## Synthesis and Decomposition of Novel Diazosugars

I benefit release this thesis to the mubble. I by terrained this diesis will be made available

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Masters in Science

in the

Chemistry

Program

YOUNGSTOWN STATE UNIVERSITY

August 2006

# Synthesis and Decomposition of Novel Diazosugars

# Juga describera. The decomps Iulia Alisa Sacui

The days deals with the systhesis and decomposition of diagodeoxy furantic

I hereby release this thesis to the public. I understand this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this dissertation as needed for scholarly research.

| Signature: |                                                           |          |
|------------|-----------------------------------------------------------|----------|
|            | dula Dani                                                 | 08-04-06 |
|            | Iulia Alisa Sacui, Student                                | Date     |
| Approvals: |                                                           |          |
|            | feter N-                                                  | 8/4/04   |
|            | Dr. Peter Norris, Thesis Advisor                          | Date     |
|            | John Im                                                   | 8/4/06   |
|            | Dr. John A. Jackson, Committee Member                     | Date     |
|            | Brun O Costun                                             | 8-4-06   |
|            | Dr. Brian D. Leskiw, Committee Member                     | Date     |
|            | The 91 Jamin                                              | 8/6/06   |
|            | Dr. Peter J. Kasvinsky, Dean of Graduate Studies & Resear | rch Date |

#### Thesis Abstract

This thesis deals with the synthesis and decomposition of diazodeoxy furanose sugar derivatives. The decomposition of these diazodeoxy sugars not only led to the desired insertion products, but also novel ketone derivatives and dimeric ethers. Furthermore, a new synthetic pathway was discovered for the synthesis of azidodeoxy compounds through an interesting side-reaction *en route* to one of these diazodeoxy sugars.

In the YSU chemistry department, especially Dr. John Jackson and Dr. Byten Leaktw in behavior and thesis committee.

My family and friends have been very supportive during this tismultanes time in my life, and I am very grateful for all of the help that they have given one through the

Most of all 4 would like to think my colleagues in the Norris group for making

This publication could not have been possible without the financial support of

#### Acknowledgements

First off, I would like to thank Dr. Peter Norris, for advising me these past few years. I also want to thank Dr. Matthias Zeller for the X-ray crystal data, Ray Hoff for helping me with all of the instrumentation, and Dr. Roland Riesen for teaching me how to use the mass spectrometer.

I am grateful to the YSU chemistry department and the YSU graduate school for supporting me in advancing my education. I also want to thank all of the faculty and staff in the YSU chemistry department, especially Dr. John Jackson and Dr. Brian Leskiw for being on my thesis committee.

My family and friends have been very supportive during this tumultuous time in my life, and I am very grateful for all of the help that they have given me through the years.

Most of all I would like to thank my colleagues in the Norris group for making my experience as a graduate student fun and enjoyable.

This publication could not have been possible without the financial support of Mircea and Didina Sacui.

| - |       |
|---|-------|
|   |       |
| 1 |       |
|   |       |
|   | الايد |
|   |       |

#### Experimental

# **Table of Contents**

| Title Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Signature Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ii  |
| Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iii |
| Acknowledgements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iv  |
| Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v   |
| List of Figures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vii |
| List of Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | xi  |
| Introduction which was a second secon |     |
| Carbohydrates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   |
| Branched-chain sugars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5   |
| Diazocarbonyl compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9   |
| Azides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16  |
| Statement of problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19  |
| Results and Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| Protecting groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20  |
| Synthesis and chemistry of phenacyl ester sugars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21  |
| Synthesis and chemistry of diazoester sugars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24  |
| Rhodium(II)-catalyzed decomposition of diazo ester sugars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28  |
| Rhodium(II)-catalyzed decomposition in the presence of alcohols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35  |
| Deprotection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38  |
| One-pot azide synthesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40  |

# Experimental

| Gener      | al Procedures                                              | 50  |
|------------|------------------------------------------------------------|-----|
| Protec     | eting groups                                               | 50  |
| Synthe     | esis and chemistry of phenacyl ester sugars                | 52  |
| Synthe     | esis and chemistry of diazoester sugars                    | 57  |
| Rhodi      | um(II)-catalyzed decomposition of diazo ester sugars       | 63  |
| Rhodi      | um(II)-catalyzed decomposition in the presence of alcohols | 70  |
| Depro      | tection                                                    | 77  |
| One-p      | ot azide synthesis                                         | 77  |
| References |                                                            | 91  |
| Appendix A |                                                            | 96  |
| Appendix B |                                                            | 176 |
|            |                                                            |     |
|            |                                                            |     |
|            |                                                            |     |
|            |                                                            |     |
|            |                                                            |     |
|            |                                                            |     |
| Elgare 13  | is Alkaxy entry furged by earbeacid insertion on alcohols. |     |
|            |                                                            |     |
|            |                                                            |     |
|            |                                                            |     |

| Figure 23 | H MAR special of List of Figures                             |    |
|-----------|--------------------------------------------------------------|----|
| Figure 1  | Differentiation of blood groups by oligosaccharide structure | 1  |
| Figure 2  | Fischer projections of glyceraldehyde and dihydroxyacetone   | 2  |
| Figure 3  | Fischer projections of mannose and glucose                   | 2  |
| Figure 4  | Glucose in solution                                          | 3  |
| Figure 5  | Glucose with acetate and isopropylidene protecting groups    | 4  |
| Figure 6  | Sucrose                                                      | 4  |
| Figure 7  | Repeating structure of cellulose                             | 5  |
| Figure 8  | Depiction of a generic diazo compound                        | 9  |
| Figure 9  | Derivatives of tosyl azide                                   | 11 |
| Figure 10 | Metal-catalyzed diazo decomposition cycle                    | 12 |
| Figure 11 | Rhodium(II) acetate                                          | 12 |
| Figure 12 | Depiction of a generic organic azide                         | 16 |
| Figure 13 | X-Ray crystal structure of phenacyl ester 5                  | 24 |
| Figure 14 | X-Ray crystal structure of dimeric ether 14                  | 30 |
| Figure 15 | X-Ray crystal structure of dimeric ether 15                  | 30 |
| Figure 16 | X-Ray crystal structure of ketone 16                         | 33 |
| Figure 17 | X-Ray crystal structure of insertion product 19              | 35 |
| Figure 18 | α-Alkoxy esters formed by carbenoid insertion on alcohols    | 37 |
| Figure 19 | <sup>1</sup> H NMR spectrum of ribofuranose derivative 23    | 37 |
| Figure 20 | α-Alkoxy esters formed by carbenoid insertion on alcohols    | 38 |
| Figure 21 | X-Ray crystal structure of allofuranose derivative 38        | 45 |
| Figure 22 | <sup>1</sup> H NMR spectrum of <b>1</b>                      |    |

| Figure 23 | <sup>1</sup> H NMR spectrum of 2          | 98  |
|-----------|-------------------------------------------|-----|
| Figure 24 | <sup>1</sup> H NMR spectrum of 5          | 99  |
| Figure 25 | <sup>13</sup> C NMR spectrum of 5         | 100 |
| Figure 26 | <sup>1</sup> H NMR spectrum of 6          | 101 |
| Figure 27 | <sup>13</sup> C NMR spectrum of 6         | 102 |
| Figure 28 | Mass spectrum of 6                        | 103 |
| Figure 29 | <sup>1</sup> H NMR spectrum of 7          | 104 |
| Figure 30 | <sup>13</sup> C NMR spectrum of 7         | 105 |
| Figure 31 | <sup>1</sup> H NMR spectrum of 8          | 106 |
| Figure 32 | <sup>13</sup> C NMR spectrum of 8         | 107 |
| Figure 33 | <sup>1</sup> H NMR spectrum of 9          | 108 |
| Figure 34 | <sup>13</sup> C NMR spectrum of 9         | 109 |
| Figure 35 | IR spectrum of 9                          | 110 |
| Figure 36 | <sup>1</sup> H NMR spectrum of <b>10</b>  | 111 |
| Figure 37 | <sup>13</sup> C NMR spectrum of <b>10</b> | 112 |
| Figure 38 | IR spectrum of 10                         | 113 |
| Figure 39 | <sup>1</sup> H NMR spectrum of 11         | 114 |
| Figure 40 | <sup>13</sup> C NMR spectrum of 11        | 115 |
| Figure 41 | IR spectrum of 11                         | 116 |
| Figure 42 | <sup>1</sup> H NMR spectrum of 12         | 117 |
| Figure 43 | IR spectrum of 12                         | 118 |
| Figure 44 | <sup>1</sup> H NMR spectrum of 14         | 119 |
| Figure 45 | <sup>1</sup> H NMR spectrum of <b>15</b>  | 120 |

| Figure 46 | <sup>13</sup> C NMR spectrum of <b>15</b> | 121 |
|-----------|-------------------------------------------|-----|
| Figure 47 | Mass spectrum of 15                       | 122 |
| Figure 48 | <sup>1</sup> H NMR spectrum of <b>16</b>  | 123 |
| Figure 49 | <sup>1</sup> H NMR spectrum of 17         | 124 |
| Figure 50 | <sup>13</sup> C NMR spectrum of 17        | 125 |
| Figure 51 | Mass spectrum of 17                       | 126 |
| Figure 52 | <sup>1</sup> H NMR spectrum of 18         | 127 |
| Figure 53 | <sup>13</sup> C NMR spectrum of 18        | 128 |
| Figure 54 | <sup>1</sup> H NMR spectrum of 19         | 129 |
| Figure 55 | Mass spectrum of 19                       | 130 |
| Figure 56 | <sup>1</sup> H NMR spectrum of <b>20</b>  | 131 |
| Figure 57 | Mass spectrum of 20                       | 132 |
| Figure 58 | <sup>1</sup> H NMR spectrum of <b>21</b>  |     |
| Figure 59 | <sup>1</sup> H NMR spectrum of <b>22</b>  | 134 |
| Figure 60 | Mass spectrum of 22                       | 135 |
| Figure 61 | <sup>1</sup> H NMR spectrum of 23         | 136 |
| Figure 62 | Mass spectrum of 23                       | 137 |
| Figure 63 | <sup>1</sup> H NMR spectrum of <b>24</b>  | 138 |
| Figure 64 | <sup>1</sup> H NMR spectrum of 25         | 139 |
| Figure 65 | Mass spectrum of 25                       | 140 |
| Figure 66 | <sup>1</sup> H NMR spectrum of <b>26</b>  | 141 |
| Figure 67 | Mass spectrum of 26                       | 142 |
| Figure 68 | <sup>1</sup> H NMR spectrum of 27         | 143 |

| Figure 69 | <sup>1</sup> H NMR spectrum of <b>29</b>   | 144 |
|-----------|--------------------------------------------|-----|
| Figure 70 | <sup>1</sup> H NMR spectrum of 13          | 145 |
| Figure 71 | <sup>13</sup> C NMR spectrum of 13         | 146 |
| Figure 72 | <sup>1</sup> H NMR spectrum of <b>30</b>   | 147 |
| Figure 73 | <sup>13</sup> C NMR spectrum of 30         | 148 |
| Figure 74 | Mass spectrum of 30                        | 149 |
| Figure 75 | IR spectrum of 30                          | 150 |
| Figure 76 | <sup>1</sup> H NMR spectrum of 32          | 151 |
| Figure 77 | <sup>1</sup> H NMR spectrum of <b>33a</b>  | 152 |
| Figure 78 | Mass spectrum of 33a                       | 153 |
| Figure 79 | <sup>1</sup> H NMR spectrum of 33b         | 154 |
| Figure 80 | <sup>13</sup> C NMR spectrum of <b>33b</b> | 155 |
| Figure 81 | Mass spectrum of 33b                       | 156 |
| Figure 82 | <sup>1</sup> H NMR spectrum of 35          | 157 |
| Figure 83 | <sup>13</sup> C NMR spectrum of <b>35</b>  | 158 |
| Figure 84 | <sup>1</sup> H NMR spectrum of 36          | 159 |
| Figure 85 | <sup>13</sup> C NMR spectrum of <b>36</b>  | 160 |
| Figure 86 | Mass spectrum of 36                        | 161 |
| Figure 87 | <sup>1</sup> H NMR spectrum of 37          | 162 |
| Figure 88 | <sup>13</sup> C NMR spectrum of 37         | 163 |
| Figure 89 | Mass spectrum of 37                        | 164 |
| Figure 90 | <sup>1</sup> H NMR spectrum of 38          | 165 |
| Figure 91 | <sup>13</sup> C NMR spectrum of <b>38</b>  |     |

| Figure 92  | Mass spectrum of 38                                       | 167 |
|------------|-----------------------------------------------------------|-----|
| Figure 93  | <sup>1</sup> H NMR spectrum of <b>40</b>                  | 168 |
| Figure 94  | <sup>13</sup> C NMR spectrum of <b>40</b>                 | 169 |
| Figure 95  | Mass spectrum of 40                                       | 170 |
| Figure 96  | <sup>1</sup> H NMR spectrum of <b>41</b>                  | 171 |
| Figure 97  | <sup>13</sup> C NMR spectrum of <b>41</b>                 | 172 |
| Figure 98  | Mass spectrum of 41                                       | 173 |
| Figure 99  | <sup>1</sup> H NMR spectrum of 43                         | 174 |
| Figure 100 | <sup>1</sup> H NMR spectrum of 44                         | 175 |
| Figure 101 | X-Ray crystal structure of 5                              | 177 |
| Figure 102 | X-Ray crystal structure of 14                             | 185 |
| Figure 103 | X-Ray crystal structure of 15                             | 197 |
| Figure 104 | X-Ray crystal structure of 16                             |     |
| Figure 105 | X-Ray crystal structure of 19                             |     |
| Figure 106 | X-Ray crystal structure of 32                             | 222 |
| Figure 107 | X-Ray crystal structure of 37                             | 1   |
|            |                                                           |     |
|            | List of Tables                                            |     |
| Table 1    | O-H insertion of alcohols with diazo sugars 10 and 11     | 36  |
| Table 2    | One-pot synthesis of azidodeoxysugars                     | 47  |
|            |                                                           |     |
|            | while all other carbons have one hydroxyl group attached. |     |

## chain. Money color when the last he Introduction a number of surfaces in the chain, for

### Carbohydrates and the challenge of the carbon design and the carbo

Carbohydrates are the most abundant organic molecules on earth; <sup>1-4</sup> they are used to store energy and transport energy. Carbohydrates perform other essential biological functions such as cell-cell recognition and cell-external agent interactions. <sup>4</sup> They are also used to carry biological information, for example the body uses carbohydrates to differentiate between the different blood groups A, B, and H (Figure 1). Simple carbohydrates have the empirical formula  $C_n(H_2O)_n$ , where an oxygen atom is attached to each carbon. Derivatives containing nitrogen and sulfur can be synthesized, altering this empirical formula. Carbohydrates can be broken down into three main groups: monosaccharides, oligosaccharides, and polysaccharides.



Figure 1: Differentiation of blood groups by oligosaccharide structure.

A monosaccharide is a single carbohydrate unit.<sup>1,2</sup> These sugars can be classified as either aldoses or ketoses (Figure 2). An aldose sugar contains an aldehyde functional group at C-1 while all other carbons have one hydroxyl group attached. A ketose sugar has a ketone functional group within the chain and primary alcohols on either end of the

chain. Monosaccharides can also be classified by the number of carbons in the chain, for example a three carbon chain would be a triose, four carbon chain a tetrose, five carbon chain a pentose and so on. These two classifications can be combined to give a carbohydrate a generic name; for example, glucose is an aldohexose.

Figure 2: Fischer projections of glyceraldehyde and dihydroxyacetone.

Monosaccharides can be drawn in the Fischer projection,<sup>2</sup> the Haworth projection, and the chair form. A closer look at these depictions reveals that each carbon has a chiral center, which gives rise to different isomers that have the same formula, but different physical and chemical properties. For example mannose and glucose are both aldohexoses, but the different configuration of the stereocenter at C-2 changes their physical and chemical properties (Figure 3). Taking a closer look at chirality, a sugar can be classified either D- or L- depending on the configuration at the next to the last carbon.



Figure 3: Fischer projections of mannose and glucose.

In solution monosacchrides can adopt different forms and conformations;<sup>2</sup> glucose is depicted below in Figure 4. The acyclic form can cyclize forming a lactol or cyclic hemiacetal. A 5-membered ring is called *furanose*, the 6-membered ring *pyranose*. Glucose can be classified as either the  $\alpha$  or  $\beta$  anomer depending on the orientation of the hydroxyl group at the acetal/hemiacetal carbon or the *anomeric* carbon on the ring.

$$A - D - glucopyranose$$
 $A - D - glucofuranose$ 
 $A - D - glucofuranose$ 

Figure 4: Glucose in solution.

Protecting groups are used to mask part of the carbohydrate,<sup>2,4</sup> allowing access to only a specific area of the molecule, and they can also be used to lock the ring structure of a monosaccharide. For example, D-glucose can be locked in a 6-membered ring with the use of acetate protecting groups or it can be locked in a 5-membered ring with the use of isopropylidene protecting group(s) (Figure 5). Other protecting groups can be used to give similar results. Acetate protecting groups have been known to migrate and their selectivity is unreliable and reagent-specific. Isopropylidene protecting groups are acid-

stable and are used to block pairs of hydroxyls. When choosing protecting groups, one must find a group that is stable to subsequent reaction conditions and that can easily be put onto the molecule or removed.

Figure 5: Glucose with acetate and isopropylidene protecting groups.

Oligosaccharides have 2-10 monosaccharide units linked together through glycosidic bonds.<sup>1,2</sup> Table sugar (sucrose) is an example of a disaccharide or an oligosaccharide, which is comprised of a glucose and a fructose unit (Figure 6).

β-D-fructofuranosyl-α-D-glucopyranoside

Figure 6: Sucrose.

Polysaccharides are comprised of 10 or more sugar units linked together. 1,2 Cellulose, found in plants, is an example of a glucopyranose-based polysaccharide

(Figure 7). The units are linked together at C-1 and C-4 through a  $\beta$ -1,4-linkage, hence the name poly [ $\beta$ (1-4)-glucopyranose].

Figure 7: Repeating structure of cellulose.

## **Branched-chain sugars**

Glycosides and branched-chain sugars are carbohydrate derivates.<sup>5</sup> Glycosides have a (non-carbohydrate) group attached to the anomeric carbon of a sugar molecule through a glycosidic bond. This group can be either an -OR, -SR, -NR, or -CR group, thus denoting the compound as an *O*-, *S*-, *N*-, or *C*-glycoside, respectively. Branched-chain sugars are carbohydrates that have a carbon substituent directly attached to a non-terminal carbon. A long-held interest in carbon-carbon bond forming reactions, paired with the fact that branched-chain sugars are found in nature, has sparked our interest in synthesizing branched-chain sugars.

Previously branched-chain sugars have been synthesized using, but not limited to, Grignard reagents, epoxides, 1,4-conjugate addition, radical chemistry, and Wittig reagents, all of which will be discussed here.<sup>6</sup> The main issue in all of these reactions is stereochemical and regiochemical control of the newly formed carbon-carbon bond. This is often solved with the use of appropriate protecting groups.

Organometalics, such as Grignard reagents, are useful in forming carbon-carbon bonds when ketosugars and epoxides are involved. Reactions with Grignard reagents are often stereoselective due to the coordination of the magnesium with another oxygenated group on the sugar that will in turn direct the nucleophilic attack. In the example below, the vinyl magnesium bromide attacks the carbonyl carbon on the ketosugar from the top face leaving the newly formed hydroxyl group pointing down (Equation 1).

Equation 1.

Organocopper reagents are useful for introducing carbon-carbon bonds by opening epoxides. As an example, a combination of Grignard reagents with copper salts and Gilman reagents was used to form the organocopper reagent *in situ*. In the equation below, the nucleophile was introduced at C-2, in the axial position, opening the epoxide giving a "trans-diaxial" arrangement (Equation 2).

Equation 2.

Unsaturated carbohydrates can undergo 1,4-conjugate addition when reacted with organocopper derivatives. The example below is again a pyranosidic ring in which the

addition of the nucleophilic methyl cuprate onto the unsaturated carbohydrate is seen to give the axial product (Equation 3).9

Equation 3.

Radical addition occurs either intramolecularly or intermolecularly; the focus will be on intramolecular reactions for this section. Intramolecular reactions often generate 5-exo cyclization products in which either the radical is formed on a tether and added to the double bond within the sugar or visa versa. A tin reagent and azo-bis-isobutyrolnitrile (AIBN) initiator are often used in these reactions to give a cis-fused ring. The first example below has the alkene in the carbohydrate ring and second example has the alkene on the tether (Equation 4 and Equation 5).

#### Equation 4.

Equation 5.

Wittig and Wittig-like reactions are also useful in synthesizing branched-chain sugars. Under Wittig conditions a carbon-carbon double bond would be formed. Methylenation is common and an example is shown below in Equation 6.<sup>11</sup>

# presence of a transition wetal catalyst Equation 6. metal carbone, which can undergo C-

Our group is interested in finding a new approach for synthesizing branched-chain sugars. Our pathway is similar to that of the radical reaction in that we are interested in metal-catalyzed intramolecular reactions. The basic principle is similar in that the carbohydrate has a tether attached to the ring that can react to form another five-membered ring. We propose to synthesize a diazoester-modified sugar that can be decomposed in the presence of rhodium(II) to yield a branched-chain sugar. This has been accomplished previously by Berndt and Norris (Equation 7), 12 and we will attempt to elaborate on this procedure by synthesizing other diazoester derivatives that can lead to branched-chain sugars.

Equation 7.

# Diazocarbonyl Compounds

Diazo compounds have the general formula R<sub>2</sub>C=N<sub>2</sub>, where a positive charge is located in the central nitrogen and a negative charge is distributed between the terminal nitrogen and carbon (Figure 8).<sup>13,14</sup> α-Diazoketones and α-diazoesters can delocalize their negative charge into the carbonyl, rendering them more stable as compared to alkyl diazo compounds. Once a diazo compound is synthesized it can be decomposed in the presence of a transition metal catalyst generating a metal carbene, which can undergo C-H, O-H, or N-H insertion, amongst others. In the following section the synthesis and decomposition of diazo compounds will be discussed, as well as the choice of transition metal catalyst.<sup>14</sup>

$$\begin{array}{ccc} \oplus & \ominus & \oplus \\ R_2C=N=N & \longrightarrow & R_2C-N\equiv N \end{array}$$

Figure 8: Depiction of a generic diazo compound.

If the  $\alpha$ -methylene position is already reactive towards the diazo transfer, an  $\alpha$ -diazocarbonyl compound can be synthesized using a base and a sulfonyl azide. In the example below, the *tert*-butyl acetoacetate has a reactive  $\alpha$ -methylene position that can be deprotonated by a base like triethylamine and then reacted with tosyl azide to yield the desired diazo compound (Equation 8). <sup>15</sup>

Equation 8.

If the methylene group is activated by only one carbonyl group then the  $\alpha$ -methylene position generally needs to be activated further, for example, by placing an acyl aldehyde at this position prior to the diazo transfer (Scheme 1). <sup>16</sup>

$$\begin{array}{c|c} O & HCO_2Et \\ \hline NaOEt & OH & TsN_3 \\ \hline \end{array}$$

Scheme 1. The state of the stat

In some cases triethylamine is not a strong enough base and the diazo transfer cannot occur. A group from Merck, Sharp & Dohme Research Laboratories encountered this dilemma. The problem was solved when the triethylamine was replaced by a stronger base, 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) (Equation 9).<sup>17</sup>

**Equation 9.** 

When only one carbonyl is present a base of sufficient strength is needed to deprotonate at the  $\alpha$ -methylene position. In some cases lithium diisopropylamide is used as a base (Equation 10). <sup>18</sup>

## Equation 10.

Derivatives of tosyl azide can also be used, such as *p*-acetamidobenzenesulfonyl azide (*p*-ABSA), *p*-nitrobenzenesulfonyl azide (*p*-NBSA), and *p*-carboxybenzenesulfonyl azide (*p*-CBSA), among others (Figure 9).<sup>14</sup>

Figure 9: Derivatives of tosyl azide.

Once a diazo compound is formed it can be decomposed in the presence of a metal catalyst; in doing so a metal-stabilized carbene can be formed by displacing N<sub>2</sub>. This electrophilic carbene can then be transferred to an electron-rich substrate (S:), regenerating the metal catalyst. The electron-rich substrate (S:) can be double bonds, single C-H, N-H, O-H bonds, carbonyl groups, etc. This cycle is depicted in Figure 10.<sup>14</sup>

intramolecular C-H insertion reaction, which often results in a five-entimbered ring. This type of reaction was first recovered by Wenkert and co-workers. 21 This insertion contrasted

$$SCR_2$$
 S:

 $L_nM = CR_2$ 
 $R_2C=N_2$ 
 $R_2C=N_2$ 

Figure 10: Metal-catalyzed diazo decomposition cycle.

Our research focuses on reactions catalyzed by rhodium(II). Copper and other transition metals can also be used as catalyst for the decomposition of diazocarbonyl compounds. Dirhodium(II) catalysts have been found very useful because they are able to better control reactivity and selectivity. Dirhodium(II) tetraacetate is the most widely used of the rhodium(II) catalysts; it has an electron-rich circumference surrounding an electron-poor center (Figure 11). 19,20

Figure 11: Rhodium(II) acetate.

We are interested in the use of rhodium(II) acetate as a catalyst for the intramolecular C-H insertion reaction, which often results in a five-membered ring. This type of reaction was first reported by Wenkert and co-workers.<sup>21</sup> This insertion occurred

without changing the configuration at the carbon where the new bond was formed. This reaction also shows a high degree of control over where the insertion occurs, i.e. regioselectivity (Equation 11).<sup>21</sup>

**Equation 11.** 

Other reactions of interest involving diazocarbonyl compounds and rhodium(II) catalysts are those involving water or ozone. Water insertion gives an ether product and ozone insertion generates a carbonyl. Examples of these reactions can be seen below in Scheme 2 and Equation 12. 13,22

RCHN<sub>2</sub> + H<sub>2</sub>O 
$$\frac{ML_n}{(-N_2)}$$
 RCH<sub>2</sub>OH  $\frac{RCHN_2}{ML_n}$  (RCH<sub>2</sub>)<sub>2</sub>O Scheme 2.

$$O_3$$
,  $CH_2Cl_2$   
 $O_3$ ,  $CH_2Cl_2$   
 $O_3$ ,  $CH_2Cl_2$   
 $O_3$   $O$ 

Equation 12.

Since O-H insertion reactions can occur so readily with water, it can be assumed that O-H insertion reactions can also occur with alcohols. These types of alcohol insertion reactions have been explored by Moody et. al.<sup>23</sup> Their research has found that an alcohol can indeed react with a diazo compound to yield in an O-H insertion product, but that this reaction does not show any stereoselectivity and a mixture of diastereomers is formed (Equation 13). The effect that the solvent and catalyst have on the reaction was also studied, and it was found that dichloromethane and rhodium(II) acetate give the best results. Other solvents led to an increase in side reaction compared to dichloromethane, and other metal catalysts proved to be less reactive, compared to rhodium(II) acetate. In some cases it was found that the carbenoid was reacting with oxygen thus forming a ketone, even though the reaction was run under nitrogen. A mechanistic pathway was proposed that shows the alcohol attacking the electrophilic rhodium carbenoid (Scheme 3).

$$\begin{array}{c|c}
 & Pri \\
 & Ph
\end{array}$$

$$\begin{array}{c|c}
 & PrOH \\
\hline
 & solvent \\
\hline
 & Rh_2(OAc)_4
\end{array}$$

$$\begin{array}{c|c}
 & Pri \\
\hline
 & Ph
\end{array}$$

# **Equation 13.**

Scheme 3.

There have been a few research groups that have combined diazo chemistry with carbohydrate chemistry. A group from the Netherlands has been attempting similar intramolecular C-H insertion reactions with little success.<sup>24</sup> D-Glucose derivatives were used in their research and the choice of protecting groups and ring conformation might explain the difficulties they encountered. Their first attempts at intramolecular C-H insertion showed that aromatic cycloaddition was occurring with one of the neighboring benzyl protecting groups (Equation 14). When the position of the diazo group was changed from C-6 to C-3, and the decomposition run in methylene chloride, the isolated and characterized products were found to be of aromatic cycloaddition into neighboring benzyl protecting groups. Since no significant amount of the desired insertion product could be detected, the decomposition was run in benzene to show that an aromatic cylcoaddition was the most likely path (Equation 15). When methyl ether protecting groups were employed carbene dimers were formed (Equation 16). Attempts at producing a five-membered ring via an intramolecular C-H insertion were not successful, even though there was a tertiary C-H bond that was activated by an oxygen substituent at the desired position for insertion. It is believed that the geometric constraints of the ring were unfavorable for the desired intramolecular reaction to occur.

$$\begin{array}{c|c} O & N_2 \\ \hline O & O \\ BnO & OSE \\ \hline OBn & \hline \\ \hline \\ OSE & \hline \\ OSE & \hline \\ \hline \\ OSE & \hline \\ OSE &$$

Equation 14.

## Equation 15.

# Equation 16.

## **Azides**

Azides have the general formula R-N<sub>3</sub>, <sup>25,26</sup> where a formal positive charge is located on the central nitrogen atom and a negative charge is distributed between the first and third nitrogen atoms (Figure 12).

synthesis involving a secondary alcohol and reacting it with diphenyl phosphogazidate

Figure 12: Depiction of a generic organic azide.

Azides can be synthesized by  $S_N2$  reaction replacing an existing halide or sulfonate group with the azide functional group.<sup>27</sup> An example of such an  $S_N2$  reaction can be seen in Equation 17, where 2,3,4-tri-O-acetyl- $\alpha$ -D-glucopyranosyl bromide is reacted with sodium azide to form a glucosyl azide.<sup>28</sup>

# Equation 17.

Organic azides synthesized using alcohols as starting materials are of particular interest. The example below uses Mitsunobu reaction conditions to transform a secondary alcohol into an azide; the product also shows an inversion of stereochemistry at that position (Equation 18).<sup>29</sup>

Chemists from Merck Research Laboratories developed a similar one-pot azide synthesis involving a secondary alcohol and reacting it with diphenyl phosphorazidate (DPPA), and 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) (Equation 19).<sup>30</sup>

$$Ar$$
 $OH$ 
 $PhO)_2PON_3$ 
 $Ar$ 
 $OH$ 
 $O$ 

Once an azide functional group is placed on a molecule it can be reduced to a primary amine or it can undergo a cycloaddition with an alkene or an alkyne to form 1,2,3-triazolines or triazoles, respectively.<sup>27</sup> In the examples below we can see that 2,3,4-tri-*O*-acetyl-α-D-glucopyranuronosyl azide can be reacted with an alkyne to form a 1,2,3-triazole (Equation 20) or it can be reacted with an acid chloride to form an amide (Equation 21).<sup>28</sup>

Equation 20.

Equation 21.

#### **Statement of Problem**

Carbon-carbon bond forming reactions are of great interest and useful for the synthesis of branched-chain sugars. The decomposition of a diazodeoxy furanose sugar derivative offers a potentially useful route for the synthesis of branched-chain sugars.

groups, which offer an assertment of selectivity. Isopropylidene protecting groups are of interest in this project because they are selective and do not interfere with the subsequent reactions. These protecting groups can easily be put in place by reacting a carbohydrate with account and a catalytic amount of acid (Equation 22). Suggest with isopropylidene protecting groups can also be purchased from Acres or Aldrich. 2,3-5,6-Dl-Q-mapropylidene-a-D-mannonide (2) were both synthesized, while 1,2-5,6-di-Q-isopropylidene-a-D-alloforances (3) and 1,2-5,6-di-Q-isopropylidene-a-D-alloforances (4) were purchased.

D-mannouse acrono, conc. HySO<sub>4</sub>

Equation 22.

D-Mannose was reacted with a catalytic amount of sulfuric acid in an exercise amount of acatome to form discotome-ti-mannose (1), 11,22 after which, the reaction was necessalized with anhydrous socions bicarborate, yielding a solid, which was then recrystallized using methanol. II NMR of crystals clearly showed four singlets worth

## Results and Discussion

## Protecting groups

Carbohydrates are able to serve as inexpensive chiral scaffolds; at each chiral center there is a reactive hydroxyl group. The best way to control the reactivity of a carbohydrate is through the use of protecting groups and there is a large variety of such groups, which offer an assortment of selectivity. Isopropylidene protecting groups are of interest in this project because they are selective and do not interfere with the subsequent reactions. These protecting groups can easily be put in place by reacting a carbohydrate with acetone and a catalytic amount of acid (Equation 22). Sugars with isopropylidene protecting groups can also be purchased from Acros or Aldrich. 2,3:5,6-Di-*O*-isopropylidene-α-D-mannofuranose (1) and methyl 2,3-*O*-isopropylidene-β-D-ribofuranoside (2) were both synthesized, while 1,2:5,6-di-*O*-isopropylidene-α-D-allofuranose (3) and 1,2:5,6-di-*O*-isopropylidene-α-D-glucofuranose (4) were purchased.

Equation 22.

D-Mannose was reacted with a catalytic amount of sulfuric acid in an excess amount of acetone to form diacetone-D-mannose (1), 31,32 after which, the reaction was neutralized with anhydrous sodium bicarbonate, yielding a solid, which was then recrystallized using methanol. <sup>1</sup>H NMR of crystals clearly showed four singlets worth

three hydrogens a piece between 1.0 and 1.5 ppm representing the isopropylidene protecting groups.

# Equation 23.

Methyl 2,3-*O*-isopropylidene-β-D-ribofuranoside (2) was synthesized by reacting D-ribose with 2,2-dimethoxypropane and hydrogen chloride-saturated methanol in excess acetone (Equation 23).<sup>33</sup> Once the reaction was complete, pyridine was added to neutralize the reaction, and workup gave a yellow oil, which was purified by flash column. <sup>1</sup>H NMR of the oil clearly showed three singlets worth three hydrogens each, at 1.32 and 1.49 ppm representing the isopropylidene protecting group and at 3.44 ppm representing the methoxy protecting group.

# Synthesis and chemistry of phenacyl ester sugars.

With protecting groups in place, now only one reactive hydroxyl group is available for a Steglich esterification (Equations 24-27), which involves reacting an alcohol with a carboxylic acid in the presence of 1,3-dicyclohexylcarbodiimide (DCC) and a catalytic amount of 4-(dimethylamino)pyridine (DMAP). In this case, the alcohol is a protected sugar with one free hydroxyl group and phenylacetic acid is the carboxylic acid. The TLC of the reaction showed the appearance of a spot with a higher  $R_f$  value

than the starting material. After the workup was completed, <sup>1</sup>H NMR was used to check the purity of the compound before proceeding to the diazo transfer reaction.

# beatroness representing the critical Equation 24. The currently of the newly formed

Equation 25.

mande of a signal, for the custom alpha to the enter, can be seen at 42.6 porn for

# Kerry try and our way were of south Equation 26. The true the entert period and research

Equation 27.

The success of the esterification reaction can be seen from the <sup>1</sup>H NMR spectra by the disappearance of the hydroxyl proton and the appearance of a singlet worth two hydrogens representing the -CH<sub>2</sub>- group *alpha* to the carbonyl of the newly formed phenacyl esters **5**, **6**, **7**, and **8**. This singlet can be seen at 3.63 ppm for phenacyl ester **5**, 3.66 ppm for **6**, 3.70 ppm for **7**, and 3.67 ppm for **8**. The appearance of a multiplet in the aromatic region, 7.2-7.5 ppm, worth five hydrogens, also proves that the esterification reaction was successful.

The <sup>13</sup>C NMR spectra of phenacyl esters **5**, **6**, **7**, and **8** echoed the proton NMR spectra. Each spectrum had 18 signals, with 4 of the new signals appearing in the aromatic region, 125-140 ppm, showing the symmetry of the benzene ring. The appearance of a signal, for the carbon *alpha* to the ester, can be seen at 42.6 ppm for phenacyl ester **5**, 42.4 ppm for **6**, 42.1 ppm for **7**, and 42.6 ppm for **8**. Also, the appearance of a signal for the ester carbonyl carbon can be seen at 170.8 ppm, 172.0 ppm, 171.5 ppm, and 171.0 ppm for phenacyl esters **5**, **6**, **7**, and **8**, respectively.

The appearance of a less polar spot on the TLC plate, combined with the NMR data, confirms that the esterification was successful for all of the above compounds. The X-ray crystallography data of compound 5 also confirms that the esterification reaction was successful. The crystallography data clearly shows that the protecting groups are

still attached and that the stereochemistry at C-1 was retained. The dihedral angle for H-1 and H-2 was found to be 102.3°, which is not the same as that found from the <sup>1</sup>H NMR spectrum where H-1 is a singlet and H-2 is a doublet, i.e. the H-1 – H-2 dihedral angle is close to 90 degrees.



Figure 13: X-Ray crystal structure of phenacyl ester 5.

# Synthesis and chemistry of diazoester sugars

The newly synthesized phenacyl ester sugars 5-8 were then reacted with *p*-acetamidobenzenesulfonyl azide (*p*-ABSA) and 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) to form bright yellow-orange diazo ester sugars 9-12 (Equations 28-31). The TLC of the completed reaction showed the appearance of a spot with a slightly higher R<sub>f</sub> value than the starting material. The products were purified by flash column to ensure that a pure diazoester sugar was used in the decompositions to follow. The purity of the diazo ester sugars 9-12 was checked by NMR.

## Equation 28.

# Equation 29.

## Equation 30.

Equation 31.

The synthesis of diazo ester 9 was not completely successful under these conditions. The TLC of the reaction mixture showed unreacted starting material and the formation of three other spots, which were isolated and characterized. The reaction mixture was found to contain four compounds: diazo ester 9, phenacyl ester 5, azide 13, and lactol 1 (Equation 32).<sup>37</sup> The same reaction was run in the refrigerator in the hopes of increasing the yield of the desired product 9 and decrease the formation of 1 and 13. Not all starting material was being consumed and compounds 1 and 13 were still being formed at this lower temperature. From the literature, it was found that DBU in benzene can be used to take off acetate protecting groups,<sup>4</sup> which explains the formation of the lactol 1.

Equation 32.

Since the phenacyl ester portion was being cleaved by DBU, a different base needed to be used. Lithium diisopropylamide (LDA) was used as the base and the reaction was run in tetrahydrofuran (THF) at -78 °C (Equation 33). This base proved to

be more successful. Though compounds 1 and 13 were still being formed, all of the starting material was consumed, which allowed for easier isolation of the desired diazo compound 9. Lithium bis(trimethylsilyl)amide (LiHMDS) can also be used for this reaction, and due to convenience is the preferred base for this reaction. LDA and LiHMDS are stronger bases, which offer an irreversible acid-base reaction, thus helping to push the reaction toward the formation of the diazo ester product.

Equation 33.

The success of the diazo transfer reaction can be seen from the <sup>1</sup>H NMR spectra for diazo esters **9-12**, specifically by the disappearance of the singlet for the -CH<sub>2</sub>-protons *alpha* to the ester.

The signal for the ester carbonyl carbon has shifted more upfield in the <sup>13</sup>C NMR of diazo esters **9-11** compared to their precursors. The signal for the ester carbonyl carbon now appears at 164.2 ppm, 165.5 ppm, and 165.0 ppm for diazo esters **9**, **10**, and **11**, respectively. The peak for the carbon directly attached to the diazo group cannot be observed in any of the carbon NMR spectra, but a disappearance of the peak at 42 ppm is apparent in all of the spectra. IR spectra showed an absorption band at 2100 cm<sup>-1</sup>, clearly identifying the diazo group.

#### Rhodium(II)-catalyzed decomposition of diazo ester sugars

The diazo esters 9-12 were dried using a vacuum pump, characterized, and checked for purity, then dissolved in freshly distilled methylene chloride and degassed. This solution was slowly added by syringe pump to a reaction flask containing rhodium (II) acetate suspended in distilled methylene chloride, which had also been degassed. Column chromatography was used for the purification of these reactions, though this technique was not successful in the isolation of all products formed. Different solvent systems were explored, but there was still some difficulty in completely purifying all of the products formed.

The major products that were isolated during the first trials were not the desired insertion products. Dimeric ethers were formed (Equations 34 and 35), which is due to the presence of water either from the solvent or the rhodium(II) catalyst.

Equation 34.

The X-ray data of compounds 14 and 15 showed that a dimeric ether had been

formed in each case, which are linked through an unexpected C-O-C bond (Figures 1 and 15). One major disstancemen was formed in each case, therefore the reaction leading to these products was disstances elective. Mass spectrometry data confirmed the formation of the dissective other 15, with a peak at 793.5 and, which is the calculated must also a sodiom ion.

Equation 35.

X-Ray crystallography was very useful in the characterization of compounds 14 and 15, but before the crystals were formed, the compounds were characterized using NMR. The <sup>1</sup>H NMR spectra for the compounds 14 and 15 showed misleadingly simple sets of signals. The proton NMR of compound 15 showed a singlet at 5.13 ppm for the -CH- proton *alpha* to the ester, which would be expected if the insertion onto the carbohydrate framework was successful. The shape and integration of the peaks between 3.5 and 6.5 ppm were unexpected, leading us to believe that the insertion was not successful. The <sup>13</sup>C NMR, on the other hand, showed the expected number of signals and expected chemical shifts that might be seen if there was insertion onto the carbohydrate framework.

The X-ray data of compounds 14 and 15 showed that a dimeric ether had been formed in each case, which are linked through an unexpected C-O-C bond (Figures 14 and 15). One major diastereomer was formed in each case, therefore the reaction leading to these products was diastereoselective. Mass spectrometry data confirmed the formation of the dimeric ether 15, with a peak at 793.6 m/z, which is the calculated mass plus a sodium ion.



Figure 14: X-Ray crystal structure of dimeric ether 14.



Figure 15: X-Ray crystal structure of dimeric ether 15.

All of the data combined clearly shows that the desired insertion product, where the intermediate carbenoid inserts into a local C-H bond on the carbohydrate framework, was not formed. In an attempt to avoid the formation of a dimeric ether, the solvent was dried more carefully by distillation using calcium hydride and molecular sieves, and the rhodium(II) acetate catalyst was dried using a drying pistol and P<sub>2</sub>O<sub>5</sub> as the dessicant. Also, an excess amount of solvent was used to dilute the reagents and hopefully reduce the formation of dimers. The reactions were run again under drier conditions; however this time a ketone was being formed *alpha* to the ester (Equations 36 to 38), which is due to oxygen dissolved in the reaction solvent.

Equation 36.

Equation 37.

$$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array}$$

### Equation 38.

The <sup>1</sup>H NMR of the products **16-18** did not show a singlet for a proton *alpha* to the ester carbonyl. Also, the signal shapes and integration of the peaks were not that expected of an insertion product. The formation of a ketone *alpha* to the ester carbonyl could be seen more easily in the <sup>13</sup>C NMR, which clearly showed two signals downfield of the aromatic region, one for an ester carbonyl carbon and another signal further downfield for a ketone carbonyl carbon. Mass spectrometry data of compound **17** showed a peak at 359.1 *m/z* corresponding to the calculated mass plus sodium.

X-Ray crystallography data was obtained for **16**, which clearly shows a carbonyl alpha to the ester carbonyl. The crystallography data also shows that all of the protecting groups are still intact and that the stereochemistry at C-1 of the furanose ring was retained (Figure 16). The dihedral angle for H-1 and H-2 was found to be 96.1°, which would agree with the <sup>1</sup>H NMR spectrum where H-1 is a singlet and H-2 is a doublet.



Figure 16: X-Ray crystal structure of ketone 16.

To avoid the formation of the ketone product, new septa were used, syringe joints were wrapped with Teflon tape, and reaction flasks were degassed for a longer amount of time. Also, the amount of rhodium(II) catalyst used was reduced. The formation of the desired insertion product was successful under these new conditions (Equations 39 and 40).

Equation 39.

Equation 40.

After running several experiments under varying conditions, data was finally obtained that proved successful rhodium(II)-catalyzed insertion into the sugar framework. The <sup>1</sup>H NMR spectrum for compound 19 showed the expected singlet for the proton alpha to the carbonyl at 4.55 ppm. The rest of the signals had the expected shape and integration of a successful insertion product. Mass spectrometry data showed a peak at 399.1 m/z, which is the mass of the insertion product plus sodium.

NMR data looked very promising, so we diligently tried to recrystallize the compound. X-Ray crystallography data obtained clearly shows the insertion at C-2, as predicted (Figure 17). The crystal structure also shows the retention of stereochemistry at C-1 of the furanose, which directed the insertion at C-2, and that the protecting groups are still intact. The stereochemistry at the carbon *alpha* to the carbonyl needs to be further investigated. Compound 20 was also successfully synthesized, and the data obtained matched the literature data.<sup>35</sup> With the success of this reaction, different carbohydrate scaffolds will be used in a new approach towards the synthesis of various natural products.



Figure 17: X-Ray crystal structure of insertion product 19.

# Rhodium(II)-catalyzed decomposition in the presence of alcohols

The stereoselectivity seen in formation of the dimeric ethers gave rise to the following reactions; we were interested to see if the same diasteroselectivity would be observed. The diazo ester compounds 10 and 11 were decomposed in the presence of a simple alcohol (methanol, ethanol, isopropanol, *t*-butanol) (Equations 41 and 42, Table 1). TLC showed the formation of one major product of lower R<sub>f</sub> than the starting material in each case. <sup>1</sup>H NMR of the column-purified material showed a 50/50 mixture of isomers and mass spectrometry data showed that O-H insertion with the alcohols did indeed occur. This leads us to believe that the water in the previous reactions was coming from the catalyst (i.e. water of hydration) and not the solvent.

Solvent system 2:1 hexagos to edist austate

Ph 
$$N_2$$
 OCH<sub>3</sub>  $Rh_2(OAc)_4$   $RO$   $OCH_3$   $Rh_2(OAc)_4$   $RO$   $OCH_3$   $OCH_3$ 

Equation 42.

Table 1: O-H insertion of alcohols with diazo sugars 10 and 11.

| Starting Material                          | Alcohol/Amine | Product | % Yield | R <sub>f</sub> Value* |
|--------------------------------------------|---------------|---------|---------|-----------------------|
| Riberturanose-ico escalapping seprets m 3, | Methanol      | 21      | 75      | 0.47                  |
|                                            | Ethanol       | 22      | 80      | 0.59                  |
|                                            | Isopropanol   | 23      | 71      | 0.43                  |
|                                            | t-Butanol     | 24      | 42      | 0.67                  |
| 11                                         | Methanol      | 25      | 59      | 0.33                  |
|                                            | Ethanol       | 26      | 43      | 0.35                  |
|                                            | Isopropanol   | 27      | 41      | 0.44                  |
|                                            | n-Butyl amine | N/R     |         | -                     |

<sup>\*</sup> Solvent system 2:1 hexanes to ethyl acetate



Figure 18. α-Alkoxy esters formed by carbenoid insertion on alcohols.

Compounds 21-24 (Figure 18) have similar <sup>1</sup>H NMR spectra. The signal for the proton *alpha* to the ester carbonyl can be seen downfield of H-1. The signals for the methyl protecting groups can be seen at 3.12 ppm and 3.23 ppm, clearly showing that there is a mixture of isomers (~50:50). The alkoxy groups can each be seen in their respective region. Mass spectrometry data collected for compounds 22 and 23 clearly show a peak representing the calculated mass plus sodium.

Ribofuranose-isopropanol derivative 23 had an interesting proton NMR. The two overlapping septets at 3.68 ppm, representing the methyl protons on the newly attached isopropyl group, clearly show that there is a mixture of isomers (Figure 19).



Figure 19: <sup>1</sup>H NMR spectrum of ribofuranose derivative 23.



Figure 20: α-Alkoxy esters formed by carbenoid insertion on alcohols.

The allofuranose derivatives **25-27** (Figure 20) had similar <sup>1</sup>H NMR spectra. The proton *alpha* to the ester carbonyl can be seen downfield of H-1. Eight peaks can be seen in the region between 1.0 and 1.5 ppm for the isopropylidene protecting groups, showing that there is a mixture of isomers. The alkoxy groups can each be seen in their respective region. Mass spectrometry data collected for compounds **25** and **26** clearly show a peak representing the calculated mass plus sodium.

#### Deprotection

When trying to synthesize diazo ester 9, azide 13 and lactol 1 were found to be forming as well. This reaction was further investigated and extrapolated. It is believed that the base, DBU, is able to cleave the phenacyl ester leaving a free hydroxyl group. This free hydroxyl then reacts with p-ABSA forming a sulfonate ester and displacing the azide portion. The azide generated *in situ* displaces the sulfonate ester in a  $S_N2$  reaction, inverting the stereochemistry at that position (Scheme 4).

Scheme 4.

We decided to take lactol 1 and react it with p-ABSA and DBU under the same conditions to see if we were able to synthesize compound 13 (Equation 43). This reaction was successful; as a result, we decided to run this reaction with other selectively protected sugars in order to see if we could develop a general one-pot method for the synthesis of azidodeoxy sugars.

Equation 43.

Most of the selectively protected sugars were either purchased or synthesized. In this section sugars 3, 4, 31, and 34 were purchased, while sugars 1, 2, and 29 were

synthesized. For **29**, β-D-glucose pentaacetate was deprotected at C-1 using hydrazine to yield the lactol **29** (Equation 44).<sup>36</sup> The NMR spectrum of the product showed four singlets between 2.0 and 2.1 ppm for the four remaining acetate protecting groups.

Equation 44.

