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ABSTRACT

Construction and Analysis of Conformal Mappings
on Circular and Polygonal Domains

Jeffrey A. Osikiewicz
- Master of Science in Mathematics

Youngstown State University, 1990

This paper will consist of an examination of conformal mappings on circular and polygo-
pal domains. In particular, the mapping properties of Mébius, or bilinear, transformations
will be investigated. Also, the construction of the Schwarz-Christoffel transformation and

its variations will be examined.
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INTRODUCTION

This paper is an expository report designed to elaborate on topics usually found in a
frst year graduate course in complex analysis. Namely, those topics concerning confor-
mal mappings and their effect on circular and polygonal domains. Therefore, a graduate
student may find this paper useful as a supplement to his studies in complex analysis.

Chapter 0 presents background material referred to in the succeeding chapters of the
paper. This chapter is optional for the reader with a working knowledge of complex
analysis. Chapter 1 examines the mapping properties of analytic functions. Chapter 2
concerns Mobius, or bilinear, transformations and their effect on circular domains. Chapter
3is a rigorous development of the Schwarz-Christoffel transformation which maps the upper
half-plane onto the interior of a polygon. Chapter 4 then presents some variations of the

transformation developed in Chapter 3. Chapter 5 gives some examples of the theory

presented in Chapters 2, 3, and 4, while Chapter 6 is the conclusion.




CHAPTER 0
Review Material

In this chapter, we present background material which will be used in the subsequent

chapters. This chapter is optional for the reader with a working knowledge of complex

ana_lySiS .

Definition 0.1 [3]. An arc C in the complex plane is a set of points z = (z,y) such that
2(t) ==(t) +1y(t), a<t<y,
where z(t) and y(t) are continuous functions of the real parameter t.

Definition 0.2 [3]. An arc C is a simple arc, or Jordan arc, if it does not cross itself.
That is, C is simple if z(t1) # z(t2) when t; # t;, t € [a,b]. If C is simple except for the

fact that z(b) = z(a), then C is a simple closed curve, or a Jordan curve.

Definition 0.3 [3]. An arc z = 2(t) (a <t < b) is a smooth arc if its derivative 2'(t) is

both continuous and nonzero throughout the entire interval a <t < b.

Definition 0.4 [3]. A set D C C is a domain if D is an open connected set. D is a
simply connected domain if every simple closed contour within D encloses only points

of D. A domain that is not simply connected is said to be multiply connected.

We now state, without proof, four theorems and a lemma which will be referred to in

subsequent chapters.

Theorem 0.5 (Riemann Mapping Theorem) [9]. Let A be a simply connected do-
main such that A # C. Then there exists a bijective conformal map f : A — D where
D={: |z| < 1}. Furthermore, for any fixed zy € A, we can find an f such that f(z0) =0
and f'(z9) > 0. With such a specification, f is unique.

Theorem 0.6 (Rouché’s Theorem) [14]. If f and g are each functions which are

analytic inside and on a simply closed contour C, and if the strict inequality

1£(2) = 9(2)| < |£(2)I,



Ids at each point on C, then f and g must have the same total number of zeros (counting
0.

h
mu]tiph'city) inside C.

Theorem 0.7 (Schwarz Reflection Principle) [11]. Let A be a domain whose bound-
ary includes a linear segment L, and let A' be a domain whose boundary includes a
Jinear segment L'. If the analytic function w = f(z) maps A onto A’ in such a way that
the segment L is transformed into the segment L', then f can be continued analytically
across L.

If z* is the point symmetric to z with respect to L, and w* is the point symmetric to

w = f(z) with respect to L', this analytic continuation is given by the formula
(z2*)=wu".
Theorem 0.8 [11]. A function which is analytic on and within a simple closed contour

C, and which takes real values at all points of C, must reduce to a constant.

Lemma 0.9 (Schwarz Lemma) [15]. Let f be analyticon A = {z : |z| < R} and
suppose that f(0) = 0 and |f(z)| £ M for z € A. Then

M
POl and @< PE forsea

If|f'(0)| = 3, or if | f(20)| = MRZ—"l for some zg € A, zo # 0, then

f(z) = ef"%, 6 € R.



CHAPTER 1
Elementary Properties of Conformal Mappings

Consider f : C — C defined by f(z) = w. A graphical representation of f in the
conventional sense is generally not possible because both z and w are located in a plane,
rather than on a line. It is possible however to visualize the behavior of f if we display
;= (z,y) and w = (u,v) as points in two different planes, the z-plane and the w-plane,
and interpret f as a mapping or transformation of the points in the z-plane onto points in

the w-plane. The z-plane will thus contain the domain of definition of f and the w-plane

will contain the image of f.

Definition 1.1 [9]. A map f: D — C is called conformal at 2y € D if there exists an
a € [0,27) and an r > 0 such that for any smooth arc z = z(t) in D passing through zy =
z(to), the curve w(t) = f(2(t)) is differentiable at to, |w'(to)| = r|z'(t0)|, and arg(w'(to)) =

arg(z'(to))+a (mod 2). Here, r is called the scale factor and « is the angle of rotation.

A map will be called conformal in a domain D when it is conformal at every point in
D.

Thus, a conformal map rotates and stretches tangent vectors to curves. It is easily seen
that a conformal map preserves angles between intersecting curves. To show this, we first

define what is meant by the angle between intersecting curves.

