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Introduction 

This thesis investigates various methods of producing spectral inclusion 
sets for matrices. The purpose of this investigation is threefold. First of all, 
various methods will be compared in order to give insight into the fastest and 
sharpest method of producing spectral inclusion sets for various types of ma
trices (chapter eight). Secondly, new types of inclusion sets will be introduced 
by intersecting inclusion sets that are produced using very simple calculations 
(chapter nine). Finally, new results will be presented and a new method will 
be introduced for producing spectral inclusion sets of certain types of Toeplitz 
matrices (chapter ten). 

Methods of producing spectral inclusion sets of matrices and operators 
have been developed, primarily, because of two shortcomings in the exact cal
culations of the eigenvalues. First of all, actual calculation of the spectrum for 
large matrices can take a great deal of time even on fast computers. Secondly, 
such calculations may produce erroneous results due to round-off errors. Such 
erroneous results are particularly prevalent when attempting to calculate the 
spectrum of ill-conditioned matrices. All of the methods examined in this thesis 
avoid one or both of these problems. 

Two groups of methods will be considered in this thesis. One group is 
classified as 'simple' (chapters one through three). The 'simple' methods are 
those methods which are limited to adding, subtracting, multiplying, dividing 
and raising matrix elements to powers. Such methods are both fast and avoid 
round-off errors. These 'simple' methods include what are called in this paper 
'pre-Gerschgorin', Gerschgorin's method and Parker's second theorem. 

A second group of methods considered in this paper are classified as 'in
volved' (chapters four, five, and seven). Such methods utilize extensive search
ing, large numbers of similarity transformations, and/or a large number of in
cremental calculations. These methods avoid round-off error and produce very 
small inclusion sets but may require considerable calculation time. Among the 
'involved' methods are Cassini, Brualdi, minimal Gerschgorin, the numerical 
range, and the pseudospectra. 

No one will be surprised that the major drawback with all of these meth
ods is that they produce sets that are only guaranteed to include the spectrum. 
While each method produces a set that includes the eigenvalues, the set pro
duced is usually somewhat larger than the actual spectrum of the matrix or 
operator. Furthermore, each method, except perhaps the pseudospectra, have 
varying, and sometimes unpredictable, degrees of 'sharpness' depending upon 
the application. 

In chapters seven and eight it will be shown that the pseudospectra is the 
most powerful of the 'involved' methods. In most cases, the pseudospectra will 
produce a significantly smaller spectral inclusion set than any other method. 
Even in those few instances in which another method produces a smaller in
clusion set, that set will only be slightly smaller than the pseudospetra's set. 
Therefore, it can be said that the pseudospectra is the only method that consis-
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tently produces small spectral inclusion sets 
In chapter nine it will also be shown that it is possible to produce rela

tively sharp spectral inclusion sets by intersecting sets produced by the 'simple' 
methods. This means that small spectral inclusion sets may be produced by us
ing a minimal amount of calculation time. Therefore, this thesis will establish 
new methods of producing sharp spectral inclusion sets very quickly through 
the intersection of sets. 

In the chapter ten of this thesis, two new theorems will be presented and 
a new method will be introduced for producing spectral inclusion sets of certain 
types of Toeplitz matrices. The new theorems will be based on Gerschgorin's 
theorem and the minimal Gerschgorin theorem. It will be demonstrated that 
the minimal Gerschgorin set can be used, in a new way, to very quickly produce 
relatively small inclusion set for Toeplitz matrices. 

Note: Throughout the paper, o-(A), is the spectrum of A and, unless other
wise indicated, is computed in Matlab with single precision. 

IV 
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1 Pre-Gerschgorin and Gerschgorin Methods 

This is the first of two chapters that deal with 'simpler', norm-type methods 
of creating spectral inclusion sets of matrices. 'Simpler' includes methods that 
involve nothing more than arithmetic operations in real numbers. 'Simpler' does 
not include methods that implement extensive searches, similarity transforma
tions, iterations, etc. Therefore, spectral inclusion sets may be created very 
quickly using these simpler methods. 

The 'simpler' methods considered in this chapter date through the 1930's 
and 1940's. During the study of these methods for this thesis the idea of trying 
to intersect the various inclusions sets was developed. Therefore, these first two 
chapters introduce these simpler methods and lay the foundation for the 'inter
section method' that is presented in chapter nine. 

Section 1.1 Pre-Gerschgorin (Bounds on spectral radius and numeri
cal Range) 

This section will consider methods of bounding the spectrum that were 
discovered before 1947. 'Pre-Gerschgorin', therefore, may seem like a misnomer 
since Gerschgorin produced his theorem in 1931! Yet the title seems appropriate 
since the Gerschgorin theorem was either forgotten or simply ignored until Olga 
Taussky and Alfred Brauer studied and propagated it in the 1940's. So, 'Pre
Gerschgorin' includes those methods that were developed before Gerschgorin's 
work was widely known. 

The 'pre-Gerschgorin' methods accomplish two things: they approximate 
the spectral radius and produce bounds on the numerical range. (For A E cnxn, 
the numerical range is defined as W(A) = {(Ax,x) : x E en and llxll = 1}. 
For a more complete discussion of the numerical range see chapter five). The 
approximation of the spectral radius takes the form of an upper bound of the 
absolute value of the eigenvalues. At least some of developers of these early 
techniques specifically had the numerical range on their minds as they developed 
their methods. It was understood that numerical range contained the spectrum 
of the matrix but calculating the entire numerical range for a matrix was very 
difficult. Creating sets that included the numerical range was the next best 
thing. These bounds on the spectral radius and the numerical range lead to a 
very natural way of producing spectral inclusion sets. Such sets will be examined 
in this section. 

Since these methods 'bound' the numerical range a natural question 
arises: since computers and algorithms now exist for calculating the entire nu
merical range why not just use the numerical range? After all, the numerical 
range will produce a subset of the 'pre-Gerschgorin' methods and, therefore, 
produce sharper results. Actually, it is true that the numerical range produces 
sharper results than these older methods but for large matrices, the numeri
cal range may take several minutes to calculate even on very fast computers. 
On the other hand, the spectral inclusion sets produced by the pre-Gerschgorin 
methods can be calculated very quickly on the computer . Furthermore, the 
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pre-Gerschgorin methods have the advantage that they are very easy to use 
in combination with other methods. This feature will be very important for 
developing the 'Intersection Methods' of chapter nine. 

As each of the pre-Gerschgorin methods was published in the 1930s and 
1940s, the author would say something like 'this method appears to give sharper 
results than previous methods'. That is, each author suspected that his or her 
method always produced a subset of the previous methods but could not actu
ally prove it. Well, as it turns out, it could not be proven because it was not 
true! It will be shown that there are about five methods that are not, in general, 
subsets of the other methods but for any given matrix one method will produce 
a subset of the others. This fact could not have been of much practical value in 
the 1930's and 1940's because it would be very time consuming to do the hand 
calculations based on all of these different methods in order to find the sharpest 
one for each application. Today, this can be done very easily with a computer. 
Therefore, computers allow a fresh look at these old methods. 

General Form of the Pre-Gerschgorin inclusion sets 

All of the 'pre-Gerschgorin' methods bound the eigenvalues in generally 
the same way. Each method produces a bound on the spectral radius which when 
plotted takes the form of a circle centered at the origin. In addition, each method 
produces separate bounds on the real and imaginary parts of the eigenvalues 
which, when plotted, take the form of a rectangular box, also centered at the 
origin. 

So, each of the 'pre-Gerschgorin' methods produces a spectral inclusion 
set that has one of the following forms: 

0 0 0 

Figure 1.1 

The circle and the rectangular box each contain the spectrum. So, the 
spectrum is contained in the intersection of the rectangular box and the circle. 
Note that in the graph in the far right of figure 1.1 that the intersection of the 
circle and box will leave only the rectangular box. 

As it turns out, each method in this chapter will produce exactly the 
same bound on the real and imaginary parts of the eigenvalues. That is, all 
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the methods will produce the same rectangular box. Therefore, each succeed
ing method is an attempt to bound the spectral radius. Graphically, each new 
method is an attempt to reduce the radius of the circle centered at the origin. 

Section 1.1.1 Browne's Theorem 

A method for bounding eigenvalues was proposed by Browne (14] in 1930. 
Browne estimated the upper bounds of eigenvalues using row sums of the original 
matrix and row sums of two other matrices related to the original. 

Beginning with a square, complex matrix A, Browne defined two Hermi
tian matrices, B and C, as follows: 

B = A+A* 
' 

and C =A- A* 

Using the row sums from matrices A,B, and C and column sums from A, 
Browne was able to find a bound for the eigenvalues of A as well as separate 
bounds for the real and imaginary parts of the eigenvalues. 
Browne's Theorem may then be stated as follows: 

Theorem 1.1 (Browne's) Let A E cnxn. Let 

B = A + A* and C = A - A* 
2 

Let R(A)i,R(B)i,and R(C)i,be the sums of the absolute values of the elements in 
the ith row of the matrices A,B, and C, respectively. Let Ti be the sum of the 
absolute values of the elements in the ith column of A. Define: 

RA = max{ R(A)l, ... , R(A)N} , RB = max{ R(B)l, ... , R(B)N} , 

Rc = max{R(c)I> ... , R(c)N}, and T = max{Tll···' TN}. 

Then for any eigenvalue A E u(A), 

RA+T I.AI ~ " , IRe .AI~ RB, and lim .AI~ Rc . 

• • •• 
Proof of this theorem may be found in Browne [14]. 

Note that Browne's theorem produces the radius of a circle that bounds 
the eigenvalues of A and a rectangular box that bounds the real and imaginary 
parts of the eigenvalues of A. This means that the circle contains the spectrum 
and the rectangular box contains the spectrum. Therefore, the spectrum is con
tained in the intersection of the circle and the rectangular box. 

Example 1.2 Let 

( 

0 0 
1 2 

A= 0 0 

1 1 

-1 
1 
1 
.5 

!1) 1 . 

-1 
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The spectrum, o-(A), is 

{ -1. 79, 2.17, .81 + 341i, .81 - 341i}. 

(Note that the eigenvalues in this thesis were computed with Matlab in single 
precision). (The solution details of this particular example may be found in the 
Appendix). 

Then 

B =A+ A'= ( .~ 
.5 -.5 

'o
5 

) 
2 .5 

2 -.5 .5 1 .75 ' 
1.5 0 .75 -1 

A-A• ( -
0
5i 

.5i .5i 
-5i ) 0 -.5i 

-.~5i ' 
c- -- 2i - -.5i .5i 0 

.5i -i .25i 

and for any .X E o-(A), 

I .XI~ R\+ T = 5; 5 = 5' IRe .XI ~ RB = 3.25, and llm.XI ~ Rc = 2. 

This is graphed in figure 1.2 below. Note that the bounds on 'a' and 'b' (repre
sented by the rectangle in figure 1.2) are contained completely within the bounds 
for .X (represented by the circle in figure 1.2). Therefore, in this example, the 
bound on .X (represented by the circle) is superfluous and may be ignored. 

Brown 
------------,-~------··-:··--··: '' 

5r, , : , ~---' ...... , .. 
4 ~-~---------+---- -----!·----------(·-------:----- ·\ r··-

: ' 
3 ~-r--------1 ----------:---------- -;-----------:----------\ ------- ·1· · 
2 ~-~------- -+-- ---~----:------:-

• I I I I 
I I I I I t I 

· ~ 1 r-~----- : ------+----------!----------~------ : ----+-<l I I I I I I I 
I I I I I I I 

>-, I 0 I X 1 1 o 

(i; 0 -~----- -------:-)t ---------~----------~i<----- ----~--
.!: : : : X : o : 
C) I I I I I I 
«J I I I 0 I 

E -1 -:------ -------:-----------!----------~------ -----~--
' I I t I 
I I I I I 
I I I 0 I I I 

-2 ~-~------- --~--- ---~-----:----:- ' ' 
I I I I I 
I I I I I 

I I I I I I I 

-3 ~-~---------- :-----------:----------- f---------- ~---------- -: ---------- ~-. 
I I I I I I I 

I I I I I I I 

-4 ~-~---------- ~----- -----:-----------!---------- ~----- ---- -~---------- ~-. 
I I I I 0 I I 

I I I I I I I 

I I I I I 

-4 -2 0 
Real Axis 

Figure 1.2 

2 4 

ln these figures, the eigenvalues are represented by the X's 

6 
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Example 1.3 Let 

7- 6i 
A= 19 

2 
15i 

8- 4i 

-6 
-7+3i 8 + 5i 
13+ 9i 10 . 

( 

-5+i 

16 +9i 15 + 2i -9 + 3i 

15i ) 

-7+2i 

The spectrum, a(A), is 

{ -15.42- 13.78i, 15.37 + 29.14i, 10.33- 2.72i, -9.28 + 14.36i}. 

Then 

( 

-5 
A+A* 4.5-3i 

B = 2 = 6.5 

8- 3i 

A-A' ( -3~2.5i c- -
- 2i - -12.5i 

12- 8i 

and for any >. E a(A), 

4.5 + 3i 
0 

.5- 3.5i 

6.5 
.5 + 3.5i 

13 
11.5 - 1.5i .5 + 1.5i 

-3 + 2.5i 12.5i 
15 -.5 + 7.5i 

-.5- 7.5i 9 
3.5- 3.5i 1.5 + 9.5i 

8 + 3i ) 
11.5 + l.~i ' 
.5- 1.5t 

-7 

12 + Bi ) 
3.5 + 3.5~ ' 
1.5- 9.5t 

2 

6 

RA + T = 52.72, i>-1:::; n IRe.AI :S RB = 28.72, and IIm>.l :S Rc = 38.63. 

This is graphed in figure 1.3. Once again, the bound on >., represented 
by the circle in figure 1.3, may be ignored. 

"' 
~ 

Brown 

' . ' ' . 
I I I I I 

40 ~--+---------~-- --~ ----~----------:--- -------~----.- - -~----------~----
: · i : : : I . : 

3o ~-- -:-------- -:-----r---:----------:--- ---- ~--:---1------:- --------:----
• ' I • • I I • ' 

20 ~- _ _:,. ____ - ---~---- - ~--- .1.---------; ___ ------ -~--- _!_ ---- ~-- -- ' 
: : I : : ! ! : 

-+--- --- --~- --- - ~---- ~ -----~ ---- ~------ ----~---+---- ~-- ---- -- -~-- --
: : I ! ! ! I ! ! 

Q ~--j-· .. ·····1· ····i· • •. ~ .......... t··· .. X.----~ .. ·t···· -~-. ---- . ·1·· .. 
, , , , , , I , , 

- ~--- ----- ..!. ---- J.- --~ ------ .... !-- --- _____ :..-- - ~ ---- ...!. ----- -- _.,! __ -. 

-20 ~---!----- ---i----+ ---j- -"--------i----------~----1------i---- : 
-30 ~-- .:. ------- -~----- ~ ---- ~--- ------ -l--- ------ -~--- J_ ---- ~- -------- ~- ---

: I I : : : ! I : 

I I I I I I I I 

-40 1---+-- -------~-- - ~---+--------- :---- -- ---- ~-- - -'-- -+--------- ~----
I I I I o I I 

' ' ' ' 0 ' ' 

' • ' ' 0 ' ' 

-60 -40 0 
Real Axis 

Figure 1.3 

20 40 60 

ln these figures, the eigenvalues are represented by the X's 
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The matrix in the previous example was altered slightly to produce the 
matrix in the next example. 

Example 1.4 Let 

( 100 
2 -6 

15i ) 7- 6i 15i -7 + 3i 8 + 5i 
A= 19 8- 4i 13 + 9i 10 . 

16 + 9i 15- 2i -9+3i 0 

The spectrum, O"(A), is 

{97.33 + 2.07i, 17.51 + 20.1li, 5.14- 4.56i, -7.0 + 6.38i}. 

Then for any .X E O"(A), 

RA + T = 134.79, I-XI~ " IRe.XI ~ RB = 120.45, and llm.XI ~ Rc = 38.63. 

This is graphed in figure 1.4. Once again, the rectangular box fits com
pletely inside the circle. Therefore, the circle can be ignored. 

100 

50 

(/) 

·x 
<( ,.., 
(i; 0 c ·o, 
"' E 

-50 

-100 

Brown 

--- ---------- ~- ./_ ----- -:---------- f--------- -:-------~- +----------:-----7 -- I I I ~ I 

' ' ' ' ' ' ' ' 
' ' ' ' 

' 
I I I I 

-----·-- ~---·················f'····-------·-·····--·~--------·--------·-·"}·······-------·-----~--------

' ' ' ' 
X 

___ .,. ___ _ 

' ' ' ' 

---H-+ ::r-=I---~---1--=1 - _l J) ____ ! __ _ 
I I I I I I 

----L---------~----------£----------~---------·---- -----~---· I I I I I I 
I I I I 

' ' . ' 

---1----------r~-------~----------;---------v;-------- -t----------~----
• I I I I I 
I I I I I I 
I I I I 

-150 -100 -50 0 
Real Axis 

Figure 1.4 

50 100 

In these figures, the eigenvalues are represented by the X's 

150 
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Example 1.5 Let 

( 

100 
7- 6i 

A= 19 

16 + 9i 

The spectrum, cr(A), is 

2 
15i 

8- 4i 
15 - 2i 

-6 
-7+3i 
13 + 9i 
-9+3i 

15i 
8 + 5i 

10 
-60- 120i 

) 
{98.87 + 1.12i, -60.76- 121.3i, 3.32 + 9.03i, 11.56 + 15.16i}. 

Then for any .X E cr(A), 

8 

RA + T = 172.87, I-XI ::; 2 IRe.XI ::; RB = 120.45, and llm.XI ::; Rc = 147.87. 

This is graphed in figure 1.5. Notice that, this time, the circle intersects 
the rectangular box and, therefore, very slightly reduces the size of the inclusion 
set. 

150 

100 

50 
(/) 

·;;;: 
<( 

~ 
0 "' c 

C) 

