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1 Thesis Abstract 


Let G be a group and H ::; G. Then we say G splits over H ifthere exists a subgroup 

K ::; G such that G = H K and H n K = 1. If it so happens that in addition K ::9 G 

then we say G splits normally over H. 

If the structure of the subgroup H or K is particularly nice, say H is cyclic or 

maybe abelian, then one can expect that the structure of the whole group G '.vill be 

nice or at least influenced in some way by the structure of H or K. For instance, it's 

well known that if G splits normally over H and both Hand K are solvable then G 

is also solvable. A more fundamental example is if G splits normally over H, G / K is 

abelian, and the commutator subgroup G' ::; H, then G is abelian. 

It's this influence on the structure of G that makes it important to determine 

when a group will split over one of its subgroups. But what conditions placed on 

G or on H are sufficient in order to ensure that G splits over H? Is it possible to 

actually characterize whether or not G will split over a subgroup H in terms of group 

theoretic properties of H or G? 

In the early 1900's mathematicians such as W. Burnside [1], F.G. Frobenius [2], P. 

Hall [3], and Schur and H. Zassenhaus [6] made efforts to finding the answers to this 

question for various subgroups H of various groups G. In this expository paper we 

chronical the development of their work and offer proofs of the theorems they were 

able to prove. vVe do this mainly through the use of special homomorphism called 

the transfer homomorphism. 
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2 Definitions 

Definition A nonempty set G equipped with an operation * on it is said to form a 

group under that operation if it obeys the following laws, called the group axioms: 

(1) Closure: For any a, bEG, we have a * bEG. 

(2) Associativity: For any a, b, c E G, we have a * (b * c) = (a * b) * c. 

(3) Identity: There exists e E G such that a * e = e * a = a for all a E G. 

1 1(4) Inverse: For each a E G there exists an element a- E G such that a * a­

a- 1 * a = e. Such an element a- 1 EGis called an inverse of a E G. o 
VVe suppress the * notation and write ab for a * band 1 for e. 

Definition A group G with operat ion * is said to be abelian if the operation * on 

G obeys the commutative law or , in other words, if for every a, bEG we have 

a * b = b * a. o 
Definition Let G be any group . Then the centre of G, denoted Z(G ), consists of 

the elements of G that commute with every element of G. o 
In other words, Z(G)={x E G I xy = yx for all y E G}. Note that ly = Y = yl for all 

y E G, so 1 E Z (G) , and the centre is a nonempty subset of G. In fact, Z (G) 'S G. 

Definition Let G be a group and H a subgroup of G. If for all 9 E G we ghg- 1 E H 

for all hE H and 9 E G, then we say H is a normal subgroup of G and 

write H :S) G. o 

Lemma 2.1 Let G be a group, 9 E G , and n E Z+ such that gn = 1. Then Igll n. 

Proof The Division Algorithm implies there exists q, r E Z such that n = Iglq + r 
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and 0 ~ r < Igl. Then 

I = gn = g191q+T gl91q gT 

(gI91)qgT 

IqgT = gT 

Therefore I = gT. But r < Igl, so r = 0 by the minimality of Igl. Hence, n = Iglq and 


Igll n. o 


Lemma 2.2 Let G be a gr-oup, 9 E G. Then glG I = 1. 


Proof Now (g) = {l ,g, g2, g3, ... , gI91-1} ~ G . Then by Lagrange I(g) I I IGI, so 


Igll IGI .Therefore, there exists k E Z such that Iglk = IGI. Hence, 


glGI = gl91k = (gI91)k = I k = I 

o 

Lemma 2.3 Let G be a group and a, bEG such that ab E Z(G). Then ab = ba. 

Proof Since ab E Z(G), ab(b) = (b)ab. This implies that abbb- 1 = babb- 1 . Hence 

abl = bal and we get ab = ba. o 

Theorem 2.4 First Isomorphism Theorem: Let G1 and G2 be groups and 

¢: G1 -+ G2 be a homomorphism. Then G1/Kern¢ ~ Gd¢. 

Theorem 2.5 The Second Isomorphism Theorem: Let G be a group, N :::) G, 

and H ~ G. Th en HN/N~ H/HnN. 
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Proof Define 

<I>:H~HN/N 

by (h)<I> = hN for all h E H. Notice N ~ G means H N :::; G and N :::; H N. so 


N ~ HN. Therefore, HN/N is a group. Also, N ~G means NnH ~ H, so H/H nN 


is a group. Let hI , h2 E H. Then (h Ih2)<I> = hIh2N = hINh2N = (hl)<I>(h2)<I>, so <I> 


is a homomorphism. 


Let hnN E HN/N. Then (h)<I> = hN = hnN since (hn)-Ih = n- I EN, so <I> is onto. 


Finally, h E Kern<I> if and only if (h)<I> = IN if and only if hN = IN if and only if 

1- l h E N if and only if hEN if and only if h E H n N. Therefore, Kern<I> = H n N. 

Now by the First Isomorphism Theorem H/Kern<I> ~ (H)<I>, which implies that 

H/H n N ~ HN/N. 

o 

Definition Let G be a group and H :::; G. Then we say G splits over H if there 

exists a subgroup K :::; G such that G = H K and H n K = 1. o 
Example 1 In 54, if 

H = {I, (1234),(13)(24) , (1432) , (14)(23),(12)(34) , (13), (24)} , 

and K = ((123)) then, 54 = H K and H n K = 1. Therefore, 54 splits normally over 

H. 

Example 2 In D4, if H = {I , (24) , (13) , (13)(24)} and K = ((12)(34)) then D4 = HK 

and Hn K = 1. 

Definition Let G be a group and H :::; G. Then we say G splits normally over H 
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if there exists a subgroup K ~ G such that G = H K and H n K = 1. o 
Example 3 In S3, if H = ((123)) and K = ((12)) then H ~ S3, S3 = H K, and 

H n K = 1. Thus, S3 splits normally over H. 

