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ABSTRACT 

TOPOLOGICAL VARIANTS OF THE CLOSED GRAPH THEOREM 

Dragana Vujovic 

Masters of Science in Mathematics with the Computer Science Option 

Youngstown State University 

March, 1997 

The Closed Graph Theorem plays a fundamental role in functional analysis, 

particularly in the study of Banach spaces. 

This thesis examines the extent to which the linearity of the Closed Graph 

Theorem have been replaced by topological conditions imposed on the domain, codomain 

and/or the function. 
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Historical Outline of Topology 

Considerations of a topological nature, depending on concepts of limit and 

continuity, originated together with the oldest problems of geometry and mechanics, such 

as the calculation of areas and the movement of figures. 

In the hands of eminent mathematicians and for a long period, infinite series were 

a tool used in an entirely formal manner, that is without regard for convergence 

considerations. Gauf3 seems to have been the first to think about the legitimacy of the use 

of infinite processes, such as the series expansion of Newton's binomial with an arbitrary 

exponent, which at times led to surpassing absurdities. The credit, however, is due to 

Abel and Cauchy for having defined the concepts of a convergent series and sequence 

and the concept of continuous function with the rigor that is so familiar to us today. 

The first mathematician who attempted to isolate the idea of a topological space 

and who sensed its far reaching importance was Riemann. However, in order for the 

expansion of topology in this direction to become possible, it was indispensable that this 

new discipline should have at its disposal experience and information concerning 

important particular cases. 

Then came Cantor's investigations in 1874, meeting with opposition from many 

of his contemporaries because of their complete novelty. These investigations were in 

part inspired by the desire to analyze the difficult questions concerning the convergence 

of the Fourier series. Simultaneously, the theory ofreal numbers was erected on a solid 



foundation by Dedekind and Cantor. The systematic study of the concept of a set, of an 

accumulation point, etc. are linked to the work of Cantor. 

Parallel to the investigations on the topology of the. line and of p-dimensional 

Euclidean space, it was attempted to make use of the same methods, not only with the 

respect to point sets in the sense of elementary geometry but also to sets whose elements 

were curves, surfaces, and, above all, functions. The pioneers in this period of infancy of 

functional analysis were Ascoli, Pincherle, and principally Volterra. To the latter we owe 

a systematic study (1887) ofline functions (or functionals according to the terminology 

adopted since Hadamard) and of the infinitesimal calculus of functionals. 

An epoch-making step of progress was achieved, at the beginning of our century, 

by the introduction of the so-called Hilbert spaces, later defined axiomatically by von 

Neumann (1927). These spaces are, without doubt, the most important and fertile 

example of topological spaces of an infinite number of dimensions among all the 

examples of such spaces known today. By their rich structure which includes, the 

concept of the sum of vectors, the product of a scalar and a vector, and the scalar product 

of two vectors, these Hilbert spaces unite with their geometrical elegance an impressive 

variety of possible analytical applications. 

The existence of so many examples of spaces like the Euclidean spaces and their 

subspaces and the various function spaces in which topological considerations find 

natural applications gave rise to the desire, or rather the necessity, to synthesize an 

approach which would permit the study of the properties held simultaneously by all these 

spaces and would, consequently, bring about a better comprehension of the particular 

aspects of each one of them. 
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Thus, general topology originated with the introduction, in 1906, of metric spaces 

by Frechet and with the elaboration of an autonomous theory of abstract topological 

spaces by Hausdorff in 1914; the merits of Hausdorffs achievements are recognized by 

the association of his name with the so-called Hausdorff spaces. Later on Kuratowski 

formulated the axioms of the closure operator and showed that the axioms are equivalent 

to topology axioms. From this time on, the steps of progress of the new discipline 

followed rapidly one upon the other. 

During the period in which the topology of the line developed, the discovery of 

the compactness criteria of Bolzano-WeierstraB and Borel-Lebesgue stood out at once. 

To this group ofresults there belongs a theorem, due to WeierstraB, according to which 

every continuous function on a bounded and closed interval attains a minimum there. 

WeirstraB observation that the application of an analogous principle in function spaces is 

not always valid but must be based on a previous justification met with response in 

Hilbert's proof of the existence of a minimum for the integral and the subsequent solution 

of the classical Dirichlet problem concerning harmonic functions. This remark of 

WeierstraB is one of the sources from which the concepts of semi-continuity and of 

compactness in function spaces draw their interest. Semi-continuity was discovered by 

Baire in the case of real variables and was later utilized by Tonelli in the calculus of 

variations. We owe to Frechet the formulation of the idea of compactness in metric 

spaces in the sequential manner of Bolzano-WeierstraB and the recognition of its 

equivalence, in this case, to the property of Borel-Lebesgue. The concept of a compact 

space as it is now considered in topology became the object of systematic study, based on 
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the criterion of Borel-Lebesgue, as recently as 1929 and originated with Alexandroff and 

Urysohn. 

Normal spaces, the importance of which derive, to a considerable extent, from the 

extension theorem for continuous real-valued functions, were introduced by Tietze. First 

established by Lebesgue for the case of functions defined on a subset of the plane and by 

Tietze for the case of functions defined on a metric space, this theorem attained a general 

form in a basic paper by Urysohn. The related category of completely regular spaces was 

brought out by Tychonoff 's work on the compactification of topological spaces and 

includes, according to a theorem of Pontrjagin, all topological groups. 

Continuity is a purely local phenomenon; the corresponding global phenomenon 

we call uniform continuity today. The first trace of the idea of uniform space in 

mathematics is found in Cauchy's general criterion for the convergence of a series or 

sequence. Under the influence of WeirstraB and Heine, the ideas of a uniformly 

convergent series and of a uniformly continuous function entered the domain of 

mathematical analysis. 

To Frechet and Hausdorff, we owe the concept of a complete metric space (one in 

which Cachy's convergence criterion is satisfied) and the concept of a uniformly 

continuous function on a metric space and the possibility of completing every metric 

space by a construction analogous to that employed by Cantor in order to define the real 

numbers on the basis of rational numbers. One of the fruits of this order of ideas is the 

Riesz-Fischer theorem according to which the space of square integrable functions in the 

sense of Lebesgue is complete. 
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With the definition of topological groups by Leja in 1925 and of compact spaces 

by Alexandroff and Urysohn in 1929, the concept of a uniformly continuous function 

came to have significance in a greater number of cases. Finally, in 1940, Tukey 

introduced uniform spaces thus encompassing in one single theory various aspects 

common to the theories of metric spaces, topological groups, and compact spaces. 

