0 2],andJ2—[0 2].
L0 0 0 2
r2 0 0 07
02 10 A L9
(f) J= 00 2 1 . Here the Jordan blocks are J; = [2],and J, = |0 2 1
[0 0 0 2 v o s
72 1 0 07
0210 £
(&) = 00 2 0 . Here the Jordan blocks are J; = |0 2 1|, and J, =[2].
[0 0 0 2. L
r2 1 0 07
0 210 ..
(hy J= 00 2 1 . Here the whole matrix is a Jordan block. o
L0 0 0 2

Example 24. (Jordan Canonical Form of a Matrix)

3 2 1
Let A= -1 3 2 | € M(3,R). Then
1 -3 -2
§-% 2 1 $=1 2 1 PR 2 4
det(A—Ag)=| -1 3-2 2 |=[ 0 -x -i :(3-,\)‘_3 _2_A|+‘_/\ _/\iz
1 -3 -2-2 1 -3 -2-2

B=NECA+22 =30+ (-2 +2) = =22 + 402 -4\ = AN —4r +4) = -A() — 2),
and so
A1 = 0 is an eigenvalue of A with multiplicity 1, and
A2 = 2 is an eigenvalue of A with multiplicity 2.

Now a linearly independent eigenvector of A (with respect the other eigenvectors of A) associated with

1
the eigenvalue A\; = 0,1s X; = (—7) , since
11

3 2 1 1 0
(A—A1I3)X1:0:>(A—013)X1 =0=1|-1 3 2 z9| = 10|, and
0

1 =8 2] las
3 2 1 |0 1 =3 2 | O 1 =8 =2 | D 1 0 —1/11 | 0
-1 3 2 Jo|l=|0 0 o0 |O|=|0 1 711 | ofl=]0 1 7/11 | 0].
L st oo i 0" 11 7 | ~0 00 0 | O 00 0 | O

Now for Ay = 2, since it has multiplicity 2, we must first find a linearly independent eigenvector of A

associated with Ao, and then we must also find a generalized eigenvector of order 2 associated with As.

A linearly independent eigenvector of A (with respect the other eigenvectors of A) associated with the

15




1
eigenvalue Ay = 2, is Xy = (—1) , since
1

1 =§ —d
1 2 1 |0 1 2 1 |0 10 -1 1] 0
-1 1 2 | ol=f0 3 3 |o|l=]0o1 1 | of.
1 -3 —4 | 0 0 =5 =5 | 0 00 0 | O

2
A generalized eigenvector of A of order 2 associated with the eigenvalue Ay = 2, is X3 = (—1) , since

1 2 1 1 0
(A = /\2[3)X2 = 0=y (A = 2[3)X2 =0=]|-1 1 2 zo [ =101, and

1
1 2 1 1 1
(A - )\213)X3 =X, > (A — 213)X3 =Xy=> | -1 1 2 zo| = | —1], and
1 -3 -4 z3 1
1 2 1 | 1 i 9 1 |1 1211 10 -1 | 1
-1 1 2 | -1|=]0 3 3 Jo|=]0o11]o0o|l=]o1 1 |oO
i & -4 [ 2 0 -5 -5 | 0 01110 00 0 |0

Now consider the matrix P € M(3,R), where

1 1 2
P:[Xlngle]: —7 —1 —1 .
11 1 1

Since the columns of P are linearly independent, then P is non-singular, and we have P! =

A R |
3|-4 -21 -13].
4 10 6

So it follows that the Jordan canonical form J of the 3 x 3 matrix A is given by

1[0 1 1 (3 |
J=PAP==|-4 -21 -13||-1 3 2 |P=

4 10 6

0 0 0 1 1 2]
i & =B||=T <1 -1]=
2.8 @¢ L1 ¥

where the Jordan blocks are J; =[0], and J; = [(2) ;:l (so J = diag(J1,J3)). ©

Definition 19. (Matrix Polynomial) An m x n matriz polynomial, P(z), over a field F, is a matrix whose

entries are polynomials with coefficients in F'. Such a polynomial can be written either in the form

Pngwg Plzgmg Sk plnExg
P(:c) _ P21: pzz: T P2n' ,
Pm1(2) Pm2(z) -+ Pmn(z)
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or, by grouping like powers of the invariant z, in the form
P(z) = a%Ps+ 2 'Pi_1 + -+ 2P + Py,
where Py, Py,...,Pi_1,Pq € M(m x n, F).

An n x n square matrix polynomial P(z) is called invertible if there is a matrix polynomial Q(z) such
that P(z)Q(z) = I,. o

Example 25. (Matrix Polynomial of Degree 3)

The matrix P(z) € M (3, Z7[z]), defined by

3z + 2 334+ 22422 +1 -2
P(z) = 3 —22% + 2z 22+1 |,
z2—-3z+2 2z 4+ 3 —z2+3

or equivalently by

0 -3 0 01 0 3 290
P(z)=23|0 -2 0[+2%|{0 0 1 |+=z]|0 2 Of+
0 0 0 1 0 -1 -3 20

is a 3 x 3 matriz polynomial. ©
Note 7.

The elementary row and column operations on a matrix polynomial over the field F, are defined as follows:

(1) Multiply any row or column by a non-zero c € F,
(2) Interchange any two rows or columns, and

(3) Add to any row (column) any other row (column) multiplied by an arbitrary polynomial a(z) € F[z]. ©

Definition 20. (Canonical Matrix Polynomial) An nxn matrix polynomial A(z) over a field F' is equivalent

to a diagonal matrix polynomial Ag(z), called a canonical matriz polynomial, where Ag(z) is defined by
Ap(z) = diag[ai(z), az(z), az(z), . . ., an(z)],
in which for each i, a;(z) s zero or a monic polynomial, and a;(z) is divisible by a;_1(z), fori =2,3,...,n.
Usually Ag(z) is of the form
Ao(z) = diag[l,1,...,1,a:1(z),az(z),...,ax(z),0,0,...,0],

where a;(z) is a monic polynomial of degree at least 1, and is divisible, for : = 2,3,..., k, by a;—1(z), but it

is also possible that the diagonal of Ag(z) contains no zeros or ones. ¢

L7




Definition 21. (Elementary Divisors) Let A(z) € M(n, F[z]) be a canonical matrix polynomial. Then
A(z) has the form

A(z) = diag[ai(z), az(z), as(z), . .., an(z)],

where a;_1(z) | ai(z), for i = 2,3,...,n,. The polynomials a;, fori =1,2,3,...,n, are called the elementary

divisors of the matrix polynomial A(z). o

Example 26. (Canonical 3 x 3 Matrix Polynomial and Elementary _Divisors)

1 ~% 8
Let A=|—-1 0 3|eM@3R).
-1 -1 4

Then, if we use the elementary row operations defined above, the matrix polynomial A(z) = A — zI3 €

M(3,IR[z]), becomes

“1-z -2 6 —(z+1) -2 6
Alz) =A—zl3 = -1 -z 3 = -1 -z 3 =
-1 -1 4—=z 1 1 z-4
1 1 z-4 1 1 z—14 1 1 r—4
-1 -z 3 |=]0 =—z+1 3+z-4 = |0 —(z—-1) r—1 =
—(z+1) -2 6 0 z+1-2 6+(z—4)(z+1) 0 z-1 (z—1)(z-2)
1 1-1 (z —4)—(z—4) 1 0 0
0 —(z—1)-0 z—1-0 =10 —(z-1) z—1 =
0 z-1-0 (z—1)(z—2)-0 0 z—-1 (z—1)(z—2)
1 0 0 1 0 0
0 —(z-1) z—1 =0 —(z—-1) z-1 |=>
0 (z—-1)—(z—-1) (z—1)(z—2)+(z—1) 0 0 (z —1)?
1 0 0-0 1 0 0
0 —(z—-1) (z-1)—(z-1)|=>|0 z-1 0 :
0 0 (z—1)2+0 0 0 (z-1)?
which is a canonical matriz polynomial. Now the elementary divisors of A(z) are a1(z) = 1, az(z) = ¢ — 1,

and az(z) = (z — 1) = 22 — 2z + 1, where a1(z) | az(z) | as(z). ©

Definition 22. (Rational Canonical Form of a Matrix)

Definition 22(a). The rational canonical form of a matrix A € M(n, F'), is the matrix

o 0 -+ D
0 @ «: O
0 §  ser G

where C;, for 1 < i < r, is the companion matrix of the elementary divisor a;(z) of the matrix polynomial

A(z). o

Definition 22(b). Let A € M(n, F), where F is a field. Then A is similar to a unique matrix D, such that

D is the direct sum of the companion matrices of a unique family of polynomials ¢1, q2, g3, - - ., q: € F[z], such
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that q1|q2|gs| - - | ¢t The matrix D is said to be in rational canonical form, or is said to be the rational

canonical form of the matrix A. o

Example 27. (Rational Canonical Form of a Matrix)

Using the matrix A of the previous example, Example 26, and Definition 22(a) of the rational canonical
form of a matrix, we see that since the elementary divisors of the matrix polynomial A(z) are a;(z) = 1,
as = z—1,and az(z) = (z—1)? = 22 — 2z + 1, and since the companion matrices of these elementary divisors

are

Com(a;) does not exist , Com(az) =[1], and Com(az) = [(1) _21] ,

it follows that the rational canonical form of the matrix A is the matrix
1 0 0
D=0 0 —-1|. o
01 2

Definition 23. (Monomial or Weighted Permutation Matrix) A monomial permutation matriz or a

weighted permutation matriz is a matrix in which each row and each column contains exactly one

non-zero entry.

Example 28. (Monomial or Weighted Permutation Matrix)

1 0
0 0
0 —4
0 0

The matrix A =

0
8 € M(4, Z11) is a monomial or weighted permutation matriz. <
2

0
5
0
0
Note 8.

If all the non-zero entries of a weighted permutation matrix are replaced with 1’s, a permutation matrix

is obtained, and all permutation matrices, weighted or not, correspond to permutations of indices.

0 01 0O
01 0 0O
For example, the permutation corresponding to the permutation matrix B = |0 0 0 1 0| maps
1 0 0 00
0 0 0 01
the index k onto the index [ if the non-zero entry of column k is in row [ of the matrix B. So, in this case, the

permutation 7 = (1, 3,4)(2)(5) corresponds to the permutation matrix B.

In the previous example, Example 28, the permutation o = (1, 3,4,2) corresponds to the weighted per-

mutation matrix A. ©
Note 9.

Every n X n matrix over a field is similar to its transpose.

For example consider the general 2 x 2 case of the matrix A = [(; 3] € M(2,F).

1 0

If b # 0 then let X = [0 c] € M(2, F). Since det(X) = ¢ we need to consider two cases.
b
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Case 1

If ¢ # 0 then det(X) # 0, so X is non- singular and X ~! exists, and so we have

[ b 1 0] a ¢
Ax = |° g /= s
¢ d] |0 i ¢ %—_
and,
r_[1 0][a ¢]_ c
XA =10 ¢[|b a]T|c 2]

Therefore AX = XAT = X~1AX = AT, and so A is similar to AT.

Case 2

If ¢ # 0 then det(X) = 0 and so X is not invertible. However, there exists a matrix Y = [

=]
a

M (2, F) with det(Y) = —1 # 0. Since Y is non-singular, Y ~! exists and we have

[a ][0 1] _[a b][0 17 _[b d ]
av=[o ][ e =[3 2] [} ge]=[d ade)

a
S)

and,

[0 1 a ¢] [o 1 a 0 (b d ]
T . — —
YA =1 aa||p afT|1 &2||b a7 |a 9]

Therefore AY = YAT = Y~1AY = AT, and so A is similar to AT.