Definition Let G be a group, a, bEG, H ~ G and K ~ G. Then 

(1) [a, bl = a-lb~lab is called the commutator of a and b. 

(2) [H,Kl = 	({[h,kll hE Hand k E K}). 

(3) G' = ({ [a, bl I a, bEG}) is called the commutator subgroup. 	 o 

Lemma 2.6 	Let G be a group, a, bEG, H ~ G, and K ~ G. Then 

(1) [a, bl = 1 	if and only if ab = ba. 

(2) G' ~ G. 

(3) GIG' is abelian. 

(4) If GIH is abelian then G' ~ H. 

(5) If G' ~ K 	 then K is normal that is K ~ G. 

Proof For (1) [a, bl = 1 if and only if a- 1b- 1ab = 1 if and only if ab = ba. 


For (2) we know G' ~ G by definition. Now let 9 E G and x E G'. 


Then x = n:'dai, bil ki where ai, bi E G, for all 1 ~ i ~ m, and ki E Z+, for all 


1 < i < m. 


Notice: 


g-l[a, blg 	 g-l a-lb- 1abg 

g-la-lgg-1b-lgg-lagg-lbg 

(g-lag )-1 (g-lbg )-1 (g-lag) (g-lbg) 

[y-l ag , g-lb9l· 
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and 

g-1 [a, b][a, b]g 	 g-1 [a, b]gg-1 [a, b]g 

[g-1 ag, g-1 bg ][g-1 ag, g-lbg] 

[g-l ag , g-lbgj2. 

Now, 

m 

g-lxg = g-1 II[ai' bi]ki g 
i=1 

II
m 

g-1 [ai, bilk; 9 
i=1 

II
m 

(g-l[ai' bi]g)ki 
i=1 
m 

II[g-l aig , g-lbig]k i E G'. 
i=1 

Thus , G' ~ G. 

For (3) let G'a, G'b E GIG'. Then 

[G'a,G'b] 	 ( G' a) -1 ( G' b) -1 ( G'a) ( G' b) 

G'a-1 G' b -1 G'aG' b 

G'a- 1b-1ab 

- G'[a,b] 

G'l 

since [a, b]I-1 = [a, b] E G'. Hence [G'a, G'b] = G'l or G'aG'b = G'bG'a by (1), so 

GIG' is abelian. 

For (4) let a, bEG. Then H a-I, Hb- 1 E G I H, so H a-I Hb- 1 = Hb- 1H a-I, since 

G I H is abelian, or H a- 1b- 1 = Hb- 1a- 1. Hence 
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a-1b-1(b- 1a-1)-1 = a- 1b-1ab E H . So [a, b] E H. Now since H ~ G we get G' ~ H 

for all [a , b] E H for a,b E G. 

For (5) let k E K and g E G. We show that g-lkg E K. 

k- 1g- 1kg = [k , g] E G' ~ K , so k-1g-1kg E K. Thus, there exists kl E K such that 

k- 1g- 1kg = k1. Hence g-1kg = kkl E K. Therefore, K :Sl G. 0 

Definition Let G be a group and a, bEG. Then a and b are conjugates if there 

exists g E G such that a = g-1bg, written as b9 . o 
Definition Let G be a group and S a nonempty set. Then G acts on S if there is a 

homomorphism 

4> : G --7 Sym(S), 

where Sym(S) = {4> : S --7 S I 4> is one to one and onto}. o 
Notation: Let G be a group and S be a set such that G acts on S via 4>. If g E G, 

a E S then 4>(g)(a) = gao 

Definition Let G be a group and S a set such that G acts on S and a E S. The 

stabilizer in G of a, Ga , is defined by Ga = {g E G I ga = a}. o 
Definition Let G be a group, S a set, and a E S such that G acts on S. The orbit 

of G on S containing a is 

Ga = {ga I g E G} 

o 
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THE SYLOW THEOREMS 


Definition Let G be a group, p be a prime, and n E Z+ U {O} such that pn IIGI but 

pn+l does not IGI . Then 

(1) IGlp = pH (called the pth part of G) 

(2) If P ~ G and JPI = pn, we call P a Sylow p-subgroup of G. 

(3) Sylp(G) is the set of Sylow p-subgroups of G. o 

Theorem 2.7 First Sylow Theorem Let G be a group and p be a prime. Then 


Sylp(G) =J 0. 


Theorem 2.8 Second Sylow Theorem Let G be a group, p be a prime, and 


H ~ G be a p-subgroup. Then ther'e exists P E Sylp(G) such that H ~ P . Mor'eover, 


G acts transitively on Sylp(G) by conjugation. 
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3 The Transfer Homomorphism 

Definition Let G be a group and H ::; G. A subset {tdi=l is called a transversal 

of H in G if 
n 

G = UHt i ,

i=l 

where n = IGI/IHI. 

