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1 Thesis Abstract

Let G be a group and H < G. Then we say G splits over H if there exists a subgroup
K < G such that G = HK and HN K = 1. If it so happens that in addition K 4G
then we say G splits normally over H.

If the structure of the subgroup H or K is particularly nice, say H is cyclic or
maybe abelian, then one can expect that the structure of the whole group G will be
nice or at least influenced in some way by the structure of H or K. For instance, it’s
well known that if G splits normally over H and both H and K are solvable then G
is also solvable. A more fundamental example is if G splits normally over H, G/K is
abelian, and the commutator subgroup G' < H, then G is abelian.

It’s this influence on the structure of G that makes it important to determine
when a group will split over one of its subgroups. But what conditions placed on
G or on H are sufficient in order to ensure that G splits over H? Is it possible to
actually characterize whether or not G will split over a subgroup H in terms of group
theoretic properties of H or G?

In the early 1900’s mathematicians such as W-. Burnside [1], F.G. Frobenius [2], P.
Hall [3], and Schur and H. Zassenhaus [6] made efforts to finding the answers to this
question for various subgroups H of various groups GG. In this expository paper we
chronical the development of their work and offer proofs of the theorems they were
able to prove. We do this mainly through the use of special homomorphism called

the transfer homomorphism.
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2 Definitions

Definition A nonempty set G equipped with an operation * on it is said to form a
group under that operation if it obeys the following laws, called the group axioms:
(1) Closure: For any a,b € G, we have a xb € G.

(2) Associativity: For any a,b,c € G, we have a x (bxc) = (a*b) xc.

(3) Identity: There exists e € G such that axe =e*xa =a foralla € G.

(4) Inverse: For each a € G there exists an element a=! € G such that a xa™! =
a ! xa =e. Such an element ™! € G is called an inverse of a € G. O
We suppress the * notation and write ab for a * b and 1 for e.

Definition A group G with operation * is said to be abelian if the operation x on
G obeys the commutative law or, in other words, if for every a,b € G we have
axb="bxa. O
Definition Let G be any group. Then the centre of G, denoted Z(G), consists of
the elements of G that commute with every element of G. O
In other words, Z(G)={z € G | zy = yx for all y € G}. Note that 1y = y = y1 for all
y € G,s0 1€ Z(G), and the centre is a nonempty subset of G. In fact, Z(G) < G.
Definition Let G be a group and H a subgroup of G. If for all g € G we ghg™! € H

for all h € H and g € G, then we say H is a normal subgroup of G and

write H < @G. O
Lemma 2.1 Let G be a group, g € G, and n € Z™ such that ¢g" = 1. Then |g| | n.

Proof The Division Algorithm implies there exists ¢, € Z such that n = [g|lg +



and 0 <7 < |g|. Then

1=g"= glglq+r — glglqgr

Therefore 1 = ¢g”. But r < |g|, so 7 = 0 by the minimality of |g|. Hence, n = |g|¢q and

lg] | . -
Lemma 2.2 Let G be a group, g € G. Then g/¢l = 1.

Proof Now (g) = {1,9,9%¢%...4!'} < G . Then by Lagrange |(g)| | |G|, so

lg| | |G| .Therefore, there exists k € Z such that |g|k = |G|. Hence,

Lemma 2.3 Let G be a group and a,b € G such that ab € Z(G). Then ab = ba.

Proof Since ab € Z(G), ab(b) = (b)ab. This implies that abbb~' = babb~!. Hence

abl = bal and we get ab = ba. O

Theorem 2.4 First Isomorphism Theorem: Let G; and G5 be groups and

¢: Gi = G, be a homomorphism.Then G1/Kerng = G1)¢.

Theorem 2.5 The Second Isomorphism Theorem: Let G be a group, N <G,

and H < G. Then HN/N = H/HNN.



Proof Define

®:H— HN/N

by (h)® = hN for all h € H. Notice N 4G means HN < G and N < HN, so

N < HN. Therefore, HN/N is a group. Also, N <G means NNH <H,so H/HNN

is a group. Let hy,hy € H. Then (h1hy)® = hyho N = hyNhoN = (hy)®(h,)®, so @

is a homomorphism.

Let hnN € HN/N. Then (h)® = hN = hnN since (hn)"*h =n~! € N, so ® is onto.
Finally, h € Kern® if and only if (h)® = 1N if and only if RN = 1N if and only if

17'h € N if and only if h € N if and only if h € HN N. Therefore, Kern® = HNN.

Now by the First Isomorphism Theorem H/Kern® = (H)®, which implies that

H/HNN = HN/N.

O
Definition Let G be a group and H < G. Then we say G splits over H if there
exists a subgroup K < G such that G = HK and HN K = 1. O

Example 1 In S, if

H = {1,(1234), (13)(24), (1432), (14)(23), (12)(34), (13), (24)},

and K = ((123)) then, S; = HK and H N K = 1. Therefore, S; splits normally over
H.

Example 2 In Dy, if H = {1,(24), (13),(13)(24)} and K = ((12)(34)) then Dy = HK
and HNK = 1.