#### One-pot azide synthesis

The trial one-pot azide synthesis using *p*-ABSA and DBU to convert lactol 1 to azide 13 looked promising. This same reaction was run in the parallel synthesizer to determine what would be the best solvent for the reaction. The solvents used in this experiment were acetonitrile, tetrahydrofuran (THF), dimethyl formamide (DMF), dioxane, pyridine, and dichloromethane. TLC taken of each reaction showed successful formation of the azide product. From <sup>1</sup>H NMR we were able to see the product to starting material ratio. Taking this ratio into consideration, as well as the ease of solvent removal, acetonitrile was chosen. Once the solvent was chosen, the reaction was run again but this time the reaction was refluxed to reduce the reaction time. This reaction proved successful, but the reaction was not going to completion. The ratio of lactol 1 to *p*-ABSA and DBU used to this point was 1:1. Various ratios of lactol 1 to *p*-ABSA/DBU (1:1.2, 1:1.4, 1:1.6, 1:1.8 and 1:2) were explored and it was found that the best ratio was 1:2, even though this is a significant excess of base and source of azide.

When the mannose derivative 1 was refluxed with p-ABSA and DBU, we saw that not only was  $\beta$  azide 13 being formed but also a small amount of  $\alpha$  azide 30 (Equation 45). When running the reaction, a spot with a higher  $R_f$  than the  $\beta$  azide 13 appeared. This compound was isolated by column chromatography and the  $^1H$  NMR looked similar to the  $\beta$  azide 13 spectrum; a disappearance of the hydroxyl proton signal and no signals in the aromatic region. An IR spectrum was taken of this compound, which clearly showed a signal at 2000 cm $^{-1}$  for the azide group and the lack of a broad signal at 3000 cm $^{-1}$ . Mass spectrometry data of mannosyl azide 30 showed a peak at 308.1 m/z, the calculated mass plus sodium.

Equation 45.

Once our standard parameters were set, other selectively protected sugars were used as a source of a free hydroxyl group that could be replaced by azide. These sugars were either purchased or synthesized. All of the reactions that were successfully purified, and where the <sup>1</sup>H NMR spectra of the azide product could be matched to those published in the literature, will be discussed in this section.

The selectively protected sugars had free hydroxyls at various positions. OH groups at C-1 (or the *anomeric* carbon) were successfully converted to the azide using

this one-pot method (Equations 46 and 47). <sup>1</sup>H NMR data of azide products **32** and **33** were verified with those published in the literature. <sup>28,38</sup>

Equation 47.

Azidation of carbohydrates 2 and 34, which have free hydroxyls on the terminal carbon, i.e. at a primary position, were also explored (Equations 48 and 49). These reactions were successful in forming the azide only if the position was sterically unhindered, thus allowing the S<sub>N</sub>2 attack of the azide anion formed *in situ*. If the hydroxyl at the primary position was hindered, the sulfonate ester was isolated. The formation of this product gives us a clue to the possible mechanism of the reaction. <sup>1</sup>H NMR data of azide 35 was verified with data published in the literature. <sup>39</sup> The spectra of the column-purified sulfonate ester 36 clearly shows signals in the aromatic region, which indicates that the sulfonate ester was formed. The signal at 2.23 ppm can be seen for the protons *alpha* to the carbonyl, which again is an indication that the sulfonate ester

was formed. Also, mass spectrometry data for compound 36 shows a peak at 480.2 m/z, which is the calculated mass plus sodium.

Equation 48.

Hydroxyls on any carbon between the first and the last are at a secondary position. These secondary hydroxyls were not converted to an azide functional group through this one-pot method. The secondary hydroxyls 3 and 4 formed sulfonate esters 37 and 38 (Equations 50 and 51). S<sub>N</sub>2 reactions are slower at secondary positions due to steric crowding, and the formation of an azide is not seen in the examples studied here. The <sup>1</sup>H NMR data of column-purified products 37 and 38 clearly show signals in the aromatic region and a singlet at 2.23 ppm for protons *alpha* to a carbonyl of the *N*-acetyl group, which indicates that the sulfonate ester was formed. Mass spectrometry data

clearly shows the expected mass  $480.2 \, m/z$ , which is our calculated mass plus sodium, for both 37 and 38.

Equation 50.

Equation 51.

Allofuranose derivative 38 was recrystallized and the X-ray crystal gives further evidence for the formation of this sulfonate ester product (Figure 21). The crystal structure of 38 clearly shows the retention of stereochemistry at C-3, and that the protecting groups are still intact.



Figure 21: X-Ray crystal structure of allofuranose derivative 38.

p-Nitrobenzenesulfonyl azide (p-NBSA) was also used as a source of azide in hopes of decreasing reaction times and increasing product yields. The p-NBSA was synthesized by mixing p-nitrobenzenesulfonyl chloride with two equivalents of sodium azide in anhydrous methanol (Equation 52). The trial reaction with p-NBSA and mannofuranose 1 showed promising results (Equation 53).

NaN<sub>3</sub>, MeOH
$$N_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
No<sub>2</sub>

$$43$$
Equation 52.
$$2 \text{ eq. } p\text{-NBSA, 2 eq. DBU}$$

$$CH_3CN, \text{ refluxed}$$

$$13$$
Equation 53.

The previous reactions were run again with p-NBSA as the azide transfer reagent in place of p-ABSA (Equations 54 to 58) yielding in similar results. The azides were formed in higher yields, while the sulfonate esters were isolated in lower yields (Table 2).

Equation 54.

# Equation 56.

Equation 57.

# sulforme exter 40 elearly showed a Equation 58. who, while sulforms exter 41 eleatly

Table 2: One-pot synthesis of azidodeoxysugars.

| Azide transfer reagent      | Starting Material                 |                          | % Yield             |
|-----------------------------|-----------------------------------|--------------------------|---------------------|
| p-ABSA                      | 1                                 | 13                       | 56                  |
| explored. Dimethylforman    | olde (DMP) could be at 29         | 32                       | once if a hig<br>15 |
|                             | ), different bases and axid       | ie transfer rengents 33  | can be explo        |
|                             |                                   |                          |                     |
|                             |                                   |                          | milition of I       |
|                             | 34<br>be more unclud if it can be | 36<br>e run on non-carbo | 82                  |
|                             | 3                                 | 37                       | 90                  |
|                             | 4                                 | 38                       | 90                  |
| p-NBSA                      | on of this one-pot axide          | 13                       | 44                  |
|                             | t C-1 of a carbohydrate<br>29     | 32                       | 33                  |
|                             | formation of plycosyl az-         | des. However, m          | 66                  |
| 44 was formed from reaction | on of mannese lacrol 1            | with either p-nine       | beareneral for      |
|                             | and DBU (Equation 59              | 35<br>L. Most likely th  | 59                  |
|                             | 34                                | 40                       | 61                  |
|                             | 3                                 | 41                       | 25                  |

Spectral data of successfully formed azides matched the literature data. The sulfonate esters 40 and 41 synthesized using p-NBSA as the azide transfer reagent had similar spectra to the sulfonate esters 36 and 37. <sup>1</sup>H NMR spectra for sulfonate esters 40 and 41 showed the disappearance of a hydroxyl proton and the appearance of signals in the aromatic region for the newly formed sulfonate ester. Mass spectrometry data of sulfonate ester 40 clearly showed a peak at 468.1 m/z, while sulfonate ester 41 clearly showed a peak at 464.1 m/z, both of which are the calculated mass plus sodium.

With the success of this preliminary investigation, more research will be done on this one-pot azide synthesis. Future students will be able to use microwave heating to speed up reaction time, in which case different reaction conditions can be more easily explored. Dimethylformamide (DMF) could be another solvent choice if a higher temperature is desired. Also, different bases and azide transfer reagents can be explored more quickly. The ratio of alcohol to transfer reagent and base also needs to be reduced. Also, non-carbohydrate primary alcohols will be explored to find the limitations of this reaction. This reaction will be more useful if it can be run on non-carbohydrate systems as well.

During our exploration of this one-pot azide synthesis, we were interested in seeing if a sulfonate ester at C-1 of a carbohydrate could be isolated since this is the putative intermediate in the formation of glycosyl azides. However, mannosyl chloride 44 was formed from reaction of mannose lactol 1 with either p-nitrobenzenesulfonyl chloride or p-tosyl chloride and DBU (Equation 59). Most likely the corresponding tosylate is formed but then is displaced by chloride ion; the isolation of only the  $\alpha$ -

chloride agrees with other syntheses of this compound in which the  $\alpha$ -anomer is thermodynamically favored.<sup>40</sup>

MH2 for H species and IXI MH2 Equation 59.

(doublet of doublets), did (doublet of doublet of doublets), in (moltiplet) and coupling constants (/) are measured in Hertz. All mass spectra were obtained through the use of Braker Esquire LC-MS Instrument. Infrared spectra were incorded on a Thomas Electronic Corporation IR 200 spectrophotomater.

Synthesis of 2,3:5,6-df-O-isopropylidene-cs-D-mannofuranese (1) from D-incomes

In a flame-dried 2 L. Erfenneyer flask, n-mannose (20.0 g, 0.11 mmol) was dissolved in 750 mL of dry accrone. Concentrated sulfuric acid (7.0 mL) was added in 2 mL portions every 5 min in the solution. A drying tube was connected and the reaction

#### Experimental

#### **General Procedures**

Reactions were analyzed by TLC on Whatman aluminum-backed plates. Purifications *via* flash column chromatography used 70-270 mesh 60-Å silica gel. Nuclear Magnetic Resonance spectra were recorded on samples dissolved in CDCl<sub>3</sub>, using an Oxford magnet attached to a Varian Gemini 2000 system, at a frequency of 400 MHz for <sup>1</sup>H spectra and 100 MHz for <sup>13</sup>C spectra. All chemical shifts were recorded in parts per million (ppm). Signals are labeled as follows: s (singlet), d (doublet), dd (doublet of doublets), ddd (doublet of doublets), m (multiplet) and coupling constants (*J*) are measured in Hertz. All mass spectra were obtained through the use of a Bruker Esquire LC-MS instrument. Infrared spectra were recorded on a Thermo Electron Corporation IR 200 spectrophotometer.

### Protecting groups

Synthesis of 2,3:5,6-di-O-isopropylidene-α-D-mannofuranose (1) from D-mannose.

In a flame-dried 2 L Erlenmeyer flask, D-mannose (20.0 g, 0.11 mmol) was dissolved in 750 mL of dry acetone. Concentrated sulfuric acid (7.0 mL) was added in 2 mL portions every 5 min to the solution. A drying tube was connected and the reaction

was stirred at RT until reaction was complete. The reaction was then neutralized with excess sodium carbonate (color lightened) and let stir for 30 min. The reaction was filtered and the filtrate refluxed for 1 h with several grams of sodium carbonate and charcoal. Once cooled, the solution was filtered and evaporated under reduced pressure. The solid residue was recrystalized from methanol to give pure 2,3:5,6-di-*O*-isopropylidene-α-D-mannofuranose (11.2 g, 0.043 mol) (1) in 39% yield.

<sup>1</sup>H NMR: δ1.31 (s, 3H, -CH<sub>3</sub>), 1.37 (s, 3H, -CH<sub>3</sub>), 1.44 (s, 3H, -CH<sub>3</sub>), 1.45 (s, 3H, -CH<sub>3</sub>), 3.35 (d, 1H, -OH, J = 2.6 Hz), 4.02-4.12 (m, 2H, H-6, H-6'), 4.17 (dd, 1H, H-3, J = 3.7, 7.1 Hz), 4.40 (ddd, 1H, H-5, J = 3.9, 5.9, 6.0 Hz,), 4.61 (d, 1H, H-2, J = 6.0 Hz), 4.81 (dd, 1H, H-4, J = 3.7, 5.9 Hz), 5.36 (d, 1H, H-1, J = 2.4 Hz).

Melting point: 120-122 °C

# Synthesis of methyl 2,3-O-isopropylidene-β-D-ribofuranoside (2) from D-ribose.

dimethylaminopyridine (0.16 eq.) were added to a flame-dried round-bottom flask and

In a flame-dried round bottom flask, dry D-ribose (10.033 g, 33.4 mmol) was dissolved in 200 mL of dry acetone. 2,2-Dimethyoxypropane (20 mL) was added by

syringe, followed by 45 mL of a methanol solution containing 40 mL methanol and 5 mL hydrogen chloride saturated methanol. The reaction was stirred overnight under nitrogen at RT. Pyridine (10 mL) was slowly added to neutralize the reaction (color lightened). The solution was then evaporated under reduced pressure and the resulting residue was partitioned between ethyl acetate (40 mL) and deionized water (100 mL). The aqueous layer was extracted two more times with 40 mL of ethyl acetate. Aqueous NaCl can be added to help separate layers. The organic layer was dried over MgSO<sub>4</sub>, filtered, and evaporated to give a yellow oil. This oil was purified using a silica gel flash column eluted with 4:1 hexane – ethyl acetate to give 7.89 g (58%) of pure compound 2.

<sup>1</sup>H NMR:  $\delta$  1.32 (s, 3H, -CH<sub>3</sub>), 1.49 (s, 3H, -CH<sub>3</sub>), 3.27 (dd, 1H, H-4, J = 2.6, 10.6 Hz), 3.44 (s, 3H, -CH<sub>3</sub>), 3.56-3.70 (m, 2H, H-5 and H-5'), 4.44 (s, 1H, -OH), 4.59 (d, 2H, H-2), 4.84 (d, 1H, H-3), 4.98 (s, 1H, H-1).

#### Synthesis of phenacyl ester derivatives

Protected sugars 1-4 (1.0 equivalent), phenylacetic acid (1.1 eq.), and 4-dimethylaminopyridine (0.16 eq.) were added to a flame-dried round-bottom flask and dissolved in anhydrous  $CH_2Cl_2$  (10 mL per gram of sugar) and anhydrous  $CH_3CN$  (10 mL per gram of sugar). While stirring under nitrogen, 1.0 M 1,3-dicyclohexylcarbodiimide solution in  $CH_2Cl_2$  (1.1 eq.) was slowly added dropwise resulting in a white precipitate. The reaction mixture was stirred overnight at RT. TLC showed the formation of a spot with a higher  $R_f$  value than the starting material in each case. After gravity filtering the mixture, the solvent was removed under reduced pressure and the resultant residue was

dissolved in CH<sub>2</sub>Cl<sub>2</sub>. The solution was then washed three times with 5% H<sub>2</sub>SO<sub>4</sub>, followed by two washings with deionized H<sub>2</sub>O. After drying with MgSO<sub>4</sub>, the filtrate was evaporated to give the crude phenacyl ester product.

This general procedure was used for the synthesis of compounds 5-8. In most cases the <sup>1</sup>H NMR spectrum of the crude product was clean, so no further purification was necessary.

2,3:5,6-Di-*O*-isopropylidene-1-*O*-phenacyl-α-D-mannofuranose (5) from 2,3:5,6-di-*O*-isopropylidene-α-D-mannofuranose (1).

Prepared from protected mannofuranose 1 (3.049 g, 11.7 mmol), phenylacetic acid (1.756 g, 12.9 mmol), DMAP (0.233 g, 1.9 mmol), and DCC in  $CH_2Cl_2$  (12.9 mL, 12.9 mmol) according to the procedure for the synthesis of ester derivatives described above. TLC (2:1 hexanes – ethyl acetate) showed product at  $R_f = 0.51$ . The reaction gave 3.99 g of phenacyl ester derivative 5 in 90% yield.

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  1.32 (s, 3H, -CH<sub>3</sub>), 1.37 (s, 3H, -CH<sub>3</sub>), 1.44 (s, 3H, -CH<sub>3</sub>), 1.47 (s, 3H, -CH<sub>3</sub>), 3.63 (s, 2H, -CH<sub>2</sub>-), 3.89 (dd, 1H, H-4, J = 3.7, 8.1 Hz), 3.96 (dd, 1H, H-6, J = 4.2, 8.6 Hz), 4.07 (dd, 1H, H-6', J = 6.2, 8.4 Hz), 4.36 (ddd, 1H,

H-5, J = 4.4, 6.0, 8.1 Hz), 4.66 (d, 1H, H-2, J = 5.5 Hz), 4.81 (dd, 1H, H-3, J = 3.5, 5.7 Hz), 6.13 (s, 1H, H-1), 7.2-7.4 (m, 5H, Ar-H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>): δ 25.9, 26.4, 27.1, 28.3, 42.6, 68.0, 73.9, 80.4, 83.4, 86.0, 101.9, 110.4, 114.3, 128.3, 129.7 (double intensity), 130.2 (double intensity), 137.4, 170.8.

Melting point: 70-74 °C

Methyl 2,3-*O*-isopropylidene-5-*O*-phenacyl-β-D-ribofuranoside (6) from methyl 2,3-*O*-isopropylidene-β-D-ribofuranoside (2).

Prepared from protected ribose 2 (8.0 g, 39.2 mmol), phenylacetic acid (5.876 g, 43.1 mmol), DMAP (0.769 g, 6.3 mmol) and DCC in  $CH_2Cl_2$  (43.1 mL, 43.1 mmol) according to the procedure for the synthesis of ester derivatives described above. TLC (1:1 hexanes – ethyl acetate) showed product at  $R_f$  = 0.75. The reaction yielded 11.26 g of phenacyl ester derivative 6 (89% yield).

<sup>1</sup>H NMR: δ 1.31 (s, 3H, -CH<sub>3</sub>), 1.49 (s, 3H, -CH<sub>3</sub>), 3.26 (s, 3H, -CH<sub>3</sub>), 3.66 (s, 2H, -CH<sub>2</sub>-), 4.07-4.18 (m, 2H, H-5 and H-5'), 4.38 (t, 1H, H-4, J = 6.9 Hz), 4.56 (d, 1H, H-3, J = 6.2 Hz), 4.62 (d, 1H, H-2, J = 5.8 Hz), 4.96 (s, 1H, H-1), 7.25-7.34 (m, 5H, Ar-H).

<sup>13</sup>C NMR:  $\delta$  26.2, 27.7, 42.4, 56.1, 66.2, 82.9, 85.2, 86.3, 110.5, 113.6, 128.2, 129.6 (double intensity), 130.3 (double intensity), 134.7, 172.0.

MS: Calculated: 322.14 m/z, Found: (ESI pos) 345.1 m/z (M+Na<sup>+</sup>). [ $\alpha$ ]<sub>D</sub>= -38.0 °, 150 mg/mL in chloroform.

1,2:5,6-Di-*O*-isopropylidene-3-*O*-phenacyl-α-D-allofuranose (7) from 1,2:5,6-di-*O*-isopropylidene-α-D-allofuranose (3).

Prepared from protected allofuranose 3 (1.004 g, 3.9 mmol), phenylacetic acid (0.582 g, 4.3 mmol), DMAP (0.085 g, 0.69 mmol), and DCC in CH<sub>2</sub>Cl<sub>2</sub> (4.3 mL, 4.3 mmol) according to the procedure for the synthesis of ester derivatives described above.

TLC (1:1 hexanes – ethyl acetate) showed product at  $R_f = 0.65$ . The reaction resulted in 1.025 g of phenacyl ester derivative 7 (70% yield).

<sup>1</sup>H NMR:  $\delta$ 1.32 (s, 6H, 2 x -CH<sub>3</sub>), 1.34 (s, 3H, -CH<sub>3</sub>), 1.50 (s, 3H, -CH<sub>3</sub>), 3.70 (s, 2H, -CH<sub>2</sub>-), 3.75 (dd, 1H, H-4, J = 6.0, 8.6 Hz), 3.99 (dd, 1H, H-3, J = 6.8, 8.6 Hz), 4.13 (dd, 1H, H-2, J = 4.4, 8.1 Hz), 4.26 (ddd, 1H, H-5, J = 4.2, 6.0, 10.4 Hz), 4.83-4.87 (m, 2H, H-6 and H-6'), 5.85 (d, 1H, H-1, J = 3.7 Hz), 7.25-7.34 (m, 5H, Ar-H).

<sup>13</sup>C NMR: δ26.3, 27.4, 27.8, 28.0, 42.1, 66.7, 74.0, 76.0, 78.6, 78.7, 105.2, 110.9, 114.1, 128.2, 129.5 (double intensity), 130.4 (double intensity), 134.4, 171.5.

1,2:5,6-Di-*O*-isopropylidene-3-*O*-phenacyl-α-D-glucofuranose (8) from 1,2:5,6-di-*O*-isopropylidene-α-D-glucofuranose (4).

Prepared from protected glucose 4 (5.012 g, 19.2 mmol), phenylacetic acid (2.883 g, 21.2 mmol), DMAP (0.382 g, 3.1 mmol) and DCC in CH<sub>2</sub>Cl<sub>2</sub> (21.2 mL, 21.2 mmol) according to the procedure for the synthesis of ester derivatives described above. TLC

(3:1 hexanes – ethyl acetate) showed product at  $R_f = 0.43$ . The reaction gave 6.71 g of phenacyl ester derivative 8 (92% yield).

<sup>1</sup>H NMR:  $\delta$  1.26 (s, 3H, -CH<sub>3</sub>), 1.28 (s, 3H, -CH<sub>3</sub>), 1.39 (s, 3H, -CH<sub>3</sub>), 1.51 (s, 3H, -CH<sub>3</sub>), 3.67 (s, 2H, -CH<sub>2</sub>-), 4.01-3.93 (m, 2H, H-6 and H-6'), 4.08 (ddd, 1H, H-5, J = 5.5, 8.1, 10.9 Hz), 4.18 (dd, 1H, H-4, J = 2.9, 8.1 Hz), 4.42 (d, 1H, H-2, J = 3.7 Hz), 5.27 (d, 1H, H-3, J = 2.9 Hz), 5.82 (d, 1H, H-1, J = 3.7 Hz), 7.25-7.34 (m, 5H, Ar-H).

<sup>13</sup>C NMR: δ26.4, 27.4, 27.9, 28.0, 42.6, 68.3, 73.4, 77.5, 81.0, 84.3, 106.1, 110.3, 113.4, 128.3, 129.7 (double intensity), 130.2 (double intensity), 134.4, 171.0.

Melting point: 52-54 °C

Synthesis of diazoester sugars

2,3:5,6-Di-*O*-isopropylidene-1-*O*-(phenacyldiazo)-α-D-mannofuranose (9) from 2,3:5,6-Di-*O*-isopropylidene-1-*O*-phenacyl-α-D-mannofuranose (5).

IR absorption: 2005 cm<sup>-1</sup> for discas eroses

A flame-dried round-bottom flask was cooled in a dry ice-acetone bath (-78 °C). To this chilled flask, 1.0 M lithium hexamethyldisilazane (1.16 mL, 1.1 eq.) was added and let chill. Mannofuranosyl ester 5 (0.405 g, 1.0 mmol, 1.0 eq.) in 8 mL of dry THF was added dropwise to the base. This was left to react for 30 min. before p-acetamidobenzenesulfonyl azide (0.279 g, 1.1 mmol, 1.1 eq.) in THF (5 mL) was added dropwise. This reaction was allowed to warm to RT. TLC confirmed the complete consumption of starting material, and the appearance of a spot with a slightly higher R<sub>f</sub> value (R<sub>f</sub> = 0.63 in 2:1 hexanes – ethyl acetate). The reaction mixture was then poured into 50 mL of saturated NH<sub>4</sub>Cl, and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 20 mL). The combined organic layers were then washed with deionized H<sub>2</sub>O (2 x 20 mL). The organic layer was then dried over MgSO<sub>4</sub>, filtered, and evaporated under reduced pressure. The crude product 9 was purified by flash column (6:1 hexanes – ethyl acetate) to yield 0.146 g of orange syrup in 34% yield.

<sup>1</sup>H NMR: δ 1.36 (s, 3H, -CH<sub>3</sub>), 1.39 (s, 3H, -CH<sub>3</sub>), 1.47 (s, 3H, -CH<sub>3</sub>), 1.51 (s, 3H, -CH<sub>3</sub>), 4.04-4.14 (m, 3H, H-4, H-6, H-6'), 4.43 (ddd, 1H, H-5, J = 4.4, 6.0, 7.8 Hz), 4.78 (d, 1H, H-2, J = 5.9 Hz), 4.89 (dd, 1H, H-3, J = 3.4, 6.0 Hz), 6.32 (s, 1H, H-1), 7.18-7.47 (m, 5H, Ar-H).

<sup>13</sup>C NMR:  $\delta$  26.0, 26.4, 27.2, 28.2, 68.0, 74.0, 80.5, 83.5, 86.2, 102.3, 110.4, 114.4, 125.1 (double intensity), 125.8, 127.2, 130.0 (double intensity), 164.2.

IR absorption: 2095 cm<sup>-1</sup> for diazo group.

# General procedure for other diazoester sugars

In a flame-dried round-bottom flask, phenacyl ester sugar 6-8 (1.0 eq.) and p-acetamidobenzenesulfonyl azide (1.0 eq.) were dissolved in dry CH<sub>2</sub>Cl<sub>2</sub> (10 mL per gram of sugar) and dry CH<sub>3</sub>CN (10 mL per gram of sugar). While stirring at RT, 1,8-diazabicyclo[5.4.0]undec-7-ene (1.1 eq.) was added dropwise over 1-2 h via syringe pump producing an orange solution. TLC showed the formation of a spot with a slightly higher R<sub>f</sub> value than the starting material. More base and diazo transfer reagent (0.5 eq.) may be added to push the reaction to completion. After stirring for 48 h, the reaction was evaporated under reduced pressure. The resulting residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and washed three times with 5% H<sub>2</sub>SO<sub>4</sub>, followed two times by deionized H<sub>2</sub>O. After drying the organic layers with MgSO<sub>4</sub> the filtrate was evaporated to give the crude diazoester sugar. The resulting syrup was purified using a silica gel flash column.

This general procedure was used for the synthesis of compounds 10 to 12.

Methyl 2,3-*O*-isopropylidene-5-*O*-(phenacyldiazo)-β-D-ribofuranose (10) from methyl 2,3-*O*-isopropylidene-5-*O*-phenacyl-β-D-ribofuranoside (6).

Prepared from ribofuranose-derived phenacylester 6 (1.05 g, 3.2 mmol), p-ABSA (0.789 g, 3.3 mmol) and DBU (0.55 mL, 3.6 mmol) according to the general procedure for the synthesis of diazoester sugars above. TLC (3:1 hexanes – ethyl acetate) showed the product at an  $R_f$  value of 0.44. The resulting syrup was purified using a silica gel flash column eluted with a 6:1 hexane – ethyl acetate mixture to give 0.559 g of pure product in 67% yield.

<sup>1</sup>H NMR:  $\delta$  1.33 (s, 3H, -CH<sub>3</sub>), 1.49 (s, 3H, -CH<sub>3</sub>), 3.33 (s, 3H, -CH<sub>3</sub>), 4.26 (dd, 1H, H-4, J = 6.2, 10.9 Hz), 4.37-4.46 (m, 2H, H-5 and H-5'), 4.62 (d, 1H, H-3, J = 5.9 Hz), 4.71 (d, 1H, H-2, J = 5.9 Hz), 5.00 (s, 1H, H-1), 7.17-7.49 (m, 5H, Ar-H).

<sup>13</sup>C NMR:  $\delta$  26.2, 27.7, 56.2, 66.0, 82.8, 85.5, 86.4, 110.5, 113.6, 124.9 (double intensity), 126.3, 126.9, 129.9 (double intensity), 165.5.

IR absorption: 2092 cm<sup>-1</sup> for diazo group.

1,2:5,6-Di-*O*-isopropylidene-3-*O*-(phenacyldiazo)-α-D-allofuranose (11) from 1,2:5,6-di-*O*-isopropylidene-3-*O*-α-phenacyl-α-D-allofuranose (4).

Prepared from allofuranose-derived phenacylester 7 (2.5 g, 6.6 mmol), p-ABSA (1.590 g, 6.6 mmol), and DBU (1.10 mL, 7.2 mmol) according to the general procedure for the synthesis of diazoester sugars above. TLC showed the formation of a spot at an R<sub>f</sub> value of 0.45 in 2:1 hexanes – ethyl acetate. The resulting syrup was purified using a silica gel flash column eluted with 6:1 hexane – ethyl acetate. The reaction yielded 1.31 g in 49% yield.

<sup>1</sup>H NMR:  $\delta$ 1.35 (s, 6H, 2 -CH<sub>3</sub>), 1.43 (s, 3H, -CH<sub>3</sub>), 1.56 (s, 3H, -CH<sub>3</sub>), 3.90 (dd, 1H, H-4, J = 5.3, 8.6 Hz), 4.09 (dd, 1H, H-6, J = 6.6, 8.6 Hz), 4.15 (dd, 1H, H-6', J = 5.9, 8.6 Hz), 4.30 (ddd, 1H, H-5, J = 5.1, 6.6, 10.3 Hz), 4.92 (t, 1H, H-3, J = 4.8 Hz), 5.00 (dd, 1H, H-2, J = 4.9, 8.7 Hz), 5.86 (d, 1H, H-1, J = 4.0 Hz), 7.18-7.50 (m, 5H, Ar-H).

<sup>13</sup>C NMR:  $\delta$  26.2, 27.6, 27.9, 28.0, 67.1, 74.6, 76.4, 78.8, 79.0, 105.3, 111.1, 114.3, 125.0 (double intensity), 126.0, 127.1, 129.9 (double intensity), 165.0.

IR absorption: 2100 cm<sup>-1</sup> for diazo group.

1,2:5,6-Di-*O*-isopropylidene-3-*O*-(phenacyldiazo)-α-D-glucofuranose (12) from 1,2:5,6-di-*O*-isopropylidene-3-*O*-phenacyl-α-D-glucofuranose (5).

Prepared from glucofuranose-derived phenacylester 7 (2.091 g, 5.5 mmol), p-ABSA (1.287 g, 5.4 mmol), and DBU (0.92 mL, 6.0 mmol) according to the general procedure for the synthesis of diazoester sugars above. TLC showed the appearance of a spot at an  $R_f$  value of 0.49 in 3:1 hexanes – ethyl acetate. The resulting syrup was purified using a silica gel flash column eluted with 6:1 hexane – ethyl acetate. The reaction yielded 1.45 g of diazo product (65% yield).

<sup>1</sup>H NMR: δ 1.32 (s, 6H, 2 x -CH<sub>3</sub>), 1.42 (s, 3H, -CH<sub>3</sub>), 1.54 (s, 3H, -CH<sub>3</sub>), 4.02 (dd, 1H, H-6, J = 4.9, 8.8 Hz), 4.10 (dd, 1H, H-6', J = 5.9, 8.4 Hz), 4.19 (ddd, 1H, H-5, J = 5.5, 8.3, 10.8 Hz), 4.27 (dd, 1H, H-4, J = 3.3, 8.1 Hz), 4.67 (d, 1H, H-2, J = 3.7 Hz), 5.38 (d, 1H, H-3, J = 2.9 Hz), 5.91 (d, 1H, H-1, J = 3.7 Hz), 7.19-7.48 (m, 5H, Ar-H).

IR absorption: 2091 cm<sup>-1</sup> for diazo group.

CH- a to carbonyl), 6.16 (s. 1H, H-1), 7.35-7.42 (m. 5H, Ar-H).

Rhodium(II)-catalyzed decomposition of diazoester sugars

Rh(II)-catalyzed decomposition of 2,3:5,6-Di-O-isopropylidene-1-O-(phenacyldiazo)- $\alpha$ -D-mannofuranose (9) to form dimeric ether 14.

In a flame-dried round-bottom flask, rhodium(II) acetate (0.013 g, 0.03 mmol) was stirred in anhydrous  $CH_2Cl_2$  (4 mL) while diazoester 9 (0.097g, 0.239 mmol) was dissolved in anhydrous  $CH_2Cl_2$  (4 mL). After degassing both solutions with  $N_2$ , the diazosugar solution was added dropwise to the dirhodium acetate solution over 1 h using a syringe pump. TLC (4:1 hexanes – ethyl acetate) revealed the formation of the product at an  $R_f$  value of 0.13. The solution was then filtered with celite and evaporated. The reaction was then purified using a flash column eluted with 4:1 hexanes – ethyl acetate. The isolated solid was then recrystalized using ethanol.

<sup>1</sup>H NMR: 1.44 (s, 3H, -CH<sub>3</sub>), 1.34 (s, 3H, -CH<sub>3</sub>), 1.33 (s, 3H, -CH<sub>3</sub>), 1.30 (s, 3H, -CH<sub>3</sub>), 3.45 (dd, 1H, H-4, J = 3.3, 8.1 Hz), 3.70 (dd, 1H, H-6, J = 4.4, 8.8 Hz), 4.00 (dd, 1H, H-6', J = 6.2, 8.8 Hz), 4.27 (ddd, 1H, H-5, J = 4.4, 6.2, 8.5 Hz), 4.63 (d, 1H, H-2, J = 5.9 Hz), 4.70 (dd, 1H, H-3, J = 3.3, 5.9 Hz), 5.04 (s, 1H, -CH- α to carbonyl), 6.16 (s, 1H, H-1), 7.35-7.42 (m, 5H, Ar-H).

Rh(II)-catalyzed decomposition of 1,2:5,6-Di-*O*-isopropylidene-3-*O*-(phenacyldiazo)-α-D-allofuranose (11) to form dimeric ether 15.

15

Dirhodium acetate (0.025 g, 0.05 mmol) was stirred in anhydrous  $CH_2Cl_2$  (10 mL) while allofuranose-derived diazo ester 11 (0.400 g, 0.989 mmol) was dissolved in anhydrous  $CH_2Cl_2$  (10 mL). Diazosugar 11 was added dropwise to the dirhodium acetate solution over 1 h using a syringe pump. TLC showed a spot with an  $R_f$  value of 0.08 in 3:1 hexanes – ethyl acetate. The reaction was purified using a flash column eluted with 3:1 hexanes – ethyl acetate and recrystalized using ethanol. The reaction gave 0.22 g of product in 58% yield.

<sup>1</sup>H NMR: 1.19 (s, 3H, -CH<sub>3</sub>), 1.26 (s, 3H, -CH<sub>3</sub>), 1.32 (s, 3H, -CH<sub>3</sub>), 1.48 (s, 3H, -CH<sub>3</sub>), 3.42 (dd, 1H, H-6, J = 6.6, 8.8 Hz), 3.78 (dd, 1H, H-6', J = 6.7, 8.6 Hz), 4.07 (dd, 1H, H-2, J = 3.7, 8.4 Hz), 4.16 (ddd, 1H, H-5, J = 3.6, 6.8, 10.4 Hz), 4.82 (dd, 1H, H-3, J = 5.1, 8.4 Hz), 4.87 (dd, 1H, H-4, J = 4.0, 5.1 Hz), 5.13 (s, 1H, -CH-), 5.82 (d, 1H, H-1, J = 3.7 Hz), 7.35-7.51 (m, 5H, Ar-H).

CH<sub>4</sub>), 4.06 (dd, 1H, H-4, J = 4.0, 8.8 Hz), 4.40-4.15 (m, 2H, H-6 and H-6'), 4.43

<sup>13</sup>C NMR: δ26.3, 27.2, 27.9, 28.1, 66.2, 74.1, 75.6, 78.6, 78.7, 80.0, 105.2, 110.8, 114.1, 128.8 (double intensity), 129.6 (double intensity), 130.0, 136.1, 170.3.

MS: Calculated: 770.31 m/z, Found: (ESI pos) 793.6 m/z (M+Na<sup>+</sup>).

Rh(II)-catalyzed decomposition of 2,3:5,6-di-*O*-isopropylidene-1-*O*-(phenacyldiazo)-α-D-mannofuranose (9) to form ketone 16.

In a flame-dried round-bottom flask, dried rhodium(II) acetate (tip of spatula, ~5 mg) was stirred in freshly distilled  $CH_2Cl_2$  (45 mL). Diazo ester **9** (0.140 g, 0.346 mmol) was dissolved in distilled  $CH_2Cl_2$  (5 mL). After degassing both solutions with  $N_2$ , the diazosugar solution was added dropwise to the dirhodium acetate solution over 20 h using a syringe pump. TLC showed a spot with an  $R_f$  value of 0.58 in 2:1 hexanes – ethyl acetate. The solution was then evaporated and purified using a flash column eluted with 4:1 hexanes – ethyl acetate. The resulting solid was recrystalized using methanol to give 0.030 g of ketone **16** in 22% yield.

<sup>1</sup>H NMR: 1.37 (s, 3H, -CH<sub>3</sub>), 1.39 (s, 3H, -CH<sub>3</sub>), 1.45 (s, 3H, -CH<sub>3</sub>), 1.52 (s, 3H, -CH<sub>3</sub>), 4.06 (dd, 1H, H-4, J = 4.0, 8.8 Hz), 4.10-4.15 (m, 2H, H-6 and H-6'), 4.43

(ddd, 1H, H-5, J = 4.0, 5.8, 7.7 Hz), 4.85 (d, 1H, H-2, J = 5.9 Hz), 4.89 (dd, 1H, H-3, J = 3.7, 5.9 Hz), 6.42 (s, 1H, H-1), 7.53 (t, 2H, Ar-H, J = 7.9 Hz), 7.68 (t, 1H, Ar-H, J = 7.5 Hz), 8.00 (d, 2H, Ar-H, J = 8.5 Hz).

Rh(II)-catalyzed decomposition of methyl 2,3-O-isopropylidene-5-O-(phenacyl-diazo)- $\beta$ -D-ribofuranose (10) to form ketone 17.

Dried rhodium(II) acetate (0.030 g, 0.067 mmol) was stirred in freshly distilled  $CH_2Cl_2$  (40 mL) while diazo ester 10 (0.740 g, 2.13 mmol) was dissolved in distilled  $CH_2Cl_2$  (18 mL). After degassing both solutions with  $N_2$ , the diazosugar solution was added dropwise to the dirhodium acetate solution over 15 h using a syringe pump. TLC showed a spot with an  $R_f$  value of 0.36 in 3:1 hexanes – ethyl acetate. A flash column was eluted with 3:1 hexanes – ethyl acetate to give 0.124 g of ketone 17 in 17% yield.

<sup>1</sup>H NMR: δ1.32 (s, 3H, -CH<sub>3</sub>), 1.49 (s, 3H, -CH<sub>3</sub>), 3.34 (s, 3H, -CH<sub>3</sub>), 4.36-4.44 (m, 2H, H-5 and H-5'), 4.50 (dd, 2H, H-4, J = 1.1, 7.5 Hz,), 4.63 (d, 1H, H-3, J = 5.9 Hz), 4.72 (d, 1H, H-2, J = 5.9 Hz), 5.01 (s, 1H, H-1), 7.50 (t, 2H, Ar-H, J = 7.8 Hz), 7.65 (t, 1H, Ar-H, J = 7.5 Hz), 8.00 (d, 2H, Ar-H, J = 8.4 Hz).

<sup>13</sup>C NMR:  $\delta$  26.1, 27.6, 56.3, 67.2, 82.7, 84.8, 86.2, 110.7, 113.8, 130.0 (double intensity), 131.1(double intensity), 133.4, 136.1, 164.3, 186.7.

MS: Calculated: 336.12 m/z, Found: (ESI pos) 359.1 m/z (M+Na<sup>+</sup>).

Rh(II)-catalyzed decomposition of 1,2:5,6-di-*O*-isopropylidene-3-*O*-(phenacyldiazo)-α-D-allofuranose (11) to form ketone 18.

Dried rhodium(II) acetate (0.032 g, 0.07 mmol) was stirred in freshly distilled  $CH_2Cl_2$  (15 mL) while allofuranose diazoester 11 (0.51 g, 1.26 mmol) was dissolved in distilled  $CH_2Cl_2$  (13 mL). Diazosugar 11 was added dropwise to the dirhodium acetate solution over 14 h using a syringe pump. TLC (1:1 hexanes – ethyl acetate) showed the formation of product2 at  $R_f = 0.56$ . The solution was then filtered with celite and evaporated. The residue was then purified using a flash column eluted with 3:1 hexanes – ethyl acetate mixture to give 0.27 g of ketone 18 (55% yield).

<sup>1</sup>H NMR:  $\delta$  1.36 (s, 3H, -CH<sub>3</sub>), 1.39 (s, 3H, -CH<sub>3</sub>), 1.41 (s, 3H, -CH<sub>3</sub>), 1.53 (s, 3H, -CH<sub>3</sub>), 3.9 (dd, 1H, H-6, J = 5.5, 8.8 Hz), 4.08 (dd, 1H, H-6', J = 6.6, 8.8 Hz),

4.24 (dd, 1H, H-4, J = 4.5, 8.3 Hz), 4.35 (ddd, 1H, H-5, J = 5.3, 6.7, 10.0 Hz), 5.02 (dd, 1H, H-2, J = 3.8, 5.3 Hz), 5.09 (dd, 1H, H-3, J = 5.3, 8.3 Hz), 5.91 (d, 1H, H-1, J = 3.7 Hz), 7.51 (t, 2H, meta Ar-H, J = 7.7 Hz), 7.67 (t, 1H, para Ar-H, J = 7.5 Hz), 8.09 (d, 2H, ortho Ar-H, J = 8.6 Hz).

<sup>13</sup>C NMR:  $\delta$  26.2, 27.5, 27.8, 28.2, 66.91, 75.2, 76.1, 78.6, 79.0, 105.5, 111.2, 114.5, 129.9 (double intensity), 131.4 (double intensity), 133.3, 136.2, 163.8, 186.5.

Rh(II)-catalyzed decomposition of 2,3:5,6-Di-*O*-isopropylidene-1-*O*-(phenacyldiazo)-α-D-mannofuranose (9) to form insertion product 19.

In a flame-dried round-bottom flask, the tip of a spatula ( $\sim$  4 mg) of rhodium(II) acetate was stirred in freshly distilled CH<sub>2</sub>Cl<sub>2</sub> (40 mL). Diazo ester **19** (0.410 g, 1.01 mmol) was dissolved in distilled CH<sub>2</sub>Cl<sub>2</sub> (4 mL). After degassing both solutions with N<sub>2</sub>, the diazosugar solution was added dropwise to the dirhodium acetate solution over 16 h using a syringe pump. TLC (2:1 hexanes – ethyl acetate) showed the formation of product with R<sub>f</sub> value of 0.56. The solution was then evaporated and purified using a

flash column eluted with 5:1 petroleum ether – ethyl acetate. The isolated solid was then recrystalized using ethyl acetate and hexanes, by the diffusion method, to give 0.060 g of the branched-chain sugar 19 in 16% yield.

<sup>1</sup>H NMR:  $\delta$  1.16 (s, 3H, -CH<sub>3</sub>), 1.33 (s, 3H, -CH<sub>3</sub>), 1.39 (s, 3H, -CH<sub>3</sub>), 1.46 (s, 3H, -CH<sub>3</sub>), 4.00-4.37 (m, 5H, H-3, H-4, H-5, H-6, H-6'), 4.34 (s, 1H, -CH- α to carbonyl), 5.86 (s, 1H, H-1), 7.15-7.42 (m, 5H, Ar-H).

MS: Calculated: 376.15 m/z, Found: (ESI pos) 399.1 m/z (M+Na<sup>+</sup>).

Rh(II)-catalyzed decomposition of 1,2:5,6-di-*O*-isopropylidene-3-*O*-(phenacyl-diazo)-α-D-glucofuranose (12) to form insertion product 20.

Dirhodium acetate (0.020 g, 0.04 mmol) was stirred in anhydrous  $CH_2Cl_2$  (10 mL) while glucofuranose-derived diazoester 12 (0.390 g, 0.96 mmol) was dissolved in anhydrous  $CH_2Cl_2$  (10 mL). The solution of diazosugar 12 was added dropwise to the dirhodium acetate solution over 1 h using a syringe pump. TLC showed a spot with an  $R_f$  value of 0.22 in 4:1 hexanes – ethyl acetate. The reaction mixture was filtered through

celite and purified using a flash column eluted with 4:1 hexanes – ethyl acetate. The purification gave 0.070 g of product (19% yield).

<sup>1</sup>H NMR:  $\delta$  1.27 (s, 3H, -CH<sub>3</sub>), 1.38 (s, 3H, -CH<sub>3</sub>), 1.44 (s, 3H, -CH<sub>3</sub>), 1.47 (s, 3H, -CH<sub>3</sub>), 3.96 (s, 1H, -CH- α to carbonyl), 4.05 (dd, 1H, H-6, J = 4.4, 8.8 Hz), 4.17 (dd, 1H, H-6', J = 6.2, 8.8 Hz), 4.27 (dd, 1H, H-4, J = 2.6, 8.4 Hz), 4.42 (ddd, 1H, H-5, J = 4.6, 6.0, 10.1 Hz), 4.91 (d, 1H, H-3, J = 2.7 Hz), 5.82 (s, 1H, H-1), 7.17-7.41 (m, 5H, Ar-H).

MS: Calculated: 376.15 m/z, Found: (ESI pos) 399.2 m/z (M+Na<sup>+</sup>).

## Rhodium(II)-catalyzed decomposition of diazoesters in the presence of alcohols

In a flame-dried 100 mL round-bottom flask, rhodium(II) acetate was suspended in dry CH<sub>2</sub>Cl<sub>2</sub> (20 mL per gram of sugar) and 10 equivalents of dry alcohol were added. In a separate round-bottom flask, 1.0 equivalent of diazosugar 10 or 11 was dissolved in dry CH<sub>2</sub>Cl<sub>2</sub> (20 mL per gram of sugar). After degassing both solutions with N<sub>2</sub>, the diazosugar solution was added dropwise to the rhodium(II) acetate solution over a 4-5 h period using a syringe pump. The solution was let stir overnight after which time the TLC showed complete consumption of the starting material and the appearance of a spot with a lower R<sub>f</sub> value. The solution was then filtered with celite and evaporated. The reaction was then purified using a flash column.

This general procedure was used to synthesize compounds 21-27.

Methyl 2,3-O-isopropylidene-5-O-(2-methoxy-2-phenylacetyl)-β-D-ribofuranosides (21) from methyl 2,3-O-isopropylidene-5-O-(phenacyldiazo)-β-D-ribofuranoside (10).

Prepared using rhodium(II) acetate (0.068 g, 0.15 mmol), dry methanol (1.3 mL), and ribofuranose-derived diazoester **10** (1.095 g, 3.14 mmol) according to the general procedure above. The reaction was then purified using a flash column, eluted with a 4:1 hexanes – ethyl acetate mixture, to give 0.83 g (75%) of stereoisomers **21**.

<sup>1</sup>H NMR:  $\delta$  1.27, 1.45 (m, 6 H, 2 x -CH<sub>3</sub> protecting group), 3.12, 3.23 (2s, 3H, -OCH<sub>3</sub> protecting group), 3.40 (s, 3H, -OCH<sub>3</sub> methyl group), 4.00-4.55 (multiplets, 5H, H-2, H-3, H-4, H-5, H-5'), 4.80 (s, 1H, -CH- α to C=O), 4.91, 4.92 (2s, 1H, H-1), 7.31-7.48 (m, 5H, Ar-H).

Methyl 2,3-O-isopropylidene-5-O-(2-ethoxy-2-phenylacetyl)- $\beta$ -D-ribofuranosides (22) from methyl 2,3-O-isopropylidene-5-O-(phenacyldiazo)- $\beta$ -D-ribofuranoside (10).

Prepared using rhodium(II) acetate (0.068 g, 0.15 mmol), dry ethanol (1.7 mL), and ribofuranose-derived diazoester 10 (1.013 g, 2.91 mmol) according to the general procedure above. The reaction mixture was then purified using a flash column, eluted with a 4:1 hexanes – ethyl acetate mixture, to give 0.85 g (80%) of product mixture 22.

<sup>1</sup>H NMR: δ1.27-1.45 (m, 9 H, -CH<sub>3</sub> protecting group and ethyl group), 3.11, 3.23 (2s, 3H, -OCH<sub>3</sub> protecting group), 4.35-4.54 (multiplets, 7H, -CH<sub>2</sub>- ethyl group and H-2, H-3, H-4, H-5, H-5'), 4.90 (m, 2H, -CH- α to C=O and H-1), 7.30-7.48 (m, 5H, Ar-H).

MS: Calculated: 366.17 *m/z*, Found: (ESI pos) 389.2 *m/z* (M+Na<sup>+</sup>).

Methyl 2,3-O-isopropylidene-5-O-(2-isopropoxy-2-phenylacetyl)- $\beta$ -D-ribofuranosides (23) from methyl 2,3-O-isopropylidene-5-O-(phenacyldiazo)- $\beta$ -D-ribofuranoside (10).

Prepared using rhodium(II) acetate (0.04 g, 0.09 mmol), dry isopropanol (1.5 mL), and ribofuranose-derived diazoester 10 (0.641 g, 1.84 mmol) according to the general procedure above. The reaction was then purified using a flash column, eluted with a 5:1 hexanes – ethyl acetate mixture, to give 0.50 g (71%) of stereoisomers 23.

<sup>1</sup>H NMR:  $\delta$ 1.27-1.49 (m, 12H, -CH<sub>3</sub> protecting group and isopropyl group), 3.12, 3.24 (2s, 3H, -OCH<sub>3</sub> protecting group), 3.68 (overlapping septet, 1H, -CH-isopropyl group), 4.00-4.53 (multiplets, 5H, H-2, H-3, H-4, H-5, H-5'), 4.91, 4.93 (2s, 1H, H-1), 5.02 (s, 1H, -CH- α to C=O), 7.29-7.48 (m, 5H, Ar-H).

MS: Calculated: 380.18 m/z, Found: (ESI pos) 403.2 m/z (M+Na<sup>+</sup>).

Methyl 2,3-*O*-isopropylidene-5-*O*-(2-*t*-butoxy-2-phenylacetyl)-β-D-ribofuranosides (24) from methyl 2,3-*O*-isopropylidene-5-*O*-(phenacyldiazo)-β-D-ribofuranoside (10).

Prepared using rhodium(II) acetate (0.075 g, 0.17 mmol), dry t-butanol (3.2 mL), and ribofuranose-derived diazoester 10 (1.194 g, 3.42 mmol) according to the general procedure above. The reaction was then purified using a flash column, eluted with a 10:1 hexanes – ethyl acetate mixture, to give 0.563 g (42%) of stereoisomers 24.