Theorem 3.1 Let G be a group, and H ::; G and ~ is the set of transversals of H 

in G. Then 

(1) G acts on ~ by {ti=l}g = {tig}i=l' 

(2) H acts on 8' by h{ti}i=l = {htdi=l' 

Proof For (1), if Htig = Htj.9 for some i and j then Hti = Htj , so i = j. Hence 

I{Htig}i=l I = I{Hti}i=ll· Therefore, G = Ui=lHtig and {tig}i=l E ~.For (2), let 

T = td~l E ~, h E H then G = U~l Hti. We show that 

I{Hhtd~ll = I{Htd?=ll · {Hhtd~l = {Htd~l since (htdt:;l h E H for all 

1 ::; i ::; n . Hence U~l Hhti = Ui=l Hti = G. So {htdi=l E ~. D 

Definition Let G be a group, J ~ H ::; G, such that HI J is abelian. If T, U E ~ 

where T = {tdi=l and U = {udi=l and Hti = HUi for alII::; i ::; n define 

TIU = I1 i= lJtiUi 1 E HIJ. 

o 

Lemma 3.2 Let G be a group and J ~H ::; G such that HI J is abelian. 1fT,U, V E ~ 

then 

(1) TIT = J 
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(2) T IU = (UIT)-1 

(3) TIU = (TIV)(vIU) 

Proof For (1) 

TIT rr7==1 Jtit;1 

rr7==1 Jl = JIJI ... Jl 

J11 ... 1 

J 

For (2) since HI J is abelian, 

T IU rr7==1 JtiU;1 

rr7==1 J(Uit;1 )-1 

(rr7=1 JUit;1 )-1 

(UIT)-1 

For (3) since HIJ is abelian , 

T IU rr7==1 JtiU;1 

rrn Jt -1 -1i==1 iVi Vi Ui 

rrn Jt -IJ -1i==liVi Vi Ui 

- rrn Jt -lrrn J -1i== ). iVi i=l ViUi 

(TIV) (V IU). 

o 
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Lemma 3.3 Let G be a group and J:s! H ::; G such that H/ J is abelian and T E ~. 

Define the transfer homomorphism 

T:G-+H/J 

by (g)T = Tg/T for all g E G. Th en 

(1) If U E ~, 	g E G and hE H , then Tg/Ug = T/U and hT/hU = T/U. 

(2) T is independent ofT (i.e. Tg/T = Ug/U for all T, U E ~) 

(3) T is a homomorphism. 

Proof For 	(1) 

Tg/Ug IT~lJtig(Uig)-l 

-1 -1IT~l Jtigg ui 

IT~l JtiU:;l 

T/U 

and since H / J is abelian , 

hT/hU 	 IT~=lJhti(hui)( - 1) 


ITT! Jhtu -:- 1h-1 

1=1 1 1 

IT~=l J hJtiU:; l J h-1 

ITr=l J hJtiUi (Jh) --1 

ITi = 1n JtiU:;1( Jh)(Jh)-1 = J1Jtiu~ - 1) 

ITr=l Jtiui1 

T/U. 

10 



For (2) let U E SS. Then by (1) 

TgjT 	 = (TgjUg) (UgjU)(UjT) 

= (T jU)(U gjU)(U jT) 

- (T jU)(U jT)(UgjU) 

= (TjU)(TjU)-I(UgjU) 

- JUgjU 

= UgjU 

since H j J is abelian. 

For (3) let gl, g2 E G. Then 

(glg2)T 	 = Tg1g2jT 

- (Tg 1g2/Tg2)(TgdT) 

- (TgdT) (T g2jT) 

- (gl)T(g2)T. 

o 

Definition Let G be a group and S ~ G. Define the subgroup generated by S, 

(S) = 	nS~H~G H. Then clearly, (S) ~ G, and S ~ (S). o 

11 




Lemma 3.4 Let G be a group. Then (S) = S~l S~2 . .. S~k, where Si E S,n1: E Z, and 

k E Z+. 

Proof Let T = {S~l S~2 ... S~k I Si E S, ni E Z, k E Z+}. Realize that T is closed, 

T contains all of its inverses, and 1 = sa E T. Therefore, T ~ G. Also, S ~ T since 

S = S1 E T for all S E S. Hence (S) ~ T. 

Let S~l S~2 .. . S~k E T and S C H < G. Then Si E H for all 1 < i < k, so 

S~i E H since H < G. So 8~1 S~2 ... S~k E H since H < G. Therefore, T ~ H , so 

T ~ nS~H~G H = (S). o 

Lemma 3.5 Let G be a group, J:'9 H ~ G, HI J be abelian and suppose 

gcd(wr, m) = 1. Then G'nZ(G) nH ~ 1. 

Proof Let h E G' nZ(G) nH. Then by the First Isomorphism Theorem 


GIKernT ~ (G)T ~ HIJ, so GIKernT is abelian. Hence, G' ~ KernT, so hE KernT. 


Therefore, since h E Z (G), 


J = (h)T ThlT = II
n 

Jtiht;1 
i=1 

II
n 

Jtiht;1 = II
n 

Jh = Jhh .. . h 
i=1 i=1 

Jhn 

where n = IGI/IHI. Hence, J = Jhn, so hn E J. 

Now working HI J with Jh. Then (Jh)n = Jhn = J, so IJhl I rm by a previous 

IHI ~ 
lemma. Also, (Jh)PT = J. Hence IJhl 1111' Therefore, IJhl = 1 since 

gcd(rm , m) = 1. Hence Jh = J , so h E J. Therefore G'nZ(G)nH ~ J. 

12 
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Definition Let G be a group, J ~ H :::; G such that H / J is abelian. Define a relation 

on c:s by 

T U if T /U = Jrv 

Then rv is an equivalence relation on CS by lemma 3.5. 

This follows from lemma 3.5 T rv T . T rv T implies 

n 

T /T = II Jtiti1 
n=i 

II 
n 

J1 
n=i 

JI J1 . .. J1 

J1 ... 1 

J1 = J. 

Hence rv is refl exive. 


Also if u E U, T rv U implies U rv T . T rv U implies T /U = J. U rv T implies 


U/T = (T /U)-l = J- 1 = J . Hence, U rv T. 


Next, T rv U implies T /U n~=i Jtiui1. U rv V implies U/V n~=i Jtj U i 1. 


T U rv V implies T /U · U/V = J. J = J. Hence, T rv U. o
rv 

Lemma 3.6 Let G be a group, J ~ H :::; G, H/ J is abelian, and rv be as above. For 

T E U let [T] = {U E SS I U rv T} (Equivalence Class) and n = {[T] I T E CS} . Then 

G and H acts on n by [T]g = [Tg] and [T]h = [hTJ for all 9 E G and for all h E H. 