"' E 
-50 

-100 

-150 

Brown 

' ' ' ' ' --,.-------.,---- ':'~ ..:;.;:a: 

- ~~~~r ----~-------~---' : 
I i 

-- ~------- ~ -/- - ---:------- -~------- ~------- ~------- ~--- t--~~------- ~---
I I I I I : 
I I I : 

I I I f 
t I I I I : ' f ' : : : : : i ' -- t ----- - ~---- ---:------- -~---- --- t------- ~------- ~--- ~ --- -~- \----- ~---

I I I I I I I I I 
I I I I I I 

I I I I I : 
I I I I I j 

' : : :,.x : : i ' ) ' -- ~--- ..(.-- ~---- ---:------- -~------- ~------ -~---- --- ~--- ~ --- -~------- ~---
I I I I I I : I I 

: : : : : l : : 
I I I I I : I I 
I I I I I : I I 
I I I I I j I I 

I I I I I I : I I ., ____ --,--------~-------,.-------.,-------~--- r ----~- -----~---
' I I I I I j I I 

1 i 1 i i 1}i ' 
I I I I I : -- ·-------i\ - ---1------- -~------- t-------1------- ~--- r-- -~------- ·---
1 

X : : : : ! I 

-200 -150 -100 -50 

' ' ' 

0 
Real Axis 

Figure 1.5 

50 100 150 

In these figures, the eigenvalues are represented by the X's 

200 
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Section 1.1.2 Parker's First Theorem 

In the last four examples, the circular bound on the eigenvalues either 
completely enclosed the rectangular box or intersected it only slightly. There
fore, the circular bound on >. provided little or no help in reducing the size of 
the inclusion set. In the 1930s and 1940s, methods were proposed to reduce the 
radius of that circular bound. 

One of these methods was proposed by Parker [62] in 1937. Parker built 
on Browne's work by using the same matrices A,B, and C as Browne but summed 
both the rows and the columns of every matrix. The result was a rectangular 
box( the bound on the real and imaginary parts of the eigenvalues) of the same 
size as Browne but Parker's circle (the bound on>.) was equal to or smaller than 
Browne's. 

The details of Parker's work are stated in the following Theorem. 

Theorem 1.6 (Parker's First Theorem) Let A E cnxn. 

Define 

n n n n 

s(A)i = ( L aij + L aji) /2' s(B)i = ( L bij + L bji) /2' 
j=l j=l j=l j=l 

n n 

s(C)i = ( L Cij + L Cji) /2' SA = max{S(A)l• ... , s(A)N}' 
j=l j=l 

SB = max{S(B)b ... , s(B)N} and Sc = max{S(C)l• ... , s(C)N }. 

Then for any eigenvalue >. E O"(A), 

1>-1 :S SA, IRe >-1 :S SB , lim >-1 :S Sc . 

• • •• 
Proof of this theorem may be found in Parker [62]. 

Parker points out that his theorem produces the same bounds for 'a' 
and 'b' as Browne's Theorem but,often, produces sharper bounds for >. than 
Browne's. This last point may be illustrated by applying Parker's Result to the 
matrix from example 1.2: 
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Example 1. 7 Let 

( 

0 0 
1 2 

A= 0 0 

1 1 

-1 
1 
1 
.5 

~1) 
-1 

(The solution details of this example may be found in the Appendix). 

The spectrum, u(A), was previously found to be 

{ -1. 79, 2.17, .81 + 341i, .81- 341i}. 

IAI :S SA= 4.25, IRe AI :S Ss = 3.25, and lim AI :S Sc = 2. 

10 

Note that the bound on IAI is 4.25 for Parker, compared with 5 for Browne. 
However, in this example, the bounds on 'a' and 'b' (represented by the rectangle 
in figure 1.7) are contained completely within the bounds for A (represented by 
the rectangle in figure 1.7). Therefore, in this example, the bound on A is 
superfluous so that, Browne and Parker, for practical purposes, produce the 
same results. 

~ 
~ 0 
·;;, 

.§ 
·1 

-2 

Browne (Red) Parker (Blue) 
-~ ---------f·- ------- --- -----:· ----- --- --- -----:··· 

' ' 
________ ... ______ __________ _ .. __ _ 

' ' 
: - Browne i 

- ------~--- - ------------ - .. --. 

-S~~~--------4~---------~2--~~=-~~-=~~~?~--------~.--------~6~ 
Real Axis 

Figure 1.7 

In these figures, the eigenvalues are represented by the X's 



1 PRE-GERSCHGORIN AND GERSCHGORIN METHODS 11 

Recalculating Example 1.3 will produce practical, usable bounds that are 
different for Browne and Parker. 

Example 1.3 is reworked as, 
Example 1.8 Let 

( 

-5+i 
7- 6i 

A= 19 

16 + 9i 

The spectrum, a-(A), is 

2 -6 
15i -7 + 3i 

8- 4i 13 + 9i 
15 + 2i -9 + 3i 

15i ) 8 + 5i 
10 . 

-7+2i 

{ -15.42- 13.78i, 15.37 + 29.14i, 10.33- 2.72i, -9.28 + 14.36i}. 

Then 

B = A+A* 
2 ( 

-5 
4.5- 3i 

6.5 
8- 3i 

A-A• ( -3~2.5i 
c = 2i = -12.5i 

12- 8i 

and for any A E a-(A), 

4.5 + 3i 6.5 
0 .5 + 3.5i 

.5- 3.5i 13 
11.5 - 1.5i .5 + 1.5i 

-3 + 2.5i 12.5i 
15 -.5 + 7.5i 

-.5- 7.5i 9 
3.5- 3.5i 1.5 + 9.5i 

8 + 3i ) 
11.5 + l.~i ' 
.5- 1.5z 

-7 

12 + 8i ) 
3.5 + 3.5~ ' 
1.5- 9.5z 

2 

/A/ ::::; SA = 46.33' /ReA/ ::::; SB = 28.72, and /Im A/ ::::; Sc = 38.63. 

This is graphed in figure 1.8. This time, the bound on A, represented by the 
circle in figure 1.8, has some practical value. Note that Parker's circle cuts off 
the corners of the rectangle thereby 'sharpening' the bounds slightly. On the 
other hand, Browne's circle did not reduce the inclusion set at all. 
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Browne (Red) Parker (Blue) 

50 f-- --+-- -- ... --- --- ---~ ------- -- _______ : 
' ' ; 

-10 

-20 

.3) 

-40 

-50 

-60 -40 40 60 
Real Axis 

Figure 1.8 

In these figures, the eigenvalues are represented by the X's 
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Revisiting Example 1.4, 
Example 1.9 Let 

( 

100 
7- 6i 

A= 19 

16 + 9i 

The spectrum, a(A), again is 

2 
15i 

8- 4i 
15- 2i 

-6 
-7+3i 
13 + 9i 
-9 + 3i 

15i ) 8 + 5i 
10 . 

0 

{97.33 + 2.07i, 17.51 + 20.1li, 5.14- 4.56i, -7.0 + 6.38i}. 

Then for any .X E a(A), 

13 

/.AI :S SA = 134.79, jRe .Xj :S Ss = 120.45, and jim .Xj :S Sc = 38.63. 

This is graphed in figure 1.9. 
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·x 
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- ~ -----------------' 
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-100 
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I I I I I I 

········r···················r··················r······~···········r·················-r·····J ~ 
I I I I 

I I I I 

--- i-- i-- -J---- ~--------- ~-------- _x_ fx-------- -~--------- ~--- ----- -~--- · 

' ' ........ , .................... ,. ........................................... ,.. .................... , ....... . 
--- ~---- \ ---- ~--------- ~---------- t---- ----- -~---------- t----

I I I I 
I I I I 

' . ' 

--- { --------- - N; - ------ -~---------- i- --------+------0 --------- -~---· 
I I I I / : 1 
I I I I 

' ' 

-150 -100 -50 0 
Real Axis 

Figure 1.9 

50 100 

In these figures, the eigenvalues are represented by the X's 

150 
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Revisiting Example 1.5, 
Example 1.10 Let 

A~( 
100 

7- 6i 
19 

16 + 9i 

The spectrum, cr(A), is 

2 
15i 

8- 4i 
15 - 2i 

-6 
-7+3i 
13+ 9i 
-9+3i 

15i ) 8+ 5i 
10 . 

-60- 120i 

{98.87 + 1.12i, -60.76- 121.3i, 3.32 + 9.03i, 11.56 + 15.16i}. 

Then for any .A E cr(A), 

14 

J.AJ ~SA= 172.87, JRe .AJ ~ Ss = 120.45, and Jim .AJ ~ Sc = 147.87. 

This is graphed in figure 1.10. In this case, Parker and Browne produce the 
same inclusion set. 

150 

100 

50 
(/) 

·;;:: 
<( 

e:-
0 "' c ·a, 

"' E 
-50 

-100 

-150 

Browne (Red) Parker (Blue) 

0 0 
0 0 0 

-H----- -f--- ---!-~~p~; __ : ___ :;···:--T-----r 
- • T •---- • •,--- • ':'.:.:..::..: 

I I : 

o I : : 

! ' ' ' d p,,,., ,---t'\·--- ' 
0 
0 

__ , + -:---t --r-------r-------1---- __ ;_ -----L f ----~- \ ___ :-::-
~--\r-lr- --- r ----+ ---+-----+-- ! ----~---- __ :_-: 
, T---r-r----- r-------1 --- -!-------1 _ _[_ __ [) i 

-- ·----- \.--1-- ' ' ' ' ' ' --------
! --r t r ---:r------+---- +------i--1-

-100 

. : : : : 

-50 0 
Real Axis 

Figure 1.10 

50 100 150 

In these figures, the eigenvalues are represented by the X's 

200 
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The preceding examples show that Parker's Theorem produces a small 
improvement over Browne in a limited number of cases. More substantial im
provements were to come. 

Section 1.1.3 Farnell and Brauer 

In the 1940's, improvements were made to the bounds established by 
Browne and Parker. The first improvement was made by A.B Farnell [22] in 
1944. Farnell established a bound on A that was analogous to Browne's bound 
except that Farnell used the geometric mean instead of the arithmetic mean. 
Farnell's findings lead to the following theorem. 

Theorem 1.11 (Farnell's First Theorem) Let A E cnxn. Let R(A)i be the 
sum of the absolute values of the elements in the ith row of A. Let Ti be the 
sum of the absolute values of the elements in the ith column of A. Define: 

RA = max{R(A)1, ... , R(A)N} and T = max{T1, ... ,TN}. 

Then for any eigenvalue A E o-(A), we have IAI :::; (RA * T)~ . 
• • •• 
Proof of this theorem may be found in Farnell [22]. 

Farnell [22] developed another variation of this theorem by summing the 
squares of the absolute values of the row and column entries. That result is 
stated in the following theorem. 

Theorem 1.12 (Farnell's Second Theorem) Let A E cnxn. Let Ui be the 
sum of the squares of the absolute values of the elements in the ith row of A 
(i.e. Ui = 2::7=1 laii 12 } ). Let V; be the sum of the squares of the absolute values 
of the elements in the ith column of A (i.e. V; = L::;=l lakil2). Then 

1 

IAI :::; [ t(Ui * V;)~ r 
•••• 
Proof of this theorem may be found in Farnell [22]. 

It is important to realize that one of Farnell's sets is not, in general, a 
subset of the other. The second Farnell theorem will usually give sharper re
sults than the first. However, there are many circumstances under which the 
first Farnell theorem will give better results than the second. 

In 1946, Alfred Brauer [5] developed a bound that will always be better 
than Farnell's first theorem. 

Theorem 1.13 (Brauer's First Theorem) Let A E cnxn. Let R(A)i be the 
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sum of the absolute values of the elements in the ith row of A. Let Ti be the 
sum of the absolute values of the elements in the ith column of A. Define: 

RA = max{ R(A)l, ... , R(A)N} and T = max{T1, ... ,TN} . 

Then for any eigenvalue>. E cr(A), we have 1.>.1 ::; min{RA, T} . 
• • •• 
Proof of this theorem may be found in Brauer [5]. 

Section 1.1.4 Brauer's Power Method 

In 1946, Brauer [5] considered taking the sums of the rows of powers of 
the original matrix A. It turns out that this is a rather 'sharp' method. How
ever, since the method involves taking powers of the original matrix, round-off 
error will often rear its ugly head. In any case, the theorem is stated as follows: 

Theorem 1.14 (Brauer's Power Method) Let A E cnxn. Let R(A2~)i be the 
sum of the absolute values of the elements in the ith row of A2~ where r is 
natural number. This means that the actual powers on the matrix will be 
2,4,8,16,32,64, ... ). Define: 

RA2~ = max{R(A2~) 1 , ... , R(A2~)N }. 

Then for any eigenvalue >. E cr(A), we have 

1.>.1 :S (R(A2~))~ • 

•••• 
Proof of this theorem may be found in Brauer [5]. 
Suspecting the possibility of roundoff error, many runs were done for this the
sis using Brauer's Power method. The following examples are a representative 
sampling of what was found: 

Example 1.15 Let 

( 3i 
3- 2i -5 -7+4i ) 3- 2i -7i 2 -lli -8 A= 

-5 2 -lli lli 5 + 5i . 
-7+4i -8 5 + 5i -5i 

The spectrum, cr(A), is 

{ -2.45 + 12.45i, 4.82 + 3.10i, -7.69- 2.04i, 5.36- 11.51i}. 

The plot of Brauer Power Method for this matrix is shown in figures 1.15A 
and 1.15B. Powers on the matrix of 21 = 2, 22 = 4, 23 = 8, 24 = 16, and 
27 = 128 (which means A2 ,A4 ,A8 , A16 , and A128 ) are shown in figure 1.15A 
(for clarity, the in-between powers of 25 = 32 and 26 = 64 are not shown). 
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These were calculated in Matlab using single precision. Note that at A128 , the 
circle actually intersects one of the eigenvalues. When the matrix is raised to 
a power of 28 = 256 or A256 (not shown in the figure), the circle is the same 
as A128

. This is good. However, at the next step, 29 = 512, round off error 
causes problems as shown in figure 1.15B. At this power, the circle does not 
enclose the eigenvalues. 

"' ~ 
~ 

"' c 
·c;, 

"' E 

20 ~+----+----~------~ 
' ' ' 

15 

-15 

-20 

-25 -20 -15 

Brauer Power Method 

' ' ' ' ' ' -------,------ ------.----
' ' ' ' ' ' ' ' 

15 20 25 
Real Axis 

For clarity, powers of32 and 64 are not shown. The power of256 is the same as 128. 

Figure 1.15A 

Brauer Power Method 
25 

20 
, : Due to roundoff errors, 

-- --------··r··------- --------··r the set produced does ~ 

15 -- ----------+---------- ---------+not include all of the -:· 

10 

"' ·;;: 
<{ 

1::' 
"' c 

·c;, 

"' ~ 

, ·-. I 

-: :::::::::F:::::: : .:z~;;,T~::::: :::::: 
- -----------·----------- __________ .J ___________ ... _______ --- ----------

' ' ' ' ' ' ' ' ' 
' ' ' 

-10 ' ' ' -- ___________ ... ____________________ ,. ___________ ... __________ ----------
' ' ' I 1 X 1 

' ' ' 
' ' ' 

-15 ' ' ' -- -----------,----------- ----------,-----------r·--------- ----------
' ' ' ' ' ' ' ' ' 

-20 ' ' ' 
•• ···········'··········· •••••••••• .J ••••••••.•• L •••••••••• •••••••••• 

' ' ' 
' ' ' ' ' ' ' ' ' 

-25 -30 -2u 10 20 30 
Real Axis 

When the matrix A is raised to a power of 512, roundoff error causes problems. 

Figure 1.15B 

ln these figures, the eigenvalues are represented by the X's 
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Example 1.16 Let 

A~ ( 2~4i 
The spectrum, a(A), is 

2 
- 3i 
5i 
8 

1 
1 
5 

7i 
9 . 
-6) 

10 15 

{16.61 + 2.26i, 11.82 +. 79i, 1.58- 2.2i, -4.01- 4.15i}. 

18 

The plot of Brauer Power Method for this matrix is shown in figures 1.16A 
and 1.16B. Powers on the matrix of 22 = 4, 23 = 8, 24 = 16, and 27 = 128 
(which means A4 ,A8 , A16

, and A128 ) are shown in figure 1.16A (for clarity, 
the in-between powers of 25 = 32 and 26 = 64 are not shown) . Note that at 
A 128

, the circle comes very close to intersecting one of the eigenvalues. So, one 
would guess that at the next step of A 256 that the circle would intersect one 
of the eigenvalues. At the very least, one would guess that it would be safe 
to go to a power of 256- it was safe for the last example. However, when the 
matrix is raised to a power of 28 = 256 or A 256 , the circle does not enclose 
the eigenvalues. Another failure. (It must be stressed that the theorem itself is 
correct but roundoff error causes us to conclude that the method is not reliable 
for practical applications). 
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"' X 
<{ 
>. 
(;; 
c 
Ol 
('0 

E 

25 

20 

15 

10 

5 

0 

-5 

-10 

-15 

-20 

-25 

Brauer Power Method 

-10 0 
Real Axis 

10 

For Clarity, powers of 32 and 64 are not shown. 

Figure 1.16A 

Brauer Power Method 
----------------------------------------1 I I I 

' ' ' 
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: : :Brauer Power Method : : 
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• •--- T •---- • • • •- -.-- •- •-- • • • ·r----------, •--------- -,----------- T-------- • 
I I I I 

' ' 
' I I I I I I 
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I I I I I I 
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I I I I 

' ' ' 

The Brauer Power Method fails when the matrix A is raised to a power of256. 
ri~CII MJII:S 

Figure 1.16B 

ln these figures, the eigenvalues are represented by the X' s 

19 
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It might be unreasonable to expect any method to work consistently when 
raised to power such as 128 or 256. So, can reasonable powers be found that 
will make the Brauer Power Method work consistently? After experimenting, it 
was found that this method usually failed if the power on the matrix was 1028 
or greater. For powers less than 1028 and greater than 128, the results were 
mixed. On the other hand, powers of 128 or less appeared to always produced 
outstanding results. Can the Brauer Power Method be made consistent and 
reliable if the power on the matrix is limited to 128? The answer is No. At 
least one matrix was found that failed at powers of 128, 64 32, 16 and even 8. 
See the following example. 

Example 1.17 

This is a matrix from Matlab and can be accessed simply by typing 'gallery(5)' 
at the Matlab command line. This matrix is ill-conditioned. Let 

( -9 
11 -21 63 -252) 70 -69 141 -421 1684 

A= -575 575 -1149 3451 -13801 . 
3891 -3891 7782 -23345 93365 
1024 -1024 2048 -6144 24572 

The spectrum, o-(A), is 

{ -.040844, -.011876+.038593i, -.011876-.038593i, .032298+.022998i, .032298-.022998i}. 

(Be aware that this matrix is so badly ill-conditioned that some programs, such 
as Maple, may calculate the eigenvalues to be all zeros!) 

The plot of Brauer Power Method for this matrix is shown in figures 1.17 A 
and 1.17B. A Power on the matrix of 22 = 4 produced goods results, as shown 
in figure 1.17 A. However, the method failed at a power of 23 = 8 as shown in 
figure 1.17B. This is a very low power at which to fail and shows how susceptible 
this method is to round-off errors. 

A method that may be subject to roundoff error does not fit in with 
the type of methods featured in this paper. So, this method will only be used 
for illustrative purposes. Therefore, in this paper, the Brauer Power Method 
will not be considered as one of the 'acceptable' methods for creating spectral 
inclusion sets. 
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ln these figures, the eigenvalues are represented by the X' s 
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Section 1.1.5 Comparison of Browne, Brauer, Farnell, and Parker 

It would be interesting to compare all of the methods, except for the 
Brauer Power Method, considered thus far. Therefore, each method will be ap
plied to the following examples. 

Revisiting Example 1.2, 
Example 1.18 Recall 

A= 1 2 1 

( 

0 0 -1 

0 0 1 
!1) 1 . 

1 1 .5 -1 

The spectrum, a(A), was found to be 

{ -1. 79, 2.17, .81 + 341i, .81- 341i}. 

Revisiting Example 1.3, 
Example 1.19 Recall 

( 

-5+i 
7- 6i 

A= 19 

16 + 9i 

2 -6 
15i -7 + 3i 

8- 4i 13 + 9i 
15 + 2i -9 + 3i 

The spectrum, a(A), was found to be 

15i ) 
8 + 5i 

10 . 

-7 + 2i 

{ -15.42- 13.78i, 15.37 + 29.14i, 10.33- 2.72i, -9.28 + 14.36i}. 

Revisiting Example 1.4, 
Example 1.20 Recall 

( 

100 

A= 7- 6i 
19 

16 + 9i 

2 
15i 

8- 4i 

-6 
-7+3i 
13 + 9i 

15- 2i -9 + 3i 

The spectrum, a(A), was found to be 

15i ) 8 + 5i 
10 . 

0 

{97.33 + 2.07i, 17.51 + 20.11i, 5.14- 4.56i, -7.0 + 6.38i}. 

Revisiting Example 1.5, 
Example 1.21 Recall 

( 

100 

A= 7 ~96i 
16+ 9i 

2 -6 
15i -7+3i 

8- 4i 13 + 9i 
15- 2i -9 + 3i 

15i ) 
8 + 5i 

10 . 

-60- 120i 
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The spectrum, cr(A), was found to be 

{98.87 + 1.12i, -60.76- 121.3i, 3.32 + 9.03i, 11.56 + 15.16i}. 

The results of these last for examples are plotted in figures 1.18, 1.19, 1.20, and 
1.21. The radii of the circular bounds on .A are listed below. 

Example 1.18 Example 1.19 

Farnell's 2nd 4.049 Farnell's 2nd 46.286 

Parker 4.25 Parker 46.335 

Browne 5.000 Brauer 51.676 

Brauer 5.000 Farnell's 1st 52.706 

Farnell's 1st 5.000 Browne 52.716 

Example 1.20 Example 1.21 

Farnell's 2nd 110.108 Brauer 168.598 

Brauer 123.000 Farnell's 1st 172.817 

Farnell's 1st 134.272 Browne 172.870 

Browne 134.789 Parker 172.870 

Parker 134.789 Farnell's 2nd 172.870 

The results are rather fascinating. Notice that in examples 1.18,1.19, and 
1.20, Farnell's Second Method produced the best results but in example 1.21, 
Farnell's Second Method was among the poorest. On the other hand, Brauer 
was among the worst in example 1.18, third best in 1.19, second best in 1.20, 
and best in 1.21. The other methods produced mixed results even though it can 
be said that Browne, the oldest method considered, usually produced poorer 
results than the others. 
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ln these figures, the eigenvalues are represented by the X's 
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In these figures, the eigenvalues are represented by the X's 
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Section 1.1.6 Conclusions for pre-Gerschgorin Methods 

As noted earlier, all of the pre-Gerschgorin methods are quite good for 
creating spectral inclusion sets of a matrix or operator. The preceding examples 
demonstrate that for some matrices, one method might produce the sharpest 
results while for a different matrix another method will produce the sharpest 
results. Yet, for any particular matrix, it is easy to determine the smallest spec
tral inclusion set: First calculate the circular bound on .X using each of Farnell, 
Browne, Brauer, and Parker's methods. Secondly, pick the smallest of these 
circles. Finally, intersect this smallest circle with the rectangular box produced 
by Browne's Theorem. This is stated formally in the following new theorem. 

Theorem 1.22 (Composite of Browne, Brauer Farnell, and Parker) 
Let A E cnxn. Let 

B = A+A* 
2 

and c =A- A* 

Let R(A)i,R(B)i,and R(c);,be the sums of the absolute values of the elements in 
the ith row of the matrices A,B, and C, respectively. Let T; be the sum of the 
absolute values of the elements in the ith column of A. Define: 

RA = max{R(A)1• ... , R(A)N}, RB = max{R(B)1, ... , R(B)N}, 

Rc = max{R(C)1• ... , R(c)N}, and T = max{T1, ... ,TN}. 

Let 
F1 = min{RA, T}. 

Let U; be the sum of the squares of the absolute values of the elements in the 
ith row of A (i.e. Ui = I:j=1 Ja;jJ2). Let Vi be the sum of the squares of the 
absolute values of the elements in the ith column of A (i.e. Vi = 2:::~= 1 Jak;J2). 
Let 

1 

F2 = [t(U;l/i)~]
2 

,F3 =(RAT)~, and F = min{F1,F2,F3}. 
•=1 

Let 

FS={(x,y):../x2 +y2 :=;F} and BR={(x,y):JxJ::;RBJ:, JyJ::;Rc}. 

Then 
a( A)~ FS n BR . 

• • •• 
This Composite BBFP (Browne, Brauer, Farnell, and Parker) Method 

will be applied to the examples just considered. The results are plotted in 
figures 1.23, 1.24, 1.25, and 1.26. 

Notice that, when using this theorem, uncomplicated inclusion sets are 
produced. Throughout the rest of this thesis, when 'Pre-Gerschgorin' methods 
are considered, this Composite BBFP Method will be used. 
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Composite BBFP 
150 

100 

50 

"' (i 
. , ......... -~\ ::l X 

2' 
0 

X .. 
..... ...... . \: ; . 

c: . X ·c;, 

"' ,!; 

-50 :. . .. .. ............ . ;. ··········· ...... , .......... 

-100 

-150 
-150 -100 -50 0 50 100 150 

Real Axis 

Figure 1.25 

200 
Composite BBFP 

150 r- ... ....... , . . 

1oo k J ..... .L. 

50 1 -- 1 .... .. -~ . . . .. I ""· .. , .. 

~ 
2' 
"' c: ·c;, 

_§ 
-50 r--.. . . . ...... .• .. ~ .. . , •.... ·I ..•• .. , ••••••.... .• , ..... ;. . 

-100 
I I 

X : 

/ 
-150 [ 

~- -·· '-

: I I i I i I I i -200 
-250 -200 -150 -100 -50 0 50 100 150 200 250 

Real Axis 

Figure 1.26 

In these figures, the eigenvalues are represented by the X ' s 
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Section 1.2 Gerschgorin Theorem 

In 1931, Gerschgorin (26] discovered a way to produce a spectral inclu
sion set based on the sums of the absolute values of the off-diagonal elements of 
rows. The inclusion sets produced by Gerschgorin's theorem, unlike all of those 
considered so far, are not centered at the origin; hence, is not a spectral radius 
approximation. 

In words, the procedure for constructing Gerschgorin circles is as follows: 

Given any square,complex matrix A 
(1) Pick any row. 
(2) Calculate the absolute value of each off-diagonal element in chosen row. 
(3) Sum these absolute values. The result of this sum is the radius of a circle. 
( 4) The center of this circle is the diagonal element of that row (note that the 
center of the circle is the actual value of this diagonal element and not the ab
solute value). 
(5) Draw the circle using the radius found in (3) and the center found in (4) 
(6) Repeat these six steps for each row in the matrix. 
The result of this will be a plot of a bunch of circles. The spectrum is included 
in the union of these circles. 

A formal statement of Gerschgorin's Theorem is as follows: 

Theorem 1.27 (Gerschgorin) Let A E cnxn. Let 

and let 

Then 

Gi(A) = {z E C: lz- aiil::; ri(A) = t laijl} for 1::; i::; n 
J=l 
#i 

n 

G(A) = U Gi(A). 
i=l 

a(A) ~ G(A). 

Proof Let A E a(A). Then for some x = {x1, x 2 , ••• , xn}, x =f. 0 , Ax= Ax. Set 
Xk = max{lx1l, lxzl, ... , lxnl} and consider the kth row of AX= Ax. Then 

n 

AXk = L akjXj· 

j=l 

Subtracting akkXk from both sides, 
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n 

.Axk- akkXk = L akjXj, 
j = l 
j# 

n 

(.A- akk)xk = L akjXj· 
j=l 
j# 

30 

