
Implementation of a Fuzzy Logic Controller

via Cyclone n FPGA and Nios II Processor

by

Eric Michael Stauffer

Submitted in Partial Fulfillment of the Requirements

For the Degree of

Master of Science

In the

Electrical and Computer Engineering

Program

YOUNGSTO\\'N STATE l NlVERSITY

AUgU5t. 2006

Implementation of a Fuzzy Logic Controller via Cyclone II FPGA and Nios II Processor

Eric Michael Stauffer

I hereby release this thesis to the public. I understand that this thesis will be made
available from the OhioLINK ETD Center and the Maag Library Circulation Desk for
public access . I also authorize the University or other individuals to make copies of this
thesis as needed for scholarly research.

Signature:

~~ 7f")ta{Do
Eric Michael Stauffer, Student Date

Approvals:

IO~
01.Faramarz Mossayebi. Thesis Advisor Date

~
Date

C7h't~ 2. b-1u/y-<:'lCc
Dr. Philip Munro, Committee Member Date

Abstract

Fuzzy control is an emerging control technique which allows an engineer to

design a control system with only an operator's knowledge of the plant being controlled.

FPGAs and soft processor cores allow engineers to rapidly prototype and modify systems

such as controllers. The combination of these two emerging technologies is discussed in

detail in this work. It is shown that the principals of fuzzy sets and fuzzy logic can be the

basis of a control system implemented in FPGA hardware with a soft processor core. An

Altera Cyclone II FPGA with a Nios II soft processor core is implemented to provide an

empirical example of a fuzzy controlled system. The design process is detailed in a step­

by-step fashion and a prototype is assembled and detailed. Experiments proving the

validity of fUzzy control as a control scheme are designed and run and the results are

provided. The experiments consists of a fuzzy system controlling the temperature of air

inside of a confined space.

The results prove that fuzzy controJ is a viable control scheme and that the

assertions about limited plant knowledge and ease of design are true. A temperature

versus time plot is shown for the ambient temperature inside of a confined space in which

a heating and exhaust system is controlled by a fuzzy-based controller.

Table of Contents

Chapter 1 ... __...1

1.1 Mo6vation and Background

1.2 History 3

1.3 Empirical Experiment 3

Chapter 2... .. 5

2.1 Introduction to Fuzzy Sets... 5

2.2 Membership Functions ...8

Chapter 3... _ ...15

3.1 Introduction to Fuzzy Logic 15

3.2 Fuzzy Logic Operations 16

Chapter 420

4.1 Introduction to Fuzzy Control.. .. 20

4.2 Preliminary Design 22

4.3 Rule Base Creation. 24

4.4 Input Processing. 26

4.5 Logic Implementation and Rule Inference .. .27

4.6 Output Processing.29

Cllapter 5.......................... ...31

5.1 Motivation and Introduction 31

5.2 Controller Design. Step 1 ...32

5.3 Controller Design, Step 233

5.4 Controller Design, Step 3 33

5.5 Controller Design, Step 439

5.6 Controller Design. Step 6 40

5.7 Controller Design, Step 7 43

5.8 Controller Design, Step 8 .. .43

5.9 Hardware.. .. 44

5.10 Nios IT Processor.. 47

5.1] Experiment Results
 49

5.12 Conclusions and Future Research 50

Appendices..53

Appendix A ... 54

A.I Introduction 54

A.2 Notation and Operations ... 54

Appendix B 58

B.1 Introduction.......................... ..

B.2 Notation and Operations 58

Appendix C ... 61

C.l Main Function 61

C.2 DeclaraLions and Variables 67

C.3 Membership Functions 70

C.4 LCD and Buttons ... 76

...58

C.5 Relay Functions79

C.6 Temperature Readings 81

Appendix D ... 83

0.1 Introduction........ 83

0.2 Quartus 11. 83

0.3 SOPC Builder..86

D.4 Nios II IDE.. 87

References.._ 88

List of Figures ,

Figure 2.1 Venn Diagram and Single Subset

Figure 2.2 Venn Diagram and Two Subsets

Figure 2.3 Venn Diagram Representing A Union B

Figure 2.4 Venn Diagram ofA Intersection B

Figure 2.5 Venn Diagram Representation ofTalllShort Example

Figure 2.6 Venn Diagram Representing a Fuzzy Set Boundary

Figure 2.7 Venn Diagram Representation ofThree Elements in a Fuzzy Set

Figure 2. 8 Membership Function of Classical Set

Figure 2.9 Simple Linear Membership Function

Figure 2.10 Two Set Membership Function

Figure 2.11 Triangular Membership Function

Figure 2.12 Trapezoidal Membership Function

Figure 2.13 Two Trapezoidal Membership Functions

Figure 3.1 Membership Function Defining Membership in Two Subsets

Figure 4.1 Sample Fuzzy Controller Block Diagram

Figure 5. 1 Hot Membership Function

Figure 5.2 Warm Membership Function

Figure 5.3 Neutral Membership Function

Figure 5.4 Cool Membership Function

Figure 5.5 Cold Membership Function

Figure 5.6 Temperature Membership Functions

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.] 5

Cooling Membership Function

Constant Temperature Membership Function

Warming Membership Function

Temperature Change Membership Functions

Altera DE2.

Carl's Electronics CKI 619 Relay Board.

Complete System.

Micro-Controller Diagram.

System Response at Various Desired Temperatures.

Table 2.1

Table 2.2

Table 2.3

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 4.1

Table 5.1

Table 8.1

Table B.2

Table 8.3

Table B.4

List of Tables

Membership Values for Figure 2.8

Membership Values for Figure 2.9

Membership Values for Figure 2.10

Classical AND Function

Fuzzy AND Function

Classical OR Function

Fuzzy OR Function

Membership Values Derived From Figure 3.1

Water Temperature Change Rule Matrix

SysLem Rule Base

Conjunctive Truth Table

Negation Truth Table

Impljcative Truth Table

Eqwvalent Truth Table

x

List of Symbols

A,B,C,X,Y

a,b.c

J1(i)

a(i)

T

dl

Subsets of the Universe of Discourse.

Individual elements of the U nl verse of Discourse.

System output after defuzzification.

Firing strength of individual rules.

Individual rule output.

Current temperature.

Desired temperature.

Temperature change per one sample period.

Chapter 1

Introduction

1.t Motivation and Background

Natural language and human thought panerns rely heavily on relative and

imprecise terms to describe the world. Statements such as "It is warm outside today" are

hard to model in computers and modem control systems. These statements lack precision

and can contain terms with ambiguous meanings. Warm means one tlling to one person

and something completely different to someone else. Is there a boundary between what is

hot and what is cold? How about what is hot and what is merely warm? To model a

system with parameters such as these, the system must be described in precise and

unambiguous terms unless a method exists for interpretation and manipulation of relative

tenns [1].

Assume an example in which all temperatures above 80'F are considered hot and

all temperatures equal to or below 80°F are considered cold. This implies that a

o
temperature of 80.0

a
F is cold and a temperature of 80.1 F is hot. The difference of O.loF

would not be perceivable by a human being but would define membership in two entirely

different sets. It would be more natural to say that a temperature of 80.0°F is 50% hot and

50% cold. There would be almost no difference between the interpretations of the two

temperatures if this were the case.

Fuzzy sets allow partial set membership and allow for ambiguity in boundaries

between members and nonmembers of a set. An element can be a partial member of one

or more sets. Fuzzy sets infer fuzzy logic, in which operations are defined for logical

elements that are partly true and partly false. Fuzzy logic and fuzzy sets infer fuzzy

control. which is the design of control systems using fuzzy terms.

A properly defined control system can benefit from the ambiguity permitted by

fuzzy rules. A control system based on fuzzy set membership and fuzzy logic can be

designed with merely a superficial knowledge of the plant to be controlled. This allows

for increased modularity and easier, less math-intensive design of controllers [2,3]. The

most challenging part of designing a fuzzy controller is the fuzzification of the inputs and

the defuzzification of the outputs. Fuzzification and defuzzification are achieved by

defining and perfecting the rules of interpretation and membership functions for the

system [1]. For example, consider a model of a shower. The input of the shower system

is the current temperature of the water and the change in temperature per unit of time.

The output of the system is a control signal for a set of solenoid-controlled valves which

determine the mixture of the water and, subsequently, the temperature. This system can

be modeled with fuzzy terms if the input is reinterpreted to be hot, warm, cool, cold. or

any combination of the previous terms. The current temperature along with the

temperature change per unit time can be used to determine a control signal. The fuzzy

controller determines if the water should be colder or warmer based on the input and

adjusts the output accordingly. The output is then converted to a control signal in a

process called defuzzification. The end result is a control signal for each solenoid. The

benefit is that the designer needs little information about the system to be controlled and

2

the resulting controller is modular and can be used in other similar systems with only

minor modifications.

1.2 History

The notion of fuzzy sets, fuzzy logic, and [1lZZY control has been around for about

forty) ears. In 1965 Professor Lotfi Zadeh of the University of Califonnia at Berkley

wrote a paper titled Fuzzy Sets in the journal Information and Control. The paper

presented and defined the concept of a fuzzy set as well as operations that can be

performed on those sets. The first successful application of fuzzy control was not seen

until 1975 when a fuzzy-controlled cement kiln came online in Denmark l4,5 J.

Fuzzy control suffered from a lack of popularity in the United States until recently

because of the imprecise nature of the control scheme and a perceived relationship to

artificial intelligence. which was not popular in the United States at the time [4]. There

are many applications of fuzzy control available today and it is gaining in popularity as it

becomes a more credible control method.

It must be noted that there are many areas of future research pertaining to fuzzy

control. The questions of stability and optimality have yet to be answered to any degree

of certainty.

1.3 Empirical Experiment

In order to present a practical example of the material covered in this work. an

empirical experiment is designed and constructed. A model of a confined space in which

temperature is to remain constant is constructed. The confined space is created in the

form of a box containing one cubic foot of air. The air temperature is increased and

3

decreased with a heating element and cooling system which are housed within the cubic

foot enclosure.

The fuzzy controller is designed and implemented on a Nios IT microprocessing

platfonn. part of an Altera Cyclone Il FPGA. The FPGA and Nios II processor allow for

easy reprogramming and are scalable to support larger designs. The schematics and

source code for the experiment and the controller design are provided. The results of an

experiment designed to show that the fuzzy controller is a viable control scheme are also

presented.