<sup>1</sup>H NMR:  $\delta$  1.22-1.48 (m, 15H, -CH<sub>3</sub> protecting group and t-butyl group), 3.15, 3.24 (2s, 3H, -CH<sub>3</sub> protecting group), 4.00-4.54 (multiplets, 5H, H-2, H-3, H-4, H-5, H-5'), 4.94, 4.92 (2s, 1H, H-1), 5.10 (s, 1H, -CH- α to C=O), 7.26-7.48 (m, 5H, Ar-H).

1,2:5,6-Di-O-isopropylidene-3-O-(2-methoxy-2-phenylacetyl)-α-D-allofuranoses (25) from 1,2:5,6-di-O-isopropylidene-3-O-(phenacyldiazo)-α-D-allofuranose (11)

Prepared using rhodium(II) acetate (0.034 g, 0.07 mmol), anhydrous methanol (0.55 mL), and allofuranose-derived diazoester 11 (0.548 g, 1.36 mmol) according to the general procedure above. The reaction was then purified using a flash column, eluted with a 6:1 hexanes – ethyl acetate mixture, to give 0.33 g (59%) of products 25.

<sup>1</sup>H NMR:  $\delta$  1.13-1.48 (m, 12H, -CH<sub>3</sub> protecting groups), 3.42, 3.45 (2s, 3H, -CH<sub>3</sub> methyl group), 3.80-4.89 (multiplets, 7H, -CH- α to C=O and H-2, H-3, H-4, H-5, H-6, H-6'), 5.79, 5.81 (2d, 1H, H-1, J = 4.0, 3.6 Hz), 7.32-7.46 (m, 5H, Ar-H).

MS: Calculated: 408.18 m/z, Found: (ESI pos) 431.2 m/z (M+Na<sup>+</sup>).

1,2:5,6-Di-*O*-isopropylidene-3-*O*-(2-ethoxy-2-phenylacetyl)-α-D-allofuranoses (26) from 1,2:5,6-di-*O*-isopropylidene-3-*O*-(phenacyldiazo)-α-D-allofuranose (11)

with a 6:1 bearings - edityl acetate infixture, to give 0.154 g (4) %) of products 27.

Prepared using rhodium(II) acetate (0.012 g, 0.03 mmol), anhydrous ethanol (0.55 mL), and allofuranose-derived diazoester 11 (0.292 g, 0.72 mmol) according to the general procedure above. The reaction was then purified using a flash column, eluted with a 6:1 hexanes – ethyl acetate mixture, to give 0.13 g (43%) of products 26.

<sup>1</sup>H NMR:  $\delta$ 1.13-1.48 (m, 15H, -CH<sub>3</sub> protecting group and ethyl group), 3.38-4.89 (multiplets, 8H, -CH<sub>2</sub>- ethyl group and H-2, H-3, H-4, H-5, H-6, H-6'), 4.92, 4.93 (2s, 1H, -CH- α to C=O), 5.79, 5.81 (2d, 1H, H-1, J = 4.0, 3.6 Hz), 7.30-7.48 (m, 5H, Ar-H).

MS: Calculated: 422.19 m/z, Found: (ESI pos) 445.2 m/z (M+Na<sup>+</sup>).

1,2:5,6-Di-O-isopropylidene-3-O-(2-isopropoxy-2-phenylacetyl)- $\alpha$ -D-allofuranoses (27) from 1,2:5,6-di-O-isopropylidene-3-O-(phenacyldiazo)- $\alpha$ -D-allofuranose (11).

Prepared using rhodium(II) acetate (0.015 g, 0.03 mmol), anhydrous isopropanol (0.6 mL), and allofuranose-derived diazoester 11 (0.349 g, 0.863 mmol) according to the general procedure above. The reaction was then purified using a flash column, eluted with a 6:1 hexanes – ethyl acetate mixture, to give 0.154 g (41%) of products 27.

<sup>1</sup>H NMR:  $\delta$ 1.15-1.45 (m, 18H, -CH<sub>3</sub> protecting group and isopropyl group), 3.39-4.89 (multiplets, 7H, -CH- isopropyl group and H-2, H-3, H-4, H-5, H-6, H-6'), 5.05 (s, 1H, -CH- α to C=O), 5.79, 5.81 (2d, 1H, H-1, J = 4.0, 4.0 Hz), 7.29-7.48 (m, 5H, Ar-H).

Deprotection of 1,2,3,4,6-penta-O-acetyl- $\beta$ -D-glucopyranose (28) at C-1 to form 2,3,4,6-tetra-O-acetyl- $\alpha/\beta$ -D-glucopyranose (29).

layer was dried over anhydrous MgSOs, filtered, and evaporated. The pr

A flame-dried three-neck round-bottom flask was equipped with a reflux condenser and thermometer.  $\beta$ -D-Glucose pentaacetate (0.399 g, 1.0 mmol) was dissolved in DMF (10 mL) and the mixture was brought to 50 °C before hydrazine acetate was added. The reaction was let run for 5 min, after which time TLC showed consumption of starting material. The reaction was allowed to cool to room temperature before being diluted with ethyl acetate (20 mL) and the solution then washed with saturated NaCl (2 x 15 mL). The organic layers were combined, dried over anhydrous MgSO<sub>4</sub>, filtered, and evaporated to give 0.26 g of tetraacetate **21** in 73% yield.

<sup>1</sup>H NMR:  $\delta$  2.02 (s, 3H, -CH<sub>3</sub>), 2.03 (s, 3H, -CH<sub>3</sub>), 2.08 (s, 3H, -CH<sub>3</sub>), 2.09 (s, 3H, -CH<sub>3</sub>), 4.07-4.31 (m, 3H, H-5, H-6, H-6'), 4.90 (dd, 1H, H-2, J = 3.6, 10.2 Hz), 5.08 (t, 1H, H-3, J = 9.5 Hz), 5.46 (d, 1H, H-1, J = 3.6 Hz), 5.53 (t, 1H, H-4, J = 9.9 Hz).

#### One-pot azide synthesis

In a flame-dried round-bottom flask, 1.0 equivalent of the sugar with one free hydroxyl group and 2.0 equivalents of p-acetamidobenzenesulfonyl azide or 2.0

equivalents of *p*-nitrobenzenesulfonyl azide were dissolved in dry acetonitrile (20 mL per gram of sugar). 2.0 Equivalents of DBU were added to this mixture. The reaction was then refluxed overnight. The progress of the reaction was monitored by TLC and more *p*-ABSA and DBU were added if there was still starting material left. When reaction was complete, the solvent was evaporated under reduced pressure. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and washed three times with 5% H<sub>2</sub>SO<sub>4</sub> and two times with H<sub>2</sub>O. The organic layer was dried over anhydrous MgSO<sub>4</sub>, filtered, and evaporated. The product was purified by flash column chromatography. This general procedure was used to make the azide and sulfonate ester sugars that follow.

Synthesis of 1-azido-1-deoxy-2,3:5,6-di-*O*-isopropylidene-β- (13) and -α-D-mannofuranose (30) from 2,3:5,6-di-*O*-isopropylidene-α-D-mannofuranose (1).

Prepared from diacetone-D-mannose (1) (1.007 g, 3.86 mmol), p-ABSA (1.843 g, 7.6 mmol), and DBU (1.16 mL, 7.6 mmol) according to the general procedure described above. The product was purified by flash column (6:1 hexanes – ethyl acetate), to give 0.62 g of azide 13 and 30 in 56% total yield.

1-Azido-1-deoxy-2,3:5,6-di-*O*-isopropylidene-β-D-mannofuranose (13)

$$\searrow_{O-O}^{O} \searrow_{N_3}$$

<sup>1</sup>H NMR:  $\delta$  1.37 (s, 3H, -CH<sub>3</sub>), 1.39 (s, 3H, -CH<sub>3</sub>), 1.45 (s, 3H, -CH<sub>3</sub>), 1.56 (s, 3H, -CH<sub>3</sub>), 3.59 (dd, 1H, H-4, J = 3.5, 7.5 Hz), 4.08-4.16 (m, 2H, H-6, H-6'), 4.42 (d, 1H, H-1, J = 3.6 Hz), 4.46 (ddd, 1H, H-5, J = 4.7, 6.2, 7.7 Hz), 4.68 (dd, 1H, H-2, J = 3.4, 6.0 Hz), 4.78 (dd, 1H, H-3, J = 3.5, 6.0 Hz).

<sup>13</sup>C NMR:  $\delta$ 25.5, 26.3, 26.4, 28.1, 67.8, 73.9, 79.6, 80.6, 82.2, 90.1, 110.2, 114.5.

R<sub>f</sub>: 0.49 in 1:1 hexanes – ethyl acetate.

# 1-Azido-1-deoxy-2,3:5,6-di-O-isopropylidene-α-D-mannofuranose (30)



<sup>1</sup>H NMR:  $\delta$  1.32 (s, 3H, -CH<sub>3</sub>), 1.39 (s, 3H, -CH<sub>3</sub>), 1.47 (s, 6H, 2 x -CH<sub>3</sub>), 4.02-4.15 (m, 3H, H-4, H-6, H-6'), 4.42 (ddd, 1H, H-5, J = 4.4, 6.2, 7.7 Hz), 4.48 (d, 1H, H-2, J = 5.9 Hz), 4.79 (dd, 1H, H-3, J = 3.5, 6.0 Hz), 5.45 (s, 1H, H-1).

<sup>13</sup>C NMR:  $\delta$ 25.8, 26.4, 27.1, 28.1, 67.9, 73.9, 80.6, 82.9, 86.1, 96.5, 110.4, 114.2,

MS: Calculated: 285.13 m/z, Found: (ESI pos) 308.1 m/z (M+Na<sup>+</sup>).

IR absorption: 2100 cm<sup>-1</sup> for azide group.

R<sub>f</sub>: 0.75 in 1:1 hexanes – ethyl acetate.

2,3,5-Tri-O-henzyl-tz-D-arm/dusfuramotyl uzida (33tt)

Synthesis of 1-azido-1-deoxy-2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranose (32) from 2,3,4,6-tetra-*O*-acetyl-α/β-D-glucopyranose (29).

Prepared from glucopyranose 29 (1.17 g, 3.36 mmol), p-ABSA (1.614 g, 6.7 mmol), and DBU (0.88 mL, 5.8 mmol) according to the general procedure described above. TLC (1:1 hexanes – ethyl acetate) showed the formation of product at  $R_f = 0.5$ . The product was purified by flash column, eluted with 10:1 hexanes – ethyl acetate, to give 0.116 g of azide 32 in 15% yield.

<sup>1</sup>H NMR: δ 2.01 (s, 3H, -CH<sub>3</sub>), 2.03 (s, 3H, -CH<sub>3</sub>), 2.08 (s, 3H, -CH<sub>3</sub>), 2.11 (s, 3H, -CH<sub>3</sub>), 3.79 (ddd, 1H, H-5, J = 2.2, 4.7, 6.9 Hz), 4.17 (dd, 1H, H-6, J = 2.2, 12.5 Hz), 4.27 (dd, 1H, H-6', J = 4.7, 12.4 Hz), 4.65 (d, 1H, H-1, J = 8.8 Hz), 4.96 (t, 1H, H-2, J = 9.2 Hz), 5.11 (t, 1H, H-3, J = 9.9 Hz), 5.22 (t, 1H, H-4, J = 9.5 Hz).

Melting point: 122-124 °C

Synthesis of 2,3,5-tri-O-benzyl- $\alpha$ - (33 $\alpha$ ) and - $\beta$ - (33 $\beta$ ) -D-arabinofuranosyl azides from 2,3,5-tri-O-benzyl- $\beta$ -D-arabinofuranose.

Prepared from arabinofuranose 31 (0.502 g, 1.19 mmol), p-ABSA (0.576 g, 2.39 mmol), and DBU (0.58 mL, 3.8 mmol) according to the general procedure described above. The product was purified by flash column, eluted with 2:1 hexanes – ethyl acetate, to give 0.19 g of azide 33 $\alpha$  and 33 $\beta$  in 18% yield.

## 2,3,5-Tri-O-benzyl-α-D-arabinofuranosyl azide (33α)

000

<sup>1</sup>H NMR: δ3.60 (d, 2H, H-5, H-5', J = 5.1 Hz), 3.90 (dd, 1H, H-2, J = 1.46, 1.83 Hz), 3.97 (dd, 1H, H-3, J = 2.6, 5.5 Hz), 4.36 (dd, 1H, H-4, J = 5.1, 10.6 Hz), 4.43-4.55 (m, 6H, -CH<sub>2</sub>Ph), 5.42 (s, 1H, H-1), 7.24-7.36 (m, 15H, Ar-H).

MS: Calculated: 445.2 m/z, Found: (ESI pos) 468.2 m/z (M+Na+).

 $R_f$ : 0.59 in 4:1 hexanes – ethyl acetate.

## 2,3,5-Tri-O-benzyl- $\beta$ -D-arabinofuranosyl azide (33 $\beta$ )

acetain. The product was purified by flash column stood with 10.1 because - ethy

<sup>1</sup>H NMR:  $\delta$  3.59 (d, 2H, H-5, H-5', J = 5.9 Hz), 4.06-4.13 (m, 3H, H-2, H-3, H-4), 4.54-4.65 (m, 6H, 3 x -CH<sub>2</sub>Ph), 5.21 (d, 1H, H-1, J = 4.8 Hz), 7.24-7.37 (m, 15H, Ar-H).

MS: Calculated: 445.2 m/z, Found: (ESI pos) 468.2 m/z (M+Na<sup>+</sup>).

R<sub>f</sub>: 0.55 in 4:1 hexanes – ethyl acetate.

Synthesis of methyl 5-azido-5-deoxy-2,3-*O*-isopropylidene-β-D-ribofuranoside (35) from methyl 2,3-*O*-isopropylidene-β-D-ribofuranoside (2).

Prepared from ribofuranoside 2 (0.416 g, 2.03 mmol), p-ABSA (0.989 g, 4.1 mmol), and DBU (0.62 mL, 4.1 mmol) according to the general procedure described above. TLC showed the formation of the product at  $R_f = 0.31$  in 10:1 hexanes – ethyl acetate. The product was purified by flash column eluted with 10:1 hexanes – ethyl acetate, to give 0.23 g of azide 35 in 49% yield.

The product was partified by flash column ciuted with 10:1 becames - ethyl acetaps, to

<sup>1</sup>H NMR:  $\delta$  1.32 (s, 3H, -CH<sub>3</sub>), 1.49 (s, 3H, -CH<sub>3</sub>), 3.29 (dd, 1H, H-5, J = 6.8, 12.7 Hz), 3.38 (s, 3H, -CH<sub>3</sub>), 3.46 (dd, 1H, H-5', J = 7.7, 12.4 Hz), 4.30 (t, 1H, H-4, J = 7.0 Hz), 4.61 (s, 2H, H-2, H-3), 5.00 (s, 1H, H-1).

<sup>13</sup>C NMR:  $\delta$ 26.2, 27.7, 54.9, 56.5, 83.2, 86.3, 86.6, 110.9, 113.8.

Synthesis of the 6-*O*-(*p*-acetamido)benzenesulfonate ester of 1,2:3,4-di-*O*-isopropylidene-α-D-galactopyranose (36) from 1,2:3,4-di-*O*-isopropylidene-α-D-galactopyranose (34).

Prepared from galactopyranose 34 (1.088 g, 4.18 mmol), p-ABSA (2.036 g, 8.47 mmol), and DBU (0.90 mL, 5.9 mmol) according to the general procedure described above. TLC showed the formation of product at  $R_f$ =0.15 in 1:1 hexanes – ethyl acetate. The product was purified by flash column eluted with 10:1 hexanes – ethyl acetate, to give 1.57 g of sulfonate ester 36 in 82% yield.

<sup>1</sup>H NMR:  $\delta$  1.27 (s, 3H, -CH<sub>3</sub>), 1.29 (s, 3H, -CH<sub>3</sub>), 1.32 (s, 3H, -CH<sub>3</sub>), 1.35 (s, 3H, -CH<sub>3</sub>), 2.23 (s, 3H, -CH<sub>3</sub> α to C=O), 4.07-4.15 (m, 3H, H-6, H-6', H-5), 4.21

(dd, 1H, H-4, J = 4.8, 8.9 Hz), 4.30 (dd, 1H, H-2, J = 2.6, 5.2 Hz), 4.61 (dd, 1H, H-3, J = 5.6, 8.1 Hz), 5.46 (d, 1H, H-1, J = 5.1 Hz), 7.68 (d, 2H, Ar-H, J = 9.1 Hz), 7.81 (d, 2H, Ar-H, J = 9.1 Hz), 7.84 (s, H, N-H).

<sup>13</sup>C NMR: δ22.4, 25.5, 26.1, 27.1, 61.7, 67.1, 69.7, 71.4, 71.5, 71.6, 97.2, 110.1, 110.8, 120.4, 130.5, 144.2, 169.9, 172.3.

MS: Calculated: 457.1 m/z, Found: (ESI pos) 480.2 m/z (M+Na<sup>+</sup>).

Synthesis of the 3-*O*-(*p*-acetamido)benzenesulfonate ester of 1,2:5,6-di-*O*-isopropylidene-α-D-allofuranose (37) from 1,2:5,6-di-*O*-isopropylidene-α-D-allofuranose (3)

Prepared from allofuranose 3 (0.303 g, 1.16 mmol), p-ABSA (0.564 g, 2.35 mmol), and DBU (0.36 mL, 2.36 mmol) according to the general procedure described above. TLC showed the formation of product at  $R_f$  = 0.02 in 1:1 hexanes – ethyl acetate. The product was recrystalized from methanol to give 0.479 g of sulfonate ester 37 in 90% yield.

<sup>1</sup>H NMR: δ1.29 (s, 9H, 3 x -CH<sub>3</sub>), 1.36 (s, 3H, -CH<sub>3</sub>), 2.23 (s, 3H, -CH<sub>3</sub> α to C=O), 3.80 (dd, 1H, H-4, J = 6.4, 8.6 Hz), 3.97 (dd, 1H, H-3, J = 6.9, 8.4 Hz), 4.15 (dd, 1H, H-2, J = 4.2, 7.5 Hz), 4.21 (ddd, 1H, H-5, J = 4.2, 6.6, 10.6 Hz), 4.66 (m, 2H, H-6 and H-6'), 5.77 (d, 1H, H-1, J = 3.3 Hz), 7.70 (d, 2H, Ar-H, J = 8.8 Hz), 7.80 (s, H, N-H), 7.89 (d, 2H, Ar-H, J = 9.2 Hz).

<sup>13</sup>C NMR: δ26.1, 26.3, 27.4, 27.8, 27.9, 66.4, 75.8, 77.8, 78.2, 79.0, 104.9, 111.1, 114.7, 120.1, 130.7, 131.4, 144.3, 169.7.

MS: Calculated: 457.1 m/z, Found: (ESI pos) 480.2 m/z (M+Na<sup>+</sup>).

Melting point: 134-140 °C

Synthesis of the 6-O-(p-acetamido)benzenesulfonate ester of 1,2:5,6-di-O-isopropylidene- $\alpha$ -D-glucofuranose (38) from 1,2:5,6-di-O-isopropylidene- $\alpha$ -D-glucofuranose (4).

Prepared from glucofuranose 4 (0.502 g, 1.9 mmol), p-ABSA (0.925 g, 3.8 mmol), and DBU (0.59 mL, 3.8 mmol) according to the general procedure described above. TLC showed the formation of product at  $R_f$ = 0.15 in 1:1 hexanes – ethyl acetate. The product was recrystalized from methanol to give 0.79 g of sulfonate ester 38 in 90% yield.

<sup>1</sup>H NMR:  $\delta$  1.18 (s, 3H, -CH<sub>3</sub>), 1.21 (s, 3H, -CH<sub>3</sub>), 1.32 (s, 3H, -CH<sub>3</sub>), 1.49 (s, 3H, -CH<sub>3</sub>), 2.24 (s, 3H, -CH<sub>3</sub> α to C=O), 3.89-4.14 (m, 4H, H-4, H-5, H-6, H-6'), 4.77 (d, 1H, H-3, J = 1.8 Hz), 4.85 (d, 1H, H-2, J = 3.7 Hz), 5.92 (d, 1H, H-1, J = 3.7 Hz), 7.62 (s, H, N-H), 7.71 (d, 2H, Ar-H, J = 8.4 Hz), 7.88 (d, 2H, Ar-H, J = 8.1 Hz).

<sup>13</sup>C NMR: δ26.1, 26.2, 27.5, 27.8, 27.9, 68.2, 72.9, 80.9, 83.3, 84.4, 106.2, 110.3, 113.6, 120.1, 130.8, 130.9, 144.3, 169.7.

MS: Calculated: 457.1 m/z, Found: (ESI pos) 480.2 m/z (M+Na<sup>+</sup>).

Melting point: 98-102 °C

Synthesis of the 6-O-(p-nitro)benzenesulfonate ester of 1,2:3,4-di-O-isopropylidene- $\alpha$ -D-galactopyranose (40) from 1,2:3,4-di-O-isopropylidene- $\alpha$ -D-galactopyranose (34).

Prepared from galactopyranose 34 (0.43 g, 1.65 mmol), p-NBSA (0.765 g, 3.3 mmol), and DBU (0.51 mL, 3.3 mmol) according to the general procedure described above. TLC showed the formation of product at  $R_f = 0.67$  in 1:1 hexanes – ethyl acetate. The product was purified by flash column, eluted with 10:1 hexanes – ethyl acetate, to give 0.45 g of sulfonate ester 40 in 61% yield.

<sup>1</sup>H NMR: δ1.26 (s, 3H, -CH<sub>3</sub>), 1.29 (s, 3H, -CH<sub>3</sub>), 1.32 (s, 6H, 2 x -CH<sub>3</sub>), 4.15-4.32 (m, 5H, H-3, H-4, H-5, H-6, H-6'), 4.58 (dd, 1H, H-2, J = 2.5, 7.7 Hz), 5.37 (d, 1H, H-1, J = 5.1 Hz), 8.13 (d, 2H, Ar-H, J = 8.8 Hz). 8.37 (d, 2H, Ar-H, J = 8.8 Hz).

<sup>13</sup>C NMR: δ25.6, 26.1, 27.1, 27.2, 61.6, 67.1, 71.0, 71.3, 71.6, 97.1, 110.1, 110.8, 125.3, 130.5, 142.7, 151.7.

MS: Calculated: 445.1 m/z, Found: (ESI pos) 468.1 m/z (M+Na<sup>+</sup>).

Synthesis of the 6-*O*-(*p*-nitro)benzenesulfonate ester of 1,2:5,6-di-*O*-isopropylidene-α-D-glucofuranose (41) from 1,2:5,6-di-*O*-isopropylidene-α-D-glucofuranose (4).

Prepared from glucofuranose 3 (0.51 g, 1.9 mmol), p-NBSA (0.901 g, 3.9 mmol), and DBU (0.60 mL, 3.9 mmol) according to the general procedure described above. TLC showed the formation of product at  $R_f$  = 0.73 in 1:1 hexanes – ethyl acetate. The product was purified by flash column, eluted with 4:1 hexanes – ethyl acetate, to give 0.22 g of sulfonate ester 41 in 25% yield.

<sup>1</sup>H NMR:  $\delta$  1.09 (s, 3H, -CH<sub>3</sub>), 1.16 (s, 3H, -CH<sub>3</sub>), 1.21 (s, 3H, -CH<sub>3</sub>), 1.33 (s, 3H, -CH<sub>3</sub>), 3.88-4.11 (m, 4H, H-4, H-5, H-6, H-6'), 4.85 (d, 1H, H-3, J = 2.2 Hz), 4.88 (d, 1H, H-2, J = 3.7 Hz), 5.92 (d, 1H, H-1, J = 3.7 Hz), 8.14 (d, 2H, Ar-H, J = 8.8 Hz), 8.35 (d, 2H, Ar-H, J = 8.8 Hz).

<sup>13</sup>C NMR: δ 26.2, 27.4, 27.8, 27.9, 61.6, 68.4, 72.7, 80.8, 84.5, 106.2, 110.3, 113.7, 125.2, 130.9, 142.3, 151.9.

MS: Calculated: 445.1 m/z, Found: (ESI pos) 464.1 m/z (M+H<sub>3</sub>O<sup>+</sup>).

Synthesis of *p*-nitrobenzenesulfonyl azide (43) from *p*-nitrobenzenesulfonyl chloride (42).

*p*-Nitrobenzenesulfonyl chloride (5.007 g, 22.26 mmol) and sodium azide (2.935 g, 45.12 mmol) were placed in a flame-dried round-bottom flask. Anhydrous methanol (50 mL) was added to dissolve the reagent. The mixture was let stir overnight, and then evaporated under reduced pressure at 40 °C or below. The residue was partitioned between CH<sub>2</sub>Cl<sub>2</sub> (40 mL) and H<sub>2</sub>O (40 mL). The organic layer was then dried over anhydrous MgSO<sub>4</sub>, filtered, and evaporated to give 4.7 g of a yellow solid (91 % yield).

<sup>1</sup>H NMR: δ 8.17 (d, 2H, Ar-H, J = 9.15 Hz), 8.17 (d, 2H, Ar-H, J = 9.15 Hz).

Melting point: 100-102 °C

Synthesis of 2,3:5,6-di-*O*-isopropylidene-α-D-mannofuranosyl chloride (44) from 2,3:5,6-di-*O*-isopropylidene-α-D-mannofuranose (1).

To a flame-dried 25 mL round-bottom flask, 1.0 equivalent of mannofuranose 1 (0.113 g, 0.43 mmol) and 1.0 equivalents of p-nitrobenzenesulfonyl chloride or p-tosyl chloride (0.099 g, 0.43 mmol) were dissolved in 5 mL of dry acetonitrile. While stirring at RT, 1.1 equivalents of DBU (1.1 mL, 0.48 mmol) was quickly added dropwise; the reaction changed from yellow to purple. The progress of the reaction was monitored by TLC (1:1 hexanes – ethyl acetate) for the disappearance of starting material and the appearance of a spot with a higher  $R_f$  value. The reaction was let run for 48 h before being evaporated. The residue was dissolved in  $CH_2Cl_2$  (10 mL) and washed with 5%  $H_2SO_4$  (3 x 10 mL) and  $H_2O$  (2 x 10 mL). The organic layer was dried over anhydrous MgSO<sub>4</sub>, filtered, and evaporated under reduced pressure. The product was purified by flash column using 6:1 hexanes – ethyl acetate.  $^{40}$ 

<sup>1</sup>H NMR:  $\delta$  1.34 (s, 3H, -CH<sub>3</sub>), 1.39 (s, 3H, -CH<sub>3</sub>), 1.47 (s, 6H, 2 x -CH<sub>3</sub>), 4.02 (dd, 1H, H-6, J = 4.4, 8.8 Hz), 4.10 (dd, 1H, H-6', J = 6.0, 9.0 Hz), 4.21 (dd, 1H, H-4, J = 3.4, 7.9 Hz), 4.43 (ddd, 1H, H-5, J = 4.4, 6.2, 7.7 Hz), 4.88 (dd, 1H, H-3, J = 3.4, 5.6 Hz), 5.95 (d, 1H, H-2, J = 4.9 Hz), 6.08 (s, 1H, H-1).

Synthesis of (-)-ca-multistrimin." J. Org. Chem. 1982, 47, 941-946.

## References References

- Stick, R. V. Carbohydrates: The Sweet Molecules of Life, Academic Press: San Diego, 2001.
- Davis, B. G., Fairbanks, J. F. Carbohydrate Chemistry, Oxford University Press: Oxford, 2002.
- 3. Guthrie, R. D., Honeyman, J. Carbohydrates: An introduction to the Chemistry of Carbohydrates, Clarendon Press: Oxford, 1968, 1-5.
- 4. Osburn, H. M. I. Carbohydrates, Academic Press: Amsterdam, 2003.
- Collins, P. M.; Ferrier, R. J. Monosacharides: Their Chemistry and Their Roles in Natural Products, John Wiley & Sons: Chichester, England, 1995, 208-289.
- 6. Hanessian, S. Preparative Carbohydrate Chemistry, Marcel Dekker Inc.: New York, 1997, 207-262.
- Lopez, J. C.; Lameignere, E.; Burnouf, C.; de Los Angeles Laborde, M.; Ghini,
   A. A.; Olesker, A.; Lukacs, G., "Efficient routes to pyranosidic homologated conjugated enals and dienes from monosaccharides," *Tetrahedron* 1993, 49, 7701-7722.
- 8. Loustau Cazalet, C., "Nouvelles voies de synthese de lactones bioactives,"

  These, Universite de Nancy, France. 1994.
- Plaumann, D. E.; Fitzsimmons, B. J.; Richie, B. M.; Fraser-Reid, B., "Synthetic route to 6,8-dioxabicyclo[3.2.1]octyl pheromones from D-glucose derivatives. 4.
   Synthesis of (-)-α-multistriatin," J. Org. Chem. 1982, 47, 941-946.

- Moufid, N.; Chapleur, Y.; Mayon, P., "Radical cyclization of some unsaturated carbohydrate-derived propargyl derivatives," J. Chem. Soc. Perkins Trans. 1
  1993, 999.
- Sarda, P.; Olesker, A.; Lukacs, G., "Synthesis of methyl 2-C-acetamidomethyl-2-deoxy-α-D-glucopyranoside and its manno isomer," Carbohydr. Res. 1992,
  229, 161-165.
- Berndt, D. F.; Norris, P., "Intramolecular carbene and nitrene insertion at C-2 of diacetone-D-glucose," *Tetrahedron Lett.* 2002, 43, 3961-3962.
- Patai, S. The Chemistry of Diazonium and Diazo Groups, John Wiley & Sons: Chichester, England, 1978.
- Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides, John Wiley & Sons Inc.: New York, 1998.
- Regitz, M.; Hocker, J.; Liedhegener, A., "t-Butyl diazoacetate." Org. Synth.
   Coll. Vol. 5, Baumgarten, H. E., Ed.; John Wiley & Sons: New York, 1973.
- Regitz, M; Ruter, J.; Liedhegerner, A., "2-Diazocycloalkanones: 2-Diazocycloclohexanone," Org. Synth. 1971, 51, 86-89.
- 17. McClure, D. E.; Lumma, P. K.; Arison, B. H.; Jones, J. H.; Baldwin, J. J., "1,4-Oxazines via intramolecular ring closure of β-hydroxydiazoacetamides: Phenylalanine to tetrahydroindeno[1,2-b]-1,4-oxazin-3(2H)-ones," J. Org. Chem. 1983, 48, 2675-2679.

- Sugihara, Y.; Yamamoto, H.; Mizoue, K.; Murata, I., "Cyclohepta[a]phenalene:
   A highly electron-donating nonalternant hydrocarbon," Angew. Chem. Int. Ed.
   Engl. 1987, 26, 1247-1249.
- Boyar, E. B.; Robinson, S. D., "Rhodium(II) carboxylates," Coord. Chem. Rev. 1983, 50, 109-208.
- 20. Felthouse, T. R., "The chemistry, structure, and metal-metal bonding in compounds of rhodium(II)," *Prog. Inorg. Chem.* 1982, 29, 73-166.
- 21. Wenkert, E.; Davis, L. L.; Mylari, B. L.; Solomon, M. F.; da Silva, R. R.; Shulman, S.; Warnet, R. J.; Ceccherelli, P.; Curini, M.; Pellicciari, R., "Cyclopentanone synthesis by intramolecular carbon-hydrogen insertion of diazoketones. A diterpene-to-steroid skeleton conversion," J. Org. Chem. 1982, 47, 3242-3247.
- Ursini, A.; Pellicciari, R.; Tamburini, B.; Carlesso, R.; Gaviraghi, G., "A new synthesis of 6-oxopenicillanates by ozonolysis of 6-diazopenicillanates," Synthesis 1992, 363-364.
- 23. Aller, E.; Brown, D. S.; Cox, G. G.; Miller, D. J.; Moody, C. J., "Diastereoselectivity in the O-H insertion reactions of rhodium carbenoids derived from phenyldiazoacetates of chiral alcohols. Preparation of α-hydroxy and α-alkoxy esters," J. Org. Chem. 1995, 60, 4449-4460.
- Branderhorst, H. M.; Kemmink, J.; Liskamp, R. M. J.; Pieters, R. J., "Catalytic conversions of diazosugars," *Tetrahedron Lett.* 2002, 43, 9601-9603.
- Patai, S. The Chemistry of the Azido Group, Interscience Publishers: London, 1971.

- Brase, S.; Gil, C.; Knepper, K.; Zimmerman, V., "Organic azides: An exploding diversity of a unique class of compounds," *Angew. Chem. Int. Ed.* 2005, 44, 5188-5240.
- Scriven, E. F. V. Azides and Nitrenes: Reactivity and Utility, Academic Press Inc.: Orlando, Florida, 1984.
- 28. Root, Y. Y., "Synthesis of Derivatives of D-ManAcA: Aminosugar component of S. aureus Capsular Polysaccharies," Youngstown State University MS Thesis, 2003.
- Lee, S. H.; Yoon, J.; Chung, S. H.; Lee, Y. S. Tetrahedron Lett. 1993, 34, 6475-6478.
- Thompson, A. S.; Humphrey, G. R.; DeMarco, A. M.; Mathre, D. J.; Grabowski,
   E. J. J., "Direct conversion of activated alcohols to azides using diphenyl phosphorazidate. A practical alternative to Mitsunobu conditions," J. Org. Chem. 1993, 58, 5886-5888.
- 31. De Belder, A. N., "Cyclic acetals of the aldoses and aldosides," *Adv. Carbohydr. Chem.* **1965**, 20, 219-302.
- 32. De Belder, A. N., "Cyclic acetals of the aldoses and aldosides," *Adv. Carbohydr. Chem. Biochem.* 1977, 34, 179-241.
- Leonard, N. J.; Carraway, K. L., "5-Amino-5-deoxyribose derivatives.
   Synthesis and use in the preparation of "reversed" nucleosides," *J. Heterocycl. Chem.* 1966, 3, 485-489.
- 34. Steglich, W.; Neises, B., "Simple method for the esterification of carboxylic acids," *Angew. Chem. Int. Ed.* **1978**, *17*, 522-524.

- 35. Berndt, D. F., "Synthesis and chemistry of new sugar-derived diazoesters and acyl azides," Youngstown State University MS Thesis, 2001.
- Scoffier, G.; Gagnaire, D.; Utille, J. P., "Coupure selective par l'hydrazine des groupements acetyls anomers de residus glycosyles acetyls," *Carbohydr. Res.* 1975, 39,368-373.
- Miner, P. L., "Synthesis of diverse compounds using mannofuranose as a chiral scaffold," Youngstown State University MS Thesis, 2004.
- Stimac, A.; Kobe, J., "Stereoselective synthesis of 1,2-cis- and 2-deoxyglycofuranosyl azides form glycosyl halides," Carbohydr. Res. 2000, 329, 317-324.
- 39. Brimacombe, J. S.; Minshall, J.; Tucker, L. C. N., "Nucleophilic displacements of methyl 2,3-O-isopropylidene-4-O-toluene-p-sulphonyl-α-D-lyxo- and -β-L-ribo-pyranosides, and deamination of the corresponding 4-amino sugars," Carbohydr. Res. 1976, 52, 31-47.
- Cicchillo, R. M.; Norris, P., "A convenient synthesis of glycosyl chlorides from sugar hemiacetals using triphosgene as the chlorine source," *Carbohydr. Res.* 2000, 328, 431-434.

# Appendix A

NMR, IR and Mass Spectra



Figure 22: <sup>1</sup>H NMR spectrum of 2,3:5,6-di-O-isopropylidene-α-D-mannofuranose (1).













Figure 28: Mass spectrum of methyl 2,3-O-isopropylidene-5-O-phenacyl-β-D-ribofuranoside (6).











Figure 33: <sup>1</sup>H NMR spectrum of 2,3:5,6-di-O-isopropylidene-1-O-(phenacyldiazo)-α-D-mannofuranose (9).



Figure 34: <sup>13</sup>C NMR spectrum of 2,3:5,6-di-O-isopropylidene-1-O-(phenacyldiazo)-α-D-mannofuranose (9).



Figure 35: IR spectrum of 2,3:5,6-di-O-isopropylidene-1-O-(phenacyldiazo)-α-D-mannofuranose (9).







Figure 38: IR spectrum of methyl 2,3-O-isopropylidene-5-O-(phenacyldiazo)-\beta-D-ribofuranoside (10).







Figure 41: IR spectrum of 1,2:5,6-di-O-isopropylidene-3-O-(phenacyldiazo)- $\alpha$ -D-allofuranose (11).





Figure 43: IR spectrum of 1,2:5,6-di-O-isopropylidene-3-O-(phenacyldiazo)-α-D-glucofuranose (12).









Figure 47: Mass spectrum of allofuranose dimer 15.









Figure 51: Mass spectrum of ribofuranose ketone 17.









Figure 55: Mass spectrum of mannofuranose insertion product 19.





Figure 57: Mass spectrum of glucofuranose insertion product 20.







Figure 60: Mass spectrum of methyl 2,3-O-isopropylidene-5-O-(2-ethoxy-2-phenylacetyl)-β-D-ribofuranosides (22).





Figure 62: Mass spectrum of methyl 2,3-O-isopropylidene-5-O-(2-isopropoxy-2-phenylacetyl)-β-D-ribofuranose (23).

16:08:58

06/21/06







Figure 65: Mass spectrum of 1,2.5,6-di-O-isopropylidene-3-O- $\alpha$ -(2-methoxy-2-phenylacetyl)- $\alpha$ -D-allofuranose (25).





Figure 67: Mass spectrum of 1,2:5,6-di-O-isopropylidene-3-O- $\alpha$ -(2-ethoxy-2-phenylacetyl)- $\alpha$ -D-allofuranose (26).















Figure 74: Mass spectrum of 1-azido-1-deoxy-2,3:5,6-di-O-isopropylidene-α-D-mannofuranose (30).

printed: 06/21/06 15:28:56



Figure 75: IR spectrum of 1-azido-1-deoxy-2,3:5,6-di-O-isopropylidene-α-D-mannofuranose (30).







Figure 78: Mass spectrum of 2,3,5-tri-O-benzyl-α-D-arabinofuranosyl azide (33α).







Figure 81: Mass spectrum of 2,3,5-tri-O-benzyl-\beta-D-arabinofuranosyl azide (33\beta).

printed: 06/21/06 15:27:25











Figure 86: Mass spectrum of 6-O-(p-acetamido)benzenesulfonate ester of 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (36).

printed: 06/21/06 15;25:04







Figure 89: Mass spectrum of 3-O-(p-acetamido)benzenesulfonate ester of 1,2:5,6-di-O-isopropylidene-α-D-allofuranose (37).

printed: 06/21/06 15:23:19







Figure 92: Mass spectrum of 6-0-(p-acetamido)benzenesulfonate ester of 1,2:5,6-di-0-isopropylidene-α-D-glucofuranose (38)







Figure 95: <sup>13</sup>C NMR spectrum of 6-*O*-(*p*-nitro)benzenesulfonate ester of 1,2:3,4-di-*O*-isopropylidene-α-D-galactopyranose (40).





Page 1 of 1



Figure 98: Mass spectrum of 6-O-(p-nitro)benzenesulfonate ester of 1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (41).

15:21:54

printed: 06/21/06

Bruker Daltonics DataAnalysis 3.0



Figure 99: <sup>1</sup>H NMR spectrum of *p*-nitrobenzenesulfonyl azide (43).



## Appendix B

X-Ray Crystallography



**Figure 101:** X-Ray crystal structure of 2,3:5,6-di-*O*-isopropylidene-1-*O*-phenacyl-α-D-mannofuranose (5).

Refinement of P' against his reflections. The weighted h-factor on and goodness of fit are pased on P', conventional k-factors R are pased on P, with P set to seco for negative P'. The threshold expression of  $P' > 2\sigma(P')$  is used only for calculating R-factors

Table 1. Crystal data and structure refinement for 06mz018m:

Identification code: 06mz018m Empirical formula: C20 H26 O7 Formula weight: 378.41 Temperature: 100(2) K Wavelength: 0.71073 Å Crystal system: Orthorhombic Space group: P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> Unit cell dimensions:  $a = 5.6174(3) \text{ Å, } \alpha = 90^{\circ}$  $b = 13.0946(8) \text{ Å, } \beta = 90^{\circ}$  $c = 25.2021(15) \text{ Å, } \gamma = 90^{\circ}$ Volume, Z: 1853.81(19) Å<sup>3</sup>, 4 Density (calculated): 1.356 Mg/m<sup>3</sup> Absorption coefficient: 0.102 mm<sup>-1</sup> F(000): 808 Crystal size:  $0.60 \times 0.33 \times 0.12$  mm Crystal shape, colour: plate, colourless heta range for data collection: 1.62 to 28.28 $^{\circ}$ Limiting indices:  $-7 \le h \le 7$ ,  $-17 \le k \le 17$ ,  $-32 \le 1 \le 33$ Reflections collected: 18953 Independent reflections: 2668 (R(int) = 0.0399)Completeness to  $\theta = 28.28^{\circ}$ : 100.0 % Absorption correction: multi-scan Max. and min. transmission: 0.988 and 0.812 Refinement method: Full-matrix least-squares on  $F^2$ Data / restraints / parameters: 2668 / 0 / 248 Goodness-of-fit on  $F^2$ : 1.331

Final R indices  $[I>2\sigma(I)]$ : R1 = 0.0505, wR2 = 0.1171

R indices (all data): R1 = 0.0508, wR2 = 0.1173

Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating R-factors

Largest diff. peak and hole: 0.370 and  $-0.258 \text{ e} \times \text{Å}^{-3}$ 

Treatment of hydrogen atoms:

All hydrogen atoms were placed in calculated positions and were isotropically refined with a displacement parameter 1.5 (methyl) or 1.2 times (all other) that of the adjacent carbon atom.

Table 2. Atomic coordinates [x  $10^4$ ] and equivalent isotropic displacement parameters [Å $^2$  x  $10^3$ ] for 06mz018m. U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|       |          | У       | z       | U(eq) |
|-------|----------|---------|---------|-------|
| C(1)  | 8021(4)  | 5064(2) | 2149(1) | 14(1) |
| C(2)  | 5653(5)  | 4707(2) | 2383(1) | 16(1) |
| C(3)  | 5230(5)  | 5420(2) | 2861(1) | 14(1) |
| C(4)  | 7276 (5) | 6186(2) | 2840(1) | 15(1) |
| C(5)  | 8432(5)  | 6452(2) | 3362(1) | 17(1) |
| C(6)  | 10386(5) | 7277(2) | 3312(1) | 18(1) |
| C(7)  | 4927(5)  | 3763(2) | 3128(1) | 18(1) |
| C(8)  | 2243(5)  | 3600(2) | 3108(1) | 18(1) |
| C(9)  | 6133(5)  | 3004(3) | 3485(1) | 32(1) |
| C(10) | 7721(5)  | 7797(2) | 3933(1) | 17(1) |
| C(11) | 9020(6)  | 7498(2) | 4439(1) | 24(1) |
| C(12) | 5801(6)  | 8580(2) | 4028(1) | 25(1) |
| C(13) | 9301(5)  | 5799(2) | 1341(1) | 16(1) |
| C(14) | 8400(5)  | 6279(2) | 831(1)  | 22(1) |
| C(15) | 9879(5)  | 5968(2) | 360(1)  | 16(1) |
| C(16) | 9133(5)  | 5172(2) | 31(1)   | 21(1) |
| C(17) | 10503(6) | 4865(2) | -397(1) | 26(1) |
| C(18) | 12659(6) | 5338(2) | -497(1) | 25(1) |
| C(19) | 13418(5) | 6130(2) | -176(1) | 23(1) |
| C(20) | 12031(5) | 6441(2) | 249(1)  | 19(1) |
| 0(1)  | 9107(3)  | 5693(1) | 2528(1) | 16(1) |
| 0(2)  | 7450(3)  | 5629(1) | 1676(1) | 17(1) |
| 0(3)  | 5940(4)  | 3720(1) | 2611(1) | 23(1) |
| 0(4)  | 5450(4)  | 4766(1) | 3309(1) | 20(1) |
| 0(5)  | 6671(3)  | 6912(1) | 3696(1) | 18(1) |
| 0(6)  | 9344(4)  | 8164(1) | 3544(1) | 20(1) |
| 0(7)  | 11329(3) | 5606(2) | 1443(1) | 19(1) |

All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

|               | gths [Å] and angles [de | eg] for 06mz018m |
|---------------|-------------------------|------------------|
| C(1) - O(1)   | 1.400(3)                |                  |
| C(1) - O(2)   | 1.439(3)                |                  |
| C(1) - C(2)   | 1.528(3)                |                  |
| C(1)-H(1)     | 1.0000                  |                  |
| C(2) - O(3)   | 1.424(3)                |                  |
| C(2)-C(3)     | 1.543(3)                |                  |
| C(2)-H(2)     | 1.0000                  |                  |
| C(3) - O(4)   | 1.421(3)                |                  |
| C(3)-C(4)     | 1.527(4)                |                  |
| C(3)-H(3)     | 1.0000                  |                  |
| C(4) - O(1)   | 1.447(3)                |                  |
| C(4) - C(5)   | 1.509(3)                |                  |
| C(4)-H(4)     | 1.0000                  |                  |
| C(5) - O(5)   | 1.432(3)                |                  |
| C(5) - C(6)   | 1.545(4)                |                  |
| C(5) - H(5)   | 1.0000                  |                  |
| C(6)-O(6)     | 1.427(3)                |                  |
| C(6)-H(6A)    | 0.9900                  |                  |
| C(6)-H(6B)    | 0.9900                  |                  |
| C(7) - O(4)   | 1.420(3)                |                  |
| C(7) - O(3)   | 1.423(3)                |                  |
| C(7) - C(9)   | 1.502(4)                |                  |
| C(7) - C(8)   | 1.523(4)                |                  |
| C(8) - H(8A)  | 0.9800                  |                  |
|               | 0.9800                  |                  |
|               | 0.9800                  |                  |
| C(8)-H(8C)    | 0.9800                  |                  |
| C(9)-H(9A)    |                         |                  |
| C(9)-H(9B)    | 0.9800                  |                  |
| C(9)-H(9C)    | 0.9800                  |                  |
| C(10)-O(6)    | 1.421(3)                |                  |
| C(10)-O(5)    | 1.431(3)                |                  |
| C(10)-C(12)   | 1.507(4)                |                  |
| C(10)-C(11)   | 1.520(4)                |                  |
| C(11)-H(11A)  | 0.9800                  |                  |
| C(11)-H(11B)  | 0.9800                  |                  |
| C(11)-H(11C)  | 0.9800                  |                  |
| C(12)-H(12A)  | 0.9800                  |                  |
| C(12)-H(12B)  | 0.9800                  |                  |
| C(12)-H(12C)  | 0.9800                  |                  |
| C(13)-O(7)    | 1.195(3)                |                  |
| C(13)-O(2)    | 1.358(3)                |                  |
| C(13)-C(14)   | 1.517(3)                |                  |
| C(14) - C(15) | 1.506(4)                |                  |
| C(14)-H(14A)  | 0.9900                  |                  |
| C(14)-H(14B)  | 0.9900                  |                  |
| C(15) - C(20) | 1.386(4)                |                  |
| C(15)-C(16)   | 1.395(4)                |                  |
| C(16) - C(17) | 1.385(4)                |                  |
| C(16)-H(16)   | 0.9500                  |                  |
| C(17)-C(18)   | 1.384(5)                |                  |
| C(17)-H(17)   | 0.9500                  |                  |
| C(18)-C(19)   | 1.382(4)                |                  |
| C(18)-H(18)   | 0.9500                  |                  |
| C(19)-C(20)   | 1.386(4)                |                  |
|               |                         |                  |
| C(19)-H(19)   | 0.9500                  |                  |

| 0/11 0/11 0/21       | 111 1/21   |
|----------------------|------------|
| O(1) - C(1) - O(2)   | 111.1(2)   |
| O(1) - C(1) - C(2)   | 107.23(19) |
| O(2) - C(1) - C(2)   | 106.4(2)   |
|                      |            |
| O(1) - C(1) - H(1)   | 110.6      |
| O(2)-C(1)-H(1)       | 110.6      |
|                      |            |
| C(2)-C(1)-H(1)       | 110.6      |
| O(3)-C(2)-C(1)       | 109.6(2)   |
|                      |            |
| O(3)-C(2)-C(3)       | 104.44(19) |
| C(1)-C(2)-C(3)       | 104.5(2)   |
|                      |            |
| O(3)-C(2)-H(2)       | 112.6      |
| C(1)-C(2)-H(2)       | 112.6      |
| C(3)-C(2)-H(2)       | 112.6      |
|                      |            |
|                      | 111.0(2)   |
| O(4)-C(3)-C(2)       | 104.03(19) |
|                      |            |
| C(4)-C(3)-C(2)       | 104.7(2)   |
| O(4) - C(3) - H(3)   | 112.2      |
| C(4)-C(3)-H(3)       | 112.2      |
|                      |            |
| C(2)-C(3)-H(3)       | 112.2      |
| O(1)-C(4)-C(5)       | 105.8(2)   |
|                      |            |
|                      | 105.15(19) |
| C(5)-C(4)-C(3)       | 116.4(2)   |
|                      | 109.8      |
| O(1)-C(4)-H(4)       |            |
| C(5)-C(4)-H(4)       | 109.8      |
| C(3)-C(4)-H(4)       | 109.8      |
|                      |            |
| O(5) - C(5) - C(4)   | 108.2(2)   |
| O(5)-C(5)-C(6)       | 104.2(2)   |
|                      |            |
| C(4)-C(5)-C(6)       | 113.3(2)   |
| O(5)-C(5)-H(5)       | 110.3      |
| C(4)-C(5)-H(5)       | 110.3      |
|                      |            |
| C(6)-C(5)-H(5)       | 110.3      |
| O(6)-C(6)-C(5)       | 104.1(2)   |
|                      |            |
| O(6) - C(6) - H(6A)  | 110.9      |
| C(5)-C(6)-H(6A)      | 110.9      |
|                      |            |
| O(6)-C(6)-H(6B)      | 110.9      |
| C(5)-C(6)-H(6B)      | 110.9      |
| H(6A)-C(6)-H(6B)     | 109.0      |
|                      |            |
| O(4)-C(7)-O(3)       | 104.2(2)   |
| O(4)-C(7)-C(9)       | 109.1(2)   |
|                      | 110.0(2)   |
| O(3)-C(7)-C(9)       |            |
| O(4)-C(7)-C(8)       | 110.2(2)   |
| O(3) - C(7) - C(8)   | 111.0(2)   |
|                      |            |
| C(9)-C(7)-C(8)       | 112.0(2)   |
| C(7)-C(8)-H(8A)      | 109.5      |
|                      |            |
| C(7)-C(8)-H(8B)      | 109.5      |
| H(8A)-C(8)-H(8B)     | 109.5      |
|                      | 109.5      |
| C(7)-C(8)-H(8C)      |            |
| H(8A) - C(8) - H(8C) | 109.5      |
| H(8B)-C(8)-H(8C)     | 109.5      |
|                      |            |
| C(7)-C(9)-H(9A)      | 109.5      |
| C(7)-C(9)-H(9B)      | 109.5      |
|                      | 109.5      |
| H(9A)-C(9)-H(9B)     |            |
| C(7) - C(9) - H(9C)  | 109.5      |
| H(9A)-C(9)-H(9C)     | 109.5      |
|                      |            |
| H(9B)-C(9)-H(9C)     | 109.5      |
| O(6) - C(10) - O(5)  | 104.52(19) |
| O(6) -C(10) -C(12)   | 109.8(2)   |
| O(D) - C(IU) - C(IZ) | 107.0(2)   |

```
O(5)-C(10)-C(12)
                     108.8(2)
O(6) - C(10) - C(11)
                       110.9(2)
O(5) - C(10) - C(11)
                       109.8(2)
C(12)-C(10)-C(11)
                       112.7(2)
C(10) - C(11) - H(11A)
                       109.5
C(10) - C(11) - H(11B)
                       109.5
H(11A)-C(11)-H(11B)
                       109.5
C(10) - C(11) - H(11C)
                       109.5
H(11A) - C(11) - H(11C)
                   109.5
H(11B)-C(11)-H(11C)
                   109.5
C(10) - C(12) - H(12A)
                   109.5
C(10) - C(12) - H(12B)
                   109.5
H(12A)-C(12)-H(12B)
                   109.5
                   109.5
C(10) - C(12) - H(12C)
H(12A)-C(12)-H(12C)
                   109.5
                   109.5
H(12B)-C(12)-H(12C)
O(7) - C(13) - O(2)
                   124.2(2)
O(7) - C(13) - C(14)
                   126.0(2)
O(2) - C(13) - C(14)
                   109.8(2)
                   111.8(2)
C(15) - C(14) - C(13)
                   109.3
C(15)-C(14)-H(14A)
C(13)-C(14)-H(14A)
                   109.3
C(15)-C(14)-H(14B)
                   109.3
C(13)-C(14)-H(14B)
                   109.3
                   107.9
H(14A)-C(14)-H(14B)
C(20)-C(15)-C(16)
                   118.5(2)
                   121.2(2)
C(20) - C(15) - C(14)
C(16)-C(15)-C(14)
                   120.3(3)
                   120.8(3)
C(17) - C(16) - C(15)
                   119.6
C(17) - C(16) - H(16)
                   119.6
C(15) - C(16) - H(16)
C(18)-C(17)-C(16)
                   119.9(3)
C(18)-C(17)-H(17)
                   120.1
C(16) - C(17) - H(17)
                   120.1
C(19) - C(18) - C(17)
                   120.0(3)
C(19)-C(18)-H(18)
                       120.0
C(17) - C(18) - H(18)
                       120.0
C(18)-C(19)-C(20)
                       119.9(3)
C(18)-C(19)-H(19)
                       120.0
C(20)-C(19)-H(19)
                       120.0
C(19)-C(20)-C(15)
                       121.0(3)
C(19)-C(20)-H(20)
                       119.5
C(15)-C(20)-H(20)
                       119.5
                       108.84(19)
C(1) - O(1) - C(4)
                       115.40(19)
C(13) - O(2) - C(1)
C(7) - O(3) - C(2)
                       106.85(19)
C(7) - O(4) - C(3)
                       106.61(18)
C(10) - O(5) - C(5)
                       107.5(2)
C(10) - O(6) - C(6)
                      105.74(19)
```