Now if b = 0 and ¢ = 0 we have

and,

so A = AT and A is similar to AT.

If b=0 and ¢ # 0, then let X = [ ¢ ] € M(2, F). Since det(X) = —1 # 0, then X is non-singular

and X! exists, and so we have

x| b] [a—d 1] _ :a 0] [a—d 1] _ :a(ﬂa:—d) a]

lc a1 ofT|cd]| T o c
and,
[a=d 1] [a =] a=4 1] [a e] [a(2=4) a
T — c —_ c — c
XA__I 0][b d] 11 0]]|0 df | a c|’

So we have AX = XAT = X~1AX = AT, and A is similar to AT.

Therefore there exists a matrix X € GL(2, F) such that X"1AX = AT and so it follows that any 2 x 2
matrix A € M(2, F) is similar to its transpose. ¢

The following definition will not be used until Section 7.
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Definition 24. (First Bass Stable Ring Condition) Let R be a ring. If for all a,b € R, with Ra+ Rb = R,
there exists some ¢ € R such that R(a+cb) = R, we say that R satisfies the first Bass stable range condition,

or, equivalently, that R is a Bass ring. ©
Note 10.

The following are some examples of rings that either satisfy or do not satisfy the first Bass stable range
condition:
1. Any field or division ring satisfies the first Bass stable range condition.

2. If R is a Dedekind ring of arithmetic type, R may not satisfy the first Bass stable range condition.

3. Any Artinian ring is a Bass ring. ¢
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Section 3. Involutions in General

In the previous section, Section 2, an involution A was defined as a matrix in GL(n, F'), the general linear
group of all invertible n x n matrices with entries over a field F', such that A? = I,. In this section we will
continue our examination of involutions by developing various general results regarding involutions and their

products, and one very important result concerning matrices that are similar to involutions.

Proposition 1. When studying involutions in GL(n, F) only the elements of the group T SL(n,F), the
group of all invertible n x n matrices of determinant ¥ 1 over the field F, need to be considered.

Proof (Proposition 1).
Let A € GL(n, F) be any arbitrary involution. Then
det(A) - det(A4) = det(A?) = det(I) = 1,
and so it follows that det(A) = * 1.
Hence if A is an involution in GL(n, F) then A€ ¥ SL(n,F). o

Proposition 2. Any matrix that can be written as a product of two or more involutions has a determinant
of T1.

Proof (Proposition 2).

Let B € GL(n, F') be a matrix that can be written as a product of k involutions, say A;, Az, As, ..., A,
where A; € T SL(n, F) for each i.

So we have

B = Al . A2 . A3 e 02 Ak = det(B) = det(A1 . A2 . A3 * aen Ak) = det(Al) e det(Az) - det(A3) ¥ s det(Ak)

Now det(4;) = t1foreachi=1,2,3,...,k, and so it follows that det(B) = 1

Hence, if B can be written as a product of involutions then B € T SL(n, F) (This result also follows
directly from the closure of the group * SL(n, F) under multiplication). o

By Proposition 1 and Proposition 2, it follows that when studying involutions and their products, we can
narrow our discussion to matrices in ¥ SL(n, F), and so we don’t need to consider all of GL(n, F). We will

make use of this fact later on, especially in Section 5.

Theorem 1. Let A € T SL(n, F) be a matrix that can be written as a product of k > 0 involutions, and let
C € t SL(n, F) be a matrix that is similar to A. Then C can also be written as a product of k involutions.

Proof (Theorem 1).

Let A € T SL(n,F) be a matrix that can be written as a product of k& > 0 involutions, and let C' €
t SL(n, F) be a matrix that is similar to A. Then there exists a matrix B € GL(n, F) such that B-!AB = C.
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Now if k£ = 0 then A isn’t an involution. If we assume in this case that C is an involution then we have
B'AB=C=A=BCB'= A’=A-A=(BCB™)(BCB')=BCCB™'=BB~ ! =1,
and so A must be an involution, which is a direct contradiction to our assumption. Hence C is also not an

involution (i.e., C is the product of 0 involutions), and so the statement of the theorem holds for & = 0.

Now let k = 1. Then A is an involution and since C = B~!AB, we have
C*=(B'AB)(B~'AB)=B'4AB=B"'B=1,
and so it follows that C is also an involution, (i.e., C is the product of 1 involution), and we have shown that

the statement of the theorem holds for £ = 1.

Assume now that the statement of the theorem holds for all 0 < k < p, for some p € N,p > 1. That is, if
a matrix A can be written as the product of k£ involutions, where 0 < k£ < p, then so can any matrix that is

similar to A.

Let k = p+ 1. Then A can be written as the product of p + 1 involutions, so A = XY, where X is the

product of p involutions, and Y is itself an involution, and since C' is similar to A we have

CAF AR RN XY IB = (B X BB Y B).

Now X is the product of p involutions and B~! X B is similar to X, and so by the induction hypothesis
B~1XB can be written as the product of p involutions. Also, Y is an involution and B~'Y B is similar
to Y, so, again by the induction hypothesis, B~1Y B is itself an involution. Therefore it follows that C' =
(B~'XB)(B~'Y B) can be written as the product of p + 1 involutions.

Hence if A can be written as the product of p + 1 involutions then so can any matrix similar to A, and

so by induction the statement of the theorem holds for all k > 0. o
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Section 4. Products of Two Involutions

In this section we will examine the special case of matrices that can be written as the product of exactly

two involutions. To start our discussion let us consider the following example.

Example 30. (A Product of Two Involutions)

8 5
LetA_[6 8

t SL(2, Z11), since

] € t SL(2,Z1,), and note that B = [100 (1)] and C = [2 g] are both involutions in

. [100 0] _[1 0 . [45 667 _[1 0
B—[o 1]‘[0 1] andc‘[aﬁ 100]‘[0 1]‘

so-[3 112 §-[ [ 4

it follows that A can be written as the product of two involutions in SL(2,Z11), and so there exist matrices

Now since

that can be written as the product of exactly two involutions. o

This example leads us to the first theorem of this section.

Theorem 2 (cf. [3]), [10]. An n X n matrix over a field can be written as a product of two involutions if

and only if it is non-singular and similar to its inverse.
Proof (Theorem 2).

Let A € M(n,F), such that A = BC where B and C are both involutions. Then since det(4) =
det(B) det(C) # 0, A is non-singular, and also B = B~!, and C = C~1, so we have

A =(BC)y' = Q"B = (B, and s0
B~lAB=B"Y(BCO)B = (B 'B){(CB)=CB=4"1,

Therefore, if A € M(n, F) can be written as the product of two involutions, then A is non-singular and

similar to its inverse.

Now let A € GL(n, F') be a matrix that is similar to its inverse. So there exists some B € GL(n, F') such
that B-1AB = A~L.

Also, we can write A in its rational canonical form D, where D is an n x n block diagonal matrix that is
similar to A, say D = diag(D1, D3, Ds, ..., Dp,), where each block D;, fori = 1,2,3,..., m, is indecomposable,
and D is unique up to the order in which the blocks Dy, D4, D3, ..., Di occur. Note that since A is non-

singular then by Note 1 in Section 2 so is D, and so D! does indeed exist.

Now since A is similar to D there exists some matrix C € GL(n, F) such that C-'AC = D = A =
CDC-1.

So we have

A=CDO =B IAB =B ICDE B =A" = B-YCDC1B = (CDC-4)?* = B-'CDCB =
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CDTiC 1= B-ICDC B = D =(C-1B-C)D(CB0) = D1 = (C-1BC)*D(C*BC),
and we see that D is similar to its inverse.

Now by the transitivity of similarity, since A is similar to D, and D is similar to D=1, it follows that A is
similar to D~!, and so if D~! can be written as the product of two involutions, then, by Theorem 1 in Section

3, so can A.

Since, by Note 4 in Section 2, D = diag(D1, D2, D3, ..., Dyy) = D! = diag(D7', D;*, D3, ..., DY),
and D is similar to D~!, where each block of D and D~! is indecomposable, then, by Note 5, it follows that
some of the D; blocks are similar to their own inverses D; 1 while the rest come in pairs, where each member

of the pair is similar to the inverse of the other.

For example if D, is similar to Dq‘l, for some p,q € 1,2,3, ..., m, then there exists some invertible matrix

K of appropriate size such that
KD, = D2t (B DR = (D7) S KD K = D,

and so it follows that D, must be similar to Dp‘l. So the block diag(Dp_l, Dq_l) in the n x n matrix D71, is
similar to a block of the form diag(D,, D;').

If we now assume that the first [ blocks of D! are the blocks that are similar to their own inverses, then
D! is similar to (D7Y)~! = D;, for 1 < i < 1, and that the rest of the blocks of D! come in block pairs of
the form diag(D,; ', D;'), where D, is similar to D;! and D, is similar to D, ", then it follows that D-1is
similar to a block diagonal matrix M which is the direct sum of the first D; blocks of D, with 1 < i <[, and
the blocks of the form diag(D,, Dq‘l).

Now if we can show that each D;, for 1 < ¢ <, is the product of two involutions, and that each block of
the form diag(D,, Dq_l) is the product of two involutions, then, by Note 6 in Section 2, M can be written as
the product of two involutions, and so, by similarity and Theorem 1, so can D~1!.

-1
st 50+ [2 8] [0 ][4, 75
q

3ol = 12 a2 o]=[6 7] e

60 AT _[e DY][o0 DAT_[I o
B, U |"F [0 w8 e T

¢ D

it follows that [(I) (I)] , and [D 6 are involutions, and so all the blocks of the form diag(D,, Dq_l) in
q

M can be written as the product of two involutions.
Now let us consider the blocks of the form D;, 1 < i < [, where each D; is similar to its own inverse. Each

of these D; blocks is also a block of D, the rational canonical form of A, and so each is the £ X k companion

matrix of some monic polynomial f;(z) = ¥ + az_12¥~1 + .- - 4+ a1z + ag € F[z], for suitable k. So

00 -+ 0 =—ao

10 -+ 0 -a
Di=Com(fi)=|0 1 -~ 0 —a2 | for1<i<l.

0 0 -+ 1 —ap_
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Define f;(z) by

s k k

fi@m)=%fi(3)=%(sr+ar-1zr +t G2z + - +a1k +ag) =

ay ' (14ap_1z+ap_sz%+- - +ajzt14apzk) = a51+a51ak_1w+a51ak_2m2+- - taglayz¥14aylagzt =

<l i o Y 3 - =1
g +aglaiz® ' +aglaz® 2 + .-+ aglag_s2? + aglag_1z + a5’

Then the companion matrix of f; is defined by the k x k matrix

-1

0 0 0 —ag
1 0 0 —aElak_l
o —1
Com(f;) = 01 - 0 —agak2| for1<i<l.
00 --- 1 —qgile
Now we can note that
—aalal 1 0 0
—agta; 0 1 00
Dt = [Com(f] = | LT <<,

—ag ag—2 0 0 --- 1 O
—aalak_l 00 --- 01
—ap! 0 ¢ .0

and so if we let Ji be the invertible £ x k permutation matrix defined by

[0 0 0 -~ 0 0 17
000 010
000 - 100
==t : I » § ¢ 1],
A.0.1 000
010 --000
[1 00 --- 0 0 O]

then since J;'D'Jp = J; ' [Com(f;)]" Tk = Com(f;), it follows that D' = [Com(f;)]~! is similar to
Com(f;), for 1 <i< .

But now since we assumed that D; = Com(f;) is similar to its inverse D' = [Com(f;)]”!, and we
showed that D;' = [Com(f;)]~! is similar to Com(f;), then by the transitivity of similarity it follows that
D; = Com(f;) is similar to Com(f;), for 1 <i < I.