Definition 1.2 [13]. Let C; and C, be two simple curves which

(i) intersect at z = z,,
(ii) are smooth in a neighborhood of zy, and
(iil) have tangent vectors T, and T respectively at zp.
If6, and 62 are the local polar angles for T; and T, , respectively, we define AB: 2z
the angle from CitoCy, as

6, — 6,, if6, — 6, >0

ABy 5|, =
12l {27r+(92—91), if6, — 6, < 0,



Thus Ab1,2 18 the positive angle through which T; must be rotated in order to locally line
p with T2 (see Figure 1.1). Also note that since 6, 8, € [0,27), we have A#b, ; € [0,27).
u
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Figure 1.1

Now, to see that a conformal map preserves angles between intersecting curves, let f
be a conformal map in a domain D, and let z; = z,(%), 22 = 22(t) be two smooth arcs in
D intersecting at zo = 21(to) = 22(t0). Also, let 6, = arg(zy(to)), 62 = arg(25(to)). The
images of z; and z; will then be w1 (t) = f(21(t)) and w2(t) = f(22(t)), respectively. Then
since f is conformal at z, 3 a € [0,27) such that

¢1 = arg(wy(to)) = 61 + a + 27n,, (1-1)

#2 = arg(wy(to)) = 62 + @ + 27n,, (1-2)
where n;,n, are integers. We have
Ay = A6y 2 + 27k, (1-3)

where k is any integer. But Ad; 2, Ab; 2 € [0,27). Hence k = 0 and A¢y 2 = Abs 2.

A mapping that preserves the size of the angle between two smooth arcs but not neces-
sarily the sense is called an isogonal mapping [3]. The function f(z) = Z is an example
of an isogonal mapping. If f is a nonconstant function analytic at zo and f'(z0) = 0, then
% is called a critical point of the transformation w = f(z). The next theorem illustrates

the Mmapping behavior of an analytic function near a critical point.

Theorem 1.3 (3, p.224, exercise 10]. Suppose that a function f is analytic at zo and that

fl(z0) = f'(z0) === f™D(20) =0,  f™(z) #0,

4



for some positive integer m > 2. Then the angle between two smooth arcs which meet at
or

20 i magnified m times by the mapping f(z) = w.
0

ooF: Since f 18 analytic at zg, it is analytic in some neighborhood of 2, and f has a

PR
Taylor series expansion about zg. That is,

3 " £ (20)

f(Z)"—'f(zO)“*'Z:lan(Z—Zo) ’ IZ—20| < R, an = ! .
Hence,
f(z) = f(z0) = Y an(z — 20)"
=(z=20)™ Y ansm(z — 20)"
n=0
=(z—2)" [am + E Ant+m(z — zo)"]
n=1
1 oo

= am(z = Zo)m [1 + E; Z_:l an+m(z - Zo)n] . (1-4)

Now, let
1 — .
9(z) = ;r: ;:_; ant+m(z — 2z0)". (1-5)

Then g is analytic for |z — 29| < R and g(z9) = 0. Thus, (1-4) becomes

(™) (24
1) = 1ta0) = s = 2o [ 1+ ),

(m)
= arglf(s) = f(e0)] = avgl(e — 20)") + arg [T L0] 4 axgl1 4 9(2)) (mod 20

(m)
[f (z °)] targll + (2] {mod 26).

(1-6)

Now let C1 be a smooth arc passing through z; and let I'; be the image of C; under the

= marg(z — z9) + arg

transformation w = f (z). Let 6; be the argument of the tangent to the curve C; at zy and
let ¢, be the argument of the tangent to the curve I'; at f(z9). But, 6; = arg(z — 2¢) and
41 = arg(f(z) — f(20)] as z — 2 along C;. Thus, as z — 2 along C;, (1-6) becomes

[f(m)( 0)]

¢1 = mb; + arg +9, (1-7)

5
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ce g i continuous and g(z9) = 0. Similarly for a smooth arc C; with image I'z, we have
sin
(m)
¢2 = mby + arg [LTH('LO)} . (1-8)

from (1-7) and (1-8), we have

Ap12=¢2 —¢1 = m(0; — 6;) = m A, 3.

Thus, the angle between two smooth arcs which meet at zg is magnified m times by the
k]

mapping f(z) =w- I
Theorem 1.3 shows that if f is conformal at 2o, then it is necessarily true that f'(zp) # 0.

We will now present two theorems which show that conformality is a characteristic property
of analytic functions.

Theorem 1.4 [9]. Let f : D — C be analytic and f'(z9) # 0. Then f is conformal at
2.

PROOF: Let z = z(t) be a smooth arc in D passing through 2y = z(¢5). Then the curve
w(t) = f(2(t)) is differentiable at ¢, and by the chain rule,

w'(to) = f'(2(t0))2'(to) = f'(20)2' (to)-

Hence,
arg(w'(to)) = arg(f'(20)) + arg('(to)) = o + arg(z'(t0)),
and,
[w'(to)] = |f'(20)] |2'(t0)| = r |2'(to)I.
Thus, f is conformal at zo, its angle of rotation being arg(f'(z0)), and its scale factor being
If'(z0)]. m

The above proof shows that the angle of rotation arg(f'(z)), and the scale factor |f'(z)|,
of an analytic map vary from point to point. But since f' is continuous for points z near
%, arg(f'(z)) and |f'(2)| will approximate arg(f'(z0)) and |f'(z0)| respectively. Thus, in

a : . . . s
local Sense, 1mages of small neighborhoods of zy coincide or “conform” to the original

Tegion,



We will now show that a mapping f(z) = u(z,y) + tv(z,y) which is conformal and has
tinuous partial derivatives of u(z,y) and v(z,y) in a given domain must be analytic.
con

The following theorem relies on the use of conjugate coordinates, so a brief survey of

the subject is in order [11, pp. 17-20, 32].