Table 4. Anisotropic displacement parameters [Å $^2$  × 10 $^3$ ] for 06mz018m. The anisotropic displacement factor exponent takes the form: -2  $\pi$ 2 [(h a\*) $^2$  U11 + ... + 2 h k a\* b\* U12]

|       |       |       |       |       | PLOON. |        |
|-------|-------|-------|-------|-------|--------|--------|
|       | U11   | U22   | U33   | U23   | U13    | U12    |
| 2111  | 9.01  | N     | 6467  | 2063  |        |        |
| C(1)  | 12(1) | 16(1) | 16(1) | -1(1) | 3(1)   | 2(1)   |
| C(2)  | 14(1) | 16(1) | 18(1) | -2(1) | 1(1)   | -1(1)  |
| C(3)  | 13(1) | 14(1) | 15(1) | 0(1)  | -1(1)  | -1(1)  |
| C(4)  | 15(1) | 14(1) | 15(1) | 0(1)  | 0(1)   | 1(1)   |
| C(5)  | 16(1) | 18(1) | 16(1) | 1(1)  | 0(1)   | -3(1)  |
| C(6)  | 17(1) | 17(1) | 20(1) | -3(1) | 2(1)   | -2(1)  |
| C(7)  | 13(1) | 18(1) | 22(1) | 2(1)  | 0(1)   | 0(1)   |
| C(8)  | 13(1) | 18(1) | 24(1) | -3(1) | 1(1)   | -1(1)  |
| C(9)  | 13(1) | 34(2) | 50(2) | 23(2) | 0(1)   | -3(1)  |
| C(10) | 17(1) | 15(1) | 19(1) | -2(1) | 2(1)   | -5(1)  |
| C(11) | 24(1) | 28(1) | 21(1) | -5(1) | -4(1)  | -2(1)  |
| C(12) | 23(1) | 21(1) | 31(1) | 2(1)  | 10(1)  | 2(1)   |
| C(13) | 19(1) | 13(1) | 15(1) | -3(1) | 1(1)   | 2(1)   |
| C(14) | 21(1) | 25(1) | 18(1) | 4(1)  | 3(1)   | 8(1)   |
| C(15) | 18(1) | 17(1) | 14(1) | 5(1)  | -1(1)  | 4(1)   |
| C(16) | 21(1) | 18(1) | 24(1) | 5(1)  | -4(1)  | -3(1)  |
| C(17) | 38(2) | 19(1) | 20(1) | -3(1) | -6(1)  | 0(1)   |
| C(18) | 35(2) | 26(1) | 14(1) | 3(1)  | 7(1)   | 10(1)  |
| C(19) | 19(1) | 23(1) | 26(1) | 8(1)  | 3(1)   | 3(1)   |
| C(20) | 22(1) | 16(1) | 20(1) | -1(1) | -4(1)  | 2(1)   |
| 0(1)  | 13(1) | 19(1) | 17(1) | -2(1) | 1(1)   | 0(1)   |
| 0(2)  | 15(1) | 20(1) | 14(1) | 0(1)  | 1(1)   | 3(1)   |
| 0(3)  | 25(1) | 14(1) | 30(1) | 1(1)  | 11(1)  | 2(1)   |
| 0(4)  | 23(1) | 20(1) | 17(1) | 3(1)  | -3(1)  | -10(1) |
| 0(5)  | 17(1) | 20(1) | 18(1) | -5(1) | 3(1)   | -6(1)  |
| 0(6)  | 19(1) | 14(1) | 26(1) | -1(1) | 7(1)   | -2(1)  |
| 0(7)  | 16(1) | 21(1) | 22(1) | 3(1)  | 2(1)   | -1(1)  |

Table 5. Hydrogen coordinates (×  $10^4$ ) and isotropic displacement parameters (Å $^2$  ×  $10^3$ ) for 06mz018m.

|        | х     | У    | z    | U(eq) |
|--------|-------|------|------|-------|
| H(1)   | 9061  | 4467 | 2063 | 17    |
| H(2)   | 4323  | 4733 | 2119 | 19    |
| H(3)   | 3639  | 5761 | 2846 | 17    |
| H(4)   | 6738  | 6824 | 2657 | 18    |
| H(5)   | 9090  | 5824 | 3534 | 20    |
| H(6A)  | 11843 | 7072 | 3505 | 21    |
| H(6B)  | 10795 | 7399 | 2935 | 21    |
| H(8A)  | 1581  | 3657 | 3466 | 28    |
| H(8B)  | 1902  | 2920 | 2964 | 28    |
| H(8C)  | 1520  | 4120 | 2879 | 28    |
| H(9A)  | 7855  | 3125 | 3482 | 49    |
| H(9B)  | 5804  | 2310 | 3359 | 49    |
| H(9C)  | 5528  | 3081 | 3848 | 49    |
| H(11A) | 10245 | 6989 | 4356 | 37    |
| H(11B) | 7882  | 7208 | 4692 | 37    |
| H(11C) | 9770  | 8104 | 4594 | 37    |
| H(12A) | 6512  | 9201 | 4176 | 37    |
| H(12B) | 4629  | 8305 | 4278 | 37    |
| H(12C) | 5013  | 8743 | 3692 | 37    |
| H(14A) | 6727  | 6071 | 772  | 26    |
| H(14B) | 8436  | 7032 | 866  | 26    |
| H(16)  | 7668  | 4836 | 102  | 25    |
| H(17)  | 9964  | 4330 | -621 | 31    |
| H(18)  | 13616 | 5120 | -786 | 30    |
| H(19)  | 14890 | 6461 | -247 | 27    |
| H(20)  | 12561 | 6986 | 468  | 23    |



Figure 102: X-Ray crystal structure of mannofuranose dimeric ether 14.

Table 1. Crystal data and structure refinement for 05mz046m:

Identification code: 05mz046m

Empirical formula: C40 H50 O15

Formula weight: 770.80

Temperature: 90(2) K

Wavelength: 0.71073 Å

Crystal system: Triclinic

Space group: P1

Unit cell dimensions:

 $a = 5.7061(6) \text{ Å}, \alpha = 88.137(2)^{\circ}$ 

 $b = 12.1372(13) \text{ Å, } \beta = 87.671(2)^{\circ}$ 

 $c = 13.9487(15) \text{ Å, } \gamma = 79.095(2)^{\circ}$ 

Volume, Z: 947.50(17) Å<sup>3</sup>, 1

Density (calculated): 1.351 Mg/m<sup>3</sup>

Absorption coefficient: 0.103 mm<sup>-1</sup>

F(000): 410

Crystal size:  $0.36 \times 0.20 \times 0.15 \text{ mm}$ 

Crystal shape, colour: block, colourless

 $\theta$  range for data collection: 1.46 to 26.37°

Limiting indices:  $-7 \le h \le 7$ ,  $-15 \le k \le 15$ ,  $-17 \le l \le 17$ 

Reflections collected: 8139

Independent reflections: 3832 (R(int) = 0.0296)

Completeness to  $\theta = 26.37^{\circ}$ : 98.8 %

Absorption correction: multi-scan

Max. and min. transmission: 0.99 and 0.7415

Refinement method: Full-matrix least-squares on  $F^2$ 

Data / restraints / parameters: 3832 / 3 / 504

Goodness-of-fit on  $F^2$ : 1.289

Final R indices [I>2 $\sigma$ (I)]: R1 = 0.0664, wR2 = 0.1519

R indices (all data): R1 = 0.0664, wR2 = 0.1519

Largest diff. peak and hole: 0.388 and  $-0.290 \text{ e} \times \text{Å}^{-3}$ 

## Comments:

The molecule exhibits chemical two fold symmetry, but no crystallographical one. Treatment of hydrogen atoms: All hydrogen atoms were placed in calculated positions and were refined with an isotropic displacement parameter 1.5 (methyl) or 1.2 times (all others) that of the adjacent carbon atom.

Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating R-factors.

Table 2. Atomic coordinates [ $\times$  10<sup>4</sup>] and equivalent isotropic displacement parameters [ $\mathring{A}^2 \times 10^3$ ] for 05mz046m. U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

| 0(1)   | 4169(6)   | 3518(3)  | 5342(3)  | 18(1) |
|--------|-----------|----------|----------|-------|
| O(2A)  | 2434(7)   | 5706(3)  | 4827(3)  | 23(1) |
| O(3A)  | 6223(6)   | 6012(3)  | 4605(3)  | 17(1) |
| O(4A)  | 4928(6)   | 7207(3)  | 3321(3)  | 16(1) |
| O(5A)  | 6429(7)   | 8926(3)  | 4547(3)  | 19(1) |
| O(6A)  | 8235(7)   | 8889(3)  | 3073(3)  | 19(1) |
| O(7A)  | 9266 (7)  | 7005(3)  | 1295(3)  | 20(1) |
| O(8A)  | 6742(7)   | 5820(3)  | 934(3)   | 23(1) |
| C(1A)  | 5849(9)   | 4156(4)  | 4906(4)  | 16(1) |
| C(2A)  | 4532(10)  | 5375(4)  | 4783(4)  | 17(1) |
| C(3A)  | 5367(9)   | 7160(4)  | 4291(4)  | 13(1) |
| C(4A)  | 7435(9)   | 7783(4)  | 4410(4)  | 14(1) |
| C(5A)  | 8677(9)   | 7738(4)  | 3407(4)  | 16(1) |
| C(6A)  | 7233 (9)  | 7054(4)  | 2826(4)  | 15(1) |
| C(7A)  | 6993(9)   | 7402(5)  | 1794(4)  | 18(1) |
| C(8A)  | 5252(10)  | 6850(5)  | 1246(4)  | 23(1) |
| C(9A)  | 7593 (9)  | 9587(4)  | 3875(4)  | 18(1) |
| C(10A) | 9814(10)  | 9857(5)  | 4323(5)  | 24(1) |
| C(11A) | 5861(10)  | 10608(5) | 3572(4)  | 22(1) |
| C(12A) | 9036(9)   | 6098(5)  | 688(4)   | 19(1) |
| C(13A) | 9136(12)  | 6529(6)  | -338(5)  | 31(1) |
| C(14A) | 10900(11) | 5078(5)  | 912(5)   | 27(1) |
| C(15A) | 6770(9)   | 3699(4)  | 3927(4)  | 17(1) |
| C(16A) | 5255(9)   | 3827(4)  | 3158(4)  | 18(1) |
| C(17A) | 6085(10)  | 3421(5)  | 2277(4)  | 22(1) |
| C(18A) | 8452(10)  | 2860(5)  | 2139(4)  | 21(1) |
| C(19A) | 9934(10)  | 2735(5)  | 2902(4)  | 20(1) |
| C(20A) | 9144(10)  | 3156(5)  | 3795(4)  | 22(1) |
| O(2B)  | 1804(7)   | 1807(3)  | 5748(3)  | 20(1) |
| O(3B)  | 5113(6)   | 798(3)   | 6406(3)  | 18(1) |
| O(4B)  | 2454(6)   | -61(3)   | 7348(3)  | 18(1) |
| O(5B)  | 5740(9)   | -2180(3) | 6443(3)  | 29(1) |
| O(6B)  | 5481(8)   | -2321(4) | 8069(3)  | 27(1) |
| O(7B)  | 3841(7)   | -573(3)  | 9875(3)  | 21(1) |
| O(8B)  | 965(7)    | 1018(3)  | 9916(3)  | 24(1) |
| C(1B)  | 5285(9)   | 2655(4)  | 5959(4)  | 15(1) |
| C(2B)  | 3809(10)  | 1724(5)  | 6007(4)  | 17(1) |
| C(3B)  | 4008(10)  | -184(4)  | 6534(4)  | 18(1) |
| C(4B)  | 6096(10)  | -1131(5) | 6762(4)  | 21(1) |
| C(5B)  | 5971(10)  | -1242(5) | 7873 (4) | 19(1) |
| C(6B)  | 3906 (10) | -295(4)  | 8177(4)  | 19(1) |

| C(7B)  | 2444(10)  | -582(5)  | 9053(4)  | 20(1) |
|--------|-----------|----------|----------|-------|
| C(8B)  | 187(10)   | 293 (5)  | 9265(4)  | 20(1) |
| C(9B)  | 5049(10)  | -2859(5) | 7219(4)  | 21(1) |
| C(10B) | 6707(11)  | -3985(5) | 7188(4)  | 24(1) |
| C(11B) | 2448 (12) | -2927(7) | 7176 (5) | 36(2) |
| C(12B) | 2639(10)  | 306(5)   | 10503(4) | 20(1) |
| C(13B) | 1406(10)  | -201(5)  | 11335(4) | 23(1) |
| C(14B) | 4439 (11) | 984(6)   | 10812(5) | 30(1) |
| C(15B) | 5391(9)   | 3034(4)  | 6984(4)  | 16(1) |
| C(16B) | 3356(10)  | 3670(5)  | 7417(4)  | 23(1) |
| C(17B) | 3369(11)  | 3976(5)  | 8380(5)  | 28(1) |
| C(18B) | 5420(12)  | 3675(5)  | 8891(4)  | 27(1) |
| C(19B) | 7457(12)  | 3050(5)  | 8459(4)  | 26(1) |
| C(20B) | 7466 (11) | 2734(5)  | 7514(4)  | 23(1) |
|        |           |          |          |       |

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 3. Bond lengths [Å] and angles [deg] for 05mz046m.

| O(1)-C(1B)     | 1.405(6) |
|----------------|----------|
| O(1) - C(1A)   | 1.446(6) |
| O(2A)-C(2A)    | 1.188(7) |
| O(3A)-C(2A)    | 1.357(6) |
| O(3A)-C(3A)    | 1.447(6) |
| O(4A) - C(3A)  | 1.383(6) |
| O(4A)-C(6A)    | 1.443(6) |
| O(5A) - C(4A)  | 1.413(6) |
| O(5A) - C(9A)  | 1.437(6) |
| O(6A) - C(9A)  | 1.419(7) |
| O(6A) - C(5A)  | 1.437(6) |
| O(7A) - C(12A) | 1.439(7) |
| O(7A)-C(7A)    | 1.452(6) |
| O(8A)-C(12A)   | 1.438(6) |
| O(8A)-C(8A)    | 1.442(7) |
| C(1A) - C(15A) | 1.526(7) |
| C(1A) - C(2A)  | 1.535(7) |
| C(1A) - H(1A)  | 1.0000   |
| C(3A) - C(4A)  | 1.534(6) |
| C(3A) - H(3A)  | 1.0000   |
| C(4A)-C(5A)    | 1.540(7) |
| C(4A)-H(4A)    | 1.0000   |
| C(5A) - C(6A)  | 1.543(7) |
| C(5A) - H(5A)  | 1.0000   |
| C(6A) - C(7A)  | 1.493(8) |
| C(6A)-H(6A)    | 1.0000   |
|                |          |

| C(7A) -C(8A)                                                                                                                                          | 1.538(7)                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| C(7A) -H(7A)                                                                                                                                          | 1.0000                                                                                                   |
| C(8A) -H(8A1)                                                                                                                                         | 0.9900                                                                                                   |
| C(8A) -H(8A2)                                                                                                                                         | 0.9900                                                                                                   |
| C(9A) -C(11A)                                                                                                                                         | 1.493(8)                                                                                                 |
| C(9A) -C(10A)                                                                                                                                         | 1.530(7)                                                                                                 |
| C(10A) -H(10A)                                                                                                                                        | 0.9800                                                                                                   |
| C(10A) -H(10B)                                                                                                                                        | 0.9800                                                                                                   |
| C(10A) -H(11A)                                                                                                                                        | 0.9800                                                                                                   |
| C(11A) -H(11A)                                                                                                                                        | 0.9800                                                                                                   |
| C(11A) -H(11B)                                                                                                                                        | 0.9800                                                                                                   |
| C(11A) -H(11C)                                                                                                                                        | 0.9800                                                                                                   |
| C(12A) -C(14A)                                                                                                                                        | 1.505(8)                                                                                                 |
| C(12A) -C(13A)                                                                                                                                        | 1.509(8)                                                                                                 |
| C(13A) -H(13A)                                                                                                                                        | 0.9800                                                                                                   |
| C(13A)-H(13B)<br>C(13A)-H(13C)<br>C(14A)-H(14A)<br>C(14A)-H(14B)<br>C(14A)-H(14C)<br>C(15A)-C(16A)<br>C(15A)-C(20A)<br>C(16A)-C(17A)<br>C(16A)-H(16A) | 0.9800<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>1.392(7)<br>1.398(8)<br>1.372(8)<br>0.9500<br>1.402(8) |
| C(17A) -C(18A)                                                                                                                                        | 1.402(8)                                                                                                 |
| C(17A) -H(17A)                                                                                                                                        | 0.9500                                                                                                   |
| C(18A) -C(19A)                                                                                                                                        | 1.373(8)                                                                                                 |
| C(18A) -H(18A)                                                                                                                                        | 0.9500                                                                                                   |
| C(19A) -C(20A)                                                                                                                                        | 1.387(8)                                                                                                 |
| C(19A) -H(19A)                                                                                                                                        | 0.9500                                                                                                   |
| C(20A) -H(20A)                                                                                                                                        | 0.9500                                                                                                   |
| O(2B) -C(2B)                                                                                                                                          | 1.199(7)                                                                                                 |
| O(3B) -C(2B)                                                                                                                                          | 1.343(7)                                                                                                 |
| O(3B) -C(3B)                                                                                                                                          | 1.453(6)                                                                                                 |
| O(4B) -C(3B)                                                                                                                                          | 1.406(7)                                                                                                 |
| O(4B) -C(6B)                                                                                                                                          | 1.440(7)                                                                                                 |
| O(5B) -C(4B)                                                                                                                                          | 1.414(7)                                                                                                 |
| O(5B) -C(9B)                                                                                                                                          | 1.427(7)                                                                                                 |
| O(6B) -C(5B)                                                                                                                                          | 1.406(7)                                                                                                 |
| O(6B) -C(9B)                                                                                                                                          | 1.424(7)                                                                                                 |
| O(7B) -C(7B)                                                                                                                                          | 1.425(7)                                                                                                 |
| O(7B) -C(12B)                                                                                                                                         | 1.452(7)                                                                                                 |
| O(8B) -C(8B)                                                                                                                                          | 1.424(7)                                                                                                 |
| O(8B) -C(12B)                                                                                                                                         | 1.426(7)                                                                                                 |
| C(1B) -C(15B) C(1B) -C(2B) C(1B) -H(1B) C(3B) -C(4B) C(3B) -H(3B) C(4B) -C(5B) C(4B) -H(4B) C(5B) -C(6B) C(5B) -H(5B) C(6B) -C(7B) C(6B) -H(6B)       | 1.527(8)<br>1.0000<br>1.551(8)<br>1.0000<br>1.539(7)<br>1.0000<br>1.520(7)                               |
| C(7B)-C(8B)<br>C(7B)-H(7B)                                                                                                                            | 1.532(8)                                                                                                 |

```
C(8B)-H(8B1)
                   0.9900
C(8B)-H(8B2)
                   0.9900
                   1.506(9)
C(9B)-C(11B)
                   1.509(8)
C(9B)-C(10B)
C(10B)-H(10D)
                   0.9800
C(10B)-H(10E)
                   0.9800
C(10B)-H(10F)
                   0.9800
                   0.9800
C(11B)-H(11D)
                   0.9800
C(11B)-H(11E)
                   0.9800
C(11B)-H(11F)
C(12B)-C(13B)
                   1.508(8)
C(12B)-C(14B)
                   1.515(8)
                   0.9800
C(13B)-H(13D)
                   0.9800
C(13B)-H(13E)
C(13B)-H(13F)
                   0.9800
                   0.9800
C(14B)-H(14D)
C(14B)-H(14E)
                   0.9800
C(14B)-H(14F)
                   0.9800
C(15B)-C(16B)
                   1.394(8)
C(15B)-C(20B)
                   1.404(8)
C(16B)-C(17B)
                   1.406(9)
                   0.9500
C(16B)-H(16B)
C(17B)-C(18B)
                   1.379(9)
                   0.9500
C(17B)-H(17B)
                   1.389(9)
C(18B)-C(19B)
C(18B)-H(18B)
                   0.9500
                   1.384(8)
C(19B)-C(20B)
                   0.9500
C(19B)-H(19B)
C(20B)-H(20B)
                   0.9500
C(1B) - O(1) - C(1A)
                    112.0(4)
                       116.1(4)
C(2A) - O(3A) - C(3A)
C(3A) - O(4A) - C(6A)
                       106.2(4)
                       108.0(4)
C(4A) - O(5A) - C(9A)
C(9A) - O(6A) - C(5A)
                       108.6(4)
                       109.2(4)
C(12A)-O(7A)-C(7A)
                       105.6(4)
C(12A) - O(8A) - C(8A)
O(1) - C(1A) - C(15A)
                       111.0(4)
                       107.5(4)
O(1) - C(1A) - C(2A)
C(15A) - C(1A) - C(2A)
                       109.4(4)
                       109.6
O(1) - C(1A) - H(1A)
                       109.6
C(15A) - C(1A) - H(1A)
                       109.6
C(2A) - C(1A) - H(1A)
                       126.1(5)
O(2A) - C(2A) - O(3A)
                       127.0(5)
O(2A) - C(2A) - C(1A)
O(3A) - C(2A) - C(1A)
                       106.9(4)
O(4A) - C(3A) - O(3A)
                       110.3(4)
O(4A) - C(3A) - C(4A)
                       106.4(4)
                       106.2(4)
O(3A) - C(3A) - C(4A)
                       111.3
O(4A) - C(3A) - H(3A)
O(3A) - C(3A) - H(3A)
                       111.3
C(4A) - C(3A) - H(3A)
                       111.3
                       107.4(4)
O(5A) - C(4A) - C(3A)
                       105.6(4)
O(5A) - C(4A) - C(5A)
C(3A) - C(4A) - C(5A)
                       103.6(4)
                       113.2
O(5A) - C(4A) - H(4A)
C(3A) - C(4A) - H(4A)
                       113.2
```

| C(5A) - C(4A) - H(4A)                                | 113.2          |
|------------------------------------------------------|----------------|
| O(6A) - C(5A) - C(4A)                                | 103.7(4)       |
| O(6A)-C(5A)-C(6A)                                    | 109.9(4)       |
| C(4A) - C(5A) - C(6A)                                | 103.5(4)       |
| O(6A)-C(5A)-H(5A)                                    | 113.0          |
| C(4A) - C(5A) - H(5A)                                | 113.0          |
| C(6A) - C(5A) - H(5A)                                | 113.0          |
| O(4A) - C(6A) - C(7A)                                | 111.0(4)       |
| O(4A) - C(6A) - C(5A)                                | 104.1(4)       |
| C(7A) - C(6A) - C(5A)                                | 114.8(4)       |
| O(4A) -C(6A) -H(6A)                                  | 108.9          |
| C(7A)-C(6A)-H(6A)<br>C(5A)-C(6A)-H(6A)               | 108.9<br>108.9 |
| O(7A) - C(7A) - C(6A)                                | 108.2(4)       |
| O(7A) - C(7A) - C(8A)                                | 102.8(4)       |
| C(6A) - C(7A) - C(8A)                                | 115.1(5)       |
| O(7A) - C(7A) - H(7A)                                | 110.2          |
| C(6A) - C(7A) - H(7A)                                | 110.2          |
| C(8A)-C(7A)-H(7A)                                    | 110.2          |
| O(8A)-C(8A)-C(7A)                                    | 102.6(4)       |
| O(8A)-C(8A)-H(8A1)                                   | 111.2          |
| C(7A)-C(8A)-H(8A1)                                   | 111.2          |
| O(8A) - C(8A) - H(8A2)                               | 111.2          |
| C(7A) - C(8A) - H(8A2)                               | 111.2          |
| H(8A1)-C(8A)-H(8A2)                                  | 109.2          |
| O(6A) - C(9A) - O(5A)                                | 104.6(4)       |
| O(6A) - C(9A) - C(11A)                               | 109.0(5)       |
| O(5A) -C(9A) -C(11A)                                 | 109.6(4)       |
| O(6A) - C(9A) - C(10A)                               | 110.8(4)       |
| O(5A) -C(9A) -C(10A)                                 | 109.3(5)       |
| C(11A) -C(9A) -C(10A)                                | 113.2(5)       |
| C(9A)-C(10A)-H(10A)<br>C(9A)-C(10A)-H(10B)           | 109.5<br>109.5 |
| H(10A) - C(10A) - H(10B)                             | 109.5          |
| C(9A) - C(10A) - H(10C)                              | 109.5          |
| H(10A) -C(10A) -H(10C)                               | 109.5          |
| H(10B)-C(10A)-H(10C)                                 | 109.5          |
| C(9A)-C(11A)-H(11A)                                  | 109.5          |
| C(9A)-C(11A)-H(11B)                                  | 109.5          |
| H(11A)-C(11A)-H(11B)                                 | 109.5          |
| C(9A) - C(11A) - H(11C)                              | 109.5          |
| H(11A)-C(11A)-H(11C)                                 | 109.5          |
| H(11B)-C(11A)-H(11C)                                 | 109.5          |
| O(8A) - C(12A) - O(7A)                               | 106.1(4)       |
| O(8A) - C(12A) - C(14A)                              | 107.4(5)       |
| O(7A) - C(12A) - C(14A)                              | 110.3(5)       |
| O(8A) - C(12A) - C(13A)                              | 111.0(5)       |
| O(7A) - C(12A) - C(13A)                              | 107.3(5)       |
| C(14A) - C(12A) - C(13A)                             | 114.5(5)       |
| C(12A) -C(13A) -H(13A)                               | 109.5          |
| C(12A) -C(13A) -H(13B)                               | 109.5<br>109.5 |
| H(13A)-C(13A)-H(13B)<br>C(12A)-C(13A)-H(13C)         | 109.5          |
| H(13A) - C(13A) - H(13C)                             | 109.5          |
| H(13A) - C(13A) - H(13C)<br>H(13B) - C(13A) - H(13C) | 109.5          |
| C(12A) -C(14A) -H(14A)                               | 109.5          |
| C(12A) - C(14A) - H(14B)                             | 109.5          |
|                                                      |                |

| O(6B) -C(5B) -C(6B) 113.2(5)<br>O(6B) -C(5B) -C(4B) 104.8(4)<br>C(6B) -C(5B) -C(4B) 104.1(4)<br>O(6B) -C(5B) -H(5B) 111.4<br>C(6B) -C(5B) -H(5B) 111.4 | H(14A) -C(14A) -H(14B) C(12A) -C(14A) -H(14C) H(14A) -C(14A) -H(14C) H(14B) -C(14A) -H(14C) C(16A) -C(15A) -C(20A) C(16A) -C(15A) -C(1A) C(20A) -C(15A) -C(1A) C(17A) -C(16A) -C(15A) C(17A) -C(16A) -H(16A) C(15A) -C(16A) -H(16A) C(15A) -C(17A) -H(17A) C(16A) -C(17A) -H(17A) C(18A) -C(17A) -H(17A) C(19A) -C(18A) -H(18A) C(17A) -C(18A) -H(19A) C(20A) -C(19A) -H(20A) C(18A) -C(20A) -H(20A) C(18A) -C(20A) -H(20A) C(19A) -C(20A) -H(20A) C(2B) -O(3B) -C(3B) C(3B) -O(4B) -C(6B) C(4B) -O(5B) -C(9B) C(5B) -O(6B) -C(9B) C(7B) -O(7B) -C(12B) O(1) -C(1B) -H(1B) C(2B) -C(2B) -C(1B) O(3B) -C(2B) -C(1B) O(3B) -C(2B) -C(1B) O(3B) -C(3B) -C(4B) O(3B) -C(3B) -H(3B) O(5B) -C(4B) -C(5B) C(3B) -C(4B) -H(4B) C(5B) -C(4B) -H(4B) | 109.5 109.5 109.5 109.5 119.5(5) 120.2(5) 120.3(5) 120.2(5) 119.9 119.9 120.7(5) 119.6 119.6 118.7(5) 120.7 120.7 121.5(5) 119.2 119.3(5) 120.4 120.4 117.4(4) 107.2(4) 111.5(4) 112.0(4) 113.0(4) 108.7(4) 105.5(4) 113.0(4) 108.3(4) 106.5(4) 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 109.7 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                        | O(5B)-C(4B)-C(3B) O(5B)-C(4B)-C(5B) C(3B)-C(4B)-C(5B) O(5B)-C(4B)-H(4B) C(3B)-C(4B)-H(4B) C(5B)-C(4B)-H(4B) O(6B)-C(5B)-C(6B) O(6B)-C(5B)-C(4B) C(6B)-C(5B)-C(4B) O(6B)-C(5B)-C(4B) O(6B)-C(5B)-C(4B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 112.2(5)<br>104.7(5)<br>103.7(4)<br>111.9<br>111.9<br>111.9<br>113.2(5)<br>104.8(4)<br>104.1(4)<br>111.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

```
C(7B)-C(6B)-C(5B)
                        114.4(5)
O(4B) - C(6B) - H(6B)
                        108.8
C(7B)-C(6B)-H(6B)
                        108.8
C(5B)-C(6B)-H(6B)
                        108.8
                        107.9(4)
O(7B)-C(7B)-C(6B)
O(7B) - C(7B) - C(8B)
                        104.0(4)
C(6B) - C(7B) - C(8B)
                        114.0(5)
O(7B)-C(7B)-H(7B)
                        110.2
C(6B)-C(7B)-H(7B)
                        110.2
C(8B)-C(7B)-H(7B)
                        110.2
O(8B) - C(8B) - C(7B)
                        103.3(4)
O(8B)-C(8B)-H(8B1)
                        111.1
                        111.1
C(7B)-C(8B)-H(8B1)
                        111.1
O(8B) - C(8B) - H(8B2)
                        111.1
C(7B) - C(8B) - H(8B2)
                        109.1
H(8B1)-C(8B)-H(8B2)
O(6B) - C(9B) - O(5B)
                        105.5(4)
                        110.6(5)
O(6B) - C(9B) - C(11B)
O(5B) - C(9B) - C(11B)
                        110.7(5)
O(6B)-C(9B)-C(10B)
                        108.1(5)
O(5B) - C(9B) - C(10B)
                      107.7(5)
C(11B) - C(9B) - C(10B)
                        113.8(5)
C(9B)-C(10B)-H(10D)
                        109.5
                       109.5
C(9B)-C(10B)-H(10E)
                        109.5
H(10D) - C(10B) - H(10E)
                       109.5
C(9B)-C(10B)-H(10F)
H(10D)-C(10B)-H(10F) 109.5
H(10E)-C(10B)-H(10F) 109.5
C(9B)-C(11B)-H(11D) 109.5
C(9B)-C(11B)-H(11E)
                   109.5
H(11D)-C(11B)-H(11E) 109.5
                   109.5
C(9B) - C(11B) - H(11F)
H(11D)-C(11B)-H(11F) 109.5
H(11E)-C(11B)-H(11F) 109.5
                     105.1(4)
O(8B) - C(12B) - O(7B)
                   111.4(5)
O(8B) - C(12B) - C(13B)
                   109.9(5)
O(7B) - C(12B) - C(13B)
                   107.9(5)
O(8B) - C(12B) - C(14B)
O(7B) - C(12B) - C(14B) 108.9(5)
C(13B)-C(12B)-C(14B) 113.1(5)
C(12B)-C(13B)-H(13D) 109.5
C(12B)-C(13B)-H(13E) 109.5
H(13D)-C(13B)-H(13E) 109.5
C(12B)-C(13B)-H(13F) 109.5
H(13D)-C(13B)-H(13F) 109.5
H(13E)-C(13B)-H(13F) 109.5
C(12B)-C(14B)-H(14D) 109.5
C(12B)-C(14B)-H(14E) 109.5
H(14D)-C(14B)-H(14E) 109.5
C(12B)-C(14B)-H(14F) 109.5
H(14D)-C(14B)-H(14F) 109.5
H(14E)-C(14B)-H(14F) 109.5
C(16B)-C(15B)-C(20B) 119.1(5)
                   119.1(5)
C(16B) - C(15B) - C(1B)
C(20B)-C(15B)-C(1B) 121.7(5)
C(15B)-C(16B)-C(17B) 120.2(5)
C(15B)-C(16B)-H(16B) 119.9
```

| C(17B)-C(16B)-H(16B) | 119.9     |        |       |        |
|----------------------|-----------|--------|-------|--------|
| C(18B)-C(17B)-C(16B) | 120.0(6)  |        |       |        |
| C(18B)-C(17B)-H(17B) | 120.0     |        |       |        |
| C(16B)-C(17B)-H(17B) | 120.0     |        |       |        |
| C(17B)-C(18B)-C(19B) | 119.8(6)  |        |       |        |
| C(17B)-C(18B)-H(18B) | 120.1     |        |       |        |
| C(19B)-C(18B)-H(18B) | 120.1     |        |       |        |
| C(20B)-C(19B)-C(18B) | 120.8(6)  |        |       |        |
| C(20B)-C(19B)-H(19B) | 119.6     |        |       |        |
| C(18B)-C(19B)-H(19B) | 119.6     |        |       |        |
| C(19B)-C(20B)-C(15B) | 120.0(6)  |        |       |        |
| C(19B)-C(20B)-H(20B) | 120.0     |        |       |        |
| C(15B)-C(20B)-H(20B) | 120.0     |        |       |        |
|                      |           | -3 (3) | 4133  | -15(3) |
| C/1287 - 13(3) - 30  | 499 19434 | 0.121  | -2127 | -1.07  |

Table 4. Anisotropic displacement parameters [Å $^2$  ×  $10^3$ ] for 05mz046m. The anisotropic displacement factor exponent takes the form: -2  $\pi$ 2 [(h a\*) $^2$  U11 + ... + 2 h k a\* b\* U12]

| -(200) | U11   | U22   | U33   | U23   | U13   | U12    |
|--------|-------|-------|-------|-------|-------|--------|
| 0(1)   | 13(2) | 22(2) | 22(2) | 5(2)  | -1(2) | -9(2)  |
| O(2A)  | 13(2) | 20(2) | 38(2) | 1(2)  | 3(2)  | -7(2)  |
| O(3A)  | 13(2) | 17(2) | 23(2) | -3(2) | 0(2)  | -7(2)  |
| O(4A)  | 8(2)  | 17(2) | 23(2) | 0(2)  | 3(1)  | -6(1)  |
| O(5A)  | 21(2) | 16(2) | 22(2) | -3(2) | 4(2)  | -7(2)  |
| O(6A)  | 19(2) | 16(2) | 24(2) | -6(2) | 5(2)  | -11(2) |
| O(7A)  | 14(2) | 23(2) | 24(2) | -5(2) | 5(2)  | -6(2)  |
| (8A)   | 14(2) | 27(2) | 30(2) | -6(2) | 0(2)  | -8(2)  |
| C(1A)  | 11(2) | 21(3) | 19(3) | 6(2)  | 0(2)  | -9(2)  |
| C(2A)  | 15(3) | 15(3) | 21(3) | 0(2)  | -4(2) | -6(2)  |
| C(3A)  | 8(2)  | 10(2) | 21(3) | -3(2) | 3(2)  | -4(2)  |
| C(4A)  | 12(2) | 14(2) | 19(3) | -1(2) | -4(2) | -6(2)  |
| C(5A)  | 7(2)  | 18(3) | 25(3) | -3(2) | -1(2) | -4(2)  |
| C(6A)  | 8(2)  | 16(2) | 20(3) | -4(2) | 4(2)  | -3(2)  |
| C(7A)  | 13(3) | 21(3) | 22(3) | -8(2) | -1(2) | -5(2)  |
| C(8A)  | 20(3) | 31(3) | 20(3) | -8(2) | 3(2)  | -8(2)  |
| C(9A)  | 18(3) | 16(3) | 22(3) | 1(2)  | 2(2)  | -12(2) |
| C(10A) | 11(3) | 25(3) | 37(3) | -6(3) | -7(2) | -5(2)  |
| C(11A) | 22(3) | 23(3) | 23(3) | 1(2)  | 3(2)  | -9(2)  |
| C(12A) | 13(3) | 24(3) | 21(3) | -2(2) | 1(2)  | -7(2)  |
| C(13A) | 35(4) | 32(3) | 29(3) | -4(3) | -1(3) | -13(3) |
| C(14A) | 23(3) | 28(3) | 30(3) | -1(3) | 0(2)  | -8(3)  |
| C(15A) | 15(3) | 14(3) | 25(3) | 2(2)  | 2(2)  | -8(2)  |
| C(16A) | 11(2) | 17(3) | 28(3) | 2(2)  | -9(2) | -5(2)  |
| C(17A) | 22(3) | 24(3) | 21(3) | -1(2) | -5(2) | -5(2)  |
| C(18A) | 25(3) | 19(3) | 19(3) | -3(2) | 6(2)  | -7(2)  |
| C(19A) | 13(3) | 22(3) | 26(3) | 1(2)  | 1(2)  | -7(2)  |
| C(20A) | 17(3) | 21(3) | 30(3) | 8(2)  | -8(2) | -8(2)  |
| )(2B)  | 16(2) | 25(2) | 23(2) | -3(2) | 0(2)  | -8(2)  |
| )(3B)  | 18(2) | 14(2) | 25(2) | 1(2)  | -2(2) | -8(2)  |
| O(4B)  | 14(2) | 25(2) | 16(2) | 1(2)  | -2(1) | -8(2)  |
| O(5B)  | 49(3) | 17(2) | 22(2) | -2(2) | 4(2)  | -9(2)  |

| O(6B)  | 39(3)   | 22(2)  | 19(2) | 1(2)  | 0(2)  | -6(2)  |
|--------|---------|--------|-------|-------|-------|--------|
| O(7B)  | 16(2)   | 21(2)  | 24(2) | -1(2) | 0(2)  | 1(2)   |
| O(8B)  | 22(2)   | 26(2)  | 23(2) | 0(2)  | -2(2) | -5(2)  |
| C(1B)  | 9(2)    | 18(3)  | 17(3) | 3(2)  | 0(2)  | -1(2)  |
| C(2B)  | 17(3)   | 23(3)  | 10(2) | -6(2) | 4(2)  | -6(2)  |
| C(3B)  | 22(3)   | 15(3)  | 21(3) | -2(2) | -1(2) | -13(2) |
| C(4B)  | 22(3)   | 16(3)  | 25(3) | -5(2) | -1(2) | -3(2)  |
| C(5B)  | 21(3)   | 14(3)  | 24(3) | -3(2) | -1(2) | -4(2)  |
| C(6B)  | 19(3)   | 14(3)  | 24(3) | -1(2) | -3(2) | -7(2)  |
| C(7B)  | 20(3)   | 24(3)  | 18(3) | 0(2)  | 2(2)  | -8(2)  |
| C(8B)  | 23(3)   | 27(3)  | 12(2) | -2(2) | 0(2)  | -6(2)  |
| C(9B)  | 24(3)   | 20(3)  | 21(3) | 2(2)  | -1(2) | -7(2)  |
| C(10B) | 26(3)   | 25(3)  | 22(3) | -1(2) | -1(2) | -12(2) |
| C(11B) | 28(3)   | 56 (5) | 24(3) | -1(3) | 4(3)  | -13(3) |
| C(12B) | 19(3)   | 20(3)  | 19(3) | 0(2)  | -2(2) | -1(2)  |
| C(13B) | 19(3)   | 30(3)  | 19(3) | -6(2) | 4(2)  | 0(2)   |
| C(14B) | 20(3)   | 39(4)  | 31(3) | -8(3) | 3(3)  | -9(3)  |
| C(15B) | 12(2)   | 20(3)  | 16(3) | 3(2)  | 6(2)  | -2(2)  |
| C(16B) | 15(3)   | 25(3)  | 31(3) | -3(2) | -3(2) | -7(2)  |
| C(17B) | 29(3)   | 22(3)  | 35(4) | -8(3) | 7(3)  | -6(3)  |
| C(18B) | 42(4)   | 27(3)  | 18(3) | -6(2) | 3(3)  | -19(3) |
| C(19B) | 33(3)   | 25(3)  | 23(3) | 6(2)  | -5(2) | -11(3) |
| C(20B) | 22(3)   | 24(3)  | 24(3) | 2(2)  | 0(2)  | -7(2)  |
|        | RETAILS | 1.0434 | 4855  |       | 74    | 400    |

| B(14A) | Stay | Stay

Table 5. Hydrogen coordinates (x  $10^4$ ) and isotropic displacement

parameters  $(\mathring{A}^2 \times 10^3)$  for 05mz046m.\_\_

|        | x     | У     |       | U(eq |
|--------|-------|-------|-------|------|
| H(1A)  | 7221  | 4126  | 5336  | 20   |
| H(3A)  | 3915  | 7509  | 4676  | 15   |
| H(4A)  | 8530  | 7449  | 4928  | 17   |
| H(5A)  | 10415 | 7400  | 3418  | 20   |
| H(6A)  | 7999  | 6243  | 2871  | 18   |
| H(7A)  | 6550  | 8238  | 1729  | 22   |
| H(8A1) | 3911  | 6700  | 1672  | 28   |
| H(8A2) | 4604  | 7327  | 693   | 28   |
| H(10A) | 10927 | 9157  | 4468  | 36   |
| H(10B) | 9348  | 10264 | 4917  | 36   |
| H(10C) | 10591 | 10322 | 3872  | 36   |
| H(11A) | 6663  | 11063 | 3121  | 33   |
| H(11B) | 5259  | 11049 | 4137  | 33   |
| H(11C) | 4525  | 10382 | 3260  | 33   |
| H(13A) | 8953  | 5935  | -772  | 47   |
| H(13B) | 10677 | 6756  | -476  | 47   |
| H(13C) | 7843  | 7177  | -430  | 47   |
| H(14A) | 10763 | 4872  | 1595  | 40   |
| H(14B) | 12492 | 5245  | 764   | 40   |
| H(14C) | 10658 | 4453  | 524   | 40   |
| H(16A) | 3641  | 4198  | 3243  | 22   |
| H(17A) | 5043  | 3521  | 1754  | 26   |
| H(18A) | 9020  | 2572  | 1530  | 25   |
| H(19A) | 11538 | 2350  | 2817  | 24   |
| H(20A) | 10206 | 3077  | 4311  | 26   |
| H(1B)  | 6935  | 2352  | 5703  | 18   |
| H(3B)  | 3181  | -333  | 5947  | 22   |
| H(4B)  | 7658  | -954  | 6517  | 25   |
| H(5B)  | 7506  | -1153 | 8155  | 23   |
|        | 4576  | 386   | 8313  | 22   |
| H(6B)  |       | -1339 | 8988  | 24   |
| H(7B)  | 2025  | 707   | 8672  | 24   |
| H(8B1) | -400  | -63   | 9563  | 24   |
| H(8B2) | -1098 |       |       |      |
| H(10D) | 8364  | -3877 | 7205  | 35   |
| H(10E) | 6483  | -4358 | 6595  | 35   |
| H(10F) | 6351  | -4450 | 7742  | 35   |
| H(11D) | 1976  | -3343 | 7742  | 53   |
| H(11E) | 2192  | -3315 | 6595  | 53   |
| H(11F) | 1484  | -2168 | 7162  | 53   |
| H(13D) | 379   | -684  | 11093 | 35   |
| H(13E) | 433   | 399   | 11710 | 35   |
| H(13F) | 2606  | -649  | 11745 | 35   |
| H(14D) | 5668  | 500   | 11184 | 45   |
| H(14E) | 3626  | 1603  | 11209 | 45   |
| H(14F) | 5187  | 1287  | 10243 | 45   |
| H(16B) | 1955  | 3898  | 7060  | 28   |
| H(17B) | 1964  | 4389  | 8679  | 34   |
| H(18B) | 5440  | 3895  | 9538  | 33   |
| H(19B) | 8861  | 2838  | 8816  | 32   |
| H(20B) | 8876  | 2313  | 7224  | 28   |

Table 1. Countai data sus-sull



Figure 103: X-Ray crystal structure of allofuranose dimeric ether 15.

where expense the expension of the two fold sale. Investment of hydrogen stones all hydrogen atoms more placed in calculated positions and were celled with an implicate displacement parameter-1.5 (mathyl) or 1.2 times (all others) that of the adjacent carbon atom.

Table 1. Crystal data and structure refinement for 05mz037m:

Identification code: 05mz037m Empirical formula: C40 H50 O15 Formula weight: 770.80 Temperature: 90(2) K Wavelength: 0.71073 Å Crystal system: Monoclinic Space group: C2 Unit cell dimensions:  $a = 28.638(3) \text{ Å, } \alpha = 90^{\circ}$  $b = 5.4002(5) \text{ Å, } \beta = 97.249(2)^{\circ}$  $c = 12.3306(12) \text{ Å, } \gamma = 90^{\circ}$ Volume,  $Z: 1891.7(3) \text{ Å}^3$ , 2 Density (calculated): 1.353 Mg/m<sup>3</sup> Absorption coefficient: 0.103 mm<sup>-1</sup> F(000): 820Crystal size:  $0.60 \times 0.09 \times 0.0.06$  mm Crystal shape, colour: needle, colourless  $\theta$  range for data collection: 1.43 to 26.37° Limiting indices:  $-35 \le h \le 35$ ,  $-6 \le k \le 6$ ,  $-15 \le l \le 15$ Reflections collected: 8530 Independent reflections: 2160 (R(int) = 0.0453) Completeness to  $\theta = 26.37^{\circ}$ : 100.0 % Absorption correction: multi-scan Max. and min. transmission: 1.0 and 0.758118 Refinement method: Full-matrix least-squares on  $F^2$ Data / restraints / parameters: 2160 / 1 / 253 Goodness-of-fit on  $F^2$ : 1.287 Final R indices [I>2 $\sigma$ (I)]: R1 = 0.0577, wR2 = 0.1150 R indices (all data): R1 = 0.0621, wR2 = 0.1167Largest diff. peak and hole: 0.378 and  $-0.219 \text{ e} \times \text{Å}^{-3}$ 

## Comments:

The molecule has crystallographical two fold symmetry; the central ether oxygen atom is located on the two fold axis. Treatment of hydrogen atoms: All hydrogen atoms were placed in calculated positions and were refined with an isotropic displacement parameter 1.5 (methyl) or 1.2 times (all others) that of the adjacent carbon atom.

Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating R-factors.

Table 2. Atomic coordinates [x  $10^4$ ] and equivalent isotropic displacement parameters [Å $^2$  x  $10^3$ ] for 05mz037m. U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|       | х       | У        | z        | U(eq) |
|-------|---------|----------|----------|-------|
| 0(1)  | 5000    | -748(7)  | 10000    | 16(1) |
| 0(4)  | 2752(1) | 2168(5)  | 8136(2)  | 17(1) |
| 0(7)  | 3465(1) | 2827(5)  | 5914(2)  | 19(1) |
| 0(2)  | 4208(1) | -2765(5) | 8845(2)  | 17(1) |
| 0(3)  | 3967(1) | 1126(5)  | 8388(2)  | 14(1) |
| 0(5)  | 3039(1) | 3255(5)  | 9905(2)  | 17(1) |
| 0(8)  | 3090(1) | 6551(5)  | 5909(2)  | 17(1) |
| 0(6)  | 3586(1) | 155(5)   | 10192(2) | 16(1) |
| C(15) | 5022(1) | 907(7)   | 8165(3)  | 15(1) |
| C(20) | 5341(1) | -909(8)  | 7948(3)  | 19(1) |
| C(4)  | 3190(1) | 2473(7)  | 7686(3)  | 13(1) |
| C(10) | 3392(1) | 2243(8)  | 10708(3) | 14(1) |
| C(3)  | 3492(1) | 269(7)   | 8157(3)  | 12(1) |
| C(14) | 4753(1) | 707(7)   | 9153(3)  | 13(1) |
| C(8)  | 3350(2) | 5116(9)  | 4219(3)  | 25(1) |
| C(13) | 4285(1) | -585(7)  | 8798(3)  | 13(1) |
| C(1)  | 2859(1) | 1280(8)  | 9202(3)  | 16(1) |
| C(18) | 5466(1) | 1193(9)  | 6287(3)  | 24(1) |
| C(2)  | 3284(1) | -449(7)  | 9230(3)  | 13(1) |
| C(12) | 3770(1) | 4157(8)  | 11002(3) | 20(1) |
| C(9)  | 3918(1) | 6568(8)  | 5827(3)  | 25(1) |
| C(19) | 5561(1) | -763(9)  | 7015(3)  | 24(1) |
| C(6)  | 2750(1) | 4712(8)  | 6082(3)  | 17(1) |
| C(17) | 5155(1) | 3024(9)  | 6516(3)  | 23(1) |
| C(16) | 4933(1) | 2893(7)  | 7444(3)  | 19(1) |
| C(5)  | 3058(1) | 2491(7)  | 6458(3)  | 16(1) |
| C(11) | 3166(1) | 1314(8)  | 11692(3) | 21(1) |
| C(7)  | 3458(1) | 5291(7)  | 5452(3)  | 17(1) |

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 3. Bond lengths  $[\mathring{A}]$  and angles [deg] for 05mz037m.

| O(1)-C(14)#1  | 1.422(4) |  |
|---------------|----------|--|
| O(1)-C(14)    | 1.422(4) |  |
| O(4)-C(1)     | 1.396(4) |  |
| O(4) - C(4)   | 1.444(4) |  |
| O(7)-C(5)     | 1.427(4) |  |
| O(7)-C(7)     | 1.446(5) |  |
| O(2)-C(13)    | 1.200(5) |  |
| O(3)-C(13)    | 1.349(5) |  |
| O(3)-C(3)     | 1.432(4) |  |
| O(5)-C(1)     | 1.429(5) |  |
|               | 1.431(4) |  |
| O(5)-C(10)    | 1.426(5) |  |
| O(8)-C(6)     | 1.427(4) |  |
| O(8)-C(7)     |          |  |
| O(6)-C(2)     | 1.416(4) |  |
| O(6)-C(10)    | 1.440(4) |  |
| C(15)-C(20)   | 1.388(6) |  |
| C(15)-C(16)   | 1.396(5) |  |
| C(15)-C(14)   | 1.527(5) |  |
| C(20)-C(19)   | 1.382(6) |  |
| C(20)-H(20)   | 0.9500   |  |
| C(4) - C(5)   | 1.514(5) |  |
| C(4)-C(3)     | 1.540(5) |  |
| C(4)-H(4)     | 1.0000   |  |
| C(10)-C(12)   | 1.507(5) |  |
| C(10) - C(11) | 1.529(5) |  |
| C(3)-C(2)     | 1.566(5) |  |
| C(3)-H(3)     | 1.0000   |  |
| C(14)-C(13)   | 1.525(5) |  |
| C(14)-H(14)   | 1.0000   |  |
| C(8)-C(7)     | 1.516(5) |  |
| C(8)-H(8A)    | 0.9800   |  |
| C(8)-H(8B)    | 0.9800   |  |
| C(8)-H(8C)    | 0.9800   |  |
| C(1)-C(2)     | 1.530(5) |  |
| C(1)-H(1)     | 1.0000   |  |
| C(18)-C(17)   | 1.384(6) |  |
| C(18)-C(19)   | 1.391(6) |  |
| C(18)-H(18)   | 0.9500   |  |
| C(2)-H(2)     | 1.0000   |  |
| C(12)-H(12A)  | 0.9800   |  |
| C(12)-H(12B)  | 0.9800   |  |
| C(12)-H(12C)  | 0.9800   |  |
| C(9)-C(7)     | 1.509(6) |  |
| C(9)-H(9A)    | 0.9800   |  |
| C(9)-H(9B)    | 0.9800   |  |
| C(9)-H(9C)    | 0.9800   |  |
| C(19)-H(19)   | 0.9500   |  |
| C(6)-C(5)     | 1.526(5) |  |
| C(6)-H(6A)    | 0.9900   |  |
| C(6)-H(6B)    | 0.9900   |  |
| C(17) -C(16)  | 1.380(5) |  |
| C(17)-H(17)   | 0.9500   |  |
| C(16)-H(16)   | 0.9500   |  |
| C(5)-H(5)     | 1.0000   |  |

| C(11)-H(11A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C(11)-H(11B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(11)-H(11C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C(11)-H(11B) C(11)-H(11C)  C(14)#1-O(1)-C(14) C(1)-O(4)-C(4) C(5)-O(7)-C(7) C(13)-O(3)-C(3) C(1)-O(5)-C(10) C(6)-O(8)-C(7) C(2)-O(6)-C(10) C(20)-C(15)-C(14) C(16)-C(15)-C(14) C(19)-C(20)-H(20) C(15)-C(20)-H(20) C(15)-C(20)-H(20) C(15)-C(20)-H(20) C(15)-C(20)-H(20) O(4)-C(4)-C(3) C(5)-C(4)-C(3) C(5)-C(4)-H(4) C(3)-C(4)-H(4) C(3)-C(10)-C(12) O(6)-C(10)-C(12) O(6)-C(10)-C(11) C(12)-C(10)-C(11) C(12)-C(11)-C(13) C(11)-C(14)-H(14) C(13)-C(14)-H(14) C(13)-C(14)-H(14) C(15)-C(14)-H(14) C(15)-C(15)-C(15) C(11)-C(15) C( | 0.9800<br>0.9800<br>113.0(4)<br>107.6(3)<br>109.2(3)<br>115.6(3)<br>107.7(3)<br>106.2(3)<br>108.8(3)<br>119.5(4)<br>121.0(3)<br>119.4(3)<br>120.0(4)<br>120.0<br>120.0<br>105.4(3)<br>103.9(3)<br>116.1(3)<br>110.4<br>110.4<br>110.4<br>110.4<br>110.4<br>110.4<br>110.4<br>111.4(3)<br>109.8(3)<br>113.4(3)<br>107.4(3)<br>111.4(3)<br>104.8(3)<br>111.0<br>111.0<br>111.0<br>111.0<br>111.0<br>111.0<br>107.2(3)<br>111.7(3)<br>108.6(3)<br>111.7(3)<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.8<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5 |
| O(2) -C(13) -C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 126.5(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O(3) -C(13) -C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 108.7(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O(4) -C(1) -O(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.5(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O(4) -C(1) -C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 108.1(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O(5) -C(1) -C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O(4) -C(1) -H(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 112.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| O(5)-C(1)-H(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C(2)-C(1)-H(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C(17)-C(18)-C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.3(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

```
120.3
C(17) - C(18) - H(18)
                      120.3
C(19)-C(18)-H(18)
                      106.2(3)
O(6)-C(2)-C(1)
O(6)-C(2)-C(3)
                      113.1(3)
                      102.5(3)
C(1)-C(2)-C(3)
O(6)-C(2)-H(2)
                      111.5
                   111.5
C(1)-C(2)-H(2)
C(3)-C(2)-H(2)
                      111.5
C(10)-C(12)-H(12A)
                  109.5
                  109.5
C(10)-C(12)-H(12B)
                     109.5
H(12A)-C(12)-H(12B)
                    109.5
C(10) - C(12) - H(12C)
                  109.5
H(12A) - C(12) - H(12C)
                  109.5
H(12B)-C(12)-H(12C)
                  109.5
C(7)-C(9)-H(9A)
                  109.5
C(7)-C(9)-H(9B)
                  109.5
H(9A)-C(9)-H(9B)
C(7)-C(9)-H(9C)
                  109.5
                  109.5
H(9A) - C(9) - H(9C)
H(9B)-C(9)-H(9C)
                  109.5
                  120.5(4)
C(20) - C(19) - C(18)
                  119.8
C(20)-C(19)-H(19)
                  119.8
C(18)-C(19)-H(19)
                  102.2(3)
O(8)-C(6)-C(5)
                  111.3
O(8) - C(6) - H(6A)
                  111.3
C(5)-C(6)-H(6A)
                  111.3
O(8) - C(6) - H(6B)
C(5)-C(6)-H(6B)
                  111.3
H(6A)-C(6)-H(6B)
                  109.2
C(16) - C(17) - C(18)
                  120.6(4)
C(16) - C(17) - H(17)
                  119.7
                  119.7
C(18)-C(17)-H(17)
C(17) - C(16) - C(15)
                  120.0(4)
                  120.0
C(17) - C(16) - H(16)
                  120.0
C(15)-C(16)-H(16)
                  110.8(3)
O(7) - C(5) - C(4)
                      103.5(3)
O(7) - C(5) - C(6)
C(4)-C(5)-C(6)
                      111.8(3)
                      110.2
O(7)-C(5)-H(5)
                      110.2
C(4)-C(5)-H(5)
C(6)-C(5)-H(5)
                      110.2
C(10) - C(11) - H(11A)
                      109.5
C(10) - C(11) - H(11B)
                      109.5
H(11A) - C(11) - H(11B)
                      109.5
                      109.5
C(10)-C(11)-H(11C)
                      109.5
H(11A) - C(11) - H(11C)
                      109.5
H(11B)-C(11)-H(11C)
                      104.9(3)
O(8)-C(7)-O(7)
                      108.7(3)
O(8)-C(7)-C(9)
                      109.3(3)
O(7) - C(7) - C(9)
                      111.1(3)
O(8)-C(7)-C(8)
O(7) - C(7) - C(8)
                      109.2(3)
C(9)-C(7)-C(8)
                      113.3(3)
```

Symmetry transformations used to generate equivalent atoms: #1-x+1,y,-z+2

Table 4. Anisotropic displacement parameters [Å $^2 \times 10^3$ ] for 05mz037m. The anisotropic displacement factor exponent takes the form: -2  $\pi 2$  [(h a\*) $^2$  U11 + ... + 2 h k a\* b\* U12]

| 9750 x | U11   | U22   | U33   | U23   | U13   | U12    |  |
|--------|-------|-------|-------|-------|-------|--------|--|
| 0(1)   | 19(2) | 11(2) | 17(2) | 0     | -4(2) | 0      |  |
| 0(4)   | 15(1) | 18(1) | 16(1) | 1(1)  | 1(1)  | 1(1)   |  |
| 0(7)   | 27(1) | 14(2) | 18(1) | 3(1)  | 6(1)  | 8(1)   |  |
| 0(2)   | 19(1) | 14(1) | 20(1) | -1(1) | 2(1)  | 1(1)   |  |
| 0(3)   | 11(1) | 14(1) | 18(1) | 1(1)  | 0(1)  | -2(1)  |  |
| 0(5)   | 20(1) | 15(1) | 16(1) | -1(1) | 4(1)  | 2(1)   |  |
| 0(8)   | 19(1) | 13(1) | 18(1) | -1(1) | 0(1)  | 3(1)   |  |
| 0(6)   | 18(1) |       | 14(1) | -1(1) | 0(1)  | 4(1)   |  |
| C(15)  | 12(2) | 15(2) | 16(2) | 0(2)  | -4(1) | -7(2)  |  |
| C(20)  | 19(2) | 15(2) | 24(2) | 0(2)  | 2(2)  | 4(2)   |  |
| C(4)   | 14(2) | 8(2)  | 17(2) | -2(2) | 3(1)  | 0(2)   |  |
| C(10)  | 14(2) | 13(2) | 17(2) | -1(2) | 4(1)  | 4(2)   |  |
| C(3)   | 12(2) | 9(2)  | 16(2) | -3(2) | 1(1)  | 2(2)   |  |
| C(14)  | 14(2) | 10(2) | 15(2) | -2(2) | 1(1)  | -1(1)  |  |
| C(8)   | 30(2) | 28(2) | 17(2) | 3(2)  | 5(2)  | 6(2)   |  |
| C(13)  | 16(2) | 18(2) | 6(2)  | 0(2)  | 6(1)  | 1(2)   |  |
| C(1)   | 16(2) | 16(2) | 16(2) | -3(2) | 3(1)  | -4(2)  |  |
| C(18)  | 26(2) | 29(2) | 19(2) | -4(2) | 10(2) | -10(2) |  |
| C(2)   | 16(2) | 9(2)  | 14(2) | 2(2)  | 0(1)  | -4(2)  |  |
| C(12)  | 23(2) | 13(2) | 24(2) | 3(2)  | 1(2)  | -3(2)  |  |
| C(9)   |       | 22(2) | 30(2) | -2(2) | 6(2)  | 3(2)   |  |
| C(19)  | 19(2) | 21(2) | 31(2) | -9(2) | 6(2)  | -2(2)  |  |
| C(6)   | 20(2) | 20(2) | 11(2) | 4(2)  | -1(1) | 0(2)   |  |
| C(17)  | 24(2) | 24(2) | 20(2) | 4(2)  | 1(2)  | -5(2)  |  |
| C(16)  | 20(2) | 15(2) | 21(2) | -1(2) | 1(2)  | 2(2)   |  |
| C(5)   | 18(2) | 13(2) | 16(2) | -4(2) | 1(1)  | 3(2)   |  |
| C(11)  | 20(2) | 23(2) | 20(2) | -2(2) | 4(2)  | -4(2)  |  |
| C(7)   | 24(2) | 13(2) | 16(2) | 2(2)  | 4(2)  | 5(2)   |  |

Table 5. Hydrogen coordinates (X  $10^4$ ) and isotropic displacement parameters (Å $^2$  X  $10^3$ ) for 0.5mz0.37m.

|        |      |       | 400              |       |
|--------|------|-------|------------------|-------|
|        | ×    | У     | 218 <b>z</b> 219 | U(eq) |
| H(20)  | 5407 | -2253 | 8440             | 23    |
| H(4)   | 3343 | 4073  | 7937             | 16    |
| H(3)   | 3469 | -1147 | 7630             | 15    |
| H(14)  | 4694 | 2399  | 9436             | 16    |
| H(8A)  | 3344 | 6782  | 3902             | 37    |
| H(8B)  | 3043 | 4326  | 4026             | 37    |
| H(8C)  | 3594 | 4126  | 3931             | 37    |
| H(1)   | 2584 | 446   | 9469             | 19    |
| H(18)  | 5613 | 1272  | 5639             | 29    |
| H(2)   | 3187 | -2228 | 9224             | 16    |
| H(12A) | 3633 | 5612  | 11316            | 30    |
| H(12B) | 3906 | 4644  | 10344            | 30    |
| H(12C) | 4017 | 3459  | 11538            | 30    |
| H(9A)  | 3986 | 6449  | 6625             | 37    |
| H(9B)  | 3897 | 8315  | 5612             | 37    |
| H(9C)  | 4171 | 5769  | 5490             | 37    |
| H(19)  | 5780 | -2008 | 6870             | 28    |
| H(6A)  | 2541 | 4342  | 5399             | 21    |
| H(6B)  | 2556 | 5234  | 6652             | 21    |
| H(17)  | 5094 | 4384  | 6030             | 27    |
| H(16)  | 4718 | 4154  | 7592             | 22    |
| H(5)   | 2895 | 916   | 6212             | 19    |
| H(11A) | 2926 | 71    | 11449            | 31    |
| H(11B) | 3019 | 2706  | 12030            | 31    |
| H(11C) | 3408 | 570   | 12226            | 31    |

Figure 104: X-Ray crystal structure of mannefurances before 16.



Figure 104: X-Ray crystal structure of mannofuranose ketone 16.

## Table 1. Crystal data and structure refinement for 06mz088m:

Identification code: 06mz088m

Empirical formula: C20 H24 O8

Formula weight: 392.39

Temperature: 100(2) K
Wavelength: 0.71073 Å

Crystal system: Hexagonal

Space group: P6<sub>1</sub>

Unit cell dimensions:

 $a = 10.9599(3) \text{ Å, } \alpha = 90^{\circ}$ 

 $b = 10.9599(3) \text{ Å, } \beta = 90^{\circ}$ 

 $c = 28.3221(13) \text{ Å, } \gamma = 120^{\circ}$ 

Volume, Z: 2946.25(18) Å<sup>3</sup>, 6

Density (calculated): 1.327 g/m<sup>3</sup>

Absorption coefficient: 0.103 mm<sup>-1</sup>

F(000): 1248

Crystal size:  $0.48 \times 0.30 \times 0.27 \text{ mm}$ 

Crystal shape, colour: plate, colourless

heta range for data collection: 2.15 to 28.28°

Limiting indices:  $-14 \le h \le 14$ ,  $-14 \le k \le 14$ ,  $-37 \le 1 \le 37$ 

Reflections collected: 30688

Independent reflections: 2488 (R(int) = 0.0290)

Completeness to  $\theta$  = 28.28°: 100.0 %

Absorption correction: multi-scan

Max. and min. transmission: 0.973 and 0.916

Refinement method: Full-matrix least-squares on F2

Data / restraints / parameters: 2488 / 1 / 257

Goodness-of-fit on  $F^2$ : 1.178

Final R indices [I>2 $\sigma$ (I)]: R1 = 0.0429, wR2 = 0.1048

R indices (all data): R1 = 0.0430, wR2 = 0.1049

Largest diff. peak and hole: 0.374 and -0.210 e  $\times$  Å<sup>-3</sup>

Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating R-factors

## Treatment of hydrogen atoms:

All hydrogen atoms were placed in calculatedpositions and were refined with an isotropic displacement parameter 1.5 (methytl) or 1.2 timed that of the adjacent carbon atom.

Table 2. Atomic coordinates [ $\times$  10<sup>4</sup>] and equivalent isotropic displacement parameters [ $\mathring{A}^2 \times 10^3$ ] for 06mz088m. U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

| (3) +5 (3)<br>(4) -0 (A) | x        | Y        | Z       | U(eq) |  |
|--------------------------|----------|----------|---------|-------|--|
| C(1)                     | 386(2)   | 10854(2) | 1408(1) | 19(1) |  |
| C(2)                     | -766(2)  | 10140(2) | 1780(1) | 19(1) |  |
| C(3)                     | -803(2)  | 8728(2)  | 1878(1) | 19(1) |  |
| C(4)                     | 424(2)   | 8849(2)  | 1587(1) | 20(1) |  |
| C(5)                     | 236(2)   | 7501(2)  | 1371(1) | 26(1) |  |
| C(6)                     | 1508(3)  | 7742(3)  | 1075(1) | 34(1) |  |
| C(7)                     | -3019(2) | 8279(2)  | 1665(1) | 22(1) |  |
| C(8)                     | -4048(3) | 7620(3)  | 1264(1) | 29(1) |  |
| C(9)                     | -3729(2) | 8134(3)  | 2139(1) | 27(1) |  |
| C(10)                    | 1474(3)  | 6513(3)  | 1721(1) | 32(1) |  |
| C(11)                    | 2132(4)  | 6788 (5) | 2206(1) | 60(1) |  |
| C(12)                    | 1113(4)  | 5083 (3) | 1523(2) | 52(1) |  |
| C(13)                    | 2701(2)  | 12805(2) | 1384(1) | 21(1) |  |
| C(14)                    | 4034(2)  | 13639(2) | 1683(1) | 23(1) |  |
| C(15)                    | 5053(2)  | 13132(2) | 1676(1) | 22(1) |  |
| C(16)                    | 4710(3)  | 11846(2) | 1466(1) | 26(1) |  |
| C(17)                    | 5649(3)  | 11346(3) | 1498(1) | 36(1) |  |
| C(18)                    | 6912(3)  | 12129(3) | 1735(1) | 38(1) |  |
| C(19)                    | 7267(3)  | 13421(3) | 1938(1) | 36(1) |  |
| C(20)                    | 6342(2)  | 13930(3) | 1907(1) | 27(1) |  |
| 0(1)                     | 587(2)   | 9809(2)  | 1205(1) | 21(1) |  |
| 0(2)                     | 1657(2)  | 11849(2) | 1657(1) | 22(1) |  |
| 0(3)                     | -2078(2) | 9741(2)  | 1556(1) | 24(1) |  |
| 0(4)                     | -2115(2) | 7692(2)  | 1681(1) | 23(1) |  |
| 0(5)                     | 213(2)   | 6622(2)  | 1746(1) | 29(1) |  |
| 0(6)                     | 2392(2)  | 7616(2)  | 1414(1) | 34(1) |  |
| 0(7)                     | 2619(2)  | 13017(2) | 974(1)  | 29(1) |  |
| 0(8)                     | 4158(2)  | 14629(2) | 1909(1) | 34(1) |  |

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

| Table 3. Bond 1 | engths [Å] and | angles | [dea] | for | 06mz088m |                            |
|-----------------|----------------|--------|-------|-----|----------|----------------------------|
| C(1)-O(1)       | 1.394(2)       | (17)   |       |     |          | The Control of the Control |
| C(1) - O(2)     | 1.452(2)       |        |       |     |          |                            |
| C(1) - C(2)     | 1.525(3)       |        |       |     |          |                            |
| C(1)-H(1)       | 1.0000         |        |       |     |          |                            |
| C(2) - O(3)     | 1.425(3)       |        |       |     |          |                            |
| C(2) - C(3)     | 1.552(3)       |        |       |     |          |                            |
| C(2)-H(2)       | 1.0000         |        |       |     |          |                            |
| C(3) - O(4)     | 1.427(3)       |        |       |     |          |                            |
| C(3) - C(4)     | 1.525(3)       |        |       |     |          |                            |
| C(3)-H(3)       | 1.0000         |        |       |     |          |                            |
| C(4) - O(1)     | 1.457(2)       |        |       |     |          |                            |
| C(4) - C(5)     | 1.516(3)       |        |       |     |          |                            |
| C(4) - H(4)     | 1.0000         |        |       |     |          |                            |
| C(5) - O(5)     | 1.425(3)       |        |       |     |          |                            |
| C(5)-C(6)       | 1.531(3)       |        |       |     |          |                            |
| C(5)-H(5)       | 1.0000         |        |       |     |          |                            |
| C(6)-O(6)       | 1.419(4)       |        |       |     |          |                            |
| C(6)-H(6A)      | 0.9900         |        |       |     |          |                            |
| C(6)-H(6B)      | 0.9900         |        |       |     |          |                            |
| C(7) - O(4)     | 1.426(3)       |        |       |     |          |                            |
| C(7) - O(3)     | 1.439(3)       |        |       |     |          |                            |
| C(7) - C(8)     | 1.506(3)       |        |       |     |          |                            |
|                 |                |        |       |     |          |                            |
| C(7) - C(9)     | 1.521(3)       |        |       |     |          |                            |
| C(8) - H(8A)    | 0.9800         |        |       |     |          |                            |
| C(8)-H(8B)      | 0.9800         |        |       |     |          |                            |
| C(8)-H(8C)      | 0.9800         |        |       |     |          |                            |
| C(9)-H(9A)      | 0.9800         |        |       |     |          |                            |
| C(9)-H(9B)      | 0.9800         |        |       |     |          |                            |
| C(9)-H(9C)      | 0.9800         |        |       |     |          |                            |
| C(10) - O(6)    | 1.418(3)       |        |       |     |          |                            |
| C(10)-O(5)      | 1.448(3)       |        |       |     |          |                            |
| C(10) - C(11)   | 1.510(5)       |        |       |     |          |                            |
| C(10) - C(12)   | 1.519(4)       |        |       |     |          |                            |
| C(11)-H(11A)    | 0.9800         |        |       |     |          |                            |
| C(11)-H(11B)    | 0.9800         |        |       |     |          |                            |
| C(11) - H(11C)  | 0.9800         |        |       |     |          |                            |
| C(12) - H(12A)  | 0.9800         |        |       |     |          |                            |
| C(12) - H(12B)  | 0.9800         |        |       |     |          |                            |
| C(12)-H(12C)    | 0.9800         |        |       |     |          |                            |
| C(13)-O(7)      | 1.195(3)       |        |       |     |          |                            |
| C(13) - O(2)    | 1.345(3)       |        |       |     |          |                            |
| C(13) - C(14)   | 1.534(3)       |        |       |     |          |                            |
| C(14) - O(8)    | 1.206(3)       |        |       |     |          |                            |

```
C(14) - C(15)
                   1.475(3)
C(15)-C(16)
                   1.398(3)
C(15) - C(20)
                   1.398(3)
                   1.390(4)
C(16) - C(17)
                   0.9500
C(16)-H(16)
C(17) - C(18)
                   1.384(4)
C(17)-H(17)
                   0.9500
C(18)-C(19)
                   1.391(4)
C(18)-H(18)
                   0.9500
C(19) - C(20)
                   1.382(4)
C(19)-H(19)
                   0.9500
                   0.9500
C(20)-H(20)
O(1) - C(1) - O(2)
                       109.35(16)
                       107.00(17)
O(1) - C(1) - C(2)
O(2)-C(1)-C(2)
                       106.66(16)
                       111.2
O(1)-C(1)-H(1)
O(2)-C(1)-H(1)
                       111.2
C(2)-C(1)-H(1)
                       111.2
O(3)-C(2)-C(1)
                       107.52(16)
O(3)-C(2)-C(3)
                       104.76(16)
C(1)-C(2)-C(3)
                       103.82(17)
                       113.3
O(3)-C(2)-H(2)
C(1)-C(2)-H(2)
                       113.3
C(3)-C(2)-H(2)
                       113.3
O(4) - C(3) - C(4)
                       110.55(16)
                       103.68(16)
O(4) - C(3) - C(2)
C(4)-C(3)-C(2)
                       103.48(16)
O(4)-C(3)-H(3)
                       112.8
C(4)-C(3)-H(3)
                       112.8
                       112.8
C(2)-C(3)-H(3)
                       108.14(17)
O(1) - C(4) - C(5)
O(1)-C(4)-C(3)
                       104.43(16)
                       116.74(18)
C(5)-C(4)-C(3)
                       109.1
O(1) - C(4) - H(4)
C(5)-C(4)-H(4)
                       109.1
                       109.1
C(3)-C(4)-H(4)
                       107.79(19)
O(5) - C(5) - C(4)
                       103.37(19)
O(5) - C(5) - C(6)
C(4)-C(5)-C(6)
                       112.61(19)
O(5)-C(5)-H(5)
                       110.9
C(4)-C(5)-H(5)
                       110.9
                       110.9
C(6)-C(5)-H(5)
                       102.7(2)
O(6) - C(6) - C(5)
                       111.2
O(6) - C(6) - H(6A)
                       111.2
C(5)-C(6)-H(6A)
                       111.2
O(6)-C(6)-H(6B)
                       111.2
C(5)-C(6)-H(6B)
                       109.1
H(6A)-C(6)-H(6B)
                       103.69(16)
O(4) - C(7) - O(3)
O(4)-C(7)-C(8)
                       109.34(19)
                       108.71(18)
O(3)-C(7)-C(8)
                       111.03(19)
O(4) - C(7) - C(9)
O(3) - C(7) - C(9)
                       110.40(19)
C(8)-C(7)-C(9)
                       113.22(18)
                       109.5
C(7)-C(8)-H(8A)
                       109.5
C(7)-C(8)-H(8B)
                       109.5
H(8A)-C(8)-H(8B)
```

```
109.5
C(7)-C(8)-H(8C)
H(8A) - C(8) - H(8C)
                            109.5
                            109.5
H(8B)-C(8)-H(8C)
C(7)-C(9)-H(9A)
                            109.5
                            109.5
C(7)-C(9)-H(9B)
H(9A) - C(9) - H(9B)
                            109.5
C(7)-C(9)-H(9C)
                            109.5
H(9A) - C(9) - H(9C)
                            109.5
H(9B)-C(9)-H(9C)
                            109.5
O(6)-C(10)-O(5)
                            105.03(19)
O(6)-C(10)-C(11)
                            108.8(3)
                            108.6(2)
O(5) - C(10) - C(11)
O(6) - C(10) - C(12)
                            111.2(2)
                            109.7(2)
O(5) - C(10) - C(12)
C(11) - C(10) - C(12)
                            113.1(3)
                            109.5
C(10) - C(11) - H(11A)
C(10) - C(11) - H(11B)
                            109.5
H(11A) - C(11) - H(11B)
                            109.5
C(10)-C(11)-H(11C)
                            109.5
                            109.5
H(11A)-C(11)-H(11C)
                            109.5
H(11B)-C(11)-H(11C)
                            109.5
C(10) - C(12) - H(12A)
                            109.5
C(10)-C(12)-H(12B)
H(12A) - C(12) - H(12B)
                            109.5
                            109.5
C(10) - C(12) - H(12C)
H(12A)-C(12)-H(12C)
                            109.5
H(12B)-C(12)-H(12C)
                            109.5
O(7) - C(13) - O(2)
                            126.3(2)
O(7) - C(13) - C(14)
                            124.2(2)
O(2) - C(13) - C(14)
                            109.41(18)
                            125.5(2)
O(8)-C(14)-C(15)
O(8) - C(14) - C(13)
                            118.3(2)
                            116.26(19)
C(15) - C(14) - C(13)
                            120.6(2)
C(16) - C(15) - C(20)
C(16) - C(15) - C(14)
                            120.9(2)
                            118.5(2)
C(20)-C(15)-C(14)
C(17) - C(16) - C(15)
                            119.4(2)
C(17)-C(16)-H(16)
                            120.3
                            120.3
C(15)-C(16)-H(16)
C(18) - C(17) - C(16)
                            119.7(2)
C(18) - C(17) - H(17)
                            120.2
                            120.2
C(16)-C(17)-H(17)
                            121.0(2)
C(17) - C(18) - C(19)
C(17) - C(18) - H(18)
                            119.5
C(19)-C(18)-H(18)
                            119.5
                            119.8(2)
C(20) - C(19) - C(18)
C(20)-C(19)-H(19)
                            120.1
C(18)-C(19)-H(19)
                            120.1
                            119.5(2)
C(19) - C(20) - C(15)
                            120.2
C(19)-C(20)-H(20)
                            120.2
C(15)-C(20)-H(20)
                            105.93(15)
C(1) - O(1) - C(4)
C(13) - O(2) - C(1)
                            115.36(17)
C(2) - O(3) - C(7)
                            107.35(16)
                            107.72(16)
C(7) - O(4) - C(3)
                            108.93(18)
C(5) - O(5) - C(10)
                            105.6(2)
C(10) - O(6) - C(6)
```

Table 4. Anisotropic displacement parameters [Å $^2$  × 10 $^3$ ] for 06mz088m. The anisotropic displacement factor exponent takes the form: -2  $\pi$ 2 [(h a\*) $^2$  U11 + ... + 2 h k a\* b\* U12]

|       | - 2   |       | 35    |        | The state of the s |       |
|-------|-------|-------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|       | U11   | U22   | U33   | U23    | U13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U12   |
| HITT. | 140   | 10    | 1346  | 1164   | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| C(1)  | 17(1) | 19(1) | 17(1) | 2(1)   | -1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6(1)  |
| C(2)  | 21(1) | 17(1) | 18(1) | 0(1)   | 0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9(1)  |
| C(3)  | 23(1) | 18(1) | 15(1) | 1(1)   | 0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9(1)  |
| C(4)  | 22(1) | 21(1) | 17(1) | 0(1)   | 0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11(1) |
| C(5)  | 31(1) | 24(1) | 26(1) | -1(1)  | 1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15(1) |
| C(6)  | 45(1) | 33(1) | 28(1) | 2(1)   | 12(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23(1) |
| C(7)  | 20(1) | 21(1) | 21(1) | 1(1)   | 1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8(1)  |
| C(8)  | 24(1) | 33(1) | 22(1) | -1(1)  | -2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9(1)  |
| C(9)  | 23(1) | 28(1) | 24(1) | -2(1)  | 3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9(1)  |
| C(10) | 31(1) | 34(1) | 40(1) | 6(1)   | 9(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22(1) |
| C(11) | 58(2) | 95(3) | 44(2) | 12(2)  | 0(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52(2) |
| C(12) | 53(2) | 35(1) | 80(3) | 9(2)   | 26(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32(1) |
| C(13) | 21(1) | 17(1) | 26(1) | 1(1)   | 0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9(1)  |
| C(14) | 21(1) | 19(1) | 24(1) | 2(1)   | -1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7(1)  |
| C(15) | 22(1) | 21(1) | 19(1) | 3(1)   | 2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9(1)  |
| C(16) | 28(1) | 24(1) | 25(1) | -2(1)  | 0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11(1) |
| C(17) | 42(1) | 33(1) | 39(1) | -6(1)  | 4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23(1) |
| C(18) | 35(1) | 44(1) | 45(2) | -2(1)  | 3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28(1) |
| C(19) | 27(1) | 42(1) | 39(1) | -5(1)  | -3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18(1) |
| C(20) | 24(1) | 24(1) | 31(1) | -2(1)  | -1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10(1) |
| 0(1)  | 26(1) | 22(1) | 14(1) | 2(1)   | 0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12(1) |
| 0(2)  | 21(1) | 20(1) | 20(1) | 1(1)   | -2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7(1)  |
| 0(3)  | 20(1) | 21(1) | 29(1) | 4(1)   | -1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9(1)  |
| 0(4)  | 20(1) | 19(1) | 26(1) | -2(1)  | -1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7(1)  |
| 0(5)  | 29(1) | 27(1) | 38(1) | 9(1)   | 11(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19(1) |
| 0(6)  | 29(1) | 34(1) | 41(1) | 1(1)   | 11(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16(1) |
| 0(7)  | 27(1) | 28(1) | 25(1) | 6(1)   | 0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8(1)  |
| 0(8)  | 30(1) | 24(1) | 49(1) | -11(1) | -7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14(1) |

Table 5. Hydrogen coordinates (×  $10^4$ ) and isotropic displacement parameters (Å $^2$  ×  $10^3$ ) for 06mz088m.

|        | x     | У     | z    | U(eq) |
|--------|-------|-------|------|-------|
|        |       |       |      | - 1 m |
| H(1)   | 119   | 11340 | 1164 | 23    |
| H(2)   | -596  | 10726 | 2069 | 23    |
| H(3)   | -718  | 8573  | 2222 | 23    |
| H(4)   | 1296  | 9288  | 1785 | 24    |
| H(5)   | -651  | 7016  | 1181 | 31    |
| H(6A)  | 1228  | 7021  | 824  | 40    |
| H(6B)  | 1979  | 8690  | 929  | 40    |
| H(8A)  | -3530 | 7771  | 968  | 44    |
| H(8B)  | -4641 | 8053  | 1243 | 44    |
| H(8C)  | -4642 | 6607  | 1321 | 44    |
| H(9A)  | -4381 | 7136  | 2205 | 41    |
| H(9B)  | -4252 | 8644  | 2131 | 41    |
| H(9C)  | -3012 | 8530  | 2388 | 41    |
| H(11A) | 2927  | 6617  | 2202 | 89    |
| H(11B) | 1428  | 6157  | 2435 | 89    |
| H(11C) | 2465  | 7769  | 2295 | 89    |
| H(12A) | 625   | 4933  | 1220 | 78    |
| H(12B) | 501   | 4344  | 1746 | 78    |
| H(12C) | 1982  | 5048  | 1476 | 78    |
| H(16)  | 3842  | 11318 | 1302 | 32    |
| H(17)  | 5425  | 10471 | 1358 | 43    |
| H(18)  | 7547  | 11780 | 1759 | 46    |
| H(19)  | 8141  | 13952 | 2097 | 43    |
| H(20)  | 6582  | 14816 | 2041 | 33    |

Figure 148: A-Ray crystal structure of manusoficasese assertion product 19



Figure 105: X-Ray crystal structure of mannofuranose insertion product 19.

hetinement of  $x^{\ell}$  against ALL regiserious. The values of k-factor of goodness of fit are based on  $x^{\ell}$ , conventional k-factors k are based on  $x^{\ell}$ , conventional k-factors k are based on  $x^{\ell}$ , with x set on such for negative  $x^{\ell}$ . The threshold expression  $x^{\ell} = 2\sigma(x^{\ell})$  is used only for culculating k-factors

Table 1. Crystal data and structure refinement for 06mz136m:

Identification code: 06mz136m
Empirical formula: C20 H24 O7

Formula weight: 376.39

Temperature: 100(2) K

Wavelength: 0.71073 Å

Crystal system: Orthorhombic

Space group: P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>
Unit cell dimensions:

 $a = 8.9137(4) \text{ Å, } \alpha = 90^{\circ}$ 

 $b = 9.6611(4) \text{ Å, } \beta = 90^{\circ}$ 

 $c = 20.7525(9) \text{ Å, } \gamma = 90^{\circ}$ 

Volume, Z: 1787.13(13) Å<sup>3</sup>, 4

Density (calculated): 1.399 Mg/m<sup>3</sup> Absorption coefficient: 0.106 mm<sup>-1</sup>

F(000): 800

Crystal size:  $0.41 \times 0.38 \times 0.22$  mm

Crystal shape, colour: block, colourless

heta range for data collection: 1.96 to 28.28°

Limiting indices:  $-11 h \le 11$ ,  $-12 \le k \le 12$ ,  $-26 \le l \le 27$ 

Reflections collected: 18596

Independent reflections: 2526 (R(int) = 0.0289)

Completeness to  $\theta$  = 28.28°: 99.9 %

Absorption correction: multi-scan

Max. and min. transmission: 0.977 and 0.932

Refinement method: Full-matrix least-squares on  $F^2$ 

Data / restraints / parameters: 2526 / 0 / 248

Goodness-of-fit on  $F^2$ : 1.117

Final R indices [I>2 $\sigma$ (I)]: R1 = 0.0371, wR2 = 0.0926

R indices (all data): R1 = 0.0375, wR2 = 0.0930

Largest diff. peak and hole: 0.405 and  $-0.185 \text{ e} \times \text{Å}^{-3}$ 

Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating R-factors

Treatment of hydrogen atoms:

All hydrogen atoms were placed in calculated positions and were isotropically refined with a displacement parameter 1.5 (methyl) or 1.2 times (all others) that of the adjacent carbon atom.

Table 2. Atomic coordinates [ $\times$  10<sup>4</sup>] and equivalent isotropic displacement parameters [ $\mathring{A}^2 \times 10^3$ ] for 06mz136m. U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|           |         | 474191  |         |       |  |
|-----------|---------|---------|---------|-------|--|
| C(1)-C(4) | х       | Y Y     | Z       | U(eq) |  |
| C(1)      | 4935(2) | 5864(2) | 6875(1) | 15(1) |  |
| C(2)      | 3237(2) | 6052(2) | 6750(1) | 14(1) |  |
| C(3)      | 2660(2) | 6682(2) | 7393(1) | 14(1) |  |
| C(4)      | 4088(2) | 6969(2) | 7780(1) | 13(1) |  |
| C(5)      | 4005(2) | 6711(2) | 8502(1) | 14(1) |  |
| C(6)      | 5450(2) | 7172(2) | 8857(1) | 15(1) |  |
| C(7)      | 4705(2) | 7661(2) | 6134(1) | 16(1) |  |
| C(8)      | 3200(2) | 6914(2) | 6127(1) | 14(1) |  |
| C(9)      | 1845(2) | 7808(2) | 6007(1) | 16(1) |  |
| C(10)     | 653(2)  | 7275(2) | 5652(1) | 20(1) |  |
| C(11)     | -662(2) | 8034(3) | 5570(1) | 26(1) |  |
| C(12)     | -771(3) | 9352(3) | 5829(1) | 28(1) |  |
| C(13)     | 426 (3) | 9915(2) | 6166(1) | 25(1) |  |
| C(14)     | 1726(2) | 9148(2) | 6257(1) | 20(1) |  |
| C(15)     | 1391(2) | 4627(2) | 7198(1) | 15(1) |  |
| C(16)     | -165(2) | 4945(2) | 6938(1) | 19(1) |  |
| C(17)     | 1505(2) | 3191(2) | 7480(1) | 20(1) |  |
| C(18)     | 3434(2) | 8115(2) | 9365(1) | 15(1) |  |
| C(19)     | 2680(2) | 9479(2) | 9506(1) | 19(1) |  |
| C(20)     | 3265(2) | 7074(2) | 9913(1) | 20(1) |  |
| 0(1)      | 5178(2) | 5987(1) | 7534(1) | 16(1) |  |
| 0(2)      | 5660(2) | 6998(1) | 6539(1) | 17(1) |  |
| 0(3)      | 2492(2) | 4766(1) | 6690(1) | 17(1) |  |
| 0(4)      | 1834(2) | 5587(1) | 7680(1) | 17(1) |  |
| 0(5)      | 2849(2) | 7559(1) | 8772(1) | 17(1) |  |
| 0(6)      | 4981(2) | 8354(1) | 9225(1) | 16(1) |  |
| 0(7)      | 5076(2) | 8655(1) | 5832(1) | 21(1) |  |

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 3. Bond lengths [Å] and angles [deg] for 06mz136m.

| C(18)=O(5)   |          |  |
|--------------|----------|--|
| C(1)-O(1)    | 1.391(2) |  |
| C(1)-O(2)    | 1.451(2) |  |
| C(1)-C(2)    | 1.546(3) |  |
| C(1)-H(1)    | 1.0000   |  |
| C(2)-O(3)    | 1.415(2) |  |
| C(2)-C(8)    | 1.538(2) |  |
| C(2)-C(3)    | 1.553(2) |  |
| C(3)-O(4)    | 1.420(2) |  |
| C(3)-C(4)    | 1.531(2) |  |
| C(3)-H(3)    | 1.0000   |  |
| C(4)-O(1)    | 1.450(2) |  |
| C(4)-C(5)    | 1.519(2) |  |
| C(4)-H(4)    | 1.0000   |  |
| C(5)-O(5)    | 1.431(2) |  |
| C(5)-C(6)    | 1.549(3) |  |
| C(5)-H(5)    | 1.0000   |  |
| C(6)-O(6)    | 1.436(2) |  |
| C(6)-H(6A)   | 0.9900   |  |
| C(6)-H(6B)   | 0.9900   |  |
| C(7)-O(7)    | 1.195(2) |  |
| C(7)-O(2)    | 1.357(2) |  |
| C(7)-C(8)    | 1.523(3) |  |
| C(8)-C(9)    | 1.506(3) |  |
| C(8)-H(8)    | 1.0000   |  |
| C(9)-C(10)   | 1.391(3) |  |
| C(9)-C(14)   | 1.399(3) |  |
| C(10)-C(11)  | 1.393(3) |  |
| C(10)-H(10)  | 0.9500   |  |
| C(11)-C(12)  | 1.386(3) |  |
| C(11)-H(11)  | 0.9500   |  |
| C(12)-C(13)  | 1.387(3) |  |
| C(12)-H(12)  | 0.9500   |  |
| C(13)-C(14)  | 1.388(3) |  |
| C(13)-H(13)  | 0.9500   |  |
| C(14)-H(14)  | 0.9500   |  |
| C(15)-O(4)   | 1.420(2) |  |
| C(15)-O(3)   | 1.446(2) |  |
| C(15)-C(17)  | 1.508(3) |  |
| C(15)-C(16)  | 1.519(3) |  |
| C(16)-H(16A) | 0.9800   |  |
| C(16)-H(16B) | 0.9800   |  |
| C(16)-H(16C) | 0.9800   |  |
| C(17)-H(17A) | 0.9800   |  |
| C(17)-H(17B) |          |  |
|              | 0.9800   |  |

| C(18)-O(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.428(2)   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| C(18)-O(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.441(2)   |
| C(18) - C(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.508(3)   |
| C(18) - C(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.525(3)   |
| C(19)-H(19A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9800     |
| C(19)-H(19B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9800     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9800     |
| C(19)-H(19C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9800     |
| C(20) -H(20A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| C(20) -H(20B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9800     |
| C(20)-H(20C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9800     |
| 0/1) 0/1) 0/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| O(1)-C(1)-O(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.75(14) |
| O(1) - C(1) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107.89(15) |
| O(2)-C(1)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 105.49(14) |
| O(1)-C(1)-H(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111.2      |
| O(2)-C(1)-H(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111.2      |
| C(2)-C(1)-H(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111.2      |
| O(3)-C(2)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 113.07(14) |
| O(3)-C(2)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111.75(15) |
| C(8)-C(2)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103.02(14) |
| O(3)-C(2)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 105.31(14) |
| C(8) - C(2) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.17(15) |
| C(1)-C(2)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103.09(14) |
| O(4) - C(3) - C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.22(14) |
| O(4) - C(3) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 103.90(14) |
| C(4)-C(3)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 104.27(14) |
| O(4) - C(3) - H(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 112.6      |
| C(4)-C(3)-H(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112.6      |
| C(2)-C(3)-H(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112.6      |
| O(1)-C(4)-C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 105.80(14) |
| O(1) - C(4) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.72(13) |
| C(5)-C(4)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 116.56(15) |
| O(1) - C(4) - H(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.8      |
| C(5)-C(4)-H(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.8      |
| C(3)-C(4)-H(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.8      |
| O(5)-C(5)-C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.11(14) |
| O(5)-C(5)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 104.35(13) |
| C(4)-C(5)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112.40(15) |
| O(5)-C(5)-H(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110.3      |
| C(4)-C(5)-H(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110.3      |
| C(6)-C(5)-H(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110.3      |
| O(6)-C(6)-C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103.87(14) |
| O(6) - C(6) - H(6A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111.0      |
| C(5) - C(6) - H(6A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111.0      |
| O(6) - C(6) - H(6B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111.0      |
| C(5) - C(6) - H(6B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111.0      |
| STATE OF THE PARTY | 109.0      |
| H(6A)-C(6)-H(6B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.0      |

| O(7) - C(7) - O(2)      | 122.08(18) |
|-------------------------|------------|
| O(7) - C(7) - C(8)      | 128.30(18) |
| O(2)-C(7)-C(8)          | 109.60(15) |
| C(9) - C(8) - C(7)      | 115.90(15) |
| C(9)-C(8)-C(2)          | 117.86(15) |
| C(7)-C(8)-C(2)          | 103.28(14) |
| C(9)-C(8)-H(8)          | 106.3      |
| C(7)-C(8)-H(8)          | 106.3      |
| C(2)-C(8)-H(8)          | 106.3      |
| C(10) - C(9) - C(14)    | 118.76(19) |
| C(10) -C(9) -C(8)       | 119.26(17) |
| C(14) -C(9) -C(8)       | 121.95(17) |
| C(9)-C(10)-C(11)        | 120.81(19) |
| C(9) - C(10) - H(10)    | 119.6      |
|                         | 119.6      |
| C(11) - C(10) - H(10)   |            |
| C(12) -C(11) -C(10)     | 119.7(2)   |
| C(12) -C(11) -H(11)     | 120.1      |
| C(10)-C(11)-H(11)       | 120.1      |
| C(11)-C(12)-C(13)       | 120.1(2)   |
| C(11)-C(12)-H(12)       | 119.9      |
| C(13)-C(12)-H(12)       | 119.9      |
| C(12) - C(13) - C(14)   | 120.10(19) |
| C(12)-C(13)-H(13)       | 119.9      |
| C(14)-C(13)-H(13)       | 119.9      |
| C(13)-C(14)-C(9)        | 120.4(2)   |
| C(13)-C(14)-H(14)       | 119.8      |
| C(9)-C(14)-H(14)        | 119.8      |
| O(4)-C(15)-O(3)         | 105.32(14) |
| O(4)-C(15)-C(17)        | 107.98(15) |
| O(3)-C(15)-C(17)        | 108.80(15) |
| O(4)-C(15)-C(16)        | 111.78(15) |
| O(3)-C(15)-C(16)        | 110.00(15) |
| C(17)-C(15)-C(16)       | 112.66(16) |
| C(15)-C(16)-H(16A)      | 109.5      |
| C(15)-C(16)-H(16B)      | 109.5      |
| H(16A)-C(16)-H(16B)     | 109.5      |
| C(15)-C(16)-H(16C)      | 109.5      |
| H(16A)-C(16)-H(16C)     | 109.5      |
| H(16B)-C(16)-H(16C)     | 109.5      |
| C(15)-C(17)-H(17A)      | 109.5      |
| C(15)-C(17)-H(17B)      | 109.5      |
| H(17A)-C(17)-H(17B)     | 109.5      |
| C(15)-C(17)-H(17C)      | 109.5      |
| H(17A)-C(17)-H(17C)     | 109.5      |
| H(17B) - C(17) - H(17C) | 109.5      |
| O(6) - C(18) - O(5)     | 103.62(14) |
| O(6)-C(18)-C(19)        | 109.15(15) |
| 0(0)-0(10)-0(19)        | 109.13(13) |

| O(6)-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (18) -C(19)<br>(18) -C(20) | 11    | 9.23(15)<br>0.77(15) |      |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|----------------------|------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (18)-C(20)<br>C(18)-C(20)  |       | 0.85(15)<br>2.81(15) |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(19)-E(20)                |       | 9.5                  |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |       | 9.5                  |      |        |
| STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(19)-H(19B)               |       |                      |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -C(19)-H(19B)              |       | 9.5                  |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(19)-H(19C)               |       | 9.5                  |      |        |
| H(19A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -C(19)-H(19C)              | 10    | 9.5                  |      |        |
| H(19B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -C(19)-H(19C)              | 10    | 9.5                  |      |        |
| C(18)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(20)-H(20A)               | 10    | 9.5                  |      |        |
| C(18)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(20)-H(20B)               | 10    | 9.5                  |      | 7 (7). |
| H(20A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -C(20)-H(20B)              | 10    | 9.5                  |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(20)-H(20C)               |       | 9.5                  |      |        |
| The Automotive State of the Sta |                            |       | 9.5                  |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -C(20)-H(20C)              |       |                      |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -C(20)-H(20C)              |       | 9.5                  |      |        |
| C(1) - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1) - C(4)                 |       | 7.32(14)             |      |        |
| C(7) - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2)-C(1)                   | 11    | 1.94(14)             |      |        |
| C(2) - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (3)-C(15)                  | 10    | 9.63(13)             |      |        |
| C(3) - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (4)-C(15)                  | 10    | 9.58(13)             |      |        |
| C(5)-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (5)-C(18)                  | 10    | 6.67(13)             |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O(6)-C(6)                  | 1.0   | 5.10(14)             |      |        |
| 0(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0(0) 0(0)                  | 20(1) |                      |      |        |
| -1507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23/27                      | 21112 | 34127                | 7514 | <br>   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |       |                      |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |       |                      |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |       |                      |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |       |                      |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |       |                      |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |       |                      |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |       |                      |      |        |