1.4 Organization

The first chapter of this paper presents an introduction and motivation for

studying fuzzy control techniques as well as an introduction to the system whose desibTfl

and optimization are detailed in Chapter 5. The second chapter introduces the concept of

fuzzy sets and related mathematical functions. The third chapter deals with fuzzy logic

and fuzzy- based logical operations. An introduction to fuzzy control schemes is

provided in Chapter 4. The fifth chapter presents an empirical example of a fuzzy control

system along with experimental results. Appendices provide background information and

source code for the example system.

4

Chapter 2

Fuzzy Sets

2.1 Introduction to Fuzzy Sets

A classical set, as described in Appendix A, is defined as a grouping of elements

with similar properties. All possible members define a universe of discourse. Every

element of the universe of discourse is either a member of the subset or not a member of

the subset. The Venn diagram in Figure 2.1 shows a subset of nwnbers (A) contained

within a universe of discourse. The boundary is crisp and unambiguous and every

element is defmed as a member or a non-member. Figure 2.2 shows two sets (A and B),

both subsets of the universe of discourse. The two sets do not contain any of the same

elements. All elements of the lllliverse of discourse are either a member of A, a member

of B, or a member of neither. There are no members that belong to both A and B [6,7,8).

o

Figure 2.1 Venn Diagram and Single Subset.

00

Figure 2.2 Venn Diagram and Two Subsets.

5

If a subset, C, is defined such that it that contains all of the elements that are

members of either subset A or subset B, then C is referred to as the union of subset A and

subset B.

A u B =C (2.1)

The shaded region of Figure 2.3 represents the subset C.

Figure 2.3 Venn Diagram Representing A Union B.

Figure 2.4 represents two sets (A and B) contained within the universe of

discourse. The two sets are seen to overlap, representing a small subset of elements

which are members of A as well as members of B. This small subset is referred to as the

intersec60n of subset A and subset B.

AnB=C (2.2)

TIle shaded region of Figure 2.4 represents the intersection of subset A and subset

B. Elements in the shaded region are members of subset A and subset B.

GB

Figure 2.4 Venn Diagram ofA InJersecfion B.

Classical set theory makes a very clear distinction between membership and non

membership in a subset (see Appendix A for a detailed introduction to classical set

6

theory). Reality does not follow such crisp boundaries. For example, consider a universe

of discourse consisting of all students in a class. DefIne two subsets {X, 11 where X is

the subset of all students considered tall, and Y is the subset of all short students [9).

Delining the membership of the sets using classical logic would result in two

subsets with no intersection. One subset would contain all people who are considered tall

and the other would contain all people who are considered short. There would not be

anyone that is considered both tall and short. Figure 2.5 represents this situation r9].

y

(0

Figure 2.5 Venn Diagram Representation ofTal//Shorl Example.

How does one classify people who are of exactly average height? Figure 2.6

shows what it would Jook like if the boundary were made less crisp and some ambiguity

was allowed. The gradient shaded region represents a group of people who are partially

tall as well as partially short.

y

Figure 2.6 Venn Diagram Representing a Fuzzy Set Boundary.

Figure 2.7 shows three possible elements {a,b,c} and their representative position

in the universe of discourse. Element a is clearly outside the boundary and would

therefore be considered short. Element c is clearly within the boundary and would

7

therefore be considered tall. Element b falls within the shaded border and is therefore not

entirely a member of either set. The element is defined as partially contained within X

and partially contained within Y. The relative percentage of membership is defmed v.~th

a mathematical function called a membership function.

a

Figure 2 7 Venn Diagram Representation o/Three Elements in a Fuzzy Set.

2.2 Membership Functions

Set membership is defined with a mathematical function aptly named a

membership function. Elements of a universe of discourse that are being grouped into

subsets were traditionally either included or not included in the subset. If it is desired to

make them partially included in the subset (here must be a definition of the degree of

membership. The membership function is used to make the conversion from clu~~sicaL

unambiguous set theory into fuzzy set theory. The creation of the membership function

plays a very significant role in the performance of the fuzzy system. MembershIp

functions must be carefully chosen and tuned appropriately to maximize efficiency and

performance fl ,10,11,12].

Membership functions are almost always represented graphically. The axis of

abscissas represents all values in the specified universe of discourse . Generally, this axis

should range from the lowest possible value to the highest possible value for any defined

universe of discourse. The ordinate axis is a nonnaJized representation of the degree of

membership. It may be easier to think of the ordinate axis as a percentage of membership

8

as the values range from 0 to], inclusive. The function relates the element value to its

respective membership degree.

Figure 2.8 shows what a membership function would look like when applying

classical set theory. The function does not allow for partial membership. the set includes

all numbers greater than or equal to 0.5. In comparison, Figure 2.9 shows a sample of a

trivial fuzzy membership function. The values corresponding to the membership

functions in Figure 2.8 and Figure 2.9 are tabulated in Table 2.1 and Table 2.2,

respecti vely.

0.8

0.6

o

0.2

o~'~--~~--~~~--~~--~~~--~~--~~~--~~--~-
o 0.2 0.4 0.6 0.8

Universe of Discourse

Figure 2.8 Membership Function ofClassical Set.

9

Table 2.1 Membership Valuesfor Figure 2.B.

Element Membership

0 0

0.499 0

0.500 1
- -

0.8

0.6

0.4

0.2

~ ~ ~ M
Elements of Universe of Discourse

Figure 2.9 Simple Linear Membership Function.

Table 2.2 Membership Valuesfor Figure 2.9.

Element Membership

0 0

20 0.2

1 1

10

The example in Figure 2.9 is trivial and only defines membership in one subset.

It is possible and usually desired to expand this to multiple subsets. An example of such

membership functions is depicted in Figure 2.10 along with associated numerical values

listed in Table 2.3. Each line represents a subset and the corresponding membership

value for each element in that subset. Since classical rules no longer apply it is common

and even desired to have an element be a member of multiple subsets. Consider the

membership function in Figure 2.10 representing membership in two subsets {hot., cold}.

The universe of discourse is comprised of all possible temperature readings. It can be

noted that in this example the total membership of every element is equal to unity but

this is merely a coincidence and is in no way required for a membership function.

Cold

0.8

0.6

0.4

0.2

20 40 60 80
Temperature (C)

Figure 2.10 Two Set Membership Function.

II

Table 2.3 Membership Values for Figure 2.10.

Element Hot Membership Cold Membership

0 0 1

25 0.25 0.75

75 0.75 0.25

100 1 0
~-~

Membership functions can take many forms. depending largely on the system

being modeled. TIle choice of the membership function is made by the engineer

designing the system and has many consequences on the performance of the system. The

consequences of such decisions are elaborated upon when discussing input fuzzification

in Chapter 4. Some common forms of membership functions are shown in Figures

2.11-2.13. This list of functions is by no means inclusive and functions can be created for

virtually any system [9]. Also. it is often desirable to combine membership functions

depending on the system being modeled.

12

http:2.11-2.13

0.8

0 .6

0 .4

0 .2

o " ,
o 0.2 0.4 0.6 0.8

Universe of Discourse

Fi~re 2.11 Triangular Membership Function.

0.8

0.6

0.4

0.2

O'~~--~~~~~~~~~~~~~~~--~~--~~--~~--~--

o 0.2 0.4 0.6 0.8

Universe of Discourse

Figure 2. J2 Trapezoidal Membership Function.

13

..,.
o

o
o

ci
co

<0
N

o

Chapter 3

Fuzzy Logic

3.1 Introduction to Fuzzy Logic

Classical logic is concerned with deriving truth or falsity from propositions and

combinations of propositions. The notation and operations perfonned on classical logic

statements are described in more detail in Appendix B. A hallmark of classical logic is

that every statement is either true or false. There can be no statements which are partly

true or partly false. and certainly no statements that are equally true and false. This

limitation is addressed with the introduction of fuzzy logic [I].

A parallel can be drawn between the relationship between classical and fuzzy sets

and the relationship between classical and fuzzy logic. Consider a subset of the universe

of discourse which consists of all elements which can be proven to be true. In classical

set theory, each element is either a member or not a member of the truth subset.

Changing the rules from classical to fuzzy subsets allows partial membership in the

proven true subset as well as the not proven true subset. An element can now be either a

full member of one subset or a partial member of both subsets. It is important to note that

fuzzy logic fully complies with the rules of classical logic in both extreme cases, no

membership and full membership (0 and 1).

The operations of fuzzy logic are described in the following section and the

material is borrowed heavily from [9] .

5

3.2 Fuzzy Logic Operations

It was previously noted that in the completely true and completely false cases

fuzzy logic follows the rules of classical logic. Consider the truth table in Table 3.1,

which represents the truth table for a standard logical AND function. As expected. the

statement A AND B is only true if A and B are both true. This classical logic conclusion

is preserved if the function is reconsidered to be the minimum of A and B as in Table 3.2.

(n the extreme case where A and B are both completely true, the result is still completely

true. However, the function now aJlows for partial membersrup and is no longer

compliant with the rules of classical logic [1] .

Table 3. J Classical AND Function.

r A B AANDB

0

-.

0 0

0 1 0

1 0 0

1 1 1

Table 3.2 Fuzzy AND Function.

A B AANDB

a b min(a,b)

In a simjJar fashion the OR and NOT functions can be reconsidered as shown in

TabJes 3.3 and 3.4. The logical OR function is changed to a maximum function, which

follows the rules of classicaJ as well as fuzzy logic. The logical NOT function is

16

reconsidered as an algebraic (1 - A) function which also adheres to the classical as well as

fuzzy rules.

Table 3.3 Classical OR Function.

max(A.B)AOR8BA
I

0 000

1110

111 0

11 11
-~- .. - - - - ­

Table 3.4 Fuzzy OR Function.

A NOTA (1 - A)

0

1
-

1

0

1

0

The conversion of the three basic logical operators leads to a discussion on

classical and fuzzy logical statements. A statement such as

if X is A then Y is B (3 1)

can be interpreted as a classical implication if A and B are subsets in the classical sense.

However, if A and B are fuzzy subsets then the statement takes on a new meaning. If

membership in A and B were defined using fuzzy subset theory then the elements would

only have a degree of membership and the implication above now relates the degrees of

membership. Once again, it is important to note that in the extreme case, the fuzzy rules

apply to classical logic as weU. For example, consider the statement above (3.1). If X

has a degree of membership of 0.7 in A then the implication implies that Y hac; a 0.7

17

degree of membership in B. In other words, partial antecedents imply partial consequents

[6].

The antecedent can contain multiple terms, in which case they must be resolved to

a single degree of membership using the techniques discussed earlier in this section.