In the panorama of the hysterical roots of topology just outlined, we did not 

mention the idea which, originating in Riemann's work, was subsequently developed by 

Betti and Poincare, leading to the analysis situs or algebraic topology of today. The 

reason is that these ideas belong to a direction of research distinct from that in which we 

shall be interested in the present monograph. 
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General Remarks 

Given a function f:X • Y where X and Y are arbitrary topological spaces, the 

fundamental question arises: 

When is f continuous? 

In the framework of topological vector spaces where f is linear and X and Y are 

Banach spaces, it is sufficient for continuity of f that f has a closed graph. 

Consequently, the Closed Graph Theorem has long been recognized as a major tool in 

Functional Analysis. Until recently, very little was known in the framework of General 

Topology with regards to the function with the closed graph being continuous. In recent 

years, however, interest has grown in this topic simultaneously with an increasing interest 

in more general subjects of non-continuous functions. 

The Closed Graph Theorem was originally proven by Stefan Banach [1] in the 

early 30's and was subsequently published in his famous "Theorie des operations 

lineaires." It was used in the proof of the Open Mapping Theorem and as such is one of 

the most important theorems of Abstract Analysis. 

It is easy to see that for bounded real valued functions, a function having a closed 

graph is equivalent to its continuity. [18] 

J. L. Kelley [10] extends this theorem to Lindelof spaces. It was later shown by Husain 

[9] that every almost continuous closed-graph function into a locally compact Hausdorff 

space is continuous. 

By a topological version of Closed Graph Theorem, we mean any result 

corresponding to the Banach Closed Graph Theorem where the linearity is replaced by 

almost continuity. 
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Chapter 1 

1.1 Closed Graph Theorem in Functional Analysis 

The graph of a function f: X • Y denoted by gr(/) is defined as follows: 

gr(/)= {(x,/(x)): x e X}. 

To explain what is meant by the closed graph I will start with recalling that 

given a set Sc X, where Xis a metric space, we say that a point x belongs to the closure 

of S, denoted Cl(S), if and only if there exists a sequence { ¾} of points from S such that 

limn• oc ¾ = x. A set S is closed if S = Cl(S). 

Finally, the function f: X • Y has a closed graph, gr(/), if the graph of the 

function f is a closed subset of the product X x Y. 

We will illustrate this notion by looking at the function which does not have a 

closed graph. Consider the function : 
y 

{

2x, 
/(x)= 

3' 

ifx "# 1 

ifx = 1 

0 )( 

Fig. 1.1.1. 

The set gr(/) is not closed in the X x Y plane because it does not contain all of its 

limit points. In particular, the point (1,2) is the limit point of the set gr(/), but it does not 

belong to the graph. In addition, there is an alternative characterization of the Closed 

Graph Property. 
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I 

First, recall that a sequence {(x;t)} converges to a point x in X provided that for 

each neighborhood U of x there is a natural number N such that Xj EU for all i ~N. 

Consider the following: 

Lemma 1.1.1. Let/: X• Y be a function. Let {x"} be any sequence of elements 

of the domain off such that {x"}• x. If{(/(¾)} • y, then the function f has a closed 

graph if f (x) = y. 

Applying this to the previous function, the sequence { 1 + (1/n)} converges to 1, 

{f ( 1 + ( 1 /n)} converges to 2 but f ( 1) = 3, which is not equal to 2. Thus, this function 

does not have a closed graph. 

Heine's Condition of Continuity: A function f: R • R is continuous if and 

only if for any x and for any sequence{¾}, if {¾} converges to x, then {/(¾)} 

converges to/(x). 

We shall provide the proof of the statement below in Chapter 2. 

Proposition 1.1.1. Every continuous real-valued function has a closed graph. 

But the converse of the above proposition is not true. 

Consider the function: 

{

Ilx, 
/(x)= 

0, 

ifx -:t:- 0 

ifx= 0 

\ 
Fig. 1.1.2. 

Function f is not continuous at O but it has a closed graph. 
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Using Heine's condition of continuity the sequence { 1/n} converges to 0, but 

{/(1/n)} = { n} does not converge to f(O) = 0, so f is discontinuous at the origin. 

To show that the function f has a closed graph, we need to show that if{¾} is any 

sequence of elements of the domain off such that{¾} • x and if {/Cxn)}• y, then 

f ( x) = y. { f ( ¾)} does not converge even though { 1 /n} does. f does not have a limit at 

0. In fact, limn•"' f(l/n) = oo. Since the limit does not exist, the closed graph condition is 

automatically satisfied. 

Proposition 1.1.2. Let f: R • R be bounded and suppose that gr(/) is closed 

in the X x Y plane. Then f is continuous. 

Proof: Let x be any point in the domain off Suppose that { x" } is any sequence 

of points in the domain of /converging to x. lfwe show that {/Cxn)} converges tof(x), 

then by Heine's condition, f is continuous. Assume that {f(x0)} does not converge to 

f(x). Let Kc R be any open subset of the range off such that K containsf(x). Since 

{/Cxn)} does not converge to f(x), K does not contain all but a finite number of points of 

{/Cxn)}. Thus, there exists a subsequence{/(¾ )} of {f(x
0
)} such that none of the 

m 

elements of {f(x
0 

)} are contained in K. The subsequence{/(¾ )} is bounded because 
m m 

/is bounded. And we know that this bounded sequence contains a convergent 

subsequence, so there exists a subsequence {f(¾m.)} of {f(¾m)} which converges to 
I 

some k. If f(x) = k then k e K which contains a finite number of points of {f(¾m.)}, 
I 

which is a contradiction. So /(x) * k. 