Table 4. Anisotropic displacement parameters [Å $^2$  × 10 $^3$ ] for 06mz136m. The anisotropic displacement factor exponent takes the form: -2  $\pi 2$  [(h a\*) $^2$  U11 + ... + 2 h k a\* b\* U12]

|       | 4.77  |       |       | T(89) |       |       |
|-------|-------|-------|-------|-------|-------|-------|
|       | U11   | U22   | U33   | U23   | U13   | U12   |
| C(1)  | 15(1) | 15(1) | 14(1) | 0(1)  | 1(1)  | -1(1) |
| C(2)  | 15(1) | 13(1) | 13(1) | 0(1)  | -1(1) | 0(1)  |
| C(3)  | 15(1) | 14(1) | 13(1) | -1(1) | 1(1)  | -1(1) |
| C(4)  | 13(1) | 13(1) | 13(1) | -2(1) | 0(1)  | -2(1) |
| C(5)  | 14(1) | 16(1) | 12(1) | 0(1)  | 1(1)  | 0(1)  |
| C(6)  | 15(1) | 16(1) | 14(1) | -1(1) | -2(1) | 1(1)  |
| C(7)  | 19(1) | 17(1) | 12(1) | -5(1) | 3(1)  | -1(1) |
| C(8)  | 18(1) | 14(1) | 11(1) | -1(1) | 0(1)  | -1(1) |
| C(9)  | 19(1) | 18(1) | 12(1) | 2(1)  | 2(1)  | 0(1)  |
| C(10) | 24(1) | 21(1) | 14(1) | 3(1)  | -2(1) | -1(1) |
| C(11) | 22(1) | 37(1) | 18(1) | 9(1)  | -3(1) | 0(1)  |
| C(12) | 27(1) | 36(1) | 21(1) | 11(1) | 7(1)  | 13(1) |
| C(13) | 35(1) | 21(1) | 19(1) | 4(1)  | 11(1) | 6(1)  |
| C(14) | 26(1) | 19(1) | 15(1) | 1(1)  | 5(1)  | 0(1)  |
| C(15) | 15(1) | 16(1) | 13(1) | -2(1) | 1(1)  | -2(1) |
| C(16) | 17(1) | 22(1) | 19(1) | -2(1) | -3(1) | 0(1)  |
| C(17) | 22(1) | 17(1) | 21(1) | 5(1)  | 2(1)  | 0(1)  |
| C(18) | 14(1) | 17(1) | 14(1) | -1(1) | -1(1) | -2(1) |
| C(19) | 20(1) | 20(1) | 17(1) | -3(1) | 0(1)  | 2(1)  |
| C(20) | 23(1) | 21(1) | 14(1) | 2(1)  | 3(1)  | -2(1) |
| 0(1)  | 16(1) | 19(1) | 12(1) | -2(1) | -1(1) | 2(1)  |
| 0(2)  | 16(1) | 19(1) | 17(1) | 1(1)  | 2(1)  | -3(1) |
| 0(3)  | 19(1) | 16(1) | 16(1) | -3(1) | 3(1)  | -5(1) |
| 0(4)  | 20(1) | 20(1) | 13(1) | -2(1) | 1(1)  | -9(1) |
| 0(5)  | 14(1) | 24(1) | 12(1) | -5(1) | -1(1) | 1(1)  |
| 0(6)  | 14(1) | 17(1) | 15(1) | -2(1) | 1(1)  | -2(1) |
| 0(7)  | 25(1) | 19(1) | 19(1) | 1(1)  | 4(1)  | -4(1) |

Table 5. Hydrogen coordinates (×  $10^4)$  and isotropic displacement parameters (Å  $^2$  ×  $10^3)$  for 06mz136m.

|        | x     | У     | Z     | U(eq) |
|--------|-------|-------|-------|-------|
| H(1)   | 5294  | 4949  | 6711  | 17    |
| H(3)   | 2040  | 7532  | 7325  | 16    |
| H(4)   | 4440  | 7935  | 7697  | 16    |
| H(5)   | 3795  | 5712  | 8589  | 17    |
| H(6A)  | 5827  | 6428  | 9142  | 18    |
| H(6B)  | 6247  | 7425  | 8546  | 18    |
| H(8)   | 3245  | 6238  | 5763  | 17    |
| H(10)  | 736   | 6382  | 5464  | 24    |
| H(11)  | -1480 | 7650  | 5338  | 31    |
| H(12)  | -1668 | 9871  | 5776  | 34    |
| H(13)  | 358   | 10828 | 6334  | 30    |
| H(14)  | 2539  | 9534  | 6492  | 24    |
| H(16A) | -892  | 4923  | 7292  | 29    |
| H(16B) | -440  | 4252  | 6614  | 29    |
| H(16C) | -165  | 5867  | 6741  | 29    |
| H(17A) | 2539  | 3019  | 7619  | 30    |
| H(17B) | 1222  | 2508  | 7152  | 30    |
| H(17C) | 829   | 3113  | 7850  | 30    |
| H(19A) | 3158  | 9912  | 9881  | 29    |
| H(19B) | 1615  | 9321  | 9598  | 29    |
| H(19C) | 2778  | 10090 | 9132  | 29    |
| H(20A) | 3770  | 6208  | 9797  | 29    |
| H(20B) | 2198  | 6893  | 9989  | 29    |
| H(20C) | 3719  | 7451  | 10306 | 29    |



Figure 106: X-Ray crystal structure of 2,3,4,6-tetra-O-acetyl-1-azido-1-deoxy-β-D-

Rutinessent of Playainer and glucopyranose (32). The extended Before a and government of Fitting County to an appropriate Fitting County for coincident of Festive Barrassics of of

## Table 1. Crystal data and structure refinement for 06mz033m:

Identification code: 06mz033m

Empirical formula: C14 H19 N3 O9

Formula weight: 373.32

Temperature: 100(2) K

Wavelength: 0.71073 Å

Crystal system: Orthorhombic

Space group: P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>

Unit cell dimensions:

 $a = 7.3052(3) \text{ Å, } \alpha = 90^{\circ}$ 

 $b = 14.7205(6) \text{ Å, } \beta = 90^{\circ}$ 

 $c = 15.8859(6) \text{ Å, } \gamma = 90^{\circ}$ 

Volume, Z: 1708.31(12) Å<sup>3</sup>, 4

Density (calculated): 1.452 Mg/m<sup>3</sup>

Absorption coefficient: 0.123 mm<sup>-1</sup>

F(000): 784

Crystal size:  $0.50 \times 0.48 \times 0.32$  mm

Crystal shape, colour: block, colourless

 $\theta$  range for data collection: 1.89 to 30.03°

Limiting indices:  $-10 h \le 10$ ,  $-20 \le k \le 20$ ,  $-22 \le 1 \le 22$ 

Reflections collected: 19826

Independent reflections: 2844 (R(int) = 0.0200)

Completeness to  $\theta = 30.03^{\circ}$ : 99.8 %

Absorption correction: multi-scan

Max. and min. transmission: 0.961 and 0.916

Refinement method: Full-matrix least-squares on F2

Data / restraints / parameters: 2844 / 0 / 299

Goodness-of-fit on  $F^2$ : 1.075

Final R indices  $[I > 2\sigma(I)]$ : R1 = 0.0296, wR2 = 0.0767

R indices (all data): R1 = 0.0299, wR2 = 0.0769

Largest diff. peak and hole: 0.318 and  $-0.200 \text{ e} \times \text{Å}^{-3}$ 

Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating R-factors

Treatment of hydrogen atoms:

All hydrogen atoms were located in the difference density Fourier map. Methyl hydrogen atoms were isotropically refined with a displacement parameter of 1.5 times that of the adjacent carbon or oxygen atom. All others were freely isotropically refined.

Table 2. Atomic coordinates [ $\times$  10<sup>4</sup>] and equivalent isotropic displacement parameters [ $\mathring{\mathbb{A}}^2 \times 10^3$ ] for 06mz033m. U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|       |          | У        | Z       | U(eq) |
|-------|----------|----------|---------|-------|
| C(1)  | -1964(2) | 492(1)   | 6468(1) | 13(1) |
| C(2)  | -214(2)  | 982(1)   | 6737(1) | 12(1) |
| C(3)  | 941(2)   | 1242(1)  | 5973(1) | 13(1) |
| C(4)  | 1200(2)  | 428(1)   | 5391(1) | 12(1) |
| C(5)  | -730(2)  | 109(1)   | 5158(1) | 12(1) |
| C(6)  | -846(2)  | -588(1)  | 4469(1) | 14(1) |
| C(7)  | -301(2)  | 1937(1)  | 7969(1) | 18(1) |
| C(8)  | -784(2)  | 2884(1)  | 8235(1) | 24(1) |
| C(9)  | 3340(2)  | 2346(1)  | 5961(1) | 16(1) |
| C(10) | 5002(2)  | 2661(1)  | 6425(1) | 21(1) |
| C(11) | 3932(2)  | 550(1)   | 4567(1) | 16(1) |
| C(12) | 4610(2)  | 855(1)   | 3727(1) | 20(1) |
| C(13) |          | -2005(1) | 4071(1) | 19(1) |
| C(14) |          | -2838(1) | 4365(1) | 29(1) |
| N(1)  | -2797(1) | 103(1)   | 7223(1) | 17(1) |
| N(2)  |          | -68(1)   | 7146(1) | 18(1) |
| N(3)  | -5943(2) | -262(1)  | 7175(1) | 30(1) |
| 0(1)  | -1524(1) | -238(1)  | 5917(1) | 13(1) |
| 0(2)  | -723(1)  | 1821(1)  | 7139(1) | 15(1) |
| 0(3)  | 388(2)   | 1361(1)  | 8399(1) | 29(1) |
| 0(4)  |          | 1575(1)  | 6303(1) | 15(1) |
| 0(5)  | 2674(1)  | 2720(1)  | 5357(1) | 24(1) |
| 0(6)  | 2098(1)  | 706(1)   | 4629(1) | 14(1) |
| 0(7)  | 4828(1)  | 223(1)   | 5123(1) | 26(1) |
| 0(8)  | 234(1)   | -1373(1) | 4689(1) | 16(1) |
| 0(9)  | -337(2)  | -1895(1) | 3390(1) | 32(1) |

All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Table 3. Bond lengths [Å] and angles [deg] for 06mz033m.

| C(1)-O(1)                  | 1.4220(13)              |  |
|----------------------------|-------------------------|--|
| C(1) - O(1)<br>C(1) - N(1) | 1.4617(14)              |  |
| C(1) - C(2)                | 1.5297(16)              |  |
| C(1)-C(2)<br>C(1)-H(1)     |                         |  |
| C(2)-O(2)                  | 0.932(18)<br>1.4384(13) |  |
|                            |                         |  |
| C(2)-C(3)                  | 1.5262(15)              |  |
| C(2)-H(2)                  | 0.924(16)               |  |
| C(3)-O(4)                  | 1.4415(14)              |  |
| C(3)-C(4)                  | 1.5253(15)              |  |
| C(3)-H(3)                  | 0.961(18)               |  |
| C(4)-O(6)                  | 1.4358(13)              |  |
| C(4) - C(5)                | 1.5319(15)              |  |
| C(4)-H(4)                  | 0.919(18)               |  |
| C(5)-O(1)                  | 1.4328(13)              |  |
| C(5)-C(6)                  | 1.5029(15)              |  |
| C(5)-H(5)                  | 1.002(17)               |  |
| C(6)-O(8)                  | 1.4416(14)              |  |
| C(6)-H(6A)                 | 0.987(19)               |  |
| C(6)-H(6B)                 | 0.97(2)                 |  |
| C(7)-O(3)                  | 1.2000(17)              |  |
| C(7)-O(2)                  | 1.3644(14)              |  |
| C(7)-C(8)                  | 1.4978(18)              |  |
| C(8)-H(8A)                 | 0.95(2)                 |  |
| C(8)-H(8B)                 | 0.97(2)                 |  |
| C(8)-H(8C)                 | 0.97(2)                 |  |
| C(9) - O(5)                | 1.2089(15)              |  |
| C(9) - O(4)                | 1.3548(14)              |  |
| C(9) - C(10)               | 1.4936(17)              |  |
| C(10)-H(10A)               | 1.01(2)                 |  |
| C(10)-H(10B)               | 0.92(2)                 |  |
| C(10)-H(10C)               | 0.93(2)                 |  |
| C(11)-O(7)                 | 1.2005(16)              |  |
| C(11)-O(6)                 | 1.3626(14)              |  |
| C(11)-C(12)                | 1.4930(17)              |  |
| C(12)-H(12A)               | 0.94(2)                 |  |
| C(12) -H(12B)              | 0.96(2)                 |  |
| C(12) -H(12C)              | 0.92(2)                 |  |
| C(12)-N(12C)<br>C(13)-O(9) | 1.2007(17)              |  |
| C(13)-O(8)                 | 1.3539(14)              |  |
| C(13)-C(14)                | 1.4938(19)              |  |
|                            |                         |  |
| C(14)-H(14A)               | 0.99(3)                 |  |
| C(14)-H(14B)               | 0.95(3)                 |  |
| C(14)-H(14C)               | 0.89(3)                 |  |
| N(1)-N(2)                  | 1.2447(15)              |  |
| N(2)-N(3)                  | 1.1228(18)              |  |
|                            | 102 51101               |  |
| O(1) - C(1) - N(1)         | 107.64(9)               |  |
| O(1) - C(1) - C(2)         | 109.82(9)               |  |
| N(1)-C(1)-C(2)             | 107.67(9)               |  |
| O(1)-C(1)-H(1)             | 109.5(11)               |  |
| N(1)-C(1)-H(1)             | 110.1(11)               |  |
| C(2)-C(1)-H(1)             | 112.0(11)               |  |
| 0(2)-C(2)-C(3)             | 106.33(8)               |  |

| O(2)-C(2)-C(1) C(3)-C(2)-C(1) O(2)-C(2)-H(2) C(3)-C(2)-H(2) C(1)-C(2)-H(2) O(4)-C(3)-C(4) O(4)-C(3)-C(2) C(4)-C(3)-C(2) O(4)-C(3)-H(3) C(4)-C(3)-H(3) C(2)-C(3)-H(3) O(6)-C(4)-C(3)                          | 108.22(9)<br>110.98(9)<br>110.3(10)<br>111.1(10)<br>109.8(10)<br>112.34(9)<br>105.95(8)<br>110.71(9)<br>109.3(12)<br>107.2(11)<br>111.4(11)<br>110.12(9) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| O(6) -C(4) -C(5)<br>C(3) -C(4) -C(5)<br>O(6) -C(4) -H(4)<br>C(3) -C(4) -H(4)<br>C(5) -C(4) -H(4)<br>O(1) -C(5) -C(6)<br>O(1) -C(5) -C(4)<br>C(6) -C(5) -C(4)<br>O(1) -C(5) -H(5)<br>C(6) -C(5) -H(5)         | 107.69(8)<br>105.83(9)<br>108.5(11)<br>113.2(11)<br>111.3(11)<br>110.29(9)<br>106.12(8)<br>115.90(10)<br>111.2(10)<br>108.0(9)                           |
| C(4)-C(5)-H(5) O(8)-C(6)-C(5) O(8)-C(6)-H(6A) C(5)-C(6)-H(6B) C(5)-C(6)-H(6B) H(6A)-C(6)-H(6B) O(3)-C(7)-O(2) O(3)-C(7)-C(8) C(7)-C(8)-H(8A)                                                                 | 105.2(10)<br>109.92(9)<br>111.0(11)<br>108.5(11)<br>108.3(12)<br>107.6(12)<br>111.5(16)<br>123.76(12)<br>126.53(12)<br>109.69(11)<br>106.6(14)           |
| C(7)-C(8)-H(8B)<br>H(8A)-C(8)-H(8B)<br>C(7)-C(8)-H(8C)<br>H(8A)-C(8)-H(8C)<br>H(8B)-C(8)-H(8C)<br>O(5)-C(9)-O(4)<br>O(5)-C(9)-C(10)<br>O(4)-C(9)-C(10)<br>C(9)-C(10)-H(10A)<br>C(9)-C(10)-H(10B)             | 100.0 (14)<br>110.9 (14)<br>115 (2)<br>108.9 (13)<br>107 (2)<br>108.2 (18)<br>123.44 (11)<br>125.23 (11)<br>111.33 (10)<br>104.1 (12)<br>112.6 (14)      |
| H(10A)-C(10)-H(10B) C(9)-C(10)-H(10C) H(10A)-C(10)-H(10C) H(10B)-C(10)-H(10C) O(7)-C(11)-O(6) O(7)-C(11)-C(12) O(6)-C(11)-C(12) C(11)-C(12)-H(12A) C(11)-C(12)-H(12B) H(12A)-C(12)-H(12B) C(11)-C(12)-H(12C) | 114.2(18)<br>108.2(13)<br>104.1(17)<br>112.9(18)<br>123.37(11)<br>126.72(12)<br>109.90(10)<br>108.8(12)<br>113.3(12)<br>106.0(18)<br>108.1(13)           |
| H(12A)-C(12)-H(12C)<br>H(12B)-C(12)-H(12C)<br>O(9)-C(13)-O(8)                                                                                                                                                | 111.2(19)<br>109.5(18)<br>122.41(12)                                                                                                                     |

| C(13)-<br>H(14A)<br>C(13)-<br>H(14A)<br>H(14B)<br>N(2)-N(3)-N(3)-N(3)-N(3)-N(3)-N(3)-N(3)-N(3 | -C(14)-H(14) -C(14)-H(14) -C(14)-H(14) -C(14)-H(14) -C(14)-H(14) -C(14)-H(14) -C(14)-H(14) N(1)-C(1) N(2)-N(1) O(1)-C(5) | 3)<br>4B)<br>C)<br>4C) | 109.4(15)<br>110.6(15)<br>107.5(19)<br>109.6(16)<br>111(2)<br>109(2)<br>113.81(10)<br>171.44(14)<br>109.87(8) |       |       |      |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------|-------|-------|------|
| C(7)-C<br>C(9)-C<br>C(11)-                                                                    | 0(2) -C(2)<br>0(4) -C(3)<br>-O(6) -C(4)<br>-O(8) -C(6)                                                                   |                        | 118.61(9)<br>117.41(9)<br>117.56(9)<br>114.01(9)                                                              |       |       |      |
| C191                                                                                          | 37(1)                                                                                                                    | 19165                  | 1011                                                                                                          | -5111 | -1(2) | 0(1) |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        | 13(2)                                                                                                         |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |
|                                                                                               |                                                                                                                          |                        |                                                                                                               |       |       |      |

Table 4. Anisotropic displacement parameters [Å $^2$  × 10 $^3$ ] for 06mz033m. The anisotropic displacement factor exponent takes the form: -2  $\pi 2$  [(h a\*) $^2$  U11 + ... + 2 h k a\* b\* U12]

|       |       |        | 4.0      |         | D/es   |       |
|-------|-------|--------|----------|---------|--------|-------|
|       | U11   | U22    | U33      | U23     | U13    | U12   |
| 31133 | -211  | 102201 | BW3 (17) | 6202711 | 1714   |       |
| C(1)  | 14(1) | 13(1)  | 13(1)    | 0(1)    | 1(1)   | 0(1)  |
| C(2)  | 14(1) | 11(1)  | 12(1)    | -1(1)   | 0(1)   | 0(1)  |
| C(3)  | 13(1) | 13(1)  | 12(1)    | 0(1)    | 0(1)   | -2(1) |
| C(4)  | 12(1) | 13(1)  | 11(1)    | 0(1)    | 0(1)   | 0(1)  |
| C(5)  | 12(1) | 12(1)  | 12(1)    | 1(1)    | -1(1)  | -1(1) |
| C(6)  | 17(1) | 13(1)  | 12(1)    | -1(1)   | -2(1)  | 1(1)  |
| C(7)  | 24(1) | 18(1)  | 14(1)    | -2(1)   | 0(1)   | -4(1) |
| C(8)  | 37(1) | 19(1)  | 16(1)    | -5(1)   | -1(1)  | 0(1)  |
| C(9)  | 17(1) | 15(1)  | 15(1)    | 0(1)    | 2(1)   | -3(1) |
| C(10) | 21(1) | 21(1)  | 21(1)    | 3(1)    | -4(1)  | -9(1) |
| C(11) | 14(1) | 18(1)  | 17(1)    | -1(1)   | 2(1)   | -1(1) |
| C(12) | 18(1) | 23(1)  | 17(1)    | 0(1)    | 4(1)   | 0(1)  |
| C(13) | 19(1) | 19(1)  | 20(1)    | -6(1)   | 1(1)   | 2(1)  |
| C(14) | 32(1) | 21(1)  | 36(1)    | -7(1)   | -2(1)  | 11(1) |
| N(1)  | 15(1) | 23(1)  | 14(1)    | 2(1)    | 1(1)   | -4(1) |
| N(2)  | 19(1) | 20(1)  | 16(1)    | 3(1)    | 1(1)   | -1(1) |
| (S) V | 20(1) | 40(1)  | 31(1)    | 14(1)   | 1(1)   | -6(1) |
| 0(1)  | 16(1) | 11(1)  | 13(1)    | -1(1)   | 1(1)   | -1(1) |
| 0(2)  | 20(1) | 14(1)  | 12(1)    | -3(1)   | -1(1)  | 1(1)  |
| 0(3)  | 48(1) | 22(1)  | 17(1)    | 0(1)    | -8(1)  | 3(1)  |
| 0(4)  | 15(1) | 14(1)  | 15(1)    | 2(1)    | -2(1)  | -4(1) |
| 0(5)  | 26(1) | 23(1)  | 24(1)    | 10(1)   | -6(1)  | -8(1) |
| 0(6)  | 13(1) | 17(1)  | 12(1)    | 2(1)    | 1(1)   | 1(1)  |
| 0(7)  | 16(1) | 41(1)  | 21(1)    | 7(1)    | -2(1)  | 4(1)  |
| 0(8)  | 20(1) | 14(1)  | 14(1)    | -2(1)   | -2(1)  | 4(1)  |
| 0(9)  | 41(1) | 33(1)  | 22(1)    | -13(1)  | -10(1) | 11(1) |

Table 5. Hydrogen coordinates (×  $10^4$ ) and isotropic displacement parameters (Å $^2$  ×  $10^3$ ) for 06mz033m.

|        | х         | У         | Z         | U(eq) |
|--------|-----------|-----------|-----------|-------|
| H(1)   | -2790(20) | 882(12)   | 6202(11)  | 17(4) |
| H(2)   | 440(20)   | 621(11)   | 7104(9)   | 10(3) |
| H(3)   | 360(30)   | 1713(12)  | 5648(11)  | 21(4) |
| H(4)   | 1870(20)  | -33(12)   | 5631(11)  | 16(4) |
| H(5)   | -1390(20) | 669(12)   | 4962(10)  | 14(4) |
| H(6A)  | -2140(30) | -754(13)  | 4388(11)  | 20(4) |
| H(6B)  | -330(30)  | -319(13)  | 3962(12)  | 25(4) |
| H(8A)  | -730(30)  | 2894(15)  | 8832(14)  | 36    |
| H(8B)  | -1960(30) | 3068(16)  | 7998 (13) | 36    |
| H(8C)  | 150(30)   | 3296 (16) | 8030(13)  | 36    |
| H(10A) | 6030(30)  | 2578(14)  | 6006(13)  | 32    |
| H(10B) | 5170(30)  | 2357(15)  | 6925(13)  | 32    |
| H(10C) | 4920 (30) | 3287(15)  | 6493(13)  | 32    |
| H(12A) | 4500(30)  | 1489(14)  | 3694(12)  | 29    |
| H(12B) | 3910(30)  | 618(14)   | 3266 (12) | 29    |
| H(12C) | 5810(30)  | 675 (15)  | 3674(13)  | 29    |
| H(14A) | 550 (40)  | -3161(17) | 4782(15)  | 44    |
| H(14B) | 2440 (30) | -2681(16) | 4637(14)  | 44    |
| H(14C) | 1560 (30) | -3193(17) | 3928 (15) | 44    |

Figure 107: X-Ray crystal windture of 3-O-(p-acetamido)benzenesulfonate over a

1,2:5,6-di-(2-impropylitime-tr-D-allofarance: (37)



**Figure 107:** X-Ray crystal structure of 3-*O*-(*p*-acetamido)benzenesulfonate ester of 1,2:5,6-di-*O*-isopropylidene-α-D-allofuranose (**37**).

Refinement of P' against All reflections. The weighted goodness of tit are hesed on F', conventional P-Eacture on P', with P set to zero for negative P'. The threshold of a confine terminal transfer on P'.

Table 1. Crystal data and structure refinement for 06mz009m:

Identification code: 06mz009m

Empirical formula: C20.333 H28.333 N 09.333 S
Moiety formula: C20 H27 N 09 S, 1/3(C H4 O)

Formula weight: 468.17
Temperature: 100(2) K
Wavelength: 0.71073 Å

Crystal system: Monoclinic

Space group: P21

Unit cell dimensions:

 $a = 17.7188(12) \text{ Å, } \alpha = 90^{\circ}$ 

 $b = 16.8616(11) \text{ Å, } \beta = 109.0120(10)^{\circ}$ 

 $c = 23.5999(16) \text{ Å, } \gamma = 90^{\circ}$ 

Volume, Z: 6666.3(8) Å<sup>3</sup>, 12

Density (calculated): 1.399 Mg/m<sup>3</sup> Absorption coefficient: 0.199 mm<sup>-1</sup>

F(000): 2976

Crystal size:  $0.60 \times 0.26 \times 0.19$  mm

Crystal shape, colour: block, colourless

heta range for data collection: 0.91 to 28.28°

Limiting indices:  $-23 \le h \le 23$ ,  $-22 \le k \le 22$ ,  $-31 \le 1 \le 31$ 

Reflections collected: 69071

Independent reflections: 32664 (R(int) = 0.0284)

Completeness to  $\theta$  = 28.28°: 99.9 %

Absorption correction: multi-scan

Max. and min. transmission: 0.963 and 0.814

Refinement method: Full-matrix least-squares on  $F^2$ 

Data / restraints / parameters: 32664 / 1 / 1745

Goodness-of-fit on  $F^2$ : 1.044

Final R indices [ $I > 2\sigma(I)$ ]: R1 = 0.0602, wR2 = 0.1512

R indices (all data): R1 = 0.0657, wR2 = 0.1547

Largest diff. peak and hole: 1.774 and  $-0.670~\rm e \times {\rm \AA}^{-3}$ 

Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating R-factors

Treatment of hydrogen atoms:

All hydrogen atoms were placed in calculated positions. All hydrogen atoms were isotropically refined with a displacement parameter 1.5 (methyl, methanol) or 1.2 times (all others) that of the adjacent carbon, oxygen or nitrogen atoms.

Table 2. Atomic coordinates [ $\times$  10<sup>4</sup>] and equivalent isotropic displacement parameters [ $\mathring{A}^2 \times 10^3$ ] for 06mz009m. U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

| CILABI | 05×0421  | У        | z        | U(eq)  |
|--------|----------|----------|----------|--------|
|        | 3074121  | 10 × (2) | 2        | 0 (eq) |
| 0(22)  | 9096(2)  | 6349(1)  | 7953(1)  | 30(1)  |
| C(22)  | 8444(2)  | 6271(2)  | 7410(2)  | 29(1)  |
| 0(21)  | 3932(2)  | 5053(2)  | 3077(1)  | 32(1)  |
| C(21)  | 3352(2)  | 4875(2)  | 2514(2)  | 32(1)  |
| C(1A)  | 5583(2)  | 4008(2)  | -939(2)  | 22(1)  |
| C(2A)  | 6184(2)  | 3470(2)  | -1092(1) | 22(1)  |
| C(3A)  | 6605(2)  | 3066(2)  | -496(1)  | 19(1)  |
| C(4A)  | 5946(2)  | 3035(2)  | -205(1)  | 18(1)  |
| C(5A)  | 6181(2)  | 2927(2)  | 464(1)   | 21(1)  |
| C(5E)  | 6177(2)  | 6324(2)  | 10221(1) | 20(1)  |
| C(6A)  | 6593(2)  | 2130(2)  | 693(2)   | 24(1)  |
| C(7A)  | 4957(2)  | 3301(2)  | -1803(2) | 29(1)  |
| C(8A)  | 4299 (3) | 2689(3)  | -1953(2) | 54(1)  |
| C(9A)  | 5012(3)  | 3766(3)  | -2337(2) | 49(1)  |
| C(10A) | 7422(2)  | 3114(2)  | 1181(1)  | 22(1)  |
| C(11A) | 7319(2)  | 3072(2)  | 1798(2)  | 29(1)  |
| C(12A) | 8178(2)  | 3534(2)  | 1196(2)  | 27(1)  |
| C(13A) | 8463(2)  | 2346(2)  | -115(1)  | 16(1)  |
| C(14A) | 8682(2)  | 1802(2)  | 355(1)   | 20(1)  |
| C(15A) | 9342(2)  | 1943(2)  | 845(1)   | 20(1)  |
| C(16A) | 9796(2)  | 2640(2)  | 872(1)   | 18(1)  |
| C(17A) | 9587(2)  | 3164(2)  | 396(1)   | 19(1)  |
| C(18A) | 8913(2)  | 3025(2)  | -101(1)  | 18(1)  |
| C(19A) | 10776(2) | 3456(2)  | 1618(2)  | 25(1)  |
| C(20A) | 11496(2) | 3411(2)  | 2179(2)  | 31(1)  |
| O(1A)  | 5586(1)  | 3807(1)  | -358(1)  | 22(1)  |
| O(2A)  | 4836(1)  | 3841(2)  | -1373(1) | 26(1)  |
| O(3A)  | 5692(1)  | 2910(1)  | -1499(1) | 26(1)  |
| O(4A)  | 6877(1)  | 2268(1)  | -545(1)  | 19(1)  |
| O(5A)  | 6762(1)  | 3512(1)  | 763(1)   | 23(1)  |
| O(6D)  | 7632(1)  | 9312(2)  | 4174(1)  | 28(1)  |
| O(6A)  | 7415(1)  | 2340(1)  | 939(1)   | 25(1)  |
| O(7A)  | 7622(1)  | 2703(2)  | -1208(1) | 27(1)  |
| O(8D)  | 7548(2)  | 8359(2)  | 6104(1)  | 35(1)  |
| O(8C)  | 7329(1)  | 5049(2)  | 5848(1)  | 29(1)  |
| O(8A)  | 7624(1)  | 1329(1)  | -872(1)  | 26(1)  |
| O(9A)  | 10507(2) | 4101(1)  | 1398(1)  | 34(1)  |
| N(1A)  | 10465(2) | 2749(2)  | 1388(1)  | 20(1)  |
| S(1A)  | 7641(1)  | 2148(1)  | -752(1)  | 18(1)  |

| C(1B)  | 9487(2)            | 4496(2)  | 6024(1) | 26(1)          |
|--------|--------------------|----------|---------|----------------|
| C(2B)  | 8919(2)            | 4011(2)  | 6258(1) | 25(1)          |
| C(3B)  | 8442(2)            | 3528(2)  | 5709(1) | 24(1)          |
| C(4B)  | 9025(2)            | 3456(2)  | 5358(2) | 26(1)          |
| C(5B)  | 8696(2)            | 3297(2)  | 4693(2) | 28(1)          |
| C(6B)  | 8319(2)            | 2465(2)  | 4522(2) | 34(1)          |
| C(7B)  | 10196(2)           | 3847(2)  | 6906(2) | 33(1)          |
| C(8B)  | 10254(3)           | 4396(3)  | 7424(2) | 49(1)          |
| C(9B)  | 10813(3)           | 3201(3)  | 7044(2) | 55(1)          |
| C(10B) | 7521(2)            | 3408(2)  | 3928(2) | 29(1)          |
| C(11B) | 7789(2)            | 3432(3)  | 3381(2) | 47(1)          |
| C(12B) | 6697(2)            | 3760(3)  | 3801(2) | 36(1)          |
| C(13B) | 6681(2)            | 2650(2)  | 5450(1) | 24(1)          |
| C(14B) | 6530(2)            | 1952(2)  | 5112(2) | 29(1)          |
| C(15B) | 5874(2)            | 1922(2)  | 4597(2) | 24(1)          |
| C(16B) | 5367(2)            | 2569(2)  | 4426(1) | 21(1)          |
| C(17B) | 5525(2)            | 3274(2)  | 4763(1) | 23(1)          |
| C(18B) | 6190(2)            | 3317(2)  | 5277(1) | 23(1)          |
| C(19B) | 4193(2)            | 3020(2)  | 3586(2) | 25(1)          |
| C(20B) | 3512(2)            | 2712(2)  | 3065(2) | 30(1)          |
|        | 9386(1)            | 4233 (2) | 5437(1) | 29(1)          |
| O(1B)  |                    | 4289(2)  | 6414(1) | 30(1)          |
| O(2B)  | 10263(1)           |          | 6687(1) | 33(1)          |
| O(3B)  | 9424(1)            | 3485(2)  |         | 25(1)          |
| O(4B)  | 8245(1)            | 2743(2)  | 5868(1) |                |
| O(5B)  | 8056(2)            | 3829(2)  | 4413(1) | 32(1)          |
| O(6B)  | 7532(2)            | 2618(2)  | 4141(1) | 41(1)          |
| O(7B)  | 7468(1)            | 3354(2)  | 6455(1) | 30(1)          |
| O(8B)  | 7603(2)            | 1900(2)  | 6369(1) | 38(1)          |
| O(9B)  | 4278(2)            | 3726 (2) | 3710(1) | 40(1)          |
| N(1B)  | 4690(2)            | 2460(2)  | 3913(1) | 21(1)          |
| S(1B)  | 7505(1)            | 2675(1)  | 6108(1) | 25(1)          |
| C(1C)  | 9442(2)            | 7692(2)  | 5816(2) | 28(1)          |
| C(2C)  | 8884(2)            | 7134(2)  | 6020(1) | 23(1)          |
| C(3C)  | 8399(2)            | 6743(2)  | 5430(1) | 22(1)          |
| C(4C)  | 9020(2)            | 6682(2)  | 5104(1) | 24(1)          |
| C(5C)  | 8719(2)            | 6588(2)  | 4431(1) | 27(1)          |
| C(6C)  | 8300(2)            | 5783(2)  | 4220(2) | 29(1)          |
| C(7C)  | 10155(2)           | 6985(2)  | 6664(2) | 29(1)          |
| C(8C)  | 10828(2)           | 6400(3)  | 6760(2) | 40(1)          |
| C(9C)  | 10156(2)           | 7403(3)  | 7235(2) | 40(1)          |
| C(10C) | 7502(2)            | 6782(2)  | 3714(1) | 26(1)          |
| C(11C) | 7669(2)            | 6770(3)  | 3120(2) | 37(1)          |
| C(12C) | 6734(2)            | 7208(3)  | 3667(2) | 32(1)          |
| C(13C) | 6509(2)            | 6090(2)  | 5062(1) | 21(1)          |
| C(14C) | 6097(2)            | 6800(2)  | 5028(1) | 21(1)          |
| C(15C) | 5421(2)            | 6941(2)  | 4537(1) | 20(1)          |
| C(16C) | 5169(2)            | 6372(2)  | 4081(1) | 21(1)          |
| C(17C) | 5580(2)            | 5655(2)  | 4130(1) | 22(1)          |
|        |                    | 5513(2)  | 4619(1) | 24(1)          |
| C(18C) | 6257(2)<br>4195(2) | 7195(2)  | 3312(1) | 23(1)          |
| C(19C) |                    |          | 2735(2) | 28(1)          |
| C(20C) | 3508(2)            | 7135(2)  |         | 29(1)          |
| O(1C)  | 9406(1)            | 7437(2)  | 5239(1) |                |
| 0(2C)  | 10204(1)           | 7557(2)  | 6235(1) | 31(1)<br>25(1) |
| O(3C)  | 9417(1)            | 6573 (2) | 6392(1) |                |
| O(4C)  | 8106(1)            | 5957(1)  | 5499(1) | 22(1)          |

| O(5C)  | 8131(1)  | 7173(2)  | 4166(1)  | 30(1)          |
|--------|----------|----------|----------|----------------|
| O(6C)  | 7482(1)  | 6008(2)  | 3934(1)  | 30(1)          |
| O(7C)  | 7367(1)  | 6478(2)  | 6141(1)  | 26(1)          |
| N(1C)  | 4494(2)  | 6494(2)  | 3569(1)  | 24(1)          |
| S(1C)  | 7335(1)  | 5886(1)  | 5702(1)  | 21(1)          |
| C(1D)  | 9501(2)  | 11055(2) | 6037(2)  | 32(1)          |
| C(2D)  | 8894(2)  | 10542(2) | 6208(2)  | 27(1)          |
| C(3D)  | 8463(2)  | 10110(2) | 5621(1)  | 23(1)          |
| C(4D)  | 9104(2)  | 10069(2) | 5318(1)  | 25(1)          |
| C(5D)  | 8849(2)  | 9956(2)  | 4645(1)  | 25(1)          |
| C(6D)  | 8464(2)  | 9137(2)  | 4429(2)  | 28(1)          |
| C(7D)  | 10129(2) | 10350(3) | 6905(2)  | 39(1)          |
| C(8D)  | 10747(3) | 9705(4)  | 7064(2)  | 59(1)          |
| C(9D)  | 10123(3) | 10871(4) | 7430(2)  | 63(2)          |
| C(10D) | 7597(2)  | 10088(2) | 3931(1)  | 25(1)          |
| C(11D) | 7700(2)  | 10060(2) | 3317(1)  | 28(1)          |
| C(12D) | 6825(2)  | 10493(3) | 3915(2)  | 33(1)          |
| C(13D) | 6650(2)  | 9320(2)  | 5309(2)  | 23(1)          |
| C(13D) | 6098(2)  | 9916(2)  | 5291(1)  | 23(1)          |
| C(14D) | 5420(2)  | 9981(2)  | 4790(1)  | 22(1)          |
| C(16D) | 5299(2)  | 9459(2)  | 4311(1)  | 22(1)          |
| C(17D) | 5859(2)  | 8866(2)  | 4339(2)  | 25(1)          |
| C(17D) | 6532(2)  | 8806(2)  | 4838(2)  | 25(1)          |
| C(19D) | 4252(2)  | 10153(2) | 3519(2)  | 24(1)          |
| C(20D) | 3523(2)  | 10024(2) | 2977(2)  | 31(1)          |
|        | 9456(1)  | 10847(2) | 5448(1)  | 29(1)          |
| O(1D)  | 10251(1) | 10833(2) | 6453(1)  | 33(1)          |
| O(2D)  | 9367(1)  | 9989(2)  | 6630(1)  | 37(1)          |
| O(3D)  |          |          | 5706(1)  | 24(1)          |
| O(4D)  | 8224(1)  | 9308(2)  | 4348(1)  | 28(1)          |
| O(5D)  | 8244(1)  | 10510(2) |          | 32(1)          |
| O(7D)  | 7501(1)  | 9776(2)  | 6377(1)  | 33(1)          |
| O(9D)  | 4494(2)  | 10814(1) | 3691(1)  | 30(1)          |
| O(10D) | 4472(1)  | 7834(2)  | 3521(1)  |                |
| N(1D)  | 4610(2)  | 9482(2)  | 3799(1)  | 22(1)          |
| S(1D)  | 7489(1)  | 9189(1)  | 5948(1)  | 25(1)          |
| C(1E)  | 5481(2)  | 7427(2)  | 8823(2)  | 23(1)<br>22(1) |
| C(2E)  | 6053(2)  | 6881(2)  | 8635(1)  |                |
| C(3E)  | 6518(2)  | 6480(2)  | 9227(1)  | 20(1)          |
| C(4E)  | 5898(2)  | 6449(2)  | 9553(1)  | 19(1)          |
| C(6E)  | 6509(2)  | 5494(2)  | 10434(2) | 23(1)          |
| C(7E)  | 4775(2)  | 6661(2)  | 8000(1)  | 25(1)          |
| C(8E)  | 4153(2)  | 6029(2)  | 7945(2)  | 37(1)          |
| C(9E)  | 4705(3)  | 7063(3)  | 7410(2)  | 44(1)          |
| C(10E) | 7383(2)  | 6427(2)  | 10976(1) | 19(1)          |
| C(11E) | 7175(2)  | 6469(3)  | 11547(2) | 40(1)          |
| C(12E) | 8202(2)  | 6743(2)  | 11054(2) | 26(1)          |
| C(13E) | 8348(2)  | 5674(2)  | 9585(1)  | 18(1)          |
| C(14E) | 8887(2)  | 6291(2)  | 9644(1)  | 18(1)          |
| C(15E) | 9561(2)  | 6336(2)  | 10151(1) | 18(1)          |
| C(16E) | 9688(2)  | 5751(2)  | 10594(1) | 16(1)          |
| C(17E) | 9132(2)  | 5141(2)  | 10528(2) | 21(1)          |
| C(18E) | 8470(2)  | 5095(2)  | 10026(2) | 22(1)          |
| C(19E) | 10780(2) | 6362(2)  | 11417(1) | 20(1)          |
| C(20E) | 11499(2) | 6156(2)  | 11944(2) | 26(1)          |
| O(1E)  | 5547(1)  | 7226(1)  | 9418(1)  | 23(1)          |
|        |          |          |          |                |

| O(2E)      | 4716(1)  | 7247(2)  | 8422(1)  | 28(1) |
|------------|----------|----------|----------|-------|
| O(3E)      | 5543(1)  | 6308(1)  | 8256(1)  | 25(1) |
| O(4E)      | 6775(1)  | 5682(1)  | 9155(1)  | 20(1) |
| O(5E)      | 6829(1)  | 6852(1)  | 10505(1) | 26(1) |
| O(6E)      | 7330(1)  | 5634(1)  | 10761(1) | 25(1) |
| O(7E)      | 7535(1)  | 6177(2)  | 8518(1)  | 25(1) |
| O(8E)      | 7461(1)  | 4758(1)  | 8753(1)  | 29(1) |
| O(9E)      | 10580(1) | 7046(1)  | 11273(1) | 29(1) |
| N(1E)      | 10374(1) | 5728(2)  | 11107(1) | 18(1) |
| S(1E)      | 7525(1)  | 5567(1)  | 8931(1)  | 19(1) |
| C(1F)      | 5479(2)  | 10771(2) | -967(1)  | 21(1) |
| C(2F)      | 6050(2)  | 10247(2) | -1164(1) | 19(1) |
| C(3F)      | 6512(2)  | 9815(2)  | -587(1)  | 18(1) |
| C(4F)      | 5880(2)  | 9757(2)  | -274(2)  | 21(1) |
| C(5F)      | 6150(2)  | 9604(2)  | 391(2)   | 25(1) |
| C(6F)      | 6514(2)  | 8775(2)  | 570(2)   | 30(1) |
| C(7F)      | 4773(2)  | 10057(2) | -1813(2) | 23(1) |
| C(8F)      | 4131(2)  | 9440(2)  | -1888(2) | 38(1) |
| C(9F)      | 4724(2)  | 10487(3) | -2391(2) | 39(1) |
| C(10F)     | 7392(2)  | 9690(2)  | 1113(2)  | 28(1) |
| C(11F)     | 7250(2)  | 9650(3)  | 1715(2)  | 38(1) |
| C(12F)     | 8181(2)  | 10070(3) | 1156(2)  | 36(1) |
| C(13F)     | 8350(2)  | 8950(2)  | -258(1)  | 20(1) |
| C(14F)     | 8869(2)  | 9589(2)  | -124(1)  | 19(1) |
| C(15F)     | 9559(2)  | 9550(2)  | 371(1)   | 20(1) |
| C(16F)     | 9721(2)  | 8863(2)  | 724(1)   | 19(1) |
| C(17F)     | 9186(2)  | 8232(2)  | 587(2)   | 24(1) |
| C(18F)     | 8499(2)  | 8274(2)  | 95(2)    | 24(1) |
| C(19F)     | 10912(2) | 9309(2)  | 1549(1)  | 23(1) |
| C(20F)     | 11589(2) | 8982(2)  | 2066(2)  | 30(1) |
| O(1F)      | 5529(1)  | 10538(1) | -381(1)  | 23(1) |
| O(2F)      | 4720(1)  | 10630(2) | -1380(1) | 26(1) |
| O(3F)      | 5530(1)  | 9688(1)  | -1559(1) | 22(1) |
| O(4F)      | 6768(1)  | 9029(1)  | -686(1)  | 22(1) |
| O(5F)      | 6774(1)  | 10142(1) | 697(1)   | 28(1) |
| O(6F)      | 7345(2)  | 8927(2)  | 850(1)   | 31(1) |
| O(7F)      | 7572(1)  | 9598(1)  | -1265(1) | 25(1) |
| O(8F)      | 7430(1)  | 8156(1)  | -1157(1) | 27(1) |
| O(9F)      | 10794(2) | 10013(2) | 1436(1)  | 33(1) |
| N(1F)      | 10420(2) | 8745(2)  | 1211(1)  | 20(1) |
| S(1F)      | 7523(1)  | 8936(1)  | -909(1)  | 20(1) |
| COLUMN TER | 1        | 0408     |          |       |
|            |          |          |          |       |

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 3. Bond lengths [Å] and angles [deg] for 06mz009m.