Consider the following example.

Assume that the rules of a given system are:

ifx is A AND y is B then z is C (3.2)

Also consider the membership function defined by Figure 3.1 . The function defines

membership in two subsets {A,8}. Table 3.5 lists the sampled values and their

corresponding membership values. Since x is a 0.7 member ofA andy is a 1.0 member

of B then z is mirumum(0.7 , 1.0) = 0.7 member of C.

0.8

0.6

0.4

0.2

0'" "
o 20 40 60 80

Universe of Discourse

Figure 3.1 Membership FuncNon Defining Membership in Two Subsets

18

('I)
,....

m

0 I'­
0 0 ~

II

X

0 0 CO

II

>

.

Chapter 4

Fuzzy Control

4.1 Introduction to Fuzzy Control

It was previously mentioned that fuzzy control systems can be designed with only

a superficial knowledge of the plant to be controUed. Fuzzy control is ideal when a

precise mathematical model of the plant does not exist or if the control process using

traditional methods is too expensive in terms of required computational power. In these

cases, it is often desirable to design a simpJe system based on rules governed by empirical

data and observation [4].

There are six assumptions that an engineer must be willing to make before

selecting a fuzzy controller based approach. The following six rules were inspired by

Ross [1].

1. 	 The plant is observable and controllable. All state, input. and output variables are

available for measurement or computation.

2. 	 There is comprehensive operational knowledge of the plant to be controlled. A

mathematical model is not required but knowledge of operation, consisting of

operator knowledge and engineering common sense is required to de," ise a set of

literary rules to define operation of the controller.

3. 	 The engineer assumes that a solution exists .

4 . 	 The fuzzy controller is be "good enough" to accomplish the desired result but may

not be the optimal solution.

20

5. 	 The precision of the controller is limited and must be designed within an acceptable

tolerance range. One objective of the fuzzy controller is to minimize computation

and computing cost so an overly-precise system will negate this advantage.

6. 	 There is no accepted methods of determining stability or optimaJity [or fuzzy

controllers. This is an area for further study. The designing engineer should

thoroughly test the system for instability and inaccuracy before fmalizing the design.

Once the decision to use a fuzzy controller is made there are several steps to

follow in order to design and implement the controller. The steps, presented below, are

borrowed from II Jand are the topic of discussion for the rest of this chapter.

1. 	 Identify all system variables. Inputs, outputs. and ail state variables must be identified

anddefmed.

2. 	 Identify and partition me universe of discourse into smaller, fuzzy subsets. Assign

each subset a linguistic title for later use.

3 . 	 Create a membership function for each fuzzy subset.

4. 	 Create the rule base for the system by determining the relationship between the input

fuzzy subsets and the output fuzzy subset.

5 . 	 Normalize the inputs to fall within the tolerance interval defined for the system.

6. 	 Fuzzify the inputs.

7 . 	 Jmplement fuzzy logic to determine the output for each rule in the rule base.

8. 	 Combine the output of aU rules based upon the aggregation method chosen for the

system.

9. 	 Defuzzify the outputs to produce a crisp output signal.

21

The procedure provided above works well for simple fuzzy systems and is

discussed in greater detail in what follows. The design example presented in the next

chapter also follows this design procedure.

4.2 Preliminary Design

The design procedure from the previous section indicates that the first step in the

design process is to identify variables and states. This step may seem trivial but it is

important to consider tbe hardware that one will implement and choose sensors and other

inputs accordingly. If the system does not have enough sensors it can not make accurate

control decisions. Too many sensors will dramatically increase the complexity of the

system and also the computational effort required to control the system. Therefore.

balance must be struck and the optimal set ofinputs and states must be defined.

As an example, consider the system presented in the next chapter. The system

implements a fuzzy controller for a temperature-control process. At fust glance, it may

seem necessary to know the ambient temperature of the air outside of the box, however

that would add a sensor input. This sensor input must be fuzzified and also contained in

the rule base. It is much more reasonable to onJy measure the temperature of the

confined space and also extract, from that data, the temperature change per unit time.

Those two inputs would only require one sensor and would minimize the amount of

computations required for the system to be controlled.

Choice of sensor is very important. Since the system will fuzzify the inputs it

does not make good design sense to have only binary sensors as inputs because it would

negate the primary advantage of the fuzzy controller; the fuzzy controller takes an analog

22

input and uses the rules of the system to develop an analog output. Although the binary

case is still able to be handled with a fuzzy controller it may be easier and less expensive

to imp1ement with combinational logic [1].

The second step of the design procedure consists of identifying and partitioning

the universe of discourse. As discussed in Chapter 2. the universe of discourse consists

of all possible input values for the system being designed. Careful consideration should

be given to ensure that all possible values are accounted for. All values in the universe of

discourse should be at least a partial member of one oftbe subsets to avoid the possibility

of the controller producing an indetenninate output signal. The choice of subset title is

up to the designing engineer but should be descriptive as it will be used to create the

membership functions and the rule base that defines the system.

Each fuzzy subset will generate one curve on the membership function. The

choice of the shape of the curve is to be made by the design engineer based on knowledge

of how the system operates. The membership function curve for each fuzzy subset will

be tuned to produce the most accurate output signal. The triangular shape is the most

commonly Llsed and can be properly tuned for most systems but there are otl1er

possibilities as discussed previously [9].

The third step of the process consists of creating membership functions for each

input to the system. Section 2.2 provides background infonnation on the creation of

membership functions. The creation of the membership function is more of an art than a

science and engineers and operators with more experience in how the system operates

would be best suited for this task because the design engineer must rely on experience

23

and a limited knowledge of the plant to optimize the membership functions [2]. The

design example in the next chapter details the creation and tuning of the membership

functions used to defme the system.

4.3 RuJe Base Creation

III what fonows, the creation of a rule base, briefly discussed in Section 3.2, is

now presented in more detail. The rule base of a system is a set of linguistic logical rules

that define the system. The rules are presented as linguistic statements and take the form

of if:then statements. The rules of the system essentially define the knowledge of the

operator. For example, the operator of a machine will know what to do to compensate for

variations in output. The knowledge of the operator is based on past experience and

common sense. Defining the rule base of a system requires that the designer have a

thorough knowledge and, preferably, experience controlling the process manually. Thus,

if a controller is being designed for an existing process, the design engineer should

consider consulting with the operator of the machine or process to utilize their expert

knowledge and experience[13J.

The number of rules varies based on the complexity of the system being

considered. A more complex plant with more sensor inputs requires more rules to

properly define the controller. It is a good design practice to derive rules for all possible

input states [14]. As an example, consider the following rule-set for a system which

consists of a temperarure measurement from a water-mixing chamber. The membership

function for the temperature measurement defines membership in three fuzzy subsets:

hot, neutral, and cold. The change in temperature is also considered in the rules for the

24

system. The output is a control signal for two pumps. one pumping hot water and one

pumping cold water. All possible scenarios for the system are considered and the rule

base is complete as follows:

• Ifwaler is hot and gel1ing hOller. then output is very cold (VC) ,

• lfwaler is hoI and gel1ing colder, then output is cold (C).

• Ifwater is hot and not changing. then output is cold (C).

• rrwater is neutral and gel1ing hOtlel; then output is cold (C).

• Ifwaler is neutral and not changing. then output is not changing (NC) .

• ff'waler is neutral and getting colder, output is hot (H).

• lfwater is cold and getting hotter, then output is hot (H).

• {fwater is cold and not changing, then output is hot (H).

• Ifwater is cold and getting colder. then output is very hOI (VH).

The preceding system of rules could be presented in tabular format to make them

easier to follow and easier to construct. Consider Table 4.1 . the same data is presented in

a much more compact format which is easier to follow. Each row of the table represents

the water temperature and each column represents the temperature change. The value in

each cell of Table 4.1 indicates the OUtpUl control signal.

Table 4. J Water Temperature Change Rule Matrix.

Colder Not Changing Warmer
I

Hot C C VC

Neutral H NC C I
I

Cold VH H H
I

25

Detining the rule base properly is essential for accurate operation of the

controller. The rule base will be used to determine the system output through

defuzzification. The output of the rule base is processed to form the output signal

through the process of defuzzification, which is discussed in more detail in Section 4.5

4.4 Input Processing

At this point in the design process, it is essential to consider the electrical signals

that will be foITIling the control system. The maximum ranges of all signals should be

considered to ensure compatibility with the hardware being used to implement the

system. Step five of the previously detailed design process states that all inputs must be

normalized to the system. The process of normalization is crucial. particularly where

analog to digital conversions are being conducted. An analog to digital converter has a

specific range of input values that it can convert to digital signals. If the range of the

signal being supplied to the analog to digital converter is outside of the acceptable range

of the converter then the digital output will not accurately represent the signal and thus

the controller accuracy will be compromised. if the range of the input sibJflal is much

narrower than the range of the analog to digital converter, then the output wi]] not be as

accurate as possible and the analog to digital converter is not being used to maximum

efficiency.

26

4.5 Logic Implementation and Rule Inference

Once all input signals are normalized and converted to their digital approximation

through the use of the appropriate analog to digital converters, the next step is to begin

designing the code and algorithms that defme the system. Of course, the syntax of the

code will differ based on the hardware that is being used to implement the system. thus

will be omitted here. However, the code syntax for the experimentaJ system,

implemented as part of this work, is fully discussed in Chapter 5 and Appendix C.

The block diagram in Figure 4.1 presents a conceptual block diagram of a simple

fuzzy controller. The controller has one anaJog input and also uses the change in the error

signal as an input. There are three rules defining the system and one analog output.

Analog to Fuzzification
Input Digital Membership

Conversion Function

Analog to Fuzzification
Digital Membership

Conversion Function

Outp'ut

Figure .J. J Sample Fuzzy Controller Block Diagram.

Each cell in the rule matrix in Table 4.1 corresponds to a rule. Each ruJe will have

a truth value based on a chosen method of inference. A common method is the MTN­

MAX method in which the output is either calculated with a minimum or maximum

function based on the construction of the defining rules. If the rules list m-o antecedents

2.7

which are combined with an AND operator then the minimum value is used .

Consequently, if the OR operator is used, the output is determined with the use of a

maximum function. In the rule matrix presented previously. the AND operator was used.

so each cell in Table 4.1 will have a corresponding numerical value assigned to it [l4J.

For example, consider the Grst rule:

• I(waler is hot and gelling halter. then outpul is very cold.