Taking the absolute value of both sides and using the triangle inequality, we 
have: 

and thus 

Since lxk I ~ I xi I, 

I(.\- a.,)x,l ~ It, a.,x; I S t, la,;x; I, 
#k j# 

n 

I(.A- akk)llxkl :S L lakillxil· 
j = l 
j# 

n n 

I(.A- akk)llxkl :S L lakillxil :S L lakillxkl 
j = l 
j# 

j=l 
j# 

Dividing both sides by lxk I, we see that 

• • •• 

n 

I.A- akkl :S L lakil · 
j = l 
j# 
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Revisiting Example 1.2, 
Example 1.28 Find the Gerschgorin radii and disks for the following matrix: 

( 

0 0 
1 2 

A= 0 0 

1 1 

The spectrum, a(A), is 

-1 
1 
1 
.5 

!1) 1 . 

-1 

{ -1. 79, 2.17, .81 + 341i, .81- 341i}. 

(The solution details of this example may be found in the Appendix). 

The Gerschgorin disks for this matrix are plotted in figure 1.28 . 

• • •• 
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Figure 1.28 

4 

In these figures, the eigenvalues are represented by the X' s 

' -----, 
' ' ' 
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The next example uses a complex matrix 

Example 1.29 Find the Gerschgorin radii and disks for the following matrix: 

( 

2 + 3i 
4 - 4i 2 

Jl = 3i 4 

- 7 2 - 5i 

4 
l+ i 
- 4i 

6 

i + 1 ) 2 + 2i 
5i . 

-5+i 

The spectrum, a(A), is 

{7.79- .12i, .97 + 6.19i, -5.47- 5.89i, -4.29- .18i}. 

(The solution details of this example may be found in the Appendix). 

The Gerschgorin disks for this matrix are plotted in figure 1.29 . 
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In these figures, the eigenvalues are represented by the X' s 
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A spectral inclusion set can be produced by using Gerschgorin's theorem 
based on column sums rather than row sums. The theorem related to column 
sums is stated as follows: 

Theorem 1.30 (Gerschgorin Column Theorem) Let A E cnxn. Let 

and let 

Then 

n 

GJ(A) = {z E C: iz- aiil :S ri(A) = L laiil} 

n 

i=l 
i#-j 

GT(A) = U GJ(A). 
j=l 

u(A) ~ GT(A). 

1:Sj:Sn 

Proof Gerschgorin's Column Theorem uses column elements instead of rowel
ements. Therefore, it is equivalent to applying Gerschgorin's original theorem 
to the transpose of a matrix. Since the transpose of a matrix preserves the spec
trum, then Gerschgorin's Theorem applied to columns will produce a spectral 
inclusion set . 

• • •• 
Section 1.2.1 Comparison of Pre-Gerschgorin and Gerschgorin Meth
ods 

From all of the preceding discussions, it is obvious that the Pre-Gerschgorin 
(Composite BBFP) and Gerschgorin methods bound the spectrum of a matrix 
but which method is best? That is, which method produces the smaller inclu
sion set? In order to answer this question, some matrices already considered will 
be re-examined. In the following examples, comparisons will be made between 
the Composite BBFP and Gerschgorin. 

Revisiting Example 1.2, 
Example 1.31 Recall 

The spectrum, u(A), is 

( 

0 0 
1 2 

A= 0 0 
1 1 

-1 
1 
1 
.5 

!1) 1 . 

-1 

{ -1. 79, 2.17, .81 + 341i, .81- 341i}. 

The Gerschgorin, Gerschgorin Column, and the Composite BBFP sets are shown 
in figure 1.31A and 1.31B. Notice that the area enclosed by the Gerschgorin cir
cles is someone larger than the area enclosed by the Composite BBFP rectangle. 
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In fact, the Composite BBFP is almost a subset of Gerschgorin. In this case, 
Gerschgorin and Gerschgorin Column looks rather crude compared to the Pre
Gerschgorin methods. 
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In these figures, the eigenvalues are represented by the X ' s 

35 



1 PRE-GERSCHGORIN AND GERSCHGORIN METHODS 

Revisiting Example 1.3, 
Example 1.32 Recall 

( 

-5+i 
7- 6i 

A= 19 

16 + 9i 

The spectrum, u(A), is 

2 -6 
15i -7+3i 

8- 4i 13 + 9i 
15 + 2i -9 + 3i 

15i ) 8+ 5i 
10 . 

-7+ 2i 

{ -15.42- 13.78i, 15.37 + 29.14i, 10.33- 2.72i, -9.28 + 14.36i}. 

36 

Once again, the composite BBFP produces a smaller set than Gerschgorin or 
Gerschgorin Column. (See figure 1.32A and 1.32B} 
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Ln these figures, the eigenvalues are represented by the X's 
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Things change when we revisit Example 1.4, 
Example 1.33 Recall 

( 100 
2 -6 

7- 6i 15i -7+3i 
A= 19 8- 4i 13 + 9i 

16 + 9i 15- 2i -9 + 3i 

The spectrum, a(A), is 

lSi ) 8+ 5i 
10 . 

0 

{97.33 + 2.07i, 17.51 + 20.11i, 5.14- 4.56i, -7.0 + 6.38i}. 

38 

This time, the composite BBFP (shown in Fig. 1.33) produces an inclusion set 
that is about twice as large as Gerschgorin's. In this example, the 'economy' of 
Gerschgorin is very pronounced. 
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In these figures, the eigenvalues are represented by the X's 
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The Gerschgorin disks are even more impressive when we revisit Example 
1.5, 
Example 1.34 Recall 

( 

100 
7- 6i 

A= 19 

16+ 9i 

2 
15i 

8- 4i 
15- 2i 

-6 
-7 +3i 
13 + 9i 
-9+3i 

15i 
8 + 5i 

10 
-60- 120i 

) 
The spectrum, a-(A), is 

{98.87 + 1.12i, -60.76- 121.3i, 3.32 + 9.03i, 11.56 + 15.16i}. 

The results, shown in figure 1.34, reveal that the composite BBFP set is more 
than three times larger than Gerschgorin's. In this example, the Pre-Gerschgorin 
methods look crude. 
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In these figures, the eigenvalues are represented by the X's 
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What is going on here? In these examples, both sides appear - cases in 
which the Composite BBFP is superior to Gerschgorin and cases in which Ger
schgorin is much better than the Composite BBFP. Is there a way to predict 
the best method for a particular matrix? If there is a way to predict it, how 
is it done? The short answers are 'yes, there is a way' and it is done by first 
calculating the Gerschgorin disks and considering the following: 

(1) If the Gerschgorin disks form one connected set that includes the 
origin,such as examples 1.31 and 1.32, then the Pre-Gerschgorin (Composite 
BBFP) methods will perform very well relative to Gerschgorin. 

(2) If the Gerschgorin disks consist of separate groups of disks and the 
distance between the groups is relatively large, such as examples 1.33 and 1.34, 
the Pre-Gerschgorin methods are likely to be inferior to Gerschgorin. 

( 3) If the Gerschgorin disks form one connected set that is far from the 
origin or the Gerschgorin disks are confined to one quadrant in the complex 
plane, the Pre-Gerschgorin methods are likely to be inferior to Gerschgorin. 

This all leads to two important observations. First of all, the great weak
ness of the Pre-Gerschgorin methods (Composite BBFP) is that they are 'tied' 
to the origin. That is, the Pre-Gerschgorin inclusion sets are all centered about 
the origin even when the eigenvalues are all far away from the origin. Sec
ondly,the great strength of the Gerschgorin disks is their ability to 'move with' 
the eigenvalues and, in some cases, separate and enclose separate groups of 
eigenvalues. This strength of Gerschgorin is evident not only when compared to 
Pre-Gerschgorin methods but even when compared to more 'involved' methods. 
This strength of the Gerschgorin disks will be seen throughout other parts of 
this thesis. 

Before, concluding this chapter, consider one more issue. Sometimes Pre
Gerschgorin' methods perform better than Gerschgorin while at other times, 
Gerschgorin performs better than 'Pre-Gerschgorin' but very seldom does one 
produce a subset of the other. This means than an intersection of 'Pre-Gerschgorin' 
(Composite BBFP) and Gerschgorin will produce an even smaller spectral inclu
sion set. In fact, this can be taken one step farther: one could intersect inclusion 
sets produced by 'Pre-Gerschgorin', Gerschgorin, and Gerschgorin's Column 
Theorem in order to produce an even smaller set. This idea of intersecting 
spectral inclusion sets will continue to be developed throughout the 
rest of this thesis. 
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2 Improvements to the Pre-Gerschgorin Meth
ods 

As noted in chapter one, the Pre-Gerschgorin methods produced spectral inclu
sion sets centered at the origin. In many cases, this did not cause the inclusion 
set to be too large but in some cases, the spectral inclusion sets generated by 
Pre-Gerschgorin methods were excessively large simply because the sets were 
'tied' so closely to the origin. Consider the following example. 

Example 2.1 

c+Bi 2 1 JJ A= 4 7 + 7i 1 
3 3 10+ 4i 
1 -2 2 

The spectrum, a(A), is 

{12.54 + 5.84i, 7.39 + 5.83i, 4.74 + 6.90i, 2.34 + 9.44i} 

When the best of the Pre-Gerschgorin methods, the Composite BBFP formu
lated in chapter one, is applied to the matrix A, the inclusion set shown in figure 
2.1 is produced. 
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Figure 2.1 
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Notice that, even though the eigenvalues are all in the first quadrant, the 
Composite BBFP sweeps a large radius through all four quadrants in order to 
create the inclusion set. Again, this is due to the fact that the Pre-Gerschgorin 
inclusion sets are centered around the origin and are bounds for the spectral 
radius. On the other hand, it was noted in chapter one that one of the great 
advantages of Gerschgorin's Theorem is that its inclusion set is not centered at 
the origin but is centered around the diagonal elements of the matrix. What if 
one could somehow combine the best ideas from the Pre-Gerschgorin methods 
with Gerschgorin's idea of centering the inclusion set around diagonal elements 
of the matrix. Would this produce a smaller inclusion set? 

Parker's Second Theorem (1948) 

W.V. Parker is, apparently, the first person to adapt the Pre-Gerschgorin 
methods so that they might be centered at places other than the origin. By 
1948, thanks to some papers written by Brauer, the Gerschgorin Theorem began 
to be widely known. In 1948, Parker (63] took Gerschgorin's idea of using 
the diagonal elements as centers of circles and applied this idea to the Pre
Gerschgorin methods. Unlike Gerschgorin, however, Parker took the average 
value of all of the diagonal elements and used this average value as the center of 
one big circle. At the same time, Parker retained some of the Pre-Gerschgorin 
ideas. Parker's Second Theorem is stated as follows: 
Theorem 2.2 (Parker's Second Theorem (1948)) Let A E cNxN. Let 

N 

wi = L:laijl, 
j=l 
#i 

N 

Qi = L laiil, 
j=l 
#i 

for 1 :S i :S N, and let 
1 N 

J.L=-""' N L...J aii· 
i=l 

Set Ri = Wi+laii-J.LI, Ti = Qi+laii-J.LI, and Si = (Ri+Ti)/2. 

If S = max{S1, ... , SN} then the eigenvalues of A lie within a circle of radius S, 

with center at J.L· 
•••• 
Proof of this theorem may be found in Parker (63]. 

By applying Parker's Second Theorem to the example above, it is possible to 
greatly reduce the size of the inclusion set: 

Example 2.3 

Apply Parker's (1948) Theorem to example 2.1. 
The results are shown in figure 2.3. Notice how much smaller Parker's set is 
compared to the Composite BBFP. 
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Figure 2.3 

Two important things must be noted. First of all, the inclusion set pro
duced by Parker's Second Theorem is usually smaller than the set produced by 
the Composite BBFP. Secondly, Parker's does not necessarily produce a subset 
of the Composite BBFP set, as the last example shows. 

So, on the one hand, Parker's does not necessarily produce a subset of 
the Composite BBFP set. On the other hand, after applying Parker's Second 
Theorem to a number of different matrices, it began to appear that the inter
section of the Composite BBFP and Gerschgorin may be a subset of Parker's 
Second Theorem. If that is the case, there will be no need to even consider 
Parker's Second. It does seem reasonable that the one is a subset of the other 
since Parker is using both Gerschgorin and Pre-Gerschgorin ideas. However, 
the following example shows that this is not the case. 
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Example 2.4 

( 

40 + 25i 
12 

A= -1 

4 

5 
33 + 31i 

-2 
3.5 

-1 
-4 

49 + 39i 
-4 

-1 ) 

45143i 

The spectrum, O"(A), is 

{28.22 + 29.61i, 44.35 + 27.09i, 46.33 + 44.45i, 48.10 + 36.85i} 

Parker's Second (1948), Composite BBFP, Gerschgorin, and Gerschgorin Col
umn for this matrix are shown in figure 2.4A. 
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In this Figure, the Composite BBFP Set is in red; the Gerschgorin Set 
is in Black; the Gerschgorin Column Set is in blue; and Parker's 
(1948) Set is enclosed by the dashed circle. In this example, each of 
these sets will contribute to reducing the size of the Spectral Inclu
sion Set. This fact will become clear by studying Figures 2.4B and 
2.4C. 

Figure 2.4A 
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The 'blow-up' of a portion of figure 2.4A is shown in 2.4B and 2.4C. The 
arrows in 2.4C are highlighting regions that are covered by three of the inclusion 
sets but not the fourth. 

Composite BBFP, Gerschgorin, Gerschgorin Column, and Parker (1948) 
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This Figure is a 'blow-up' of the upper right hand corner of Figure 2.4A 

Figure 2.4B 
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This figure is the same as Figure 2.4 B, except the superfluous lines in 
the Gerschgorin and Gerschgorin Column Sets have been removed. 

Figure 2.4C 
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Note that each of the four sets is not covering parts of the complex plane 
that are covered by the other three. This means that each of the four sets is in 
some way helping to reduce the spectral inclusion set. Therefore, no one set is 
a superset of the intersection of the other three. 

In his original paper, Parker points out that, very often, the inclusion set 
produced by his theorem might be made smaller by adjusting the value of J-l in 
his theorem. In Parker's theorem, J-l is taken to be the average of the diagonal 
elements of the matrix. In most cases a more optimal value of J-l may be found 
by the 'hit and search' method. 

Summary of the 'simple' methods of creating spectral inclusion sets 

With the close of this second chapter, the examination of the 'simple' 
methods of creating spectral inclusion sets is complete. In these first two chap
ters, four good ways to estimate the spectrum have been established: 

1. The Composite BBFP 
2. Gerschgorin's Theorem 
3. Gerschgorin's Column Theorem 
4. Parker's Second Theorem 

It has been shown that no one of these methods is, in general, a subset of 
any of the others. More importantly, in general, intersecting the sets generated 
by all four of these methods will produce a smaller inclusion set than by Inter
secting any three sets. In fact, one of the purposes of this thesis will be 
to establish new methods of intersecting these four simply-generated 
sets in order to produce a relatively small spectral inclusion set (this 
will be done in chapter nine). 
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3 Methods related to Gerschgorin (Varga-Medley) 

Once the Gerschgorin disks have been found for a particular matrix or operator, 
certain analysis can be done on the disks in order to better define the spectrum. 
This chapter deals with some of that analysis. 

Before the analysis on the Gerschgorin disks can be considered, a couple 
of facts must be established. In the 1940s, Olga Taussky [74], [75] formulated 
some very important theorems related to isolated Gerschgorin disks: 

Theorem 3.1 (Olga Taussky) H a group of k Gerschgorin disks are isolated 
from the other disks, this group of isolated disks contain exactly k eigenvalues. 

Proof (This proof is based on Meyer (58]) Let A E cnxn such that the Ger
schgorin disks of A include a group of k isolated Gerschgorin disks. Let D = 
diag {au, ... , ann}· Let B =A-D so that A= B +D. Let C(t) = Bt + D 
where t E [0, 1], so C(O) = D and C(1) = A. Then the Gerschgorin disks of 
C(t) consist of the z' s that satisfy: 

n 

lz- aiil ::; tri = t L laiil· 
j=l 
#i 

Notice that when t=O, the k isolated Gerschgorin disks consists of only the 
points au, ... , akk which are also the eigenvalues of C(O). As tis increased from 
0 to 1, the Gerschgorin disks grow and the eigenvalues change. Now a property 
of eigenvalues states that the eigenvalues vary continuously with the entries of 
the matrix. So, as t increases from 0 to 1, the eigenvalues of the group of k 
isolated disks will trace out k continuous curves. For example, the ith curve 
will start at aii when t = 0 and end at Ai when t = 1. Since each of the k 
curves begins within this group of k isolated disks centered at aii, no curve can 
leave this group of disks without causing a discontinuity. Since each curve is 
continuous, the k eigenvalues must remain within this group of isolated disks . 

• • •• 

This theorem is illustrated in the next example. 
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Example 3.2 Let 

38 + 32i 2 4- 5i 1 05 1- o5i 
2- 3i -10- 8i 3 5i 2 -1 

i 2 -15- 12i 6i 2 -3 
-5i 2 7i -12- 4i 05 6 
1-i -5- 2i 3 5i 25 + 30i -1 

2 2i 05 2 -20- 5i 

The Gerschgorin disks for this example are shown in figure 3020 Notice that 
the group of two isolated Gerschgorin disks contain exactly two eigenvalues as 
predicted by Theorem 3ol. 
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Figure 302 

20 30 40 50 



3 METHODS RELATED TO GERSCHGORIN (VARGA-MEDLEY) 49 

Corollary 3.3 (Olga Taussky) If one Gerschgorin disk is isolated from 
the other disks, this isolated disk contains exactly one eigenvalue. 
Corollary 3.3 is a special case of Theorem 3.1. 

•••• 
This Corollary is illustrated in the next example. 

Example 3.4 Let 

-12- 6i 2 2- 4i 1 .5 1- .5i 
2 - 3i -10- 8i 3 5i 2 -1 

i 2 -15- 12i 6i 2 -3 
-5i 2 7i -12- 4i .5 6 
1-i -5- 2i 3 5i 25 + 30i -1 

i 2 2i .5 2 -20- 5i 

The Gerschgorin disks for this example are shown in figure 3.4. Notice that the 
isolated Gerschgorin disk contains exactly one eigenvalue as predicted by the 
theorem. 
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The actual eigenvalues are represented by the X's 
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Once these facts about isolated Gerschgorin disks became known, it was 
possible to develop methods to calculate the exact value of the eigenvalue(s) 
located in these disks. 

Varga-Medley Method 

In the early 1960's Richard Varga and Helen Medley devised methods 
for taking advantage of isolated Gerschgorin disks. That is, they developed 
methods for computing the exact value of the eigenvalues located inside of the 
isolated Gerschgorin disks. 

The equations that appear in the Varga and Medley papers [55],[86] are 
presented below. A Matlab program appears in the appendix. The reader 
should look at the Matlab code in combination with the equations below in 
order to understand the practical use of the Varga-Medley method. 

Let A E cnxn. Define 

rf(A) = ~ la i jiXj for 1 :S i :S n and Xi> 0. 
L x · j=l • 
# i 

Let dkj = lakk - ajj I for 1 :S j, k :S n. Let Pk be the set of all vectors x > 0 
such that 
dkj - rj(A)- rk'(A) ~ 0 for all j =f. k. 

Obviously, if this last inequality is satisfied, then the distance between 
the disk centers is greater than the sum of the disk radii and, therefore, we have 
an isolated disk. 

Now, proceeding with P1 , the matrix Q is defined as follows: 

Q = ( 0 1.81r ) 
-191 Q 

where 1,BT1 = (la12l, la13l, ... 1a1nl) and 19TI = (la21l , la311, ···lanll). 

In general, Q is defined as: 

q .. = la11 - a·· l for 1 < i < n u n - - ' 

qlj = la1j I for 2 :S j :S n, 

Qij = -laij I for i =1- j and i =1- 1. 

Medley and Varga partition the matrix A as follows 

A = ( a_:1 I ,8T ) 
I A22 
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The matrix B is defined as: 

B=(*) 
where B = A22 - a 11 In-l and In-l is the (n-l}x(n-1} identity matrix. 

Note that if the isolated disk under consideration is not associated with the 
first row of the matrix, then a11 will not be used. In that case, the isolated disk 
is associated with the kth row and B becomes: 

B = A22- akkln-l· 

Once all of the above calculation are done, the eigenvalue of this isolated disk 
can be found by an iterative method using following steps: 

Algorithm 

Step 1. Initialize z=.05. 

Step 2. Calculate a new value of z using: 

z = -jjT'(jj- zln-l)-19. 

Step 3. Substitute this new value of z back into Step 2. 

Notice that f3 and ;:y are constructed just once. 

Continue Steps 2 and 3 until z converges. The eigenvalue for this isolated disk 
is given by: 

>. = akk + z. 
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Example 3.5 Let 

( -7 
-1.5 5 7i 

3 l A~ ~ 
3i 3 4 -7 
2 30- 8i 1.5 y· 3 4 2 

-7 -4 3 2 

The Gerschgorin disks for this matrix are shown in figure 3.5. 
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Figure 3.5 

20 30 

Notice that one of the Gerschgorin disks for this matrix is isolated. That 
isolated disk is associated with the third row. Thus, the third row and the third 
column will be used in the construction of "(,{3, and A22 . So, 'Y will be made up 
of a 13,a23,a43,a53 and {3 will be made up of a31,a32,a34,a35· The matrix A22 is 
made from A by including all of A except the third row and the third column. 
This gives, 

, ~ ( n . p ~ ( 3 2 15 2.5 ) • A, ~ o: -1.5 7i 
3i 4 
3 2 
-4 2 

!7) 3 . 

5 
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Since the isolated disk is associated with the 3rd row, jj = A22 - a33Jn-1· 

Then 

( -7 
-1.5 7i 

3 ) cO-Bi 0 0 

0 ) - 2 3i 4 -7 0 30- 8i 0 0 {3-
3 2 3 - 0 0 30- 8i 0 . - 6 

-7 -4 2 5 0 0 0 30- 8i 

The result is 

-1.5 7i 
-30 + lli 4 -7 f3= 2 

( -37+8i 

6 3 -28 + 8i 
3 ) 3 . 

-7 -4 2 -25 + 8i 

Now, the iterative process can be started. 
Selecting z=.05 as a starting point and using z = -7J7'(Bzfn_1 )-1-;y, we have 

n z >. = a33 + z 

0 .05 
1 .9882 + .3756i 30.9882 - 7.6244i 
2 .9732 + .3461i 30.9732 - 7.6539i 
3 .9730 + .3471i 30.9730- 7.6529i. 

It is clear, then, that >. = 30.9730- 7.6529i. 

The actual eigenvalue for this disk, as calculated on Matlab is, also, ). = 
30.9730 - 7.6529i. So, the value produced by the Varga-Medley method is 
exactly correct. 

Consider the next example. 
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Example 3.6 Let 

( -5 ~ lOi 
4 2 3 

1 l 8 -7i 2 1.5 1 
A= 2.5 2 18 + 19i 3 1 0 

-11 2 3 -22- 18i 
-25: 10i 2 2 3 1 

The Gerschgorin disks for this matrix are located in figure 3.6. Notice that all 
five of the Gerschgorin disks for this matrix are isolated. The Medley /Varga 
method yields the following five eigenvalues: 

.A1 = -5.7214 + 10.5932i 

.A2 = 8.2069 - 6.5804i 

.A3 = 18.4312 + 18.6291i 

.A4 = -21.7234- 18.5776i 

.A5 = -25.1933 + 9.9357i. 

Once again, these numbers match the actual eigenvalues exactly. 
The Medley /Varga method is very fast and very efficient and shows the 

power and richness of the Gerschgorin disks. 
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Figure 3.6 

The actual eigenvalues are represented by the X's 
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4 Gerschgorin-Type Methods 

This chapter begins the study of the 'involved' methods of producing spectral 
inclusion sets. In this context, 'involved' does not necessarily imply compli
cated calculations but 'involved' does mean a larger quantity of computations, 
transformations, and/or iterations in order to produce a result. Such meth
ods, therefore, will require more computer time than the methods previously 
considered. 

This particular chapter covers the Gerschgorin-Type methods. That is, 
methods that are based on Gerschgorin's original theorem but go much further. 
As with the regular Gerschgorin Theorem, Richard Varga, has done extensive 
work with these Gerschgorin-Type methods. In particular he has, over the past 
fifty years, greatly advanced our understanding of the minimal Gerschgorin sets 
both on the theoretical and the practical level. 

Section 4.1 Brauer's Ovals of Cassini 

In the 1940's Alfred Brauer [6] improved on the original Gerschgorin theo
rem. Brauer began with Gerschgorin's idea of using the diagonal elements of the 
matrix as the centers of disks and the sums absolute values of the off-diagonal 
elements as the radii of the disks but extended the idea by considering two rows 
at a time. Brauer realized that he could reduce the size of Gerschgorin's inclu
sion set by considering two rows at a time instead of one. His theorem is stated 
as follows: 