| O(22)-C(22) 1.425(4)    |  |
|-------------------------|--|
|                         |  |
| O(22)-H(22) 0.8400      |  |
| C(22)-H(22A) 0.9800     |  |
| C(22)-H(22B) 0.9800     |  |
| C(22)-H(22C) 0.9800     |  |
| O(21)-C(21) 1.421(4)    |  |
| O(21)-H(21) 0.8400      |  |
| C(21)-H(21A) 0.9800     |  |
| C(21)-H(21B) 0.9800     |  |
| C(21)-H(21C) 0.9800     |  |
| C(1A) - O(1A) 1.410(4)  |  |
| C(1A) - O(2A) 1.414(4)  |  |
| C(1A) - C(2A) 1.529(4)  |  |
| C(1A)-H(1A) 1.0000      |  |
| C(2A) - O(3A) 1.426(4)  |  |
| C(2A) - C(3A) 1.521(4)  |  |
| C(2A) - H(2A) 1.0000    |  |
| C(3A) - O(4A) 1.448(3)  |  |
| C(3A)-C(4A) 1.536(4)    |  |
| C(3A)-H(3A) 1.0000      |  |
| C(4A) - O(1A) 1.443(4)  |  |
| C(4A)-C(5A) 1.508(4)    |  |
| C(4A)-H(4A) 1.0000      |  |
| C(5A) - O(5A) 1.434(4)  |  |
| C(5A)-C(6A) 1.541(4)    |  |
| C(5A) - H(5A) 1.0000    |  |
| C(5E) - O(5E) 1.439(4)  |  |
| C(5E)-C(4E) 1.506(4)    |  |
| C(5E)-C(6E) 1.537(4)    |  |
| C(5E)-H(5E) 1.0000      |  |
| C(6A) - O(6A) 1.425(4)  |  |
| C(6A)-H(6A1) 0.9900     |  |
| C(6A)-H(6A2) 0.9900     |  |
| C(7A) - O(3A) 1.427(4)  |  |
| C(7A) - O(2A) 1.430(4)  |  |
| C(7A)-C(8A) 1.510(5)    |  |
| C(7A)-C(9A) 1.513(5)    |  |
| C(8A)-H(8A1) 0.9800     |  |
| C(8A) - H(8A2) 0.9800   |  |
| C(8A) - H(8A3) 0.9800   |  |
| C(9A)-H(9A1) 0.9800     |  |
| C(9A)-H(9A2) 0.9800     |  |
| C(9A)-H(9A3) 0.9800     |  |
| C(10A)-O(6A) 1.423(4)   |  |
| C(10A) - O(5A) 1.429(4) |  |

| C(10A) - C(12A) | 1.506(4) |
|-----------------|----------|
| C(10A) - C(11A) | 1.526(4) |
| C(11A)-H(11A)   | 0.9800   |
| C(11A)-H(11B)   | 0.9800   |
|                 | 0.9800   |
| C(11A)-H(11C)   |          |
| C(12A)-H(12A)   | 0.9800   |
| C(12A)-H(12B)   | 0.9800   |
| C(12A)-H(12C)   | 0.9800   |
| C(13A)-C(18A)   | 1.389(4) |
| C(13A)-C(14A)   | 1.394(4) |
|                 |          |
| C(13A) - S(1A)  | 1.751(3) |
| C(14A)-C(15A)   | 1.371(4) |
| C(14A)-H(14A)   | 0.9500   |
| C(15A)-C(16A)   | 1.414(4) |
| C(15A)-H(15A)   | 0.9500   |
|                 | 1.380(4) |
| C(16A)-C(17A)   |          |
| C(16A)-N(1A)    | 1.408(4) |
| C(17A)-C(18A)   | 1.394(4) |
| C(17A)-H(17A)   | 0.9500   |
| C(18A)-H(18A)   | 0.9500   |
| C(19A)-O(9A)    | 1.232(4) |
|                 | 1.352(4) |
| C(19A)-N(1A)    |          |
| C(19A)-C(20A)   | 1.511(4) |
| C(20A)-H(20A)   | 0.9800   |
| C(20A)-H(20B)   | 0.9800   |
| C(20A)-H(20C)   | 0.9800   |
| O(4A)-S(1A)     | 1.595(2) |
| O(6D)-C(10D)    | 1.422(4) |
|                 | 1.430(4) |
| O(6D)-C(6D)     |          |
| O(7A) - S(1A)   | 1.418(3) |
| O(8D)-S(1D)     | 1.443(3) |
| O(8C) - S(1C)   | 1.454(3) |
| O(8A)-S(1A)     | 1.407(2) |
| N(1A)-H(1A1)    | 0.8800   |
| C(1B)-O(1B)     | 1.410(4) |
|                 | 1.427(4) |
| C(1B)-O(2B)     |          |
| C(1B)-C(2B)     | 1.533(4) |
| C(1B)-H(1B)     | 1.0000   |
| C(2B)-O(3B)     | 1.423(4) |
| C(2B)-C(3B)     | 1.531(4) |
| C(2B)-H(2B)     | 1.0000   |
| C(3B)-O(4B)     | 1.447(4) |
|                 | 1.525(4) |
| C(3B) - C(4B)   |          |
| C(3B)-H(3B)     | 1.0000   |
| C(4B) - O(1B)   | 1.443(4) |
| C(4B) - C(5B)   | 1.511(4) |
| C(4B)-H(4B)     | 1.0000   |
| C(5B)-O(5B)     | 1.427(4) |
| C(5B) - C(6B)   | 1.549(5) |
|                 |          |
| C(5B)-H(5B)     | 1.0000   |
| C(6B)-O(6B)     | 1.415(5) |
| C(6B)-H(6B1)    | 0.9900   |
| C(6B)-H(6B2)    | 0.9900   |
| C(7B)-O(2B)     | 1.417(5) |
| C(7B)-O(3B)     | 1.431(4) |
| C(7B) -C(9B)    | 1.502(6) |
|                 |          |
| C(7B)-C(8B)     | 1.510(6) |

| C(4C) - O(1C) 1.431(4) | $\begin{array}{cccc} C(4C) - C(5C) & 1.510(4) \\ C(4C) - H(4C) & 1.0000 \\ C(5C) - O(5C) & 1.422(4) \\ C(5C) - C(6C) & 1.550(5) \\ C(5C) - H(5C) & 1.0000 \\ \end{array}$ |             |          |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|
|                        | C(4C)-C(5C) 1.510(4)                                                                                                                                                      | C(2C)-H(2C) | 1.0000   |
|                        | C(4C)-H(4C) 1.0000                                                                                                                                                        | C(3C)-O(4C) | 1.453(4) |
|                        | C(5C)-O(5C) 1.422(4)                                                                                                                                                      | C(3C)-C(4C) | 1.537(4) |
|                        | C(5C)-C(6C) 1.550(5)                                                                                                                                                      | C(3C)-H(3C) | 1.0000   |

| C(7C)-O(2C)<br>C(7C)-O(3C)     | 1.421(5)<br>1.434(4) |
|--------------------------------|----------------------|
| C(7C) - C(8C)                  | 1.508(5)<br>1.520(5) |
| C(7C)-C(9C)<br>C(8C)-H(8C1)    | 0.9800               |
| C(8C)-H(8C2)                   | 0.9800               |
| C(8C)-H(8C3)                   | 0.9800               |
| C(9C)-H(9C1)<br>C(9C)-H(9C2)   | 0.9800               |
| C(9C)-H(9C3)                   | 0.9800               |
| C(10C)-O(6C)                   | 1.410(4)             |
| C(10C)-O(5C)<br>C(10C)-C(12C)  | 1.427(4)<br>1.511(5) |
| C(10C)-C(12C)                  | 1.524(4)             |
| C(11C)-H(11G)                  | 0.9800               |
| C(11C)-H(11H)                  | 0.9800               |
| C(11C)-H(11I)<br>C(12C)-H(12G) | 0.9800               |
| C(12C)-H(12H)                  | 0.9800               |
| C(12C)-H(12I)                  | 0.9800               |
| C(13C)-C(14C)                  | 1.390(5)             |
| C(13C)-C(18C)<br>C(13C)-S(1C)  | 1.392(5)<br>1.760(3) |
| C(14C)-C(15C)                  | 1.389(4)             |
| C(14C)-H(14C)                  | 0.9500               |
| C(15C)-C(16C)                  | 1.401(4)             |
| C(15C)-H(15C)<br>C(16C)-C(17C) | 0.9500<br>1.396(4)   |
| C(16C)-N(1C)                   | 1.411(4)             |
| C(17C)-C(18C)                  | 1.388(4)             |
| C(17C)-H(17C)                  | 0.9500               |
| C(18C)-H(18C)<br>C(19C)-O(10D) | 0.9500<br>1.221(4)   |
| C(19C) - N(1C)                 | 1.355(4)             |
| C(19C)-C(20C)                  | 1.504(4)             |
| C(20C)-H(20G)                  | 0.9800               |
| C(20C)-H(20H)<br>C(20C)-H(20I) | 0.9800               |
| O(4C)-S(1C)                    | 1.593(2)             |
| O(7C)-S(1C)                    | 1.426(2)             |
| N(1C)-H(1C1)                   | 0.8800<br>1.412(4)   |
| C(1D) - O(1D)<br>C(1D) - O(2D) | 1.422(4)             |
| C(1D)-C(2D)                    | 1.533(5)             |
| C(1D)-H(1D)                    | 1.0000               |
| C(2D)-O(3D)<br>C(2D)-C(3D)     | 1.422(5)<br>1.531(4) |
| C(2D) - C(3D)<br>C(2D) - H(2D) | 1.0000               |
| C(3D)-O(4D)                    | 1.450(4)             |
| C(3D)-C(4D)                    | 1.528(4)             |
| C(3D) - H(3D)<br>C(4D) - O(1D) | 1.0000<br>1.443(4)   |
| C(4D) - C(5D)                  | 1.515(4)             |
| C(4D)-H(4D)                    | 1.0000               |
| C(5D)-O(5D)                    | 1.423(4)             |
| C(5D)-C(6D)<br>C(5D)-H(5D)     | 1.551(5)<br>1.0000   |
| C(3D) - I(3D)                  | 1.0000               |

| C(6D)-H(6D1)<br>C(6D)-H(6D2)<br>C(7D)-O(2D)<br>C(7D)-O(3D) | 0.9900<br>0.9900<br>1.413(5)<br>1.429(4) |
|------------------------------------------------------------|------------------------------------------|
| C(7D) -C(8D)<br>C(7D) -C(9D)                               | 1.502(7)<br>1.524(6)                     |
| C(8D)-H(8D1)<br>C(8D)-H(8D2)                               | 0.9800                                   |
| C(8D)-H(8D3)<br>C(9D)-H(9D1)                               | 0.9800                                   |
| C(9D)-H(9D2)                                               | 0.9800                                   |
| C(9D)-H(9D3)<br>C(10D)-O(5D)                               | 1.433(4)                                 |
| C(10D)-C(12D)<br>C(10D)-C(11D)                             | 1.519(4)<br>1.520(4)                     |
| C(11D)-H(11J)<br>C(11D)-H(11K)                             | 0.9800                                   |
| C(11D)-H(11L)                                              | 0.9800                                   |
| C(12D)-H(12J)<br>C(12D)-H(12K)                             | 0.9800                                   |
| C(12D)-H(12L)<br>C(13D)-C(18D)                             | 0.9800<br>1.371(5)                       |
| C(13D) - C(14D)<br>C(13D) - S(1D)                          | 1.392(5)<br>1.754(3)                     |
| C(14D)-C(15D)                                              | 1.388(4)                                 |
| C(14D)-H(14D)<br>C(15D)-C(16D)                             | 1.393(5)                                 |
| C(15D)-H(15D)<br>C(16D)-C(17D)                             | 0.9500<br>1.394(4)                       |
| C(16D)-N(1D)<br>C(17D)-C(18D)                              | 1.412(4)<br>1.380(4)                     |
| C(17D)-H(17D)                                              | 0.9500                                   |
| C(18D)-H(18D)<br>C(19D)-O(9D)                              | 0.9500<br>1.214(4)                       |
| C(19D) - N(1D)<br>C(19D) - C(20D)                          | 1.360(4)<br>1.509(4)                     |
| C(20D)-H(20J)<br>C(20D)-H(20K)                             | 0.9800                                   |
| C(20D)-H(20L)                                              | 0.9800<br>1.596(2)                       |
| O(4D)-S(1D)<br>O(7D)-S(1D)                                 | 1.412(3)                                 |
| N(1D)-H(1D1)<br>C(1E)-O(2E)                                | 0.8800<br>1.411(4)                       |
| C(1E)-O(1E)<br>C(1E)-C(2E)                                 | 1.412(4)<br>1.540(4)                     |
| C(1E)-H(1E)<br>C(2E)-O(3E)                                 | 1.0000                                   |
| C(2E)-C(3E)                                                | 1.530(4)                                 |
| C(2E)-H(2E)<br>C(3E)-O(4E)                                 | 1.0000<br>1.447(4)                       |
| C(3E)-C(4E)<br>C(3E)-H(3E)                                 | 1.532(4)                                 |
| C(4E)-O(1E)<br>C(4E)-H(4E)                                 | 1.440(4)                                 |
| C(6E)-O(6E)                                                | 1.427(4)                                 |
| C(6E)-H(6E1)<br>C(6E)-H(6E2)                               | 0.9900                                   |

| C(7E)-O(3E)                    | 1.425(4)           |
|--------------------------------|--------------------|
| C(7E)-O(2E)                    | 1.430(4)           |
| C(7E)-C(8E)                    | 1.507(5)           |
| C(7E)-C(9E)                    | 1.519(5)           |
| C(8E)-H(8E1)                   | 0.9800             |
| C(8E)-H(8E2)                   | 0.9800             |
| C(8E)-H(8E3)                   | 0.9800             |
| C(9E)-H(9E1)                   | 0.9800             |
| C(9E)-H(9E2)                   | 0.9800             |
| C(9E)-H(9E3)                   | 0.9800             |
| C(10E)-O(5E)                   | 1.415(4)           |
| C(10E)-O(6E)                   | 1.421(4)           |
| C(10E)-C(12E)                  | 1.500(4)           |
| C(10E) - C(11E)                | 1.512(4)           |
| C(11E)-H(11M)                  | 0.9800             |
| C(11E) - H(11N)                | 0.9800             |
| C(11E)-H(110)                  | 0.9800             |
| C(12E)-H(12M)                  | 0.9800             |
| C(12E)-H(12N)                  | 0.9800             |
| C(12E)-H(12O)                  | 0.9800             |
| C(13E)-C(14E)                  | 1.388(4)           |
| C(13E)-C(18E)                  | 1.391(4)           |
| C(13E)-S(1E)                   | 1.752(3)           |
| C(14E)-C(15E)                  | 1.392(4)           |
| C(14E)-H(14E)                  | 0.9500             |
| C(15E)-C(16E)                  | 1.401(4)           |
| C(15E)-H(15E)                  | 0.9500             |
| C(16E)-C(17E)                  | 1.396(4)           |
| C(16E)-N(1E)                   | 1.410(4)           |
| C(17E)-C(18E)                  | 1.372(4)           |
| C(17E)-H(17E)                  | 0.9500             |
| C(18E)-H(18E)                  | 0.9500             |
| C(19E)-O(9E)                   | 1.222(4)           |
| C(19E)-N(1E)                   | 1.361(4)           |
| C(19E)-C(20E)                  | 1.503(4)           |
| C(20E)-H(20M)                  | 0.9800             |
| C(20E)-H(20N)                  | 0.9800             |
| C(20E)-H(20O)                  | 0.9800             |
| O(4E)-S(1E)                    | 1.595(2)           |
| O(7E)-S(1E)                    | 1.420(3)           |
| O(8E)-S(1E)                    | 1.421(2)           |
| N(1E)-H(1E1)                   | 0.8800<br>1.402(4) |
| C(1F)-O(2F)                    |                    |
| C(1F)-O(1F)                    | 1.413(4)           |
| C(1F)-C(2F)                    | 1.525(4)           |
| C(1F)-H(1F)                    | 1.0000<br>1.432(4) |
| C(2F)-O(3F)                    | 1.525(4)           |
| C(2F) -C(3F)                   | 1.0000             |
| C(2F)-H(2F)                    | 1.444(3)           |
| C(3F)-O(4F)<br>C(3F)-C(4F)     | 1.534(4)           |
| C(3F) - C(4F)<br>C(3F) - H(3F) | 1.0000             |
| C(3F) - R(3F)<br>C(4F) - O(1F) | 1.443(4)           |
| C(4F) - C(5F)                  | 1.506(5)           |
| C(4F)-C(5F)<br>C(4F)-H(4F)     | 1.0000             |
| C(4F) - R(4F)<br>C(5F) - O(5F) | 1.430(4)           |
| C(5F) - C(6F)                  | 1.541(5)           |
| 0(01) 0(01)                    | 1.011(0)           |

```
C(5F)-H(5F)
                1.0000
C(6F)-O(6F)
                 1.427(4)
C(6F)-H(6F1)
                 0.9900
                 0.9900
C(6F)-H(6F2)
C(7F)-O(3F)
                 1.421(4)
C(7F)-O(2F)
                 1.433(4)
C(7F)-C(8F)
                 1.509(5)
C(7F)-C(9F)
                 1.521(5)
C(8F)-H(8F1)
                 0.9800
                 0.9800
C(8F)-H(8F2)
C(8F)-H(8F3)
                 0.9800
C(9F)-H(9F1)
                 0.9800
C(9F)-H(9F2)
                 0.9800
C(9F)-H(9F3)
                 0.9800
C(10F)-O(6F)
                 1.419(5)
                 1.429(4)
C(10F)-O(5F)
C(10F)-C(12F)
                 1.512(5)
C(10F)-C(11F)
                 1.522(5)
                 0.9800
C(11F)-H(11P)
                 0.9800
C(11F)-H(11Q)
                 0.9800
C(11F)-H(11R)
                 0.9800
C(12F)-H(12P)
                 0.9800
C(12F)-H(12Q)
                 0.9800
C(12F)-H(12R)
C(13F)-C(14F)
                 1.385(4)
C(13F)-C(18F)
                 1.386(4)
                 1.743(3)
C(13F) - S(1F)
C(14F)-C(15F)
                 1.390(4)
C(14F)-H(14F)
                 0.9500
                 1.402(4)
C(15F) - C(16F)
                 0.9500
C(15F)-H(15F)
                 1.392(4)
C(16F)-C(17F)
                 1.403(4)
C(16F)-N(1F)
C(17F)-C(18F)
                 1.382(4)
C(17F)-H(17F)
                 0.9500
                 0.9500
C(18F)-H(18F)
C(19F)-O(9F)
                 1.221(4)
C(19F)-N(1F)
                 1.358(4)
                 1.508(5)
C(19F)-C(20F)
C(20F)-H(20P)
                 0.9800
                 0.9800
C(20F)-H(20Q)
                 0.9800
C(20F)-H(20R)
                1.596(2)
O(4F)-S(1F)
                 1.417(2)
O(7F)-S(1F)
O(8F)-S(1F)
                 1.427(2)
                 0.8800
N(1F) - H(1F1)
C(22) - O(22) - H(22)
                    109.5
                    109.5
O(22) - C(22) - H(22A)
                    109.5
O(22) - C(22) - H(22B)
H(22A)-C(22)-H(22B)
                    109.5
                    109.5
O(22) - C(22) - H(22C)
                    109.5
H(22A) - C(22) - H(22C)
H(22B)-C(22)-H(22C)
                    109.5
                    109.5
C(21) - O(21) - H(21)
                    109.5
O(21) - C(21) - H(21A)
O(21)-C(21)-H(21B)
                    109.5
```

| and the same of th | 1 10 TO A COLUMN TO A SEC. TO A SEC. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| H(21A) - C(21) - H(21B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.5                                |
| O(21) - C(21) - H(21C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5                                |
| H(21A)-C(21)-H(21C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5                                |
| H(21B)-C(21)-H(21C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5                                |
| O(1A) - C(1A) - O(2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111.4(2)                             |
| O(1A) - C(1A) - C(2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107.7(2)                             |
| O(2A) - C(1A) - C(2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 105.7(2)                             |
| O(1A) - C(1A) - H(1A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110.6                                |
| O(2A)-C(1A)-H(1A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.6                                |
| C(2A) - C(1A) - H(1A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110.6                                |
| O(3A) - C(2A) - C(3A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5(2)                             |
| O(3A) - C(2A) - C(1A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103.4(2)                             |
| C(3A)-C(2A)-C(1A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102.5(2)                             |
| O(3A)-C(2A)-H(2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 113.5                                |
| C(3A) - C(2A) - H(2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113.5                                |
| C(1A) - C(2A) - H(2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113.5                                |
| O(4A) - C(3A) - C(2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114.7(2)                             |
| O(4A) - C(3A) - C(4A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.1(2)                             |
| C(2A) - C(3A) - C(4A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.3(2)                             |
| O(4A) - C(3A) - H(3A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110.1                                |
| C(2A) - C(3A) - H(3A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110.1                                |
| C(4A) - C(3A) - H(3A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110.1                                |
| O(1A) - C(4A) - C(5A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.6(2)                             |
| O(1A) - C(4A) - C(3A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101.3(2)                             |
| C(5A) - C(4A) - C(3A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 118.8(2)                             |
| O(1A) - C(4A) - H(4A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.2                                |
| C(5A) - C(4A) - H(4A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.2                                |
| C(3A) - C(4A) - H(4A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.2                                |
| O(5A) - C(5A) - C(4A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.9(2)                             |
| O(5A) - C(5A) - C(6A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 104.2(2)                             |
| C(4A) - C(5A) - C(6A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114.2(3)                             |
| O(5A) - C(5A) - H(5A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                                |
| C(4A) - C(5A) - H(5A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                                |
| C(6A) - C(5A) - H(5A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                                |
| O(5E) - C(5E) - C(4E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.8(2)                             |
| O(5E)-C(5E)-C(6E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104.3(2)                             |
| C(4E) - C(5E) - C(6E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 115.4(3)                             |
| O(5E) - C(5E) - H(5E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.0                                |
| C(4E) - C(5E) - H(5E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.0                                |
| C(6E)-C(5E)-H(5E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.0                                |
| O(6A)-C(6A)-C(5A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103.4(2)                             |
| O(6A)-C(6A)-H(6A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111.1                                |
| C(5A) - C(6A) - H(6A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111.1                                |
| O(6A)-C(6A)-H(6A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111.1                                |
| C(5A)-C(6A)-H(6A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111.1                                |
| H(6A1)-C(6A)-H(6A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.1                                |
| O(3A)-C(7A)-O(2A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105.2(2)                             |
| O(3A)-C(7A)-C(8A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.1(3)                             |
| O(2A) -C(7A) -C(8A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.5(3)                             |
| O(3A) - C(7A) - C(9A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111.2(3)                             |
| O(2A) - C(7A) - C(9A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.1(3)                             |
| C(8A) - C(7A) - C(9A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114.4(4)                             |
| C(7A) -C(8A) -H(8A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                                |
| C(7A) -C(8A) -H(8A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                                |
| H(8A1)-C(8A)-H(8A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5                                |
| C(7A) -C(8A) -H(8A3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                                |
| H(8A1)-C(8A)-H(8A3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5                                |

```
H(8A2)-C(8A)-H(8A3)
                            109.5
C(7A) - C(9A) - H(9A1)
                            109.5
C(7A) - C(9A) - H(9A2)
                            109.5
H(9A1)-C(9A)-H(9A2)
                            109.5
                            109.5
C(7A) - C(9A) - H(9A3)
                            109.5
H(9A1)-C(9A)-H(9A3)
                            109.5
H(9A2)-C(9A)-H(9A3)
O(6A) - C(10A) - O(5A)
                            104.8(2)
O(6A)-C(10A)-C(12A)
                            109.4(2)
                            108.4(3)
O(5A) - C(10A) - C(12A)
                            110.7(3)
O(6A) - C(10A) - C(11A)
O(5A) - C(10A) - C(11A)
                            110.8(3)
                            112.4(3)
C(12A) - C(10A) - C(11A)
                            109.5
C(10A) - C(11A) - H(11A)
                            109.5
C(10A) - C(11A) - H(11B)
H(11A)-C(11A)-H(11B)
                            109.5
C(10A) - C(11A) - H(11C)
                            109.5
                            109.5
H(11A) - C(11A) - H(11C)
                            109.5
H(11B)-C(11A)-H(11C)
C(10A) - C(12A) - H(12A)
                            109.5
C(10A) - C(12A) - H(12B)
                            109.5
                            109.5
H(12A) - C(12A) - H(12B)
                            109.5
C(10A) - C(12A) - H(12C)
                            109.5
H(12A) - C(12A) - H(12C)
                            109.5
H(12B)-C(12A)-H(12C)
C(18A) - C(13A) - C(14A)
                            120.9(3)
C(18A) - C(13A) - S(1A)
                            119.2(2)
                            119.7(2)
C(14A) - C(13A) - S(1A)
C(15A) - C(14A) - C(13A)
                            119.8(3)
                            120.1
C(15A) - C(14A) - H(14A)
C(13A)-C(14A)-H(14A)
                            120.1
                            119.9(3)
C(14A) - C(15A) - C(16A)
C(14A) - C(15A) - H(15A)
                            120.1
C(16A) - C(15A) - H(15A)
                            120.1
C(17A) - C(16A) - N(1A)
                            123.3(3)
                            119.8(3)
C(17A) - C(16A) - C(15A)
N(1A) - C(16A) - C(15A)
                            116.9(3)
C(16A) - C(17A) - C(18A)
                            120.4(3)
C(16A) - C(17A) - H(17A)
                            119.8
C(18A) - C(17A) - H(17A)
                            119.8
                            119.1(3)
C(13A) - C(18A) - C(17A)
                            120.5
C(13A) - C(18A) - H(18A)
C(17A) - C(18A) - H(18A)
                            120.5
O(9A)-C(19A)-N(1A)
                            123.9(3)
                            121.0(3)
O(9A) - C(19A) - C(20A)
N(1A) - C(19A) - C(20A)
                            115.1(3)
                            109.5
C(19A) - C(20A) - H(20A)
                            109.5
C(19A) - C(20A) - H(20B)
                            109.5
H(20A) - C(20A) - H(20B)
C(19A) - C(20A) - H(20C)
                            109.5
                            109.5
H(20A) - C(20A) - H(20C)
H(20B)-C(20A)-H(20C)
                            109.5
                            108.7(2)
C(1A) - O(1A) - C(4A)
                            108.7(2)
C(1A) - O(2A) - C(7A)
                            106.9(2)
C(2A) - O(3A) - C(7A)
                            118.77(18)
C(3A) - O(4A) - S(1A)
C(10A) - O(5A) - C(5A)
                            108.2(2)
```

```
C(10D) - O(6D) - C(6D)
                           105.2(3)
C(10A) - O(6A) - C(6A)
                           105.4(2)
C(19A) - N(1A) - C(16A)
                           125.5(3)
                           117.3
C(19A) - N(1A) - H(1A1)
                           117.3
C(16A) - N(1A) - H(1A1)
O(8A) - S(1A) - O(7A)
                           120.11(15)
O(8A) - S(1A) - O(4A)
                           102.76(13)
                           109.55(13)
O(7A) - S(1A) - O(4A)
                           108.54(14)
O(8A) - S(1A) - C(13A)
O(7A) - S(1A) - C(13A)
                           109.46(14)
O(4A) - S(1A) - C(13A)
                           105.32(13)
                           110.1(3)
O(1B) - C(1B) - O(2B)
                           107.4(3)
O(1B) - C(1B) - C(2B)
O(2B)-C(1B)-C(2B)
                           104.2(3)
O(1B)-C(1B)-H(1B)
                           111.6
                           111.6
O(2B)-C(1B)-H(1B)
C(2B) - C(1B) - H(1B)
                           111.6
O(3B) - C(2B) - C(3B)
                           108.4(3)
                           104.7(3)
O(3B) - C(2B) - C(1B)
                           103.0(3)
C(3B) - C(2B) - C(1B)
                           113.3
O(3B) - C(2B) - H(2B)
                           113.3
C(3B) - C(2B) - H(2B)
                           113.3
C(1B) - C(2B) - H(2B)
                           109.3(3)
O(4B) - C(3B) - C(4B)
O(4B)-C(3B)-C(2B)
                           112.4(3)
                           102.5(2)
C(4B) - C(3B) - C(2B)
                           110.8
O(4B) - C(3B) - H(3B)
C(4B) - C(3B) - H(3B)
                           110.8
                           110.8
C(2B) - C(3B) - H(3B)
                           107.5(3)
O(1B) - C(4B) - C(5B)
O(1B) - C(4B) - C(3B)
                           102.1(3)
                           118.5(3)
C(5B) - C(4B) - C(3B)
                           109.4
O(1B) - C(4B) - H(4B)
C(5B)-C(4B)-H(4B)
                           109.4
                           109.4
C(3B)-C(4B)-H(4B)
                           110.4(3)
O(5B) - C(5B) - C(4B)
O(5B) - C(5B) - C(6B)
                           103.8(3)
                           114.8(3)
C(4B) - C(5B) - C(6B)
                           109.2
O(5B) - C(5B) - H(5B)
                           109.2
C(4B) - C(5B) - H(5B)
                           109.2
C(6B)-C(5B)-H(5B)
                           104.7(3)
O(6B) - C(6B) - C(5B)
                           110.8
O(6B) - C(6B) - H(6B1)
                           110.8
C(5B) - C(6B) - H(6B1)
                           110.8
O(6B) - C(6B) - H(6B2)
                           110.8
C(5B) - C(6B) - H(6B2)
                           108.9
H(6B1)-C(6B)-H(6B2)
O(2B)-C(7B)-O(3B)
                           104.7(3)
O(2B)-C(7B)-C(9B)
                           108.0(3)
O(3B) - C(7B) - C(9B)
                           108.1(3)
O(2B)-C(7B)-C(8B)
                           109.8(4)
                           111.1(3)
O(3B) - C(7B) - C(8B)
C(9B) - C(7B) - C(8B)
                           114.6(4)
C(7B)-C(8B)-H(8B1)
                           109.5
                           109.5
C(7B)-C(8B)-H(8B2)
                           109.5
H(8B1)-C(8B)-H(8B2)
C(7B)-C(8B)-H(8B3)
                           109.5
```

```
109.5
H(8B1)-C(8B)-H(8B3)
                            109.5
H(8B2)-C(8B)-H(8B3)
C(7B)-C(9B)-H(9B1)
                            109.5
                            109.5
C(7B) - C(9B) - H(9B2)
H(9B1)-C(9B)-H(9B2)
                            109.5
C(7B)-C(9B)-H(9B3)
                            109.5
                            109.5
H(9B1)-C(9B)-H(9B3)
                            109.5
H(9B2)-C(9B)-H(9B3)
                            104.8(3)
O(5B) - C(10B) - O(6B)
O(5B)-C(10B)-C(12B)
                            108.2(3)
O(6B)-C(10B)-C(12B)
                            109.8(3)
                            111.3(3)
O(5B) - C(10B) - C(11B)
                            110.7(3)
O(6B) - C(10B) - C(11B)
C(12B) - C(10B) - C(11B)
                            111.8(3)
                            109.5
C(10B) - C(11B) - H(11D)
                            109.5
C(10B) - C(11B) - H(11E)
                            109.5
H(11D) - C(11B) - H(11E)
                            109.5
C(10B)-C(11B)-H(11F)
H(11D)-C(11B)-H(11F)
                            109.5
                            109.5
H(11E)-C(11B)-H(11F)
C(10B) - C(12B) - H(12D)
                            109.5
                            109.5
C(10B)-C(12B)-H(12E)
                            109.5
H(12D) - C(12B) - H(12E)
C(10B)-C(12B)-H(12F)
                            109.5
H(12D)-C(12B)-H(12F)
                            109.5
                            109.5
H(12E)-C(12B)-H(12F)
                            121.6(3)
C(18B) - C(13B) - C(14B)
C(18B) - C(13B) - S(1B)
                            120.0(3)
                            118.4(3)
C(14B) - C(13B) - S(1B)
                            118.9(3)
C(15B) - C(14B) - C(13B)
C(15B)-C(14B)-H(14B)
                            120.6
                            120.6
C(13B) - C(14B) - H(14B)
                            120.5(3)
C(14B) - C(15B) - C(16B)
C(14B)-C(15B)-H(15B)
                            119.7
C(16B) - C(15B) - H(15B)
                            119.7
C(15B) - C(16B) - C(17B)
                            120.6(3)
C(15B) - C(16B) - N(1B)
                            115.9(3)
                            123.5(3)
C(17B) - C(16B) - N(1B)
                            119.6(3)
C(18B)-C(17B)-C(16B)
                            120.2
C(18B)-C(17B)-H(17B)
                            120.2
C(16B) - C(17B) - H(17B)
                            118.9(3)
C(17B) - C(18B) - C(13B)
                            120.6
C(17B)-C(18B)-H(18B)
                            120.6
C(13B) - C(18B) - H(18B)
                            122.5(3)
O(9B) - C(19B) - N(1B)
                            122.3(3)
O(9B) - C(19B) - C(20B)
                            115.2(3)
N(1B) - C(19B) - C(20B)
C(19B)-C(20B)-H(20D)
                            109.5
                            109.5
C(19B) - C(20B) - H(20E)
H(20D)-C(20B)-H(20E)
                            109.5
C(19B)-C(20B)-H(20F)
                            109.5
                            109.5
H(20D) - C(20B) - H(20F)
                            109.5
H(20E)-C(20B)-H(20F)
C(1B) - O(1B) - C(4B)
                            108.7(3)
                            109.6(2)
C(7B) - O(2B) - C(1B)
                            107.2(3)
C(2B) - O(3B) - C(7B)
C(3B) - O(4B) - S(1B)
                            117.0(2)
```

```
C(10B) - O(5B) - C(5B)
                          106.3(3)
                          106.9(3)
C(6B) - O(6B) - C(10B)
C(19B) - N(1B) - C(16B)
                          127.8(3)
                          116.1
C(19B) - N(1B) - H(1B1)
C(16B) - N(1B) - H(1B1)
                          116.1
O(7B) - S(1B) - O(8B)
                          120.64(16)
O(7B) - S(1B) - O(4B)
                          110.16(14)
O(8B) - S(1B) - O(4B)
                          102.85(15)
O(7B) - S(1B) - C(13B)
                          110.30(16)
O(8B) - S(1B) - C(13B)
                          108.03(17)
                          103.33(14)
O(4B) - S(1B) - C(13B)
                          111.2(3)
O(2C) - C(1C) - O(1C)
                          104.3(3)
O(2C) - C(1C) - C(2C)
O(1C)-C(1C)-C(2C)
                          106.3(3)
                          111.6
O(2C)-C(1C)-H(1C)
O(1C) - C(1C) - H(1C)
                          111.6
C(2C)-C(1C)-H(1C)
                          111.6
                          109.8(3)
O(3C)-C(2C)-C(3C)
O(3C)-C(2C)-C(1C)
                          103.4(2)
C(3C) - C(2C) - C(1C)
                          101.9(3)
O(3C)-C(2C)-H(2C)
                          113.5
C(3C)-C(2C)-H(2C)
                          113.5
                          113.5
C(1C) - C(2C) - H(2C)
                          114.0(3)
O(4C) - C(3C) - C(2C)
O(4C) - C(3C) - C(4C)
                          109.6(3)
C(2C)-C(3C)-C(4C)
                          101.7(2)
O(4C)-C(3C)-H(3C)
                          110.4
                          110.4
C(2C) - C(3C) - H(3C)
                          110.4
C(4C) - C(3C) - H(3C)
O(1C) - C(4C) - C(5C)
                          107.9(3)
O(1C) - C(4C) - C(3C)
                          101.4(2)
C(5C)-C(4C)-C(3C)
                          117.9(3)
O(1C)-C(4C)-H(4C)
                          109.7
C(5C) - C(4C) - H(4C)
                          109.7
                          109.7
C(3C) - C(4C) - H(4C)
                          110.4(3)
O(5C) - C(5C) - C(4C)
O(5C)-C(5C)-C(6C)
                          105.1(3)
C(4C) - C(5C) - C(6C)
                          113.5(3)
                          109.2
O(5C)-C(5C)-H(5C)
C(4C) - C(5C) - H(5C)
                          109.2
                          109.2
C(6C) - C(5C) - H(5C)
                          102.9(3)
O(6C)-C(6C)-C(5C)
                          111.2
O(6C) - C(6C) - H(6C1)
                          111.2
C(5C) - C(6C) - H(6C1)
                          111.2
O(6C) - C(6C) - H(6C2)
                          111.2
C(5C)-C(6C)-H(6C2)
                          109.1
H(6C1) - C(6C) - H(6C2)
O(2C) - C(7C) - O(3C)
                          105.6(3)
O(2C)-C(7C)-C(8C)
                          108.8(3)
O(3C)-C(7C)-C(8C)
                          108.2(3)
O(2C)-C(7C)-C(9C)
                          109.5(3)
O(3C) - C(7C) - C(9C)
                          111.0(3)
C(8C)-C(7C)-C(9C)
                          113.4(3)
                          109.5
C(7C)-C(8C)-H(8C1)
                          109.5
C(7C)-C(8C)-H(8C2)
                          109.5
H(8C1)-C(8C)-H(8C2)
                          109.5
C(7C)-C(8C)-H(8C3)
```

| H(8C1)-C(8C)-H(8C3)                                                       | 109.5                            |
|---------------------------------------------------------------------------|----------------------------------|
| H(8C2)-C(8C)-H(8C3)                                                       | 109.5                            |
| C(7C)-C(9C)-H(9C1)                                                        | 109.5                            |
| C(7C) -C(9C) -H(9C2)                                                      | 109.5                            |
| H(9C1) -C(9C) -H(9C2)                                                     | 109.5                            |
| C(7C)-C(9C)-H(9C3)                                                        | 109.5                            |
| H(9C1)-C(9C)-H(9C3)                                                       | 109.5                            |
| H(9C2)-C(9C)-H(9C3)                                                       | 109.5                            |
| 0(6C)-C(10C)-C(12C)                                                       | 105.0(3)                         |
| 0(6C)-C(10C)-C(12C)                                                       | 109.7(3)                         |
| O(5C)-C(10C)-C(12C)                                                       | 107.5(3)<br>111.2(3)             |
| O(6C) -C(10C) -C(11C)<br>O(5C) -C(10C) -C(11C)                            | 111.2(3)<br>110.7(3)<br>112.3(3) |
| C(12C)-C(10C)-C(11C)<br>C(10C)-C(11C)-H(11G)                              | 109.5                            |
| C(10C)-C(11C)-H(11H)<br>H(11G)-C(11C)-H(11H)                              | 109.5                            |
| C(10C)-C(11C)-H(11I)                                                      | 109.5                            |
| H(11G)-C(11C)-H(11I)                                                      | 109.5                            |
| H(11H)-C(11C)-H(11I)                                                      | 109.5                            |
| C(10C)-C(12C)-H(12G)                                                      | 109.5                            |
| C(10C)-C(12C)-H(12H)                                                      | 109.5                            |
| H(12G)-C(12C)-H(12H)                                                      | 109.5                            |
| C(10C)-C(12C)-H(12I)                                                      | 109.5                            |
| H(12G)-C(12C)-H(12I)                                                      | 109.5                            |
| H(12H)-C(12C)-H(12I)                                                      | 109.5                            |
| C(14C)-C(13C)-C(18C)                                                      | 121.6(3)                         |
| C(14C) -C(13C) -S(1C)                                                     | 119.5(2)                         |
| C(18C) -C(13C) -S(1C)                                                     | 118.8(3)                         |
| C(15C)-C(14C)-C(13C)                                                      | 119.4(3)                         |
| C(15C)-C(14C)-H(14C)                                                      | 120.3                            |
| C(13C) -C(14C) -H(14C)                                                    | 120.3                            |
| C(14C) -C(15C) -C(16C)                                                    | 119.7(3)                         |
| C(14C) -C(15C) -H(15C)<br>C(16C) -C(15C) -H(15C)                          | 120.2                            |
| C(17C) -C(16C) -C(15C)                                                    | 120.1(3)                         |
| C(17C) -C(16C) -N(1C)                                                     | 118.0(3)                         |
| C(15C) -C(16C) -N(1C)                                                     | 121.9(3)                         |
| C(18C) -C(17C) -C(16C)                                                    | 120.3(3)                         |
| C(18C) -C(17C) -H(17C)                                                    | 119.9                            |
| C(16C) -C(17C) -H(17C)                                                    | 119.9                            |
| C(17C) -C(18C) -C(13C)<br>C(17C) -C(18C) -H(18C)                          | 118.9(3)<br>120.5<br>120.5       |
| C(13C) -C(18C) -H(18C)<br>O(10D) -C(19C) -N(1C)                           | 120.3<br>122.9(3)<br>121.7(3)    |
| O(10D) -C(19C) -C(20C)<br>N(1C) -C(19C) -C(20C)<br>C(19C) -C(20C) -H(20G) | 115.4(3)<br>109.5                |
| C(19C) -C(20C) -H(20H)                                                    | 109.5                            |
| H(20G) -C(20C) -H(20H)                                                    | 109.5                            |
| C(19C) -C(20C) -H(20I)                                                    | 109.5                            |
| H(20G) -C(20C) -H(20I)                                                    | 109.5                            |
| H(20H) -C(20C) -H(20H)                                                    | 109.5                            |
| C(1C) -O(1C) -C(4C)                                                       | 110.8(3)                         |
| C(1C) -O(1C) -C(4C)                                                       | 110.0(3)                         |
| C(1C) -O(2C) -C(7C)                                                       | 110.0(3)                         |
| C(2C) -O(3C) -C(7C)                                                       | 106.2(3)                         |
| C(3C) = O(3C) = C(7C)<br>C(3C) = O(4C) = S(1C)                            | 118.32(19)                       |

| C(5C) - O(5C) - C(10C)  | 106.9(3)   |
|-------------------------|------------|
|                         |            |
| C(10C) - O(6C) - C(6C)  | 106.0(3)   |
| C(19C) - N(1C) - C(16C) | 127.5(3)   |
| C(19C) - N(1C) - H(1C1) | 116.3      |
|                         |            |
| C(16C) - N(1C) - H(1C1) | 116.3      |
| O(7C) - S(1C) - O(8C)   | 120.56(15) |
|                         | 109.34(13) |
| O(7C) - S(1C) - O(4C)   |            |
| O(8C) - S(1C) - O(4C)   | 102.48(14) |
| O(7C) - S(1C) - C(13C)  | 108.20(15) |
|                         |            |
| O(8C) - S(1C) - C(13C)  | 108.94(15) |
| O(4C) - S(1C) - C(13C)  | 106.43(13) |
| O(1D)-C(1D)-O(2D)       | 110.7(3)   |
|                         |            |
| O(1D) - C(1D) - C(2D)   | 107.5(3)   |
| O(2D) - C(1D) - C(2D)   | 104.4(3)   |
| O(1D)-C(1D)-H(1D)       | 111.3      |
|                         |            |
| O(2D) - C(1D) - H(1D)   | 111.3      |
| C(2D) - C(1D) - H(1D)   | 111.3      |
|                         | 109.2(3)   |
| O(3D) - C(2D) - C(3D)   |            |
| O(3D) - C(2D) - C(1D)   | 104.5(3)   |
| C(3D) - C(2D) - C(1D)   | 102.4(3)   |
| O(3D)-C(2D)-H(2D)       | 113.3      |
|                         |            |
| C(3D) - C(2D) - H(2D)   | 113.3      |
| C(1D) - C(2D) - H(2D)   | 113.3      |
| O(4D) - C(3D) - C(4D)   | 108.5(3)   |
|                         |            |
| O(4D) - C(3D) - C(2D)   | 113.6(3)   |
| C(4D) - C(3D) - C(2D)   | 102.7(2)   |
| O(4D)-C(3D)-H(3D)       | 110.6      |
| O(4D) C(3D) H(3D)       |            |
| C(4D) - C(3D) - H(3D)   | 110.6      |
| C(2D) - C(3D) - H(3D)   | 110.6      |
| O(1D) - C(4D) - C(5D)   | 107.4(3)   |
|                         |            |
| O(1D) - C(4D) - C(3D)   | 101.2(3)   |
| C(5D) - C(4D) - C(3D)   | 118.9(3)   |
| O(1D)-C(4D)-H(4D)       | 109.6      |
|                         |            |
| C(5D) - C(4D) - H(4D)   | 109.6      |
| C(3D) - C(4D) - H(4D)   | 109.6      |
| O(5D) - C(5D) - C(4D)   | 110.7(3)   |
|                         | 104.1(2)   |
| O(5D) - C(5D) - C(6D)   |            |
| C(4D) - C(5D) - C(6D)   | 113.9(3)   |
| O(5D) - C(5D) - H(5D)   | 109.3      |
|                         | 109.3      |
| C(4D)-C(5D)-H(5D)       |            |
| C(6D) - C(5D) - H(5D)   | 109.3      |
| O(6D) - C(6D) - C(5D)   | 103.7(3)   |
| O(6D)-C(6D)-H(6D1)      | 111.0      |
|                         |            |
| C(5D) - C(6D) - H(6D1)  | 111.0      |
| O(6D) - C(6D) - H(6D2)  | 111.0      |
| C(5D)-C(6D)-H(6D2)      | 111.0      |
|                         |            |
| H(6D1)-C(6D)-H(6D2)     | 109.0      |
| O(2D) - C(7D) - O(3D)   | 105.0(3)   |
| O(2D)-C(7D)-C(8D)       | 109.1(3)   |
|                         |            |
| O(3D) - C(7D) - C(8D)   | 108.0(4)   |
| O(2D) - C(7D) - C(9D)   | 109.0(4)   |
| O(3D)-C(7D)-C(9D)       | 111.0(3)   |
|                         |            |
| C(8D) - C(7D) - C(9D)   | 114.4(4)   |
| C(7D) - C(8D) - H(8D1)  | 109.5      |
| C(7D) - C(8D) - H(8D2)  | 109.5      |
|                         |            |
| H(8D1)-C(8D)-H(8D2)     | 109.5      |
| C(7D) - C(8D) - H(8D3)  | 109.5      |
|                         |            |

```
109.5
H(8D1)-C(8D)-H(8D3)
                            109.5
H(8D2)-C(8D)-H(8D3)
C(7D) - C(9D) - H(9D1)
                            109.5
                            109.5
C(7D) - C(9D) - H(9D2)
                            109.5
H(9D1)-C(9D)-H(9D2)
C(7D) - C(9D) - H(9D3)
                            109.5
H(9D1)-C(9D)-H(9D3)
                            109.5
                            109.5
H(9D2)-C(9D)-H(9D3)
O(6D) - C(10D) - O(5D)
                            105.1(3)
O(6D) - C(10D) - C(12D)
                            110.1(3)
                            107.8(3)
O(5D) - C(10D) - C(12D)
                            110.7(3)
O(6D) - C(10D) - C(11D)
                            110.6(3)
O(5D) - C(10D) - C(11D)
C(12D) - C(10D) - C(11D)
                            112.2(3)
                            109.5
C(10D) - C(11D) - H(11J)
C(10D)-C(11D)-H(11K)
                            109.5
H(11J)-C(11D)-H(11K)
                            109.5
                            109.5
C(10D) - C(11D) - H(11L)
                            109.5
H(11J)-C(11D)-H(11L)
H(11K) - C(11D) - H(11L)
                            109.5
                            109.5
C(10D) - C(12D) - H(12J)
C(10D) - C(12D) - H(12K)
                            109.5
                            109.5
H(12J) - C(12D) - H(12K)
                            109.5
C(10D) - C(12D) - H(12L)
H(12J)-C(12D)-H(12L)
                            109.5
                            109.5
H(12K)-C(12D)-H(12L)
C(18D) - C(13D) - C(14D)
                            120.8(3)
                            118.7(3)
C(18D) - C(13D) - S(1D)
                            120.5(3)
C(14D) - C(13D) - S(1D)
C(15D) - C(14D) - C(13D)
                            119.1(3)
C(15D)-C(14D)-H(14D)
                            120.4
                            120.4
C(13D) - C(14D) - H(14D)
                            120.1(3)
C(14D) - C(15D) - C(16D)
C(14D)-C(15D)-H(15D)
                            119.9
                            119.9
C(16D) - C(15D) - H(15D)
                            119.7(3)
C(15D) - C(16D) - C(17D)
C(15D) - C(16D) - N(1D)
                            122.6(3)
C(17D) - C(16D) - N(1D)
                            117.6(3)
                            119.8(3)
C(18D) - C(17D) - C(16D)
C(18D) - C(17D) - H(17D)
                            120.1
C(16D)-C(17D)-H(17D)
                            120.1
                            120.4(3)
C(13D) - C(18D) - C(17D)
C(13D) - C(18D) - H(18D)
                            119.8
                            119.8
C(17D)-C(18D)-H(18D)
                            123.0(3)
O(9D) - C(19D) - N(1D)
O(9D) - C(19D) - C(20D)
                            121.8(3)
N(1D)-C(19D)-C(20D)
                            115.2(3)
C(19D) - C(20D) - H(20J)
                            109.5
                            109.5
C(19D) - C(20D) - H(20K)
H(20J)-C(20D)-H(20K)
                            109.5
                            109.5
C(19D) - C(20D) - H(20L)
                            109.5
H(20J) - C(20D) - H(20L)
H(20K)-C(20D)-H(20L)
                            109.5
C(1D) - O(1D) - C(4D)
                            108.5(3)
                            109.5(3)
C(7D) - O(2D) - C(1D)
                            107.0(3)
C(2D) - O(3D) - C(7D)
C(3D) - O(4D) - S(1D)
                            118.45(19)
```