So the n x n matrix M is now similar to an n X n matrix L which is the direct sum of the first [ blocks
of the form Com(f;), for 1 < i < [, and the blocks of the form diag(D,y, D;'). But this means that D~ is
similar to L, and so D must also be similar to L, and since D is similar to A, then A must also be similar to

the block matrix L.

So the matrix L, since it is a block matrix similar to A where each block is the companion matrix of a
monic polynomial f;(z) over F, is also a rational canonical form of A, and by the uniqueness of the rational

canonical form of a matrix, we have
D=L<=

diag[D1, Dy, ..., Dy, diag(D,, Dp'l), ...,diag(Dy, Dq_l)] =

26



diag[Com(f1), Com(f2),...,Com(fr), diag(D,, Dp_l)) ..., diag(Dy, Dq_l)]’

and so 1t must be the case that

0 0 0 —ag
1 0 -0 —a;
D; = Com(f;) = Com(fi) = Com(fi) = |0 1 -+ 0 —az | =

0 0 -+ 1 —ap_

0 0 0 —aal

1 0 —ap akr—1

0 1 0 —ag @k-2| for1<i<l.

00 -+ 1 =—a5la

Therefore it follows that ag = a;l, a; = aglak_l, T, aalaz, ap—1 = aalal, and, in general,

ap = a5’ = af =1, and

ax—j = aalaj = ay_j = agpa; => apa; —ax—; =0, for 1 <j <k -1

Consider now the k x k permutation matrix Jj defined earlier by

00 0 - 0 0 17
000 - 010
000 -~ 100

Bo=Bit=ili b4 &1 b 3
001 000
0 1 -0 00
(1 00 --- 0 0 0]

Clearly Jy, is an involution and so JZ = I, and also for suitable k we have

0 00 --- 0 0 —ap 00 --- 0 01
100 --- 00 -—-a 0 0 0 1 0
010 --- 0 0 —a 00 --- 100
DiJy =Com(f)Je=|. . . . . . . N S
000 --- 0 1 —ag-2 0 1 0 0 O
0 0 0 0 1 —Qp-1 1 0 0 0 0
—a 0 0 --- 0 O
—a; o o0 --- 1
—ay; 00 --- 1 0
. o o], for1<i<I.
—QAk—-2 0 1 0 0
—agi L D s D 6
Now
—-a 0 0 --- 0 O —a 0 0 --- 0 O
—a; 0 0 --- 01 —a; 0 0 .- 1
—a 00 --- 10 —a 0o 0 --- 10
(Di]k)Z: :2 i ¥ - 2 . .2 . 5 o s » =
—ag- 0 1 --- 0 O —ak— 0 1 --- 0 O
—ag-1 1 0 --- 0 O —axr-1 1 0 --- 0 O
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- 00 - 00 100 -~ 00

apa; —ag—1 1 0 0 0 i o0 0
apaz —ag—2 0 1 --- 0 0 001 --- 00
: e e e = s s =y fr1 <L,
apdg—-2 — a2 00 --- 1 0 0o 00 --- 10
LdpQr—1 — a1 0 0 O 1 0 0 0 0 1

and so D;J, for 1 <1 <, is an involution.

But then
(D,‘J}c)Jk = D,‘(J)c)2 =D;, for1 <1<,

1s a product of two involutions.

So we have shown that each of the blocks of the form D;, 1 < ¢ < [, in M that are similar to their
own inverses can be written as the product of two involutions, and earlier we showed that the blocks of the
form diag(D,, Dq_l) in M can be written as a product of two involutions. Since all of the blocks of the block
diagonal matrix M can be written as a product of two involutory matrices then, by Note 6 in Section 2, it
follows that M itself can be written as the product of two involutions. Now, since D~! is similar to M, then
by Theorem 1 in Section 3, D~! can be written as the product of two involutions, and since A is similar to

D~! then, again by Theorem 1, A can also be written as the product of two involutions.

Hence if A € GL(n, F) is a matrix that is similar to its inverse then A can be written as the product of

two involutions.

So we have shown that an n x n matrix over a field can be written as the product of two involutions if

and only if it is non-singular and similar to its inverse. ¢

Example 31. (A Product of Two Involutions)

8 5

Consider the matrix A = [6 8

] € T SL(2,Z;). In Example 29 we showed that A could be written as

the product of two involutions. Now A~1 = l:g g] , and
ol el g e s 8 6((10 0] _ 80 6| _ 3 6| _ -
B™"AT"B=BA B_B[5 sllo 1 =B 50 8 =B 6 8 =BC=4,

and so it follows that A is similar to its inverse. ¢

The next theorem is very similar to Theorem 2, and, as will be shown later in Proposition 3, its conditions

are actually equivalent to those of Theorem 2.

Theorem 3 (cf. [2]). An n x n matrix over a field can be written as a product of two involutions if and

only if it is non-singular and involutorily similar to its inverse.
Proof (Theorem 3).

Let A € M(n, F) be the product of two involutions, B and C, both in GL(n, F'). Then A = BC, where
B?=1, and C? = I,.

Since det(A) = det(B) det(C) # 0, then A is non-singular, and so A € GL(n, F).
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Also we have
A=BC=(CC)BC=C(CB)C = C(B—IC_I)_IC = C(BC)_IC =04~ 0= Crtd¢,

and so if A € M (n, F') can be written as the product of two involutions then A is non-singular and involutorily

similar to its inverse.

Now let A € GL(n, F) be a matrix that is involutorily similar to its inverse. So there exists some involution
X € GL(n,F) such that A= X"1471X = A= XA~1X.

Since A = XA~ 1X then we have
A2XA '3 XA= A" X 3 XA= (A == XA={XA)?,

and so we have shown that X A is also an involution.

But now we see that
X(XA)=(XX)A=A4,
and so it follows that if A is involutorily similar to its inverse then A can be written as the product of two
involutions. o

Example 29 is an example of Theorem 3, since the matrix A that is used is not only similar to its inverse,

but it is also involutorily similar to its inverse. This observation leads us to the following proposition.

Proposition 3 (cf. [2]). Let A € GL(n,F). Then A is similar to its inverse if and only if A is involutorily

similar to its inverse, and so the conditions of Theorem 2 and Theorem 3 are equivalent.

Proof (Proposition 3).

Let A € GL(n, F'), such that A is similar to its inverse. Then, by Theorem 1, A can be written as the
product of two involutions in GL(n, F'), and so, by Theorem 2, it follows that A must be involutorily similar

to its inverse.

On the other hand, let A € GL(n, F'), such that A is involutorily similar to its inverse. Then A is also

similar to its inverse.

Thus for any matrix A € GL(n, F'), A is similar to its inverse if and only if A is involutorily similar to its

inverse, and so the conditions of Theorems 2 and 3 are equivalent. ¢

The next example shows that in many cases not only can a matrix be factored into two involutions, but

it can be factored into two unitary involutions.

Example 32. (A _Unitary Matrix that is the Product of Two Unitary Involutions)

0 <1 =8
Let X=|-3 1 0 |eM(@3 %)
il =lr, =

Then
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—p —} wll | =3 o], f g g 47F
" . 1 -3 0 -3 0 -1 =1
o e et ey :[1 > 1] _
L —8 B -3 | i
: D -3 0 -3 1
-3 4.8 -2 1 3
-6 -3 9|=|1 -3 2|eM(3 ).
4 1 -3 <3 "1 =3

Now
-2 1 3 0 -1 -3 -3-3 2+41-3 6—6
X*X=1 =3 2 -3 1 0|l=|9-2 -1-3-2 -3-—-4|=

343 3+14+43 9+6

and so X is a unitary matrix.

From Example 10 in Section 2 we know that

-2 1. 3
A=|0 -1 0|eM(@3, %)
T 1

is a unitary involution, and if we let

then we have

1 0 0]t o o 1 00 1 00
B2=13 -1 0 3 -1 0|=]|3-310|=]|01 0]|=1I,
2 0 =1]]l2 0 =1 93 D 1 0 0 1

and so it follows that B is an involution.

Also,
—10l_(3 0H3—1T
+1 —1
0o 0 12 0 2100 13 27"
B* = adj(B) = —’0 1’ ‘2 _1‘ —’2 0‘ =l0 -1 0| =
|
o of _Jt o |1 o0 & &
-1 0 3 0] [3 -1

1 0 0
3 -1 0 |=8,
g 0 =1

and so B*B = BB = I3, which means that B is also a unitary matrix. Hence, B € M (3, Z7) is a unitary

involution.
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Now we have

-2 1 3 dotr Q) iei0 -24+3+6 -1 -3 0 -1 -3
AB=]10 -1 0 3 -1 0 |= -3 1 0]=1-3 1 0| =X,
-1 1 2 2 0 -1 -14+34+4 -1 -2 -1 -1 -2

and so X € M(3, Z7) is a unitary matrix that can be written as the product of two unitary involutions. ¢

Note 11.
0 -1 -3
Consider the matrix X = | -3 1 0 [ € M(3,Z7).
-1 -1 =2
In the previous example we showed that X is a unitary matrix that can be written as the product of two
-2 1 3
unitary involutions, and we calculated X* = [ 1 =3 2 |, the adjoint of X.
-3 1 -3
-2 0 0
Now we can observe that there exists a matrix ¥ = 0 2 1 € GL(3,27), with Y~1 =
1 0 -3
3 0 0
3 -3 -—1|, such that
Jrripar G
3 0 0 0 -1 -=3] 0 -3 -2 -2 0 0
Y'Xy=(3 -3 -1||-3 1 o0|Y=|3 2 0 8 2 11l=
1 0 2 -] =1 —3] -2 -3 0 1 0 -3
-2 —6 —6+6 (-2 1 3
—6 4 2 =il o =31 W20 =X
4 -6 -3 |—8 1 &

and so the matrix X is also similar to its adjoint. ¢
The previous example considered together with Note 11, provides an illustration of the following theorem,

Theorem 4.

Theorem 4. If A is an n X n unitary matrix over a field F' that is the product of two involutions then A is

similar to its adjoint A*.

Proof (Theorem 4). |
Let A € M(n, F) be a unitary matrix such that A is the product of two involutions. Then, by Theorem

2, we know that A is non-singular, so A1 exists, and we also know that A is similar to A~!.

Now since A is unitary, A*A = I, and so A* is a left inverse of A. But A is square, so any left
inverse of A is also a right inverse, and by the uniqueness of matrix inverses it follows that A* = A~!
(A*A=T= A AA ) = A1 = A = A1)

Now since A is similar to its inverse, and A* = A~!, it follows that A is also similar to its adjoint.

Hence if A € M(n, F) is a unitary matrix that can be written as the product of two involutions then A
is similar to its adjoint, A*. ¢

The following proposition, Proposition 4, gives more examples of matrices that can be written as the

product of exactly two involutions.
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Proposition 4 (cf. [3]). Every 2 x 2 matrix A over a field F with det(A) = 1 that is not an involution is

the product of two involutory matrices over F'.

Proof (Proposition 4).

a b
LetA_[c d

A€ TSL(2,F),and A~! £ A.

] € M(2,F) be a matrix with det(4) = 1, such that A itself is not an involution. So

d

0

Since det(A4) = 1 then A~! = .

, and there exists a matrix B = [ _01] € GL(2, F), with

B-1 = [_()1 (1)} such that

STt o SR\ R R o AR & 1 (W o GRS
A AB_[—l 0][b d]B_[—a —||1 0| |—-c a =&
and so it follows that A7 is similar to A~!.

Now in Section 2, Note 9, we showed that every 2 X 2 matrix over a field is similar to its transpose, so
A is similar to AT. But AT is also similar to A~!, and so by the transitivity of similarity it follows that A
is similar to A=!. Hence, by Theorem 2, A can be written as the product of exactly two involutions over the
field F.