Theorem 4.1 (Brauer-Cassini)Let A E cnxn. Let 

Kij(A) = {z E C: lz- aiil·lz- aiil ~ ri(A) · rj(A)} 

1 ~ i, j ~ n; i =/=- j 

n 

K(A) = U Ki,j(A) 
i ,j=l 
#i 

u(A) ~ K(A) 

(1) 

The proof of Theorem 4.1, presented below, follows Brauer's [6] original 1947 
proof and is very similar to the proof given above for Gerschgorin's theorem. 
(See Varga [88],[90] for a more sophisticated proof of this same theorem.) 

Proof Let A E u(A), Ax= AX, x =/=- 0. Define x = {x1 , x2 , .•. , Xn}, 

Xk = max{lx11, lx2l, ... , lxnl}, XL= max{ {lx11, lx2l, ... , lxnl}- {xk} }. 

(i.e. Xk and XL have the two largest absolute values of the set { X1, x2, ... xn} 
and Xk 2: XL) 
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Consider the kth row of >.x = Ax, 

n 

>.xk = L akjXj· 

j=l 

Subtracting akkXk from both sides, 

n n 

>.xk- akkXk = L akjXj, 

j=l 

and (>.- akk)Xk = L akjXj· 

j=l 
j# 

Consider the Lth row of >.x = Ax: 

n 

AXL = L aLjXj· 

j=l 

j# 

56 

Subtracting aLLXL from both sides, (recall XL is the second largest absolute 
value from the set {x1,x2, ... xn}), 

and thus 

n 

AX£- aLLXL = L aLjXj, 

j=l 
#L 

n 

(>.- aLL)XL = L aLjXj· 

j=l 
#L 

Multiplying (2) and (3), we have 

and thus 

•••• 

n n 

(>.- akk)(>. - aLL)XkXL = ( L akjXj) ( L aLjXj), 

j=l j=l 
j# #L 

n n 

I.A- akkii>.- aLLIIxkxLI:::; lxki(L lakjl)lxLI( L iaLjl). 
j=l 
j# 

j=l 
#L 

(2) 

(3) 

Note that the set produced by Theorem 4.1 is sometimes called 'Brauer's 
Ovals of Cassini', 'Brauer-Cassini', 'the Ovals of Cassini', and 'Cassini'. All of 
these names will be used in this thesis. 

A valuable feature of Brauer's Ovals of Cassini is that the resulting set is 
always a subset of the Gerschgorin disks. This means that when using Brauer's 
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Ovals of Cassini, it is not necessary to consider the Gerschgorin disks. This 
result is stated in the next theorem. 

Theorem 4.2 (Brauer's Ovals of Cassini is a subset of Gerschgorin) Let A E 
cnxn. Then 

K(A) ~ G(A) 

Proof This proof follows R.S. Varga [88) 
Fix i and j with 1 ::; i, j ::; and i =/= j .Let Z0 E K;j (A) then 

lzo- a;;l·lzo- ajjl ::; r;(A) · rj(A). 

Rearranging, we have: 

( lzo- aiil )( lzo- ajjl) < 1. 
r;(A) rj(A) -

Note that for this inequality to hold, either 

I Zo - a;; I ) < 1 
( r;(A) - or 

So, without loss of generality, assume that 

Rearranging, we have 

( lzo- ajJI)::; 1. 
rj(A) 

lzo - aiil ::; r;(A). 

Therefore,z0 is in one of the Gerschgorin disks: 

n 

G;(A) = {z E C: lz- a;;l::; r;(A) = L la;jl} for 1::; i::; n. 

Therefore, 

•••• 

j=l 
J=l-i 

K(A) ~ G(A) 

Section 4.1.1 Applying the Brauer-Cassini Theorem 

Obviously, generating a Brauer-Cassini set is slightly more difficult than 
generating a Gerschgorin set and is best done by computer. Since it is necessary 
to find values of z that satisfy, 

lz- a;;l·lz- aJJI::; r;(A) · rj(A) (4) 
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this inequality will be treated as any equation that uses complex numbers. 
Therefore, let 
z = x + yi and a1 = Re(aii) ; b1 = Im(aii) ; a2 = Re(ajj) ; b2 = Im(ajj) 

The left side of (4) becomes 

l[x + yi- (a1 + b1i)][x + yi- (a2 + b2i))l 

l[(x- a1) + (y- b1)i)[(x- a2) + (y- b2)i)l 

l(x- a1)(x- a2) + [(x- al)(y- b2) + (x- a2)(y- b1))i- (y- bl)(y- b2)l 

l(x- a1)(x- a2)- (y- b1)(y- b2) + [(x- al)(y- b2) + (x- a2)(y- b1))il 

lx2 - (a1 + a2)x + a1a2 - (y2 - (b1 + b2)Y + b1b2 
+[xy- b2x- a1y + a1b2 + xy- b1x- a2y + a2b1)il 

Applying the absolute value, 

.Jfx2- (a1 + a2)x + a1a2- (y2 - (b1 + b2)Y + b1b2]2 
+ [xy- b2x- a1y + a1b2 + xy- b1x- a2y + a2b1]2 

This square root is the left hand side of (4). Squaring both sides of (4) produces, 

[x2 - (a1 + a2)x + a1a2 - (y2 - (b1 + b2)Y + b1b2]2 + [xy- b2x- a1y + a1b2 + 
xy- b1x- a2y + a2b1]2 

:::; (ri(A) · rj(A)) 2 (5) 

So, the Brauer-Cassini set consists of values of x and y that satisfy inequality (5). 

The above is a natural way of approaching the Brauer-Cassini theorem. 
However, there is a more efficient way to produce the Brauer-Cassini set when 
using a computer. Some years after Brauer developed his theorem, he sug
gested a much simpler method [9) to calculate the Brauer-Cassini set. Combin
ing Brauer's suggestions along with considerations for computer applications, it 
is possible to develop an efficient algorithm to produce the Brauer-Cassini sets. 
That algorithm is presented below. 

Algorithm 4.1 

Let A E cnxn. 

Step 1 
For k = 1, 2, ... n calculate the Pk 's: 

n 

Lakj = pk 
j=l 
j# 



4 GERSCHGORIN-TYPE METHODS 59 

Step 2 
Select a point 'z' from some spectral inclusion set of the matrix A. 

Step 3 
Begin with k=1 and see if 'z' satisfies the following inequality: 

lz- akki :S Pk 

If 'z' does not satisfy the inequality, then try k=2, k=3, etc. Then consider the 
following: 

3a If 'z' does not satisfy the inequality for one or more of the k's , then 
'z' is not in the Brauer-Cassini set for the matrix. In that case, change the value 
of 'z' by some increment and go back to step 2. 

3b If 'z' satisfies the inequality for one or more of the k's , then go to 
step 4. 

Step 4 
For each of the k's that z satisfies, check to see if 'z' satisfies the following 
inequality. 

lz- akkiiz- aLLi :S PkPL 

If 'z' satisfies this inequality for the current 'k' and for any L = 1, 2, .. n with 
k -:/:- L then 'z' is in the Brauer-Cassini set. 

Step 5 
Change 'z' by some increment and return to step 2. 

This process is to be continued until all of the points in the inclusion set have 
been covered . 

• • •• 
When using the Algorithm 4.1, it is necessary to have some inclusion set avail
able from which the z's can be selected. Any inclusion set such as the Norm of 
the matrix or the Gerschgorin set will serve that purpose. 

Different algorithms for producing the Brauer-Cassini sets were tested on the 
computer, this Algorithm 4.1 proved to be the simplest and most efficient. (Find 
the Matlab code in the Appendix.) 
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Example 4.3 Let 

( 

0 0 
1 2 

A= 0 0 

1 1 

The spectrum, a(A), is 

-1 
1 
1 
.5 

!1) 1 . 

-1 

{ -1. 79, 2.17, .81 + 341i, .81 - 341i} 

60 

The Brauer-Cassini set for this matrix is plotted in figure 4.3. The Brauer
Cassini set consists of the points represented by the red stars. This graph also 
shows the Gerschgorin circles for the same matrix. The basic Gerschgorin set is 
the set enclosed by the union of the green circles. As guaranteed by Theorem 
4.2, the Brauer-Cassini set is a subset of Gerschgorin. 

Gerschgorin (Green Circles) and Cassini (Red Stars) 

6 ~ - ... . . ... ..... , :-·········:-··· 

H· ······=· ········:····· ·· ···>·· 
: Gerschgorin 

····· ·:··~··:··········· · · · · ······ · ·· · · 

"' n .... .... .. X .... . 

<( 
>-
~ 0 ~ -·· 
Cl 

"' E 
-2 ~ 

-4 ~ -

-6 E· · 

-8 

·····=····· ····:·· .. .... . ........ 

/' ·· ···· .... .... .. . . . 

·· ·············· ...... . .. ,. 

....... . .. . . .. .. , .......... . ·: ....... . . ~ ... . 

-6 -4 -2 0 2 4 6 8 
Real Axis 

Figure 4.3 

In these figures, the eigenvalues are represented by the X's 
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Revisiting Example 1.29, 
Example 4.4 Recall 

( 

2 + 3i 
A= 4- 4i 

3i 
-7 

The spectrum, u(A), is 

i 
2 
4 

2 - 5i 

4 
l+i 
-4i 

6 

i+l 
2 + 2i 

5i 
-5 +i 

) 
{7.79- .12i, .97 + 6.19i, -5.47- 5.89i, -4.29- .18i} 

61 

The Brauer-Cassini set for this matrix is shown in figure 4.4. The Brauer-Cassini 
set consists of the points represented by the red stars. The basic Gerschgorin 
set is the set enclosed by the union of the green circles. 

(/) 

·;;;: 
<:( 
>. 

Gerschgorin (Green Circles) and Cassini (Red Stars) 
30~----~-----r----~----.---~-----.-----.. 

20 .... .............. , ............. . G . 9.C!ri_n .. : 

10 ~ - ...... . .. . .... . 

~ 0 ........ .. . . 
c 
·c, 
"' E 

-10 . . .. . .. ~ . . .. .. ..... :- . 

-20 ............. , . .. .... .... · .. 

-30~----~-----L----~----L---~L---~----~ 
-40 -30 -20 -10 0 10 20 30 

Real Axis 

Figure 4.4 

In these figures, the eigenvalues are represented by the X 's 
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Example 4.5 Let 

( - 4+4i 
- 2 3 

- 1 ) A- 1 6 + 2i -2 2 
- 2 2 - 6+3i 3 . 

.5 .5 -4 7 + 3i 

The spectrum, u(A), is 

{ -6.46 + 3.43i, -2.17 + 3.61i, 5.67 + 1. 78i, 5.96 + 3.18i} 

The Brauer-Cassini set for this matrix is shown in figure 4.5. The Brauer-Cassini 
set consists of the points represented by the red stars. The basic Gerschgorin 
set is the set enclosed by the union of the green circles. 

- ~ 
X 

<{ 
>. 

Gerschgorin (Green Circles) and Cassini (Red Stars) 
15r---~-----r----~----~----~----~----~--. 

: Gerschgorin 
. -'"'"- . 

:···· · ····: · · · ·· · · ·· · ·.·· · · ··· 10 

5 .. ...... .. . · . .. . 

a; o ............. . . 
c 
·;:;, 
"' E 

-5 t- ..... . . . .... . .. . ... : ..• . .. .. ..... . . 
··· · ··•·:······ · · · · '· · ····· · ····· · ··· 

-10 ~ -..... .. . . .. . .. .. . . . . . . . . . . . . . . . . . . . . . . . .. . . ... . . . . . . . . . . . . . .. . .... . .. .. ... . 

-15L-__ _L ____ _L ____ _L ____ ~----~----~----L-~ 

-15 -10 -5 0 
Real Axis 

Figure 4.5 

5 10 15 

In these figures, the eigenvalues are represented by the X 's 
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Example 4.6 Let 

( 275+i 1 .75 
-.5 ) 

A= - .75 -i .5 .75 
.75 .5 .1 +i 1 . 
1 .5i -.5i 2.5- 3i 

The spectrum, a(A), is 

{2.41- 3.03i, 2.75 + 1.12i, .36- 1.08i, -.17 + .99i} 

The Brauer-Cassini set for this matrix is shown in figure 4.6. The Brauer-Cassini 
set consists of the points represented by the red stars. The basic Gerschgorin 
set is enclosed by the union of the green circles. 

- ~ 
X 

<( 
>. 
(;; 

.!::: 
Cl 

"' E 

Gerschgorin (Green Circles) and Cassini (Red Stars) 
6rr-----.----.-----.-----.----.-----.----,,-, 

' ' 
--------~---------~ ' ' ' ' ' ' ' ' 

' ' -------- ,-------- -r--------

-4 -2 0 2 
Real Axis 

Figure 4.6 

4 

-----~--------~---
' ' ' ' ' ' 

' 

' ' - - ---r ---- ----,---
' 

-------~--------~---
' ' 

' ' ' ' 

' ' --------r--------,---

6 8 

In in each of the last four examples, the Brauer-Cassini set was a bit 
smaller than the Gerschgorin set. The performance of Gerschgorin and Brauer
Cassini in these examples is very typical of the relative 'sharpness' of these two 
methods. 
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Section 4.2 Cassini sets for Real matrices 

In 1952, two separate articles appeared on the subject of Brauer-Cassini 
sets for real matrices. One article was by Gene W. Medlin (57) of the Univer
sity of North Carolina and the other article was by Alfred Brauer (8) also of 
UNC. Both articles presented essentially the same equations for determining a 
Brauer-Cassini set for real matrices. The equations they propose will, in gen
eral, produce slightly smaller spectral inclusion sets than the general Cassini 
theorem when dealing with real matrices. 

Theorem 4.7 (Brauer-Medlin-Cassini) Let A E Rnxn. Let 

Let 

n 
rs(A) = L Jasti for 1 S s S n. 

t=l 
t#s 

n 

Pij = Jaijlrj + Jaji l(ri -laijl) + L Jaikajkl + L Jaikajq + aiqajkl · 
k=l k<q 

Where (i = 1, 2, ... , n), (j = 1, 2, ... , n), (k = 1, 2, ... , n), (q = 1, 2, ... n) 

with i =f. j and i =f. k and i =f. q and j =f. q and j =f. k. 

Let 

•••• 

K~j(A) = {z E C: lz- aii l · lz- ajjl S Pij } 

1 S i, j S n; i =f. j 

n 

K' (A)= U K~,j(A) 
i,j=l 
#i 

<1(A) ~ K' (A) 

Proof of this theorem may be found in Medlin (57) or Brauer (8). 

Note that the difference between the general Cassini theorem and this theo
rem is that r i (A) · r j (A) is replaced by Pij. A careful study will reveal that 
Pij S ri(A) · rj(A). This of course means that the inclusion set produced by 
this theorem is as small or smaller than the inclusion set produced by the orig
inal Brauer-Cassini theorem. 
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Example 4.8 Consider the following real matrix, 

-123 12 - 16 22 6 8 
-14 77 7 - 8 9 3 

A= I 
4 9 6 - 25 - 18 29 
9 - 8 - 15 -5 12 - 10 

- 24 16 - 17 9 -8 7 
- 12 8 - 15 -16 12 22 

' 

The spectrum, a(A), is 

{ - 122.19, 80.32, 23.7 + 12.1i , 23.7- 12.1i, -21.84, -14. 70}. 

The Brauer-Cassini set and the Brauer-Medlin-Cassini set for real matrices are 
shown in figure 4.8. Notice that the Cassini set for real matrices is slightly 
smaller than the general Cassini set. This is very typical of the relative perfor
mance of these two theorems. 

Gerschgorin (Circles), Cassini (Red), Cassini for Real Matrices (Green) 

100 •••••••••;u•u:•···· ··~u• : u. ~;r •u••• •u• •u•• 

50 

(J) 

X 
<( 

C;-

"' c ·c, 
"' E 

-50 

Gerschgoriri Disks 
-100 . . . . . . . . . . ............ : .. ....... .... ~ . .. . .. .. . .. . . . : ..... .... ... .. : .... .......... : . . . 

-150 -100 -50 0 50 100 
Real Axi s 

Figure 4.8 

In this figure, the eigenvalues are represented by the X ' s 
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Section 4.3 Brualdi sets 

As we have seen thus far, Gerschgorin produced a spectral inclusion set 
by considering one row of a matrix at a time. Brauer-Cassini produced a subset 
of Gerschgorin by using two rows at a time. So, what will happen if multiple 
rows are used in the calculation? Will the set based on, say, three rows at a 
time be smaller than the Cassini set? The answer is 'yes'. The resulting set 
will be smaller. However, sets produced by using multiple rows will not 
always include the spectrum!. In other words, it is not possible to produce 
a Gerschgorin-type spectral inclusion set by using more than two rows at a time 
- at least not without restrictions and modifications. 

Varga [88] supplies an example, attributed to Morris Newman, that illustrates 
the problem described above. 

Example 4.9 Let c I 0 0 ) 1 1 0 0 
A= 0 0 1 0 . 

0 0 0 1 

The spectrum, u(A), is 
{0, 1, 1, 2}. 

As Varga points out, the set produced by doing Gerschgorin-type analysis using 
three rows at a time on this matrix includes only one point, z= 1 and, therefore, 
does not include the eigenvalues 0 or 2. So, the set is not a spectral inclusion set. 

R. Brualdi [16] was able, by the use of elementary graph theory, to pro
duce a Gerschgorin-type theorem for multiple rows of a matrix. Brualdi's The
orem, however, is rather hard to use and its application is limited to weakly 
irreducible matrices. The Brualdi Theorem is stated as follows: 

Theorem 4.10 (Brualdi) Let A E cnzn be weakly irreducible. Let 

Brk(A) = {z E C: II lz -a· ·I< ,,., - II ri(A)}, 
iECyck(A) iECyck(A) 

and 
Br(A) = U Brk(A). 

kEM 

Then 
u(A) ~ Br(A). 

Where M is the number of cycles in A and Cyck(A) contains the set of vertices 
in the kth cycle . 

• • •• 
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Some definitions and examples will be required in order to make The
orem 4.10 clear. First, it is necessary to recall some definitions from graph 
theory. A directed graph of a matrix is strongly connected if for any vertices 
vi and vi there exists a directed path from vi to vi. A matrix is irreducible 
if and only if its associated graph is strongly connected. On the other hand, 
a matrix is weakly irreducible if each vertex of its associated graph belongs to 
some cycle in the graph. (Note that an irreducible matrix is weakly irreducible). 

Example 4.11 Consider, 

5 3 0 0 0 -7 
5 9 0 6 0 -3 

A= I 0 0 4 9 8 0 
0 0 -6 8 7 0 
0 0 8 7 9 0 

-41 7 0 0 0 14 

The directed graph of matrix A is shown in the figure 4.11. (The details of how 
this graph was constructed may be found in the Appendix). Notice that this 
graph is not strongly connected. For example, there does not exist a directed 
path from 5 to 2. Since the graph is not strongly connected, it is not irreducible. 
On the other hand, each vertex belongs to some cycle in the graph. That is, 1 
belongs to c126i 2 belongs to c126i 3 belongs to c345i4 belongs to c345i5 belongs 
to C35 ; and 6 belongs to C126· Therefore, the matrix is weakly irreducible and 
the Brualdi Theorem may be applied to this matrix. 

This is the directed graph for the matrix in example 4.11 

Figure 4.11 
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Example 4.12 Let 

( 

.5 1 

A = -~5 ~ 
1 0 

0 
.25 
-.5 
.3 

~5). 
-z 

68 

Notice that each vertex is in some cycle (see figure 4.12A). Therefore, the matrix 
is weakly irreducible and Brualdi's Theorem may be applied to this matrix. 

2 

4 3 

Directed Graph for example 4.12 

Figure 4.12A 



4 GERSCHGORIN-TYPE METHODS 69 

The cycles in this graph are C12, C34 and C1234. So, the Bruadi set will 
consist of the union of these three sets: 

For C12, 

{z E C: lz-aul·lz-a221 ~ r1(A)·r2(A)} = {z E C: lz-.5l ·lz-il ~ (1){75+.25)}. 

For C34, 

{z E C: 1z-a331·1z-a441 ~ r3(A) ·r4(A)} = {z E C: lz-( -.5)l·lz-( -i)l ~ (.25)·(1+.3)}. 

For C1234, 

{z E C : lz - aul·l z - a22l·lz- a33l · lz- a441 ~ r1(A) · r2(A) · r3(A) · r4(A)} 

= {z E C: lz- .5l·l z -il·lz-(-.5)l·lz-(-i)l ~ (1)·( .75+.25)·(.25)·(1+.3)}. 

The Brualdi set for this matrix is shown in figure 4.12B. 

(/) 

Gerschgorin (Circles), Cassini (Red Stars), and Brualdi (Green Stars) 
2rr--.---.---.---.-=-.-~.---.---,---,---,-, 

:Note: Cassini Set is 

1.5 ~ .:.lJn.d~,r,~he .. Br~.al.di.? 
:In son;e parts of 
:the graph. · 

~·······:····· ··:·····j'''\l:i~ 

0.5 k · · · · · · :. · · · .,. . ;. : L · ;.\ .. Jij!4"'f- : 
: Gerschgonn p1-"- · \ ·. ·"-·"'·· · 

.. .. . . ·-· . ..... . .. . . ... . .. , . ....... . ~ 
c:- 0 
"' .s 
"' E -o.5 : . .. .. . . : ....... : ... .; .. : .. ·-······ · ·········· 

-1 r ·:· ·· ··· · ·~···· ···-:-··~·· ·y· 

-1 .5 : .. " ... : "" .. . ~." \. . . : " ... 

-2 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1.5 2 2.5 
Real Axis 

Figure 4.12B 

In these figures, the eigenvalues are represented by the X's 
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The Brualdi sets are of great theoretical value and the ideas derived 
from the Brualdi theorem are likely to lead to other discoveries. However, in 
its present state, the Brualdi Theorem is not practical for large matrices be
cause the number of cycles that must be considered increase factorially with 
the dimension of the matrix. This can lead to a huge number of calculations. 
Therefore, only limited use will be made of Brualdi's Theorem in this thesis. 

Section 4.4 Minimal Gerschgorin set 

Another approach to spectral inclusion is to take advantage of the fact 
that similarity transformations preserve the spectrum. Given a square, complex 
matrix A, the Gerschgorin disks of A, by Theorem 1.27, contain the spectrum 
of A. IT a matrix B is similar to A, the Gerschgorin disks of B contain the spec
trum of B and, by virtue of similarity, the spectrum of B is the spectrum of 
A. Now, since the Gerschgorin disks of A contain the spectrum of A and the 
Gerschgorin disks of B contain the spectrum of A, then the intersection of the 
Gerschgorin disks of A and the Gerschgorin disks of B contain the spectrum of 
A. Therefore, even if the Gerschgorin sets for a large number of similar matrices 
are intersected, the resulting set will still contain the spectrum. 

Revisiting Example 1.29, 
Example 4.13 Recall 

c+3i i 4 
i+l ) 4- 4i 2 1+i 2 + 2i 

A= 3i 4 -4i 5i . 
-7 2- 5i 6 -5 +i 

Let 

c5 0 0 n c 0 0 

0 ) P- 0 2 0 
p - 1 = ~ .5 0 0 

- 0 0 3 0 .3333 0 . 

0 0 0 0 0 .25 

Let 

( 2+3i 
.8i 4.8 1.6 + 1.6i ) 

B = p - 1 AP = 5 - ~i 2 1.5 + 1.5i 4+ 4i 
2.52 2.667 -4i 6.6667i . 

-4.375 1- 2.5i 4.5 -5+i 

Now, if we continue to create new matrices P by changing the values of 
the diagonal elements (using only strictly positive values) and continue to find 
the Gerschgorin sets for the similar matrices associated with P and intersect 
these sets, we will get smaller and smaller inclusion sets. The set resulting from 
such intersections is shown in blue in figure 4.13. Notice how small this set 
is compared to the Gerschgorin disks for the original matrix A. The new set is 
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even smaller than the Cassini set. This set is called the Minimal Gerschgorin 
set for the matrix A. (See Varga [87], [91], [89],[46] Johnson [39] , and Levinger 
[47] for important work on the Minimal Gerschgorin Set). 

Gerschgorin (Green Circles), Cassini (Red Stars), and Minimal Gerschgorin(Biue Stars) 
30~~--~----~----~----~----~----~----~ 

20 

10 
tJ) 

·;;;c 
<( 

~ 0 "' c ·e:, 
"' E 

-10 .. , . ........ .. :-. 

-20 r · · ·.· · · ·· · · ·· · ·:·· · ·· · ·· · ·· : · · · · · ·· 
: : : 

. . ... . .. . . ~ ..... .. .. ...... .. ...... ; .. 
. . . . 

-30~----~----~----~----L-----~--~----~ 
-40 -30 -20 -1U 0 10 20 30 

Real Axis 

Figure 4.13 

In these figures, the eigenvalues are represented by the X's 
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The idea used in the previous example is generalized in the next theorem. 

Theorem 4.14 (Minimal Gerschgorin set) Let A E cnxn. 

Let x = (x1,x2,x3, ... ,xn) > 0. Let 

Gf(A) = {z E C: lz- aiil ~ rf(A) = ~ iaijiXj} mboxfar 1 ~ i ~ n. 
L...- x· 
j=l • 

#i 

n 

Let Gx(A) = U Gf(A). 
i=l 

Then O"(A) <:;; Gx(A) and O"(A) <:;; GR(A) = n Gx(A). 
x > O 

Proof Let 

("" 
a12 a13 al4 

) 
a21 a22 a23 a24 

A = a31 a32 a33 a34 ••• 0 

a41 a42 a43 a44 ... 

Let x = (x1, x2, X3, . . . , Xn) > 0. Then 

( x, 
0 0 0 (l 0 0 0 

. ) ) 
X1 

P ~ ~ 
X2 0 0 

p -• ~ ~ 
..!._ 0 0 ... X2 

0 X3 0 and 0 ..!._ 0 0 0 0 • 

X3 

0 0 X4 0 0 ..!._ ... 
X4 

Let 

( ~ 
~ ~ ~ 

X1 .) Xl Xl Xl 
~ ~ ~ ~ ... 

X2l X2 X2 X2 

B = P - 1 AP = ~ ~ ~ ~ 
X3 X3 X3 X3 
~ ~ ~ ~ 

X4 X4 X4 X4 

Then B is similar to A. Since similar matrices have the same spectrum, the 
Gerschgorin set of B contains the spectrum of A. The Gerschgorin set of B is 
given by: 

n 

Gx(A) = G(B) = U Gf(A). 
i=l 

Where 

Gf(A) = Gi(B) = {z E C: iz- aiil ~ rf(A) = ~ iaijiXj} for 1 ~ i ~ n. 
L.....; x · 
j=l • 

#i 
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So, the above is the Gerschgorin set for B. That is, the Gerschgorin set for a 
particular similarity transformation based on a particular x. Note that as x is 
changed, new similar matrices will be formed. The Gerschgorin set of each of 
these similar matrices contain the spectrum of A. That is, 

CJ(A) ~ GX(A). 

Therefore, the intersection of all of these Gerschgorin sets contain the spectrum 
of A: 

•••• 

Example 4.15 Let 

The spectrum, CJ(A), is 

CJ(A) ~ GR(A) = n Gx(A). 

( 

0 0 
1 2 

A= 0 0 

1 1 

x > O 

-1 
1 
1 
.5 

!1) 1 . 

-1 

{ -1. 79, 2.17, .81 + 341i, .81 - 341i}. 

The minimal Gerschgorin set for this matrix is plotted in figure 4.15. For com
parison purposes, the Brauer-Cassini set and the basic Gerschgorin set are also 
shown. The minimal Gerschgorin set consists of points represented by the blue 
stars. The Cassini set consists of the points represented by the red stars. The 
basic Gerschgorin set is the set enclosed by the union of the green circles. No
tice that the minimal Gerschgorin set is a subset of Brauer-Cassini. (It is true 
in general that the minimal Gerschgorin set is a subset of Brauer-Cassini. See 
Varga [88] for the proof.) 
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Gerschgorin (Green Circles), Cassini (Red Stars), and Minimal Gerschgorin(Biue Stars) 
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-4 ~ - · ··· · ···:···· · ····:·· · · · ····:· · ···· ·· ·, ·· -v··· .. 
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Real A xis 

Figure 4.15 

In these figures, the eigenvalues are represented by the X ' s 
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Revisiting Example 4.5, 
Example 4.16 Recall 

A~( 
The spectrum, a(A), is 

-4+4i 
1 
2 
.5 

-2 
6 + 2i 

2 
.5 

3 
-2 

-6+3i 
-4 

-1 
2 
3 

7 + 3i 
) 

{ -6.46 + 3.43i, -2.17 + 3.61i, 5.67 + 1.78i, 5.96 + 3.18i}. 

75 

The Minimal Gerschgorin set for this matrix is plotted in figure 4.16. For 
comparison purposes, the Cassini set and the basic Gerschgorin set are also 
shown. The minimal Gerschgorin set consists of points represented by the blue 
stars. The Cassini set consists of the points represented by the red stars. The 
basic Gerschgorin set is the set enclosed by the union of the green circles. 

Gerschgorin (Green Circles) , Cassini (Red Stars), and Minimal Gerschgorin(Biue Stars) 
15.----.-----.-----.-----.----.-----.-----.---, 

(f) 

~ 
i::' 

"' c ·;::;, 

"' E 

10 
: Gerschgorin 

····:-··········:·•··· . .. .. : ...... . 

5 - · ··· ········ · 

0 ... . . . .. . . . "' ... . . 

-5 ..... ... .. ............. .... .... . . 

-10 ····· ····.···· · ······ ....................... ..... .... ... .......... ... . ........ . 

-15L----L----~----L---~~--~-----L----~~ 
-15 -10 -5 0 