Hot and gefling holter are the names of two fuzzy subsets. Each of these has a

corresponding membership value, wruch is passed into the rule base from the input

fuzzification membership functions. Assume the the input fuzzification membership

functions describe membership in the hOI subset at a value of 0.8 and membership in the

getting holter subset at a value of 0.3. Since the rule states that both values must be true,

through tbe use of a logical AND, the minimum function should be used. The minimum

(0.3,0.8) function yields a result of 0.3 so the called "firing strength" ofllie rule is 0.3

The example rule base in Table 4.1 has a total of nine rules which must be

evaluated. Each rule will produce a firing strenbrth. The rules must be combined to

produce one output signal for each of the pumps in the example system. The

combination of the firing strength values is achieved by the use of output inference and

defuzzification.

One popular method of defuzzification of the output value is called the centroid

method. The centroid method is not the only method for defuzzitication of output but it

is a useful and common one so it is the only method discussed and used in this work.

28

The general equation defining this method is shown in Equation 4.1. TIle output is

denoted as x.

n

L ,u(i) *aU)
x = -,- -­1=-,-1­

n

L,uU)
j:1 (4.1)

where ,u(i) is the firing strength and a(i) is the output value of the rule.

The output value associated with each rule is determined from the output

membership function in an inverse fashion to the way in which the input membership

values are determined. Input membership values are determined by finding the input

value on the axis of abscissas and mapping them, through the membership functIOn

curves, to the membership value on the ordinate axis. Inversely, the output value for a

rule is detemlined by the value on the axis of abscissas in which the corresponding

ordinate value is at its maximum. Obviously, this means that the output membership

functions must also be fine-tuned for maximum efficiency of the system [4].

4.6 Output Processing

At this final point in the initial design stage the only design decisions left to be

made pertain to the output signals and interfacing them to the equipment to be designed.

The signals may need to be converted to analog signals through the use of digital to

analog converters or may be used in their digital form. The design at this stage is Jeft to

the design engineer and requirements tor the system to be designed.

At various points in the preceding discussion it was mentioned that several system

components should be [me-tuned after the initial design is complete. These components

29

include the input fuzzification and output defuzzification membership functions as well

as the rule matrix. It should also be noted that the topic of stability has not been

discussed because there is no definitive way of determining fuzzy system stability. The

designing engineer should fully test the system to detennine that the system is stable and

operates within the design parametersl15J6]. Testing the system under all possible

conditions is necessary to verify that the design is operating within design parameters and

to ensure that there is no undesired operation. Although this may be a lengthy process for

some controllers, it is the only method available for verifying stability.

30

Cbapter 5

Design and Implementation

5.1 Motivation and Introduction

In order to provide an empirical example and to show that fuzzy control is a

v1able control scheme a fuzzy control system was designed and built. The fuzzy control

system software was designed using the procedure described in Chapter 4 and is

presented in this fashion throughout the remainder of this chapter.

TIle hardware was designed for the NlOS II soft processing core on an Altera

Cyclone II FPGA. This system was chosen to stay true to the modular and versatile

nature of the fuzzy controller. The processing core as well as all control logic can be

changed by simply reprogramming the FPGA. The hardware design procedure and all

supporting source code and documentation is provided at the end of this chapter.

The plant being controlled was a model of a heating and cooling process to

maintain a constant air temperature in a confined space. Tn order to simplify the design

process the confined space in which the temperature was controlled was a small box v.ith

one cubic foot of air inside the box. The ambient temperature was increased with the use

of a modified hair dryer blowing heated air into the enclosure and lowered by one DC fan

blowing room temperature air into the enclosure and one DC fan exhausting the air inside

of the enclosure.

31

5.2 Controller Design, Step 1

The first step of the design process, as presented in Chapter 4, was the

identification of input/output variables and states. The controller had five output states.

The states corresponded to all useful combinations of output heating and cooling. The

five states are were follows:

• High Heat (HI-I)

• Low Heat (LH)

• All Off (AO)

• Low Cool (LC)

• High Cool (HC)

The High Heat state was achieved by activating the hair dryer on the high setting

and the Low Heat state was achieved by activating the hair dryer on the low setting. The

Low Cool state was one DC fan blowing air into the confined space and the High Cool

state consisted of two DC fans. one moving air into the space and one removing air from

the space. The All Off state merely consisted of all devices turned off.

The two variables in the process were defined to be current temperature, I and

temperature change, dl. The temperature was measured directly with a temperature

sensor placed within the confmed space. The temperature change is calculated as the

change in temperature over one sampling period.

32

5.3 Controller Design, Step 2

The second step of the design procedure was to identify and partition the universe

of discourse into fuzzy subsets.

The universe of discourse consisted of all possibly measured temperatures and all

possible temperature changes. The universe of discourse was partitioned into fuzzy

subsets as detined below. The elements of the subsets were variable because the desired

temperature, T, was defined as a variable in order to maintain the versatility of the

controller. The fuzzy subsets chosen for this experiment were:

• Hot

• Wann

• Neutral

• Cool

• Cold

• Heating

• Constant

• Cooling

5.4 Controller Design, Step 3

The third step of the design process was to create membership functions for each

of the fuzzy subsets defined in the previous section. The membership functions are all

presented individually in Figures 5.1-5.5 and Figures 5.7-5.9. The membership functions

are presented together in Figure 5.6 and Figure 5.10. The desired temperature was

variable but the membership functions in Figures 5.1-5.10 assume a desired temperature

33

http:5.1-5.10

of 60°F. Varying the desired temperature does not change the membership functions,

only their axis intercepts.

a.:c
(J)
~

0.8

Q)
.Q 0.6
E
Q)

~-o
ru 0.4
~

0)
Q)

o

0.2

o ~'__~__~~~~__~__~~~~__~__~__~~__-L__~__~~~~__~__~__

50 55 60 65

Temperature (OF)

Figure 5.1 Hot Membership Function.

34

.9­
J::
(J)
L­

0.8

a>
.0 0.6
E
a>
2-o
~ 0.4
'­
0)
a>
o

0.2

O~'--~~~--~~--~~--~~~~~~__~~__L--L__~~~~

a.
E
C/)
'­

50

0.8

Q)
.0 0.6
E
a>
~ -o
~ 0.4
0)
Q)

o

0.2

55 60
Temperature (OF)

Figure 5.2 Warm Membership Function.

65

o '~~__-L__~__~~__~__~__~~~~__~__~~~~__~__~__~~__~___

50 55 60
Temperature (OF)

Figure 5.3 Neutral Membership Function.

35

65

0­
:c en....

0.8

Q}
..0 0.6
E
Q)

~
'0
~ 0.4
Cl
CD
o

0.2

o LI__~~__~__~~__~~~~__~~__~__~~____~__~__~~__~__

a.
:.c
en
~

0 .8

Q)
.c 0.6
E
Q)

~ o
~ 0.4
OJ
Q)

o
0 .2

50 55 60

Temperature (OF)

Figure 5 . ./ Cool Membership Function

65

o LI__~__L-~~~__~__~~~~__~__~__~~__-L__~__L-~~~__~__~__

50 55 60

Temperature (OF)

Figure 5.5 Cold Membership Function.

36

65

Cold

0.8

.9­

.c
en....
Q)
.D 0.6
E
Q)

~
0+­

o
~ 0.4
'­rn
Q)

o

0 .2

o I X J Y
50 55 60 65

Temperature (OF)

Figure 5.6 Temperature Membership F1Inctions.

.9­

.c.
en
'­

0 .8

Q)
.D 0 .6
E
Q)

~ -o
~ 0.4
....
O'J
Q)

o
0.2

o I 1
-2 -1 o

Temperature Change (OF)

Figure 5. 7 Cooling Membership Function.

37

0.8

.9­

.c
rn
~

Q)
.0 0.6
E
Q)

~
..­o

~ 0.4

01
Q)

o

0.2

1
o'r J

-2 -1 o
Temperature Change (OF)

Figure 5.8 Constant Temperature Membership Function.

0.8

a.
J::
~
Q)
.0 0.6
E
<D
~

15
m0.4
01
Q)

o

0.2

o ' ,
-2 -1 o

Temperature Change (OF)

Figure 5.9 Warming Membership Function.

38

Heating

08

a.
E.
tI)....
Q.l

.D 0 .6
E
Q.l
~

15
~ 0.4 ...
0)
Q.l
o

0.2

o ' I J

·2 · 1 o

Temperature Change (OF)

Figure 5.10 Tempera/ure Change Membership Functions.

5.5 Controller Design, Step 4

Step four calls for the creation of the rule base for the system. The rule base for

tbe system was as follows (note that 1 represents current temperature and dt represents the

change in current temperature over one sampling period):

• If t is bot and dt is heating, then output is high cool.

· If (is warm and dr is heating, then output is high cool.

• If I is neutral and dl is heating, then output is all off.

• If I is cool and dt is beating, then output is low beat.

• If I is cold and dt is heating. then output is high heat.

• If I is hot and dl is constant, then output is high cool.

• If I is warm and dt is constant, tben output is low cool.

• If1 is neutral and dl is constant, then output is all off.

39

• If (is cool and dt is constant, then output is low heat.

• If I is cold and dt is constant, then output is high heat.

• If I is hot and dt is cooling, then output is high cool.

• If tis waJm and dr is cooling, then output is low cool.

• If t is neutral and dr is cooling, then output is a1J off.

• If / is cool and d/ is cooling, then output is high heat.

• If I is cold and dl is cooling, then output is high heat.

The rwe base presented in tabular format is as follows:

Table 5. J System Rule Base
-

ot Warm Neutral Cool Cold

Cooling HC LC AD HH HH

Constant HC LC AD LH HH

Heating HC HC AD LH HH

5.6 ControUer Design, Step 6

The fuzzification of the input signals was achieved through the use of software.

The temperature input signal was read into the processor via an analog-to-digital

converter and was then converted to degrees fahrenheit. The temperature change was

calculated by subtracting the current temperature reading from the previous one. These

two input signals were fuzzified with the use of mathematical functions describing the

input membership functions. Those equations are presented in detail in the rest of this

section.