Proof It 's enough to show this actions are well defined. Well, from a previous lemma 

if T rv U then J = T/U = Tg/Ug , so Tg rv Ug. Hence, [TgJ = lUg] . Therefore 

[TJg = [U]g. 
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If T '" U then J = T I U = hTlhU. Hence, hT '" hU so [hT] = [hU] . Thus, 

[T]h = [U]h. 

We show that if [T] E D then [Tg] E D and [hT] E D. If [T] E D then T E ~ implies 

Tg E ~, hT E ~. Hence [Tg], [hT] ED. o 

Lemma 3.7 Let G be a group , J:sl H :S G, HI J be abelian, gcd( fm 1fR) = 1 and 

"', T, D be as above. Then 

(1) H acts transitively on n. 

(2) H[TJ = 	J faT all [T] E D. 

Proof For (1) let [T], [U] E D and let n = tm,m = ¥ff. We want to find h E H 

such that [T]h = [U]. Now [T]h = [U] if and only if [hT] = [U] if and only if hT rv U 

if and only if hTIU = J. By Lemma 3.5 

hTjU = (hTjT)(TjU) 

n 

- II Jhtit;l(TjU) 
-i= l 
n 

- II Jh(TIU) 
i=l 

n 

- II hn(TjU) 
i= l 

since gcd(n , m) = 1 there exists r,8 E Z such that rn + 8m = -1. Let h E H such 

that Jh = (TIUY then 

Jhn(TIU) 	 = ((T/Ut)n(TjU) 

_ (TjUrn+1 

_ (Tju)-sm 

= ((Tju)rn)-s 
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J- S 

J. 

Therefore, [T]h = [U]. 

For (2), let j E J. Then 

n 

jTjT = II Jjt;til 
i=l 

II 
n 

Jj 
i=l 

n 

IIJ 
i=l 

J. 

Therefore, jT f'V T which implies [jT] = [T]. Hence, [TlJ = [T], so J ~ H [TJ. 

Let h E H[TJ then [T]h = [T] implies [hT] = [T], so hT f'V T. Therefore, 

J = hTjT 

n

II Jhtitil 
i=l 

II 
n 

Jh 
i=l 

n

II Jhh ... h 
i=l 

Jhn. 

So hn E J. Now working HjJ with Jh, (Jh)n = Jhn = J, so IJhl1 n by lemma 2.1. 

l!!l lliJ.Also, (Jh) 111 = J . Hence, IJhl1 IJI = m, so IJhl = 1, since gcd(m, n) = 1. Hence, 

Jh = J , so hE J. Thus, H[TJ ~ J , H[TJ = J. o 

Let G be a group, J:9 H ~ G such that HjJ is abelian and 9 E G. Since T is 

independent of the choice of the transversal used , we are going to find a t ransversal 

15 



to use to make 7 easier to compute. 


Let (g) act on S = {Hx I x E G} by right multiplication. T hen 


n 

S = U8 i 
i= l 

where n is the number of orbits of (g) on Sand 

8- i -- {HXi, H Xig , Hxig,2 ... , H x ,g ' n;-l} 

where H XigT! ; = H Xi for all 1 ::; i ::; n. 

Let T = {Xig T I 0 ::; r ::; ni - 1,1 ::; i ::; n}. Then 

Tg = {Xig T 10::; r ::; ni, 1 ::; i::; n} 

Hence, (g)7 = Tg / T = TI~l JXignixil where Xignixi1 E H for all 1 < i < n and 

L:I~l ni = n, number of orbits of (g) on S where nn i- n. 

16 




4 The Splitting Theorems 

Theorem 4.1 Let G be a group, J :9 H ::; G, H I J be abelian and gcd( tm,¥R )= 1. 

Then the following a:re equivalent: 

(1) G splits normally over H I J. 

(2) If hI , h2 E H are conjugate in G then Jh 1 = J h2. 

(3) (h)T = Jhn where n = tm for all h E H. 

(4) Th "'-' hT for all h E H , T E ~. 

Proof For (1) implies (2), by (1) there exists K :9 G such that G = HK and 

H n K = J. Let h9 E H where h E H. Now g = hlk wllcre hI E H, k E K, so 

h9 h/q k = = h~, where h2 = hhl. Now [h21,k] = (h21)-lk - lh21k E K since K :9 G 

and [h21, k] = h2 1 (h21)k E H since h~ E H. Therefore, h21 (h21) E H n K = J, 

Jhhlso Jh2 Jh~. Thus , h2(h~)-1 E J. Then Jh2 Jh~ , so J h9 . Hence 

Jh Jh l = Jh9 , so Jh = Jh9 since HI J is abelian. Therefore, (1) implies (2). 

,hniFor (2) implies (3), let h E H. Now (hni)Xi
-I 

E H for all 1 ::; i ::; n and are 

conjugate since 

-1(hniXi yi = hni 

Hence, by (2) 

n 

II JXhniX- l(h)T t "i 
i=1 
n
II J(hni)Xi 
i= 1 

n

IT Jhni 

i =1 

JhL.~ 1 ni = Jhn. 
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Therefore, (h)r = lhn. 

For (3) implies (4), Let hE H. Then Th/hT = (Th/T)(T/hT) = ((h)r)(T/hT) = 

lhll TI7=1 lh- 1 = lhn lh-n = lhrLh-n = l ho = J1 = l. Therefore, Th I"V hT. 

For (4) implies (1), since Th I"V hT for all h E H we have [Th] = [hT] for all h E H . 

Hence, since H acts transitively on n on the left , we know H act transitively on n 

on the right . 

Let 9 E G and T E <So Claim: G = G[TJH. 