Consider the complex variables z = ¢ + 1y and Z = z — 1y. Solving for z and y yields
e=2(:+2) and y=gi(z-2) (1-9)
T = 5 z+2z) an Yy = % Z=1Z),

If g(z,y) is 2 complex function which has continuous partial derivatives g, gy, and we
b

apply (1-9) and the formal rules of partial differentiation, we have

o9 _1 (99 _.9 9 _1(%g .9
_3_2;—2<8x ay) — 0z 2 3:1:+6y ’

It can then be shown that if g is complex differentiable, ¢'(2) = 3% and the Cauchy-
Riemann equations are equivalent to 22 52 = 0. It can also be shown that if z(t) = z(t)+4y(t),

where z(t) and y(t) are differentiable functions of a real parameter ¢, then

dg O9gdz  Ogdy _ 6g ; ag -
dt ~dcdt Oy dt 4 T 5 #(E). \d-10)
We now state the theorem.

Theorem 1.5 [11]. Let f(z) = u(z,y)+tv(z,y) be conformal in a domain D and assume

Ugz,Uy,v;,0y exist and are continuous in D. Then f is analytic in D.
PROOF: Let z9 € D. Let z(t) = z + €%1t, t € [0,1], be a linear segment in D (8, €
[0,27) fixed). Then,
af ' T
7 (0) = f2(0)1(0) + £2(0)2(0)
= ¢ ,(0) + = £2(0)

= ¢ [£,(0) + 2% £:(0)] (a-11)
Let arg[%(O)] = ¢1. Then (1-11) becomes
arg [%(O)J = arg [ew‘] + arg [f-(0) + g~ 24 £:(0)] (mod 27)
= ¢1 = 61 + arg [f.(0) + e~ £:(0)] (mod 27). (1-12)

7
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Now, let 7(t) = 20+ e'%2¢, t € [0,1], be a linear segment in D (6, € [0,27) fixed, 62 # 6;).

By & similar process, we have

¢y = 05 + arg [fz(O) + e—2i02f2(0)] (mod 27),

where $2 = arg[%(O)]. Since f is given to be conformal at zp, it must be true that

e A@; . But this implies that arg [fz(O) + e'2i0f;(0)] is constant for 6 € [0,27).
1, : ‘

Now,
B = f:(0) + &7 £3(0),

describes a circle of center f,(0) and radius f;(0) as @ varies from 0 to m. Hence argf
can remain constant only if the radius of the circle is zero. That is, f;(0) = 0. But this
condition implies that f satisfies the Cauchy-Riemann equations. Also, since uz,uy,vz,vy
were assumed to be continuous, f will be analytic at zp. Since zg was chosen arbitrarily
in D, f is analyticin D. 1

Theorems 1.4 and 1.5 show that conformal maps and analytic functions are interrelated.
Thus, throughout the remainder of this paper, we shall identify a conformal map with
an analytic function having a nonzero derivative [9]. We now state, without proof, the
inverse function theorem for analytic functions to show that if an analytic function f has a
nonzero derivative at a point zg, then it will have a local inverse about the point 2. That

18, a conformal map has a local inverse at every point in its domain.

Theorem 1.6 [9]. Let f : A — C be analytic, let 29 €A, and assume that f'(z) # 0.
Then there exists a neighborhood U of zy and a neighborhood V of f(zo) such that f :

U=V is a bijection and its inverse function f~1 is analytic, with derivative given by

k
f'(z)’

The next theorem shows that the inverse of a conformal map is conformal and that the

d ._
Ef Hw) =

where w = f(z).

fomposition of two conformal maps is also a conformal map.

Theorem 1.7 [9]. (i) If f: A — B is conformal and bijective, then f~! : B — A is also
conforma],

(i) ff:4- B and g : B — C are conformal and bijective, then go f : A — C is

Conformal and bijective.
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PROOF: (i) Since f is bijective, f~1 exists. Then, from Theorem 1.6, f~! is analytic and
1

Ok

d
Yw € B, dwf (w) =

where W = f(z). Thus f~! is conformal.

(ii) Obviously g o f will be bijective and analytic. Now, from the chain rule,

d '
Yz € A, d—z-(gof)(z)zg [f(2)If'(2) # 0,
since f and g are conformal. Thus, g o f is conformal. I

We now briefly examine some mapping properties of analytic functions, and hence con-

formal maps.

Theorem 1.8 [9]. Let f be analytic and not constant on a domain D and let zo € D.
Suppose that h(z) = f(z) — wo has a zero of order k > 1 at zo. Then 3 XA > 0 such that,
for any € € (0,A], 3 6 > 0 such that if 0 < |w — wo| < 6, then f(z) — w has exactly k
distinct roots in the disk 0 < |z — z| < €.

While somewhat formal in nature, the theorem states that if f takes on the value wq at
zp with multiplicity k, then for all w sufficiently near wy, the k roots of f(z) = w near z
are distinct.

PROOF: Since f is not constant, the zeros of h(z) = f(z) — wq are isolated. Thus, I3 > 0

such that for 0 < |z — 29| < 5, h(z) # 0. Now, Ve € (0,7], 38 > 0 such that |h(z)| =

1f(z) — wo| > 6 > 0, for |z — 29| = e. This is due to the fact that A is continuous on the

eompact set |z — 29| = e. Thus, if w satisfies |w — wo| < 8, then on |z — zp| = ¢, we have
6) £(z) — wo #0,

() f(z) —w#0  (since f(z) = w implies |w — wo| > 6),

(iil) |[£(2) — w] = [f(2) — wo]| = Jw — wo| < 6 < |£(2) — wol.

By Rouché’s Theorem, f(z) — w has the same number of zeros, counting multiplicities, as
#(2) ~ wy, inside the circle |z — z9| = €. Thus, in the disk |z — zo| < €, f(z) — w has exactly
k roots, counted with their multiplicities.

Now, since f is not constant, f' is not identically zero on D. Hence, the zeros of f' are

Solated ang 3 ) € (0,7) such that for 0 < |z — 29| < A, f(2) — wo and f' are not zero.