The expressions describing each of the membership functions are as follows:

• Hot

40

if t ~ (T + 6)

!l(t) = i (- t + T+6) if (T + 6) > I > (T + 3)
3

0 if 1 S (T + 3)
(5.1)

• Warm

I if t =T + 3

t - T
- - if (T + 3) > t > T

3

,Lt(t) = i (-r + T + 6)
 if (T + 6) > t > (T + 3)
3

0 if t ~ (T + 6)

0 if t s T

(5.2)

• Neutral

if t = T

t- T + 3
--- if (T - 3) < t < T

3

!l(t) == i - [+T + 3 if T < t < (T + 3)
3

0 if t s (T - 3)

0 if t ~ (T + 3)

(5.3)

41

s Cool

1 if f = (T ­ 3)

t - T+6

3
if (T ­ 6) < t < (T ­ 3)

- t+T
11(t) == i

"
if (T ­ 3) < t < T

.J

0 if T $ (T ­ 6)

0 if t ~ T

(5.4)

• Cold

if r $ (T ­ 6)

() _I1t - ~ - t + T ­ 3--­
3

.if (T ­ 6) < t < (T ­ 3)

0 if t ~ (T ­ 3)
(5.5)

• Warming

p(t) ~F if dt <; 0 }
if 0 < dt < 1

if dr ~ 1
(5.6)

• Constant

0 if dr $-1

0

J1(t) == idr + I

if dt ~ 1

if 0 > dr > -1

1- dl if I > dr > 0

if dt = 0 (5.7)

o Cooling

p(t) ~rdl
if dt " 0 }
if 0 > dr > - 1

if dt $ -1
(5.8)

42

5.7 Controller Design, Step 7

At this point in the design process it was necessary to implement the logic

necessary to detennine the output from each rule. Inspection of the rules for the system

reveals that each rule was based on a logical AND function. The corresponding fuzzy

operator was thus the minimum function. The algorithm calculated the minimum

membership value for each antecedent in the rule. The minimum function was repeated

for each rule and the result was stored in an array.

5.8 Controller Design, Step 8

The array of rule values created in the previous section was then evaluated to

determine the final output from the rule base. The aggregation method used for this

process was the maximum function. The maximum function merely took the rule with

the highest firing strength and applies the consequent of the statement as the output of the

system. In this fashion, step nine was also completed as the defuzzification is inherent in

this step.

The controller design process was complete after this step. The system took an

analog input in the fonn of a temperature measurement and converted it to a digital signal

that the system can use. The temperature data was fuzzified through tlle use of

membership functions and an output was detennined with the help of the rule base and

defuzzification of the results of the rules. The next step in the design procedure was to

determine the hardware in which to implement the sensors and the controller.

43

5.9 Hardware

An Altera Cyclone n field programmable gate array (FPGA), model

EP2C35F672C6, was used to perform the controller function of the system. The Cyclone

II is compatible with the Nios II soft processor core, chosen to provide the processing

core necessary to implement this system in hardware. The Cyclone II FPGA was

available in the form of an Altera DE2 Development and Education board, shown in

Figure 5.11, and is used in this form. The board provided several advantages over using

the FPGA in a standalone fashion. The DE2 board had an additional 8MB of dynamic

random access memory (DRAM), some of which was used for this design. The board

also provided the programming interface, used by the computer to program the FPGA.

The liquid crystal display (LCD) 011 the board was utilized for user feedback . The system

was designed to operate independently of the computer used to program the FPGA

Figure 5. J J Ailera DE2.

44

The temperature was measured with an Analog Devices TMP37 analog

temperature sensor. An Analog Devices AD7821 analog to digital converter was used to

convert the analog temperature reading into a parallel digital signal.

The heating element was a modified hair dryer. The hair drier was modified so

that the high and low settings can be toggled on and off through the usc of relays. The

cooling elements were simple 80 nun 12 VDC fans. Two fans were used, one blowing air

into the enclosure and one acting as an exhaust.

The DE2 board was interfaced to the hair dryer and fans through the use of a

switched relay circuit designed and sold by Carl's Electronics. The relay interface

provided a buffer between the liD pins on the FPGA and the relay to protect the FPGA

from the relays while they are being switched on and off. This board is shown in Figure

5.12.

Fip:ure 5.12 Carl ~ Electronics CK1619 Relay Board

The power supply was a modified computer ATX power supply, which supplied

the 3.3 vnc, 5VnC, and 12VDC necessary for the relays, sensors, and other components.

45

A plastic enclosure containing approximately one cubic foot of air provided the

enclosed space. The enclosure was sealed so that air could only enter or exit through the

beating and cooling elements. The enclosure was not intentionally insulated to provide a

space in which the temperature changes rapidly. The enclosure and all hardware is shown

in Figure 5.13.

Figure 5. J3 Complete System.
5.10 Nios II Processor

The Nios II is a customizable soft processing core created and supported by

Altera. The processor can be customized to allow for all components necessary for the

design. The nature oftlus processor makes it ideal for use in fuzzy controllers because it

can be easily scaled to work for larger designs. The processing core is created with the

system on a programmable chip (SOPC) Builder module of the Quartus II software.

TI1e processing core used for this design was the Nios Ills core. The core features

a 32-bit RiSe instruction set as well as branch prediction, hardware multiplication,

hardware division. and an instruction cache.

The synchronous dynamic random access memory (SDRAM) was accessed by an

SDRAM controller integrated into the processor. The controller was designed to access

47

8MB of SDRAM with 16-bit data width and 12-bit address width. The clock signal for

the memory was generated with a phase locked loop (PLL) in the processor core.

A Joint Test Action Group universal asynchronous receiver/transmitter (JTAG

UART) was included to interface to the software on the PC and for debugging purposes.

No control calculations were performed by the PC.

An LCD controller was used to drive the LCD on the DE2 board. The LCD was

llsed to provide feedback to the user when the controller was run independently of the PC

by displaying the current and desired temperature at all times.

A diagram of the micro-controller and outside interfaces is shown in Figure 5.14.

The area enclosed in the rectangle represenls the components within the FPGA. The

components outside of the rectangle are hardware devices interfaced to the controller.

48

SDRAMPIO
Controller

JTAG UART Nios IIle PLL

LCDTimer
Controller

Figure 5.14 Micro-Controller Diagram.

5.11 Experiment Results

In order to test the viability of this control method, an experiment was created to

test the controller. The controller was programmed to vary the input signal, T. to \'arious

temperatures. The output of the system was the current temperature, I. and the change in

temperature over one sample period, dt. The output was transferred to the PC console

through the JTAG UART and recorded in order to be plotted. The plot of T and I versus

lime can be seen in Figure 5.15

49

'ft.......ft.1

Sian

- t, Current Temperature -T, Desired Temperature

Figure 5. J5 System Response at Various Desired Temperatures.

5.12 Conclusions and Future Research

The experiment performed in this work has proven that a controller based on the

principals of fuzzy sets and fuzzy logic is a viable alternative to traditional control

schemes. Engineers designing simple systems or systems in which the plant is nol easil

modeled can and should consider implementing a a fuzzy-based controller to simplify the

design procedure. The experiment has also shown that the use of FPGA and soft

processing technologies provide a good platform on which to design the control system.

The use of reprogrammable FPGAs and software based processing cores allows [or

maximum modularity of fuzzy controllers and is an inexpensive alternative to traditional

50

control system designs. The benefits of using such a system are decreased design lead

time, modularity of controllers. basic knowledge of the plant, and more intuitive

programming.

TIle topics of stability and optimality have not been discussed in this work due to

the fact that these topics do not have standard principals agreed upon by the scientific

community. The areas of stability and optimality of fuzzy based control systems is an

area which could benefit from future research. Analytical and experimental research in

these areas will strengthen the viability of fuzzy control being used on a much larger

scale and in more critical systems.

The use of programmable chips and soft processor cores in control systems also

warrants future research . The design of generic controllers which can be easily

reprogrammed to suit different plants is a research topic which could be beneficial to

industries using many different controllers for similar processes. The nature of the

FPGA and soft processing cores make them an ideal foundation for easily

reprogrammable and modular controllers. The benefits to industry would consist of

decreased cost of controllers, modular replacements, quicker design, and easy

reprogrammmg.

The research conducted in this work also has an application in the classroom.

FPGA progranmling is typically taught as part of courses on digital design. The ability to

make a control system from an FPGA may bridge the gap between digital deSign courses

and control system courses. Experiments, such as the one performed in this work. can be

51

constructed to provide students with the ability to take what they have learned in a digital

design course and apply it towards what has been learned in a control system course.

Overall, the benefits and increased use of fuzzy controllers ensme that they will

continue to be an alternative to traditional control systems for a long time.

52

Appendi:<A

Classical Set Theory

A.1 Introduction

The material in tlus section borrows heavily from Chen and Klir [6,7.8].

Set theory is a branch of mathematics dealing with collections of objects. The

term set refers to any collection of distinct objects that can be grouped into a whole. The

collection of all potential values is referred to as the universe ofdiscourse . Classical set

theory defines a crisp and tu1ambiguous boundary between elements that are members of

a set and elements that are not members of a set. There is no method of classifying

elements that are only partiaUy contained in a set.

A.2 Notation and Operations

Consider a universe of discourse, X, containing all values that have a particular

characteristic. Individual elements in X are referred to as x. The elements. x. of a

universe of discourse are grouped into subsets {X; Y, ... } that contain elements, x. To

indicate that X is a subset of X, write

X c x. . A.l)

If x is a member ofX, write

X E X. (A.2)

ifx is not a member ofX, write

x ~ x. (A.3)

Sets with no members are referred to as null setS and denoted by 0.

54

Let A and B be two subsets of the universe of discourse. If all members of A are

also members of B then A is a subset of B then write

A c R. (A.4)

If all members of B are also members ofA, write

A=B. (A.S)

A subset,.4., with specified members, a. and properties, PI, P2, ... ,Pn, is denoted

A = {a I ~,P2, ... ,P'J. (A.6)

TIle difference of two subsets is defined by

A ­ B = {a Ia E A and a fl B}. (A.7)

Subsets of the universe of discourse are generally referred to as sets if the universe of

discourse is implied or inconsequential .

If X is the universe of discourse then X-A is referred to as the complement of A and is

denoted A.

Some notable properties of complements are

x =0 , 0 = X, and A = A. (A.8)

Let aEA and be real. Then the multiplication of a real scalar value, r, and A be defmed as

rA = {ra la E A} (A.9)

The mion of two subsets (A, B) is defmed to be the the set of all elements that are

elements of either subset or

Au B = B u A = {x Ix E A or x E B}. (A. l0)

55

The intersection of two subsets (A,B) is defmed to be the set of all elements that

are elements of both A and B or

A n B = B n A = {x Ix E A and x E B}. (All)

Let A. B and C be subsets of the universe of discourse, X. The following

properties are valid for all sets:

A=A (Involutive Law) (A.12)

A u B = BuA (Commutative Law) (A.l3)

AnB = B n A (A14)

(A u B) u C = Au(BuC) (Associative Law) (A. IS)

(A n B) n C = An (B n C (A.16)

A n CB uC) = (A n B)u(A nC) (Distributive Law) (A. I?)