Since all subsequences of a convergent sequence of real numbers converge to the 

same limit point as the original sequence, and since { x"m· } is a subsequence of { ¾m· } 
I I 
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and hence of {¾},then { x0 }converges to x implies sequence { ¾ . } also converges to 
. m, 

x. However, this is a contradiction of the Closed Graph Property since { ¾m. } converges 
I 

to x and {f(x0 m.)} converges to k, butf(x) * k. Hence, {/(¾)} converges tof(x), and f 
I 

is continuous by Heine's condition. • 

Definition 1.1.1. We say that X(K) is a linear space over the field K of scalars if: 

i) (X, EB) is a commutative group 

ii) For any scalars k, j E Kand u, v E X : 

a) ku EX 

b) k(u EB v) = ku EB kv 

c) (k + j)u = ku EB ju 

d) kGu) = (kj)(u) 

e) lu = u. 

Definition 1.1.2. A norm II. II over X(K) is a function II -11 : X(K) • R+ u {O} 

such that for any k E K and u, v E X we have: 

i) 11 ku 11 = I k 111 u 11 

ii) II u EB VII ~ II u II + II V II 

A linear space with a norm is called normed space. 

Definition 1.1.3. A space { X, II . II} is called a Banach space, if the metric 

space {X, d} is complete, where d(x,y) = II x -y 11-

Definition 1.1.4. Let T: X • Y be a transformation from a linear space X(K) 

into linear spaces Y(K), where K is the field of real or complex numbers. A 

transformation T is called a linear operator if: 
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T(x1 + x2) = T(x1) + T(x2) , and 

T(a x) = aT(x), for any x, x1, x2 e X, and a e K. 

If Y = K, then a linear operator T : X • K is called a linear functional. 

Lemma 1.1.2. ( Open Mapping Theorem ) Let T be a continuous linear 

operator from a Banach space X onto a Banach space Y, that is TX= Y. Then T sends X­

open subsets of X onto Y-open subsets of Y. 

Lemma 1.1.3. ( Inverse Mapping Theorem ) If T is a continuous, linear, and 

bijective ( = "1-1" and "onto" ) operator from a Banach space X onto a Banach space Y, 

then the inverse mapping T ·1 is a continuous linear operator from Y onto X. 

Definition 1.1.5. Let T be a transformation from a Banach space X into a Banach 

space Y. A transformation T is called a closed graph transformation if the set 

Z = { (x, Tx): x e X} is closed in Xx Y. The set Z is called the graph ofT. 

Theorem 1.1.1. (Closed Graph Theorem) A closed graph linear operator from 

a Banach space X into a Banach space Y is continuous. 

Proof: Observe that the product of two Banach spaces {X, II II x} and {Y, II llv} 

is a Banach space with the norm ll(x,y)II = II x II x + II y llv- The graph Z of the operator T 

is a linear subspace of X x Y; since it is closed it is a Banach space. 

Now, we shall show that the transformation T 1 given by: Ti(x, Tx) = x, from the 

Banach space Z onto Banach space Xis an injective, continuous, and, linear operator. 

Let, x1, x2, x e X, a e K, then taking z1 = (x1, Tx1), Zi = (x2, Tx2), z = (x, Tx) 

we have: 
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Ti(z1 + Z;i). = T1(x1 + x2, T x1 + T x2) = T1(x1 + x2, T(x1 + x2)) = x1 + x2 = T 1 z1 + T 1 Zi· 

Similarly, 

T1(az) = T1 (ax, Tax) = ax = aT1z. 

Furthermore, if zk = (xk, T xk) • 0 (in Z), then xk • 0 (in X), hence T 1 zk • 0. 

Finally, bijectivity of T I is obvious. Hence, we can apply the Inverse Mapping Theorem 

to T1, which gives that T1 -i is continuous. 

Now, let xk • 0 (in X), then Tx/ = (xk, Txk) • 0 (in Z), so II xk II II Txk II • k• «> 0. 

In particular, Txk • k• «> 0 (in Y). This proves that Tis continuous at 0. We now show that 

T is, then, continuous on the w~ole space X. The following standard arguments hold for 

any linear topological spaces X and Y. 

Let T be continuous at 0, and let Yo= TXo, Pick an arbitrary neighborhood UY
0 

of 

Yo E Y, then U0 = (Uy
0 

- Yo) is a neighborhood of Ov in Y. There is a neighborhood V0 of 

Ox such that if x E V0, then Tx E U0• Let us denote Vxo = (V0 + x0 ) and let x E Vxo· 

Then x = x 1 + Xo, where x 1 E V0; hence T x 1 E U0 • Thus, Tx = T X 1 + Yo E U0 +Yo= Uy
0

-

This shows that T is continuous at Xo, which also finishes the proof of the Closed Graph 

Theorem. • 
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Chapter 2 

2.1 Compactness of the Range Space and Generalization 

The concept of compactness is a generalization of a very important theorem in 

classical analysis , the Heine-Borel Theorem. The Heine-Borel Theorem is named in 

honor of Eduard Heine (1821-1881) and Emile Borel (1871-1956), and asserts that if a 

and b are real numbers with a < b and O is a collection of open intervals such that 

[a,b] c u{O:O E O}, then there is a finite subset {01, 0 2, ••• , On} of Osuch that 

[a,b] C UNn=l On. 

Recall that a collection A of the subsets of a topological space (X, 't) is a cover of 

B c X provided B c u Ae A A, and the cover A of B is an open cover of B provided each 

member of A is open. 

Definition 2.1.1. A subset A of a topological space (X,'t) is compact provided every 

open cover of A has a finite subcover. 

Definition 2.1.2. A topological space, (X, 't), is locally compact at a point, p E X, 

provided there is an open set U and a compact subspace K of X such that p E U c K. 

A topological space is locally compact if it is locally compact at each of its points. 

Consider the sett::,.= { (x,y) EX x X: x = y }. t::,. is called the diagonal ofX. 
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Remark 2.1.1. We claim that if (X, 't) is a topological space, if U denotes the 

product topology on Xx X, and ifUt,. is the subspace topology on 11 determined by U, 

then (X, 't) is homeomorphic to (/1, UJ. 

Leth: X • 11 be given by h(x) = (x,x). Clearly, his continuous, '1-1' and 'onto' 

proves the above claim. 

Further, 

Theorem 2.1.1. IfX is Hausdorff, then 11 is closed (in Xx X). 