9
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Thus, f(
pe first order and hence distinct. |

z)—w will have exactly k roots for w sufficiently near wo , but these roots will

The above theorem also shows that for a nonconstant analytic function f in a domain
D. if f(2) # 0 Vz € D, then f is one-to-one or univalent in D. The next theorem

establishes an important property of conformal maps.

orem 1.9 [10]. The conformal map of a domain is also a domain.

The

Before proving this theorem, a few notes are in order. We will allow the conformal
image of a domain to have multiple coverings, i.e. the image of D may overlap itself. This
soverlapping” is clearly illustrated by the function f(z) = z? on the unit circle. Also,
it may be possible that a domain contains points where the derivative of the mapping
function is zero. Thus, the mapping ceases to be conformal at these points. However, it is
still acceptable to consider “the conformal map of a domain” even if the domain contains

critical points of the map. We now prove the theorem.

PROOF: Let w = f(z) be analytic in a domain D, let zg € D, and let f(D) = D'. Suppose
that h(z) = f(z) — wo has a zero of order £k > 1 at z;. From Theorem 1.8, 3 A > 0 and
36 > 0 such that if 0 < |w — wg| < &, then f(z) — w has exactly k distinct roots in the
disk 0 < |2 — z9| < A\. That is, there exists a neighborhood of wy which is contained in
f(D) = D'. Thus, D is open.

Since f is conformal, continuous arcs in D will be mapped onto continuous arcs in D'.

Hence D' is connected. We thus conclude that f(D) = D' is a domain. i

Note that if w = f(z) is univalent in D, then f(D) = D' will have no multiply covered
points. Such a domain that covers no point more than once is called a schlicht or simple
domain. Also observe that a univalent map preserves the connectivity of a domain. That
18, if £ is a univalent map defined on a simply connected domain D, then f(D) will also
be simply connected.

The next theorem shows that if a function f is analytic on a simple closed contour C and

interior D, then the image of C under the mapping w = f(z) is sufficient to determine
the image of p.

10
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Theorem 1.10 [7
erior D. On C, let f take no value more than once. Then

]. Let C be a simple closed contour, and let f be analytic on C and its

(i) the mapping w = f(z) transforms C to a simple closed contour C',
(ii) as 2 traverses C in the positive direction, w = f(z) traverses C' in the positive
direction, and

(§ii) w = f(z) is a univalent map of D onto D', the interior of C'.

PROOF: Since f is analytic, the image of C is a closed contour C'. Also, C' is simple

pecause f(2) takes no value more than once. Now let wy be any point not on C'. Then,

from the argument principle, the number of times wy is taken by f is given by

/ £( z)(j)wo (1-13)
for f(z) # wo at any point on C.
Now, let w = f(2), dw = f'(z)dz. Then (1-13) becomes

1 dw
Ny = == ’
°  2m /;, w — wy

By the residue theorem, N,,, = 0 if wq is exterior to C'. If wy is interior to C’, that is,

wg € D', then N,,, = £1 depending on how C’ is traversed. But, since N,,, is nonnegative,
Ny, =1 for wy € D', and C’ is traversed in the positive direction.
Thus, every point in D' is taken exactly once by a value in D and values exterior to C'

can not be images of points in D.
CLAM: No point on C' can be the image of a point in D.

PRroor: Deny. Then let wy be on C' and suppose 3 z; € D such that f(zp) = wo. Then,
by Theorem 1.8, there exists a neighborhood V of wg such that every point in V is the
image of 5 point in D. By the Jordan Curve Theorem, there exists a w in V such that w
I8 exterior to ¢’ (see Figure 1.2). Consequently, there exists a 2 € D such thatf(2) = .
But this contradicts the fact that values exterior to C' can not be images of points in D.

Thus

» 10 point on C’ can be the image of a point in D. ¢

Thus, f is univalent in D and w = f(z) maps D onto D'.

11
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We close this chapter by stating, without proof, two theorems which show the importance
of conformal mappings as applied to applications of physical problems. There is a rich
literature on applications of conformal mappings (3, p.324]. This paper however will not be
examining these applications per se, but will rather concentrate on techniques to construct
a conformal map from a given region onto a “simpler” one. Once in this “simpler” region,
applied problems are more readily solved. An application will be considered in Chapter 5,
but this paper will concentrate on the significant techniques in constructing a conformal
map from a given region to another.

Recall that a Dirichlet problem is a problem that involves finding a harmonic function on
aregion D whose values are specified on the boundary of D and that a Neumann problem
mvolves finding a harmonic function on a region D, where values of the normal derivative

of the function are prescribed on the boundary.

Theorem 1.11 [3]. Suppose that an analytic function

w= f(z) = u(z,y) + Z“U(.'E, y))

maps a domain D, in the z plane onto a domain D,, in the w plane. If h(u,v) is a harmonic

function defined on Dy, i.e. hyu(u,v) + hyy(u,v) =0, then the function
H(z,y) = hlu(z,y),v(z,y)],
18 harmonjc in D,.
Thus, intuitively, a harmonic function remains a harmonic function when transformed
from ope Plane to another by a conformal mapping.

12
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h rem 1.12 [3] SUPPOSC that a transformation
Theo

w = f(2) = u(z,y) + vz, y),

nformal on a smooth arc C, and let T be the image of C under that transformation. If
s co!

long T» 2 function h(u,v) satisfies either of the conditions
’

dh
h= hy or %=O,

where ho 15 2 real constant and % denotes the derivative normal to I', then along C, the

function
H(z,y) = hlu(z,y), v(z,y)],

satisfies the corresponding condition
dH
H=ho or g5=0

where %% denotes derivatives normal to C.

That is, prescribed conditions on a function or its normal derivative remain unaltered
under the change of variables associated with a conformal mapping.