Au(BnC)= (A u B)n(A uC) (A.18)

A u A = A (A.19)

A n A = A (A.20)

A u (AnB) = A (A.21)

A n (A u B) = A (A.22)

-
A u (A n B) = A u B CA.23)

An(A UB) = An B (A.24)

AuX = X (A25)

An X = A (A.26)

An 0 = 0 (A.27)

56

.-,.

..-..
.-

,-...
0

0

0
\

0
("I

N

M

~

~

~

'-
'

'-
'

~

~

II
II

I
~

I ~

C

)
~

~

M

<

'-
'

..-...
~

C;S
...J
C

Il
. C

l
Cd

e!l
0

:E II)

0 '-
"

ICQ
)
I
~

II

I~

C"l
("

l

~

'-
'

ICQ
C

I
~

II

I~

Appendix B

Classical Logic

B.l Introduction

The material in this section borrows heavily from Chen and Klir [6,7].

Classical logic deals with propositions or, more specifically. the truth or falsity of

those propositions. A proposition, P, is a set of elements of which each member of the set

is either denoted as true or false. The set of true values is referred to as the truth set and

is denoted T(P). The false values are referred to as the falsity set. As with classical sets,

the boundary between the truth set and the falsity set is crisp and unambiguous. There

can be no elements that are partly true or partly false.

B.2 Notation and Operations

Logical expressions are formed with five basic connectives. Propositions are

combined using the following connectives.

(v) Disjunction (8.1)

(/\) Conjunction (8.2)

(-) Negation (8.3)

(--7) Implication (antecedent --7 consequent) (B.4)

(H) Equivalence (8.5)

Let P and Q be two propositions on the same universe of discourse.

The disjunctive connective is similar to the logic or and is more commonly

referred to as the inclusive 01~ A compound proposition is true if either or both of the

simple propositions are true.

58

The conjunctive connective is similar to the logic and. A compound proposition

is true ifand only if both simple propositions are true. Table B.l shows the truth table for

the conjunctive connective.

Negation makes a member of the truth subset a member of the falsity set or a

member of the falsity subset a member of the truth subset. Negation is similar to logic

not. The truth table representing negation is shown in Table B.2.

The implicative connective means that the antecedent implies the consequent. If

the first proposition is true then the second proposition is also true. If the antecedent is

false, no information can be determined from it and it can imply truth or falsity of the

consequent as shown in the truth table in Table B.3.

The equivalent connective means that both propositions are members of the same

lruth or falsity set. The truth table for the equivalent connective is shown in Table B.4

59

Table B.l Conjunctive Truth Table

p

T

T

F

F

Q

T

F

T

F

PAQ

T

F

F

F

Table B.2 Negation Truth Table

p ...,p

T F

F T

Table B.3 Implicative Trurh Table

P Q
,

P~Q I
i

T T T

F T T

T F F

F
-- ­

F T

Table B.4 Equivalent Truth Table

P

T

Q
-

T

P*,Q

T

F

T

F

T

F

F
-

F

F

T
-

60

Appendix C

Source Code

C.t Main Function

The code in this section initializes the variables and devices used to implement the

fuzzy controller. The main program loop is also contained in this section of code. The

main program loop reads the temperature from the sensor, fuzzifies the input. applies lhe

rule base, and defuzzifies the output. The loop is infmite.

1***
* File name: fuzzy _ contro1.c
* Description: Implements fuzzy controller.
* Author: Eric Stauffer
* References: Altera provided source code.
* Notes: None.
************** ***1

#include "fuzz functions.h"
#inc1ude "decs and vars.h"
#include "relay _functions.h"
#include "led and buttons.hl!
#include "temp_sensor.h lt

1*** ******************
* Function name: main
* Description: Main function and infinite loop.
* Input: Void.
* Output: Void.
* Notes: See comments.

***/

int main(void)
{
IIFuzzy membership values.
float hot, warm, cold, cool, neutral, heating, cooling, constant_t;

61

http:buttons.hl

IIFiring strength of each rule.
float rule[18]~

IlMaximum rule value.
float max_ value=O;

IIUsed to average temperature readings.
float aggregate=O;

IIPrevious temperature reading.

float prev_temp;

//Index corresponding to maximum rule firing strength.

int max_index=O;

IIIndices.

int i,d;

IILCD address.
FILE * led;

IISet initial value of desired temperature.

des_temp=85;

IIEnsure all relays are off.

all_off0;

Iflnjtialize the ADC.

IOWR_ALTERA_AVALON_PIO_DATA(TEMP_CTRL_PIO_BASE,Oxl)'

IIGet address of LeD.
led = fopen("/dev/lcd _display" , "W"):

Illnitialize the LCD.

led_init(led);

Ilinitialize the button PIO.
init_button~ioO;

l!Read initial temperature.
cur_temp=read _tempO;

IIEnter infinite loop.

62

while(1)
{

IICurrent temperature reading becomes previous temperature.

prev _temp=cur _temp:

Irrake 25 temperature readings and average them to eliminate bad readings.
fored=O;d<25 ;d-H-)

(
aggregale=read _ temp()+aggregate;

}

IICurrent temperature is average of25 temperature readings.

cur_temp=aggregatel25 ~

IIReset aggregate variable.
aggregate=O~

IIPrint current temperature to PC for analysis.

printf("%f ",cur_temp);

IICheck for button presses and react. Update LCD.

handle_button~ress(lcd);

I*The following functions determine the membership values in each of the
"" fuzzy subsets.
*1
heating=fuzz_heating(cur _temp,prev _temp);

con stant_ t=fuzz _ constant_ t(cur _temp,prev _temp);

cooling=fuzz_cooling(cur _temp,prev _temp);

hot = fuzz_hot(cuf_temp);

warm =fuzz _ warm(cur_temp);

neutral = fuzz_neut(cUf_temp)'

cool = fuzz_cool(cUf_temp):

cold = fuzz_cold(cur_temp);

I*The following functions calculate the ftring strength of every rule
* in the fuzzy control system.
*1

rule[O]=min(heating,hot);

rule[1]=min(heating,warm);

rule[2]=min(heating,neutral) '

rule[3 J=min(heating,cool);

63

ruler 4]=min(heating,cold);
rule[5]=min(constant_t,hot);
ruJe[6]=min(constant_t.warm);
rule [7] =min(constant_t,neutral);
rule[8]=m.in(constant_t,cool);
rule[9]=min(constant_ t,cold) '
rule[IO]=min(cooling,hot);
rule[11]=min(cooling,warrn)~
rule[12]=min(cooling,neutraI)'

rule[13]=min(cooling,cool);
rule[14]=min(cooling,cold);

/*The following functions perform the defuzzification of the output by
* determining the maximum fuing strength and corresponding rule. The
* switch determines the correct output state based upon the rule with the

* maximum firing strength.

*/

for (i=0;i<15;i+1-){

if (max_value<=rule[i]) {

max_ value= rule[i];

max_index=i;

}
}

switch (max index)

case 0:
high_cool()~

break:

case I:

high_coolO;

break;

case 2:

all off0;

break;

case 3:

low_heatO:

break;

case 4:

64

http:rule[8]=m.in

high_heatO;
break;

case 5:
high_ coolO;
break~

case 6:
low_cooIO;
bre~

case 7:
all_offO~

break:

case 8:
low_heatO:
break;

case 9:
rugh_heatO~

break;

case 10:
bigh_coolO;
break;

case 11:
)ow_coolO;
break;

case 12:
all_otTO:
break;

case 13:
high_beatO;
break;

case 14:
high_heatO:
break;

65

default:

break;

}

IIReset variables.
max _ index=O;
max va]ue=O:
t·J,

fc\ose(lcd);

return 0;

}

66

C.2 Declarations and Variables

The code in this section defines all of the libraries needed for the compiler as well

as the global variables used to store the tenninal commands for the LCD. There is no

code executed in this section. Some of the code was borrowed from Altera-supplied

source code and the Altera license agreement is included at their request.

1*** *****************
* File name: decs and vars.h
* Description: Include statements. function declarations, and global variables.
*Author: Eric Stauffer and Altera
* References: Altera source code.
'" Notes: See license agreement.

***1

#include tlalt_types.h"

#include <stdio.h>

#include <unistd.h

#include "system.h"

#include "sysfalLirq.h"

#include "altera_avalonyioJ egs.h"

flEdge capture pointer variable.

volatile int edge_capture;

IfDesired temperature and current temperature are global variables.

float des_ternp,cUf_temp;

IlFunction declarations

void high_heat (void);

void low heat (void)~

void high_cool (void);

void low_cool (void);

void all_off (void);

float fuzz_warm(float) ·

float fuzz_ hot(float) ;

Hoat fuzz_neut(float);

noat fuzz cool(float);

67

float fuzz_cold (float);
float fuzz_heating(float. float);
float fuzz_cooling(float, float);
float fuzz_constant_t(float, float);
float min (float float);
float read_temp(void);

I*The following code was provided by Altera and is used to set the cursor
* position on the LCD display. All codes are VT100 terminal compliant.
*1

1* Integer ASCII value of the ESC character. *1
#defme ESC 27

* Position cursor at row 1. column 1 ofLCD. *1
#deline ESC_TOP _LEFT "[lJH"

1* Position cursor at row2, column 5 of LCD. *1

#deflne ESC_COL2_LEFT "[2;lH"

1* Clear *1

#define ESC CLEAR "K"

1* Clear all *1

#define ESC_CLEAR_ALL "[2 J"

/* Position cursor at row 1, column 5 of LCD. *1

#detine ESC_COLl_INDENT5 n[1;5JI"

68

1***
* License Agreement
* Copyright (c) 2003 Altera Corporation, San Jose, California, USA.
*All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a
* copy oftrus software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy. modify, merge, publish, distribute, sublicense,
* andlor sell copies of the Software, and to pennit persons to whom the
* Software is furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions ofthe Software.
* THE SOFTWARE IS PROVIDED liAS IS", WITHOUT WARRANTY OF ANY
*KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
*WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
*PURPOSE AND NONTNFRINGEMENT. TN NO EVENT SHALL THE AUTHORS
*OR COPYRl GHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
*OTHER LIABILITY, WHEn IER TN AN ACTION OF CONTRACT. TORT OR
*OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
*SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
* This agreement shall be governed in all respects by the laws of the State
* of California and by the laws of the United States ofAmerica.
** ********************** ****1

69

C.3 Membership Functions

The code in this section implements the membership functions as described in

Chapter 5. There is one function for each membership function, depicted in Figures 5.6

and 5.10. Each section of code implements a piecewise linear frunction as shown in

Equations 5.1 -5.8.