Definition Let G be a group and H < G. Then we say G splits normally over H



if there exists a subgroup K < G such that G = HK and HN K = 1. O
Example 3 In S;, if H = ((123)) and K = ((12)) then H < S3, S3 = HK, and
H N K =1. Thus, S3 splits normally over H.

Definition Let G be a group, a,b € G, H <G and K < G. Then

(1) [a,b] = a™ b7 'ab is called the commutator of a and b.

(2) [H, K] = ({[h, k]

h € H and k € K}).

(3) G' = ({[a,b] | a,b € G}) is called the commutator subgroup. O

Lemma 2.6 Let G be a group, a,b€ G, H LG, and K < G. Then

(1) [a,b] =1 if and only if ab = ba.

(2) G'<G.

(3) G/G' is abelian.

(4) If G/H is abelian then G’ < H.

(5) If G' < K then K is normal that is K < G.

Proof For (1) [a,b] = 1if and only if a~'b~'ab = 1 if and only if ab = ba.

For (2) we know G’ < G by definition. Now let g € G and z € G'.

Then z = [I2,[a;, b;]* where a;,b; € G, for all 1 < i < m, and k; € Z*, for all
1 <1< m.

Notice:
g 'a,blg = g 'a"'blabg
= g 'a"'gg7'b g9 "agg ™ bg
= (97'ag) " (g7bg) " (9 "ag) (g7 "bg)

= [¢9"ag, g7 "bg].
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and

9 '[a,b][a,blg = g '[a,blgg"[a,blg
= [97"ag, 97 "bg]lg""ag, g™ bg]

= [g " ag, 9" bg]*.
Now,

m
9'zg = g7 ' ]lai b:]%g
H
. 1

= | g '[aib:i]¥g
=1
m

= 1I(g7"[a:, bi]g)"

1=1
m

= Illg7"aig, 97 bigl" € G'. .

=1
Thus, G' < G.

For (3) let G'a,G'b € G/G'. Then
[G'a,G'b] = (G'a) ' (G'b)"'(G'a)(G'D)

= G'a 'G'vIG'aG'b

= G'a”'b7lab

= G'la,b)

= 41
since [a,b]17" = [a,b] € G'. Hence [G'a,G'b] = G'1 or G'aG'b = G'bG'a by (1), so
G/G" is abelian.
For (4) let a,b € G. Then Ha™', Hb™' € G/H, so Ha 'Hb™! = Hb"'Ha™!, since

G/H is abelian, or Ha™'6™' = Hb 'a™!. Hence
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a7 i(b7la )P = a7 ab € H. So [a,b] € H. Now since H < G we get G' < H
for all [a,b] € H for a,b € G.

For (5) let k € K and g € G. We show that ¢g7'kg € K.

k7'g kg = [k, 9] € G' < K, so k7'g kg € K. Thus, there exists k; € K such that
k='g='kg = k,. Hence g~'kg = kk, € K. Therefore, K < G. 0
Definition Let G be a group and a,b € G. Then a and b are conjugates if there
exists g € G such that a = g~ 'bg, written as b9. O
Definition Let G be a group and S a nonempty set. Then G acts on S if there is a

homomorphism

¢: G — Sym(S),

where Sym(S) = {¢: S — S| ¢ is one to one and onto}. O
Notation: Let G be a group and S be a set such that G acts on S via ¢. If g € G,
a € S then ¢(g)(a) = ga.

Definition Let G be a group and S a set such that G acts on S and a € S. The
stabilizer in G of a, G,, is defined by G, = {g € G | ga = a}. O
Definition Let G be a group, S a set, and a € S such that G acts on S. The orbit

of G on S containing a is

Ga={ga|g € G}



THE SYLOW THEOREMS

Definition Let G be a group, p be a prime, and n € Z* U {0} such that p" | |G| but
p"*! does not |G|. Then

(1) |G|, = p" (called the pt! part of G)

(2) If P < G and |P| = p", we call P a Sylow p-subgroup of G.

(3) Syly(G) is the set of Sylow p-subgroups of G. O

Theorem 2.7 First Sylow Theorem Let G be a group and p be a prime. Then

Syl,(G) # 0.

Theorem 2.8 Second Sylow Theorem Let G be a group, p be a prime, and
H < G be a p-subgroup. Then there exists P € Syl,(G) such that H < P. Moreover,

G acts transitively on Syl,(G) by conjugation.



3 The Transfer Homomorphism

Definition Let G be a group and H < G. A subset {¢;}]-, is called a transversal

of H in G if

where n = |G|/|H].

Theorem 3.1 Let G be a group, and H < G and & is the set of transversals of H
m G. Then
(1) G acts on S by {ti-,}g = {tig}hit,.

(2) H acts on S by h{t;}1n, = {ht:} 1.

Proof For (1), if Ht;g = Ht;g for some ¢ and j then Ht; = Ht;, so 1 = j. Hence
{Htg}?.,| = {Ht;}™,|. Therefore, G = U, Ht;g and {t;g}", € S.For (2), let
T=t}", €S, heH then G =}, Ht;, We show that

{HRY™S,| = [{Ht),|. {Hht}n, = {Ht;}%, since (ht;)t;! = h € H for all
1 <17 <n. Hence UL, Hht; = U, Ht; = G. So {ht;}]-, € S. O
Definition Let G be a group, J < H < G, such that H/J is abelian. If T\U € S

where T' = {t;}I*., and U = {w;}}, and Ht; = Hu, for all 1 <7 < n define
T/U = I Jtiu;' € H/J.