Thus, Theorems 1.11 and 1.12 give a technique for solving Dirichlet or Neumann prob-
lems. This involves transforming a given boundary value problem in the zy-plane into a
“simpler” one in the uv-plane in which the problem is more readily solved. Then using

Theorems 1.11 and 1.12, the solution of the original problem can be written in terms of

the solution obtained in the uv-plane.

13



CHAPTER 2
Elementary Mappings - Mobius Transformations

As was stated at the end of Chapter 1, a technique for solving Dirichlet and Neumann

lems involves finding a conformal map that will transform a given domain onto a

prob
sgimpler one.” Once in this new domain, the problem may be more readily solved. In
this chapter, we shall investigate the properties of an important class of conformal maps

called Mobius or bilinear transformations. These transformations will yield a technique
for mapping a disk or half plane onto another disk or half plane.
We first examine the mapping defined by

w= f(z) =az+b, abeC, a#0. (2-1)

To study the effect of (2-1), consider the case when b = 0. Letting z = pe'? and a = |ae®?,
(2-1) will yield w = plale’®+9). Thus, under (2-1), z will be rotated an angle ¢ about the
origin and the modulus of z will be magnified (or contracted) by a factor of |a|. Hence, the
transformation z — az, merely rotates and magnifies (or contracts if |a| < 1) all points in
the complex plane.

Now, if b # 0, then (2-1) will not only rotate and magnify a given point, but will also
translate the point an amount Re(b) in the z-direction and an amount Im(b) in the y-
direction. It then follows that under the map f(z) = az + b, geometric figures will be
preserved. That is, f(z) = az + b will transform circles to circles and lines to lines.

A transformation of the form f(z) =az+b, ab € C, a#0,is called a linear trans-
formation and it is obviously bijective and conformal in the complex plane.

We now consider a mapping of the form

fz)="1. (22)

z

Here, f s called an inversion and it is a one-to-one transformation from C \ {0} onto
C .
\{0} To see the effect (2-2) has on a nonzero point z, let z = pe*®. Then the image of z

der (2-2) will be w = %e"o. Thus, points exterior to the unit circle will be mapped onto
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._+s interior to the unit circle and conversely. Points on the unit circle are invariant.
since arg(w) = —arg(z), (2-2) will reflect points with respect to the real axis. Thus,
= % is an inversion with respect to the unit circle combined with a reflection with
3 to the real axis.

Now, since it is true that

o 3 1
lim — =0 and lim - = o0,
zZ—00 2 z—0 2

is natural to extend f(z) = 1 to the extended complex plane Co, = C U{o0} by defining
,\ — 0 and f(0) = co. Then f(z) = 1 will be a bijective map from Coo t0 Coo.

The question now arises as to whether f (z) = 1 will preserve geometric figures. The

swer here is no, but if we regard a line as a circle passing through oo, we can state the

oposition 2.1 [11]. The mapping f(z) = 1 transforms circles to circles.

A 4

0OF: A circle in the zy-plane will be an equation of the form

e +y*+Az+By+C=0, ABC,€eR. (2-3)
polar form, this becomes

r? +r(Acosf + Bsin6) + C =0, {r,d) = (2,7) (2-4)

v, the image of the point z =re’? (z € C \ {0}) under the map f(z) =1 is

3+ 2(Acos¢—Bsing)+C =0, (2:5)

1+ p(Acos¢ — Bsing) +Cp? =0

A B 1
= p2+p(6cos¢—asin¢)+5=0.
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:

But this iS the eq
gCc="0 (corresponding to a circle through the origin), then (2-5) becomes

1 1

— + =(Acos¢ — Bsing) =0

P2 p

s Apcos¢d — Bpsing +1 = 0. (2-6)

uation of a circle in the w-plane not passing through the origin.

If we let w = pe'? =u+ ?'U, (2-6) becomes

Au—Bv+1=0,

which is an equation of a line in the w-plane. Thus, f(z) = 1 transforms circles to circles. I

In a similar fashion, it can be shown that the image of a line through the origin will also
be a line through the origin and a line not through the origin is mapped to a circle passing
through the origin. We call the family of all lines and circles in C circloids and note that

under stereographic projection, they correspond to circles on the Riemann sphere [4].

Definition 2.2. A mapping of the form

az+b
cz+d’

w=T(z)= a,be,d € C, ad-—bc#0, (2-7)

is called a Mobius or bilinear transformation.

It will be shown later that the condition ad—bc # 0 insures T' will not be a constant. The
term Mobius transformation is used because in 1853 A.F. Mobius launched the study of
an equivalent class of geometrical transformations which he called Kreisverwandtschaften
(6].

In a similar fashion to the function f(z) = 1, we can define (2-7) on Cq by setting
(%) = 00 if ¢ = 0, T(00) = 2 and T(— %) = o0 if ¢ # 0.

We now claim that (2-7) is conformal on C,,. To show this, we first define a mapping
¥ = f(2) to be conformal at z = oo, if w = f(%) is conformal at z = 0 [2]. Similarly, if
#(20) = 00, then f is conformal at zo if and only if f has a simple pole at z, [10].

We now prove the claim. Obviously, T'(z) = ﬁ)% # 0 for z € C\ {—£}. Now, since
B=-2i5, simple pole of (2-7), T is conformal at zp. Finally, to show (2-7) is conformal
2 = oo, we consider T'(1):

1 [a(3) +1] _(a+b2)
PO =L@ +d =~ v ay
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(1) = b [d(a+b2)]
# (c+dz) (c+dz)?
_ [bc + bdz — da — bdz]

(c+dz)?
_ (bc —ad)
" (c+dz2)?’

when z =0, T" (%) # 0. Thus, T(z) = %‘% is conformal and hence univalent in Co.