1**
* File name : fuzz functions.h
* Description: Implements membership functions.
* Author: Eric Stauffer
* References: None.
* Notes: None..

**;

#include "decs and vars.hl!

/***
* Function name: fuzz warm
* Description: Implements "wann" membership function.
* Input: Current temperature.
* Output: Membershlp value in "warm" fuzzy subset.
* Notes: N/A.
**1

float fuzz_warrn(float temp)
{
float i:

jf (temp=(des_temp+3» {

return l~

} else if(temp>=(des_temp+6)II(temp<=(des_temp») {

return O'

} else if(ternp>des_temp)&&(temp«des_temp+3»){

i = (temp-des_temp)/3;

return i:

} else if«(temp>(des_temp+3»&&(temp«des_temp+6») {

i=(-temp+des_temp+6)/3'

return i~

70

};

return -1;
}

/**
* Function name: fuzz hot
* Description: Implements "bot" membership function.
* Input: Current temperature.
* Output: Membership value in "hot" fuzzy subset.
* Notes: N/A.

***/
float fuzZ-'lot(l1oat temp)
{
float i;

if(temp>=(des_temp+6» {

return 1;

} else if(temp<=(des_temp+3)) {

return 0:

} else if(temp>(des_temp+3)&&temp«des_temp+6»{

i =(-temp+des_temp+6)/3;

return i;

};
return -1'

}

/***
* Function name: fuzz neut
* Description: Implements "neutral" membership function.
* Input: Current temperature.
* Output: Membership value in "neutral" fuzzy subset.
* Notes: N/A.
* **1

float fuzz_neut(float temp)
{
float i;

if (temp=des_temp) {

return 1;

} else if(temp<=(des_temp-3)1I (temp>=(des_temp+ 3») {

return 0;

Jelse if«(temp<des_temp)&&(temp>(des_temp-3»){

i = (temp-des_temp+3)13;

71

L

return i;
} else if«temp>des_temp)&&(temp«des_temp+3») {

i=(-temp+des _ temp+ 3)/3;

return i;

rerum -1:

/**
* Function name: fuzz cool
* Description: Implements "cool" membership function.
* Input: Current temperature.
* Output: Membership value in "cool" fuzzy subset.
* Notes: NIA.
**/

float fuzz _ cool(float temp)
{
float i~

if (lemp=(des_temp-3» {

return I;

} else if (temp<=(des_temp-6)II(temp>=(des_temp))) {

return 0;

} else if «temp>(des_temp-6»&&(temp« des_temp-3»)){

i = (temp-des_temp+6)/3;

return i;

} else if«temp>(des_temp-3))&&(temp«des_temp))) {

i=(-temp+des_temp)/3:

return i;

1·f,

return -1;
}

/**
* Function name: fuzz cold
* Description: Implements "cold" membership function.
* Input: Current temperature.
* Output: Membership value in "cold" fuzzy subset.
* Notes: N/A.

**/
float fuzz_cold (float temp)
{

72

float i;

if (temp<=(des_temp-6)) {

return 1;

}else if(temp>=(des_temp-3)) {

return 0;

}else if(temp«des_temp-3)&&temp>(des_temp-6)){

i = (-temp+des_temp-3)13;

return i;

};
return -1;

}

1*** *****************
* Function name: fuzzJleating
* Description: Implements "heating'· membership function.
* Input: Current temperature and previous temperature.
* Output: Membership value in "heating" fuzzy subset.
* Notes: N/A.

float fuzz_heating(float temp, 110at prev _temp)
{
float tc;

tc=temp-prev _temp;

if (tc<=O){

return 0;

}else if (tC>=l){

return 1;

}else ilttc< l&&tc>O){

return tc;

}

return -I;
}

1***
* Function name: fuzz_cooling
* Description: Implements "cooling" membership function.
* Input: Current temperature and previous temperature.
* Output: Membership value in IIcoolinglt fuzzy subset.
* Notes: NIA.

float fuzz_cooling(float temp, float prev _temp)

73

- -

1

{
float tc;

tc=temp-prev_ temp;

if (tc<=-l){

return 1;

}else if (tc>=O){

return 0;

}else if(tc>-l &&tc<O){

return -tc~

J

return -1;
}

1***
* Ftmction name: fuzz constant t

*Description: Implements "constant" membership function .

.... Input: Current temperature and previous temperature.

* Output: Membership value in "constant" fuzzy subset.
* Notes: N/A.

··*1
float fuzz_constant_t(float temp. float prey_temp)
{
float tc;

tc=temp-prev _temp;

if (tc=O) {

return I'

else if (tc<=-llltc>= l){

return 0:

} else if(tc>-l &&tc<O){

return tc+ 1 ;

}else if"{tc>O&&tc<lH

return I-tc;

}
return - 1;

}

1***
* Function name: min
* Description: Returns the minimum of the two values passed to the function.
* Input: Two arguments.
* Output: The lower-valued argument.

74

* Notes: NI A.
**1
float min(float argl, float arg2)
{
if (argl>arg2){

return arg2~

}else if(arg2>argl){

return arg 1 ;

}else if (arg2= argl){

return arg2;

};

return -1;

75

C.4 LCD and Buttons

The code in this section contains the functions necessary to initialize the LCD and

the button array. The button interrupt handling function is also included in this section.

1**
* File name: Icd and buttons.h
* Description: Functions for controlling the LCD and reading data from the
* button array.
* Author: Altera, modified by Eric Stauffer
* References: Altera code provided with count_binary application.
* Notes: See licence agreement.
***1

#include "decs and vars.h"

1***
* Function name: handle_button _interrupts
* Description; Processes button presses and associated interrupts
* Input: Data from intenupt register.
* Output: None.
* Notes: N/A.
**/

static void handle_button_interrupts(void* context, alt_u32 id)
{

1* Cast context to edge _capture's type. It is important that this be
* declared volatile to avoid unwanted compiler optimization.
*1
volatile int'" edge_captureytr = (volatile int*) context;

1* Store the value in the Button's edge capture register in *context. *1

*edge _capture y tr = lORD _ AL TERA_AVALON _PIO _EDGE_CAP

(BUTTON_PI0 _BASE);
1* Reset the Button's edge capture register. */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE. O)~

}

/**.*****************
* Function name: inil_buttonyio
* Description: Initialization of the button PIO and edge capture register.
* Input: None.
* Output: None.

76

* Noles: None.
***1
static void init_button~io(void)
{
1* Recast the edge_capture pointer to match the alt_irCLregisterO function
* prototype. *1

void* edge_captureytr= (void*) &edge_capture:

1* Enable all 4 button interrupts. *1

IOWR_ALTERA_AVALON_PIO_IR<LMASK(BUTTON_PIO_BASE, Ox!);

1* Reset the edge capture register. *1

IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE,OxO);

1* Register the interrupt handler. * 1

alt_irCLregister(BUTTON_PIO_IRQ, edge_capnrre---.ptr, handle_button_interrupts);

}

1*** ******************
* Function name: lcd mit
* Description: Initializes the LCD.
* lnput: LCD address.
* Output: None.
* Notes: None.
***************** **/
static void Icd_init(FILE * led)
{
fprintf(lcd. "%c%s DESIRED CURRENT", ESC, ESC_TOP _LEFT);

}

1*** ******************
* Function name: update_led
'" Description: Displays updated temperature date on LCD.
'" Input: LCD address.
* Output: None.
* Notes: None.
*** ******1
static void update_led(void* arg)
{
FlLE *Icd = (FILE*) arg;
fprintf(lcd, "%c%s %.1f %.If', ESC, ESC_COL2_LEFT, des_temp. cur_temp);

}

1***
* Function name: handle_button~ress
* Description: Defines action to take upon button press.

77

* Input: LCD address.
* Output: None.
* Notes: Some debugging framework left. code removed.

**/
static void handle_button---'press(FILE *lcd)
{
switch (edge_capture)
{
case Oxl:

des_ternp=des _ternp+ 1:

break;

case Ox2:

des_tern p=des _tern p-l ;

break;

case Ox4:

/lUsed for debugging.

break:

case Ox8:

/lUsed for debugging.

break-

default:

break;

}

liReset the edge capturer register.

edge _ caprure = 0;

//Update the temperature data on the LCD.

update _lcd(lcd);

}

78

- - - - -

C.S Relay Functions

The code in this section toggles the relays, depicted in Figure 5.12.

1*** *****************
* File name: relay _ functions.h
* Description: Functions for toggling relays .

,~ Author: Eric Stauffer

* References: None.
* Notes: None ..

***!

#include "decs and vars.htl

1***
* Function name: high_heat
* Description: Turns on the relay which controls the high heat setting.
* Input: Void.
* Output: Void.
>I< Notes: N/A.

.********************/
void high_heat (void)
{
IOWR- ALTERA AVALON PIO DATA(RELAY PIO BASE,Ox8);

}

1*** *****************
* Function name: low heat
* Description: Turns on the relay which controls the low heat setting.
* Input: Void.
• Ouiput: Void.
*Notes: N/A.

*

***/
void low_heat (void)
{
IOWR_ALTERA_AVALON_PIO_DATA(RELAY_PIO_BASE,Ox4);

}

79

- - - - - -

1**
* Function name: high_cool
* Description: Tums on the relays which control the high cool setting.
* Input: Void.
* Output: Void.
* Notes: N/A.

***/
void high_cool (void)
{
IOWR_AL TERA _AVALON_ PIO _DATA(RELAY _ PIO _BASE, Ox3):

}

1**
* Function name: low cool
* Description: Turns on the relay which controls the low cool setting.
* Input: Void.
* Output Void.
* Notes: NIA.
***1

void low cool (void) - .

{
IOWR_ALTERA_AVALON_PIO_DATA(RELAY_PIO_BASE, Oxl)~

1**
* Function name: all off
* Description: Tums off all relays.

,~ Input: Void.

* Output: Void.
* Notes: NIA.
***1
void all_off (void)
{
IOWR ALTERA AVALON PIa DATA(RELAY PIa BASE.OxO);

}

80

C.6 Temperature Readings

The code in this section contains functions for reading temperature from the

analog to digital converter. Code is also included to convert the temperature read in

binary format from the analog to cligital converter into decimal numbers. The decimal

numbers are converted to OF.