O

Lemma 3.2 Let G be a group and J<H < G such that H/J is abelian. If T,U,V €
then

(1)T)T =J



(2) T/U = (U/T)™

(3) TJU = (T/V)(V/U)

Proof For (1)

T/T =

For (2) since H/J is abelian,

T/U

For (3) since H/J is abelian,

T/U =

e Jtt:!
m,Jl=J1J1...J1
Ji1...1

J

= H?zlJtiui_l
= H?:l‘](uiti_l)_l
= (H?:ljuiti—l)—l

= (/)™

n -1
Hizlu]tiui

M, Jtw; tvug !

e, Jto7 Jvu) !
i=1J LU, JUU,

n —11n -1
i:]‘-]tlvi H."leviui

(T/V)(V/U).



Lemma 3.3 Let G be a group and J < H < G such that H/J is abelian and T € .

Define the transfer homomorphism
7:G—>H/J

by (g)7 =Tg/T for all g € G. Then
(1) IfU€S, ge G andh € H, thenTg/Ug=T/U and KT /hU =T/U.
(2) 7 is independent of T (i.e. Tg/T =Ug/U for allT,U € )

(3) T is a homomorphism.
Proof For (1)

Tg/Ug = T Jtig(uig)™"
= M, Jtigg  u;!

= T/U
and since H/J is abelian,

AT/AU = T Jht;(hu)l = 1)
= II*, Jhtu ' h!
= M, JhJtu;'Jh!
= T, JhJtius(Jh) ™!
= i = 1"Jt;u  (Jh)(JR)™' = J1Jtul — 1)
= I, Jtu;!
= T/U.
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For (2) let U € $. Then by (1)

Tg/T = (Tg/Ug)(Ug/U)U/T)
= (T/U)(Ug/U)(U/T)
= (T/U)U/T)(Ug/U)
= (T/U)T/U)""(Ug/U)
= JUg/U

= Ug/U

since H/J is abelian.

For (3) let g1,92 € G. Then

(9192)7 = Tag192/T
= (T.9192/T92)(T.92/T)
= (Tq/T)(Tg2/T)

= (91)7(g2)T.

O

Definition Let G be a group and S C G. Define the subgroup generated by S,

(S) = Nscu<e H. Then clearly, (S) < G, and S C (S). O

11



Lemma 3.4 Let G be a group. Then (S) = s7'sh?...s.*, where s; € S,n; € Z, and

keZt.

Proof Let T = {s7's3*...s¢* | s; € S,n; € Z,k € Z*}. Realize that T is closed,
T contains all of its inverses, and 1 = s® € T. Therefore, T < G. Also, S C T since
s=s' €T forall s € S. Hence (S) <T.

Let s7'sh?...8)* € T and S C H < G. Then s; € H forall 1 < i < k, so
s;t € H since H < G. So s{'sy?...sp* € H since H < G. Therefore, T < H, so

T <Nscu<c H = (S). -

Lemma 3.5 Let G be a group, J I H < G, H/J be abelian and suppose

gcd(l%, J%) =1. Then G'NZ(G)NH < J.

Proof Let he€ G'NZ(G)N H. Then by the First Isomorphism Theorem
G/Kernt = (G)7 < H/J, so G/Kernr is abelian. Hence, G’ < Kernr, so h € Kernr.

Therefore, since h € Z(G),

J=(h)t = Th/T =[] Jt:ht;*

=1

= [[Jtht;' =] Jh=Jhh...h
i=1

i=1

= Jh"

where n = |G|/|H|. Hence, J = Jh", so h™* € J.

Now working H/J with Jh. Then (Jh)" = Jh" = J, so |Jh| | 2k by a previous

H|

|
lemma. Also, (Jh) 7" = J. Hence |Jh| | JIH7|1 Therefore, |Jh| = 1 since

gcd({%, Jﬁl) = 1. Hence Jh = J, so h € J. Therefore G'N Z(G)NH < J. O

12



Definition Let G be a group , J<IH < G such that H/J is abelian. Define a relation
on & by

T~UMT/U=J

Then ~ is an equivalence relation on ¥ by lemma 3.5.

This follows from lemma 3.5 T ~ T. T ~ T implies
n

T/T = []Jtt!
n=t

= [[J1

= J1J1...J1
= Jl.u:l
= Jl=J.

Hence ~ is reflexive.

Also if w € U,T ~ U implies U ~ T. T ~ U implies T/U = J. U ~ T implies
U/T=(T/U)"'=J1'=J. Hence, U ~T.

Next, T ~ U implies T/U = [[t_; Jtiu;'. U ~ V implies U/V = [IP_; Jt;u;".

T~U~YV impliesT/U-U/V=J-J=J Hence, T ~ U. O

Lemma 3.6 Let G be a group, J I H < G, H/J is abelian, and ~ be as above. For
TeUle[T)={U €S |U~T} (Equivalence Class) and Q = {[T] | T € S}. Then

G and H acts on Q by [T]g = [Tg] and [T)h = [hT) for all g € G and for all h € H.