| C(5D) -O(5D) -C(10D) C(19D) -N(1D) -C(16D) C(19D) -N(1D) -H(1D1) C(16D) -N(1D) -H(1D1) O(7D) -S(1D) -O(8D) O(7D) -S(1D) -O(4D) O(8D) -S(1D) -O(4D) O(7D) -S(1D) -C(13D) O(8D) -S(1D) -C(13D) O(8D) -S(1D) -C(13D) O(4D) -S(1D) -C(13D) O(2E) -C(1E) -C(1E) O(2E) -C(1E) -C(2E) O(1E) -C(1E) -C(2E) O(2E) -C(1E) -H(1E) O(1E) -C(1E) -H(1E) C(2E) -C(1E) -H(1E) O(3E) -C(2E) -C(3E) O(3E) -C(2E) -C(1E) | 108.5(3)<br>125.1(3)<br>117.4<br>117.4<br>120.92(17)<br>110.19(14)<br>102.42(14)<br>109.86(16)<br>108.18(17)<br>103.79(13)<br>111.5(3)<br>104.9(3)<br>107.1(2)<br>111.0<br>111.0<br>111.0<br>108.5(3)<br>104.1(2) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C(3E) -C(2E) -C(1E) O(3E) -C(2E) -H(2E) C(3E) -C(2E) -H(2E) C(1E) -C(2E) -H(2E) O(4E) -C(3E) -C(2E) O(4E) -C(3E) -C(4E) C(2E) -C(3E) -C(4E) O(4E) -C(3E) -H(3E) C(2E) -C(3E) -H(3E)                                                                                                                                                                                                                    | 102.1(2)<br>113.7<br>113.7<br>113.6(3)<br>109.4(2)<br>102.4(2)<br>110.4<br>110.4                                                                                                                                  |
| C(4E)-C(3E)-H(3E) O(1E)-C(4E)-C(5E) O(1E)-C(4E)-C(3E) C(5E)-C(4E)-C(3E) O(1E)-C(4E)-H(4E) C(5E)-C(4E)-H(4E) C(3E)-C(4E)-H(4E) O(6E)-C(6E)-C(5E) O(6E)-C(6E)-H(6E1) C(5E)-C(6E)-H(6E1)                                                                                                                                                                                                                  | 110.4<br>109.2(2)<br>100.8(2)<br>119.1(2)<br>109.1<br>109.1<br>109.1<br>103.9(2)<br>111.0<br>111.0                                                                                                                |
| O(6E) -C(6E) -H(6E2)<br>C(5E) -C(6E) -H(6E2)<br>H(6E1) -C(6E) -H(6E2)<br>O(3E) -C(7E) -O(2E)<br>O(3E) -C(7E) -C(8E)<br>O(2E) -C(7E) -C(8E)<br>O(3E) -C(7E) -C(9E)<br>O(2E) -C(7E) -C(9E)<br>C(8E) -C(7E) -C(9E)                                                                                                                                                                                        | 111.0<br>111.0<br>109.0<br>105.7(2)<br>108.2(3)<br>109.3(3)<br>110.9(3)<br>109.1(3)<br>113.4(3)                                                                                                                   |
| C(7E)-C(8E)-H(8E1)<br>C(7E)-C(8E)-H(8E2)<br>H(8E1)-C(8E)-H(8E2)<br>C(7E)-C(8E)-H(8E3)<br>H(8E1)-C(8E)-H(8E3)<br>H(8E2)-C(8E)-H(8E3)<br>C(7E)-C(9E)-H(9E1)<br>C(7E)-C(9E)-H(9E2)<br>H(9E1)-C(9E)-H(9E2)<br>C(7E)-C(9E)-H(9E3)<br>H(9E1)-C(9E)-H(9E3)                                                                                                                                                    | 109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5                                                                                                                                     |

```
H(9E2)-C(9E)-H(9E3)
                            109.5
                            104.4(2)
O(5E) - C(10E) - O(6E)
O(5E) - C(10E) - C(12E)
                            108.3(3)
O(6E) - C(10E) - C(12E)
                            109.1(2)
                            111.6(3)
O(5E) - C(10E) - C(11E)
O(6E) - C(10E) - C(11E)
                            110.8(3)
                            112.4(3)
C(12E) - C(10E) - C(11E)
C(10E) - C(11E) - H(11M)
                            109.5
                            109.5
C(10E) - C(11E) - H(11N)
H(11M) - C(11E) - H(11N)
                            109.5
C(10E) - C(11E) - H(110)
                            109.5
                            109.5
H(11M) - C(11E) - H(110)
                            109.5
H(11N) - C(11E) - H(110)
C(10E) - C(12E) - H(12M)
                            109.5
                            109.5
C(10E) - C(12E) - H(12N)
H(12M)-C(12E)-H(12N)
                            109.5
                            109.5
C(10E) - C(12E) - H(120)
H(12M)-C(12E)-H(12O)
                            109.5
H(12N)-C(12E)-H(12O)
                            109.5
C(14E) - C(13E) - C(18E)
                            121.1(3)
C(14E) - C(13E) - S(1E)
                            120.8(2)
C(18E) - C(13E) - S(1E)
                            118.0(2)
                            119.8(3)
C(13E) - C(14E) - C(15E)
C(13E) - C(14E) - H(14E)
                            120.1
C(15E) - C(14E) - H(14E)
                            120.1
                            119.2(3)
C(14E) - C(15E) - C(16E)
                            120.4
C(14E) - C(15E) - H(15E)
C(16E) - C(15E) - H(15E)
                            120.4
                            120.0(3)
C(17E) - C(16E) - C(15E)
                            117.0(3)
C(17E) - C(16E) - N(1E)
C(15E) - C(16E) - N(1E)
                            122.9(3)
                            120.7(3)
C(18E) - C(17E) - C(16E)
                            119.6
C(18E) - C(17E) - H(17E)
                            119.6
C(16E) - C(17E) - H(17E)
C(17E) - C(18E) - C(13E)
                            119.2(3)
C(17E) - C(18E) - H(18E)
                            120.4
                            120.4
C(13E) - C(18E) - H(18E)
O(9E)-C(19E)-N(1E)
                            122.5(3)
O(9E) - C(19E) - C(20E)
                            122.6(3)
                            114.9(3)
N(1E) - C(19E) - C(20E)
C(19E) - C(20E) - H(20M)
                            109.5
C(19E)-C(20E)-H(20N)
                            109.5
                            109.5
H(20M)-C(20E)-H(20N)
C(19E) - C(20E) - H(200)
                            109.5
H(20M)-C(20E)-H(200)
                            109.5
                            109.5
H(20N) - C(20E) - H(200)
C(1E) - O(1E) - C(4E)
                            109.2(2)
C(1E) - O(2E) - C(7E)
                            110.1(2)
                            107.9(2)
C(2E) - O(3E) - C(7E)
                            118.72(18)
C(3E) - O(4E) - S(1E)
C(10E) - O(5E) - C(5E)
                            107.3(2)
                            106.7(2)
C(10E) - O(6E) - C(6E)
                            126.7(3)
C(19E) - N(1E) - C(16E)
C(19E) - N(1E) - H(1E1)
                            116.7
C(16E) - N(1E) - H(1E1)
                            116.7
                            120.64(15)
O(7E) - S(1E) - O(8E)
                            109.73(13)
O(7E) - S(1E) - O(4E)
```

| O(8E) - S(1E) - O(4E)   | 102.70(13 |
|-------------------------|-----------|
| O(7E) - S(1E) - C(13E)  | 109.74(14 |
| O(8E)-S(1E)-C(13E)      | 108.79(15 |
|                         | 103.80(13 |
| O(4E) - S(1E) - C(13E)  |           |
| O(2F) - C(1F) - O(1F)   | 111.9(2)  |
| O(2F) - C(1F) - C(2F)   | 105.8(2)  |
| O(1F) - C(1F) - C(2F)   | 107.5(2)  |
| O(2F)-C(1F)-H(1F)       | 110.5     |
| O(1F)-C(1F)-H(1F)       | 110.5     |
| C(2F)-C(1F)-H(1F)       | 110.5     |
| O(3F) - C(2F) - C(1F)   | 103.3(2)  |
|                         |           |
| O(3F)-C(2F)-C(3F)       | 108.1(2)  |
| C(1F)-C(2F)-C(3F)       | 102.8(2)  |
| O(3F) - C(2F) - H(2F)   | 113.8     |
| C(1F)-C(2F)-H(2F)       | 113.8     |
| C(3F)-C(2F)-H(2F)       | 113.8     |
| O(4F)-C(3F)-C(2F)       | 113.6(2)  |
| O(4F)-C(3F)-C(4F)       | 109.6(2)  |
| C(2F)-C(3F)-C(4F)       | 101.4(2)  |
|                         | 110.6     |
| O(4F)-C(3F)-H(3F)       |           |
| C(2F) - C(3F) - H(3F)   | 110.6     |
| C(4F)-C(3F)-H(3F)       | 110.6     |
| O(1F) - C(4F) - C(5F)   | 108.1(3)  |
| O(1F) - C(4F) - C(3F)   | 101.4(2)  |
| C(5F) - C(4F) - C(3F)   | 118.7(3)  |
| O(1F)-C(4F)-H(4F)       | 109.4     |
| C(5F)-C(4F)-H(4F)       | 109.4     |
|                         | 109.4     |
| C(3F)-C(4F)-H(4F)       |           |
| O(5F) - C(5F) - C(4F)   | 110.4(3)  |
| O(5F) - C(5F) - C(6F)   | 104.5(3)  |
| C(4F)-C(5F)-C(6F)       | 113.7(3)  |
| O(5F) - C(5F) - H(5F)   | 109.3     |
| C(4F) - C(5F) - H(5F)   | 109.3     |
| C(6F)-C(5F)-H(5F)       | 109.3     |
| O(6F)-C(6F)-C(5F)       | 103.9(3)  |
| O(6F)-C(6F)-H(6F1)      | 111.0     |
|                         |           |
| C(5F) - C(6F) - H(6F1)  | 111.0     |
| O(6F) - C(6F) - H(6F2)  | 111.0     |
| C(5F)-C(6F)-H(6F2)      | 111.0     |
| H(6F1)-C(6F)-H(6F2)     | 109.0     |
| O(3F) - C(7F) - O(2F)   | 105.5(2)  |
| O(3F)-C(7F)-C(8F)       | 108.7(3)  |
| O(2F)-C(7F)-C(8F)       | 109.0(3)  |
| O(3F)-C(7F)-C(9F)       | 111.0(3)  |
| O(2F)-C(7F)-C(9F)       | 108.6(3)  |
|                         |           |
| C(8F)-C(7F)-C(9F)       | 113.7(3)  |
| C(7F)-C(8F)-H(8F1)      | 109.5     |
| C(7F)-C(8F)-H(8F2)      | 109.5     |
| H(8F1)-C(8F)-H(8F2)     | 109.5     |
| C(7F)-C(8F)-H(8F3)      | 109.5     |
| H(8F1)-C(8F)-H(8F3)     | 109.5     |
| H(8F2)-C(8F)-H(8F3)     | 109.5     |
| C(7F) - C(9F) - H(9F1)  | 109.5     |
|                         |           |
| C(7F)-C(9F)-H(9F2)      | 109.5     |
| H(9F1) - C(9F) - H(9F2) | 109.5     |
| C(7F)-C(9F)-H(9F3)      | 109.5     |
| H(9F1)-C(9F)-H(9F3)     | 109.5     |
|                         |           |

```
H(9F2)-C(9F)-H(9F3)
                            109.5
O(6F) - C(10F) - O(5F)
                            105.1(3)
O(6F)-C(10F)-C(12F)
                            109.6(3)
                            107.7(3)
O(5F) - C(10F) - C(12F)
O(6F) - C(10F) - C(11F)
                            111.3(3)
O(5F) - C(10F) - C(11F)
                            110.0(3)
C(12F)-C(10F)-C(11F)
                            112.7(3)
                            109.5
C(10F) - C(11F) - H(11P)
                            109.5
C(10F) - C(11F) - H(11Q)
                            109.5
H(11P) - C(11F) - H(11Q)
                            109.5
C(10F)-C(11F)-H(11R)
                            109.5
H(11P) - C(11F) - H(11R)
H(110)-C(11F)-H(11R)
                            109.5
C(10F) - C(12F) - H(12P)
                            109.5
C(10F)-C(12F)-H(12Q)
                            109.5
H(12P)-C(12F)-H(12Q)
                            109.5
C(10F) - C(12F) - H(12R)
                            109.5
H(12P)-C(12F)-H(12R)
                            109.5
                            109.5
H(12Q)-C(12F)-H(12R)
                            121.3(3)
C(14F)-C(13F)-C(18F)
                            121.1(2)
C(14F)-C(13F)-S(1F)
C(18F)-C(13F)-S(1F)
                            117.4(2)
C(13F)-C(14F)-C(15F)
                            119.5(3)
C(13F) - C(14F) - H(14F)
                            120.3
C(15F)-C(14F)-H(14F)
                            120.3
                            119.5(3)
C(14F)-C(15F)-C(16F)
                            120.3
C(14F)-C(15F)-H(15F)
C(16F) - C(15F) - H(15F)
                            120.3
C(17F)-C(16F)-C(15F)
                            120.1(3)
                            115.8(3)
C(17F)-C(16F)-N(1F)
C(15F) - C(16F) - N(1F)
                            124.0(3)
C(18F)-C(17F)-C(16F)
                            120.2(3)
                            119.9
C(18F) - C(17F) - H(17F)
                            119.9
C(16F)-C(17F)-H(17F)
C(17F)-C(18F)-C(13F)
                            119.4(3)
C(17F)-C(18F)-H(18F)
                            120.3
                            120.3
C(13F)-C(18F)-H(18F)
                            121.4(3)
O(9F) - C(19F) - N(1F)
                            124.5(3)
O(9F) - C(19F) - C(20F)
                            114.1(3)
N(1F) - C(19F) - C(20F)
                            109.5
C(19F)-C(20F)-H(20P)
                            109.5
C(19F)-C(20F)-H(20Q)
                            109.5
H(20P)-C(20F)-H(20Q)
                            109.5
C(19F)-C(20F)-H(20R)
H(20P)-C(20F)-H(20R)
                            109.5
H(20Q)-C(20F)-H(20R)
                            109.5
C(1F) - O(1F) - C(4F)
                            108.2(2)
C(1F) - O(2F) - C(7F)
                            109.8(2)
C(7F) - O(3F) - C(2F)
                            107.8(2)
                            118.93(18)
C(3F) - O(4F) - S(1F)
C(10F) - O(5F) - C(5F)
                            107.6(3)
                            105.7(2)
C(10F) - O(6F) - C(6F)
                            127.5(3)
C(19F) - N(1F) - C(16F)
C(19F)-N(1F)-H(1F1)
                            116.2
                            116.2
C(16F)-N(1F)-H(1F1)
                            120.23(15)
O(7F) - S(1F) - O(8F)
                            109.76(13)
O(7F) - S(1F) - O(4F)
```

| O(8F)-S(1F)-O(4F)  | 103.19(13) |
|--------------------|------------|
| O(7F)-S(1F)-C(13F) | 108.44(15) |
| O(8F)-S(1F)-C(13F) | 108.97(15) |
| O(4F)-S(1F)-C(13F) | 105.21(14) |

Table 4. Anisotropic displacement parameters [Å $^2$  × 10 $^3$ ] for 06mz009m. The anisotropic displacement factor exponent takes the form: -2  $\pi$ 2 [(h a\*) $^2$  U11 + ... + 2 h k a\* b\* U12]

((1)

| Stalini<br>Crafib) | U11   | U22   | U33   | U23    | U13    | U12    |
|--------------------|-------|-------|-------|--------|--------|--------|
| 0(22)              | 36(1) | 19(1) | 28(1) | 5(1)   | 0(1)   | -8(1)  |
| C(22)              | 28(2) | 27(2) | 26(2) | 1(1)   | 3(1)   | -6(1)  |
| 0(21)              | 35(1) | 30(1) | 25(1) | 1(1)   | 3(1)   | -11(1) |
| C(21)              | 30(2) | 36(2) | 25(2) | 0(1)   | 2(1)   | -10(2) |
| C(1A)              | 18(1) | 14(1) | 33(2) | -5(1)  | 7(1)   | -1(1)  |
| C(2A)              | 19(1) | 21(2) | 28(2) | -4(1)  | 10(1)  | -4(1)  |
| C(3A)              | 15(1) | 17(1) | 27(2) | -7(1)  | 9(1)   | -1(1)  |
| C(4A)              | 15(1) | 14(1) | 26(2) | -8(1)  | 8(1)   | -4(1)  |
| C(5A)              | 21(1) | 18(1) | 26(2) | -6(1)  | 11(1)  | -4(1)  |
| C(5E)              | 20(1) | 16(1) | 25(1) | -4(1)  | 7(1)   | -4(1)  |
| C(6A)              | 26(2) | 22(2) | 28(2) | -3(1)  | 13(1)  | -3(1)  |
| C(7A)              | 31(2) | 26(2) | 25(2) | -4(1)  | 3(1)   | 1(1)   |
| C(8A)              | 39(2) | 30(2) | 67(3) | -10(2) | -18(2) | -4(2)  |
| C(9A)              | 61(3) | 57(3) | 32(2) | 12(2)  | 19(2)  | 28(2)  |
| C(10A)             | 19(1) | 26(2) | 23(2) | -1(1)  | 9(1)   | 3(1)   |
| C(11A)             | 25(2) | 41(2) | 23(2) | -3(1)  | 11(1)  | 4(1)   |
| C(12A)             | 22(2) | 29(2) | 30(2) | -8(1)  | 10(1)  | -6(1)  |
| C(13A)             | 12(1) | 13(1) | 24(1) | -6(1)  | 6(1)   | -3(1)  |
| C(14A)             | 20(1) | 14(1) | 27(2) | 2(1)   | 10(1)  | -2(1)  |
| C(15A)             | 19(1) | 16(1) | 25(1) | 4(1)   | 8(1)   | 2(1)   |
| C(16A)             | 14(1) | 16(1) | 25(1) | -4(1)  | 9(1)   | -1(1)  |
| C(17A)             | 16(1) | 19(1) | 23(1) | -1(1)  | 8(1)   | -5(1)  |
| C(18A)             | 17(1) | 18(1) | 21(1) | 1(1)   | 9(1)   | 0(1)   |
| C(19A)             | 19(1) | 21(2) | 31(2) | 4(1)   | 3(1)   | -6(1)  |
| C(20A)             | 24(2) | 26(2) | 35(2) | 6(1)   | -3(1)  | -10(1) |
| )(1A)              | 20(1) | 20(1) | 26(1) | -10(1) | 6(1)   | 3(1)   |
| )(2A)              | 18(1) | 33(1) | 25(1) | -6(1)  | 4(1)   | -1(1)  |
| )(3A)              | 26(1) | 22(1) | 25(1) | -7(1)  | 3(1)   | 1(1)   |
| )(4A)              | 14(1) | 19(1) | 27(1) | -6(1)  | 9(1)   | -3(1)  |
| )(5A)              | 23(1) | 17(1) | 25(1) | -5(1)  | 4(1)   | 1(1)   |
| D(6D)              | 19(1) | 36(1) | 29(1) | 2(1)   | 10(1)  | 0(1)   |
| )(6A)              | 23(1) | 21(1) | 33(1) | -5(1)  | 14(1)  | -1(1)  |
| )(7A)              | 16(1) | 44(2) | 22(1) | -7(1)  | 8(1)   | 0(1)   |
| D(8D)              | 23(1) | 39(2) | 44(2) | 19(1)  | 14(1)  | 9(1)   |
| )(8C)              | 23(1) | 35(1) | 28(1) | -3(1)  | 8(1)   | -11(1) |
| O(8A)              | 21(1) | 25(1) | 36(1) | -14(1) | 13(1)  | -7(1)  |
| O(9A)              | 34(1) | 17(1) | 37(1) | 3(1)   | -10(1) | -5(1)  |
| N(1A)              | 16(1) | 15(1) | 26(1) | 2(1)   | 4(1)   | 1(1)   |
| S(1A)              | 14(1) | 20(1) | 22(1) | -6(1)  | 7(1)   | -3(1)  |

| C(1B)  | 19(1)          | 36(2)  | 23(2)            | -3(1)          | 6(1)  | -6(1)          |
|--------|----------------|--------|------------------|----------------|-------|----------------|
| C(2B)  | 17(1)          | 35(2)  | 21(1)            | -3(1)          | 5(1)  | -6(1)          |
| C(3B)  | 15(1)          | 34(2)  | 21(1)            | 1(1)           | 4(1)  | -1(1)          |
| C(4B)  | 18(1)          | 35(2)  | 24(2)            | 0(1)           | 7(1)  | -5(1)          |
| C(5B)  | 29(2)          | 36(2)  | 21(2)            | -2(1)          | 11(1) | -8(1)          |
| C(6B)  | 41(2)          | 38(2)  | 23(2)            | -6(1)          | 10(2) | -11(2)         |
| C(7B)  | 19(2)          | 45(2)  | 30(2)            | 0(2)           | 1(1)  | -7(2)          |
| C(8B)  | 33(2)          | 85(4)  | 28(2)            | -12(2)         | 9(2)  | -19(2)         |
| C(9B)  | 28(2)          | 53 (3) | 65(3)            | 18(2)          | -8(2) | -2(2)          |
| C(10B) | 25(2)          | 42(2)  | 20(2)            | -7(1)          | 9(1)  | -7(1)          |
| C(11B) | 31(2)          | 87(4)  | 26(2)            | 0(2)           | 12(2) | 10(2)          |
| C(12B) | 27(2)          | 55(3)  | 30(2)            | -10(2)         | 12(1) | -4(2)          |
| C(13B) | 14(1)          | 36(2)  | 23(2)            | 3(1)           | 7(1)  | -4(1)          |
| C(14B) | 16(1)          | 33(2)  | 36(2)            | 6(2)           | 6(1)  | 2(1)           |
| C(15B) | 18(1)          | 22(2)  | 34(2)            | -3(1)          | 10(1) | -2(1)          |
| C(16B) | 17(1)          | 30(2)  | 21(1)            | 4(1)           | 11(1) | 1(1)           |
| C(17B) | 20(1)          | 27(2)  | 24(2)            | -2(1)          | 9(1)  | 2(1)           |
| C(18B) | 22(2)          | 29(2)  | 22(1)            | -1(1)          | 10(1) | -3(1)          |
| C(19B) | 21(2)          | 24(2)  | 28(2)            | 2(1)           | 7(1)  | 2(1)           |
| C(20B) | 22(2)          | 33(2)  | 32(2)            | -4(2)          | 6(1)  | 2(1)           |
| O(1B)  | 23(1)          | 42(2)  | 23(1)            | -5(1)          | 8(1)  | -11(1)         |
| O(2B)  | 14(1)          | 47(2)  | 28(1)            | -5(1)          | 5(1)  | -7(1)          |
| O(3B)  | 20(1)          | 46(2)  | 26(1)            | 7(1)           | -1(1) | -11(1)         |
| O(4B)  | 15(1)          | 36(1)  | 26(1)            | 3(1)           | 8(1)  | -3(1)          |
| O(5B)  | 33(1)          | 34(1)  | 21(1)            | 0(1)           | -1(1) | -6(1)          |
| O(6B)  | 33(1)          | 42(2)  | 47(2)            | -2(1)          | 10(1) | -11(1)         |
| O(7B)  | 24(1)          | 39(1)  | 27(1)            | -4(1)          | 10(1) | -4(1)          |
| O(8B)  | 27(1)          | 52(2)  | 35(1)            | 10(1)          | 11(1) | 0(1)           |
| O(9B)  | 45(2)          | 19(1)  | 42(2)            | 0(1)           | -4(1) | 5(1)           |
| N(1B)  | 18(1)          | 21(1)  | 26(1)            | -1(1)          | 8(1)  | 2(1)           |
| S(1B)  | 17(1)          | 34(1)  | 25(1)            | 5(1)           | 7(1)  | -2(1)          |
| C(1C)  | 17(1)          | 34(2)  | 31(2)            | -9(2)          | 5(1)  | -1(1)          |
| C(2C)  | 14(1)          | 28(2)  | 27(2)            | -9(1)          | 8(1)  | -1(1)          |
| C(3C)  | 15(1)          | 28(2)  | 23(1)            | -5(1)          | 5(1)  | 2(1)           |
| C(4C)  | 14(1)          | 34(2)  | 24(2)            | -9(1)          | 6(1)  | -3(1)          |
| C(5C)  | 21(2)          | 37(2)  | 24(2)            | -2(1)          | 10(1) | -3(1)          |
| C(6C)  | 28(2)          | 38(2)  | 24(2)            | -9(1)          | 11(1) | -3(1)          |
| C(7C)  | 14(1)          | 45(2)  | 26(2)            | -12(2)         | 3(1)  | -4(1)          |
| C(8C)  | 19(2)          | 44(2)  | 51(2)            | -3(2)          | 1(2)  | 3(2)           |
| C(9C)  | 32(2)          | 60(3)  | 29(2)            | -21(2)         | 10(2) | -16(2)         |
| C(10C) | 21(2)          | 40(2)  | 19(1)            | -1(1)          | 8(1)  | -4(1)          |
| C(11C) | 27(2)          | 63(3)  | 22(2)            | -1(2)          | 11(1) | 5(2)           |
| C(12C) | 21(2)          | 51(2)  | 26 (2)           | 3(2)           | 9(1)  | 4(2)           |
| C(12C) | 12(1)          | 33(2)  | 17(1)            | -1(1)          | 3(1)  | -5(1)          |
| C(13C) | 19(1)          | 26 (2) | 18(1)            | -3(1)          | 7(1)  | -2(1)          |
|        |                | 22(2)  | 23(1)            | -2(1)          | 9(1)  | 1(1)           |
| C(15C) | 17(1)<br>16(1) | 29(2)  | 19(1)            | -1(1)          | 6(1)  | -3(1)          |
| C(16C) |                |        | 18(1)            | -5(1)          | 5(1)  | -1(1)          |
| C(17C) | 23 (2)         | 24(2)  | 21(2)            | 1(1)           | 8(1)  | 0(1)           |
| C(18C) | 21(1)          | 31(2)  |                  |                | 5(1)  | -4(1)          |
| C(19C) | 16(1)          | 33(2)  | 21 (1)<br>26 (2) | -1(1)<br>-1(1) | -1(1) | 1(1)           |
| C(20C) | 21(2)          | 30(2)  | 28(1)            | -1(1)<br>-6(1) | 7(1)  | -5(1)          |
| O(1C)  | 19(1)          | 39(1)  | 30(1)            | -4(1)          | 5(1)  | -7(1)          |
| O(2C)  | 16(1)          | 46 (2) |                  | -10(1)         | 3(1)  | -2(1)          |
| O(3C)  | 15(1)          | 33(1)  | 24(1)            |                | 7(1)  | -5(1)          |
| O(4C)  | 12(1)          | 29(1)  | 25(1)            | -6(1)          | -1(1) | -3(1)<br>-1(1) |
| O(5C)  | 24(1)          | 35(1)  | 24(1)            | -1(1)<br>5(1)  |       |                |
| O(6C)  | 26(1)          | 37(1)  | 29(1)            | -5(1)          | 13(1) | -8(1)          |

| O(7C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17(1)  | 40(1)  | 19(1)  | -7(1)  | 3(1)  | -3(1)  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|-------|--------|
| N(1C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17(1)  | 31(2)  | 19(1)  | -4(1)  | 1(1)  | -7(1)  |
| S(1C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14(1)  | 32(1)  | 18(1)  | -3(1)  | 5(1)  | -3(1)  |
| C(1D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19(2)  | 43(2)  | 32(2)  | -16(2) | 8(1)  | -7(1)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |        |        | 7(1)  |        |
| C(2D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18(1)  | 38(2)  | 26(2)  | -8(1)  |       | -3(1)  |
| C(3D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16(1)  | 32(2)  | 22(1)  | -3(1)  | 6(1)  | 1(1)   |
| C(4D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12(1)  | 41(2)  | 22(2)  | -2(1)  | 6(1)  | -1(1)  |
| C(5D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18(1)  | 37(2)  | 20(1)  | 1(1)   | 8(1)  | 2(1)   |
| C(6D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20(2)  | 39(2)  | 22(2)  | -2(1)  | 6(1)  | 1(1)   |
| C(7D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20(2)  | 75(3)  | 22(2)  | -5(2)  | 5(1)  | -13(2) |
| C(8D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28(2)  | 82 (4) | 53(3)  | 17(3)  | -5(2) | 3(2)   |
| C(9D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39(2)  | 120(5) | 31(2)  | -33(3) | 13(2) | -20(3) |
| C(10D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18(1)  | 36(2)  | 22(2)  | 2(1)   | 9(1)  | 4(1)   |
| C(11D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23(2)  | 41(2)  | 21(2)  | 1(1)   | 8(1)  | 2(1)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |        | 9(2)   | 12(1) | 6(2)   |
| C(12D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21(2)  | 46(2)  | 32(2)  |        |       |        |
| C(13D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11(1)  | 34(2)  | 24(2)  | 6(1)   | 6(1)  | -1(1)  |
| C(14D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17(1)  | 29(2)  | 24(2)  | 1(1)   | 8(1)  | -2(1)  |
| C(15D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14(1)  | 22(2)  | 29(2)  | 5(1)   | 8(1)  | 3(1)   |
| C(16D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15(1)  | 25(2)  | 25(2)  | 5(1)   | 7(1)  | 0(1)   |
| C(17D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18(1)  | 29(2)  | 28(2)  | 0(1)   | 10(1) | 2(1)   |
| C(18D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17(1)  | 28(2)  | 34(2)  | 8(1)   | 12(1) | 6(1)   |
| C(19D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17(1)  | 27(2)  | 26(2)  | 2(1)   | 4(1)  | 2(1)   |
| C(20D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24(2)  | 23(2)  | 37(2)  | -7(1)  | -2(1) | 5(1)   |
| O(1D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21(1)  | 41(1)  | 24(1)  | -5(1)  | 7(1)  | -5(1)  |
| O(1D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17(1)  | 54(2)  | 28(1)  | -5(1)  | 6(1)  | -5(1)  |
| Control of the Contro |        |        |        | 0(1)   | 3(1)  | -8(1)  |
| O(3D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21(1)  | 62(2)  | 24(1)  |        |       |        |
| O(4D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13(1)  | 37(1)  | 25(1)  | 0(1)   | 9(1)  | 0(1)   |
| O(5D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23(1)  | 34(1)  | 22(1)  | 1(1)   | 3(1)  | 3(1)   |
| O(7D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18(1)  | 55(2)  | 23(1)  | 2(1)   | 7(1)  | 1(1)   |
| O(9D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31(1)  | 17(1)  | 39(1)  | -1(1)  | -4(1) | 1(1)   |
| O(10D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26(1)  | 29(1)  | 31(1)  | -4(1)  | 1(1)  | -2(1)  |
| N(1D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16(1)  | 20(1)  | 30(1)  | 0(1)   | 6(1)  | -3(1)  |
| S(1D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14(1)  | 38(1)  | 24(1)  | 5(1)   | 8(1)  | 3(1)   |
| C(1E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15(1)  | 21(2)  | 30(2)  | -1(1)  | 5(1)  | 0(1)   |
| C(2E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16(1)  | 26(2)  | 27(2)  | 1(1)   | 9(1)  | -2(1)  |
| C(3E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14(1)  | 18(1)  | 26(1)  | -1(1)  | 4(1)  | 0(1)   |
| C(4E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 16(1)  | 25(1)  | -1(1)  | 5(1)  | 0(1)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14(1)  |        | 25(2)  | 0(1)   | 7(1)  | -3(1)  |
| C(6E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24(2)  | 18(1)  |        |        | 3(1)  | -2(1)  |
| C(7E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20(2)  | 30(2)  | 23 (2) | 2(1)   |       |        |
| C(8E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26(2)  | 35(2)  | 42(2)  | -6(2)  | 2(2)  | -9(2)  |
| C(9E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37(2)  | 64(3)  | 33(2)  | 20(2)  | 12(2) | 11(2)  |
| C(10E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18(1)  | 20(1)  | 20(1)  | 1(1)   | 7(1)  | 4(1)   |
| C(11E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34(2)  | 63(3)  | 30(2)  | -8(2)  | 19(2) | -14(2) |
| C(12E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21(2)  | 26(2)  | 31(2)  | 0(1)   | 10(1) | -6(1)  |
| C(13E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11(1)  | 18(1)  | 24(1)  | -3(1)  | 6(1)  | 0(1)   |
| C(14E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17(1)  | 14(1)  | 26(1)  | 2(1)   | 9(1)  | -3(1)  |
| C(15E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14(1)  | 19(1)  | 24(1)  | 1(1)   | 8(1)  | -3(1)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        | 24(1)  | -2(1)  | 8(1)  | 1(1)   |
| C(16E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14(1)  | 12(1)  |        |        |       | 2(1)   |
| C(17E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18(1)  | 14(1)  | 33(2)  | 4(1)   | 10(1) |        |
| C(18E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15(1)  | 13(1)  | 38(2)  | 1(1)   | 10(1) | -1(1)  |
| C(19E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14(1)  | 20(1)  | 26(2)  | 0(1)   | 6(1)  | 3(1)   |
| C(20E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17(1)  | 27(2)  | 31(2)  | 2(1)   | 4(1)  | 1(1)   |
| O(1E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22(1)  | 19(1)  | 28(1)  | 0(1)   | 6(1)  | 7(1)   |
| O(2E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14(1)  | 36(1)  | 31(1)  | -3(1)  | 3(1)  | 3(1)   |
| O(3E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18(1)  | 28(1)  | 25(1)  | -4(1)  | 3(1)  | 2(1)   |
| O(4E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14(1)  | 17(1)  | 31(1)  | -4(1)  | 8(1)  | -3(1)  |
| O(5E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27(1)  | 13(1)  | 28(1)  | 0(1)   | -3(1) | -1(1)  |
| 0 (01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2. (1) | 10 (1) | ,_ ,   |        |       |        |

| O(6E)  | 19(1) | 17(1) | 37(1) | 2(1)   | 8(1)  | 1(1)  |
|--------|-------|-------|-------|--------|-------|-------|
| O(7E)  | 20(1) | 30(1) | 26(1) | -3(1)  | 7(1)  | -2(1) |
| O(8E)  | 23(1) | 24(1) | 41(1) | -14(1) | 12(1) | -5(1) |
| O(9E)  | 26(1) | 14(1) | 36(1) | -1(1)  | -4(1) | -1(1) |
| N(1E)  | 17(1) | 13(1) | 25(1) | 3(1)   | 6(1)  | 1(1)  |
| S(1E)  | 14(1) | 19(1) | 25(1) | -5(1)  | 7(1)  | -3(1) |
| C(1F)  | 14(1) | 17(1) | 31(2) | -1(1)  | 6(1)  | 2(1)  |
| C(2F)  | 12(1) | 17(1) | 27(2) | 1(1)   | 4(1)  | 0(1)  |
| C(3F)  | 14(1) | 10(1) | 30(2) | 0(1)   | 6(1)  | 5(1)  |
| C(4F)  | 19(1) | 14(1) | 30(2) | -1(1)  | 8(1)  | 0(1)  |
| C(5F)  | 24(2) | 19(2) | 33(2) | -1(1)  | 11(1) | 1(1)  |
| C(6F)  | 38(2) | 22(2) | 34(2) | 4(1)   | 15(2) | 5(1)  |
| C(7F)  | 14(1) | 25(2) | 28(2) | 2(1)   | 4(1)  | 3(1)  |
| C(8F)  | 19(2) | 39(2) | 50(2) | -3(2)  | 2(2)  | -9(2) |
| C(9F)  | 31(2) | 51(2) | 35(2) | 12(2)  | 11(2) | 17(2) |
| C(10F) | 25(2) | 36(2) | 24(2) | 5(1)   | 10(1) | 7(1)  |
| C(11F) | 27(2) | 61(3) | 27(2) | 6(2)   | 12(1) | 9(2)  |
| C(12F) | 29(2) | 49(2) | 31(2) | 4(2)   | 13(2) | 0(2)  |
| C(13F) | 13(1) | 18(1) | 26(2) | 1(1)   | 4(1)  | 3(1)  |
| C(14F) | 21(1) | 12(1) | 27(2) | 2(1)   | 12(1) | 0(1)  |
| C(15F) | 19(1) | 14(1) | 28(2) | -6(1)  | 10(1) | -2(1) |
| C(16F) | 17(1) | 15(1) | 26(2) | -4(1)  | 9(1)  | 0(1)  |
| C(17F) | 19(1) | 18(1) | 33(2) | 4(1)   | 6(1)  | -1(1) |
| C(18F) | 16(1) | 16(1) | 38(2) | -1(1)  | 4(1)  | -1(1) |
| C(19F) | 22(2) | 22(2) | 25(2) | -8(1)  | 10(1) | -7(1) |
| C(20F) | 23(2) | 39(2) | 25(2) | -5(2)  | 4(1)  | -3(1) |
| O(1F)  | 22(1) | 17(1) | 31(1) | -1(1)  | 9(1)  | 8(1)  |
| O(2F)  | 13(1) | 28(1) | 34(1) | -3(1)  | 5(1)  | 4(1)  |
| O(3F)  | 16(1) | 20(1) | 26(1) | 0(1)   | 3(1)  | 3(1)  |
| O(3F)  | 17(1) | 14(1) | 35(1) | 2(1)   | 8(1)  | 1(1)  |
| O(5F)  | 27(1) | 20(1) | 29(1) | 1(1)   | 0(1)  | 4(1)  |
| O(6F)  | 31(1) | 27(1) | 37(1) | 7(1)   | 16(1) | 12(1) |
| O(7F)  | 19(1) | 25(1) | 28(1) | 1(1)   | 7(1)  | 5(1)  |
| O(8F)  | 26(1) | 10(1) | 44(1) | -7(1)  | 9(1)  | 2(1)  |
| O(9F)  | 36(1) | 24(1) | 32(1) | -1(1)  | 3(1)  | -4(1) |
| N(1F)  | 19(1) | 15(1) | 27(1) | 0(1)   | 7(1)  | 1(1)  |
| S(1F)  | 16(1) | 15(1) | 28(1) | 0(1)   | 6(1)  | 3(1)  |
| 5(11)  | 10(1) | 10(1) |       | 41) 7  |       |       |
| METRAL | 0704  |       | 1319  | -124   | - 37  |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |
|        |       |       |       |        |       |       |

Table 5. Hydrogen coordinates (x  $10^4$ ) and isotropic displacement parameters (Å $^2$  x  $10^3$ ) for 06mz009m.

| E13.281  | ×     | У    | Z.    | U(eq)    |
|----------|-------|------|-------|----------|
| BELADI : | 6871  | 2104 | _1141 | 39       |
| H(22)    | 9094  | 5966 | 8180  | 46       |
| H(22A)   | 7940  | 6315 | 7496  | 43       |
| H(22B)   | 8471  | 5753 | 7229  | 43       |
| H(22C)   | 8471  | 6693 | 7131  | 43       |
| H(21)    | 4028  | 4644 | 3292  | 48       |
| H(21A)   | 2841  | 4754 | 2571  | 48       |
| H(21B)   | 3529  | 4415 | 2336  | 48       |
| H(21C)   | 3287  | 5332 | 2246  | 48       |
| H(1A)    | 5727  | 4578 | -957  | 26       |
| H(2A)    | 6555  | 3763 | -1258 | 26       |
| H(3A)    | 7059  | 3400 | -249  | 23       |
| H(4A)    | 5548  | 2619 | -408  | 22       |
| H(5A)    | 5698  | 2985 | 592   | 25       |
| H(5E)    | 5726  | 6440 | 10376 | 24       |
| H(6A1)   | 6394  | 1898 | 1003  | 29       |
| H(6A2)   | 6506  | 1745 | 361   | 29       |
| H(8A1)   | 4386  | 2302 | -2235 | 81       |
| H(8A2)   | 3783  | 2952 | -2136 | 81       |
|          | 4300  | 2418 | -1585 | 81       |
| H(8A3)   |       | 4152 |       | 74       |
| H(9A1)   | 5448  |      | -2203 |          |
| H(9A2)   | 4508  | 4045 | -2527 | 74<br>74 |
| H(9A3)   | 5117  | 3401 | -2626 |          |
| H(11A)   | 6805  | 2825 | 1762  | 44       |
| H(11B)   | 7334  | 3610 | 1960  | 44       |
| H(11C)   | 7752  | 2756 | 2068  | 44       |
| H(12A)   | 8634  | 3288 | 1499  | 40       |
| H(12B)   | 8143  | 4094 | 1295  | 40       |
| H(12C)   | 8249  | 3493 | 802   | 40       |
| H(14A)   | 8376  | 1334 | 336   | 24       |
| H(15A)   | 9495  | 1573 | 1166  | 24       |
| H(17A)   | 9904  | 3621 | 407   | 22       |
| H(18A)   | 8764  | 3389 | -426  | 22       |
| H(20A)   | 11980 | 3517 | 2077  | 47       |
| H(20B)   | 11529 | 2880 | 2354  | 47       |
| H(20C)   | 11446 | 3806 | 2469  | 47       |
| H(1A1)   | 10701 | 2320 | 1576  | 23       |
| H(1B)    | 9384  | 5078 | 6036  | 31       |
| H(2B)    | 8575  | 4346 | 6425  | 30       |
| H(3B)    | 7949  | 3819 | 5471  | 29       |
| H(4B)    | 9441  | 3051 | 5553  | 31       |
| H(5B)    | 9130  | 3371 | 4513  | 34       |
| H(6B1)   | 8618  | 2153 | 4311  | 41       |
| H(6B2)   | 8313  | 2170 | 4883  | 41       |
| H(8B1)   | 9819  | 4784 | 7303  | 73       |
| H(8B2)   | 10768 | 4674 | 7541  | 73       |
| H(8B3)   | 10213 | 4087 | 7765  | 73       |
| H(9B1)   | 10754 | 2864 | 7365  | 82       |
| H(9B2)   | 11347 | 3437 | 7171  | 82       |
| H(9B2)   | 10740 | 2879 | 6684  | 82       |
|          |       |      | 3260  | 70       |
| H(11D)   | 7818  | 3984 | 3200  | 7.0      |

| 0.72422 | 7106  | 21.41 | 2052 | 70 |
|---------|-------|-------|------|----|
| H(11E)  | 7406  | 3141  | 3052 | 70 |
| H(11F)  | 8317  | 3186  | 3476 | 70 |
| H(12D)  | 6529  | 3701  | 4156 | 55 |
| H(12E)  | 6319  | 3484  | 3461 | 55 |
| H(12F)  | 6710  | 4325  | 3705 | 55 |
| H(14B)  | 6871  | 1506  | 5234 | 34 |
| H(15B)  | 5770  | 1456  | 4359 | 29 |
| H(17B)  | 5179  | 3717  | 4640 | 28 |
| H(18B)  | 6308  | 3791  | 5506 | 28 |
| H(20D)  | 3016  | 2736  | 3164 | 44 |
| H(20E)  | 3619  | 2161  | 2983 | 44 |
| H(20F)  | 3457  | 3038  | 2710 | 44 |
| H(1B1)  | 4579  | 1967  | 3792 | 26 |
| H(1C)   | 9279  | 8260  | 5815 | 33 |
| H(2C)   | 8548  | 7417  | 6224 | 28 |
|         |       | 7094  | 5202 | 26 |
| H(3C)   | 7947  | 6251  | 5288 | 29 |
| H(4C)   | 9410  |       |      | 32 |
| H(5C)   | 9175  | 6648  | 4273 |    |
| H(6C1)  | 8520  | 5518  | 3933 | 35 |
| H(6C2)  | 8355  | 5425  | 4563 | 35 |
| H(8C1)  | 10801 | 6160  | 6376 | 61 |
| H(8C2)  | 10781 | 5985  | 7038 | 61 |
| H(8C3)  | 11339 | 6675  | 6930 | 61 |
| H(9C1)  | 10659 | 7692  | 7406 | 61 |
| H(9C2)  | 10101 | 7009  | 7525 | 61 |
| H(9C3)  | 9708  | 7776  | 7143 | 61 |
| H(11G)  | 8178  | 6501  | 3174 | 55 |
| H(11H)  | 7697  | 7315  | 2985 | 55 |
| H(11I)  | 7239  | 6485  | 2820 | 55 |
| H(12G)  | 6286  | 6940  | 3371 | 48 |
| H(12H)  | 6765  | 7758  | 3542 | 48 |
| H(12I)  | 6652  | 7203  | 4058 | 48 |
|         | 6277  | 7185  | 5337 | 25 |
| H(14C)  |       | 7421  | 4510 | 24 |
| H(15C)  | 5131  |       | 3827 | 27 |
| H(17C)  | 5395  | 5263  | 4650 | 29 |
| H(18C)  | 6543  | 5030  |      |    |
| H(20G)  | 3127  | 7562  | 2717 | 41 |
| H(20H)  | 3243  | 6621  | 2717 | 41 |
| H(20I)  | 3709  | 7182  | 2395 | 41 |
| H(1C1)  | 4238  | 6065  | 3396 | 28 |
| H(1D)   | 9393  | 11632 | 6069 | 38 |
| H(2D)   | 8526  | 10857 | 6365 | 33 |
| H(3D)   | 7994  | 10425 | 5372 | 28 |
| H(4D)   | 9509  | 9658  | 5519 | 30 |
| H(5D)   | 9320  | 10032 | 4506 | 30 |
| H(6D1)  | 8676  | 8906  | 4125 | 33 |
| H(6D2)  | 8564  | 8762  | 4768 | 33 |
| H(8D1)  | 10729 | 9411  | 6701 | 89 |
| H(8D2)  | 10639 | 9342  | 7352 | 89 |
| H(8D3)  | 11278 | 9941  | 7241 | 89 |
| H(9D1)  | 10642 | 11132 | 7599 | 95 |
|         |       | 10543 | 7739 | 95 |
| H(9D2)  | 10017 |       | 7291 | 95 |
| H(9D3)  | 9704  | 11274 |      | 42 |
| H(11J)  | 8221  | 9829  | 3352 |    |
| H(11K)  | 7670  | 10599 | 3155 | 42 |
| H(11L)  | 7276  | 9735  | 3046 | 42 |
| H(12J)  | 6374  | 10230 | 3619 | 49 |
|         |       |       |      |    |

| H(12K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6842         | 11051        | 3805           | 49 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|----------------|----|
| H(12L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6761         | 10459        | 4312           | 49 |
| H(14D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6184         | 10273        | 5617           | 28 |
| H(15D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5038         | 10383        | 4774           | 26 |
| H(17D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5778         | 8506         | 4015           | 30 |
| H(18D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6916         | 8405         | 4855           | 30 |
| H(20J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3049         | 10220        | 3061           | 46 |
| H(20K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3461         | 9456         | 2884           | 46 |
| H(20L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3585         | 10312        | 2634           | 46 |
| H(1D1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4395         | 9025         | 3649           | 27 |
| H(1E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5616         | 7998         | 8793           | 27 |
| H(2E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6400         |              | 8442           |    |
| H(3E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6984         | 6813         | 9456           | 24 |
| H(4E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5486         | 6040         | 9358           | 23 |
| H(6E1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6230         | 5255         | 10694          | 27 |
| H(6E1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6452         | 5138         |                |    |
| H(8E1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4203         | 5619         | 7665           | 55 |
| H(8E2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3620         |              |                | 55 |
| 100 Marity Co. 110 Co. 110 Marity Co | 4231         | 5791         |                | 55 |
| H(8E3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5097         |              |                | 66 |
| H(9E1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 7282         |                | 66 |
| H(9E2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 6675         |                | 66 |
| H(9E3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 7025         |                | 60 |
| H(11M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7158<br>7579 |              |                | 60 |
| H(11N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |                | 60 |
| H(110)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 6225<br>6695 | 11482<br>10675 | 39 |
| H(12M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8314         |              |                | 39 |
| H(12N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8598         | 6438         | 11366          |    |
| H(120)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |                |    |
| H(14E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8795         | 6682         | 9339           | 22 |
| H(15E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 6758         |                | 22 |
| H(17E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9214         | 4754         | 10835          | 25 |
| H(18E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8100         | 4673         | 9979           | 26 |
| H(20M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11968        | 6113         | 11813          | 39 |
| H(20N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11409        | 5649         | 12115          | 39 |
| H(200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11589        | 6572         | 12249          | 39 |
| H(1E1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10559        | 5255         | 11241          | 22 |
| H(1F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5627         | 11343        | -973           | 25 |
| H(2F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6397         | 10547        | -1349          | 23 |
| H(3F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6977         | 10140        | -344           | 22 |
| H(4F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5470         | 9353         | -483           | 25 |
| H(5F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5688         | 9677         | 542            | 30 |
| H(6F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6283         | 8515         | 852            | 36 |
| H(6F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6422         | 8433         | 213            | 36 |
| H(8F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4186         | 9026         | -2164          | 57 |
| H(8F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3605         | 9690         | -2052          | 57 |
| H(8F3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4183         | 9203         | -1498          | 57 |
| H(9F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5126         | 10909        | -2304          | 58 |
| H(9F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4191         | 10720        | -2565          | 58 |
| H(9F3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4822         | 10111        | -2675          | 58 |
| H(11P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6717         | 9435         | 1658           | 56 |
| H(11Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7290         | 10184        | 1886           | 56 |
| H(11R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7652         | 9307         | 1988           | 56 |
| H(12P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8619         | 9749         | 1415           | 54 |
| H(12Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8205         | 10604        | 1324           | 54 |
| H(12R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8232         | 10104        | 755            | 54 |
| H(14F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8754         | 10051        | -368           | 23 |
| H(15F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9918         | 9986         | 469            | 24 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |              |                |    |

| H(17F) | 9292  | 7771 | 832  | 28 |  |
|--------|-------|------|------|----|--|
| H(18F) | 8133  | 7844 | 1    | 29 |  |
| H(20P) | 11962 | 8697 | 1910 | 45 |  |
| H(20Q) | 11377 | 8618 | 2300 | 45 |  |
| H(20R) | 11869 | 9420 | 2322 | 45 |  |
| H(1F1) | 10556 | 8249 | 1309 | 24 |  |
|        |       |      |      |    |  |

Table 6. Hydrogen bonds for 06mz009m [Å and deg].

| D-HA                          | d(D-H) | d(HA) | d(DA)    | <(DHA) |
|-------------------------------|--------|-------|----------|--------|
| O(22)-H(22)O(9F)#1            | 0.84   | 1.82  | 2.647(3) | 166.5  |
| O(21)-H(21)O(9B)              | 0.84   | 1.81  | 2.650(4) | 174.8  |
| N(1A) - H(1A1) O(22) #1       | 0.88   | 1.94  | 2.793(4) | 161.7  |
| N(1B) - H(1B1) O(9D) #2       | 0.88   | 1.96  | 2.825(4) | 167.8  |
| $N(1C) - H(1C1) \dots O(21)$  | 0.88   | 1.87  | 2.736(4) | 166.8  |
| $N(1D) - H(1D1) \dots O(10D)$ | 0.88   | 2.04  | 2.846(4) | 151.5  |
| N(1E) - H(1E1) O(9A) #3       | 0.88   | 1.99  | 2.819(3) | 156.7  |
| N(1F)-H(1F1)O(9E)#4           | 0.88   | 2.03  | 2.879(3) | 161.0  |
|                               |        |       |          |        |

Symmetry transformations used to generate equivalent atoms:

#1 -x+2, y-1/2, -z+1 #2 x, y-1, z #3 x, y, z+1 #4 x, y, z-1