Real Axis 

Figure 4.16 

5 10 15 

In these figures, the eigenvalues are represented by the X's 
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Revisiting Example 4.6, 
Example 4.17 Recall 

( 2 75 + i 1 .75 
-5 ) A= -.75 -i .5 .75 

.75 .5 . 1 +i 1 . 

1 .5i -.5i 2.5- 3i 

The spectrum, a(A), is 

{2.41- 3.03i, 2. 75 + 1.12i, .36- 1.08i, -.17 + .99i}. 

The minimal Gerschgorin set for this matrix is shown in figure 4.17. The Cassini 
set consists of the points enclosed by the red stars. The Gerschgorin set consists 
of the points enclosed by the green circles. 

Gerschgorin (Green Circles), Cassini (Red Stars), and Minimal Gerschgorin(Biue Stars) 
6~-----r-----.-----.----~.-----.-----.------r-. 

4 ~ ··········· .... 

2'-········· ·· ··· · ··· ····· 

en 
X 

<( 

~ 
~ o~ ·· ·· · · ·· ··'· · ········ · ... . .. · ... . ... .... . ... . 
·rn 
ro 
E 

-2 ,_ ........... ' .. . . .. ,. .. ......... :···· 

-4 ~: ...... . .... ~ G e.r.s ~ !1.9 ~ri ~ .. . 

-6~----L---~----~-----L----~----L---~~ 
~ -4 -2 0 2 

Real Axis 

Figure 4.17 

4 6 

In these figures, the eigenvalues are represented by the X's 

8 

In each of these cases, the minimal Gerschgorin set was smaller than the 
Cassini set. As noted earlier, Brualdi's theorem will not be used much in this 
thesis. However, one example is in order to illustrate the finding of Varga [88] 
that the minimal Gerschgorin set is a subset of not only Cassini but also of the 
Brualdi set. 
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Example 4.18 Let A be the matrix of example 4.17. figure 4.18 compares 
Gerschgorin, Cassini, Brualdi, and minimal Gerschgorin for this matrix. Note 
that the minimal Gerschgorin set (represented by the blue stars) is a subset of 
the other three. 

en 
X 

<( ,..., 
(;; 
c 
Cl 
co 
E 

Gerschgorin (Circles) o Cassini (Red) 0 Brualdi (Green) 0 Min Gerschgorin (Blue) 
3 ,--,,----.----.-----.----,-----,----.---~ 

Note; Cassini Set is 
Under the Brualdi Set 
in some parts bf 2 ~-- .............. . . : . . 
the (J.raph. : 

0 

-1 .... ...... ....... ..... .... 

-2 --

.... ... ... : ... ............... .. . 
inrmal Gerschgorin 

-3~--~--~----~----~----~----~--~--~ 
-3 -2 -1 0 2 3 

Real Axis 

Figure 4.18 
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So, the minimal Gerschgorin set is a relatively small inclusion set but 
its production does not come without a price! First of all, to produce a truly 
minimal Gerschgorin set, in general, requires an infinite number of similarity 
transformations. Since this is not possible, some concessions must be made. 
That is, some increment must be chosen that will be used in the production a 
finite number similar matrices. If the increments chosen are too large, the set 
produced may be as large or larger than the Cassini set. On the other hand, 
when an increment is chosen so that the set produced is a subset of Cassini, the 
calculation time may be very long. 

Even the 4x4 matrices used in the previous examples required a great 
deal of calculation time. The time required to produce a minimal Gerschgorin 
set for even a 10 x 10 matrix might be prohibitive. Therefore, the minimal 
Gerschgorin set is not, in general, a practical, numerical tool. However, in 
the concluding chapter of this thesis, it will be shown that a truly 
minimal Gerschgorin set can be produced for Toeplitz matrices, that 
is equal to the set produced by an infinite number of similarity trans
formations, by using a new approach. 

Before leaving this chapter we should answer the obvious question: is 
there a minimal Cassini set or a minimal Brualdi set? Will not the intersection 
of an infinite number of Cassini sets or Brualdi sets of similar matrices produce 
a smaller inclusion set than the minimal Gerschgorin set? The intuitive answer 
is 'Yes': Since the Cassini and Brualdi sets are subsets of Gerschgorin, there
fore, the minimal Cassini and Brualdi sets should be subsets of the minimal 
Gerschgorin set. Actually, it was the intention of the author of this thesis to 
investigate that very question until it was discovered that Richard Varga (of 
course!) had already studied the matter. Varga [88] proved the fascinating 
fact that, contrary to intuition, the minimal Cassini and minimal Brualdi sets 
are equal to the minimal Gerschgorin set! Varga's conclusion is very valu
able and shows us that, for the moment, the minimal Gerschgorin 
set is the smallest spectral inclusion set that can be produced with 
Gerschgorin-type analysis. 
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5 The Numerical Range 

The numerical range apparently was discovered early in the twentieth century. 
However, it has only been since the emergence of computers and efficient al
gorithms that the numerical range has become a viable method for practical 
applications. Extensive research during the past 10-15 years has made the nu
merical range even more attractive for Numerical applications. People such 
as Christiane Tretter, Markus Wagenhofer [83], K.E. Gustafson, D.K.M. Rao 
(29], and Anne Greenebaum (28] have developed algorithms that significantly 
sharpen the numerical range inclusion set. 

Still, the numerical range cannot be considered a 'simple' method for 
producing spectral inclusion sets of a matrix or operator because it may take 
several minutes to calculate its inclusion set for large matrices or operators. 
Therefore, for the purposes of this thesis, the numerical range will be considered 
one of the more 'involved' methods for producing spectral inclusion sets. 

In a limited number of applications, the numerical range is much better 
than most other methods. The numerical range is particularly powerful when 
applied to normal matrices. As will be shown, when applied to normal matrices, 
the numerical range inclusion set is small and very often, a straight line! 

The definition of the numerical range and its spectral inclusion Theorem 
are stated as follows: 

Let A E cnzn. Then the Numerical Range is defined as W(A) = {(Ax,x): 
X E Cn and llxll = 1} 

Theorem 5.1 (The Numerical Range is a spectral inclusion set) Let A E cnzn. 

Then <1(A) c W(A). 

Proof Let A E <1(A). Let x E en such that llxll = 1. Then (Ax, x) 
(Ax, x) = A(x, x) =A. Therefore, A E W(A) and <1(A) C W(A) . 
• • •• 

A number of examples are given below. The numerical range is calculated in all 
of these examples using a Matlab program written by Carl C. Cowen (Purdue 
University) and Elad Harel. The Matlab code may be found in the appendix of 
this thesis. 
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Example 5.2 Let 

( 

3i 
3- 2i 

A= -5 
-7 +4i 

The spectrum, a(A), is 

3 - 2i 
- 7i 

2 - lli 
-8 

- 5 
2 -lli 

lli 
5 + 5i 

- 7 + 4i 
-8 

5 + 5i 
- 5i 

) 
{ -2.4879 + 12.4501i, 5.3584- 11.5066i, -7.6868- 2.043i, 4.8164 + 3.0994i}. 

The numerical range of this matrix is given in figure 5.2. 

en 
X 

~ 
~ 

"' c ·c;, 

"' E 

Numerical Range 
20r-----~----~------~----~------~-----. 

-10 

-15L------L------~----~------~----~------~ 
-15 -10 -5 0 

Real A xis 

Figure 5.2 

5 10 15 

80 

The Matlab code to generate the numerical range in this figure was written by Cowen and Hare! 

Notice that the inclusion set is convex. In fact, the numerical range 
always produces a convex set. This fact is stated in the next theorem. 
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Theorem 5.3 (Toeplitz-Hausdorff) The numerical range of a matrix is 
a convex set. 

Proof The formal proof can be found in Gustafson and Rao [29]. 

A number of matrices that were studied in previous chapters are examined 
here using the numerical range. In each of the following examples, the numeri
cal range is plotted along with the Gerschgorin disks. A wide range of examples 
are presented here in order to show that sometimes the numerical range will 
perform better than the Gerschgorin disks and at other times the Gerschgorin 
disks will perform better than the numerical range. 

Revisiting Example 1.29, 
Example 5.4 Recall 

A~( 
The spectrum, a(A), is 

2 + 3i 
4- 4i 

3i 
-7 

2 
4 

2 - 5i 

4 
l+i 
-4i 

6 

i+l 
2 + 2i 

5i 
-5+i 

{7.79- .12i, .97 + 6.19i, -5.47- 5.89i, -4.29- .18i}. 

) 

The numerical range and Gerschgorin disks are plotted in figure 5.4. 

"' ~ 
>. 
(;; 
c: 

·o, 

"' E 

Gerschgorin (Green Circles) and Numerical Range(Yellow) 
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I I I I I I I I 
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I I I I ~; I I 
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0 

-5 

-10 

-15 

-25 -20 -15 

0 
0 

-10 -5 
Real Axis 

Figure 5.4 

0 5 10 15 

The Matlab code to generate the numerical range in this figure was written by Cowen and Hare) 
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Revisiting Example 1.2, 
Example 5.5 Let 

A=U 
0 -1 :, ) 2 1 
0 1 1 . 

1 .5 -1 

The spectrum of this matrix is: 

{ -1. 79, 2.17' .81 + 341i, .81 - 341i}. 

The numerical range and Gerschgorin disks are plotted in figure 5.5. 

Gerschgorin (Green Circles) and Numerical Range(Yellow) 

3 
0 0 

~--~------- -:-------

2 

"' ·;;;: 
<( I 

X 

C:' 0 "' c: ·c;, X 

"' E 
-1 

-2 

-3 
L...l 

-3 -2 -1 0 2 3 4 5 
Real Axis 

Figure 5.5 

The Matlab code to generate the numerical range in this figure was written by Cowen and Harel 
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Revisiting Example 4.6, 
Example 5.6 Recall 

( 275+; 
1 .75 

-.5 ) 
A= -.75 -i .5 .75 

. 75 .5 .1 + i 1 . 

1 .5i - .5i 2.5- 3i 

The spectrum, a(A), is 

{2.41 - 3.03i, 2. 75 + 1.12i, .36- 1.08i, -.17 + .99i}. 

The numerical range and Gerschgorin disks are plotted in figure 5.6. 

Gerschgorin (Green Circles) and Numerical Range(Yellow) 
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: Numeric~! Range : 
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(J) x 0 
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(i; 
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-~ -5 
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-15 

' ' ' ' : ' : 

--- -~ - -\- ---- -~------- -:--
' ' 

I I I I I 

---I---------·--------_,_-------~-------- -4-------- .. -- _, 
I I I I 

' ' 

' ' ' ' ' ----~--------- ... -- ---- -·-------- -·-------- .... ------- ..... ---- __ ... ________ .,. __ _ 
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

-15 -10 -5 0 5 10 15 20 
Real Axis 

Figure 5.6 
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The Matlab code to generate the numerical range in this figure was written by Cowen and Hare) 
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Revisiting Example 1.4, 
Example 5. 7 Recall 

A= ( 

The spectrum, <1(A), is 

100 
7- 6i 

19 
16 +9i 

2 
15i 

8- 4i 
15- 2i 

-6 
-7+3i 
13 + 9i 
-9+3i 

15i 
8+ 5i 

10 
0 

{97.33 + 2.07i, 17.51 + 20.lli, 5.14- 4.56i, -7.0 + 6.38i}. 

) 

The numerical range and Gerschgorin disks are plotted in figure 5. 7. 

Gerschgorin (Green Circles) and Numerical Range(Yellow) 

60 ~t-------- ~------- -:-------- ~-------- ~------- -~------- ~-------- t-------

(J) 
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>.. 
(ij 
c ·;::;, 
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40 

-40 

' ' 
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~--------r--------r-------~--------·-------
1 I I I I 

' ' ' 

1--------L-------~--------J·-------L--------~-------~--------!--------
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Real Axis 

Figure 5.7 
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The Matlab code to generate the numerical range in this figure was written by Cowen and Harel 



5 THE NUMERICAL RANGE 

Revisiting Example 1.5, 
Example 5.8 Recall 

( 

100 
7- 6i 

A= 19 

16+ 9i 

The spectrum, a(A), is 

2 
15i 

8- 4i 
15- 2i 

-6 
-7 +3i 
13 + 9i 
-9+3i 

15i 
8+ 5i 

10 
-60- 120i 

) 
{98.87 + 1.12i, -60.76- 121.3i, 3.32 + 9.03i, 11.56 + 15.16i}. 

The numerical range and Gerschgorin disks are plotted in figure 5.8. 

Gerschgorin (Green Circles) and Numerical Range(Yellow) 

(/) 
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' ' ' ' 

20 ~----- t------------ -~-----
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-20 

' ' ' ' 

~ -40 

i::' 
"' c: 
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"' E -80 
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-140 
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......_ __.-/' 
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Figure 5.8 
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The Matlab code to generate the numerical range in this figure was written by Cowen and Harel 

A careful study of the graphs presented thus far in this chapter will reveal 
that the numerical range does produce a convex set. However, the set produced 
is not necessarily the convex hull of the spectrum. (The convex hull of a set of 
points is the smallest convex set that contains those points). This is particularly 
noticeable in example 5.2 which was presented earlier. 
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One of the more interesting theorems related to the numerical range is 
the following: 

Theorem 5.9 Let A, BE cnxn. Then u(A +B) c W(A) + W(B). 

Proof Let A, B E cnxn. Let x E en such that llxll = 1. Then by Theorem 
5.1, u(A+B) c W(A+B). By definition, W(A+B) = {((A+B)x,x): X E en 
and llxll = 1}. Now, ((A+ B)x,x) = ((Ax+ Bx,x) = (Ax,x) + (Bx,x) = 
W(A) + W(B). Therefore, u(A +B) c W(A) + W(B) . 
• • •• 
Theorems related to the numerical range inclusion set 

As noted above, the numerical range performs very well with normal ma
trices. A number of theorems and examples related to normal, Hermitian, and 
Skew-Hermitian matrices are given below: 

Theorem 5.10 Let A E cnxn. Then W(A) E Riff A is Hermitian. 

Proof 
(=>)Let W(A) E R. Let x E en such that llxll = 1. Then (Ax,x) = (x,Ax) = 
(x, Ax). Therefore, A= A*. 

( <===) Let A E cnxn be a Hermitian matrix. Let x E en such that llxll = 1. 
(Ax, x) = (x, A*x) = (x, Ax) = (Ax, x). Since (Ax, x) = (Ax, x) then (Ax, x) 
is real. 

•••• 

Theorem 5.11 Let A E cnzn. 
Then W(A) is pure imaginary iff A is skew-Hermitian. 

Proof 
(=>) Let W(A) be pure imaginary. Let x E en such that llxll = 1. Then 

(Ax, x) = -(Ax, x) = - (x, Ax) = - (x, Ax) = (x, -Ax). Therefore, A = -A*. 

(<===)Let A E cnzn be a Skew-Hermitian matrix. Let x E en such that llxll = 1. 
(Ax,x) = (x,A*x) = (x,-Ax) = (-Ax,x) = -(Ax,x). Since (Ax,x) = 
-(Ax, x) then (Ax, x) is pure Imaginary . 

• • •• 

Theorem 5.12 (From Gustafson and Rao (29]) Let A E cnxn be a normal 
matrix. Then the extreme points of W(A) are eigenvalues of A. 

The numerical range for a normal matrix is, very often, a straight line. In 
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fact, only a normal matrix can produce a numerical range with a straight line 
as the next theorem states. 

Theorem 5.13 Let A E cnxn such that W(A) is a straight line. Then 
A is normal. 

Proof Let W(A) be a straight line in the complex plane. Let () be the an
gle between W(A) and the Real axis. Let z E W(A) = {(Ax, x) : x E en and 
llxll = 1}. Since z is on the line with angle(), then e-i8 z is on the Real axis. 
Therefore, { (e-i8 Ax, x) : x E en and llxll = 1} is a set on the Real axis. That 
is, W(e-i8 A) is real. 

Now, 

(e-i8 zlx, x) = e-ie z(Ix, x) = e-ie z(x, x) = e-ie z(x, Jx) = (x, e-iB zlx) = (x, e-ie zlx) 

{The very last equality on the right holds because e-iB z is real). 
Since (e-i8 zlx, x) = (x, e-ie zlx), then e-ie zi is Hermitian. 
Then by Theorem 5.10, W(e-i8 zi) is Real. 

So, we have shown that W(e-i8 A) and W(e-i8 zi) are both real. Therefore, 
W(e-i8 A)+ W(e-i8 zi) is real. 
Then W(e-i8 A- e-i8 zi) is real. W(e-i8 (A- zi)) is real. 
Therefore, by Theorem 5.10, e-i8(A- zi) is Hermitian. That means, e-i8(A
zi)ei8 (A* - zi) = ei8 (A*- zi)e-i8 (A- zi). 
Therefore, (A* - ZI) =(A* - ZI)(A- zi). 
Therefore, AA*- zA- zA* + zz =A* A- zA*- zA + zz. 
Therefore, AA* =A* A. 

Therefore A is normal . 

• • •• 

Note that the converse of Theorem 5.13 is not always true! 
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Example 5.14 Consider the following matrix. Notice that this matrix 
is normal but not Hermitian. 

A=( 1+i 
0 1 ~ i ) . 

The numerical range of this matrix is shown in figure 5.14. The numerical range 
is a straight line. Notice that each end point of the line is an eigenvalue of the 
matrix. Also notice that the eigenvalues are complex (not pure imaginary or 
pure real) . 

Numerical Range 
2,----,----,----.----.----.----.-----.---~ 

1 .5~--------~ - --- - ---~----- - --~--------~--------~--------~--------£-------
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·;;: 
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I I I I I 

~ 0 
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' ' ' ' ' ' ' ' 0 0 

-1 ~--------~--------~--------~--------;--------;--------
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' 0 0 

' ' ' 

' --------~--------~--------~--------·--- - ----·--------
1 I I I 
I I I I 
I I I I 

' ' ' 
' 

••••••••T••••••-

o 

--------·-------
' ' ' 

-2L----J ____ _L ____ ~----L---~L---~-----L-----

-2 -1 .5 -1 -0.5 0 0.5 1 1.5 2 
Real Axis 

Figure 5.14 



5 THE NUMERICAL RANGE 89 

Example 5.15 Consider the following normal matrix: 

( 
1 i ) 0 

A= 1 2+i 

The numerical range of this matrix is shown in figure 5.15. This time, the 
numerical range is a straight line that is not vertical nor horizontal. Again, 
each end point of the line is an eigenvalue of the matrix. 

(/) 

X 
<( 

1:7 
"' c: ·c, 

"' E 

Numerical Range 
2.------.------.------.------.------.------, 

1.5 
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0 

' ' ' -----------r-----------r-----------T-----------T-----------T----------
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-----------~-----------r--~------r-----------1-----------r----------

' ' -----,-----------,----------
' ' ' ' 

: Numerical , , --I Range----- f----------- r----------

I I I I I --r-----------r-----------y-----------,-----------,----------
' I I I I 
I I I I I 
I I I I I 

-1~----~----~------~----~------L-----~ 0 - - 2.5 3 
Real Axis 

Figure 5.15 
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Theorem 5.16 (From Gustafson and Rao [29]) The numerical range of 
a symmetric matrix A is the real interval [m,M] where m and M are the least 
and greatest eigenvalues of A. 

Example 5.17 Consider following Hermitian matrix. Recall that the eigen
values of a Hermitian matrix are all real. 

A= ( 3;52; 

3 - 2i 
-4 

2 + 11i 
-7 -4i -8 

-5 
2 -11i 

1 
5- 5i 

-7+4i 
-8 

5 + 5i 
13 

) 
This spectrum, a(A), is 

{22.52, -16.82, 9.23, -1.93}. 

The numerical range of this matrix is given in figure 5.17. Notice that the 
numerical range of this matrix is a real interval, in accordance with Theorem 
5.10, with endpoints that are eigenvalues of the matrix. 
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Figure 5.17 
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Revisiting Example 5.2, 
Example 5.18 Consider following skew-Hermitian matrix. Recall that the 
eigenvalues of a skew-Hermitian matrix are all purely imaginary. 

( 3i 
3- 2i -5 

7 +4i ) -3- 2i -7i 2 -11i 
-5 ~ 5i 

0 A= 5 -2 -11i 11i 
-7+4i -8 5 + 5i -5i 

The spectrum, a-(A) is 

{20.68i, 7.87i, -18.07i, -8.48i}. 

The numerical range of this matrix is given in figure 5.18. Notice that the 
numerical range of this matrix is a vertical line on the imaginary axis, in accor
dance with Theorem 5.11, with endpoints that are eigenvalues of the matrix. 

(/) 

~ 
e:-
"' c ·;::;, 

"' E 

25 Numerical Range 

20 ~------:------ ~---- -- _;_ -z=----~---- 0------ ~------ ~------ -~------ ~-----
I I I I I 1 I I 
I I I I 1 I I 

I I : : 1 I I : 

1s ~------i------~------~-------~ ----- ------~------i·------~------r-----
• I I 1 I I 
1 1 I I I 1 I 
I I I I I 1 I I 

10 ~------!------~-------:--- ---~------ ------:------~-------:------:-----
1 1 I I I 1 I 

: : EigenJ,alues : : : : 
5 ------,------,-------r------~-----

0 0 0 
I I I I 

0 !-Numerical Ra~ge : 
------,------,-------~------r-----

0 0 
0 0 
0 

-5 
0 0 0 

------~------~-------~------~-----
0 0 

-10 1-------·---- 0 0 0 

------~------~-------~------~-----
0 0 0 
0 0 0 
0 

-15 ------~------i·------:-------~----\-1------~------~-------~------~-----
l I I ~ I I I I 
I I I I I I I 

I I I I I I I I I 

------t------~------~-------~------:------1------~-------~------~------20 
l I I I I I I I 
I I I I 
I I I I 

-2~5~~-~----.~-~~~---~--~---~--~----L---~~ 
15 20 25 

Real Axis 

Figure 5.18 
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The Strength of the Numerical Range 

The last series of examples demonstrated the efficiency of the numerical 
range when applied to normal, Hermitian and skew Hermitian matrices. In the 
case of such matrices, the numerical range is a very small set and, often, a 
straight line. No other method of spectral estimation examined thus far comes 
even close to producing such a small set. A couple of examples will illustrate 
this fact. 

Revisiting Example 5.17, 
Example 5.19 Consider, once again, the Hermitian matrix, 

( 

3 3- 2i 
3 + 2i -4 

A= - 5 2 + 11i 
-7- 4i -8 

-5 
2 -11i 

1 
5- 5i 

-7 + 4i ) 
-8 

5 + 5i . 
13 

The numerical range (the black line) is shown along with the Gerschgorin disks 
in figure 5.19. The set created by the Gerschgorin disks looks massive compared 
to the straight line created by the numerical range. 

(f) 

·x 
c:( ,., 
(;; 
c 
·;:;, 

"' E 

Gerschgorin (Green Circles) and Numerical Range(Biack Line) 
30.-~----------~-----.-----.-----.,-----~----~ 

20 

10 

0 r---y--

-10 

-20 

-30 

Real Axis 

Figure 5.19 

20 
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30 
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Revisiting Example 5.2, 
Example 5.20 Take another look at the skew-Hermitian matrix, 

( 3i 
3- 2i -5 

7+4i ) -3- 2i - 7i 2 -lli 
-5: 5i 

0 A-
-2 - lli lli - 5 

-7+4i -8 5 + 5i - 5i 

The numerical range (the black line) is shown along with the Gerschgorin disks 
in figure 5.20. 

Gerschgorin (Green Circles) and Numerical Range(Biack Line) 
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' 40 ~-~---------- ~-----------:-------=t= ------1---------- -!----------, 
30 

20 

;J 10 
<( 

~ 0 
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c, 

"' E -10 

-20 

-30 

-40 

' ' 

-- !'!~~~~~.?l_~?!.1.9.~-1 

' ' 
---------~------- - --~ 

' ' 

-50~----~L-----~----~------L-----~----~ 
-60 -4U -20 0 

Real Axis 

Figure 5.20 

20 40 60 
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Example 5.21 Consider the normal matrix, 

( 
1 i ) 

A= 1 2+i . 

The numerical range (the black line) is shown along with the Gerschgorin disks 
in figure 5.21. 

(J) 

")( 
c:( ,.., 
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~~-----~---------~--------J-
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-1 ~--~--------~---------~-------
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-------r--------,---------r----------
' ' ' ' ' ' ' ' ' ' ' ' ' ' 

-2~-----L----~--~-----L----~----~--~~ 
0 2 

Real Axis 

Figure 5.21 

3 4 5 

In all of these examples, the numerical range is nothing less than out
standing. In all of these cases, it produces a short, straight line while Ger
schgorin produces relatively large disks. So, the numerical range works very 
efficiently with normal, Hermitian, and skew-Hermitian matrices. 
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The Weakness of the Numerical Range 

When the matrix under consideration is not normal the performance of 
the numerical range is mixed ranging from excellent to very poor. The next two 
examples will illustrate some poorer performances by the numerical range. 

Example 5.22 Consider the following matrix, A. 

95 + 77i 3 2 6 8 2 
1 105 + 97i 4 5 -6 3 
3 4 110 + 105i 8 -2 5 
5 7 8 115 + 108i 4 -2 
2 4 5 5 -55- 60i 1 
1 -3 6 7 2 -65- 59i 

4 
2 
9 
2 
3 
4 

6 2 4 -6 -4 7 -72- 65i 
7 3 3 4 6 8 -9 

In figure 5.22, the numerical range for this matrix is superimposed on the Ger
schgorin disks. Notice that the numerical range produces a somewhat larger set 
than Gerschgorin. This is because the eigenvalues were located in two separate 
groups and the groups were spaced relatively far apart. The numerical range 
had to 'stretch out' while still remaining convex in order to cover both groups 
of eigenvalues. This resulted in a rather large inclusion set. 
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I I I I I I I I I ---- -·------ -~----- -'------- t.------ ... ------ ~------ ~- ----- ~------ -·-- ---- _ ... 
: : : : _l_____LB' : ' : : 