Proof It’s enough to show this actions are well defined. Well, from a previous lemma

if T~ Uthen J =T/U = Tg/Ug, so Tg ~ Ug. Hence, [Tg] = [Ug]. Therefore,

13



If T ~ U then J = T/U = hT/hU. Hence, hT ~ hU so [hT] = [hU]. Thus,
[T)h = [U]h.
We show that if [T'] € Q then [Tg] €  and [hT] € Q. If [T] € Q then T € ¥ implies

Tg €S, hT € . Hence [Ty, [hT] € Q. O

Lemma 3.7 Let G be a group, J I H < G, H/J be abelian, gcd(%, l!f—]'ll) =1 and
~,T,§) be as above. Then

(1) H acts transitively on Q.

(2) H[T] = J for all [T] € Q.

Proof For (1) let [T],[U] € Q and let n = f%ll,m = ]IE'II We want to find h € H
such that [T|h = [U]. Now [T]h = [U] if and only if [hT] = [U] if and only if kT ~ U

if and only if RT/U = J. By Lemma 3.5
hT/U = (hT/T)(T/U)
n
= [ Jht:t;(T/U)

i=1

= ﬁ JWT/U)

i=1

= M)
since ged(n, m) = 1 there exists r,s € Z such that rn + sm = —1. Let h € H such
that Jh = (T/U)" then
JRNT/U) = ((T/U))Y(T/U)
= (T/U)™!
= (T/U)—"
= ((r/o)ym™

14



Therefore, [T|h = [U].

For (2), let j € J. Then

JT/T = [ 75t

Il
=H
~
.

Il
=Py
N

I
~

Therefore, jT' ~ T which implies [jT] = [T]. Hence, [T]j = [T], so J < H.

Let h € Hyp then [Th = [T] implies [hT] = [T, so hT ~ T. Therefore,

J = hT/T
= ﬁjhtitgl
1=1
7
g=1
= ﬁth...h
=1

= Jh™

So h™ € J. Now working H/J with Jh, (Jh)* = Jh™ = J, so |Jh| | n by lemma 2.1.
Also, (Jh.‘)l"_}"l = J. Hence, |Jh| | %l = m, so |Jh| = 1, since ged(m,n) = 1. Hence,
Jh=J,s0h & J. Thus, Hgp < J, Hp) = J. O
Let G be a group, J < H < G such that H/J is abelian and ¢ € G. Since 7 is

independent of the choice of the transversal used, we are going to find a transversal

15



to use to make 7 easier to compute.

Let (g) act on S = {Hz | £ € G} by right multiplication. Then

where n is the number of orbits of (g) on S and

©; = {Hz;,Hz,9,Hz;9°, ..., Hz;g" '}

where Hz;9" = Hz; for all 1 <1 < n.

Let T'={z;9" |0 <r <m;— 1,1 <4< n}. Then

Tg={z;9" |0<r<m;,1<i<n}

Hence, (g)7 = Tg/T = [T~, Jx;g™z; " where z;9™z;' € H for all 1 < 4 < n and

* . n; = n, number of orbits of {(g) on S where n, # n.

16



4 The Splitting Theorems

Theorem 4.1 Let G be a group, J <H < G, H/J be abelian and gcd(lL%, %‘) = 1.
Then the following are equivalent:

(1) G splits normally over H/J.

(2) If hy,hy € H are conjugate in G then Jh, = Jh,.

(8) (BT = Jh™ where n = {3} for all h € H.

(4) Th ~ hT for allh € HT € S.

Proof For (1) implies (2), by (1) there exists K <4 G such that G = HK and
HNK =J. Let h € H where h € H. Now g = hik where h; € H, k € K, so
h9 = h™* = h¥ where hy = h™. Now [hy', k] = (h3')"'k~'h;'k € K since K < G
and [hy', k] = h3'(h;')* € H since h¥ € H. Therefore, h;'(h;!) € HNK = J,
so Jhy = Jh5. Thus, ho(hk)™' € J. Then Jhy = JhE, so Jh™ = Jh9. Hence,
Jh'™M = Jh9, so Jh = Jh9 since H/J is abelian. Therefore, (1) implies (2).

For (2) implies (3), let h € H. Now (h™)*  h™ ¢ H for all 1 < i < n and are
conjugate since

(h”ixi—l)xi — pni
Hence, by (2)

(h)T - HJ.Z'ih,ni;I'i_l
g=1

I
m:
=~
>
g

-

.
Il
et

I
=3
N
>
3

ﬂ
Il
—

= JhXim™ = Jp

17



Therefore, (h)T = Jh™.

For (3) implies (4), Let h € H. Then Th/hT = (Th/T)(T/hT) = ((h)7)(T/hT) =
Jh" 1P, Jh™t = JA"Jh™™ = Jh"h™™ = Jh® = J1 = J. Therefore, Th ~ hT.
For (4) implies (1), since Th ~ hT for all h € H we have [Th] = [hT] for all h € H.
Hence, since H acts transitively on {2 on the left, we know H act transitively on
on the right.
Let g€ G and T € . Claim: G = G .
Now [Tg] € Q and [T] € Q. Since H acts transitively on §2 on the right there exists
h € H such that [Tglh = [T], so [T]gh = [T]. Therefore, gh € G|z}, so g € GH.
Hence, G = GirjH. Also, H NGy} = Hp) = J by Theorem 3.10. Therefore, G splits
over H/J.