Now [Tg] E nand [T] E n. Since H acts transitively on n on the right there exists 

h E H such that [Tg]h = [T], so [T]gh = [T]. Therefore, gh E G[T] , so 9 E G[T ]H. 

Hence, G = G[T]H. Also, H n G[T ] = H[TJ = 1 by Theorem 3. 10. Therefore, G splits 

over H/l. 

Next we show that G[Tl ~ G. We claim that G[T] = Kernr. 

9 E G[T] [T]g = [T] {:> 

[Tg] = [T] {:> 

Tg I"V T {:> 

Tg/T = 1 {:> 

(g)r = 1 {:> 

9 E Kernr. 

Hence, G [Tl = Kernr ~ G. o 

Definition: Let G be a group and 7r be a set of primes. 

(1) 7r(G)={p Ip is prime and p IIGI}. 
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(2) 7f'={p Ip is prime and p ~ 7f}. 

(3) G is a 7f-group if 7f(G) ~ 7f. 

(4) A subgroup H ~ G is a Hall 7f-subgroup if H is a 7f-group and 7f(G / H ) ~ 7f'. 

(5) Ha1l7l'(G) = {H ~ G I H is a Hall 7f-subgroup}. o 
Example 1 Let IGI = 24 X 32 X 56. Then 7f(G) = {2, 3, 5} and G is a {2, 3, 5} - group. 

32Also, if HEHall{3,5}(G) then IHI = x 56. 

Example 2 Consider As. IAsl = 51/2 = 22 X 3 x 5 

\Ve know that (A5)l ~ A4, so I(Ashl = IA41 = 22 x 3. Thus, (Ash is a {2,3} ­

subgroup. Also, 

IAsl 22 x 3 x 5 , 
I(As hi = 22 X 3 = 5 E {2, 3} . 

7f(As/(As)l) ~ {2,3}'. Thus, (As)l E Hall{2,3} (As) 

Example 3 vVe show that Hall{2,5} (As) = 0. Solution: Let H E Hall{2,s} (A5)' Then 

IAsl = 51/2 = 5 x 4 x 3 x 2 x 1 -;- 2 = 22 X 3 x 5, so IHI = 22 x 5 and IAsl/I H I = 3. 

Let As act on S = {Hx I x E As} by right multiplication via el> : A5 -+ Sym(S) ~ S3 

defined by Kernel> :9 As. Since As is simple, Kernel> = 1 or As. If Kernel> = I , by First 

Isomorphism Theorem 

A5/Kernel> ~ (A5)el> ~ S3' 

But then 

IAsIIIS31 = A5/1 ~ A5 ~ (As)el> ~ S3. 

Now, 60 = IAsI IIS31 = 6, a cont radiction . If 

Kernel> = As then A5 = Kernel> = ngEG Hg :::; H. Thus, As = H , a contradiction. 

Hence, Hall{2,s) (As) = 0. o 
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Theorem 4 .2 Let G be a group, H E Hall7r(G) , and H be abelian. Then G splits 

normally over H if and only if whenever for all hi, h2 E H such that hi ""G h2 then 

hi = h2 · 

Proof Now, 1 ~ H :::; G and HI1 ~ H is abelian since H E Hall7r(G) we know 

gcd( fm, ~) = 1. Also, G splits normally over H if and only if G splits normally over 

HI1. By Theorem 3.11 G splits normally over HI1 if and only if hi '"'-'C h2 implies 

{1}hl = {1}h2' if and only if hi '"'-'C h2 implies hlh:;1 E {1}, which is true if and only 

if hi '"'-'c h2 implies hi = h2· o 

Theorem 4.3 Let G be a group, P E Sylp(G), and X, y E Z(P ) such that x '"'-'c y . 

Then X '"'-'Nc(P) y. 

Proof Since x '"'-'C y there exists g E G such that x = y9. Since x, y E Z(P), 

P :::; Gc(:r) n Gc(Y), so P E Sylp((Cc(x)). Also, P :::; Cc(y) implies 

p9 :::; Cc(y)9 = CC (y9) = Cc(x) , so P, p9 E Sylp((Cc(x )). Hence, there exists 

go E Cc(x ) such that P990 = P. Thus, 09090 E Nc(P), and y990 = x90 = x. T herefore, 

X '"'-'Nc(P) y. o 

Theorem 4.4 Burnside Let G be a group and P E Sylp(G) such that P :::; Z( Nc (P)). 

Then G splits normally over P . 

Proof Since P :::; Z(Nc(P)), P is abelian. Also, P E Hall7r(G) for 7f = {pl . Let 

x, yEP such that x '"'-'C y. Then there exists 09 E G such that x = y9 since P is 

abelian we know X, y E Z (P), so by Theorem 3. 13 x '"'-'Nc(P) y. Hence, there exists 

n E Nc( P) such that x = yn = y since P :::; Z(Nc(P)) and yEP. Therefore, by 

Theorrul 3.12 G splits normally over P . o 
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Theorem 4.5 Let G be a group, H E H all'/[ (G) such that H ~ G and H is abelian. 

Then G splits over Hand G acts transitively on the complements of H in G by 

conjugation. 

rvProof Now, 1 ~ H ::; G and H l1 H is abelian and gcd ( tm, ~) = 1 since 

H E Hall'/[ (G). Hence, by the previous theorem H acts transitively on n on the left 

and H[T] = 1. 

Claim: G G[T]H . We use a Frattini Argument . Let 9 E G. Since H acts 

transitively on n, n = [T]H and [T]g E n. Therefore, there exists h E H such that 

[T]g = [Tlh . Hence, [Tlgh- 1 = [T ]. Thus , gh- 1 E Gp'], so 9 E G[T] H . Hence, 

G = G[TlH , and 

H n G[T] = H[T] = 1. 

Therefore, G splits over H. 