Thus if A is a 2 X 2 matrix over a field F' with det(A) = 1, such that A itself is not an involution, then A

can be written as the product of exactly two involutory matrices over F. o

So far in this section we have concerned ourselves with special matrices that can be written as the product
of exactly two involutory matrices. In the next example we will show that two involutions do not always suffice,

and that sometimes a matrix cannot be written as the product of two involutions but can be written as the

product of three or more involutions.

Example 33. (A Product of not Fewer than Three Involutions)

-2 0 -3
Consider the cyclicmatrix A= [ 0 2 —2| € M(3,Z7) of Example 14 in Section 2. Then, as was
-2 -1 0
0 0 -1
shown in that example, A is similar to the companion matrix Com(f) = [1 0 —2| of the irreducible
0 1 0

polynomial f(z) = 23 + 2z + 1 € Z7[z]. Now since A is similar to Com(f), then, by Theorem 1 in Section 2,

it follows that if Com(f) can be written as the product of k involutions then so can A.

Since
0 0 -1]]0 0 -1 0 -1 0
[Com(f))’=|1 0 =2 |1 0 —-2|=]|0 -2 —1|#I,
0.1 .0 01 0 1 0 -2
then it follows that C'om(f) is not itself an involution, and so neither is A.
-2 10
Also, since Com(f) is non-singular, [Com(f)]"' = | 0 0 1| exists, and, by Theorem 2, Com(f) can
-1 0 0

be written as the product of two involutions over Z7 if and only if it is similar to its inverse [Com(f)]~".
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Let us assume that Com(f) can be written as the product of two involutions, so Com(f) is similar to
a b ¢
[Com(f)]~!. Then there exists some non-singular matrix D = l:d e f:l € GL(3, Z7), such that
g h 1

D™ [Com(f)]D = [Com(f)]~" = [Com(f)|D = D[Com(f)]™* =

0 0 -1 a b ¢ a b ¢ -2 10
1 0 =2 d e fl=1|d e f 0 0 1| =>
Q=110 0240 g¥thi g g h 1 -1 0 0

—g —h —1 —2a—c¢ a b
a—29 b—2h c—2i| = |(-2d—f d e
d e f —29—1 g h

Since the above matrices are equivalent only whene = g=d=h=f=-a=-c=—-i1=b=0=a=
b=c=d=e=f=g=h=1=0, then it follows that

a b ¢ 0 0 0
d e f|l=10 0 0.
g h 1 0 0 0

But then det(D) = 0, so D is singular, which means that D~! doesn’t exist and so there exists no invert-
ible matrix D € GL(3, Z7) such that D='[Com(f)]D = [Com(f)]~!, and so Com(f) cannot be similar to
[Com(f)]~1. Therefore our assumption that Com(f) can be written as the product of exactly two involutions
is incorrect, and so it follows that A also cannot be written as the product of two involutions.

-1 0 0

Now let the matrix B € M(3, Z7) be defined by B = [—2 1 O:I , and let the matrix C € M(3, Z7) be
0 01

D=

defined by C = l:

—1 0 0 -1 0 0 1 00
Then B? = 1 0 -2 1 0|=1|0 1 0f = I3, and so B is an involution.
0 1 0 0 1

0

O = O
o O

0 0 01 0
Now C?2= |1 0 = |0 0 1| # I3, and so C is not an involution.
0 1 1 0 0

010
Since det(C) = 1, then C is non-singular and so C~! exists and is defined by C~! = [0 0 1} . Also,
1 00

1 2 -2 -1 =2
there exists a matrix X = [2 1 1| € GL(3,27), with X~ = | -1 -2 -2 such that
L1 2 -2 -2 -1
-2 -1 =2 1 -1 -2 =2 1 2 1 0 1 0
X'cx=|-1 -2 -2 1 0 0| X=]|-2 -2 -1|]|2 1 1|=]|0 0 1|=C"".
-2 -2 -1 010 -2 -1 =2 1 1 2 1 0 0

Now since X~ 1CX = C~1, then C is similar to its inverse, and by Theorem 2 it follows that C can be
written as the product of two involutions in GL(3, Z7). Say C = Y Z, where Y and Z are both involutions in
t SL(3, Z7).
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So we have

-1 0 0]fo 0 1 (RE TS |
BYZ=BC=|-2 1 o||1 0 o|=|1 0 2| =Com(p),
0 0 1/|0 1 0 01 0

and thus we have shown that Com(f) can be written as the product of exactly three involutions in * SL(3, Z7),
and so, by similarity and Theorem 1 of Section 3, so can the matrix A. Therefore the matrix A € GL(3, Z7)

is an example of a matrix that cannot be written as a product of fewer than three involutions. ¢

The previous example shows that not all matrices that can be written as the product of involutions can
be written as the product of exactly two involutions; for some matrices more than two involutions are needed.
This observation leads us to the main question of this paper as was posed in the introduction. That is,
does there exzist some smallest positive integer k, such that any matriz in ¥ SL(n, F) which is the product of
involutions, can be written as the product of at most k involutions, and if such an integer does in fact exist,

what is it? This question and its answer compose the main topic of the next section, Section 5.
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Section 5. Products of Four Involutions

In this section we will state and prove the Four Involutions Theorem which is the main theorem of this
paper, and which also answers the question posed in the introduction as to what is the smallest number of
involutory factors required in the factorization of an arbitrary matrix over a field with determinant 1 into a
product of involutions. However, before we state and prove this theorem, let us consider a matrix that can be

written as the product of not fewer than four involutions, and thus show that number of involutions needed

in any factorization into a product of involutory matrices is at least four.

Example 34. (A Product of not Fewer than Four Involutions)
2 0 0
Consider the matrix A= [0 2 0| € M(3,Z7). Then det(A) = 2> =8 = 1, and so A can be written
0 0 2
as the product of some number of involutions over Z7.

Since
2 0 0|2 00 -3 0 0
At=10 2 o|l|0 2 0]l=]0 -3 0 |#IL,
0 0 2]]0 0 2 0o 0 -3
then A is not an involution.
4 0 0
Now A is non-singular so A™1 = [0 4 0| exists, and, by Theorem 2 of Section 4, A can be written as
0 0 4
the product of exactly two involutions over Z7 if and only if it is similar to A~!. However, if A is similar to
a b c
A~ then there exists some invertible matrix X = [d e f | € GL(3,Z7), such that X~14AX = A~1.
g h 1
So we have
2 00 a b c a b c 4 0 0
X IAX=A1=22AX=XA"1=10 2 0||d ¢ f|l=]|d ¢ f||0 4 0] =
00 2||g h 1 g h 1 0 0 4
2a 2b 26 4b  4c
2d 4e 4f |,
29 2h 22 4h 41
0 00
which is only true when a = b=c=d=e=f =g = h =i = 0. But this means that X = |0 0 0,
0 00

and so det(X) = 0, and X~! does not exist, therefore our assumption that A is similar to A~! is incorrect.

Since A is not similar to its inverse then it follows, by Theorem 2, that A cannot be written as the product of

exactly two involutions.

Let us suppose now that A can be written as the product of exactly three involutions. Say A = BCD,
where B, C and D are all involutions in * SL(3, Z7).

1 00
=BCD=2(0 1 0
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=BCD = 2I3 = BCD =

o N O
NN OO

2
A=BCD = I:O
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213D~ = BCDD™! = 213D = BC = 2D = BC,
and so 2D € M (3, Z7) can be written as the product of two involutions which means that, by Theorem 2, 2D

is similar to its inverse (2D)~! = 271D~! = 271 D. So there exists some invertible matrix K € GL(3, Z7) such
that
KD =3 D=2 (3D)K = 227D = K (22D)K = D= K7 (4D)K = D,

and so it follows that 4D is similar to D.

Now D is an involution so det(D) = 1 which means that D must be similar (up to the permutation of

columns) to one of the following matrices in M(3, Z7):

[—1 0 0

(a) 0 -1 0 |=-L=Ii®—-I3=I®—1I3_¢, or
L 0B~
[1 0 O

M) |0 -1 0 |=L&-Ih=5L®-I3-4, or
0 0 -1
[1 0 0

(¢ |01 0 |=he-L=L&-I3- or
B
(1 0 0

d [0 1 0|=I=I3®d—-Iy=I3®—I5_3,
0 0 1

so D is similar to some matrix of the form I @& —I3_} for some k£ = 0,1,2,3. But then 4D must be
similar to 4(Ix & —I3_k) = 41y ® —4I3_ for some k =0, 1,2, 3, and so by the transitivity of similarity, since
D is also similar to 4D, it follows that I @& —I3_j is similar to 41y & —4I3_; for some k = 0,1,2,3. Also,
Iy, —I3_y,4Iy, —4I3_ for k = 0,1, 2,3, are all Jordan canonical matrices and so they are block indecompos-
able. Now by Note 5 in Section 2 we know that if two block diagonal matrices are similar and their blocks are
block indecomposable, then their blocks are similar in pairs, and so it follows that the blocks of I} & —I3_k

and 41y ® —4I3_; must be similar in pairs for some k£ =0, 1,2, 3.

Now, for k = 0, Ip @ —I3 is similar to 41y @ —41I3, and since I is clearly similar to itself, it follows that

a b ¢
— I3 must be similar to —41I5. So there exists some invertible matrix M = I:d e f:| € GL(3,Z7), such that
g h 1

M_l(—I:;)M = —413.

So we have

-1 0 0 a b ¢
MY -LM=-43 = -LM=M(-43)= | 0 -1 0| |d e f|=
h i

0 0 -1 g i
a b ¢ —4 0 0 —a —-b -—c —4a —4b —4c]
d e f 0 -4 0 (|=>|—-d —e —f|=|-4d —-4e -4f]|,
g h 1 0 0 -4 —-g —h —i —4g —4h —4i |

0 0 0
which is only true whena=b=c=d=e=f=g=h =1 =0. But thismeansthat M = |0 0 0]|,so M
0 00

is not invertible, and thus —I3 cannot possibly be similar to —41I3. Hence for k = 0 it follows that Iy & —I3_g
1s not similar to 41, @ —413_y.
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For k = 1, since I; @ —I5 is similar to 4I; & —41, then, by matching the dimensions of the corresponding
blocks, it follows that I; must be similar to 41; and that —I; must be similar to —4/l5. Since I; = [1] is similar
to 41; = [4], then there exists some matrix M = [a] € GL(1, Z7), such that M~1[1]M = [4].

So we have
M~1]M = [4] = [1]M = M[4] = [1][a] = [a][4] = [a] = [4d]

= a=4a= —3a=0=4a=0= a=0 (since we are in the field F).

But then M = [0], which is not invertible, and so I; cannot possibly be similar to 41;. Hence for k = 1 it
follows that Iy ® —I3_j is not similar to 41y @ —4I3_.

For k = 2, since I @ —1I; is similar to 4I; @ —41I;, by matching the dimensions of the corresponding
blocks, it follows that I must be similar to 41, and that —I; must be similar to —4I;. Since —I; = [-1] is
similar to —4I; = [—4], then there must exist some matrix M = [a] € GL(1, Z7), such that M~}[-1]M =
[-4] = —M~1[1]M = —[4] = M~1[1]M = [4], but, just as in the case when k = 1, this is impossible, and so
I, @ —I; cannot possibly be similar to 415 @ —41;. Hence for k = 2 it follows that I & —I3_j is not similar
to 41 ® —4I3_.