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-----~------~------~------~------·------~------~------~-------·-------~ I I I I I I I I I -150 
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' ' ' 

-200L-~--~--~----L---~--~--~---L---L--~ 
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Figure 5.22 

The Matlab code to generate the numerical range in this figure was written by Cowen and Hare! 
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4 

-80- 62i 



5 THE NUMERICAL RANGE 96 

Things get even worse for the numerical range when the eigenvalues form 
three or more groups that are relatively far apart from each other. In such cases 
the numerical range produces an unreasonably large set. This is illustrated in 
the next example. 

Example 5.23 Consider the following matrix, A. 

95 + 77i 3 2 6 8 2 
1 -105 + 99i 4 5 -6 3 
3 4 110 + 105i 8 -2 5 
5 7 8 -115 + 110i 4 -2 
2 4 5 5 -55- 60i 1 
1 -3 6 7 2 65- 60i 

4 
2 
9 
2 
3 
4 

6 2 4 -6 -4 7 72- 65i 
7 3 3 4 6 8 

In figure 5.23 the numerical range for this matrix is superimposed on the Ger
schgorin disks. This time the numerical range produces a huge set. The set is 
large due to the nature of the convex set - in order for the set to be convex and 
yet 'catch' all of the eigenvalues, it had to grow into the monstrosity shown in 
the figure. 
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Figure 5.23 
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The Matlab code to generate the numerical range in this figure was written by Cowen and Harel 
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Summary 

In general the numerical range produces a small spectral inclusion set. 
The method is very efficient when applied to normal matrices. In such cases 
the numerical range usually outperforms all of the other methods. When the 
matrix is not normal the results depend on the specific matrix. When the eigen
values are grouped relatively close together, the numerical range continues to 
perform well. However, as the eigenvalues separate into distinct, widely sepa
rated groups, the sharpness of the numerical range's set decreases considerably. 

The speed required to calculate the numerical range sometimes must be 
taken into account. In most cases calculation time is not an issue but if the 
matrix is extremely large it may be wiser to produce a spectral inclusion set by 
using one of the other methods. 
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6 Toeplitz Matrices 

Toeplitz matrices will be used extensively in the next few chapters. In par
ticular, Toepltiz matrices will be analyzed in the pseudospectra and 'Results' 
chapters of this thesis. Therefore, it will be useful to investigate some of the fea
tures of the spectrum Toepltiz matrices and operators before arriving at those 
later chapters. 

A Toeplitz matrix is a matrix of the form: 

( ~ a1 a2 a a 

. ) a_l ao a1 a2 
A= a -2 a_l ao a1 ... . 

a_a a-2 a-1 ao ... 
... ... ... 

Notice that within each diagonal all of the elements are the same. This type 
of matrix arises from many applications in Engineering and Physics. The co
efficients of certain systems of Ordinary and Partial Differential Equations can 
sometimes take the form of a Toeplitz matrix. 

As pointed out by Reichel and Trefethen [69], the spectrum for infinite 
dimensional Toeplitz operators is well understood while the same is not true for 
finite dimensional operators. In this chapter, both cases will be examined. Our 
main interest is in the finite dimensional case. However,in a later chapter, we 
will attempt to use the spectrum of the infinite dimensional operator to help us 
bound the spectrum of the finite dimensional operator. 

Section 6.1 The spectrum for Finite Dimensional Toeplitz matrices 

C.D. Meyer points out that the tridiagonal Toeplitz matrix is the only 
Toeplitz matrix that has explicit formula for its spectrum. The equations quoted 
by Meyer [58] are noted here: 

( ao 
a1 0 0 0 0 

. ) a -1 ao a1 0 0 0 ... 
A= 0 a-1 ao a1 0 0 

0 0 a_l ao a1 0 
... . .. . .. . .. . .. 

with a1 =/: 0 and a_1 =/: 0. Then the eigenvalues and eigenvectors are given by, 

ff! J1f 
Aj = a0 + 2a1 cos(--

1
), and 

n+ Xj = 

( G-1 ).!_ • (.!i.!!_) 
~ 2 Sln n+l 

(aa-11) ~sin(*) 

( G-1 ) "'- • (~) 
a1 2 Sill n+l 
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for j = 1, 2, ... n. 

The following appears to be typical of the available information on other types 
of Toeplitz matrices: 

G. Geldenhuys and C. Sippel [25) were able to come up with a bound on the 
real eigenvalues for one specific type of Toeplitz matrix, the cascade matrix: 

ao -a1 0 0 0 0 0 0 
0 ao -a1 0 0 0 0 0 

-a-2 0 ao -a1 0 0 0 0 
A= I 0 -a-2 0 ao -a1 0 0 0 

0 0 -a-2 0 ao -a1 0 0 
0 0 0 -a- 2 0 ao -a1 0 

... ... ... . .. . .. 

where a1, a-2 > 0. 

Geldenhuys and Sippel were able to show that any real eigenvalue 7J of A will 
satisfy 

2 1 
ao- 3(a1a_2f4)s < 7J :Sao. 

So Geldenhuys and Sippel results are limited to this specific type of Toeplitz 
matrix and bound only the real eigenvalues of the matrix as the next example 
shows. 

Example 6.1 

Consider the 12 x 12 matrix: 

6 -5 0 0 0 0 0 0 
0 6 -5 0 0 0 0 0 
-8 0 6 -5 0 0 0 0 

A= I 0 -8 0 6 -5 0 0 0 
0 0 -8 0 6 -5 0 0 
0 0 0 -8 0 6 -5 0 

According to Geldenhuys and Sippel, all real eigenvalues for this matrix will 
satisfy 

6- 3(52 (8)/4)! < 7J :S 6 or -5.052 < 7J :S 6. 

The spectrum, a(A), is 

{11.22 + 9i, 11.22- 9i, 10.33 + 7.5i, 10.33- 7.5i, 8.92 + 5.06i, 
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8.92- 5.06i, 7.1 + 1.9i, 7.1- 1.9i, -4.44, -2.66, .152, 3.79}. 

Notice that the real eigenvalues fall within the bounds predicted by the equa
tions. However, Geldenhuys and Sippel's inequality tells us nothing about the 
complex eigenvalues. This seems to be typical of what is available for predict
ing the spectrum of finite dimensional Toeplitz matrices - limited results coming 
from very specific applications. Therefore, there is much work to be done on 
estimating the spectrum of finite dimensional Toeplitz matrices. 

Section 6.2 Spectrum of Infinite Dimensional Toeplitz Operators 

Essential for the study of the spectrum of infinite dimensional Toeplitz op
erators is the function called the symbol of the operator. 

Given a Toeplitz matrix, 

( 

ao a1 

a-1 ao 
A= a-2 a-1 

a_3 a-2 

The symbol of the matrix is defined as, 

a2 
a1 

ao 
a-1 

-N N 

a3 
a2 
a1 

ao 

f(z) = L aizi + L aizi. 
i=-1 i=1 

So, we have 

f(z) = ... + a_2z-2 + a_1z-1 + ao + a1z + a2z2 + .... 

) 

Determining symbols for Toeplitz operators is rather easy, as the following ex
amples demonstrate. 

Example 6.2 The symbol for the matrix 

is 

( 

0 0 1 
2i 0 0 

A= 0 2i 0 
0 0 2i 

.7 0 0 
1 .7 0 
0 1 .7 
0 0 1 

... ... ) 

!A = 2iz-1 + Oz0 + Oz1 + 1z2 + .7z3 

2iz-1 + z2 + .7z3
• 
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The following two examples show how symbols of more complicated op
erators may be put into a compact form by using the geometric series. 

Example 6.3 The symbol for the matrix 

is 

fA 

A=O 
3 
4 
1 
0 
0 

3 

~ 
4 
1 
0 

3 

~6 

~ 
4 
1 

3 

¥ 
~6 

~ 
4 

3 
lg8 

¥ 
~6 
8 l 

3 3 3 3 
1z0 + -z1 + -z2 + -z3 + -z4 + ... 

4 8 16 32 
031121314) 

1z +4(z +2z +22z +23z + ... 

1+~ 
- 4 
- 1- ~· 

2 

Example 6.4 The symbol for the matrix 

is 

A=o 
2 
1 
0 
0 

2 
2 
1 
0 

2 
2 
2 
1 

2 
2 
2 
2 

2 
2 
2 
2 l 

fA = 1z0 + 2z1 + 2z2 + 2z3 + 2z4 + ... 

1+2(z+z2 +z3 + ... ) 
1+z 
1- z" 

Section 6.3 Using the Symbol to calculate the spectrum 

Reichel and Trefethen point out that the symbol of an infinite dimen
sional Toeplitz operator is defined as follows: 

Let A be an infinite dimensional Toeplitz operator, S the unit circle in the 
complex plane centered at the origin, f(z) the symbol of the operator A. De
fine, 

1 r f'(z) dz, 
I(f(S), -X) = 27ri } s f(z) -A with -X tj f(S). 

Then the spectrum of A is A(A) = f(S) U {A E C : I(f(S), -\) -I- 0}. 
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Assuming that {A E C : I(f(S), .X) =P 0} ~ f(S). 

Then A(A) = f(S). 

The above implies that by using the unit circle (S) as the domain of the symbol, 
the range of the symbol will be the spectrum of the infinite dimensional opera
tor. That is, by using, z = cos() + i sin() where 0 ~ () ~ 27r as the domain 
for the symbol function, the range will be the spectrum. 

The following example illustrates this. 

Example 6.5 Consider the operator 

A~o 
2 
0 
1 
0 

0 
2 
0 
1 

0 
0 
2 
0 

0 
0 
0 
2 

0 
0 
0 
0 ···)· ... 

The symbol for this operator is fA = 2z + ~. The spectrum can be calculated 
by 

f(S) = 2(cos() + isin()) + () 
1 
.. ,.. for 0 ~ () ~ 21r. 

cos + z sm 

Calculating f(S) for various values of() and plotting gives the following table: 

() f(S) () f(S) 
-

0 3 7r -3 

7r 
8 2. 772+.3827i 97r -2. 7716-.3827i 8 

7r 
4 2.1213+. 7071i 57r -2.1213-.7071i 4 

371" 
8 1.1481+.9239i l17r -1.1481-.9239i -8-

7r 
2 

371" -i 2 

571" 
8 -1.1481+.9239i 137r 1.1481-.9239i -8-

37r 
4 -2.1213+. 7071i 771" 2.1213-. 7071i 4 

771" 
8 -2. 7716+.3827i l57r 2. 7716-.3827i -8-

This is plotted in figure 6.5. 
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The spectrum of the infmite dimensional operator of example 6.5 
This spectrum was generated using the symbol of the operator. 

Figure 6.5 

Conclusions 

103 

A number of facts concerning Toeplitz matrices will be used in the rest of this 
thesis: 

(I) The symbol of the Toeplitz matrix can be used to determine the spectrum 
of the related infinite dimension operator. 

(2) The spectrum of a finite dimensional Toepitz operator as n -7 oo is not 
equal to the spectrum of the related infinite dimensional operator. (See Reichel 
and Trefethen [69]). 

(3) The symbol of the Toeplitz matrix serves as a spectral inclusion set for 
the related finite dimensional Toeplitz matrix. 
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7 Pseudospectra 

As will be shown, the pseudospectra, in general, produces the smallest spectral 
inclusion sets of all the methods considered in this paper. Like the other meth
ods, there are some application in which the pseudospectra is outperformed. 
However, unlike the other methods, even in those few cases in which it is out
performed, the pseudospectra produces only slightly larger spectral inclusion 
sets than its competition. 

Some of the superior features of the pseudospectra are its applications 
beyond its ability to produce spectral inclusion sets. The pseudospectra has 
applications to fluid mechanics, Differential Equations, and many other areas. 
In this thesis we will touch on a few of these applications. 

The pseudospectra is definitely one of the most 'involved' methods of es
timating the spectrum. Therefore, for very large matrices, some time is required 
to calculate the pseudospectra. Although, the several tests seem to establish the 
fact that the pseudospectra calculates more quickly than the numerical range. 

Section 7.1 Description of the Pseudospectra 

Given a matrix A, calculate the eigenvalues of the matrix and plot them. 
Perturb the matrix A slightly (setting some limit, call the limit con the amount 
of perturbation). Calculate the eigenvalues of this perturbed matrix. Plot these 
eigenvalues. Perturb the original matrix once again using a different pertur
bation but staying within the value c. Plot the eigenvalues of this matrix. 
Continue this process until all possible perturbations within c are covered. The 
resulting plot of the eigenvalues of all of these perturbed matrices make up the 
pseudospectra. 

The preceding description is made precise in the following definitions. 

Pseudospectra - Definition 1 

Let A E cnxn. Let c > 0. Then the pseudospectra, CTg(A), is defined as 

u" (A) = { z E C: z E u(A +~A): II~AII ~ c} 

Pseudospectra - Definition 2 

Let A E cnxn. Let c > 0. Then the pseudospectra, CTg(A), is defined as 

u" (A) = {z E C: II(A- zJ)- 1 112: c 1
} 

The sets produced according to Definitions 1 and 2 are the same. As the fol
lowing shows. 
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Theorem 7.0 (Definitions 1 and 2 are equivalent) 

Let A E cnxn. Let c > 0. Then, 

{z E C: z E u(A +~A): II~AII::; c} = {z E C: II(A- zi)-1 11 ~ c-1
} 

Proof (From Bottcher and Silbermann [2]) 

Let A E cnxn. Let c > 0. 

Show {z E C: z E u(A +~A): II~AII::; c} = {z E C: II(A- zJ)- 1 11 ~ C 1
} 

First Containment Direction C 

Let A E {z E C: z E u(A +~A): II~AII::; c} 

Choose ~A such that II~AII ::; c and A+ ~A- AI is not invertible 

Case 1 (A- AI) is not invertible. 

In this case, A E u(A). 

Therefore, A E u(A +~A)= u(A) when II~AII = 0. 

Therefore, A E {z E C: z E u(A +~A): II~AII::; c} 

Case 2 (A- AI) is invertible. 

Note: 

(A+ ~A- AI) = (A- AI)(!+ (A- AI)- 1 ~A) 
= (I+ (A- AI)-1 ~A)(A- AI) 

and 

(A- AI)(!+ (A- AI)-1 ~A) = 

A- AI+ (A- AI)(A- AI)- 1~A = 

A-AI +~A= 

A+ ~A- AI 

So, we have 

(A- AI)(!+ (A- AI)- 1 ~A) =A+ ~A- AI 
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Now since we have selected A+ ~A- >..I to be not invertible and (A- >..I) 
is invertible then I+ (A- >..I)- 1 ~A cannot be invertible. By the power series 
argument, II(A- >..I)- 1 ~AII 2: 1 

and II(A- >..I) - 1 IIII~AII 2: II(A- >..I) - 1 ~AII 2: 1 

II(A- >..I)-1112: 1/II~AII 

But since we chose II~AII ~ c, 

II(A- >..I)-111 2: 1/c 

Therefore, 

>.. E {z E C: II(A- zi)-1 112: c 1}. 

Second Containment Direction :::> 

Let 81 = {z E c : z E u(A +~A) : II~AII ~ c}. Let 82 = {z E c : 
II(A- zi)-1112: c 1}. We want to show 81 :::> 8 2 . This will be done by contra
diction. Assume that there exists >.. E 8 2 -81. Since>.. fl. 81 then >.. fl. u(A +~A) 
for all II~AII ~ c. That is A+ ~A- >..I is invertible for all II~AII ~ c. This 
means that A+ ~A- >..I is invertible for all II~AII = 0. Therefore, A- >..I is 
invertible. 

Set ~A= t-L(A*- XI) - 1 where 0 < IMI < c 
- II(A*- >..J)-111 

Taking the norm of both sides, II~AII = 11~-L(A*- XI)-111. Therefore, II~AII = 
IMI II(A*- XI)-111. Therefore, 

II~AII c 
1
"'

1 = II(A*- >..J) - 111 ~ II(A*- .u)-111 

Therefore, II~AII ~c. 

A->..I+~A = A->..i+t-L(A*-XI)-1 

= t-L(A- >..J)[t-L- 1 I+ (A- >..J)-1 (A* - XI)-1) 

is invertible. Therefore, 

t-L-1 I+ (A- >..I) - 1(A*- XI)-1 is invertible for allt-L, 0 < IMI < c , 
- II(A*- >..I)-111 
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p,-
1 rt a-((A - u)-1

(A*- "XI) - 1) for all p, , 0 < IJ-LI :::::; II(A* _\r . "' 

II(A* - "XI) - 111 
and p,- 1 rf_ a-((A- AJ) - 1(A* - "XI) - 1) for all p,, p,- 1 > .!.!...:....__ _ __:_~ 

- f: 

Therefore, 
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p((A- .AI) - 1(A* - "XI)-1) 

< 

max{I.AI: .A E a-((A- .AI) - 1(A* - "XI) - 1)} 

II(A* - "XI) - 1
11 

f: 

Note that, (A - .AI) - 1(A* - "XJ) - 1 is self-adjoint. Therefore, 

II (A - .xl) - 1
11

2 

< 

II(A - .xi) - 1(A*- "XI) - 1
11 

p((A- AJ) - 1(A* - "XI) - 1) 

II(A* - "XI) - 1
11 

f: 

II(A- .xi) - 1
11 

f: 

Therefore, II (A - .AI) - 111 < ~ . However' this is a contradiction since A E s2 . 
f: 

Therefore, S1 :J S2 . 

• • •• 

Illustration 

An an example is in order that illustrates how one might calculate the 
pseudospectra. Be aware that this is not the most efficient way of calculating 
the pseudospectra nor is this the way that the pseudospectra is calculated in 
most computer programs (most program employ 'singular value decomposition' 
to produce the pseudospectra. On the other hand, the method in the follow
ing example provides a good 'feel' as to what is happening in the pseudospectra. 

Example 7.1 Given the matrix, 

A = (;~) · 
Find the pseudospectra for this matrix with f: = .1. 
Solution 
According to the Definition, the pseudospectra is produced by first choosing 
a matrix, (~A), whose norm is less than c. (In this case, f: = .1) . Add this 
matrix ~A to A and find the eigenvalues of (A+ ~A). Repeat this process 
by choosing a different (~A) . This process is repeated until every ~A, whose 
norm is less than f:, has been chosen. (Of course, this would mean choosing an 
infinite number of matrices. So, for practical purposes, some finite increment is 
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used when choosing the D.A's). A sampling of the process is presented below: 

A+ D.A = ( 7 3 ) + ( -.07i -.07 ) = ( 7- .0707i 2.9293 ) 
2 6 -.07 -.07i 1.9293 6- .0707i 

.X1 = 8.9293 - .0707i .X2 = 4.0707 - .0707i 

A+ D.A = (; 3 ) ( .08i 
6 + .06 

.05 ) = ( 7 + .08i 
.07i 2.06 

3.05 ) 
6 + .07i 

.X1 = 9.056 + .076i .X2 = 3.944 + .74i 

A+ D.A = ( ; 3 ) + ( -.08i 
6 .06 

-.05 ) = ( 7- .08i 
.07i 1.94 

2.95 ) 
6- .07i 

.X1 = 8.944- .076i .X2 = 4.056- .074i 

A+ D.A = ( ; 3 ) ( .08i 
6 + .06 

.06 ) - ( 7 + .08i 
.08i - 2.06 

3.06 ) 
6 + .08i 

.X1 = 9.06 + .08i .X2 = 3.94 + .08i 

A + D.A _ ( 7 3 ) + ( .07i .07 ) _ ( 7 + .0707i 3.0707 ) 
- 2 6 .07 .07i - 2.0707 6 + .0707i 

.X1 = 9.0707 + .0707i .X2 = 3.9293 + .0707i 

( 
7 3 ) ( .1 0 ) ( 7.1 3 ) 

A+ D.A = 2 6 + 0 .1 = 2 6.1 

.X1 = 9.1 .X2 = 4.1 

( 
7 3 ) ( 0 .1 ) ( 7 3.1 ) 

A+ D.A = 2 6 + .1 0 = 2.1 6 

.X1 = 9.1 .X2 = 3.9 

( 
7 3 ) ( 0 .1i ) ( 7 3 + .1i ) 

A+ D.A = 2 6 + .1i 0 = 2 + .1i 6 

.X1 = 9 + .1i .X2 = 4- .1i 
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( 
7 3 ) ( .1i 0 ) ( 7 + .1i 3 ) 

A+ D.A = 2 6 + 0 .1i = 2 6 + .1i 

.X1 = 9 + .1i Az = 4 + .1i 

A+ D.A = ( ; 3 ) ( -.1 
6 + 0 

0 ) = ( 6.9 
-.1 2 5~9) 

.X1 = 8.9 Az = 3.9 

A+ D.A = (; 3 ) ( .09i 
6 + .05 

.05 ) = ( 7 + .09i 
.09i 2.05 

3.05 ) 
6 + .09i 

.X1 = 9.05 + .09i Az = 3.95 + .09i 

A+ D.A = ( ; 3 ) ( .09i 
6 + -.05 

-.05 ) = ( 7 + .09i 
.09i 1.95 

2.95 ) 
6 + .09i 

.X1 = 8.95 + .09i .X2 = 4.05 + .09i 

A+ D.A = ( 7 3 ) + ( -.09i -.05_ ) = ( 7- .09i 2.95 . ) 
2 6 -.05 -.09z 1.95 6- .09z 

.X1 = 8.95 - .09i .X2 = 4.05 - .09i 

( 
7 3 ) ( -.09i 

A + D.A = 2 6 + .05 
.05 ) ( 7 - .09i 3.05 ) 

-.09i - 2.05 6- .09i 

.X1 = 9.05 - .09i Az = 3.95 - .09i 

A+ D.A _ ( 7 3 ) + ( .033i .051 ) _ ( 7 + .033i 3.051 ) 
- 2 6 .6i .053 - 2 + .06i .053 

.X1 = 9.042 + .056i Az = 4.011 + .023i 

A+ D.A = ( 7 3 ) + ( -.03~i .051 ) = ( 7- .033_i 3.051 ) 
2 6 -.6z .053 2- .06z .053 

.X1 = 9.042 - .056i .X2 = 4.011 + .023i 
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... This process is continues until a sufficient number of points have been calcu
lated ... 

The eigenvalues of all of these 'perturbed' matrices are then plotted as shown 
in figures 7.1A and 7.1B. This is the pseudospectra. 
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Figure 7.1B 
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Again, the method used to calculate the pseudospectra in the last ex
ample is not very efficient. That method was used here because it helps to 
understand the pseudospectra. The most efficient way to calculate the pseu
dospectra is by singular value decomposition. 

Section 7.1.1 Appropriate selection of c for the pseudospectra 

In practice, reasonable care must be used when selecting the c for the 
pseudospectra calculation. It would be easy to get carried away and make c 
so small that the set produced is no longer a spectral inclusion set. With a 
little care, it is very easy to avoid such a pitfall. One needs only to choose 
an c that is larger than the accuracy of the computer and/or software that 
the pseudospectra is running under. For example, Matlab's standard precision 
arithmetic is somewhere around 10-16 . So, pseudospectra code that is run under 
Matlab, such as the code used in this thesis, should not be run with c:'s less than 
10-15 . (Most of the examples in this thesis used c:'s of at least 10-12

). 
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Section 7.2 spectral inclusion sets 

The pseudospectra is superior to any other method in its ability to produce 
sharp spectral inclusion sets. Just a few examples will illustrate the point. 

Note that in all of these examples, the pseudospectra was calculated using the 
program 'eigtool' written by Tom Wright. 

Example 7.2 Let 

( 

40 ~ 25i 

A= 1 

3 

The spectrum, o-(A), is 

5 
33 + 31i 

-2 
3.5 

4 
-4 

49 + 39i 
-4 

-3 
2 
3 

45 + 43i 
) 

{29.74 + 30.21i, 42.50 + 25.71i, 45.91 + 44.76i, 48.85 + 37.31i}. 

The Gerschgorin set, Brauer-Cassini set, numerical range, and pseudospectra 
are shown in figures 7.2A and 7.2B. Notice how small the pseudospectra set is 
compared to all the others. In this case, the pseudospectra was calculated using 
an e = 10° = 1. A much smaller e could have been used but, in that case, the 
set would have been too small to see! For example, an e = 10-12 could have 
been used. 
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Gerschgorin, Numerical Range and Pseudospectra 

50 

45 

40 
en 
X 

<( 
2:' 35 
C1l 
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Ol ~ • 
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I I ~... I --,- __ .. _ -r _____ ·-~..,; _ ,-

1 I I -~-
1 I I I 

I I I I 

: : Numerical Range : 
-~-----1-----~------L-----J : I I I I 

din!t = 4 . 
15 . . . 

--r-----,------~---

20 25 30 35 40 45 50 
Real Axis 

. -- -·----

55 

0 

Notice that the Numerical Range's Inclusion Set is large and the Gerschgorin 
Set is even larger while the Pseudospectra Set consists only of four tiny circles. 

Figure 7.2A 

In these figures, the eigenvalues are reprented by the black dots 
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Gerschgorin 
0 

Cassini 0 and Pseudospectra 

50 

45 

40 
(F) 

X 
<( 
i::' 35 

~ 
ro 
c 
C) ~ 0 E 3o --~ 

0 

l---- l'~ ---- ----- ------;--
0 ~ 0 

25 
I I I I 

0 0 0 I':\ 0 

-- .. --~----- ~----- ~-~ - ~---

20 25 30 35 40 45 50 55 
Real Axis 

The Cassini Set is slightly smaller than Gerschgorin and 
larger than the Numerical Range (see figure at top of page). 

Figure 7.2B 
!> 70 ~ 4 

In these figures, the eigenvalues are reprented by the black dots 
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Revisiting Example 1.4, 
Example 7.3 Recall 

100 
7 - 6i 

19 

2 
15i 

8- 4i A=( 
16 + 9i 15- 2i 

The spectrum, a(A), is 

-6 
-7+3i 
13 + 9i 
-9 + 3i 

15i 
8 + 5i 

10 
0 
) 

{97.33 + 2.07i, 17.51 + 20.11i, 5.14- 4.56i, -7.0 + 6.38i}. 

115 

The Gerschgorin set, Brauer-Cassini set, numerical range, and pseudospectra 
are shown in figures 7.3A and 7.3B. Once again, an c: = 10- 12 could have been 
used to calculate the pseudospectra instead of c: = 10·75 = 5.62 which was used 
to create the graph. 
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Gerschgorin, Numerical Range and Pseudospectra 
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C' 
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c 
C) 

-40 

-60 ------~------------~-------------~---------- . 
: Gerschgorin : 

-50 0 
' ' 

50 
Real Axis 

100 150 

Notice that the Numerical Range and the Gerschgorin sets are large while the 
Pseudospectra Set consists only of the intersection of three small regions. 

Figure 7.3A 

Gerschgorin, Cassini, and Pseudospectra 
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-50 0 50 
Real Axis 
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The Cassini Set is smaller than Gerschgorin but much larger than the Pseudospectra 

Figure 7.3B 

0.75 

For illustrative purposes, the Pseudospectra was calculated with an e = 5.62. A m·uch smaller e 
could have been used which would have further reduced the size of the Pseudospectra Set. 
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Section 7.2.1 The pseudospectra and normal matrices 

In chapter five, it was demonstrated that the numerical range outperforms all 
of the other methods, studied up to that point, when applied to normal matri
ces. Considering the small sets that the numerical range produces for normal 
matrices, one would expect that it would far outperform the pseudospectra. In 
particular, the numerical range produces an interval on the real line when ap
plied to Hermitian matrices. How will the pseudospectra perform in those cases? 

Revisiting Example 5.17, 
Example 7.4 Consider following Hermitian matrix. 

A= ( 3: 2i 
-5 

-7- 4i 

3- 2i -5 -7 +4i) 
-4 2 -lli -8 

2 + lli 1 5 + 5i . 
-8 5 - 5i 13 

This spectrum, a-(A), is 

{22.52, -16.82, 9.23, -1.93}. 

The numerical range and pseudospectra are shown in figure 7.4. Even with this 
Hermitian matrix, the pseudospectra's performance is at least as good as the 
numerical range's. The pseudospectra is able to separate and isolate the regions 
that contain each eigenvalue - something that the numerical range cannot do. 
About the only thing the numerical range can do better is find the exact values 