Next we show that G I G. We claim that Gr; = Kernr.
9€Gm = [Tlg=[T]+

— [Tg]=[T] &

= Tg~T S

= Tg/T=J&

= (gr=J&

= g € Kernr.
Hence, Gjy) = Kernt 4 G. O
Definition: Let G be a group and 7 be a set of primes.
(1) 7(G)={p | p is prime and p | |G|}.

18



(2) '={p | p is prime and p ¢ 7}.
(3) G is a m-group if 7(G) C 7.
(4) A subgroup H < G is a Hall m-subgroup if H is a m-group and 7(G/H) C «'.
(5) Hall,(G) = {H < G | H is a Hall w-subgroup}. O
Example 1 Let |G| = 2* x 3?2 x 55, Then 7(G) = {2,3,5} and G is a {2, 3,5} - group.
Also, if HeHallgs5)(G) then |H| = 32 x 5°.
Example 2 Consider As. |As| =5!/2=22x3 x5
We know that (As); = A4, so [(As)i] = |A4] = 2% x 3. Thus, (45); is a {2,3} -
subgroup. Also,

| As] P2x3xb

o]~ 2xs 0SB

m(As/(As)1) € {2,3}. Thus, (A4s); € Halljz3(As)

Example 3 We show that Halls5)(As) = 0. Solution: Let H € Hall{y5)(As). Then
|As| = 51/2=5x4x3x2x1+2=22x3x5,s0|H|=22x5and |4;|/|H| = 3.
Let As act on S = {Hz | z € A5} by right multiplication via ® : A5 — Sym(S) = S
defined by Kern® < A5. Since Ajs is simple, Kern® = 1 or As. If Kern® = 1, by First
Isomorphism Theorem

A5/Kern<1> = (A5)® < 53.

But then

|As| | |S3] = As/1 2 A5 = (A5)® < S;.

Now, 60 = | A5

|Ss| = 6, a contradiction. If

Kern® = As then A5 = Kern® = Nycq H? < H. Thus, As = H, a contradiction.

Hence, Halljy51(As) = 0. O
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Theorem 4.2 Let G be a group , H € Hall,(G), and H be abelian. Then G splits
normally over H if and only if whenever for all hy, hy € H such that hy ~¢g hy then
hy = ha.

Proof Now, 1<dH < G and H/1 = H is abelian since H € Hall,(G) we know
gcd(%—%, l%l) = 1. Also, G splits normally over H if and only if G splits normally over
H/1. By Theorem 3.11 G splits normally over H/1 if and only if h; ~g hy implies
{1}hy = {1}hy, if and only if h; ~¢ h, implies hihy;* € {1}, which is true if and only
if Ay ~¢g ho implies h; = hy. O
Theorem 4.3 Let G be a group, P € Syl,(G), and z,y € Z(P) such that z ~¢ y.

Then x ~ng(p) Y-

Proof Since z ~¢ y there exists g € G such that z = y9. Since z,y € Z(P),

P < Ca(z)NCq(y), so P € Syl,((Ce(z)). Also, P < Cg(y) implies

P9 < Cg(y)d = Ce(y®) = Ce(x), so P,P9 € Syl,((Ce(z)). Hence, there exists
90 € Cg(x) such that P9% = P. Thus, ggo € Ng(P), and 399 = z% = z. Therefore,
T ~Ng(P) Y- O
Theorem 4.4 Burnside Let G be a group and P € Syl,(G) such that P < Z(Ng(P)).

Then G splits normally over P.

Proof Since P < Z(Ng(P)), P is abelian. Also, P € Hall,(G) for 7 = {p}. Let
z,y € P such that £ ~; y. Then there exists ¢ € G such that z = y9 since P is
abelian we know z,y € Z(P), so by Theorem 3.13 z ~ng(P) Y. Hence, there exists
n € Ng(P) such that z = y* = y since P < Z(Ng(P)) and y € P. Therefore, by

Theorcin 3.12 G splits normally over P. O
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Theorem 4.5 Let G be a group, H € Hall,(G) such that H < G and H is abelian.
Then G splits over H and G acts transitively on the complements of H in G by

conjugation.

Proof Now,1<H <G and H/1 = H is abelian and g(:d(ll%, l%l) =1 since

H € Hall,(G). Hence, by the previous theorem H acts transitively on €2 on the left
and Hp) = 1.

Claim: G = GyjH. We use a Frattini Argument. Let g € G. Since H acts
transitively on Q, Q = [T|H and [T]g € Q. Therefore, there exists h € H such that
[Tlg = [T)h. Hence, [T)gh™' = [T]. Thus, gh™' € Gy, so g € GirpH. Hence,
G = GmH, and

HnN G[T] =Hp =1

Therefore, G splits over H.