Finally, for k£ = 3, I3 @ —I 1s similar to 413 @ —41y, and since —I is clearly similar to itself, it follows

a b ¢
that I3 must be similar to 4I3. So there exists some invertible matrix M = l:d e f] € GL(3, Z7), such
g h 1

that M~1(I3)M = 413 = —M ~'I3M = —4I3 = M~}(—I3)M = —4I;, but, just as in the case when k = 0,
this is impossible, and so I3 cannot possibly be similar to 4I3. Hence for k£ = 3 it follows that I & —I3_ is
not similar to 41 @ —415_j.

Since we have shown that for all £ = 0,1,2,3, It & —I3_ is not similar to 4I; & —4I5_j, then we have
a contradiction, and so our assumption that A can be written as the product of exactly three involutions in
+ SL(n, F) is incorrect.

So far, we have shown that A cannot be written as the product of one, two, or three involutions, and so

all that remains to be shown is that A can be written as the product of exactly four involutions.

00 1
Let W= |0 1 0| € M(3,2). Then

1 00
00 170 o0 1 1 00
W2=10 1 0|0 1 0]|=]0 1 0| =1Is,
1 00f[f|1 00 0 0 1

and so W is an involution.

Q10
Let X=|1 0 0| € M(3,Z7). Then
0 0 1
01 070 1 0 1 00
X2=110 0|]|1 0 0|=]0 1 0] =15,
0 0 1[]0 0 1 0 0 1

and so X is an involution.
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0 0 -3
Let Y=|0 1 0 [ € M(3,27). Then

2 0 0
0 0 -3 0 0 -3 -6 0 0 1 0 0
e L D0 1 @f=Y0 1 0 |=10 1 0|=1Iy
2 0 0 2 0 0 0 0 -6 0 0 1
and so Y is an involution.
1 0 0
Finallylet Z= [0 0 2| € M(3,Z7). Then
0 -3 0
1 0 0 1 0 0 1 0 0 1 0 0
ZZ=|0 0 2|/|/0 0 2|=]|0 -6 0 |= 1 0] =1Is,
0 -3 0 0 -3 0 0 0 -6 0 1
and so Z is an involution.
Now
0 0 1 0 10 0 0 1 0 0 -3
WXYZ=10 1 0 1 0 0]YZ=1|1 0 O 01 0 =
1 0 0 0 01 01 0 2 0 0
2 0 0 1 0 0 2 00 0 2 0
0 0 -3 0 0 2|=(0 9 0|=1]0 2 0] =A,
01 0 0 -3 0 0 0 2 0 0 2

and so A € M (3, Z7) is an example of a matrix that can be written as the product of exactly four involutions,

and cannot be written as the product of one, two, or three involutions. o

In the above example we showed that there do exist matrices that cannot be written as the product of two
or three involutions, and that sometimes four, or possibly more, involutions are needed in the factorization
of a matrix. As we will see in the following theorem, the Four Involutions Theorem, it turns out that any
matrix in i'SL(n, F), where F is a field, can be factored as the product of not more than four involutions,

and so four involutions suffice in each and every case.

Theorem 5 ( The Four Involutions Theorem ) (cf. [9], [10], [3]). Let A be any n x n matrix in
T SL(n,F), where F is a field. Then A can be written as the product of it at most four involutory matrices

over F'.
Proof (Theorem 5).

Let A € T SL(n, F). From the theory of rational canonical forms (see Definition 22 in Section 2), we
know that A is similar to a block diagonal matrix of the form A’ = diag(D;, D3, D3, ..., Dg), where ny +ns +
nzg+...+ng = n, and each D; block, for i =1,2,3,.. .k, is the companion matrix of an irreducible polynomial
over F'. From Theorem 1 in Section 3, we know that if we can show that A’ can be written as the product of

at most four involutions over F', then, by similarity, so can A.

Since A’ = diag(D1, D2, D3, ..., Di), where each D; block is the companion matrix of an irreducible

polynomial over the field F, it follows that some of these D; blocks, say the first [ of them, are square matrices
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of order at least 2, of the form

0 0 -0 d;
10 e 0P E ik
gt 0 1 O * - 5 -
Di : . . . . [I Bi],forz 1’2’37"'11)
0 0 +& 1@ %

where 0 and I are the appropriate zero and identity matrices, respectively, and B is a column matrix of

suitable dimension, while the remaining k — [ D; blocks in A’ are 1 x 1 matrices of the form

D,‘:[d,‘], fori=14+1,142,...,k.

If we let L denote the direct sum of all these 1 x 1 blocks of A’, then L is a block diagonal matrix of the

form

dien. by ol ines B

O dun 0 s D
L=Di41®Di42®D142® ... ® Dy = 0 0 diyz -+ 0

0 0 0 e dg

and so A’ becomes

A' = diag(D1,Da,...,Di,Diy1,...,.Dg) =D1®D2® .. ®Di® D11 ® .. @D =D1® Dy .. ®Di DL =

0 di 00 00 0 0 0 0
I B, 0 0 00 0 0 0 0
0 0 0 dy 00 0 0 0 0
0 0 I B, 00 0 0 0 0
0 0 0 0 0 d 0 0 0
0 0 0 0 I BB 0 0 0 0|
0 0 0 0 0 0 dy1 0O 0 0
0 0 0 0 0 0 0 dys; O 0
0 0 0 0 0 0y B 0 dys 0
0 B B ol W B BT O sl

where the 0’s and I’s denote the zero and identity matrices, respectively, and are all of suitable dimension.
(Sometimes the zero matrices are scalar, sometimes they are row or column matrices, and sometimes they are
square matrices.) It is also understood that either some or all of the D; matrices, for : = 1,2,3,...,(, or the
matrix L may be absent from the matrix A’. We will assume that both the D; matrices and the matrix L are

present in A’, since the other cases are just exceptions of this case.

Note that by the definition of the determinant of a matrix, and the fact that A’ is similar to A, we have
det(A’) = det(A) = *1 and ,det(A’) =d; -dy-d3-...-dy, so

det(A'):d1 -d2~d3-...-d1_1 -d[-d1+1 dk: i-l,
and since we are in the field F, it follows that d; # 0, for : = 1,2,3,..., k.
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Now if we divide the last column of each D; = [(} g’] matrix by —d; # 0, we obtain the revised matrix
[(I) _113_] , fori=1,2,3,...,1, and if we now move the last column of this revised matrix to the left of all
d 1

the other columns and place it first, we obtain the new matrix D] defined by

D= [ e 0] I R ]

¢ —dl'_B,- 7]
diy; 0 0 0
0 diy2 O 0
Also, if we take the matrix L = 0 0 diys -+ 0| apq replace all the d; non-zero diagonal
0 0 0 - dg

entries, where i = [+ 1,1+ 2,...,k, by 1’s, we obtain the identity matrix Iz_;, and if we pair up and then
interchange neighboring columns in this identity matrix, starting with the leftmost two columns, we end up

with a revised form L’ of the matrix L. This new matrix L’ will either be of the form

[0 1 0 O 0 07
1 0 00 0 0
0 0 0 1 0 0
L'=(0 010 0 0], ifk—1iseven,
0 0 0 0 1
[0 0 0 O 1 0]
or of the form
ro 1 0 0 0 0 07
1 0 0 0 0 0O
0 0 0 1 0 0 0
0010 00 0| .
=, . - . . .|, ifk—11s odd.
0 0 0 0
0 00 ---1 00
L0 000 --- 0 0 1]

Therefore, either L’ is the direct sum of copies of the matrix [(1) (1)] , of size 2, or L' is the direct sum of

copies of the matrix ? (1) , of size 2, and the scalar matrix [1], of size 1. Since this first form of L’ is really
just a special case of the second form of L', for sake of simplicity we will assume that L’ is of the second form,

that is, L’ is the direct sum of copies of the matrix [[1) (1)] and the scalar matrix [1].

Now if we consider the direct sum of the altered matrices

-1 0 ;
D} = [“;}—iBi I] ; Tor a=1,2;3; w5505

and the altered matrix L’, we obtain a new n X n matrix W where

W=DioDyoDi®d.. ®D;dL =
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~N
Il
—

then it follows that W is an involution in ¥ SL(n, F).

Define the weighted permutation matrix R € M(n, F') by

.‘
=R === — N — R =T =F == o5
<
cocooco O oo o (==
S
2]
000 D oo F oo
]

N
OO v D +o S O oo

~=

—
OO D o Fo o =T =]
=
coc oo zn_w cococo oo
cooco ro = = o o
o

00..%0 o cooco o0
cooM~N O OO0 O
i
.._a000..0 OO0 O0 : OO0
o~NOoOo -rO cocooco oo
—

[l

where the 0’s and I’s denote the zero and identity matrices, respectively, of suitable dimension.

Note that

=11,

1)

cdy) = T det(4)

cdj—q - dp - dig -

=*(dy-dy-ds-...

det(R)

and so R€ t SL(n, F).
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0 00 0O 0 0 07
0 00 0O

0

0
-1

1
0 _ZBQ I

0

-1
1

~1B, I
d
0
0

00010

[ = S

o -

0 0 1.

0 00 0O

=d;
0

0
1

0

WR=

Now

= =N =N=T
<
oo tTo
~=
«
oo e &
~=
(3]
Tao o S
o
~—
o-too
=

cooco -

L= il = B == = R

(== == i == R == R

(= <= I == o= T

oS oo o -

= == P T =

.,n},

= A’

dy |

dy, |

and so at this point we know that A’ can be written as the product of an involution W and a weighted

(= B = == = [ ==

(s=1,s)(s+1,n).

(s—2,5—1)(s,s+1)(n), where r < s and r,s € {1,2,3,..
43

(ryr+1)(r+2,74+3)--

0
0

OO ¢

0
0

(== Qi == =T == il = R

0
0

S oo oo -

(r=1,7)(r+1,r4+2)--
=(1)(2,3)(4,5)--

I B

0

r0 d;
0

== <= [ = = TR = S

Denote by ¢ the permutation that corresponds to the weighted permutation matrix R. So

and define the permutation 7 in S, by

permutation matrix R over F'.

o= (1,2)(3,4)(5,6) - -



Then

=p

.,6,4,2)

LSr+2,r,r—2,..

,8—2,8,n,s+1,s—1,..

Lr—=1Lr+1,r+3,..

(1,3,5,7, ..

TO=

which is a cycle on all n indices, and so 7 ”ties together” the cycles in o.

Now the permutation matrix corresponding to the permutation 7 is the n x n matrix

over F.

o o

(= ==]

o o

O~

oo

~N O

0
0

0
0

01 00O
000 0 I
00 0TI O

0
I
0

0 00 0O
LO O 0 0 O

Since we have

)

~

l
r 1
(- ]
r 1
L 1

Il

B

then it follows that X is an involution in ¥ SL(n, F).

Now define the n x n matrix K € M(n, F') by

0 0 0 07
0 0 00

oo O -

(= = Q=R

<= [ = == B

(= = == R

S OO N~NO -

SO OO M~ -

O MNIOIOS O ¢

COMNO O -

N O OO o -
L

0 I 0O

000 0O

O~

oo

oo

~ o

(o= =)

o o

(===

oo

o O

0 0 IO

00 0 0O

K=XR=

0
0

—d;

[0

0

I

Qe

(== I =

o O

(== =R

o o

iy
0

0
I

o

o

o

o

o
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0 —d, 0 0 0 0 0 0 07
0 0 0 —dy 0 0 0 0 0
I 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 0 0 dis O 0o 0]’
0 0 0 0 0 0 0 0 0
0 0 0 o0 0 0 0 diey O
0 0 0 0 dica O 0 0 0
0 0 0 0 0 0 0 0 dy
[0 0 0 0 0 0 dra O 0

and since det(K) = det(XR) = det(X)det(R) = (¥1)(¥1) = (*1), we have K € * SL(n, F), which means
that K can be written as the product of some number of involutions over F'. Also, since X is an involution,
we have XR=K = XXR=XK = R= XK, and so A’ becomes

A'=WR=WXK,

where W and X are both involutions in ¥ SL(n, F). Now, if we can now show that K € T SL(n, F) can be

written as the product of exactly two involutions over F', then we have proven the statement of the theorem.