/**
* File name: temp_sensor.h
* Description: Implements code necessary to communicate with temperature sensor.

.. Author: Eric Stauffer

* References: None.
* Notes: None..
**/

#include "decs and vars.hlt

;***
* Function name: read_temp
* Description: Reads the current temperature from the a-to-d converter.
* Input: Void.
* Output: Current temperature.

'" Notes: See comments.

**/

float read_temp(void)
{
I*"meas_val" is an array which stores the individual bits of the
* temperature reading. "steps" is an aggregate used to determine the decimal
* value of the temperature reading. "tempbin" is the binary representation

* of the raw data read form the a-to-d converter. "temp" is the temperature

* in degrees fahrenheit. *1

all_u8 terupbin;

int meas_val [81:

int steps=O;

float temp~

int j~

IISend a read request to the a-to-d converter.

IOWR_ALTERA_AVALON_PIO_DATA(TEMP_CTRL_PIO_BASE-Ox I):

81

IOWR_ALTERA_AVALON_PIO_DATA(TEMP_CTRL_PIO_BASE,OxO):

IOWR_ALTERA_AVALON_PIO_DATA(TEMP_C1RL_PIO_BASE,Oxl)·

IIWait at least 530ns for the data to be ready to read.

usleep(15);

I/Read the data from the a-to-<1 converter.

tempbin==IORD_ALTERA_AVALON_PIO_DATACTEMP_DATA_PJO_BASE);

IlDecompose the raw data to individual bits to convert to decimal.

meas_ val[O]=(tempbin&OxOl);

meas _ val[1]=(tempbin&Ox02);

meas _ val[2]=(tempbin&Ox04);

meas_val [3]=(tempbin&Ox08);

meas_val [4]=(tempbin&Ox 10);

meas_ val[5]=(tempbin&0x20);

meas_ val[6]=(tempbin&Ox40);

meas_val[7]={tempbin&Ox80);

IIConvert raw binary data to decimal number.

for (i=7;i>=0:i--)

{

steps==steps+meas_val [i);

}

IIConvert decimal value to degrees fahrenheit.

temp=32+(1.8*steps* .01289)/(.02);

I/Retum the decimal value.
return temp;

}

82

Appendix D

Altera Programming Tools

D.l Introduction

The Altera DE2 comes packaged with all of the programming tools necessary to

create the controller system used in this work. Altera provides the Quartus II Web

Version and the Nios n IDE software with the purchase of the DE2 board. Quartus II is

used to design the logic circuits being programmed on the FPGA. The Nios II IDE

software is used to program the microprocessor created with QUaltus II and SOPC

Builder. This appendix provides an introduction to both applications.

D.2 Quartus n

All designs typically begin in the Quartus II application. This application allows

the user to create the logic circuits to be programmed on the FPGA. Since the FPGA

begins as a virtual blank slate, the designing engineer must specify connections to each

and every pin being utilized in the design. The only exception is the power supply pins.

because the board has the power pins hardwired to the power supply. Quartus II allows

schematic entry in several forms such as VHDL, Verilog, and direct schematic entry with

the block diagram editor. Quartus II is also the home of the SOPC Builder module used

to design the Nios II processor. The rest of this section will provide an overview and

brief tutorial of the Quartus II application. The next section wiJl provide an overvie'w of

the SOPC Builder module.

To begin a new project in Quartus II. open the application and click "File" and

then '"New Project Wizard" . The wizard will open and prompt the user for the name of

83

the project, the directory in which to store the project, and the name of the top level

design. The top level design file name must be assigned properly or segments of code

may not be compiled. The wizard will then proceed to prompt for any additional files

and also for the hardware that the design wiJl be implemented on. Clicking on "Finish"

will open the new project in the main Quartus II window.

At this poin~ the user may begin to create their design. For this example, a small

VlIDL file will be used. To create the VHDL file, click on "File" and then click on

··New·'. This will open the dialog box prompting the user for the type of file to be

created. Since this design will be a simple VHDL file, select VIIDL and click "OK". A

blank VHDL file is now available. Since this is a simple design, only one file will be

necessary so this VIIDL file will become the top level design file by saving as ·'test.vhd".

At this poin~ standard VHDL code may be entered and the following code will be used

for this tutorial :

library ieee:
use ieee. sId _logic _116-1. all;
enfily and ~ate is
porI (x,y :in std _logic;

Z :out sid_logic):
end am(gate;
architecture a ..,gale ofand..,gale is
begin
z <= x andy;
end a..,gate;

The code describes a very simple AND gate with two inputs and one output. The

next step in the design process is to interface this code to the outside world by assigning

pins to each of the two inputs and the output. Assign pins by clicking on "Assignments"

84

and then "Assigrunent Editor". The VHDL variables are placed in the "From" column

and the pin name is placed in the "To" column.

The input pins can be tied to any of the other devices on the board or assigned to

the I/O headers for connection to outside devices. For tills tutorial, assign the 1"\'{0 input

pins to the logic switches and the output pin to one of the LEDs.

At this point, the design is ready to be compiled and transferred to the DE2 board

for testing. To compile the design, click on "Processing" and then "Start Compilation".

After compilation, click on "Tools" and then "Programmer". The programmer utility will

transfer the design to the DE2 board for further testing.

It should be noted that tbis is only a very brief tutorial and the Quanus II software

is a very exhaustive design suite with the ability to verii)' timing, run simulations. and

modi1)t board signal routing, among other things. The tutorial creates a working design

but certainly does not showcase most of the features that the software is capable of. The

next section provides an introduction to one of these tools. the SOPC Builder.

85

D.3 sope Builder

The SOPC Builder is used to create a System on a Programmable Chip, or sope

design. This module is used to implement the Nios II processor as well as the interfaces

and controllers for some other devices that the FPGA may interface with. In the example

system created in Chapter 5, the SOPC Builder was used to create the processor. memory

controller, phase locked loop, paraUel input/output, and PC interface. This section

provides a brief introduction.

The sope Builder module is part of the Quartus II software package. To access

SOPC Builder, open Quartos II, create a new project. and click on "File", "New", and

then "sope Builder System". Name the system, if the entire design will be done in

SOPC Builder the name of the system should be the same as the top level design entTY.

Also, choose an HDL: either VHDL or Verilog. At this point, elements of the design can

be double-clicked to be added to the system. When added, a dialog box will typically

appear with options that are available for that component.

Once all desired components have been added, click on "Generate" to generate

the HDL code that describes the system. After generation, the system is available in

Quartus II to complete the design. Supplemental code may be added in Quartus II to

interface to the system or the system may be interfaced to the outside world with the usc

of pin assignments and the 110 headers.

It must be noted that before the pins can be assigned, the ..Analysis and

Synthesis" steps of the compilation must be completed by clicking on "Processing",

"Start", and then "Start Analysis & Synthesis". After this step, the pins are available to

86

be assigned in the pin assignment editor. If a Nios II processor is implemented in the

SOPC Builder, the code for that processor may be created and tested in the Nios IT IDE

program, also bundled with the DE2 board, and the topic of the next section.

D.4 Nios U IDE

The Nios II IDE application is designed to cross-compile from C/C++ to Nios II

assembly language. The application requires information about the processor compiled

in the SOPC Builder in order to configure the I/O addresses and memory ranges. Load

the program and click on "File", "New", and "C/C++ Application" and then choose

the .ptf file generated by Quartus II, this will provide all of the information used to

generate the system. Once aU of the C/C++ code has been entered. right click on the

project folder in the navigator window. Select "Run" and then "As Nios II Hardware".

The code wiII be compiled, transferred to the board, and executed.

Most C/C++ commands are supported natively in the Nios II IDE application and

header files and libraries may be added for maximum design flexibility. The design

environment is very feature rich, including features such as step-by-step execution and

debugging as well as a complete instruction set simulator to simulate software without

the benefit of a hardware device to program and test. The application provides a very

integrated design environment with all features necessary to compile and test code very

effectively.

87

References

[1] Ross, Timothy J. Fuzzy Logic with Engineering Applications. Second Edition.
England: John Wiley & Sons Ltd. 2004.

[2] Valvano, Jonathan W. Embedded Microcomputer Systems Real Time Interfacing.
Pacific Grove: Brooks 1Cole, 2000.

[3] Cox, E. The Fuzzy Systems Handbook. Cambridge: Academic Press Professional,
1994.

[4] Geobel, Greg. An Introduction to Fuzzy Control Systems. 2/2/2006.
<http://www.faqs.org/docs/fuzzv I>

[5] Kosko, B. Fuzzy Engineering. Upper Saddle River: Prentice-Hail. 1997.

[6] Chen, Guanrong and Pharo, Trung Tat. Introduction to Fuzzy Sets. Fuzzy Logic,
and Fuzzy Control Systems. Boca Raton: CRe Press LLC, 2001 .

[7] Klir, O. and Folger, T. Fuzzy Sets. Uncertainty, and Infonnation. Englewood
Cliffs: Prentice Hail, 1988.

[8] Klir, G. and yuan. B. Fuzzy Sets and Fuzzy Logic. Upper Saddle River: Prentice
HalJ , 1995.

(9] Fuzzy Sets::TutoriaI (Fuzzy logic Toolbox) Mathworks. 9129/2005 9:43PM.
<http://www.mathworks.comJaccess/helpdesk/help/toolbox/fuzzyI>

llO] Understanding Neural Networks and Fuzzy logic: Basic Concepts and
Applications. New York: IEEE Press, 1996.

[11] Kosko. B. Neural Networks and Fuzzy Systems. Englewood Cliff: Prentice-Hail,
1992.

[12] Kosko, B. Fuzzy Thinking. New York: Hyperion Press, 1993.

[13] Yurkovich, Stephen and Passino, Kevin M. Fuzzy Control. Menlo Park: Addison
Wesley. 1998.

[14] Kaehler, Steven. Fuzzy Logic - An Introduction. 9/16/2005.
<http://www.seattierobotics.org/encoder/mar98/fuzj>

88

[15] 	 Yurkovich. Stephen and Passino, Kevin M. "A Laboratory Course on Fuzzy
Control." IEEE Transactions on Education. 42 (1999); 15-21.

[16] 	 Terano, T, Asai. K., and Sugeno, M. Fuzzy System Theorv and its Applications.
San Diego: Academic Press, 1992.

89