Proof: 
- - --- ---1 

1 1\/ __ : __ • I 
J I , 

- - ' 1--:-_J 

;u., 
' ,-J---, 

:I 

Fig. 2.1.1. 

We shall show that the complement of 11, namely (Xx X) \ 11, is open. Let 

(x, y) E (Xx X) \ 11. Since Xis a T2 (Hausdorff) space, there are two open sets U and V 

such that x EU and y EV and Un V = 0. In other words (x, y) EU x V c (Xx X) \ 11 

which is open since U x Vis open (since x and y are arbitrary). Hence, 11 is closed in 

XxX. • 

Remark 2.1.2. If 11 is replaced by the graph of a continuous function/, the set 

gr(/)= {(x,y): y = f(x)}is homeomorphic to X. To show that this holds consider the 

following: 
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Leth : X • gr(f) be given by h (x) = (x,f (x)) where f is a continuous function. 

Then, similarly as in the Remark 2.1.1., h is homeomorphism. Hence, gr(f) ::::l X. 

Now, ifwe assume that Y is Hausdorff space, then we obtain the following 

result: 

Theorem 2.1.2. Let f: X • Y be function and Y is Hausdorff space. If/ is 

continuous, then f has a closed graph. 

Proof: Let g (x,y) = (f (x),y). Clearly, g (x,y) E ti<:=> y = f (x) <:=> (x, y) E gr(f). 

Hence, gr(f) = g-1(ti). Now, g is continuous, and ti is clo.sed, and gr(f) is also closed 

because the inverse image of a closed set is closed. Therefore,/ has a closed graph. • 

Definition 2.1.3. A binary relation ~ directs a set D if Dis not empty and: 

a) if m, n, p E D such that m ~ p, n ~ m, then n ~ p 

b) if m E D, then m ~ m 

and, 

c) if m,n E D, then there is p E D such that p ~ m, p ~ n. 

Definition 2.1.4. A directed set is a pair (D, ~), such that~ directs D. 

Definition 2.1.5. A net is a pair (S, ~), such that S is a function and ~ directs the 

domain ofS. 

Definition 2.1.6. Let f: X • Y and x E X. The cluster set of f at x, denoted 

C(f; x), is defined as the set of all points y E Y such that there exist a net xn E X with 

limxn = x and lim/(xn)= y. 
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Definition 2.1. 7. A family A of subsets of a set has the finite intersection 

property (FIP) provided that if A· is a finite subcollection of A, then, 

n{A: A EA'} -:t; 0. 

The converse of the Theorem 2.1.2. holds when Y is compact. 

Weston's Lemma Let Y be compact and let/: X • Y. Then,fis continuous at 

Xo if and only ifC(f; x0) = /(xo). 

Lemma 2.1.1. Let f: X • Y be a function where Y is compact space. If gr(/) is 

closed then f is continuous. 

Proof: 

I 
I I 
I I( I 

' \ ' 

Fig. 2.1.2. 

y 

Let x E X and let V be an open neighborhood of f(x) in Y. Since f has a closed 

graph, we need to show that there must exist a neighborhood U ofx such that f(U) c V. 

Indeed, otherwise {Cl(f(U) n (Y\V): U E N(x)}, where N(x) is the collection of all 

neighborhoods of x, is a collection of closed sets in the compact space Y\ V which 

satisfies FIP. This implies: 

C(f;x) n (Y\V) * 0 

which is, by the Weston's Lemma, a contradiction, and the proof is complete. Hence, f 

is continuous. • 
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Proposition 2.1.1. If X is a locally compact space which is either Hausdorff or 

regular, then the family of closed compact neighborhoods of each point is a base for its 

neighborhood system. 

Proof: 

Fig. 2.1.3. 

Let x be a point of X, C a compact neighborhood of x, and U an arbitrary 

neighborhood of x. IfX is regular, then there is a closed neighborhood V ofx which is a 

subset of the intersection of U and the interior of C, and evidently V is closed in C and 

hence, compact. But locally compact T2 • TJ:5 • regular, and the above holds when 

X is locally compact Hausdorff space. • 

Proposition 2.1.2. Let the function f: X • Y have a closed graph. If K is a 

compact subset of Y, then f" 1(K) is a closed subset ofX. 
y 

Proof: 

Fig. 2.1.4. 

Let K be a compact subset of Y. Suppose f"1(K) is not closed. Then there is a 

p e X \f"1(K) and a net xain 1-1(K) such that Xa • p. Evidently f(xa) has a subnet 

/(xNb) which converges to some q in K. Thus, we have {xNb,/(xNb)) • (p,q) so that 
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p E F 1
( q) cF1(K). But this contradicts the choice of p. • 

The characteristic function of the interval (0, 1] mapping R onto { 0, 1} shows that 

a closed function does not always have a closed graph. 

Let us call a function f: X • Y locally closed if for every neighborhood U, for 

each point pin X, there is a neighborhood V of p, such that V c U and f(V) is closed in 

Y. It is not clear that a closed function is always locally closed; but if the domain of a 

closed function is regular, then the function is locally closed. 

A locally closed function need not be closed as the following example shows: 

Example 2.1.1. Let X be the reals with the discrete topology, Y the reals with the 

usual topology, and/: X • Y be the identity function. Then f is locally closed and, in 

fact, continuous, but certainly not closed. 

Theorem 2.1.3[12]. Let f: X • Y be any function where Y is locally compact 

Hausdorff space. If for each compact Kc Y, F 1(K) is closed, then gr(/) is closed. 

Proof: 

Fig. 2.1.5. 

Let x0 E X and y * f(x0). Since Y is T2, there exists a neighborhood V containing 

y such thatf(x) is not an element ofV. But we know by the Proposition 2.1.1. that the 

collection of the closed compact neighborhoods ofy form a base for its neighborhood 

system. Thus, there exist a closed compact neighborhood V1 c V containing y, and, from 
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the hypothesis, it follows that /"1(V 1) is closed in X. Consequently, X \f"1(V1) = U is 

open and f(U) n V 1 = 0 which implies that gr(/) is closed. • 
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2.2 Properties of Almost Continuous Functions 

Definition 2.2.1. A function f: X • Y is almost continuous if for every x in X 

and for each open set V subset of Y containing /(x), Cl(f"1(V)) is neighborhood ofx. 