Consider the matrix M € M(n, F') defined by

M = [e1,e3,e5,€7,...,€5_2,€5,(dr—2)en, (drdr—2)es41, (drdp—1dr_2)es_1, ..., (dpdr—1dg_2...(—ds)(—d4))es,

(dkdk_ldk_g 5ae (—ds)(—d4)(—d3))e4, (dkdk_ld]c_z T (—d4)(—d3)(—d2))62],

where each e; is 1 x n and s is the same as in the permutations ¢ and 7. Let 8 = (dkdr—1dk—2 . ..(—d5)(—d4)),
let v denote the coefficient B(—d3) = (drdi—1dk—2...(—ds)(—ds)(—ds)) of es in M, let § denote
the coefficient y(—dz) = (dpdi—1di—2...(—ds)(—d3s)(—d2)) of eg in M, and let ¢ = é(—d;) =
(drdr—1dg—2 . ..(—da)(—d3)(—d2)(—d1)).

Then
(I 0 0 0 0 07
0 0 0 0 0 ¢
0 I 0 0 0 0
0 00 0 ¥ 0
0 0 I 0 0 0

o I : W

0 00 0 -0 0
0 00 0 -0 0
0 0 O 0 -0 0
0 0 0 0 -0 0
[0 0 0 d—» -0 0]

Now det(M) is a product in which each factor is some d;, for i € {1,2,3,...,n}, and since earlier we

noted that d; # 0, for i = 1,2,3,...,k, and we are in the field F, then it follows that det(M) # 0. Since
det(M) # 0, then M is non-singular, so M € GL(n, F) and M~! exists.
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Define by Q € M (n, F') the matrix

(I 0 0 0 0 g 'Y
00171 00 0
g'48 6 "I 0
@=10 00 0 0 =
k—2
000 30 0
[0 £ 0 0 0 0 |
Then
I 0 0 0 0 07
000 0 0 61 0 0 0 0 0 7
0 I 0 0 0 0[O0 0 T 00 0
000 0 vy 0[|0 0 0 0 I 0
0 0 I 0 0 Ot} .7 ;

M@= |3 : 4 ; © |00 000 = | =
00 0 0 0 0 , _
000 0 0 0 : g
000 0 oo0of/0O OO0 S0 - 0
000 0 0 0/Lo L o0 o000 0 J
[0 0 0 dp_3 -~ 0 0]

I 000 0
01 00 0
00 I 0 0
000 I 0| =1
0000 I

and so @ is a right-inverse of M. Now since M is square, then any right-inverse of M is also a left-inverse,

and so by the uniqueness of inverses we have M~! = Q.

Let us now consider the product

7 0 0 0 O 0 1
0 0 I 0 O 0
0 0 0 0 I 0
M™1KM = 0 0 0 0 0 di *
k—2
0001210 .- 0
0 30 0 0% 0 |
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Since € = dgdg_1dk—2...(—ds)(=d3)(=d2)(=d;) =t det(A’) = T(*1) = *1, then

B 0.+ 0. Ti

I 0 -0 0
§=|0 I --- 0 0 |e*SLn,F)

00 1 0

Now
0 0 0 f17ro0 1 0 0
F 0 == 0 0 0 0 I 0
SsT =0 1 B B e 5§ B =0

Lo Spmatay o o 00 --- 1
0 0 =2 1 0 i N T

and since ST is a right-inverse of S, then it is also a left-inverse, and since we are in a field it follows that
ST = S-1. Now, by Note 9 in Section 2, we know that a square matrix over a field is similar to its transpose,
and so we have that S is similar to ST = S—1.

Since S is similar to S™1, then, by Theorem 2 in Section 4, we know that S can be written as a product of
two involutions over F'. Now K is similar to .S, and so by Theorem 1 in Section 3 we know that K can also be

written as the product of two involutions over F,say K =Y Z, where Y, Z € T SL(n, F') are both involutions.

So now we have
A =WR=WXK=WXY?Z,
where W, X,Y, and Z are all involutions in ¥ SL(n, F'), and since we have shown that A’ can be written as
the product of four involutions over F', then, by similarity, so can the matrix A.

Therefore we have shown that any matrix in TSL(n, F) can be written as the product of at most four

involutions over F. ¢

The following example gives an illustration of the method used in the proof of Theorem 5.

Example 35. (A Product of not More than Four Involutions)

0 -3 0 0 O
2 -2 0 0 O

Let A= [0 0 4 5 0| € *SL(5 211). We will follow the construction of Theorem 5 to show
0 0 5 4 0

0 0 -3 =3 1
that A can be written as the product of not more than four involutions (it might be the case that A can

be written as the product of two or three involutions, however, in this example we are only concerned with

showing that four involutions will suffice).

1 00 0 O 1 0 0 0 O
020 0 0 0 -5 0 0 O
Define B € GL(5,Z11) by B=|0 0 0 1 1|.ThenB!=|0 0 -1 -1 1
0 00 -1 1 0 0 -5 5 0
091 0 2 0 0 -5 -5 0

1-N
Qo



Now

L e———
SRR I R
COmO D
i
oo
5000

0

D, @ L, where

J , and also A’

Dy ® D3 @ Dg, and Dy, Da, D3, and D4 are the following companion matrices of irreducible polynomials

So the matrix A is similar to the matrix A’

L=

over F':

[-2].

[—1], and D4

0 5
1 _2]1D2:[1])D3

|

—~~

Ll

Ll

N

)

N’

w
—%
cooco -
o oo
(=<
(= =]
—{
_A_xonUO
A —

Il

-~

Q

- |

Then

-1 0 0 0 O
0
0
1
0

-1 0 0 0 O
0
0
1
0

and so X is an involution.

] € M(5,Z11).

Then

-5

0
I
0
0
0

-1 0 0 0 O
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and so it follows that A’ can be written as the product of an involution X and a weighted permutation matrix

J € M(5, Z11).

S o O —H O

S oo O~

o - O O O

(== Bl [ o Bl i = |

-l oo o@®

[

Now let Y

Then

COOm™O
CO OO
oD O
SO ™o o

— o O oo

Y2

and so Y is an involution.

Consider the product
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Ll

N

o

N

w

Il
| == S S ]
000n/_~0

—{
== =)

——)
U -
CO O~
SO OO v~
(== o= T = R >
co-~0 0o
o = R =T
_—

Il

s~

>~

Since Y is an involution then we have

K=YYR=YK=R=YK, and

YR=

XR=> A'= XYK.

A=

—4 # 0, so M is non-singular and M !

€ M(5,Z11). Then det(M)

0
2
0
0
0

(<=1 — R __ T <= =

o O oo

(= ol <~ <= >

|

-1 _

exists and is defined by M

Also

S € M(5,Z11).

(o= = =T |

o - O O

(= (= W == = ]

o o

oo

O -

L)

o

o

(=)

50



Now

0000 1770 100 0 10000
1 0000/]00T1O0T0 01000
SST=10 100 0]|l0oo0oo010|/=|0010 0|=I,
001 00f[[000O0TO0?1 B o010
000 1. 0L1% 0l0o lg 000 01

so ST = S~ and since, by Note 8, every n x n matrix over a field is similar to its transpose, then S is similar

to ST = S~! and so, by Theorem 2, S can be written as the product of two involutions over Z1;.

Now K is similar to S, and so, by Theorem 1, K can also be written as the product of two involutions
over Zy1, say K = CD, where C, D € T SL(5,Z11). So we now have A’ = XY K, and K = CD, where X, Y, C,

and D are all involutions over Z;;, hence
A'=XYK = A'=XYCD,

and so we have shown that A’ can be written as the product of at most four involutions over Zi;.

Since A is similar to A’, then, by Theorem 1, A can also be written as the product of at most four
involutions over Z;1, and so we have shown that in this example the construction used in the proof of Theorem

5 does indeed produce the correct result. o

Before we proceed to the next section, Section 6, and examine which matrices can be written as the
product of exactly three involutory matrices, let us consider one more example of a matrix that is the product

of not more that four involutions.

Example 36. (A Product of not More than Four Involutions)

Consider the matrix

4000 100 0
loz2oo0| |0 20 0of 4
M=10 00 4|0 0 0 —1]|€=5L*%2%).

10 2 0 1 02 0

Since
100 07F=1 00 0 1 0 0 0
, 0o 20 ofllo 20 0] |0 -1 0 o
M=t oo ST P 0" e L =0 3 o | T
1 02 oldJl1 o2 o 1 0 0 -2

then clearly M is not an involution in * SL(4, Zs).

Now, by Theorem 5, we know that M can be written as the product of at most four involutions over Zs,

and, in fact M = W XY Z, where W, X,Y and Z are defined by

1 0 00
2 00 9o
w=|o o ) 2|etsiezm),
0 -2 0 0
1 0 007FlL 0 00 1 0 0 0 1000
0 0 0 2|lo o 0 2 TR 0100
2 = — s =
where Wi =04 g 1 of'lo ‘e 1T 91|00 7 o0 |=|o 0o 1 o|F
0 —2 0 0l Lo =2 0 o0 B 0 B ~4 000 1
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1 0 0 o0
I = <
X—O 0 _IOE_SL(4,Zs),
0 Pt igheey
1 0 0 07f1 0 0 0 Ll " Dol
I S 5 R R Y
where X°= 10 0 1 0|lo o0 -1 o[ |00 1 0|
oo o 1llo o o 1 000 1
100 0
=210 0| .,
Y= 001J€_SL(4,Z5),
0 0 1 0
100 077=10 0 0 100 0
21 00|]|=210 0 0100
07— — -
Where’/‘[00010001—0010‘1“’
0 01 0JLo 010 000 1
100 0
loo 1 o] .,
Z_OIOOjIE_SL(4,Z5),
000 1
100 0771 00 0 100 0
0010|0010 0100
| - s
wherez‘[01oo 0100|=]0o0 1 of=fnand
000 1JLlo oo 1 000 1
1 0 00771 0 0 0 10 0 077=1 00 0
0 0 0 2|0 =1 0 o0 loo o 2]|-2 10 0
WXYZ=146 0o 1 0l]lo 0o =1 0/¥%=0o 0 =1 0|0 00 1/%
0 -2 00llo o o0 1 02 0 ollo o010
100 07¢F1 00 0 100 0
o o2 offoorof_fo 20 0f_,
=lo 00 -1]lo100|/=|0 00 -1|=M
1 20 oJloo o1 1 02 0

So we have shown that the matrix M € T SL(4,Zs), can be written as the product of four involutions
over Z5. Now it might be the case that M can be written as the product of two or three involutions over Zs,

but, as we have shown, at most four involutions are needed. o

At this point we should mention that the Four Involutions Theorem applies to all matrices in * SL(n, F'),
but in the general linear group, GL(n, F'), the theorem applies only to those matrices with determinant *1,

i.e., only to the elements of GL(n, F') that are also elements of * SL(n, F).

In Examples 34, 35, and 36, we saw matrices that can be written as the product of four involutions and,
more specifically, in Example 34, we showed that four involutions are indeed necessary in some cases, since the
matrix of that example was not itself an involution and could not be written as the product of two or three
involutions. Also, we have developed theorems that let us determine when a matrix can be written as the
product of exactly two involutions (when it is similar to its inverse), and we have proved the Four Involutions
Theorem which states that any matrix of determinant *1 over a field F' can be written as the product of at
most four involutions. We should mention that there is no need to consider matrices that are the product
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of more than four involutions, since these matrices are in T SL(n, F), as we have shown in Proposition 2
of Section 3, and so, by Theorem 5, they can be rewritten as the product of four involutory matrices over

+ SL(n, F). The next logical question that we should consider is

Can we characterize the matrices of determinant T1 over a field F

that can be written as the product of exactly three involutions?