Jow, if we solve (2-7) for z, we have

az+b
ot d = w(cz+d)=az+b
= (ew—a)z=—-dw+b
—dw+b
= z=—0.
cw—a

wce, the inverse of a Mobius transformation is a Mobius transformation with form
T (w) = —2 2 (2-8)

| we can conclude that a Mobius transformation is a bijection of C, onto Cg.

w it is easy to see the following:

orem 2.3. The set of all Mébius transformations, M, forms a group under composi-

JOF: Obviously, the identity element will be the transformation I(z) = z. Thus, we

show closure. That is, let

T.(,) — 12+ b _ayz+b
Ii(2) artd and Ty(2) = ozt d,’ aydy —bicy #0, azds — bacy #0.
a12+b;
(T oTh)(2) = o (°1=+d1) t+b _ (a1a3 + byc1)z + (az2by + bad,)

c2 (:1:+:1) + d;  (ea1+ad)z +(eby + dids)’

20T} is a Mo6bius transformation.
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. since T-1 is given by (2-8), and associativity will clearly hold, we may conclude
Now,

M forms a group under composition. i
;': ‘ow observe that if c = 0, then T'(z) = -:-z’—:*}_'—z becomes T(z) = (%) z+ %, which is a linear
_oformation. If ¢ # 0, then we can divide the denominator into the numerator to yield
(bc — ad)
[c(cz + d))]

== #9)

us, T(z) can be written as T(z) = (T3 0 Ty o T1)(z), where

+

ol ole

w

Ti(z) = cz + d,
T() =<,
T(z) = ¢ + [G’_—_d_)] %

and T are linear transformations while 75 is an inversion. Observe that if ad — bc = 0,
en T reduces to a constant.

rom the results shown earlier, we have proved

2.4. Every Mobius transformation maps a circloid onto a circloid.

e that circles in the z-plane passing through z = —f, will be mapped onto straight
s in the w-plane.

{6bius transformations have the property that, except for the identity transformation,
/ Possess at most two fixed points. That is, there exists at most two points satisfying
) = 2. To see this, let T'(z) = ﬁ%’ be a Mdbius transformation. Then, all the fixed

ints of 7' must satisfy

_az+b 2 _
B = cz*+(d—a)z—b=0.

€quation has at most two roots unless it is identically zero.
W let (=) = :—ji"—g be a Mobius transformation, and let z;,29,23,24 be four distinct

tsin C, Then, if w, ,W2,w3,wy are the images of z1,22,23,24 under T, we have from
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)that for Z,] = 1a2)3a4, ’L;é],

. o a+ bc — ad
wiT %= c(cz; + d)

e*

4+ —

bc — ad
c(czj + d)

a
" le
1[bc—ad bc—ad
=Z|:cz,+d czj + d]
A
_:[cz]+d cz,+d] where A = ad — bc # 0,
_é[cz,—%d—czy—d]
¢ |(czj +d)(czi + d)
s w; —wj = AGi — z) . (2-10)

(czj + d)(czi + d)

Hence,

w0r — ) (W — W =A2(zl—z4)(23—22) ]

(w1 4)(w3 2) Hi:l(czn D (2-11)
mdv

w; — wo )(w3z — wy) = A2(21 — 22)(2 — 24). 2-12

(0 = s —wa) = IR (212)
Thus,

(w1 — ws)(ws —wa) _ (21 — 24)(23 — 22) (2-13)

(w1 — w2 )(ws —wyq) (21 — 22)(23 — 24)
The expression %ﬁ%z:—zg, is called the cross ratio of the points z;,27,23,24, and is
denoted C (z1, 22, 23, z4 ). Equation (2-13) shows that C (w1, w2, ws,ws) = C (21, 22, 23, 24),
and hence, the cross ratio is invariant under the Mobius transformation 7T'. If one of the
points z,, is infinity, then the corresponding cross ratio will be obtained by letting z,, — co.
As an example, if 2; = oo, then
(23 — 22)

C(OO,Z2,23,Z4): (23 2 )
— 44

Similar expressions may be obtained for w, = 00, n =1,2,3,4.

Now, if we replace z4 by the variable z, then (2-13) becomes
C(21,22,23,2) = C(w1, w2, ws, w), (2-14)

¥here v is the image of z under (2-7). It is easily seen that (2-14) is a Mobius transforma-

tion ang it has the property that it maps the three given points z;,22,z3 onto w;,ws,w3. In
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] @ 14) defines the only Mobius transformation which has this property [4]. To see this,
- 7,12 € M, and that they both map z;,2;,23 onto w;,w;,ws respectively. Then
: )

z3 as fixed points. But this implies that T; ' o Ty = I and consequently

-“DTI has 71,22,
Tz

ince Mobius transformations map circloids to circloids and a circloid is determined by
- of its points, (2-14)‘allows us to find a mapping which carries a given circloid in the
e onto a given circloid in the w-plane.

. are now in a position to expand on Theorem 2.4. Namely,

eorem 2.5 [15]. If C. and C, are two circloids, and 21 and z; are two points not

on C, and Cy, , respectively, then there exists a Mobius transformation which maps
»to Cyw, and z1 onto z3.

0OF: Since a given circloid can be mapped onto the real axis by a particular Mobius
ormation, we need only to consider the case when C,; and C,, coincide with the real
J J

.t z; and z; be two points not on the real axis. If Im(z;) = Im(22), then the translation
)=z + (22 — z1) maps C; onto Cy, and T(z;) = 23.