of the smallest and largest eigenvalues. (These are located at the endpoints of 
line). 

Numerical Range and Pseudospectra 
20~~----~--~--~~--~--~----~--~ 

10 

~ 0 

-10 
Pseudospectra 

dim=4 
-20~~----~--~----~--~--~----~--~ 

-30 -20 -10 0 10 20 30 40 

Figure 7.4 

The Pseudospectra in these graphs was produced using the software program 
'eigtool' developed by Tom Wright. 
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Revisiting Example 5.2, 
Example 7.5 Consider following skew-Hermitian matrix. 

( 

3i 

A= -3 i 2i 

-7+4i 

7 + 4i ) 

-5: 5i . 
-5i 

3- 2i -5 
-7i 2- lli 

-2- lli lli 
-8 5 + 5i 

The spectrum, a(A), is 

{20.68i, 7.87i, -18.07i, -8.48i}. 

The numerical range and pseudospectra are shown in figure 7.5. Again, the 
pseudospectra's performance is outstanding. 

Numerical Range and Pseudospectra 

40 

30 

201- /! 10 ~ 
Pseudospectra + 

0~ ~:/Numerical Range 

-10 ~ 

I " -20 

-30 
dim=4 

-40 -20 0 20 40 

Figure 7.5 

The Pseudospectra in these graphs were produced using the software program 
'eigtool' developed by Tom Wright. 
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Even though the pseudospectra was excellent in the preceding examples, 
its peformance is even more outstanding in difficult situations as the next sec
tion will show. 

Section 7.2.2 The pseudospectra and Ill-Conditioned matrices 

Of course, one of the main reasons for using a spectral estimation method 
is to handle ill-conditioned matrices. Ill-Conditioned matrices are very sensi
tive to perturbations. Therefore, it is very difficult to accurately calculate the 
eigenvalues of such matrices because any roundoff error will cause inaccurate 
results. 

All of the spectral-estimation methods that we have considered so far will 
produce sets that include the spectrum of any matrix even an ill-conditioned 
one. However, in some cases, the inclusion sets that are produced by these 
methods are so large that they are practically unusable. On the other hand, 
the pseudospectra will produce relatively small inclusion sets even 
with ill-conditioned matrices. 

Consider the following example, 

Example 7.6 This is a matrix from Matlab and can be accessed simply by 
typing 'gallery(3)' at the Matlab command line. Let 

A~( 
The spectrum, a(A), is 

-149 
537 
-27 

-50 
180 
-9 

{1, 2, 3}. 

-154) 
546 . 
-25 

The Gerschgorin disks, Ovals of Cassini, and the Minimal Gerschgorin set for 
this matrix are shown in figure 7.6A. Note that the Gerschgorin inclusion set 
is huge even though the spectral radius of the matrix is only 3! The Cassini 
inclusion set is significantly smaller than Gerschgorin while the Minimal Ger
schgorin set is smaller still. Yet none of these produce a realistic estimate of 
the spectrum. The Composite BBFP and the numerical range fare no better 
(figure 7.6B). 

In comparison, the pseudospectra, with c: set at the very conservative 
value of 10-3 , produces a tiny inclusion set. (figure 7.6C). It is necessary to 
'blowup' the graph in order to even see the pseudospectra's inclusion set (figure 
7.6D) The pseudospectra outperforms all of the other methods, each of the other 
sets is more than 10,000 times larger than the pseudospectra's set. That is, each 
of the other sets covers more than 10,000 times the area on the Complex plane 
than the pseudospectra's set. 
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Example 7. 7 This is a matrix from Matlab and can be accessed simply 
by typing 'gallery(5)' at the Matlab command line. Let 

( -9 
11 -21 63 -252) 70 -69 141 -421 1684 

A= -575 575 -1149 3451 -13801 0 

3891 -3891 7782 -23345 93365 
1024 -1024 2048 -6144 24572 

The spectrum, a-(A), is 

{ -.0408, -.0119 + .0386i, -.0119- .0386i, .0323 + .0230i, .0323- .0230i}. 

The Gerschgorin disks, Ovals of Cassini, and the Minimal Gerschgorin set for 
this matrix are shown in figure 7.7A. Once again, the Gerschgorin set is huge 
even though the spectral radius of this matrix is less than .041! Again, the 
Cassini inclusion set is significantly smaller than Gerschgorin while the Minimal 
Gerschgorin set is smaller still. The Composite BBFP and the numerical range 
are enormous (figure 7.7B). Such inclusion sets are of little or no value. 

For this example, the pseudospectra was calculated using c = 10-12 and 
the result is shown in figure 7.7C. The pseudospectra set is very small. Again 
the 'blow-up' is shown in figure 7. 7D. There is no comparison between the 
pseudospectra and the other inclusion sets. The smallest of the other sets, the 
Minimal Gerschgorin, is over 4 x 1010 times larger than the pseudospectra's set! 
Therefore, for these very difficult matrices, the pseudospectra is the 
only method that produces reliable, sharp inclusion sets. 
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7 PSEUDOSPECTRA 123 

Conclusions for spectral inclusions 

In conclusion, the pseudospectra is a very powerful tool for producing spectral 
inclusion sets. This method produces sets that are, almost always, much smaller 
than any other sets. The only drawback with the pseudospectra may be with 
regard to calculation time. If the matrix under consideration becomes large, the 
pseudospectra, like the other 'complex' methods (e.g. numerical range), can use 
up a great deal of calculation time. Yet, this is the only reason not to use the 
pseudospectra a way to produce spectral inclusion sets. 
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8 Comparison of Various Inclusion Sets 

This is the first of three 'Results' chapters that bring together analysis presented 
earlier in the thesis. Throughout this thesis, a number of spectral estimation 
methods have been examined as to their speed, sharpness and unique character
istics. In this chapter, an attempt will be made to order the different methods 
according to speed and sharpness. 

Section 8.1 spectral inclusion sets 

As demonstrated in chapter five, when the matrix under consideration 
is normal, the numerical range will produce a very small, often linear, spectral 
inclusion set. Only the pseudospectra can produce spectral inclusion sets of 
comparable size for normal matrices. When applied to normal matrices, the 
pseudospectra will produce slightly smaller inclusion sets than the numerical 
range. On the other hand, the numerical range will determine the exact values of 
the extreme eigenvalues of a normal matrix. So, each method has its advantages 
over the other when considering normal matrices. No other method comes 
even close to the pseudospectra and numerical range when applied to normal 
matrices. 

On the other hand, when considering finite-dimensional, non-normal ma
trices the pseudospectra is far and away the best method available. In particular, 
pseudospectra is to be preferred over the numerical range. This observation is 
significant because the numerical range continues to be the subject of numer
ous journal articles. Improvements in numerical range methods and algorithms 
continue to be put forth. Yet, the sharpness and versatility of the pseudospec
tra make it clearly superior to the numerical range for non-normal matrices. 
Furthermore, the pseudospectra can be calculated as fast if not faster than the 
the numerical range. Therefore, if the pseudospectra is available, the numerical 
range need not be considered when analyzing non-normal matrices. 

H the pseudospectra is better than all other methods, where does that 
leave the 'simpler' methods? The pseudospectra does produce the best possible 
inclusion sets for non-normal matrices as long as time and computer memory are 
not an issue. On the other hand, if the matrix is so large that pseudospectra 
calculation time becomes prohibitively long, then the simpler methods are a 
reasonable alternative. 

For very large matrices, the Composite BBFP (developed in chapter One) 
or the Gerschgorin methods produce reasonably small spectral inclusion set 
while using relatively little computer time. In many instances, these 'simpler' 
methods will outperform even the numerical range. Recall from chapter five that 
the numerical range always produces a convex set. This can be an advantage 
if the eigenvalues are bunched close together. However, when the eigenvalues 
are separated, the numerical range is forced to 'stretch out' in order to enclose 
the spectrum. The resulting set becomes much larger than the Gerschgorin or 
Composite BBFP sets. 
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Illustrations 

The preceding discussion can be illustrated by the use of three examples. 
The Gerschgorin disks are fast simple and easily constructed. Theses 

disks produce a reasonable inclusion set for any application. The great strength 
of the Gerschgorin disks manifests itself when the eigenvalues are separated 
into groups on the complex plane. When the eigenvalues are separated into 
groups, the Gerschgorin disks will usually take the form of two or more separate 
groups of disks in order to cover the eigenvalues. In such applications, all of the 
pre-Gerschgorin methods and the numerical range will cover the eigenvalues by 
forming one large convex inclusion set. A set that is almost always much larger 
than the Gerschgorin disks. 

The next three examples will illustrate the strengths and weaknesses of 
the of the various methods. 

Example 8.1 Let 

-31- 18i -3 8i -4 7 6 
2 -20 + 21i 3 5 -4 13i 

-5 6 25 + 33i 3 6 -9 

A= I 
1 -2 2 -40- 23i 7 5 
6i 3 9i -5 30 + 26i 7 
5 3i 2i 4 8 -25 + 19i 

-12 
-8 
10 
-3 
6 
3 

7 4 3 4 12 8 30- 24i 
8 2 7 0 -6 7 

The spectrum, a(A), is 

{31.2- 17.8i, -39.4- 23.2i, 25.1- 26i, 30.7- 22.5i, 

-22.6 + 25.7i, -23.97 + 13.5i, 23.5 + 27.9i, 31.9 + 31.4i}. 

The Gerschgorin disks and numerical range for this matrix are shown in fig
ure 8.1A. Notice that the Gerschgorin disks form one connected set - none of 
the disks are separated from the others. When the Gercshgorin disks form a 
connected set, the numerical range will usually perform well. This case is no ex
ception, the numerical range produces an inclusion set that is somewhat smaller 
than the set produced by the Gerschgorin disks. Notice that the convex nature 
of the numerical range tends to produce a boundary that is close to the actual 
eigenvalues. The numerical range also outperforms the Ovals of Cassini (figure 
8.1B). It can be seen that the Composite BBFP performs slightly worse than 
the Gerschgorin disks (figure 8.1C). On the other hand, the pseudospectra out
performs all of the other methods (figure 8.1D). Notice that its inclusion set is 
tiny compared to the others. 

3 

10 
6 

-11 
8 
5 
4 
6 

25- 25i 
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The relative sizes of the numerical range and the Gerschgorin disks are 
comparable in the next example. 

Example 8.2 Consider the matrix of example 8.1 except with the diagonal 
elements changed: 

-74- 55i -3 8i -4 7 6 
2 -65 + 68i 3 5 -4 13i 

-5 6 -79 + 77i 3 6 -9 

A= I 1 -2 2 -79- 84i 7 5 
6i 3 9i -5 88 + 74i 7 
5 3i 2i 4 8 -86 + 68i 
7 4 3 4 12 8 
8 2 7 0 -6 7 

The spectrum, o-(A), is 

{ -7 4 - 54. 7i, -78.8 - 84i, 89 - 81. 7i, 96 - 64.4i, 

-84.5 + 67.6i, -67 + 68.2i, 77.7 + 72.8i, 89.6 + 78i}. 

The Gerschgorin disks and numerical range for this matrix are shown in figure 
8.2A. Notice that the Gerschgorin set is made up of a union of disjoint sets. 
Also note that even though the disks are separated, they are not too far apart 
compared to their size. This is an indication that the numerical range's perfor
mance will be moderate. As can be seen in the figure, the area covered by the 
numerical range is only slightly less than the area covered by the Gerschgorin 
disks. The numerical range 'stretched out' to cover the sets. On the other 
hand, the Gerschgorin disks separated to cover the eigenvalues thereby keeping 
the total area covered to a minimum. The Cassini Ovals (figure 8.2B) perform 
very well covering only about seventy percent of the area of Gerschgorin. 

The Composite BBFP is noticeable larger than the Gerschgorin sets (fig
ure 8.2C). As the performance levels of all the other methods vary from example 
to example, the pseudospectra continues to produce consistently small inclusion 
sets (figure 8.2D). 

-12 10 
-8 6 
10 -11 
-3 8 
6 5 
3 4 

90- 83i 6 
3 95- 63i 
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In the next examples, the eigenvalues separate further, thereby revealing 
the weakness of the numerical range. 

Example 8.3 Consider the matrix of Example 8.2 except with the diagonal 
elements changed to: 
au = -303- 327i 
a44 = -298- 347i 
a77 = 421- 363i 

a22 = -499 + 310i 
ass = 455 + 519i 

ass = 408 - 358i 

The spectrum, o-(A), is 

a33 = 436 + 545i 
a66 = -510 + 292i 

{ -509 + 290i, -500 + 312i, -303- 327i, -298- 347i, 

454 + 520i, 437 + 544i, 422- 363i, 407- 358i}. 

The Gerschgorin disks and numerical range for this matrix are shown in figure 
8.3A. Again, the Gerschgorin set is made up of a union of disjoint sets. This 
time, however, the distance between the sets is large compared to their size. 
This is an indication that the numerical range's performance will be poor. As 
can be seen in the figure, the area covered by the numerical range huge com
pared to the area covered by the Gerschgorin disks. The Convex nature of the 
numerical range results in a great deal of 'wasted' area while the flexibility of 
the Gerschgorin disks results in a small inclusion set. The Cassini set (figure 
8.3B), of course, is slightly smaller yet. 

Recall from chapter one that the pre-Gerschgorin methods, which form 
the foundation of what we call the BBFP, produced sets that included the 
numerical range. Therefore, the Composite BBFP set grows with the numerical 
range as can be seen in figure 8.3C. The pseudospectra continues to produce 
a very small inclusion set (figure 8.3D). In reality, the pseudospectra set can 
produce an even smaller set than the set shown here. (This setting was used 
so that it can be visible). So, the pseudospectra set for this example can be 
considerably smaller than the Gerschgorin set giving the pseudospectra, once 
again, the sharpest inclusion set. 
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The preceding examples show that the relative performance of the Ger
schgorin disks and the numerical range depend upon the application. Therefore, 
even though the Gerschgorin disks are simpler and much easier to construct they 
perform, on average, just as well as the numerical range for non-normal matrices. 

The Ovals of Cassini have the same general strengths and weakness as 
the Gerschgorin disks. The advantage of the Ovals of Cassini is, as proven in 
chapter four, that they are a subset of Gerschgorin. 

There are cases in which the Composite BBFP outperforms the Ger
schgorin disks. A number of such examples were given in chapter one. In 
particular, the Composite BBFP performs better when the eigenvalues cover all 
four quadrants of the complex plane and are close to the origin. Also notice 
that even in the three examples given above, the Composite 'cuts off' part of the 
complex plane that is cover by Gerschgorin and by Cassini. This, once again, 
illustrates a principal expounded in the first two chapters and will be empha
sized in the next chapter - the Composite BBFP will almost always reduce the 
size of the inclusion set produced by Gerschgorin. 

The pseudospectra outperforms the numerical range and the Gerschgorin 
disks in all three examples. Combining this with the information from chapter 
seven once again demonstrates the efficiency of the pseudospectra in producing 
sharp, reliable inclusion sets irrespective of the type of matrix that is being 
analyzed. 

In the tables below, an attempt will be made to rate each of the spec
tral inclusion methods according to speed and sharpness. It should be stressed 
that, even though a great deal of analysis and computer calculations went into 
producing this table, the numbers in these tables are very subjective. For as 
has been demonstrated, the relative sharpness of many of the inclusion sets is 
dependent upon the matrix being analyzed. The same is true for the relative 
speed of the various inclusion methods. Speed of calculation depends on not 
only the matrix but also on the algorithm used. An improvement in any one 
algorithm may change the order of many of the entries in this table. 
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Method Relative 
Speed 

Gerschgorin 1 Fastest 

Browne 2 

Brauer 2 

Farnell's First 2 

Parker's First 2.5 

Farnell's Second 3 

Parker's Second 3 

Numerical Range 20 

Pseudospectra 20 

Cassini 25 

Minimal Gerschgorin 100 Slowest 
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Method Relative 
Sharpness 

Pseudospectra 1 Sharpest 

Minimal Gerschgorin 4 

Numerical Range 7 

Cassini 8 

Gerschgorin 10 

Parker's Second 15 

Farnell's Second 17 

Brauer 25 

Parker's First 28 

Farnell's First 35 

Browne 40 Least Sharp 
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9 The Intersection Method 

This chapter will bring to completion an idea that has been utilized throughout 
this thesis - the intersection of spectral inclusion sets. In the past, some use has 
been made of this idea - Meyer [58] intersected the Gerschgorin set for a matrix 
and the Gerschgorin set of its transpose. Also, the Minimal Gerschgorin set is 
produced by intersecting the Gerschgorin sets of similar matrices. Beyond this, 
however, no use has been made of this idea of the Intersection of inclusion sets. 
On the other hand, it was shown in chapter one that the intersection of four 
or five different inclusion sets produce some surprisingly good results. In this 
chapter, this idea will be extended to include even more sets. 

Intersection of sets 

In chapter one a new theorem was presented that is based on the intersec
tion of the inclusion sets of Browne, Parker, Farnell and Brauer. The inclusion 
set that results from this theorem is called the Composite BBFP. In chapter 
two, it was shown that the size of this inclusion set can be reduced farther by 
intersecting the Composite BBFP with Parker's Second (1948) Theorem. In this 
chapter, two more sets will be included in this intersection: the Gerschgorin set 
and the Gerschgorin set of the transpose of the matrix. 

Definition 9A - Intersection of sets 

Let A E cnxn. Let 

B = A+A* 
2 ' 

and C =A- A* 
2i 

Let R(A)i,R(B)i,and R(C)i,be the sums of the absolute values of the elements in 
the ith row of the matrices A,B, and C, respectively. Let Ti be the sum of the . 
absolute values of the elements in the ith column of A. Define: 

RA = max{ R(A)l, ... , R(A)N }, RB = max{ R(B)l, ... , R(B)N }, 

Rc = max{R(c)1, ... , R(c)N }, and T = max{T1, ... ,TN}, 

Let 
F1 = min{RA, T}. 

Let Ui be the sum of the squares of the absolute values of the elements in the 
ith row of A (i.e. Ui = I:7=1 jaiil 2

}). Let Vi be the sum of the squares of the 
absolute values of the elements in the ith column of A (i.e. Vi= I:~=1 jakij 2 }). 
Let 

n 1 

F2=[L:(Uilti)!r and F3=(RAT)!. 
i=l 

Let 
F = min{F1,F2,F3}. 
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Let 

FS = {(x,y): ..jx2 + y2 :SF} and BR = {(x,y): lxl :S RB and IYI :S Rc}. 

Let 

Let 

n 

Let Pi= L iaijl 
j=l 
#i 

n 

and Qi = L laiil for 1 :S i :S n. 
j=l 
#i 

1 n 

f..L =- Laii· n i=l 

Ri =Pi+ laii- f..LI, Ti = Qi + laii- f..LI and Si = (Ri + Ti)/2 for 1 :S i :S n. 

Setting 

Let 

Let 

Let 

Let 

Then 

• • •• 

S = max{Si, ... , Sn} and PK = {z E C: lz- f..LI :S S}. 

n 

Gi(A) = {z E C: lz- aiil :S ri(A) = L laijl} for 1 :S i :S n. 
j=l 
#i 

n 

G(A) = U Gi(A). 
i=l 

n 

GJ(A) = {z E C: lz- aiil :S rj(A) = L iaijl} for 1 :S i :S n. 

n 

i=l 
i=f-j 

GT(A) = u GJ(A). 
j=l 

a(A) ~ FS n BR n PK n G(A) n GT(A) . 

The intersection of all of these sets can best be illustrated by examples. 

Example 9.1 Let 

( 

-35- 75i 
7- 6i 

A= 19 

16 + 19i 

2 
-35- 35i 

8- 4i 
15- 2i 

-6 
-7 + 3i 

-75- 35i 
-9+3i 

15i ) 8 + 5i 
10 

-75- 75i 
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The spectrum, a(A), is 

{ -71.4- 82.4i, -43.9 - 70.2i, -71.1- 33.1i, -33.6- 34.4i}. 

A number of spectral inclusion sets for this matrix are shown in figures 9.1A 
and 9.1B. Among the sets shown are Parker(1948), Gerschgorin, Gerschgorin 
for the transpose of the matrix, Browne, Brauer, Parker's First, Farnell's First, 
Farnell's Second and the 'rectangular box' that bounds the Real and Imaginary 
parts of the eigenvalues. (All of these sets were discussed in chapter one and two 
of this thesis.) With the exception of the inclusion sets of Browne and Parker's 
First, all of the inclusion sets are of different sizes and many of them are of 
different shapes. 
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The intersection of these sets is shown in figure 9.1C. Notice that the 
resulting inclusion set is relatively small. More importantly, this was all accom
plished by using sets that are simple, easy, and may be produced very quickly. 
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Observe that the numerical range is particularly well suited for this matrix 
due to the closeness of the eigenvalues. (Recall that when the eigenvalues are 
grouped close together and the Gerschgorin disks form only one group, the 
numerical range tends to produce a very small inclusion set). Therefore, it 
will be instructive to compare the intersected set to the numerical range. This 
comparison is done in the next figure. 
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Figure 9.1D compares the intersected set with the numerical range. As 
expected, the numerical range did produce a smaller inclusion set than the 
intersected set. However, the intersected set is very 'competitive' being only 
a bit larger than the numerical range. This is very encouraging because the 
numerical range might be expected to be significantly 'sharper' in this particular 
case. 
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The next figure, 9.1E, compares the intersected set to the Cassini set. 
The intersected set covers slightly less area in the complex plane than Cassini. 
Therefore, the intersected set, in this case, can be considered slightly 'sharper' 
than Cassini. This is significant because the Cassini set is almost always much 
sharper than any one individual set included in this intersection. Compari
son was also made to the minimal Gerschgorin set (not shown) . The minimal 
Gerschgorin set was comparable in size to the numerical range for this matrix. 
Therefore, the minimal Gerschgorin set was slightly smaller than the intersected 
set. 
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The next two examples continue these comparisons. 

Revisiting Example 1.4, 
Example 9.2 Recall 

( 100 
2 -6 

15i ) 
7- 6i 15i -7+3i 8 + 5i 

A= 19 8- 4i 13 + 9i 10 . 

16 + 9i 15- 2i -9+3i 0 

The spectrum, a(A), is 

{97.3 + 2.1i, 17.5 + 20.1i, 5.1- 4.6i, -7 + 6.4i}. 

Figure 9.2A compares the intersected set to the numerical range while figure 
9.2B compares the intersected set to the Cassini set. 
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Example 9.3 Let 

95 + 77i 3 2 6 8 2 4 
1 -105 + 99i 4 5 -6 3 2 
3 4 110 + 105i 8 - 2 5 9 
5 7 8 -115 + 110i 4 -2 2 
2 4 5 5 -55- 60i 1 3 
1 -3 6 7 2 65- 60i 4 
6 2 4 -6 -4 7 72- 65i 
7 3 3 4 6 8 

The spectrum, <T(A), is 

{110.55 + 104.5i, 95.3 + 76.8i, -117.1 + 108.7i, -103.5 + 100.4i, 

-71.4- 65i, -56- 60i, 75.3- 63.2i, 61.7- 61.2i}. 

Figure 9.3A compares the Intersected set to the numerical range while figure 
9.3B compares the Intersected set to the Brauer-Cassini set. 
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Intersection of Many Inclusion Sets (Red) and Cassini (Blue) 
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10 A New Method for Toeplitz Matrices 

This is the third of three 'Results' chapters that bring together analysis pre
sented earlier in the thesis. This chapter brings together ideas from chapter 
Four (specifically Minimal Gerschgorin sets) and chapter Six (Toeplitz matri
ces). 

Recall from chapter Four that,in its most general form, the Minimal Ger
schgorin set comprises of the intersection of the Gerschgorin sets of an infinite 
number of similar matrices. In particular, given a square, complex matrix A, 

("" 
a12 a13 a14 

. ) a21 a22 a23 a24 000 

A= a31 a32 a33 a34 

a41 a42 a43 a44 

and matrices P and p-1 , 

( x, 
0 0 0 (l 0 0 0 

. ) X1 

P= ~ 
0 0 

p - • = ~ 
1 0 0 X2 000 

-
X2 

0 X3 0 0 ..!... 0 
X3 

0 0 X4 0 0 ..!... 
X4 ) 

with similarity transformations, 

(
~ ~ ~ ~ ) Xl Xt Xt Xt ••• 