Next, let L be another complement of H in G. Then G = HL and HN L = 1. Also,

_ 1
L = 2
)
|HN L
14|
[H]
el
Eil

Claim: L € §. If [},ly € L such that Hl, = Hly then I1,l;' € HNL =1, so 1y, L.
Hence, L € S and [L] € Q. For [ € L,IL = L then [L]l = [IL] = [L], so L < Gy.

Now there exists h € H such that [L]h = [T]. But then L* < Giun = Giph = G,



Now

IGl _1GmH| _ _1Gml  _ |G
|H| |H| |G N A 1

|Lh| =|L| = — |G[T]|.

Hence, |L*| = |Girj| and L* < G|y} implies L* = G|7). Therefore, G acts transitively

on complements of H in G. m|

Lemma 4.6 Let G be a group, N QG,H € Hall,(G). Then
(1) HN/N € Hall,(G/N).
(2) HN N € Hall,(N).

Proof For (1),

AN _|HN|_ H|N| __|H
N 'TN] TINJHAN| T [HNN|

, so m(4X) C 7 since H € Hall,(G). Hence, Z¥ is a 7-group.

Also,
IG/N| _ IGI/INl _ |G|
|HN/N| |HN|/|N| |HN]|
and
|GI [HN| _ |G|
|HN| |H|  |H|
Hence, |G|/|HN| | |G|/|H| and n(G/H) C n'. Therefore,n(G/HN) C n'. Thus,

m(s7475) € 7', so HN/N € Hall,(G/N)

For (2). Since H is a m-group, H N N is a m-group. Also,

IGl= _ |H]
G/N|, = — .
SNl = 1N, = N
By (1)
HN, |HN]| H|
N = = =—
(G/Nl = | N | IN| ., |HNN|
therefore |N|, = |H N N|. Hence, HN N € Hall,(N). O
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Lemma 4.7 Let G be a group, and H QG. Then Z(H)<QG.

Proof Let he H,g € G, and hy € Z(H). Then

(7' hg)h = g 'higg~'(ghg™")g
= g ' (ghg " hyg

= hg g
since hy € Z(H) and ghg™! € H. Therefore, g~'h,g € Z(H), so Z(H) < G. 0

Theorem 4.8 Schur and H. Zassenhaus Let G be a group, H € Hall,(G) such

that H < G. Then G splits over H.

Proof Use induction on |G|. Let P € Syl,(H). Then G = Ng(P)H by Frattini
Argument. First, suppose |Ng(P)| < |G|. Now, HN Ng(P) < Ng(P) and HN Ng(P)

is a m-group, SO

No(P)l  _ INe(P)H| _ |G| _ ,

\HNNe(P)| — [H]  ~ |H| =

as H € Hall,(G). Hence, HNN¢g(P) € Hall,(Ng(P)), so by induction Ng(P) splits
over HN Ng(P). Hence, there exists K < Ng(P) such that Ng(P) = K(HNNg(P))
and K N (H N Ng(P)) = 1.Therefore, G = Ng(P)H = K(HN Ng(P))H = KH.
Also, KNH < KN Ng(P)NH = 1. Thus, G splits over H.

Secondly, if |[Ng(P)| = |G| then G = Ng(P), so P < G.

But then Z(P) < G. By Lemma 4.7 HZ(P)/Z(P) € Hall,(G/Z(P)). Also,
HZ(P)/Z(P)<G/Z(P)since H Z(P)<G. Now, |G/Z(P)| = |G|/|Z(P)| < |G| since
Z(P) # 1 as P is a p-group. Hence, by induction G/ Z(P) splits over H Z(P)/ Z(P),
so there exists K/Z(P) < G/Z(P) such that G/Z(P) = (HZ(P)/Z(P))(K/Z(P))
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and HZ(P)/Z(P)NK/Z(P) = Z(P). Hence, G = HZ(P)K = HK and

HNK < Z(P). Since H Z(P)/Z(P) € Hall,(G/Z(P)) we know K/Z(P) is a
m’-group. Also, since Z(P) is a m-group we also know that Z(P) € Hall,(K). More-
over, Z(P)< K and Z(P) are abelian, so by Theorem 3.16 K splits over Z(P).
Therefore, there exists L < K such that K = Z(P)L and Z(P)N L = 1. Hence,
G=HK=HZ(P)L=HLand HNL<HNLNK <LnN Z(P)=1. Thus, G
splits over H. O
Definition Let G' be a group and H < G. Then there is no fusion of H in G if
whenever h;, hy € H such that hy ~g hy then hy ~y hs. O
Example: There is fusion of A; in S3. (123) ~g,32) since (123)®? = (132) and
(23) ¢ As.

Definition Let G be a group and H < G. Then the focal subgroup of H in G is
Focg(H) = ({[h, g]lh € H,g € G, [h,g] € H}). O
Notice H' < Focg(H) < G'N H, so, by previous theorem Focg(H) < H and

H/Focg(H) is abelian.