‘ ow, if Im(z;) # Im(2;), then consider the point zo € R where the line connecting z;
| 2, intersects the real axis. Then the transformation

] (z — 20),

T(z) =20+ [zz — 29
21

— 2
5 C; onto Cy, and T'(21) = 22. I

t T be a Mobius transformation that maps the circle C; onto the circle Cy, and let
| *note the interior of C,. Then D, will map onto the interior or exterior of C,,. If D,
hot contain the pole of T', then it will map onto the interior of C,, (by Theorem 1.10),
if D, contains the pole of T, then its image will be the exterior of C,,. If the image

‘2 18 a straight line, then the interior and exterior of C, will be half-planes bounded by

"OUIer way to determine the image of D, under T is by checking orientation. Observe
%Y specifying three distinct points z7,z2,2z3 on C,, C,, will acquire a direction deter-

by traversing C, through z;,z2, and 23 in succession. Consequently, C,, will also
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» direction through the points wy = T(z1), w2 = T(22), and w3 = T(z3). Now as
sraversed through z1,22,2s, if D lies to the right, then the image of D, will also lie
cight of C. (see Figure 2.1). This follows from the fact that T is conformal.

M
T
—>
- - = —,
v v
Figure 2.1

Another important property concerning Mobius transformations is their symmetry-

ving property.

finition 2.6. Let C be a circloid and let z, ,z, be two distinct points of C which have
: property that every circloid through z, and z; meets C at right angles. Then z; and

e said to be symmetric with respect to C.

Notice that if C is a line, then z; and 2, are symmetric with respect to C if and only if
8 the perpendicular bisector of the segment Z7z;. The point at infinity is symmetric to

Also, if C is a circle with center zq, then z, and oo are symmetric with respect to

nce a Mobius tra.nsfoxmation T is conformal and preserves circloids, symmetry with
¢t to C is preserved by T. That is, if z; and z, are symmetnc with respect to C,
.T(zl) and T(z,) are symmetric with respect to T'(C).

W, given a circle C with center a and radius R, and given a point z, we wish to
2 formula for finding z;, the point symmetric to zy with respect to C [14]. Flrst
18 find 5 MGobius transformation which maps C onto the real axis. If we let z; = a — R,
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a+ R, and w; =0, wy = 1, w3 = o0, (2-14) yields
0-w _ [((a = R) — z][(a + R) — (a + Ri)]
0-1 [(@a=R)-(a+ Ri)[(a+R)-2]

_ [z =(a = R)][Ri - R]

—a+hi, 3=

= .  YTE-(+R)Ri+R
_.z—(a—R) Y
= w_zz—(a+R)' (2-15)

.z—(a—R s
T(z) = ':——_%a—-l:k% maps C onto the real axis.

f zo and zg are symmetric with respect to C, then T(z0) and T'(z}) are symmetric with

to the real axis (see Figure 2.2). But this implies that T'(z5) = T(2), or from

iza—(a—R) =izo—(a-R) =_z.z'o—(&-—R)
23 —(a+ R) zg —(a+ R) zo—(@+R)
‘:'}n'_ for ZO’. Yields -

RZ
* = ’ 2-16
5= |7y +o (210
te that (2-16) shows that the point symmetric to zo with respect to C is unique.
s
JT(Z)
z T
- > — - - N
LT
| ¢
Figure 2.2

7‘-‘.7 ‘e now wish to investigate the problem of finding a univalent function which will map
alf-plane or disk onto a half-plane or disk. The following theorems will show that such

»I""‘ must be a Mobius transformation.

¥finition 2.7 [1]. A univalent mapping of a region onto itself is called an automor-

"SI of that region.

Mma 2.8 (1]. Suppose f is univalent from D, onto Ds.
Ifh is univalent from Dl onto D2, then h = go fr and
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\ if b is an automorphism of Dy, then h= f~logo f,

e g is an automorphism of D,.

oF: (a)Let f and h be two univalent functions from D; onto D;. Then ¢ = ho f~!

‘~aut0m0rphism of Dy. Thus, h = (h o f_l) of=g0f.
2 Let f be a univalent function from D; onto D, and let h be an automorphism of

. D,. Then, g = foho f~!is an automorphism of Dy, and h = f~ogo f. §

orem 2.9 [15). If f is an automorphism of D(a; R) = { 2 : |z—a| < R}, and f(a) = a,

f is a Mobius transformation with the form
f(z) = ez — a) + q, 6 € R. (2-17)

bserve that (2-17) is a rotation about the point a.

OF: Since it is possible to find a Mébius transformation T that will map D(a; R) to
R)={z:|z|] < R} with T(a) = 0, we need only consider the case when a = 0.

s, let f be an automorphism of D(0; R), with f(0) = 0. By the Schwarz Lemma
ama 0.9),

|£(2)] < |2l for z € D(0; R). (2-18)

, f7! is also an automorphism of D(0; R) and f~!(0) = 0. Again by the Schwarz
If"l(z)l < |z|, for z € D(0; R). (2-19)
bining (2-18) and (2-19) yields

|f(2)] < |zl = |f ' f(2)]| < |f(2)],  for z€ D(0;R).

e, |f(2)| = |z| for z € D(0; R). From the Schwarz Lemma, we have

f(z) = 'z, 6 eR.

yfisa Mébius transformation. B
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peorem 2.10 [15]. Every univalent mapping of a disk onto a disk is given by a Mobius
Theo

PROOF: Let f be a univalent map which takes D(a;;R;) = {z : |z—a1] < R;} onto
D(az;Rz) = {z:|z—az| < Rz}, and let f(a;) = b. By Theorem 2.5, there exists a Mobius
wsformation T, mapping D(az; R;) onto D(ay; Ry ) such that T'(b) = a;. Theng=To f
is an automorphism of D(a;; R;), with g(a;) = a; . But Theorem 2.9 implies that g is a

Mébius transformation and consequently f = T~ 0 g is also a Mobius transformation. I
Using Theorem 2.10, we now wish to classify all univalent mappings of the disk D(0; p)

onto the disk D(0;7). We have

Theorem 2.11 [12, exercise 6, p.323]. All univalent mappings of D(0; p) onto D(0;r) are

of the form
T(z) = rpe'® (_Z_—z") , (2-20)