Next, let L be another complement of H in G. Then G = H Land H n L = 1. Also, 


ILlILl 
1 

ILl 
IHnLI 
ILHI 
IHI 

IGI 
jHI ' 

Claim: L E 8'. If ll, l2 E L such that Hl l = Hl2 then ll, l"21 E H n L = 1, so [1 , l2 ' 

Hence, L E 8' and [Ll E n. For l E L , lL = L then [L]l = [iLl = [L], so L ::; G[L]. 

Now there exists h E H such that [L]h = [T]. But then Lh ::; G[Llh = G[L]h = G[T] . 
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Now 

ILhl = ILl = lQl = IG[TJ H I = IG[TJI = IG[TJI = IG , I
IHI IHI IG[TJn H I 1 [T] . 

Hence, ILhl = IG[TJI and Lh .s G[T] implies Lh = G[T). Therefore, G acts t ransit ively 

on complements of H in G. o 

Lemma 4.6 Let G be a group, N :::l G, HE Hall7r (G). Then 

(1) HN/N E Hallrr(G/N). 

(2) H nNE Hall7r(N). 

Proof For (1), 

H N IHNI IHIINI IHI 

INI= lNf = INllHnNI = IHnNI 


, so 1fe~V) ~ 1f since HE Hallrr(G). Hence, J~ is a 1f-group. 

Also, 

IG/NI IGI/INI IGI 

IHN/NI = IHNI/INI = IHNI 


and 

JQIJ HN! _lQ1 
IHNI IHI - IHI' 

Hence, IGI/IHNI I IGI/IHI and 1f(G/H) ~ 1f'. Therefore,1f(G/HN) ~ 1f'. Thus, 

1fC;%~v) ~ 1f', so HN/N E Hallrr(G/N) 

For (2), Since H is a 1f-group, H n N is a 1f-group. Also, 

IGI7r _~. 
IG / N lrr = INI7r - lNJ7r 

By (1) 

HN IHNI_~ 
IG/NI7r=I N I=lNf7r -IHnNI 

therefore INI7r = IH n lVl· Hence, H nNE Hall1f(N). o 
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Lemma 4.7 Let G be a group, and H ~ G. Then Z(H) ~ G. 

Proof Let h E H , 9 E G, and hI E Z (H ). T hen 

(g-lhlg)h = g-lhlgg- 1(ghg-I)g 

_ g-l(ghg-l)hlg 

- hg- I hlg 

since hI E Z(H) and ghg- I E H. Therefore, g-lhlg E Z(H), so Z (H ) ~ G. 0 

Theorem 4.8 Schur and H. Zassenhaus Let G be a group, H E H all1r (G) such 

that H ~ G . Then G splits over H . 

Proof Use induction on IGI. Let P E Sylp(H). Then G = Nc (P) H by Frattini 

Argument. First, suppose INc(P) I < IGI· Now, H n Nc(P)' ~ Nc (P) and H n Nc(P ) 

is a 7f-group, so 

INc(P)1 = INc(P)HI = lQl C 7f' 
IH n Nc(P) I IHI IHI ­

as H E H all1r (G) . Hence, H nNc(P) E H all1r (Nc (P)), so by induction Nc(P) splits 

over Hn Nc (p) . Hence, there exists K ::; Nc(P) such that Nc(P) = K(Hn Nc(P)) 


and K n (H n Nc(P)) = 1.Therefore, G = Nc(P)H = K(H n Nc (P))H = KH. 


Also, K n H ::; K n Nc(P) n H = 1. Thus, G splits over H. 


Secondly, if INc(P)~ = IGI then G = Nc(P) , so P ~ G. 


But then Z(P) ~ G. By Lemma 4.7 H Z(P )jZ(P) E Ha]l1r(GjZ(P)). Also, 


HZ(P)jZ(P)~GjZ(P) since H Z(P)~G. Now, /GjZ(P) 1= IGljIZ(P)/ < IGI since 

Z (P) =I- 1 as P is a p-group. Hence, by induction G j Z(P) splits over H Z(P)j Z (P), 

so there exists KjZ(P) ::; GjZ(P) such that GjZ(P) = (HZ (P )jZ(P))(K j Z (P )) 
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and HZ(P) IZ (P ) n K IZ (p) = Z (P). Hence, G = HZ (P )K = HK and 

H n K 'S Z(P ). Since H Z(P)IZ( P ) E HaLLI1(GIZ(P)) we know KIZ(P) is a 

7r 
/-group. Also, since Z (P) is a 7r-group we also know that Z(P) E Hall7r(K). More­

over, Z( P ) ~ K and Z(P) are abelian, so by Theorem 3.16 K splits over Z(P ). 

Therefore, there exists L 'S K such that K = Z (P) L and Z (P) n L = 1. Hence, 

G = H K = H Z(P)L = HLand H n L 'S H n L n K 'S L n Z( P ) = 1. Thus) G 

splits over H. D 

Definition Let G be a group and H 'S G. Then there is no fusion of H in G if 

whenever hI , h2 E H such that hI "'a h2 then hI '"H h2. o 
Example: There is fusion of A3 in S3. (123) "'53(132) since (123)(32) = (1 32) and 

(23) ~ A3 . 

Definition Let G be a group and H 'S G. Then the focal subgroup of H in G is 

Foca(H) = ({[h,gllh E H,g E G, [h,gl E H}). o 
Notice H' < Foca(H) < G' n H , so, by previous theorem Focc(H) ~ Hand 

HI Focc(H) is abelian. 

Theorem 4.9 Let G be a group and H 'S G such that gcd( mt, HA) = 1. Then G 

splits normally over HI Focc(H) and Focc(H) = H n G'. 