~~~~ 
X21 X2 X2 X2 ••• 

B=P- 1 AP= ~ ~ ~ ~ 
X3 X3 X3 X3 
~~~~ 

X4 X4 X4 X4 

Then the minimal Gerschgorin set of A is equal to the intersection of the Ger
schgorin disks of all similar matrices B such that x = (x1 , x2 , x3 , •.• , Xn) > 0. 

Richard Varga and others have done extensive research on and have 
greatly advanced the theory of Minimal Gerschgorin sets over the past fifty 
years. However, no practical method has been discovered to apply this theory 
to numerical applications. In order to produce a truly Minimal Gerschgorin set 
for a numerical application, it is necessary to calculate the Gerschgorin sets for 
an infinite number of similar matrices. This, of course, is impossible. 

However, there appears to be a simpler way to produce the Minimal Ger
schgorin set for real or complex matrices in which all the diagonal elements are 
the same. The following two theorems address this situation. Even though these 
theorems are simple and rather obvious, it does not appear that they have ever 
been stated or used previously. 
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Theorem 10.1 Let A be an nxn complex matrix, such that aii = aii for 
1 :::; i, j :::; n. Then, the Gerschgorin set is equal to the set included in the single 
disk in the complex plane centered at a11 with radius: 

i.e. 

Proof 

n 

r = s~p L laiil 
• j=l 

#i 

n 

G(A) = {z E C: lz- au I :S: sup L laiil}. 
' j=l 

#i 

Let A be an nxn complex matrix such that aii = aii for 1 :S: i, j :S: n. The ith 
Gerschgorin disk for this matrix is defined as: 

n 

Gi(A) = {z E C: iz- aid :S: ri(A) = L laiil}. 
j=l 
#i 

According to the Gerschgorin theorem, the inclusion set for this matrix is: 

n 

G(A) = U Gi(A) 
i=l 

n n 

U{z E C: iz- aiil :S: ri(A) = L laiil} 
i=l j=l 

#i 

since the diagonal elements are equal we can say, 

•••• 

n n 

= U{z E C: iz- au I :S: ri(A) = L laiil} 
i=l j=l 

#i 
n 

= {z E C: iz- au I :S: supri(A) =sup L laijl}. 
• • j=l 

#i 

Theorem 10.2 Let A be an nxn complex matrix, such that aii = aii for 
1 :::; i, j :::; n. Then, there exists a real diagonal matrix P, with strictly positive 
diagonal elements such that: 

B = p-1 AP, 

and the Minimal Gerschgorin set of A is given by, 

GR(A) = n G"'(A) = G(B) 
x > O 
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n 

= {z E C: lz- ani::; supri(B) =sup L lbijl}. 
• • j=1 

#i 

Proof 

Let A be an nxn complex matrix such that aii = ajj for 1 ::; i, j ::; n. Let 
P be a diagonal, real matrix such that the diagonal elements are strictly posi
tive. Then B = p-1 AP is a similarity transformation of A. Since the diagonal 
entries of A are all equal to an then bii = bjj = an for 1 ::; i, j ::; n . 

By Theorem 10.1, 

n 

G(B) = {z E C: lz- bnl::; supri(B) = supri(P-1 AP) =sup L lbijl}. 
• • • j=1 

#i 

Now, the Minimal Gerschgorin set of A is defined as the intersection of an 
infinite number of these transformations, 

n 

GR(A) = n { z E c: lz- ani::; supri(B) = supri(P-1 AP) = L lbijl}. 
x > O • • j=1 

#i 

But since each set on the right side of the equation above is a circle centered at 
an, this becomes: 

n 

GR(A) = i~f{z E C: lz- ani::; supri(B) = supri(P- 1 AP) = L lbijl}. 
• • j=1 

#i 

Which is the set included within a single disk centered at an . 

• • •• 
In words, these theorems together say that, given a square, complex matrix 
in which all of the diagonal elements are the same, then there exists a single 
transformation such that the Gerschgorin set of that single similar matrix is 
equal to the Minimal Gerschgorin set (i.e. equal to the intersection of Ger
schgorin sets of an infinite number of similar matrices)! 

Is it possible to find this transformation? The answer is 'Yes, for certain 
types of Toeplitz matrices'. 

Section 10.1 Practical Implications 

Below, an algorithm will be presented to find the minimal Gerschgorin 
set for a certain type of Toeplitz matrix. 
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Section 10.1.1 Hessenberg- Toeplitz . 

Consider the nxn complex Hessenberg matrix 

ao a1 0 0 0 
a-1 ao a1 0 0 

A= I a-2 a-1 ao a1 0 
a - 3 a-2 a-1 ao a1 
a-4 a-3 a-2 a-1 ao 

The goal is to find that one transformation that will produce the Minimal Ger
schgorin set. One way to set about finding this transformation is to consider 
the Gerschgorin disks of a typical similar matrix such as B. 

( ~ ~ 0 0 
X1 

. ) a-1X1 ao ~ 0 ... 
X2 X2 

B = p - 1 AP = G-2Xl 0-1X2 ao ~ xs xs xs 
0-3Xl B-2X2 0-1X3 ao 

X4 X4 X4 

where, x1, ... , Xn > 0. 
The focus will be on the sum of the off-diagonal elements of each row of B. In 
order the reach that goal, it will be necessary to make the largest of these sums 
as small as possible. That is, choose x1,x2,x3, etc. so that the sums of the 
absolute values of the off-diagonal elements of each row are small. Since it is 
not possible to explicitly solve for the Xi's in this way, it will be necessary to 
develop an iterative process to achieve the same end. 

Algorithm 10.1 

Notice that the sum for a typical row i is, 

la1lxi+1 la-1lxi-1 la-2lxi-2 
Ti = + + + ... 

Xi Xi Xi 

As stated above, the goal is to make the largest of the ri's as small as possible. 
One way to do this is to pick a sum, call this sum T, solve for the xi's based 
on T and see if all of the Xi's are greater than zero and the sum of the absolute 
values of the off-diagonal elements of the last row less than or equal to T. 

T la1lxi+l la-1lxi-1 la-2lxi-2 
= + + . 

Xi Xi Xi 

=> 
i-1 

T la1lxH1 ""la-jiXi-j 
= +L..,; + ... 

Xi j=1 Xi 
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i-1 

=? Txi = la1lxi+1 + L la-jiXi-j · 
j=1 

i-1 

=} Xi+1 = (Txi- L la-jiXi-j)/la11 · (Eq.10.1) 
j=1 

If all of the xi's turn out to be positive and the sum of the absolute values of 
the off-diagonal elements of the last row are less than or equal to T, then there 
is a transformation that will produce a matrix that is similar to A and that 
matrix will have a Gerschgorin set with radius T centered at au. (Notice that 
the reason for checking the last row is because the last row elements were not 
considered when the xi's were calculated) . 

This process is repeated using smaller and smaller values ofT. The small
est value of T that meets the criteria (i.e. all of the Xi's are be positive and the 
sum of the absolute values of the off-diagonal elements of the last row are less 
than or equal to T), is the radius of the Minimal Gerchgorin set of A centered 
at au. 

This algorithm will be illustrated in the next example. 

Example 10.3 Consider the 5x5 matrix 

( 

6 5 0 0 0 l 7 6 5 0 0 
A= 8 7 6 5 0 . 

0 8 7 6 5 
0 0 8 7 6 

Since all of the diagonal elements are the same (equal to 6) and the largest 
off-diagonal row sum is 20 (i.e. row three or row four is 181 + 171 + 151 = 20) 
then, by Theorem 10.1, the spectrum is included in the set bounded by a disk 
centered at (6,0) with radius = 20. 

So, an attempt will be made to find a similar matrix that has a Ger
schgorin disk with a radius less than 20. First, an attempt will be made to 
find a similar matrix with radius = 19. Equation 10.1 will be used with T=19. 
setting x1 = 1, 

Row 1, i = 1 
X2 = {19(1)- 0)/5 = 3.8. 

Row 2, i = 2 
X3 = (19(3.8)- 7(1))/5 = 13.04. 

Row 3, i = 3 

X4 = (19{13.04)- [7(3.8) + 8{1)])/5 = 42.632. 
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Row =4, i = 4 

X5 = (19(42.632)- (7(13.04) + 8(3.8)])/5 = 137.66. 

So, values have been found for x1, x2, xa, X4, X5 based on off-diagonal row sums 
of 19. This was done by using rows one through four but notice that the last 
row was not included in the calculations. So, the last row must be checked to 
be sure that the sum of the absolute values of the off-diagonal elements of row 
5 of this similar matrix is less than or equal to 19: 

r5(B) 

= 

lx1l lx2l lx31 lx41 
a_4lx51 + a_3 lx51 + a_2lx51 + a_1 lx51 

1 3.8 13.04 42.632 
(O) 137.66 + (O) 137.66 + (8) 137.66 + (7) 137.66 
2.9255. 

Since this last sum is equal to or less than 19 and the x1 , ... , x5 were strictly 
positive, there exists a similar matrix with a Gerschgorin set consisting of a disk 
centered at (6,0) with radius equal to 19. 
Since 19 worked, perhaps a lower sum will also work. So, 18, 17, etc were at
tempted with the following results: 

Off-diagonal row sum 

18 
17 
16 
15 
14 
13 
12 

Result 

Works 
Works 
Works 
Works 
Works 
Works 
Fails 

(Off-diagonal elements of last row sum 
up to 22.479 which is larger than 12). 

Notice that an off-diagonal row sum of 13 works but 12 fails. So, the 'search' 
can be refined further: 
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Off-diagonal row sum 

12.9 
12.8 
12.7 
12.6 
12.5 

Result 

Works 
Works 
Works 
Works 
Fails 

(Off-diagonal elements oflast row sum 
to 12.99 which is larger than 12). 

151 

Continuing this process results in T=12.546 or a disk centered at (6,0) with 
a radius of 12.546. This is the Minimal Gerschgorin set of the matrix A (figure 
10.3). Observe that the spectrum, a(A), is 

{18.5453, 12.3964,2.7059,-1.27386 + 3.325i, -1.27386- 3.325i}. 

Notice that the disk that forms the boundary of the Minimal Gerschgorin set 
practically intersects one of the eigenvalues. This example was particulary nice 
in that the Gerschgorin disk actually intersected one of the eigenvalues. This 
method will not produce such sharp results in all applications. However this 
method will always produce the minimal Gerschgorin set for the matrix. 

It should also be noted that each of the 'failures' listed above were due to 
the off diagonal row sum of the last row being too large. However, it is often 
the case that the failure will be due to one of the Xi's going negative. 
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Optimizing the Algorithm 

Notice in the algorithm that each xi+1 was calculated by using only the 
previous three or four Xi's. So, it was not necessary to have the whole vector 
x available when doing these calculations. As it turns out, it is only necessary 
to have available the number of elements of x equal to the Toeplitz bandwidth 
plus one. All of the other elements may be 'thrown away'. That is, in example 
10.1, when calculating x 5 it was only necessary to have elements X4, X3 and x2 

available. When calculating x31 it was only necessary to have elements X3o, X29 

and x2s available, etc. 

Algorithm 10.2 

This means that Algorithm 10.2 can be slightly modified: each element 
of xis still evaluated using 

i-1 

Xi+!= (Txi- L ia-ilxi-j)/iali 
j=l 

but now the vector x only has the number of elements equal to the Toeplitz 
bandwidth plus two. Therefore, at each iteration, the elements are reassigned. 
In a Matlab program, something such as the following might be used: 

for j=1:k 
Xj = Xj+l 
end 

This means that when analyzing a Toeplitz matrix not only is it unnecessary to 
create the Toeplitz matrix, it is also unnecessary to create the matrix P or the 
entire vector x used in our similarity transformation. This makes it possible to 
analyze huge Toeplitz matrices by using only a handful of variables on comput
ers with very limited memory. 

In order to illustrate this, the Toeplitz matrix of example 10.1 will be used 
except with larger dimensions: 

Example 10.6 Consider the 300 x 300 matrix: 

6 5 0 0 0 
7 6 5 0 0 

A= I 8 7 6 5 0 
0 8 7 6 5 
0 0 8 7 6 

The results are shown in figure 10.6. The Minimal Gerschgorin disk has a 
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radius of 15.358 with center at (6,0). Notice how the bound on the Minimal 
Gerschgorin set coincides with the spectral radius: the Minimal Gerschgorin 
disk crosses the x-axis at 21.358. On the other hand, the largest real eigenvalue 
is 21.3561. With this size of matrix it is still possible to calculate the numerical 
range but, the execution time is very long. 
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Figure 10.6 

The Matlab code to generate the Numerical Range in these figures was written by Cowen and Harel 
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Algorithm 10.2 was used on the matrix of example 10.6 using dimensions 
of 50 x 50 through 1,000,000 x 1,000,000. The results are summarized below. 
(Details and graphs may be found under examples 10.4 through 10.10 in the 
Appendix). 

Calculation Time: 

Matrix Dimension Eigenvalues Numerical Range New Algorithm 

50 X 50 < 1 sec 3 sec < 1 sec 
100 X 100 < 1 sec 21 sec < 1 sec 
300 X 300 < 2 sec > 1000 sec 1 sec 

1000 X 1000 24 sec ??? sec 2 sec 
10,000 X 10,000 ??? sec ??? sec 26 sec 

100,000 X 100,000 ??? sec ??? sec 268 sec 
1,000,000 X 1,000,000 ??? sec ??? sec 45 min 

Notice that computer memory limits the matrix size that can be used with the 
numerical range and the Eigenvalue calculation. The computer used for this 
thesis had the following limits: the numerical range could not be calculated for 
matrix dimensions greater than about 300 x 300; Eigenvalue calculation was 
limited to matrix dimensions of 1000 x 1000. On the other hand, the Algorithm 
10.2 had no practical limit. 

The following table shows that the largest real eigenvalue (which in these 
examples is equal to the spectral radius) is converging as the dimension of the 
matrix gets larger. The Minimal Gerschgorin set also converges. 

Matrix Dimension 

50 X 50 
100 X 100 
300 X 300 

1000 X 1000 
10,000 X 10,000 

100,000 X 100,000 
1,000,000 X 1,000,000 

Largest 
Real Eigenvalues 

21.3144 
21.3464 
21.3561 
21.3573 

Min. Gerschgorin Disk 
Intersects x-axis at: 

21.316 
21.348 
21.358 
21.358 
21.358 
21.358 
21.358 

The fact that the Minimal Gerschgorin set for this particular Toeplitz ma
trix converges does not make our algorithm any more stable or any less likely 
to be subject to roundoff errors. The algorithm must perform the same types 
of calculations and will be exposed to the same types of pitfalls whether the set 
converges or not. So, the fact that this particular example worked for a one 
million by one million matrix without error, while not proving the reliability of 
the algorithm, is very encouraging. 
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The times shown above will vary based on computer speed, memory, type 
of algorithm used, etc. but they show the relative speed of each of the methods. 

The examples above utilized a relatively simple, real valued matrix with positive 
elements. Yet, Algorithm 10.2 will work for any square, complex Hessenberg 
matrix of practically any size as the next few examples will demonstrate. 

Advanced Applications 

The following examples utilize complex matrices with long Toeplitz bandwidths. 

Example 10.11 Consider the 1000x1000 matrix: 

6- 3i -6i 0 0 0 0 0 
-4 -7i 6- 3i -6i 0 0 0 0 

3 -4 -7i 6- 3i -6i 0 0 0 
-5i 3 -4-7i 6- 3i -6i 0 0 

A= I 2 + 2i -5i 3 -4-7i 6- 3i -6i 0 
-8+3i 2 + 2i -5i 3 -4 -7i 6- 3i -6i 

0 -8+3i 2 + 2i -5i 3 -4-7i 6- 3i 
0 0 -8+3i 2 + 2i -5i 3 -4 -7i 

The results are shown in figure 10.11. The algorithm took 7 seconds while 
matlab required 66 seconds to calculate the actual eigenvalues. For the record, 
the radius of the minimal Gerschgorin disk is 17.7872 with the center at (6,-3). 
Notice that the Gerschgorin set is very sharp. 
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The next example shows that zeros in the bandwidth will not effect the 
Algorithm. 

Example 10.12 Consider the 100x100 matrix: 

23 -7i 16i 0 0 0 0 
47i 23 -7i 16i 0 0 0 
0 47i 23 -7i 16i 0 0 
0 0 47i 23- 7i 16i 0 
0 0 0 47i 23- 7i 16i 

53- 20i 0 0 0 47i 23- 7i 
0 53- 20i 0 0 0 47i 
0 0 53- 20i 0 0 0 

-42 + 13i 0 0 53- 20i 0 0 
0 -42 + 13i 0 0 53- 20i 0 
0 0 -42 + 13i 0 0 53- 20i 

Figure 10.12 shows the Minimal Gerschgorin set calculated with Algorithm 10.2, 
Gerschgorin set, and the numerical range. Once again, the Minimal Gerschgorin 
set 'closes in' on the spectrum. On the other hand, the numerical range is not 
sharp at all. 

Numerical Range, Gerschgorin, and Minimal Gerschgorin 

150 

100 

50 
(f) 

·;;: 
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-100 

-150 

-150 -100 -50 0 50 100 150 200 
Real Axis 

Figure 10.12 
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Bounding the inclusion set Further 

The method described above produces a relatively small spectral inclusion 
set but the 'sharpness' of the set is limited in that the inclusion set is a circle. 
It would be desirable to reduce the size of this set even further . This will be 
attempted by using the symbol of the operator. 

Recall from chapter six ofthis thesis that when one calculated the symbol 
of a matrix based on the unit circle, the result was the spectrum of the infi
nite dimensional operator. Furthermore, it was noted that the spectrum of the 
infinite dimensional operator can be used as a bound for the associated finite 
dimensional matrix. Therefore, these facts can be used here. 

Revisiting example 10.6, 
Example 10.13 Consider the 300 x 300 matrix: 

A= 

6 5 0 
7 6 5 
8 7 6 
0 8 7 
0 0 8 

0 0 
0 0 
5 0 
6 5 
7 6 

The symbol of the associated infinite dimensional operator is 

8 7 
f(z) = 2 +- +6+5z . 

z z 

Calculating the range of the symbol with the unit circle as the domain and 
combining these results with the Minimal Gerschgorin set, produces the graph 
shown in figure 10.13. If these two sets are intersected (a theme that has been 
used throughout this paper), figure 10.14 is produced. The result is a very sharp 
spectral inclusion set. In this case, notice how the Minimal Gerschgorin set and 
the Symbol work together to closely bound the spectrum. 
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Conclusions 

The new theorems and new algorithms presented in this chapter contribute 
to a number of advances: 

(1) Perhaps for the first time, it is possible to consistently calculate the 
Minimal Gerschgorin set for a whole class of matrices. 

(2) Algorithm 10.2 allows the calculation of Minimal Gerschgorin sets for 
sizes of matrices that have hitherto been impossible. In particular, it is possible 
to calculate the Minimal Gerschgorin set for Hessenberg matrices of practically 
any size. 

(3) It has now been proven that for any Toeplitz matrix, there exists a 
single similar matrix whose Gerschgorin set is equal to the Minimal Gerschgorin 
set. 
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A Detailed calculations of some of the examples 

This appendix contains detailed calculations of some of the examples given in 
the text. 

Example 1.2 

A~u 
0 -1 
2 1 
0 1 
1 .5 

!1) 1 . 

-1 

The spectrum, u(A), is 

{ -1. 79, 2.17, .81 + 34li, .81- 34li}. 

(Note that the eigenvalues in this thesis were computer with Matlab in double 
precision). 

B ~A +A• ~ ( -~ 
.5 -.5 

'o
5

) 2 .5 
2 -.5 .5 1 .75 ' 

1.5 0 .75 -1 

C ~ A - A • ~ ( -
0

5; 

.5i .5i 
-5i ) 0 -.5i 
-.~5i ' 2i -.5i .5i 0 

.5i -i .25i 

R(A)l = IOI + IOI +I - ll + 121 = 3, 

R(B)l = IOI + 1·51 +I -.51 + IL5I = 2.5, 

R(C)l = IOI + l.5il + l.5il +I- .5il = 1.5, 

T(A)l = IOI +Ill+ IOI +Ill= 2, 

R(A)2 =Ill+ 121 +Ill+ 1- ll = 5, 

R(B)2 = 1.51 + 121 + 1·51 + IOI = 3, 

R(C)2 = I - .5il + IOI +I - .5il +Iii = 2, 

T(A)2 = IOI + 121 + IOI +Ill = 3, 

R(A)3 = IOI + IOI +Ill+ Ill= 2, 
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and 

R(B)3 = 1- .51+ I-51+ Ill+ 1.751 = 2.75, 

R(C)3 = I - .5il + l.5il + IOI + I - .25il = 1.25, 

T(A)3 = 1- ll +Ill+ Ill+ I-51= 3.5, 

R(A)4 =Ill+ Ill+ I-51+ 1- ll = 3.5, 

R(B)4 = IL51 + IOI + 1.751 + 1- ll = 3.25, 

R(c)4 = l5il + 1- il + l.25il + 101 = 1.75, 

T(A)4 = 121 +I-ll+ Ill+ I-ll= 5. 

From these, the maximums may be calculated, 

RA = max{R(A)i• ... , R(A)N} = max{3, 5, 2, 3.5} = 5, 

RB = max{ R(B)i• ... , R(B)N} = max{2.5, 3, 2. 75, 3.25} = 3.25, 

Rc = max{R(C)i• ... , R(c)N} = max{l.5, 2, 1.25, 1.75} = 2, 

T = max{Ti, ... ,TN} = max{2, 3, 3.5, 5} = 5. 

and for any >. E a(A), 

I .XI ::; RA "+ T = 5 ; 5 = 5 ' IRe>.l::; RB = 3.25, and IIm>.l::; Rc = 2. 

This is graphed in figure 1.2 below. Note that the bounds on 'a' and 'b' (repre
sented by the rectangle in figure 1.2) are contained completely within the bounds 
for >. (represented by the circle in figure 1.2). Therefore, in this example, the 
bound on >. (represented by the circle) is superfluous and may be ignored. 

Example 1.7 

( 

0 0 -1 

A= 1 2 1 
0 0 1 
1 1 .5 

~1) 1 . 

-1 

The spectrum, a(A), was found to be 

{ -1. 79, 2.17, .81 + 34li, .81- 34li}. 

( 

0 .5 -.5 1.5 ) 
B =A+ A* = .5 2 .5 0 ' 

2 -.5 .5 1 .75 
1.5 0 .75 -1 
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A- A* -.5i 0 -.5i i 

( 

0 .5i .5i -.5i ) 

c = 2i = -.~i .5~ 0 . -.25i ' 
.5z -2 .25z 0 

s(A)l = CIOI + 101 + 1- 11 + 121 + 101 + 111 + 101 + III)/2 = 2.5, 

s(B)l = CIOI +I-51+ 1- .51+ IL5I + 101 +I-51+ 1- .51+ IL51)/2 = 2.5, 

s(c)l = CIOI + !.5il + !.5il + 1- .5il + 101 + 1- .5il + 1- .5il + !.5il)/2 = 1.5, 

s(A)2 =(III+ 121 +III+ 1- 11 + 101 + 121 + 101 + III)/2 = 4, 

s(B)2 =(!.51+ 121 +I-51+ 101 +I-51+ 121 +I-51+ IOI)/2 = 3, 

S(c)2 =(I- .5il + IOI + 1- .5il +Iii+ !.5il + 101 + !.5il +I- il)/2 = 2, 

s(A)3 = CIOI + 101 + 111 + 111 + 1- 11 + 111 + 111 + !.51)/2 = 2.75, 

S(B)3 =(I- .51+ I-51+ Ill+ 1.751 + 1- .51+ I-51+ III+ !.751)/2 = 2.75, 

s(c)3 = Cl- .5il + !.5il + 101 + 1- .25il + !.5il + 1- .5il + 101 + !.25il)/2 = 1.25, 

s(A)4 =(III+ 111 +I-51+ 1- 11 + 121 + 1-11 + 111 + 1- Il)/2 = 4.25, 

s(B)4 = CIL5I + 101 + !.751 + 1- 11 + IL5I + 101 + !.751 + 1- Il)/2 = 3.25, 

s(c)4 = (!.5il + 1- il + !.25il + 101 + 1- .5il +Iii+ 1- .25il + IOI)/2 = 1.75, 

and 

SA= max{2.5,4, 2.75,4.25} = 4.25, 

SB = max{2.5,3,2.75,3.25} = 3.25, 

Sc = max{1.5, 2, 1.25, 1.75} = 2, 

SA= 4.25, SB = 3.25, Sc =2, 

!AI ::; SA = 4.25' IRe AI ::; SB = 3.25, and lim AI ::; Sc = 2. 

Note that the bound on !AI is 4.25 for Parker, compared with 5 for Browne. 
However, in this example, the bounds on 'a' and 'b' (represented by the rectan
gle in figure 1. 7) are contained completely within the bounds for A (represented 
by the rectangle in figure 1. 7). Therefore, in this example, the bound on A is 
superfluous so that, Browne and Parker, for practical purposes, produce the 
same results. 



A DETAILED CALCULATIONS OF SOME OF THE EXAMPLES I69 

Example 1.28 Find the Gerschgorin Radii and Disks for the following rna-
trix. 

( 

0 0 -I 

A = I 2 I 
0 0 I 
I I .5 

!I) I . 

-I 

The spectrum, a(A), is 
{ -1. 79, 2.I7, .8I + 34Ii, .8I - 34Ii}. 

Solution The first Gerschgorin Circle is centered at a11 = 0 with radius: 

4 

r1 = L la1jl = la12l + la13l + la14l = 101 + 1- II+ 121 = 3. 
j=l 
#1 

The second Gerschgorin Circle is centered at a22 = 2 with radius: 

4 

r2 = L la2jl = la21l + la23l + la24l =III+ III+ I- II= 3. 
j=l 
#2 

The third Gerschgorin Circle is centered at a33 = I with radius: 

4 

r3 = L la3jl = la31l + la32l + la341 = 101 + 101 +III= 1. 
j=l 
#3 

The fourth Gerschgorin Circle is centered at a44 = -I with radius: 

4 

r4 = L la4il = la41l + la42l +lad= III+ III+ 1·51 = 2.5. 
j=l 
#4 

The Gerschgorin disks for this matrix are plotted in figure 1.28 . 

• • •• 

Example 1.29 Find the Gerschgorin Radii and Disks for the following. 

( 

2 + 3i 
A= 4- 4i 2 

3i 4 
-7 2- 5i 

The spectrum, a(A), is 

4 
I+i 
-4i 

6 

i +I ) 2 + 2i 
5i . 

-5+i 

{7.79- .I2i, .97 + 6.I9i, -5.47- 5.89i, -4.29- .I8i}. 



A DETAILED CALCULATIONS OF SOME OF THE EXAMPLES 170 

Solution The first Gerschgorin Circle is centered at a11 = 2 + 3i with radius: 

4 

r1 = L la1jl =lad+ la13l + la14l =Iii+ 141 + li +II= 1 + 4 + J2 = 6.4142. 
j=l 
#1 

The second Gerschgorin Circle is centered at a22 = 2 with radius: 

4 

r2 = L la2jl = la21l+la23l+la24l = l4-4il+ll+il+l2+2il = J32+V2+VB = 9.9. 
j=l 
#2 

The third Gerschgorin Circle is centered at a33 = -4i with radius: 

4 

r3 = L la3jl = la31l + la32l + la341 = l3il + 141 + l5il = 3 + 4 + 5 = 12. 
j=l 
#3 

The fourth Gerschgorin Circle is centered at a44 = -5 + i with radius: 

4 

r4 = L la4jl = la41l + la42l + la431 = l-71 + 12- 5il + 161 = 7 +VW+6 = 18.39. 
j=l 
#4 

The Gerschgorin disks for this matrix are plotted in figure 1.29 . 

• • •• 

Example 4.10 Consider, 

5 3 0 0 0 
5 9 0 6 0 

A = I 
0 0 4 9 8 
0 0 -6 8 7 
0 0 8 7 9 

-41 7 0 0 0 

Construct the associated graph as follows: 

a12 =fi 0 place a directed edge from 1 to 2. 
a13 = 0 do not place a directed edge from 1 to 3. 
a14 = 0 do not place a directed edge from 1 to 4. 
a15 = 0 do not place a directed edge from 1 to 5. 
a16 =fi 0 place a directed edge from 1 to 6. 
a21 =fi 0 place a directed edge from 2 to 1. 
a23 = 0 do not place a directed edge from 2 to 3. 
a24 =fi 0 place a directed edge from 2 to 4. 

-7 
-3 
0 
0 
0 
14 
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a25 = 0 do not place a directed edge from 2 to 5. 
a26 =f. 0 place a directed edge from 2 to 6. 
a31 = 0 do not place a directed edge from 3 to 1. 
a32 = 0 do not place a directed edge from 3 to 2. 
a34 =f. 0 place a directed edge from 3 to 4. 
a35 =f. 0 place a directed edge from 3 to 5. 
a36 = 0 do not place a directed edge from 3 to 6. 
a41 = 0 do not place a directed edge from 4 to 1. 
a42 = 0 do not place a directed edge from 4 to 2. 
a43 =f. 0 place a directed edge from 4 to 3. 
a45 =f. 0 place a directed edge from 4 to 5. 
a46 = 0 do not place a directed edge from 4 to 6. 
a51 = 0 do not place a directed edge from 5 to 1. 
a52 = 0 do not place a directed edge from 5 to 2. 
a53 =f. 0 place a directed edge from 5 to 3. 
a54 =f. 0 place a directed edge from 5 to 4. 
a56 = 0 do not place a directed edge from 5 to 6. 
a61 =f. 0 place a directed edge from 6 to 1. 
a62 =f. 0 place a directed edge from 6 to 2. 
a53 = 0 do not place a directed edge from 6 to 3. 
a64 = 0 do not place a directed edge from 6 to 4. 
a55 =f. 0 place a directed edge from 6 to 5. 

The result is the directed graph shown in the figure 4.10. Notice that this 
graph is not strongly connected. For example, there does not exist a directed 
path from 5 to 2. Since the graph is not strongly connected, it is not irreducible. 
On the other hand, each vertex belongs to some cycle in the graph. That is, 1 
belongs to cl26i 2 belongs to cl26i 3 belongs to c345i4 belongs to c345i5 belongs 
to C35 ; and 6 belongs to C126 . Therefore, the matrix is weakly irreducible and 
the Brualdi Theorem may be applied to this matrix. 

Example 10.4 Consider the 50 x 50 matrix: 

6 5 0 0 0 
7 6 5 0 0 

A= I 8 7 6 5 0 
0 8 7 6 5 
0 0 8 7 6 

The results are shown in figure 10.4. The Minimal Gerschgorin disk has a ra
dius of 15.316 with center at {6,0}. So, the Minimal Gerschgorin disk crosses 
the x-axis at 21.316. On the other hand, the largest real eigenvalue is 21.3144. 
That is very good. 
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Example 10.5 

Same Toeplitz matrix as example 10.4 but with dimension 100 x 100. 

The results are shown in figure 10.5A. This time there appears to be a seri
ous problem - some of the eigenvalues fall outside of the Inclusion Set. This 
may lead one to conclude that there is some roundoff error or some other prob
lem with the algorithm but this is not the case: Bottcher and SilbermannD 
note in their book Introduction to Large Truncated Toeplitz Matrices (Exam
ple 3.16 page 72) that this kind of roundoff error often occurs when calculating 
the eigenvalues of large Toeplitz matrices. But is the phenomena that Bottcher 
and Silbermann refer to happening in this case? Apparently so. For when the 
eigenvalues of the transpose of the matrix are calculated, the picture changes 
(Figure 10.5B). Now things are back on track- the Spectrum is inside the In
clusion Set. The Minimal Gerschgorin disk has a radius of 15.348 with center 
at (6,0). So, the Minimal Gerschgorin disk crosses the x-axis at 21.348. On the 
other hand, the largest real eigenvalue is 21.3144. Again, that is very good. 

It is not at all clear why Matlab was able to calculate the eigenvalues cor
rectly for the transpose but not for the original matrix. Of course, that is typical 
of roundoff error - it is often sensitive to the order in which the calculations are 
performed. In any case, the next few examples will calculate eigenvalues based 
on the transpose of our Toeplitz matrix. 

Example 10.6 

Same Toeplitz matrix as 10.4 but with dimension 300 x 300. 

The results are shown in figure 10.6. The Minimal Gerschgorin disk has a 
radius of 15.358 with center at (6,0). So, the Minimal Gerschgorin disk crosses 
the x-axis at 21.358. On the other hand, the largest real eigenvalue is 21.3561. 
With this size of matrix it is still possible to calculate the Numerical Range but, 
the execution time is very long. 

Example 10.7 

Same Toeplitz matrix as 10.4 but with dimension 1,000 x 1,000. 

The results are shown in figure 10. 7. The Minimal Gerschgorin disk has a 
radius of 15.358 with center at (6,0). So, the Minimal Gerschgorin disk crosses 
the x-axis at 21.358. On the other hand, the largest real eigenvalue is 21.3573. 
(The computer being used for this thesis is not powerful enough to do the Nu
merical Range algorithm for a lOOOxlOOO matrix.) 

Example 10.8 
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Same Toeplitz matrix as example 10.4 but with dimension 10,000 x 10,000. 

The results are shown in figure 10.8. The Minimal Gerschgorin disk has a 
radius of 15.358 with center at (6,0). So, the Minimal Gerschgorin disk crosses 
the x-axis at 21.358. It is not possible to calculate the eigenvalues for a 10,000 
x 10,000 matrix on the computer being used for this thesis. (It is difficult to 
even create such a large matrix on the computer!) 

Example 10.9 

Same Toeplitz matrix as 10.4 but with dimension 100,000 x 100,000. 

The results are the same as example 10.8. (See figure 10.8). 

Example 10.10 

Same Toeplitz matrix as 10.4 but with dimension 1,000,000 x 1,000,000. 

The results are the same as example 10.8. (See figure 10.8). 
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B Methods Used in this Thesis 

Simpler Methods 

Browne's Theorem 
Parker's First 
Farnell's First 

Farnell's Second 
Brauer's First 

Gerschgorin's Theorem 
Gerschgorin's Column Theorem 

Parker's Second Theorem (1948) 

Theorem 1.1 
Theorem 1.6 

Theorem 1.11 
Theorem 1.12 
Theorem 1.13 
Theorem 1.27 
Theorem 1.30 
Theorem 2.2 

Involved Methods 

Brauer Ovals of Cassini 
Cassini for Real Matrices 

Brualdi 
Minimal Gerschgorin 

Numerical Range 
Pseudospectra 

Theorem 4.1 
Theorem 4.7 

Theorem 4.10 
Theorem 4.14 
Theorem 5.1 

Chapter 7 
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Composite BBFP is a composite of the first five 'Simple' methods listed 
above: Browne, Parker's First, Farnell's First, Farnell's Second, and Brauer's 
First. 

Related Methods 

Varga-Medley Methods Chapter 3 
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C Symbols used in this thesis 

Br(A) - Brualdi Set 
K(A) - Cassini Set 
K'(A) - Cassini Set for real matrices 
G (A) - Gerschgorin set 
QR(A) -Minimal Gerschgorin set 
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GT(A) - Gerschgorin column set. This is the set produced by applying Ger
schgorin's theorem to the columns (rather than the rows of a matrix). 
W (A) - Numerical Range 
>. - an eigenvalue 
p - The spectral radius 
cr(A) - Spectrum of A 
cr"(A) - Pseudospectra of A 
w - The numerical radius. This is analogous to the spectral radius except that 
it is applied to the numerical range. That is, it is the largest absolute value of 
any point in the numerical range. 



D MATLAB CODE 176 

D Matlab Code for programs used in this thesis 

A number of Matlab programs were written for this thesis. The Matlab code 
for some of the more important programs is presented in this appendix. 

The Matlab code for these and other programs may also be found on the 
following websites: 

www. baymite.com/TronzoThesis.htm 

All of these programs must be run under Matlab. These programs all 
follow the same format: the user is prompted for the matrix dimension and 
then for the variable name that represents the matrix (the matrix must be in 
the Matlab workspace at the time the program is run). 

These programs were not written for general distribution. Therefore, the 
code in these programs does not include 'error trapping' or other safeguards to 
ensure that the information entered is suitable for the programs. This means 
that erroneous results may produced without warning if information is not en
tered according the the instructions for the programs. For this reason, these 
programs should be run only by those who have some understanding of the 
methods that are used. 

It should be noted that these programs were written over a long period 
of time. Therefore, the code and the graphics may appear to 'cleaner' in some 
programs than in others. In some cases the graphic produced by these programs 
looks much better than the graphics in the text. This is because some of the 
graphs in the text were produced by early versions of these programs. 

Section D.l Programs that intersect different spectral inclusion 
sets 

CassiniBrowne This program produces inclusion sets by intersecting the fol
lowing three sets: Brauer-Cassini (Theorem 4.1), Brauer-Cassini for the trans
pose, and Browne's box. This program produces a very sharp spectral inclusion 
set in a reasonable amount of time. 

Note that the 'sharpness' of the inclusion set that is produced can be 
adjusted by changing the value of the variable 'TINC'. At the present time, this 
variable is set at 201. This appears to be optimal for most matrices. If this 
value is increased, the program will produce a sharper set but the calculation 
time will also be increased. If the number assigned to TINC is decreased, the 
set produced will be courser but the calculation time will be decreased. (The 
number assignment to TINC occurs in the first few lines of the program). 
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Example: Find the CassiniBrowne set for the following matrix: 

A= 
( 

0 0 -1 2 ) 
1 2 1 -1 
0 0 1 1 . 
1 1 .5 -1 

First create the matrix in the Matlab workspace by entering the following: 

A= (0 0 - 1 2; 1 2 1 - 1; 0 0 1 1; 1 1 .5 - 1] 

Start the program CassiniBrowne and answer the prompts as follows: 

Enter the dimension of the matrix 4 

Enter the variable name that represents the matrix A 

The computer will then calculate and plot the inclusion set. 

IntersectAlll This program produces inclusion sets by intersecting the follow
ing 'simply generated' sets: Browne's (Theorem 1.1), Brauer's First (Theorem 
1.13), Farnell's First (Theorem 1.11), Farnell's Second (Theorem 1.12), Parker's 
First (Theorem 1.6), Parker's Second (1948) (Theorem 2.2), Gerschgorin (The
orem 1.27), and Gerschgorin's column (Theorem 1.3). This program produces 
a set that is slightly less sharp than the set produced by the 'CassiniBrowne' 
program (see above) but calculates the set somewhat more quickly than the 
'CassiniBrowne' program. 

Note that the 'sharpness' of the inclusion set that is produced can be 
adjusted by changing the value of the variable 'TINC'. At the present time, this 
variable is set at 201. This appears to be optimal for most matrices. If this 
value is increased, the program will produce a sharper set but the calculation 
time will also be increased. If the number assigned to TINC is decreased, the 
set produced will be courser but the calculation time will be decreased. (The 
number assignment to TINC occurs in the first few lines of the program). 

Example: This program may be run in a similar way as CassiniBrowne. See 
under 'CassiniBrowne' above for an example. 

CompositeBBFP (See Definition 9A) This program produces inclusion sets 
by intersecting the following 'Pre-Gerschgorin' sets: Browne's (Theorem 1.1), 
Brauer's First (Theorem 1.13), Farnell's First (Theorem 1.11), Farnell's Second 
(Theorem 1.12), and Parker's First (Theorem 1.6). The main purpose of this 
program is to exhibit the best of the 'Pre-Gerschgorin' methods. This program 
produces a set that is not, in general, nearly as sharp as the sets produced by 
the 'CassiniBrowne' or 'IntersectAlll' programs (see above) but the calculation 
time is very short. 
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Section D.2 Programs that produce Gerschgorin and Gerschgorin
type inclusion sets 

GerschgorinBasic This program calculates and plots the Gerschgorin 
disks (Theorem 1.27) for a matrix. 

Example: This program may be run in a similar way as CassiniBrowne. See 
under 'CassiniBrowne' above for an example. 

GerschgorinAdvancedl This program calculates and plots the Gerschgorin 
disks (Theorem 1.27) for matrices except that it will not plot disks that are 
completely contained within other disks. That is, this program will not plot 
superfluous Gerschgorin disks. 

Example: This program may be run in a similar way as CassiniBrowne. See 
under 'CassiniBrowne' above for an example. 

GerschgorinExtral This program calculates the Gerschgorin disks (Theorem 
1.27) for a matrix but plots only the boundary of the resulting Gerschgorin in
clusion set. 

Example: This program may be run in a similar way as CassiniBrowne. See 
under 'CassiniBrowne' above for an example. 

CassiniNewOptl This program produces inclusion sets based on the Brauer
Cassini Theorem (Theorem 4.1). 

Example: This program may be run in a similar way as CassiniBrowne. See 
under 'CassiniBrowne' above for an example. 

CassiniRealNewl This program produces inclusion sets based on the Brauer
Medlin-Cassini Theorem (Theorem 4. 7) but this program works for real matrices 
only. 

Example: Find the Cassini set for the following real matrix: 

( 

0 0 

A = 1 2 
0 0 
1 1 

- 1 
1 
1 
.5 

!1) 1 . 

-1 

First create the matrix in the Matlab workspace by entering the following: 

A= [0 0 - 1 2; 1 2 1 - 1; 0 0 1 1; 1 1 .5 - 1] 

Start the program CassiniRea1New1 and answer the prompts as follows: 

Enter the dimension of the REAL matrix 4 
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Enter the variable name that represents the matrix A 

The computer will then calculate and plot the inclusion set. 

BrualdiNewl This is very experimental program that works only for 3 x 3 
weakly irreducible matrices. This program calculates the Brualdi Lemniscate 
set (Theorem 4.10). This program will calculate all 3 x 3 cycles plus it will 
calculate only those 2 x 2 cycles that are on a circuit. This program produces 
inclusion sets that are not quite as sharp as a true Brualdi calculation. 

Example: This program may be run in a similar way as CassiniBrowne. See 
under 'CassiniBrowne' above for an example. 

BrualdiSpecial2 This is very experimental program that works with weakly 
irreducible matrices as large as 4 x 4. This program checks to see that the 
matrix is weakly irreducible. This program calculates the Brualdi Lemniscate 
set (Theorem 4.10). 

Example: This program may be run in a similar way as CassiniBrowne. See 
under 'CassiniBrowne' above for an example. 

GerschMinCombined This is an experimental program. This program cal
culates the minimal Gerschgorin set (Theorem 4.14). This program is ex
tremely slow. Therefore, it will be wise to try this program with a 3x3 or 
a 4x4 matrix in order to get an indication of the calculation required before 
attempting to run this program with a large matrix. 

Note that the 'sharpness' of the inclusion set that is produced can be 
adjusted by changing the value of the variables 'MTRS' and 'VXINCR'. At the 
present time, MTRS is set to 51 and VXINCR is set to .025. One may want 
to experiment with different values for these variables. If the value of MTRS is 
increased AND /OR the value of VINCR is decreased, the program will produce 
a sharper set but the calculation time be increased. If the value of MTRS is 
decreased AND/OR the value of VINCR is increased, the set produced will be 
courser but the calculation time will be decreased. 

Example: This program may be run in a similar way as CassiniBrowne. See 
under 'CassiniBrowne' above for an example. 

Section D.3 Programs that produce Pre-Gerschgorin inclusion sets 

Brownl This program produces spectral inclusion sets based on Browne's the
orem (Theorem 1.1). 

Brauer Power This program produces spectral inclusion sets based on Brauer's 
Power Method (Theorem 1.14). The Brauer Power Method creates a spectral 
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inclusion set utilizing the original matrix raised to a power. That power is al
ways in the form of 2r where 'r' is a natural number. Therefore, when r=1, 
the matrix is raised to the 2nd power; when r=2, the matrix is raised to the 
4th power; when r=3, the matrix is raised to the 8th power, etc. So, when this 
program is run, the user will be prompted to enter 'r'. As noted in the text, 
the Brauer Power Method is considered unreliable. Therefore, it is possible 
that the set created by the Brauer Power Method may not include 
the spectrum! 

FarnellOriginall This program produces spectral inclusion sets based on Far
nell's first theorem (Theorem 1.11). 

FarnellSecond This program produces spectral inclusion sets based on Far
nell's second theorem (Theorem 1.12). 

Parkerl This program produces spectral inclusion sets based on Parker's first 
theorem (Theorem 1.6). 

ParkerSecondNew This program produces spectral inclusion sets based on 
Parker's second (1948) theorem (Theorem 2.2). 

Section D.4 Programs that utilize Varga-Medley methods 

IsolateGersch3 This program calculates exact eigenvalues that are contained 
inside isolated Gerschgorin disks. This program utilizes theorems developed by 
Olga Taussky (Theorem 3.1 and Corollary 3.3) and algorithms developed by 
Helen Medley and Richard Varga (see chapter three for the full discussion of 
this subject). 

Section D.5 Programs that utilize new methods 

GerschgorinHessenberg This program produces a minimal Gerschgrin spec
tral inclusion set for Hessenberg matrices. The method used in this program 
was developed by Mark Tronzo for this thesis (See theorems 10.1 and 10.2 and 
Algorithms 10.1 and 10.2). 

(Unlike the other programs, the matrix need not be created in the workspace). 

Example: Find the minimal Gerschgorin set for the following Hessenberg ma
trix: 
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5 18 - 3i 0 0 0 0 0 

4i 5 18- 3i 0 0 0 0 

0 4i 5 18- 3i 0 0 0 

-9 0 4i 5 18- 3i 0 0 

0 -9 0 4i 5 18- 3i 0 

A= I 0 0 -9 0 4i 5 18- 3i 

6 + 8i 0 0 -9 0 4i 5 

0 6 + 8i 0 0 -9 0 4i 

0 0 6 + 8i 0 0 -9 0 

0 0 0 6 + 8i 0 0 -9 

Start the program GerschgorinHessenberg and answer the prompts as follows: 

Enter the dimension of the matrix 200 

How many bands are there below the center diagonal 6 

Enter an element from the leftmost band 6+8i 

Enter an element from the next band 0 

Enter an element from the next band 0 

Enter an element from the next band -9 

Enter an element from the next band 0 

Enter an element from the next band 4i 

Enter an element from the center diagonal 5 

Enter an element from the band above the center diagonal 18-3i 

Section D.6 Programs written by others 

N umericalRangeAlgl This program calculates the numerical range for a ma
trix this program was written by Carl C. Cowen (Purdue University) and Elad 
Harel. 

eigtool This program calculates the pseudospectra for a matrix. The Mat
lab code for this program was written by Tom Wright. The Matlab code for 
this program is not given in this appendix but may be found at the website 
http: I I web.comlab.ox.ac. uklprojects lpseudospectra. 