This question leads us to the next section, Section 6.
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Section 6. Products of Three Involutions

In Section 4, Example 33, we gave an example of a matrix that cannot be written as a product of two
involutions but that can be written as the product of exactly three involutions. The special property that
this matrix possesses which enables us to use three involutions in its factorization instead of four (which, by
Theorem 5, is the most that are needed in any case), is the fact that this matrix is cyclic. This observation

leads is to the first theorem of this section.

Theorem 6 (cf. [2]). IfA € T SL(n,F) is a cyclic matrix, then A can be written as the product of exactly

three involutions over F.
Proof (Theorem 6).

Let A € T SL(n,F) be a cyclic matrix. Then A is similar to the companion matrix A’ of an irreducible
polynomial over F', and so if we can show that A’ can be written as the product of exactly three involutions

over F', then, by Theorem 1 in Section 3, so can A.

Since A’ is the companion matrix of an irreducible polynomial over the field F', then A’ is an n x n matrix

of the form
0 0 - 0 «
1 0 --- 0 =« 0
Eoanl@ 1 oo 0 #] = «a
aa - E _[Iﬂ-l B]’
0 0 --- 1 =%

where 0 is the 1 x (n — 1) zero matrix, and B is an (n — 1) x 1 column matrix.
Now det(A) = *1 (since A € T SL(n, F)), and since A’ is similar to A, then it follows that

det(A') = det(A) = *t1.

However, since A’ is a companion matrix of an irreducible polynomial over F', we also have

det(A)=a-1-1-...-1=a.

Since det(A’) = a and det(A’) = *1, it follows that & = 1 or & = —1, and so, in any case

a?=1.
Define the matrix J, € * SL(n, F) by
0 0 O 1
0 1 0 0
10" 0 0
Then
0 0 O 1 0.0 0O 1 1 0 0 0
: Pt 01 0 0
Ja=|o0 0 1 oo o 1 of=1]0 01 01,
0 1 0 (6 Sy (S 0
1 0 0 0 1 0 0 0 0 0 O 1
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and so it follows that J, is an involution.

Now define X € M(n, F) by
[ -1 0
&= [—aB In—l] ’
Then
o[ -1 o 1 4.]_ 1 0
“|—aB I,_i||—-aB IL,_1|  |(aB)+(-aB) I,_;

Aoy
=1 P

and so X is an involution in * SL(n, F).

Define the matrix Y € M(n, F') by

Then
Y2 _ |« 0 —Q 0 . az 0
i 0 Jn—l 0 Jn—l - 0 (Jn—l)2

and so Y is an involution in * SL(n, F).

Finally, define the matrix Z € M (n, F) by

Then Z is also an involution in * SL(n, F).

i 1 0 0 0
- —Q o
XyYz= [—QB In_lJ I: 0 Jn—l} 4= l:(lzB Jn—l] a5

Ean | P R AR

0 af| _
i 5=

and so we have shown that A’ can be written as the product of exactly three involutory matrices over F', and

so, by Theorem 1, since A is similar to A’, so can A.

Thusif A € ILSL(n, F) is a cyclic matrix, then A can be written as the product of exactly three involutions

over F. ¢

Example 37. (A Cyclic Matrix that is the Product of Three Involutions)

Let f(z) = 23 + 42 + 1 € Z11[z]. Then, since f(z) has no zeros in Zi1, it follows that f(z) is irreducible
over Z11, and the companion matrix Com(f) € M(3, Z11) of f(z) is defined by

0 0 -1
Com(f)=(1 0 —-4|.
05 i
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-4 0 -5 1 1 1
Let A = l:-4 2 5 :l € T SL(3,Z11). Then there exists a matrix B = [—1 o 2 :l €

0 -1 2 -1 -1 =2
-2 -1 =2
GL(3,Z11), with B~1 = | 4 1 3 |, such that
-1 0 -1

-2 -1 -2 -4 0 -5 1 0 1 1 1 1
B 'AB=| 4 1 3 -4 2 5 |B=]2 -1 2 -1 0 27 =
-1 0 -1 0 -1 2 4 1 3 -1 -1 -2

0 0 -1
1 0 —4]| =Com(f).

01 0
So A is similar to the companion matrix of an irreducible polynomial over Z,, i.e., A is cyclic, and so,

by Theorem 6, we know that A can be written as the product of three involutions in * SL(3,Z;). o

Example 38. (A Product of Three Involutions)

0 0 -1
Consider the companion matrix Com(f) = [1 0 ——4] € M(3,Z11) of Example 37 and define the
01 0
matrices X,Y, and Z in M (3, Z11) by
-1 0 0 1 00 0 01
X=14 1 0,Y=]|0 0 1|,andZ=]0 1 0].
0 01 010 1 00

Then X2 = I3,Y? = I3, and Z2? = I3, so X, Y, and Z are all involutions, and

-1 0 0 1 00 -1 0 0 0 0 1
XYZ=|-41 0 0 0 1|]Z=]-4 01 01 0|=
0 01 010 0 1 0 1 00

0 0 -1
1 0 —4| =Com(f),
01 0

and so it follows that the companion matrix Com(f) is indeed the product of three involutory matrices over
Z11 N o

The previous theorem gives a sufficient, but not necessary, condition for a matrix to be written as the
product of exactly three involutions. The following theorem gives another such sufficient condition for a matrix

to be factored as a product of three involutory matrices.

Theorem 7. Let A € T SL(p, F) be similar to the direct sum of two cyclic matrices over F. Then A can
be written as the product of exactly three involutions in * SL(p, F).

Proof (Theorem 7).

Let A € ¥ SL(p, F) be similar to the direct sum of two cyclic matrices over F. Say A is similar to A/,
where A’ = A; @ Az, and A; € T SL(n,F) and Ay € t SL(m, F) are both cyclic, with n + m = p.
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So

A’:AI@AQZ[ Al Onxm]’

Omxn Az
and by Theorem 6 we know that since A; € T SL(n,F) and A; € T SL(m, F) are both cyclic then each can

be written as the product of three involutions over F'.

Let
Ay = KLM, where K, L, and M € * SL(n, F) are all n x n involutions, and

Ay = XY Z, where X,Y, and Z € T SL(m, F) are all m x m involutions.

Then A’ becomes
| KLM  Opxm

1 _ L Al Onxm
A‘A1®A2‘[ }‘[omxn XYZ]'

Omxn AZ

_| L Oaxm

K Onxm] [
’ - Omxn Y

O X ] , and

Define the matrices B,C, and D € T SL(p,F) by B = [

[ M Onxm
D‘[omm Z]'

Then we have

;4
(=)
=]

Bz_ I\’ Onxm- [ I{ Onxrn N [ 1{2 Onxn- - I
— | O | ) [Oboans — Xy Jo bOnxume 2 )5 LOwa Bn ] — 7P
C?_ L Onxm- [ L Onxm e [ LZ Onxn- e -In On I
" 0mxn Y J|O0mxe Y | |Omxm Y2 | |Om Im] ™
and N _ 3 - 5
D2 = [ M Onxm M Onxm] = M Onxn .l In On =7
Omxn  Z | [Omxn Z Omxm 22 O Im |~ 7

and so B,C, and D are all involutions in ¥ SL(p, F).

r K 0 L 0 M 0
o 88 nxm nxm nxm | _
BCD‘[OM X Hom % Homx” 7 ]‘

KL Opxm][ M Opxm] _ [KLM Opxm
XY [P00en 2 |~ | Onwe XY¥YZ

Omxn
Al Onxm — Al
[OmXﬂ AZ :| = i

Since A’ can be written as the product of three involutions in ¥ SL(p, F'), then, by similarity and Theorem

1, so can the matrix A.

Hence if A€ T SL(p, F') is similar to the direct sum of two cyclic matrices, then A can be written as the

product of three involutory matrices over F. ¢

Example 39. (A Product of Three Involutions)

Let

0 -1 0 0 0
1 2 00 0 B B

A=|0 0 0 0 -1 :[0 26’,‘3]:36906 t SL(5, Z7).
0 0 1 0 -2 e
0 0 01 0
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0

Now B = [1
0 0 -1
22 -2z 4+ 1lover Z;,and C = |1 0 2
01 0

polynomial g(z) = z® + 2z + 1 over Z7.

_21] € Y SL(2,7;), is the companion matrix of the irreducible polynomial f(z) =

] e T SL(3,Z7), is the companion matrix of the irreducible

If we follow the construction used in the proof of Theorem 6, there exist involutions X,Y, and Z in

t SL(2, Z7), defined by

-1 0 1 0 0
X_[2 1]’Y_[O 1],andZ_[1
such that T - { olfo
XYZ:[z 1”0 1]Z=[2 1”1
0 -1
i %]=

and so it follows that B is the product of three involutions in * SL(2, Z7).

Also, there exist involutions L, M, and N in * SL(3, Z7), defined by

-1 00 100
L=|-2 1 0|,M=|0 0 1|, and N=
0 0 1 010

such that N
-1 0 0 0 0 -1 0 0

LMN=]-2 1 0 0 1|N=|-2 0 1

0 0 1 1 0 0 1 0]

1
0
0
=G,

01

and so the matrix C is the product of three involutory matrices in ¥ SL(3, Z7).

Define the matrices F,G, and H in ¥ SL(5, Z7) by

o)

-

-0 O
O = O

-OoO O

|

o = O

X Oaxs Y  0Oaxs [ Z 02x3]
F= ’G: . d H=
[om L ] [om M| O3xz N
Then ) _ - —_— . _ ;
F2— X Oa2xs X Oaxa| _ [ X° Oaxa| _ |2 02| _ E
[03x2 L | [0ax2 L |~ |Osxa L2 |05 I3 ] ’
of = [ Y Oax3] [ Y 0axs] _ [ Y2 0ax2] _ [ I, 0,] = &
[O3x2 M | |O03x2 M | 7 |O3xs M? |~ |03 I3] ’
and ) i : g . _ -
i Z  O2x3 Z  Oaxa| _ [ 2% Oax2| _ [z 02| _ Is
[0sx2 N | [0ax2 N | 7 |03xz N? |05 I3 ] ’
and so F, H, and G are all involutions in * SL(5, Z7).
s X 0 Y 0 XY O VA 0
FGH = 2x3 2x3] H = ZXB] [ 2x3] =
v [03x2 L ] [Osxz Osx2 LM | |O3x2 N



XYZ 02)(3 - B 02><3 —A
03x2 LMN |~ 03x2 c =N

and so A is the product of three involutions in ¥ SL(5,Z7). ¢

The last theorem of this section determines when scalar matrices over a field can be written as a product

of three involutory factors.

Theorem 8 (cf. [3]). Let a € F. Then the scalar matrix al, € T SL(n, F) can be written as the product

of three involutions over F, if either

1) o= 1,0t

2) niseven and a? = -1 # 1.
Proof (Theorem 8).

Let « € F, and let I, € T SL(n, F) be the scalar matrix defined by a.

If (1) holds then a? = 1, and so we have
ol saly =o'l = I,

and so al,, is itself an involution in ¥ SL(n, F).

Now since o, is an involution then it can also be written as the product of three involutions involutions
in * SL(n, F). For example,
aly = alzJidn,

where J,, € T SL(n, F) is the n x n involution defined by

ol 0 e 1
J.=1o0 0 1 0
010 0
100 0

Hence if (1) holds, then al, can be written as the product of three involutions, and so in this case we are

done.