Theorem 4.9 Let G be a group and H < G such that gcd(%%, ﬁ%) = 1. Then G

splits normally over H/Focg(H) and Focg(H) = HNG'.
Proof Notice that H/Focg(H) is abelian and

H| _ |H| |Foc(H)|
5]~ [Foco(H)]  |H

SO

H 1H]
[Foca(H)] ' |7
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Therefore, the g(‘d(ll%, [F_oc%ﬂ_n = 1; so we can use our previous theorem. Let

hy,hy € H such that hy ~. hy. Then there is g € G such that h; = hJ. Then
hihs! = h$h;' = [g,h;'] € H, s0 [g,h;']"* € H or [g,h3']™! = [hy,g] € H.
Therefore, (hihs')™! = [g,h3']"! = [ha,g] € Focg(H). Thus, hih;' € Focg(H)
since Focg(H) < G. Hence, Focg(H)h, = Focg(H)hy.and then by our theorem G
splits normally over H/Focg(H). Thus, there exists K < G such that G = HK and

HNK = Focg(H). Now
G/K=HK/K=H/HNK = H/Focg(H),

so G/K is abelian and then G7 < K. Hence, Focg(H) < HNG' < HNK = Focg(H).

It follows that Focg(H) = HNG'. 0

Theorem 4.10 Focal Subgroup Theorem Let G be a group and P € Syl,(G).

Then Focg(P) = PNG'.

Proof Since P € Syl,(G) we know gcd({%%) =1, s0 FOCg(P) = PNG' by the

previous theorem and G splits normally over P/P N G'. O
Theorem 4.11 Let G be a group, J < H < G, H/J is a p-subgroup suc’. that
gcd(f%, Jﬁl) = 1.Then the following are equivalent:

(1) G splits normally over H/J.

(2) Whenever hy, hy € H such that hy ~g hy then Jhy ~g;; Jho.

Proof For (1) implies (2) is the same as used before and shows that Jh, = Jhy, so
Jhy ~gyy Jhy by J1.

For (2)implics (1) use induction on |H|/|J|. Let J,/J = Z(H/J). Since H/J is
a p-group Z(H/J) # J. Also, if H/J is abelian then we are done by Theorem 3.12.
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Thus, H/J is not abelian, so (H/J) # H/J. Since J;/J<H/J weget J < J1<H < G.

Then |H|/|h| < |H|/|J|, and |H|/|Jy - |L|/|J] = [H|/|J], so

H/Jy is a p-group. Also, gcd({%,%) = 1. Let hy,hy € H such that h; ~g hs.
Then Jhy ~py; Jhe by J1, so Jihy ~pgyj, Jihy by ”the same element”. Therefore,
by induction (2)implies (1) here and then G splits normally over H/J;. Thus, there
exists k; <G = HK,; and HN K, = J,.

Now J<QJ, < K, and J,/J < H/J, J,/J is a p-group. Also. ILJJLI[ | ¥ and le_llll = {%,
SO ch(&l M) = 1. Let z;,2o € J; such that z; ~g, 9. Then since z;,2o, € H
we have Jz, ~g/y Jxo. But Jay,Jzy € Ji/J = Z(H/J), so Jx; = Jxy. Therefore,
Jxy ~y,5 Jzg by the element J1.

Therefore, by induction, so K splits normally over J;/J. Hence, there exists K < K,
such that K; = KJy and KNJ, = J. Now G = HK, = HKJ;, = HK. Also,
HNK=HNK.NK=JiNnK =J.

Let h € H. Then |[K"K/K|= |K"|/|[K" N K|. Now

Jh =K Jk = KhnJ, < KPNK < K" and J implies J* = J < K, so J* < KNK".

Hence
K Ik K] 6]
KO K| I ] |H]
SO
K K|~ 1] II

Therefore, |K"|/|K*" N K| =1, so K" = K" N K which implies that K" < K. But,

since |[K"| = |K|, we get K" = K,s0 K <G. O
Lemma 4.12 Let G be a group, H< K <G, L<G. Then KNHL=H(KNL).
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Proof Let hr € H(KNL). Thenh€ H< K andz € KNL < K. Thus, hz € K.
Also h € H and z € KNL < L implies that hx € HL. Hence, x € KN HL, so
KNHL D HIKNL). Let hl € KN HL where h € H and [ € L.}Now hl € K,
so there exists k € K such that hl = k. Thus, | = h™'k € HK = K. Hence,
l € KN L which implies that hl € H(L N K). Hence, K N HLH(K N L). Therefore,

KNHL=H(KNL). 0

Theorem 4.13 Let G be a group, J I H < L <G, H/J is a p-group, and
gcd(f%, 1‘171|1) = 1. Further assume that whenever hy, hy € H such that hy ~¢g hy then

hy ~i hy. Then G splits normally over H/J if and only if L splits normally over

H/J.

Proof If G splits normally over H/J then there exists K <G such that G = HK, HN
K=J Then L=LNG=LNHK = H(LNK) by Lemma 3.24. Since K < G then
KNL<KL. Also, HNLNK =JNL=J,so L splits normally over H/J.

Suppose L splits normally over H/J. Let hy,hy € H such that h; ~g hy. Then
hy ~r, hy by assumption. Now J < H < L, H/J is a p-group and
(GI/|H| = |GI/|LIIL|IH], so |L|/|H]| | |GI/|H]. Therefore, ged(1h, 1) = 1 which

implies that Jh, ~p,; Jhy by Theorem 3.2.23. Therefore, G splits normally over

H/J by Theorem 3.2.23. 0

Lemma 4.14 Let G be a group, P € Syl,(G), and H < G such that G/H is a

p-subgroup. Then G = PH.