Here we will examine properties of composition, sum, and limits of almost 

continuous functions. 

If f and g are two almost continuous function, then f o g is not necessarily an 

almost continuous. 

Define f: [0,1] • [0,1] by: 

{

1, if X = 1 
/(x) = X, ifx E (R\Q) n [0,1] 

0, ifx E Q ("') [0,1) 

and g: (0,1] • [0,1] by: 

g (x) = x, ifx E Q n [0,1) 
{

1, ifx = 1 

0, if x E (R\Q) n [0,1] 

{ 

1, ifx = 1 
g (f(x)) = 0, ifx E (R\Q) n [0,1] 

0, ifx E Q ("') (0,1) 

~ I 
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Let V be an open neighborhood of 1 not containing 0. So, consider F1(V) is a 

neighborhood of 1. Then Cl(F1(V)) does not contain an open set containing 1 (in X), 

which implies that f o g is not almost continuous. 

A similar argument exists for the sum of two almost continuous functions. 

{

2, 
(g+ /)(x) = x, 

x, 

r 
J... 

1 

0 

- •--
1 

l. 

ifx = 1 
ifx e (R\Q) fl [0,1] 
ifx E Q fl [0,1) 

Fig. 2.2.4. 
,I( 

Also, limits of sequences of almost continuous functions do not have to be almost 

continuous. 

There are various conditions that guarantee that an almost continuous function 

is continuous. 

Theorem 2.2.2. Let/: X • Y be almost continuous where Y is locally compact. 

If Y is a Hausdorff space and gr(/) is closed, then f is continuous. 

Proof: Let x0 e X and Va neighborhood of /(x0). Proposition 2.1.1 implies 

that the collection of closed compact neighborhoods of /(x0) is a base for the 

neighborhood system of /(x0). Thus, there exist a compact neighborhood W of /(x0) 

such that W c V. Since gr(/) is closed, F 1(W) is closed by Proposition 2.1.2. so that 
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Cl(F1(W)) = F 1(W). But Cl(F1(W)) is a neighborhood of x0 because/is almost 

continuous which implies f ·1(V) is a neighborhood of x0. Thus, f is continuous at x0• 

Fig. 2.2.5 . 

• 

The hypothesis of Long and McGhee's theorem can be modified and that was 

done by Mahavier. 

First consider that the Frechet space is a space where if p E X is a limit point of a 

set C c X, then there is a sequence of points from C converging to p. 

,._ 

Frechet space 

Following is the Mahavier's theorem: 

Theorem 2.2.3. Let f: X • Y be almost continuous where Y is locally 

countably compact and regular and X is a Frechet space. If the graph off is closed, then 

f is continuous. 

Proof: Suppose f is not continuous at p E X. Let O c Y be an open set 

containingf(p) such that F 1(O) is not a neighborhood of p. Let Ube an open set 
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containing /(p) such that Cl(U) c O and Cl(U) is countably compact. By the almost 

continuity of/, there is an open set V containing p such that V c Cl(F1(U)). There is a 

point q e V such that f ( q) is not an element of O. There must then be a sequence 

{(q;)}(i e N) of points of F 1(U) converging to q. Since Cl(U) is countably compact, 

there is a pointy e Cl(U) such that (q, y) is a limit point of {(q;, /(q;): i EN}. But, since 

/(q) is not an element of Cl(U), y -=1:- f(q) violating the hypothesis that the graph of /is 

closed. J 

Fig2.2.6. 

• 

Definition 2.2.2. A subset A of a topological space (X;t) is dense in X provided 

that the closure of A, Cl(A), is equal to X. 

Theorem 2.2.4. Suppose Xis a Hausdorff space and D1 and D2 are disjoint dense 

subsets ofX with D1 u D2 = X. Let Y be the topological sum of the subspaces D1 and D2 

and let f: X • Y be the identity map. Then f is almost continuous; the graph off is 

closed but f is nowhere continuous. 

Proof: To see that f is almost continuous, let x e X and O be an open set 

in Y containing /(x). Suppose x e D1• Then there is an open set V c X containing x 

such that V n D1 c 0. Thus, Cl(F1(O)) => Cl(F1(V n D1)) => V, since D 1 is dense in X. 
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To see that the graph off is closed, suppose (p,q) is the limit point of the graph off 

where q e D1• If p -:t= q, then there are disjoint open sets U, V c X with p e U and q e V. 

But, U x (V n D 1) misses the graph off. So, p = q, i.e. (p,q) e gr(/). If x e D 1, then 

F 1
( D 1) = D 1 is not a neighborhood ofx since D2 is dense in X. So, f is nowhere 

continuous. 

Fig. 2.2.7 

• 
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2.3 The domain and the range space as complete metric spaces 

We will start with the definition of "complete metric space" : A metric space on 

(X,d) is complete provided that every Cauchy sequence in X converges (to a point ofX). 

The following theorem (see below) is originally due to Pettis [15], however we 

shall provide more elementary proof given by A. Berner [2]. 

Theorem 2.3.1[15]. Suppose X and Y are complete metric spaces and if 

/ : X • Y is almost continuous with a closed graph, then f is continuous. 

Proof: y 

/ /i .' 
___ o 

---

Fig. 2.3.1 

Suppose f is not continuous at a point p e X. We will inductively define the 

sequence { pJ (i e N) of points of X, a sequence { VJ (i e N) of open subsets of X, and 

a sequence { Ui }(i e N) of open subsets of Y satisfying the following conditions: 

b. /(p) e ui 
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d. If i and j are either both even or odd and i < j then Cl(U) c Ui 

e. If i < j then Cl(Vj) C v i 

f. diam (U) < 1/i 

g. diam (V) < 1/i 

h. vi c c1cr1c U)) 

Let p1 = p. There is an open set Uc Y containing /(p) such that ifV is a 

neighborhood of p, then /(V) is not the subset ofU. Let U1 be an open set containing f 