Now if (2) holds, then n is even and a? = —1 # 1.

Since n is even, then n = 2k for some positive integer k, and so al, = aly, = [aolk a(} ] , can be
k

factored as
=l = aly 0 - 0 aly —1I 0 0 I
Hin = o= 0 al] |[-alx O 0 Iy Iy 0
Since
0 aly Iy 0 0 Lk| _| 0 ol 0 L] _ [alk 0] _ 1
Lt el 2118 AL 08 4] S emen
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Now

[ 0 aly 0 aIk-_ —a?l; 0 - —(_1)[,C 0 [ o T s
_Q‘Ik 0 —aIk 0 ] - 0 ._azIk = 0 _(_I)Ik = 0 Ik — 12k =— iny

—I; 0 =1y 04l e 204] -
[0 Ik][o Ik]‘[o Ik]—lz"‘l"’a“d

[0 Ix e e S
f . Ohep Bipv el Biady fnitrs ™

so all of the matrices in the above factorization of al,, are involutions in * SL(n, F), and so, in this case, oI,

can be written as the product of three involutions over F.

Hence if either (1) or (2) in the statement of Theorem 8 hold, then aI, can be written as the product of
three involutions in ¥ SL(n, F). o

Example 40. (A Scalar Matrix that is the Product of Three Involutions)

4 0 0 O
Let A= 8 g 2 8 € 1t SL(4,Z17). Then, since 42 = 16 = —1 # 1, by Theorem 8, A can be written
0 0 0 4
as the product of exactly three involutions in * SL(4, Z7).
0 0 4 0
Now X = _04 g 8 g EtSL(4,Z17), is an involution since
0 -4 0 0
0 0 4 0 0 0 4 0 -16 0 0 0 1 0 0 0
X2_00040004_0—1600_0100_I
~|-4 0 oo0f|-4 0 OooO0f[ [0 o0 -1 0]"]0o0 10| ™
0 —4 0 0 0 -4 0 0 0 0 0 -16 0 0 0 1
-1 0 0 0
Y = g "I 0 D EfSL(4,Z17),is an involution since
0 o1 0
0 0 0 1
-1 0 0 O -1 0 0 0 10 0 0
0 -1 0 0 0 -1 0 0 01 00
2 _ = _
Y—[0010 0 0 10|=|00 1 of="%and
0 0 0 1 0 0 0 1 0 0 0 1
0 01 0
{00 01 + . . ) .
7 = 10 0 0] € T SL(4,Z17), is an involution since
01 0O
0 01 0 0 010 1 0 0O
0 0 0 1 0 0 0 1 01 0 O
2 _ L .
Z'{10001000—0010—I“‘
01 0 O 01 0 0 0 0 0 1
Also
0 0 4 07f=1 0 0 0 0 0 4 07[0 0 1 0
0O 0 0 4 0 -1 0 0, [0 0 0 4 0 00 1f_
XYZ=1_4 09 oo/|lo o 10/?2=|-4 0 o0of|1 000
0o -4 00lLlo o0 o1 0 -4 00llo1o0 o0



4 0 0 0
0 4 00
0 0 40 =4,
0 0 0 4

and so we have shown that A can be written as the product of three involutions X,Y, and Z over Zi7. ©

So far, in Theorems 6, 7, and 8 of this section, we have given various conditions for when a matrix over
a field can be written as a product of three involutions. These conditions, however, are only sufficient; they
are not necessary, since there may exist a matrix over a field that does not meet any of the conditions given
in Theorems 6, 7, and 8, but that can still be written as a product of three involutions. As it turns out,
the characterization of all the matrices over fields that can be written as a product of three involutions is
not complete, and only certain special subsets of the set of all matrices that can be factored as a product of

exactly three involutory matrices have been characterized.

Before we end this section and our discussion of products of involutions over fields and move on to the
next section, Section 7, there is one last result from Ballantine [3] which we will present, but not prove, that

further characterizes matrices over a field that can be written as a product of exactly three involutions.

Proposition 5 (cf. [3]). A matrix A€ T SL(n, F) can be written as the product of three involutions over
F if and only if at least one of the following hold:

a) n <2,

b) F has order 2,3, or 5,

¢) n =3 and either the characteristic of F' is 3 or f(z) = z? + z + 1 is irreducible over F, or
d) n =4 and the characteristic of F'is 2. ¢

At this point we have completed our discussion of products of involutions over fields. In the next section,
Section 7, we will deal with generalizing this concept of factoring a matrix as a product of special matrices to

rings of special types that are not fields.
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Section 7. Special Products Over Other Rings that are not Fields

In the previous sections we have studied square matrices over fields that can be written as the product of
involutions. In this section we will extend this concept of factoring matrices into a product of special factors
over specific types of commutative rings with unity. To this end, we are giving the following theorems, Theorem
9 and Theorem 10, without proof, since they provide us with rings that give rise to special factorizations of

matrices.

Theorem 9 (cf. [19]). Let A be a ring with unity such that A satisfies the first Bass stable range condition.
Then every matrix in GL(n, A), the group of all invertible n x n matrices with entries in the ring A, can be

written as the product of two cyclic matrices in GL(n, A). ©

Theorem 10 (cf. [19]). Let A be a ring with unity such that A satisfies the first Bass stable range condition.
Then for any matrix in M € GL(n, A), and any companion matrix S € GL(n, A), there exist cyclic matrices
L and K in GL(n, A), such that M = LK, where L is similar to the given companion matrix S. ©

Suppose now that there exist commutative rings with unity satisfying the first Bass stable range condition,
and let R be such a ring. Then, by Theorem 9 and Theorem 10, we know that every element in GL(n, R),
the general linear group of all invertible matrices with entries over R, can be written as a product of two
cyclic matrices in GL(n, R), and, in fact, we have seen that we can further specify that the first factor in this
product be a cyclic matrix that is similar to some given invertible companion matrix in GL(n, R). The next

theorem of this section considers products of involutions in such rings.

Theorem 11. Let R be a commutative ring with unity. Then every cyclic matrix A € GL(n, A) with

det(A) = 1 can be written as a product of three involutions over R.

Proof (Theorem 11).

Let R be a commutative ring with unity, and let A € GL(n, R) be a cyclic matrix with det(4) = T1.

Since A is cyclic, then A is similar to the n X n companion matrix A’ of an irreducible polynomial over

R of the form

0 0 -0
1 0 -0 % §
t= 10 1 S0 x| = o
b A y L : [I"—l B]’
00 - 1 x

where 0 is the 1 x (n — 1) zero matrix, and B is an (n — 1) x 1 column matrix.

Now det(A) = *1 (since A € T SL(n, R)), and since A’ is similar to A, then it follows that

det(A’) = det(4) = *1.

However, since A’ is a companion matrix of an irreducible polynomial over R, we also have
det(A)=a-1-1-...-1=a.
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Since det(A4’) = o and det(A’) = *1, it follows that & = 1 or @ = —1, and so, in any case

al=1.
Define the matrix J, € GL(n, R) by
0 0 0 1
Ja=10 0 1 0
010 0
1 00 0
Then
0 00 1 0 00 1 1 00 0
Ja=fo 01 - 0]]o o0 1 g p= gt d By ;
010 -0 010 0 :
L 00 me5.40 15460, 4.0 0 0 00 1

and so it follows that J,, is an involution.

Now define X € M(n, R) by
-1 0

&= [—aB In_l]'

Then
wro[-1 01[-1 o]_ 1 0
“|-aB ILi.i||-aB I._;|~ (aB)+ (—aB) I,_;

1 0
- [0 In—l] —Iﬂ)

and so X is an involution in GL(n, R).

Define the matrix Y € M(n, R) by

Then

and so Y is an involution in GL(n, R).

Finally define the matrix Z € M(n, R) by

0 1
2=[,2, 1=

Then Z is also an involution in GL(n, R).

i 1 0 0 0
= - @
A¥E= [—QB In—l] [ 0 Jn—l] 4= [azB Jn—l] 4=
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[Z J,,O_IHJno_l 3]=[(,],,(11)z 5=

0 G [
[In-l B]_A’

and so we have shown that A’ can be written as the product of exactly three involutory matrices over R, and

so, by Theorem 1, since A is similar to A’, so can A.

Hence if A € GL(n, R) is a cyclic matrix with det(A) = *1, then A can be written as the product of

exactly three involutions over R. ©

So if R is a commutative ring with unity satisfying the first Bass stable range condition, then, by Theorems
9 and 10, we can factor any matrix in GL(n, R) as the product of two cyclic matrices, the first of which is
similar to a prescribed companion matrix S in GL(n, R), say with det(S) = *1, and so now, by Theorem
11, since S is cyclic with determinant *1, then we can replace it with its factorization as a product of three

involutions over R. This observation leads us to the final result of this section, Theorem 12.

Theorem 12. Let R be a commutative ring with unity that satisfies the first Bass stable range condition,
and let A be any matrix in GL(n, A). Then A can be written as the product of three involutory matrices over
R and a cyclic matrix C in GL(n, R). Furthermore if det(C) = *1, then A can be written as the product of

at most six involutory matrices over R.
Proof (Theorem 12).
Let R be a commutative ring with unity satisfying the first Bass stable range condition, and let A €

GL(n,R). Also let S € GL(n, R) be a companion matrix with det(S) = *1.

Then, by Theorem 9 and Theorem 10, we know that A = BC, where B and C are both cyclic matrices in
GL(n, R), and B is similar to the specified companion matrix S. Now since B is similar to .S, then det(B) =
det(S) = *1, and since B is cyclic, by Theorem 11, B can be written as the product of three involutions in
GL(n,R), say B = XY Z, where X,Y, and Z are in GL(n, R).

Hence
A=BC=>A=XYZC,

where X,Y, and Z are all involutions in GL(n, R), and C' is a cyclic matrix in GL(n, R).

Furthermore if det(C) = *1, then since C is cyclic, by Theorem 11, C can also be written as the product
of three involutions in GL(n, R), say C = KLM, where K, L, and M are in GL(n, R).

So
A=BC= A=XYZKLM,

where X,Y,Z, K, L, and M are all involutions in GL(n, R), and so in this case A can be written as the product

of most six involutory matrices over R. ©

64



Section 8. Summary

In the introduction, Section 1, we stated the following question which was to be the main topic of this
paper:
Does there exist a smallest integer k, such that given any matrix
A € t SL(n, F) which is a product of involutions, A can be written
as the product of at most k involutions, and, if such an integer

exists, what is 1t?

The answer to this question, as we proved in Section 5 with the Four Involutions Theorem, is, of course,
k= 4.

In Section 4 we considered which matrices, if any, can be written as the product of exactly two involutions,
and we found that these matrices must be similar to their inverses, and that, in fact, the converse is also true.
That is, if a matrix is similar to its inverse then it can be factored as the product of two involutory matrices.
In Section 6 we considered the case of matrices that can be written as the product of exactly three involutory
factors, and we saw that these matrices have not, as yet, been completely classified. Finally, in Section 7, we
extended this concept of factoring a matrix into a product of special matrices to rings that were not fields,
and we saw that if the ring was commutative with unity satisfying the first Bass stable range condition, then

any matrix with entries over the ring can be factored into the product of two cyclic matrices.

As it turns out, this concept of taking a class of objects (in our case invertible matrices with a determinant
of 1 over a field), studying products of elements from this class, and trying to find the minimal number of
special factors (in our case involutions) required in a given factorization, is a frequently addressed topic.
Other cases that have been, or are currently being studied by others, include products of normal matrices, of
symmetric matrices, of elementary matrices, over various rings, fields, infinite-dimensional vector spaces, and

Hilbert spaces.
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