Proof By a previous lemma PH/H € Syl,(G/H) and since G/H is a p-group,
G/H = PH/H. Let g € G. Then gH € G/H = PH/H, so there exists p € P,h € H
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such that gH = phH. Thus, (ph)~'g € H so there exists h; € H such that

(ph)~'g = h; which implies that g = phh, € PH. Hence, G = PH. O

Theorem 4.15 Let G be a group, P € Syl,(G) such that Ng(Q)/Ca(Q) is a p-group

for all Q < P. Then for all P* € Syl,(G) and for allx € PN P*, P ~gy(y) P*

Proof Use induction on [P|/|[PNP*|. Let @ = PN P* and z € Q. If P = P* then
P! = P* and 1 € Cg(z) and we are done.

Without loss of generality we may assume P # P*. Then Q) < P, so
Q@ < Np(Q) < Ng(Q). By Sylow’s Second Theorem there exists Q1 € Syl,(Na(Q))
such that Np(Q) < @,. Again by Sylow’s Second Theorem there exists P, € Syl,(G)
such that @, < P;. Hence, Q@ < Np(Q) < @, < P, then
Q< Np(Q)<PNQ < PNP <P, so|P|/|[PNP|<|P|/|Q]. Also,
r € Q < PN, < PNP,. By induction there exists y; € Cg(z) such that P, = P¥.
Hence, P ~¢ () P1.
Also, @ < P*, s0 Q < Np-(Q) < Ng(Q). By Sylow’s Second Theorem there exists
w € N¢(Q) such that Np-(Q) < QY. Since Ng(Q)/Cq(Q) is a p-group by a previous

lemma Ng(Q) = @,C6(Q), so w = gc where ¢ € @ and ¢ € Cg(Q). Now
Q< Np(Q) < QY =0QF =Qf < Pf = P"".

Hence, Q < Np«(Q) < P* N P¥1¢ < P¥%1¢, Also,

o] _[Pwe _|P|
[PaPud = Q@]

and Ng(H)/Cg(H) is a p-group for all H < P¥¢. Now z = z¥%¢ € P* N P¥¢ 50 by
induction there exists y, € Cg(z) such that P* = P12 and y,cy, € Cg(z). Hence,

P ~Ca(z) P O



Theorem 4.16 Frobenius Let G be a group and P € Syl,(G). Then G splits

normally over P if and only if No(Q)/Cg(Q) is a p-group for all Q < P.

Proof Suppose G splits normally over P. Then there exists K < G such that
G=PKand PNK =1. Let @ < P. Then KN Ng(Q) < Ng(Q) and Q < Ng(Q) so
Q. KNNg(Q)]<QNKNNgQ)=QNK < PN K = 1. Therefore,

KN Ng(Q) < Cs(Q) < Ng(Q). Now by the second isomorphism theorem

Ne(Q) . Ne(QK
KnNg(@) K

<G/K=PK/K~P/PNK

so Ng(Q)/K N Ng(Q) is a p-group!. Then

: Ne(@), INe(Q)I/IK N N&(Q)
INo(@)/Co(@ = 1o iy | = 1Ca@ IR P Nol@)

is a power of p. Therefore, Ng(Q)/Cq(Q) is a p-group. Now suppose Ng(Q)/Cq(Q)
is a p-group for all @ < P. Then P < Ng(P) and P € Syl,(Ng(P)), so by a previous
theorem we know that Ng(P) splits over P. Therefore, there exists X' < Ng(P) such
that Ng(P) = PK and PN K = 1. We claim K is a p’-group(p prime group). Let
Py € Syl,(K). Then since P < Ng(P) and K < Ng(P) we know PP, < G. Also,
P < PP, and PP, is a p-group. Hence, P = PP, since P € Syl,(G), so

Py < PN K =1 which implies Py = 1. Therefore, K is a p’-group. Now
KCg(P)/Cg(P) < Ng(P)/Cg(P) and Ng(P)/Cg(P) is a p-group, so KCg(P)/Cgs(P)
is a p-group. But

CKCo(P) | IKICe(P) 1 K]
KCalP)/CelP)l = JecPy] ~ K nCo®)ICalP)] ~ TR N ColP)]

and

K]

e R = K-
Encem) X!
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Hence, since K is a p'-group, we get |KCg(P)/Ce(P)| = p° = 1. Hence,

KCg(P)/Cg(P) = 1Cg(P) or Cg(P) = KCg(P) or K < Cg(P). Therefore, P and
K commute. Hence, K I PK = Ng(P)so1<4P < Ng(P) <G, ng(ll%, 1%[) =1
P/1 is a p-group and Ng(P) splits normally over P. Let z,y € P such that z ~g ¥.
Then there exists g € G such that 2 = y9. Therefore, z € PN PY, so by Theorem 3.27
there exists y; € Ce(x) such that P¥* = P9. Therefore, P = ngfl, so gyi' € Ng(P).

Also, y? = z implies y% = z¥i = z since y; ' € Cg(x). Therefore, z ~Ng(P) U, SO

G splits normally over P. O
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