(p) such that diam(U 1) < 1 and Cl(U1) c U. Because of the almost continuity off, there 

is an open set v, c X containing p such that diam(V,) < 1 and v, c Cl(/ ·1c U,)). There 

must be a point p2 EV, such that /(p2) is not an element ofU. Let U2 be an open set 

containing /(p2) such that diam(U2) < 1/2 and Cl(U2) r, Cl(U1) = 0. Again, using almost 

continuity, let V2 be an open set containing p2 with diam(V2) < 1/2, V2 c 

Cl(/"1( U2) and Cl(V2) c V, . Suppose we have defined Vi, Ui and Pi satisfying a.- h. for 

all i ~ j. Since 0 * vj C vj-1 C Cl(/"1(Uj-t), there is a point Pj+I E vj such that 

/(pj+t) e Uj-1. Let Uj+I be an open set containing /(pj+i) such that Cl(Uj+t ) c Uj.1 and 

diam(Uj+t) < 1/G+ 1). By the almost continuity off, we can choose an open set Vj+t 

containing Pj+t such that Vj+t c Cl(/"1(Uj+t)), diam( Vj+t )< 1/j + 1 and Cl(Vj+t) c Vj. This 

completes the inductive definitions. 

Since X is a complete metric space, there exists an x such that {pJ (i e N ) 

converges to x. Also, since Y is a complete metric space, there are points y and z such 

that {/(p2)} (i e N) converges toy and{/( p2i_,)}(i e N) converges to z. Since 
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y eCl(U 1) and z E Cl(U2) , y:t:- z. But, the points (x, y) and (x, z) are both the limit points of 

the graph off, contradicting the fact that the graph f is closed. • 

Definition 2.3.1. A space X is called topologically complete if it is 

homeomorphic to a complete metric space. 

We can not use Theorem 2.2.4. and have both D1 and D2 be complete metric 

spaces. 

The following theorem is J. D. Weston's theorem [22] , however, we will provide 

Bemer's [2] proof which is in correspondence to the notation of the Theorem 2.2.4. 

Theorem 2.3.2. A Hausdorff space can not be decomposed into two disjoint 

dense subspaces that are topologically complete. 

Proof: Suppose that Xis Hausdorff and D1, D2 are disjoint dense subspaces each 

of which are topologically complete spaces, i.e. spaces which are homeomorphic to the 

complete metric spaces (there is no assumption about X being metric). Let d1 and d2 be 

complete metric spaces on D1 and D2 respectively. For x ED;, B(x, E) = 

{y ED;: d,(x, y)< E}. Also, ifs CD;, the closure of sin D; will be denoted as Cl;(S). 

Pick p1 E D 1 and let 0 1 be an open subset ofX such that 0 1 n D 1 = B(p1, 1). Since D2 is 

dense in X, we can choose p2 E 0 1 n D2 , and let 0 2 be an open subset of X such that 

0 2 c 0 1, and 0 2 n D2 c B(p2, 1/2). 

Suppose now that for each i $ 2n we have defined an open set O; and a point P; E 

Oi such that: 

a.) if i < j $ 2n, then O; c oj 

b.) if i is odd, then O; n D1 c B(p;, 1/i) 
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c.) if i is even, then O; n D2 c B ( P;, 1/i) 

e.) if i and j are both odd and i < j ~ 2n, then Cl1(0i n D1) c O; n D1 

f.) ifi andj are both even i <j ~ 2n, then Cli(Oi n D2) c O; n D2. 

Pick P2n+I E 02n n D1. Let 02n+I be an open set such that 02n+I CO;, 02n+I n Die 

BCP2n+1, 1/(2n+ 1)) and Cl1(02n+I n D1) C 02n-l n D1. Similarly pick P2n+2 and 02n+I· 

Since D1 and D2 are complete metric spaces, there is a point p E D1 such that 

{p} = n (O; n D1) (i is odd), and a point q E D2 such that { q} = n( O; n D2) (i is even). 

Let U and V be disjoint open subsets ofX containing p and q respectively. It is evident 

from the construction that q E O; for every i EN; thus, for each i, O; nV n D1-:/:- 0. 

Also, since (O; n V n D1) c (O; n D1) c B(p;, 1/i) (i is odd), nC1 1(0; n V n D;) 

cannot be empty. But (taking all intersections over odd values of i ), 

nCli(O; n V n D1) c Cl1(0; n D 1) \ U = n (O; n D1 \ U) = { p} \ U = 0. So, D1 and D2 

cannot both be complete metric spaces. • 

The space of irrationals is an example of a topologically complete space which 

cannot be decomposed into two disjoint dense subspaces that are topologically complete. 

The proof ofthis can be seen in the following example taken from L. A. Steen & J. A. 

Seebach Jr. [19]. 

Example 2.3.1. If { r;} is an enumeration of Q, we can define a new metric on R 

by d(x,y) =Ix -y I + Loci=I lli inf (1, lmax jsi 1/lx - ri I - max jsi 1/[y- ri I). The 

metric d adds to the Euclidean distance between x and y a contribution which measures 

the relative distance of x and y from the rationals Q. If B(R, E) is Euclidean metric ball 

and L'l(R, d) is a ball with regards to the metric d, it is clear that 
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~(R, d) c B(R, E ) . The converse fails, since, if r is rational and E is sufficiently small, 

~(R, E) = { r}; hence, in the metric space (R, d), the rationals are open. 

But ifwe restrict d to the irrationals R\Q, we can always find for each E, a 8 so 

that B(R, 8) c ~(R, d). Thus, the metric space (R\Q, d) is homeomorphic to Euclidean 

irrationals. 

But (R\Q, d) is complete, since no sequence {xn} which converges to Euclidean 

topology to a rational rk can be Cauchy; for each xn in such a sequence, there exists a 

term xm (where m>n) such that d(xn, xm) ~ I xn - ~I+ Iii. Of course, those sequences 

which are Cauchy sequences converge to irrationals, so R\Q is topologically complete. 

This example shows that the Theorem 2.2.4 would be unnecessarily restricted in 

its applications if we additionally require that both D1, D2 are topologically complete. 
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2.4 Points of Continuity 

Definition 2.4.1. If f: X • Y is a function between topological spaces, then 

C(f) = {x EX :/is continuous at x}. 

Definition 2.4.2. Given topological spaces X and Y we say that f is pointwise 

discontinuous if the set C(f) of points of continuity is dense. 