Proof Notice that HI Focc(H) is abelian and 

~ _ IHI IFocc(H) I 
IH'I - lFocc(H) I IH'I 

so 

IHI I ~ 
IH'I · 
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Therefore, the gcd (tm , IPn!.~Jml = 1; so we can use our previous theorem. Let 

hI , h2 E H such .that hI "'c h2. Then there is 9 E G such that hI hi. Then 

hlh;;l = h~h;;l = [g , h;;l] E H, so [g , h;;l]-l E H or [g , h;;l]-l [h2 ' g] E H. 

Therefore, (hlh;;l )-1 = [g , h21J-l = [h2 ' gj E Focc( H ). Thus, hlh;;l E FocG (H ) 

since Focc(H) ~ G. Hence, Focc (H )h1 = Focc (H)h2 .and then by our theorem G 

splits normally over HI Focc(H). Thus, there exists K ~ G such that G = H K and 

H n K = Focc(H). Now 

GIK = HKIK ~ HIHn K = HI Focc(H ), 

so GIK is abelian and then GI ~ K. Hence, Focc(H) ~ HnG' ~ HnK = FocG(H ). 

It follows that Focc(H) = H n G'. D 

Theorem 4.10 Focal Subgroup Theorem Let G be a group and P E Sylp(G). 

Th en Focc(P) = P n G'. 

Proof Since P E Sylp(G) we know gcd(wt~) = 1, so FOCc(P) = P n G' by the 

previous theorem and G splits normally over PIP n G'. D 

Theorem 4.11 Let G be a group, J ~ H < G, HI J is a p-subgro'up such that 

gcd(lB 1m) = 1 Then the follo wing aTe equivalent:1Ii I' 1.11 . 

(1) G splits normally over HI J . 

(2) Whenever hI , h2 E H such that hI rvc h2 then Jh 1 rvHI ) Jh2. 

Proof For (1) implies (2) is the same as used before and shows that J h1 = Jh2, so 

.Jh1 rv H I ) Jh2 by J1. 

For (2)implics (1) use induction on IHI/lll . Let Jd J = Z (HI J). Since HI 1 is 

a p-group Z(HI J) #- J. Also, if HI J is abelian then we are done by Theorem 3.12. 
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Thus, H I J is not abelian, so (H I J ) =1= H I J. Since Jd J~HIJ we get J :::; JI~H :::; G. 


Then IHI/IJII < IHI/IJI , and IHI/IJI . IJII/IJI = IHI/IJI, so IHI/IJII I IHI/IlI, so 


HIJI is ap-group. Also, gcd(wt,i*t) = 1. Let hl ,h2 E H such that hI ""G h2. 


Then Jh l "'HI) Jh2 by J 1, so J1 hl "'Hlh J)h2 by "the same element". Therefore, 


by induction (2)implies (1) here and then G splits normally over H I J I . Thus, there 


exists kl ~ G = H KI and H n KI = JI · 


Now J ~ JI :::; Kl and JIIJ:::; HIJ, JIIJ is ap-group. Also. 11f I ¥R and 11~1111 = wt, 


so gCd(11f, II~tll) = 1. Let XI,X2 E J1 such that Xl "'J( l X2 . T hen since XI , X2 E H 


we have JXl "'HI ] J X2' But JXI, JX2 E JdJ = Z(HIJ ), so JX I = JX2. Therefore, 


JX'1 "'hi] J X2 by the element J1. 


Therefore, by induction, so Kl splits normally over JII J. Hence, there exists K ~ K I 


such that Kl KJI and K n JI J. Now G = HKI H K J1 H K. Also, 


H n K = H n Kl n K = J1 n K = J. 


Let h E H. Then IKhKIKI = IKhl/ lKh n KI. Now 


Jh = KhnJf = KhnJl :::; KhnK :::; Kh and J implies Jh = J :::; K, so Jh :::; KnKh. 


Hence 


IKILI IKhl IKI IGI 

IKh n KI I IJhl = llf = IHI 


so 

IKhKlllKII = ~ Il!fl. 
K IKI IJI IJI 

Therefore, IKhl/lKh n KI = 1, so Kh = Kh n K which implies that Kh :::; K. But, 

since IKhl = IKI, we get Kh = K , so K ~ G. o 

Lemma 4.12 Let G be a group, H:::; K :::; G, L:::; G. Then K n HL = H (K n L ). 
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Proof Let hx E H(K n L ). Then hE H ::; K and x E K n L ::; K. Thus, hx E K. 

Also h E H and x E K n L ::; L implies that hx E H L. Hence, x E K n HL, so 

KnHL :2 H(KnL). Let hI E KnHL where h E H and IE L. Now hi E K, 

so there exists k E K such that hI = k. Thus, I = h-Ik E H K = K. Hence, 

I E K n L which implies that hI E H(L n K). Hence, K n H LH(K n L). Therefore, 

K n HL = H(K n L). o 

Theorem 4.13 Let G be a group, J -:J H ::; L ::; G, HI J is a p-gmup, and 

gcd(tm , m) = l. Further assume that whenever hI, h2 E H such that hI f'VG h2 then 

hI f'V L h2. Th en G splits nor'mally over HI J if and only if L splits normally over 

HIJ· 

Proof If G splits normally over HI J then there exists K -:JG such that G = H K, Hn 

K = J. Then L = LnG = L n H K = H(L n K) by Lemma 3.24. Since K -:J G then 

K n L -:J L. Also, H n L n K = J n L = J, so L splits normally over HIJ. 

Suppose L splits normally over HI J. Let hI, h2 E H such that hI f'VG h2. Then 

hI f'VL h2 by assumption. Now J -:J H::; L , HIJ is a p-group and 

IGI/IHI = IGI/ILI ILIIHI, so ILI/IHI I IGI/IHI· Therefore, gcd(mr , m) = 1 which 

implies that Jh l f'VHf J Jh2 by Theorem 3.2 .23. Therefore, G splits normally over 

HI J by Theorem 3.2.23. o 

Lemma 4.14 Let G be a group, P E Sylp(G) , and H -:J G such that GIH is a 

p-subgroup. Then G = PH. 

Proof By a previous lemma PHIH E Sylp( G I H) and since G I H is a p-group, 

G I H = PHI H . Let 9 E G. Then 9 H E G I H = PHI H, so there exists pEP, h E H 
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such that gH = phH. Thus, (ph)-Ig E H so there exists hI E H such that 

(ph)-l g = hI which implies that 9 = phhi E PH. Hence, G = PH. o 

Theorem 4.15 Let G be a group, P E Sylp(G) such that Nc(Q)/Cc(Q) is a p-group 

for all Q ::; P. Then for' all P* E Sylp(G) and for all x E P n P* , P """CG(X) P" 

Proof Usc induction on !PIliP n P*I. Let Q = P n P* and x E Q. If P = P* t hen 

pI = P* and 1 E Cc(x) and ,ve are done. 

Vvithout loss of generality we may assume P #- p'. Then Q < P, so 

Q < Np(Q) ::; Nc(Q). By Sylow'S Second Theorem there exists Ql E Sylp(Nc (Q)) 

such that Np(Q) ::; Ql. Again by Sylow'S Second Theorem there exists Pl E Sylp(G) 

sllch that Ql ::; Pl' Hence, Q < Np(Q) ::; Ql ::; PI then 

Q < Np(C}) ::; P n Q1 ::; P n PI ::; P, so !PIliP n Pli < !PII IQI. Also, 

x E Q ::; P n Q1 ::; P n Pl' By induction there exists Yl E Cc(::r) such that PI = PYI. 

Hence, P """Cc(x) Pl' 

Also , Q < p' , so Q < Np.(Q) ::; Nc(Q). By Sylow's Second Theorem there exists 

wE Nc(Q) such that Np.(Q)::; Qr. Since Nc(Q)/Cc(Q) is ap-group by a previous 

lemma Nc(Q) = QICG(Q), so w = qc where q E Q and c E CC(Q). Now 

Q < Np. (Q) ::; Qf = Qic = Q~ ::; P~ = pYIC. 

Hence, Q < Np• (Q) ::; P* n pYle::; pYle. Also, 

IPYlel IPYICI!PI 
-:-::1 p:'-n-----::p=--Y-----;-lcl < -I-Q-I = -IQI 

and Nc (H)ICc(H) is a p-group for all H ::; pYle. Now x = X YIC E P* n p YIC so by 

induction there exists Y2 E Cc(x) such that P* = PYICY2 and YICY2 E Cc(x) . Hence, 

P """cG(x ) P* . o 
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T heorem 4.1 6 Frobenius Let G be a group and P E S ylp(G). Then G splits 

normally over P if and only if Nc(Q)/Cc(Q) is a p-group for all Q ~ p. 

Proof Suppose G splits normally over P. Then there exists K ~ G such t hat 

G = PK and P n ]( = 1. Let Q ~ P. Then J( n Nc (Q) ~ Nc (Q) and Q ~ Nc(Q ) so 

[Q, K n Nc(Q)] ~ Q n K n Nc (Q) = Q n ]( ~ P n K = 1. Therefore, 

K n Nc (Q) ~ Cc (Q ) ~ Nc (Q). Now by the second isomorphism theorem 

Nc(Q) ~NC(Q)K <G/K=PK/K~ p/pnK
KnNc(Q) - K ­

so Nc(Q)/K n Nc (Q) is a p-groupL Then 

INc(Q)/Cc(Q)1 = INc(Q)11 = INc(Q)I/IK n Nc (Q )1 
ICc(Q) ICc(Q)I/IK n Nc (Q)1 

is a power of p. Therefore, Nc(Q)/Cc(Q) is a p-group. Now suppose Nc (Q)/Cc (Q) 

is a p-group for all Q ~ P. Then P ~ Nc(P) and P E Sylp(Nc(P)), so by a previous 

theorem we know that Nc(P) splits over P. Therefore, there exists J( ~ Nc(P ) such 

that Nc(P) = PK and P n K = 1. We claim K is a p'-group(p prime group) . Let 

Po E Sylp(K). Then since P ~ Nc(P) and K ~ Nc(P) we know PPo ~ G. Also, 

P ~ PPo and PPo is a p-group. Hence, P = PPo since P E Sylp(G), so 

Po ~ P n K = 1 which implies Po = 1. Therefore, K is a p'-group. Now 

KCc(P) /Cc( P) ~ Nc (P)/Cc(P) and Nc(P)/Cc(P) is ap-group, so ](Cc(P)/CG(P) 

is a p-group. But 

IKCc(P)1 _ IKIICc(P)1 1 = IK I 
IKCc(P)/Cc(P) I = l/"l n \ - 1 T/ ~ (n\ 1 ICc (P) I IK n Cc(P ) II 1 /"l 

and 

IKI IIKI. 
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Hence, since K is a p'-group, we get IKCe(P)ICe(P) I = po = 1. Hence, 

KCe(P)ICe(P) = lCe (P) or Ce(P) = KCe(P) or K :::; Ce(P). Therefore, P and 

K commute. Hence, K::::l PK = Ne(P) so 1 ::::l P :::; Ne(P) :::; G, gcd(Wt, lfl) = 1, 

PII is a p-group and Ne(P) splits normally over P. Let x, yEP such that x "'e y. 

Then there exists 9 E G such that x = y9. Therefore, x E PnP9, so by Theorem 3.27 

there exists Yl E Ce(x) such that PYI = P9. Therefore, P = p9y~l, so gYl 1 E NG (P). 

Also, y9 = x implies y9y~1 = xy~l = x since Yl 1 E Ce(x). Therefore, x "'Na(P) y, so 

G splits normally over P. o 
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