The following theorem was originally proven by Anna Neubrunnova in the 

70's. However, here we provide Bemer's [2] proof. 

Theorem 2.4.1. Suppose Y is a regular space and /: X • Y is almost 

continuous. If/ is pointwise discontinuous in X, then f is continuous (i.e. C(f) =X). 

Proof: 

Fig. 2.4.1. 

Suppose there is a point pe X \C (/). Let O be an open subset of Y such that f(p) 

E O but f 1(O) is not a neighborhood of p. Let 0 1 and 0 2 be open subsets of Y such that 

f(p) E 0 2 and Cl(O2) c 0 1 and Cl(O1) c 0 . Since f is almost continuous, there is an 

open set Uc X containing p such that Uc Cl(/"1 (02)). There is a point q in U such 

that /(q) fl 0, since U q:_ /"1(0). Then, again by the almost continuity off, there is an 

open set V subset ofX containing q such that Ve Cl(/-1(Y\Cl(O1)). Since U11V 

contains q, there is a point de Un V 11C(/). Since f is continuous at d and 
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Un Ve Cl(/-1(Y\Cl(O1))), it follows that/(d) e Cl(O2). But since 

deUnVcVcCl(F1(Y\Cl(O1))), it follows that /(d)eCl(Y\Cl(O1))cY\ 0 1• This cannot 

be since Cl(O2)c 0 1• Therefore, there cannot be a point in ")C\C(/). Hence, f is 

continuous. • 

Example 2.4.1. The assumption that Y is regular cannot be dropped. Let X be 

the reals with the usual topology augmented to make each rational singleton open (this 

space is metrizable) and Y the reals with the topology generated by the sets: 

(a,b)n(Qu{r}) where (a,b) is a usual open interval and reR. The identity map from X to 

Y is almost continuous, and the set of points of continuity is Q, which is dense in X. 
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2.5. Closed Graph versus Separate Continuity 

Definition 2.5.1. Suppose X, Y, Z are topological spaces and/ maps X x Y into 

Z. Associate to each x E X and to each y E Y the mappings: 

by defining 

f x(y) = /(x,y) = f Y(x). 

If every f x and f Y are continuous then f is said to be separately continuous. 

The following condition is known as Intermediate Value Property (IVP). 

Suppose f is a function that is continuous on the interval [ a, b] and k is 

any number between /(a) and f(b), then there is at least one number c between a and b 

with f(c) = k. 

I(, 

Fig. 2.5.1. 

The inspiration for this section was the problem from the "YSU Problem Book" which 

was solved by a faculty member in the YSU Mathematics Department, Dr. Eric Wingler 

[18], and the problem was posed by my thesis advisor Dr. Zbigniew Piotrowski [18]. 

The problem states: 

If f: R x R • R is a separately continuous function with a closed graph, is f 

continuous? 
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Theorem 2.5.1. Let f: R x R • R be a separately continuous function with a 

closed graph, then f is continuous. 

Proof: Let (a,b) E Rx~- First, it needs to be shown that the function f must be 

bounded in the neighborhood of (a,b). So, assume that f is not bounded above, then 

there exists a sequence {( ¾, y0 )} converging to (a,b) such that {f(x
0

, y
0
)} diverges to 

+oo. Since f is separately continuous, there exists 8 > 0, such that f(x, b) < f(a,b) + 1, 

for all x such that Ix - al < 8. Also, there is a number N such that for k ~N we have both 

Ix - al< 8 and f(xk, Yk) > f(a,b) + 1. Since, f(xk, y) is a continuos function of y, and 

for each k ~ N (by IVP), 

/(xk,b) <f(a,b) + 1 < f(xk, yJ, 

there is a number uk with 0 < I uk - bl < I Yk - bl such that f(xk, uJ = f(a,b) + 1. 

It is clear that {( xk, uk)} converges to (a,b) and {( xk, uJ, f(xk, uk)} converges to 

((a, b), (f(a, b) + 1)). Thus we have that f(a,b) = f(a,b) + 1, which is impossible. 

Therefore, f is bounded in some neighborhood of U of ( a, b ). 

Now, ifwe consider the restriction f IU, we see that this mapping maps U into a 

compact subset K of R, and since f IU has a closed graph it is continuous, and, therefore, 

f is continuous at (a, b). • 

To generalize this result we have to define necessary and sufficient conditions of 

spaces X, Y and Z that would guarantee that a separately continuous function 

f: X x Y • Z with a closed graph is continuous. 

Example 2.5.1. Let X = Y = [0,1] \ (1/n: n EN) with the usual topology. 

Define f: X • Y by: 
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{

n, ifx,y E (1/(n+l),1/n) for some n EN 
f(x) = 

0, otherwise 

It is easy to see that f is separately continuous, and has a closed graph, but it is 

not continuous at (0,0). 

If X or Y is locally connected, the function with the properties above will be 

continuous. We also may replace the co-domain R by any locally compact space Z, but 

what if Z is not locally compact? 

As a reference, I supply the following example: 

Example 2.5.2. Let I = [0, 1] and let Z be a separable Hilbert space with 

orthonormal basis { en }""n=J• Let <D be defined by: 

and let 

f l-x2-y2 

<!J(x,y) - lo ' 
if X 

2 + y 2 
:$; 1 

if X 
2 + y 2 > 1 

<DnCx,y) = <D[2n(n+l)x- (2n+l), 2n(n+l)y- (2n+l)], 

for each n EN. Each function <Dn is 1 at the center [(2n+l)/(2n(n+l)),(2n+l)/(2n(n+l))] 

of the circle inscribed in the square [l/(n+l),1/n] x [l/(n+l),1/n] and vanishes outside 

of this circle. Define f: Ix I • Z by /(0,x) = I""n=l <D0 (x,y) e0 and outside this square,/ 

vanishes. It is easy to see that at each (x,y) * (0,0) f is continuous, and since 

f (0,x) = f (x,0) = 0 for each x E I, f is separately continuous at (0,0). In addition to this, 

f has a closed graph. However,/ is not continuous at (0,0) since 

II/ [(2n+l)/(2n(n+l)), (2n+l)/(2n(n+l))] - /(0,0)11 = II en 11=1 

for every n EN. 
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2.6. A topological version of the Closed Graph Theorem for multilinear mappings 

Let us recall the classical Closed Graph Theorem in Banach spaces: 

(1) IfE and Fare Banach spaces and u: E • Fis a linear mapping with a closed 

graph, then u is continuous. 

In her paper [4], Fernandez states that (1) is equivalent to the following 

statement: 

(2) If E, Fare Banach spaces and u: E • Fis linear, surjective and continuous, 

then there is a constant A> 0 such that for any y E F with II y II= 1, there is an element 

x E E such that u(x) = y and II x II~ A. 

Fernandez also notices that by the title of Cohen's [3] article we would e_xpect the 

counter example for the bilinear version of ( 1) such as: 

(1 ') If E1, E2, F are Banach spaces and f E1 x E2 • F is a bilinear mapping with 

a closed graph, then f is continuous. 

However, the counter example to a bilinear version of (2) in Cohen's article 

pertains to the following version: 

(2') IfE1, E2, Fare Banach spaces and/: E1 x E2 • Fis bilinear, surjective and 

continuous, then there is a constant A> 0 such that for any y E F with II y II= 1, there is 

an element (x1, x2) E E1 x E2, such that f (x1, x2) = y and II x1 1111 x2 II ~ A. 

But (2') is not equivalent to (1 '). 

As we noted in the previous chapter, when we replace linearity by almost 

continuity, we would expect the following topological interpretation of (1 '): 
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(3) Let X, Y and Z be a complete metric spaces and let/ : X x Y • Z be a . 
separately almost continuous function having a closed graph, then/ is continuous. 

We shall prove that (3) is false, see the Theorem 2.6.2. below. 

It is very important to note that neither separate almost continuity implies almost 

continuity, nor vice versa, see examples 2.6.1. and 2.6.2. below. And this happens even 

in the case of X = Y = R . 

Theorem 2.6.1. Let X, Y, Z be complete metric spaces, and let/: Xx Y • Z 

be a closed graph function, then / is separately almost continuous if and only if/ is 

separately continuous. 

Proof: Clearly, separate continuity implies separate almost continuity. 

The converse of the above theorem follows from the definition of product 

topology that the closed set {(x, y,/(x,y))} is closed in every section {x} x Y and 

Xx {y} for all x EX and y E Y. Now by Pettis' theorem (Theorem 2.3.1) all 

x-sections of fx and all y-sections /Y are now continuous, each being a closed graph 

almost continuous function from a complete metric space Y to Z, and X to Z, 

respectively. 

So, the above means that/ is separately continuous. • 

Now, we can show that (3) does not hold. 

Theorem 2.6.2. There exists a complete metric space X, Y and Z and a closed 

graph separately almost continuous function /: X x Y • Z, such that / is not 

continuous. 

Proof: In view of a previous theorem, we shall exhibit an example of such 
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an / being ( even) separately continuous. But, such a construction is presented in a 

previous section 2.5., Example 2.5.1. 

Theorem 2.6.3. Assume X x Y has a countable base, and let card(X) > t{ 0, and 

card(Y) > t{ 0• Then there exists a real-valued function/: Xx Y • R, such that f is 

almost continuous, but not separately almost continuous. 

G, 

Proof: 
:,:_ r-,. ' . .. · . 
! : :. ~ - . . . 

.. . · -: . . . . . •' . . 
.. \. . : . '"' ; . . . ' 

: . , ' . .-: ........... , . . \· ...... :· . _... . .... . -: ' . 
. ~ . ... . . .. 
' • • :. • --., ~ • • • I ' : _ , •,. • '"" ....... • • ~ :: • .:.. • • • : 

:> ..... ;- ~ r : • '. • .. .. ' .:::.~ . ~ ..... - - - .. ,.. . • • • 

! ; . (', :· ... .::: .... · - J - " , . - _ .... ·_ · . ... ·:- .. .. ~I',, '_' 
, ... 

j- - l ~ . .. ' . .. 
. ... ~ . . / 

, .• '> . . . .. · . 

Fig. 2.6.1. 

Pick (x3, y3) from G3, such that x3 is neither one of the previously chosen xi, I<3 and y3 1s 

neither one of the previously chosen Yi, i < 3. 

Since we have a countable base and uncountably many points in X and Y we can 

find (xi, y) as indicated above. Since { Bi}"\ = 1 is a base, every open set contains an 

element of B. So, D = {( xi, y): i = 1,2,3, ... } is dense, and its complement is as well. 

Now apply the characteristic function: 

{

1, 
xo= 

0, 

if (x,y) in D 

otherwise 

Xo is almost continuous. 
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Now, there are countably many sections, both x-sections and y-sections, which 

are not almost continuous. 

Consider yet another example of almost continuous function which is not 

separately almost continuous that was given by Neunbrunn [13]: 

Example 2.6.1. On the interval [-1,1] x [-1,1] in R2 define a real function/as: 

f(x,y) = 
[ 1, 

LO, 
if both x and y are irrational or (x,y) = (0,0) 

if at least one ofx, y is rational and (x,y) '# (0,0). 

e 

- - - - ~ .,. 

--- -·--- ·- ·- ·-· 

Fig. 2.6.2. 

f is almost continuous at each point (x,y), but the sections/ xo, /Y0 are not almost 

continuous when (Xo, y0) = (0,0), because none of them is continuous at the point 0. 

Now, we shall provide an example of a separately almost continuous function 

which is not almost continuous. 

Example 2.6.2. (Neunbrunn [13]) On the interval [-1, 1] x [-1, 1] consider the 

set F = {(x, y): 0 ~ ~ 1, (½) x ~y~ x}. 
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Define: /: [-1, 1] x [-1, I] ·• R as: 

{

o, if (x, y) E F \ {(0, 0)} 
f(x, y) = 0, if both x, y are simultaneously rational or irrational and (x, y) ~ F 

1, ifx is rational, y irrational or conversely and (x, y) ~ F 

Fig. 2.6.3. 

Observe that f is separately almost continuous, that is all x-sections and 

y-sections are almost continuous, but f is not almost continuous at (0,0) since 

f(O, 0) = 1. 
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