Zoz — p?
where § € R and |z0] < p.
ProoF: By Theorem 2.10, we know the mapping will be a Mobius transformation. Thus,
Jet T be a Mobius transformation which maps D(0; p) onto D(0;7). Then T will map the
dircle C, : |z| = p onto the circle C; : |w| = r. Now, there exists zo € D(0; p) such that

T(z) = 0. According to (2-16), the point
2

2

* P p
— 0:—
2z [20_0] + P

I8 symmetric to zo with respect to C,. But, since the origin is the center of C,, its
symmetric point is co. Hence T'(z§) = T(%:) = 00, since Mobius transformations preserve
Symmetry with respect to a circle. Thus T has a zero at zo and a pole at z§ = 2:. That
88, T is of the form

TS — i JL) . (LZ_O) kecC.
: # ([z—(PZ/Eo)] TR
Now, since T(p) lies on C,,

= P — 20
r=|T =kZ | —
701 = |kao (25

_|kzo| [p— 20
P |lZ20o—p
L

=22, since |£=22| =1.
p o—p
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this implies that |kZo| = rp, or kzo = rpe'?, where § € R. Hence,

zZ— 2

T(Z) = rpew (——2) ’ 6 eR, |ZOI <p.

Zoz — p

~onversely, to show that (2-20) maps D(0; p) onto D(0;7), we need only show that C,

napped onto C,. Thus, let z = pe*®. Then observe that

|20z = 0| = [Zope™ — 4’|
=r|20 - pe™|
=plzo — 2|

=plz— 2.

@ — &
T = rp 22 = rp (3) =

Zoz—p?|
] C, is mapped onto Cy. Then, by Theorem 1.10, D(0; p) is mapped onto D(0;7). I
rollary 2.12. The automorphisms of the unit disk are of the form

zZ— 20

T(z):e“’( ), 6 €R, |z| < 1.

202 -1
00F: This follows directly from Theorem 2.11 with p=r =1. 1

now consider the problem of finding a univalent function that maps a half-plane onto
unit disk. By performing particular Mobius transformations, namely a rotation and
anslation, we need only consider finding a univalent function which maps the upper
lane Im(z) > 0 onto the unit disk. From our previous results, it is natural to assume

'iihis function will be a Mdbius transformation.

€orem 2.13 [1,4]. All univalent mappings of the upper half-plane Im(z) > 0 onto the

t disk are Moébius transformations of the form

zZ— 2

T(z) = €* ( ) ,  B€eR, Im(z)>0. (2-21)

z— 20
OF: We first show that any Mobius transformation mapping the upper half-plane
?) >0, onto the unit disk is of the form (2-21). Let T be such a mapping. Then T
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_the real axis onto the circle C : |z| = 1. Also, there exists a point zo with Im(zo) > 0,

) = 0. Then % is the point symmetric to the real axis and T(Z) = oo.

that T(zo
_oquently, T will be of the form

T@):k(j:;Z), b,
kz
1=IT(0)| = | 22| = Ikl

i k=e?, 6€R,and T has the form

T(z) = € (ﬁ) .

¢ let f be a univalent mapping of Im(z) > 0 onto the unit disk with f(z0) = 0. By
ma 2.8, f=goT, where g is an automorphism of the unit circle with g(0) = 0, and
s a Mobius transformation of the form (2-21). Also, f(20) = (g0 T)(20) = g(0) = 0.
en, by Theorem 2.9, g(z) = e'“z, o € R, and

f(z) = et (z__;_:) .

 is, f is a Mobius transformation of the form (2-21). §

'e now wish to find the form of all Mobius transformations which map the real axis
 the real axis [11]. To do this, consider (2-14), the cross ratio formula , with z;,z5,23,

Wy,w2,w3, real numbers. Then solving (2-14) for w yields

az+b

w=Ig)= "0

a, b, c,d€eR. (2-22)

 obviously true that (2-22) maps the real line to itself.
OW to determine the image of Im(z) > 0 under (2-22), we need only consider the image

he point z = ;.

at+b

ca+d

(at + b)(—ci + d)
c2+d2

_ac+bd .ad—bc

24D +zcz+d2'

w=T(E)=
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ad — be
¢z 4+d?’

Im(z) > 0 will be mapped to Im(w) > 0 if ad — bc > 0, and to Im(w) < 0 if

Im(w) =

e <0.

. only natural now that we have the following theorem.

‘ »m 2.14 [1]. The automorphisms of the upper half-plane are Mobius transforma-

az+b

()= o

a,bc,deR, ad —bc > 0. (2-23)

) > 0. Thus, let f be an automorphism of Im(z) > 0. Then from Lemma 2.8, f

’e form f = T~ o goT where

T:Im(z) >0 — D(0;1) by T(z)= :: (2-24)
¢:D(0;1) - D(0;1) by g(z)=e" (lz——:o—z) Jfor |zo] < 1. (2-25)
- <0

now show that f is of the form (2-23).(See [1, exercise 13, p.162.])

(2-25), if = 7, then
N —1 .
[z irn[ £ — 20 Z—1
f(z)—(z+i) e (1——202)°<z+i)
(z—z')_1 (z—zo) (z—i)
= = [o} (o) = B
z41 Zpz —1 z+1

¥, noting that T-1(z) = —4 (Eﬂ) , we have

z—-1

f(z) = —Im(z9)z — (1 + Re(2)) _az+ b
(1 —Re(z0))z + Im(z20) éz+d

¢,d € R. Observe that

ad — bé = — (Im(20))® + (1 + Re(z0)) (1 — Re(20))
= 1- [(Re(20))” + (Im(z0))?]
=1- |2'()|2 >
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e IZO

n, fi becomes

| < 1. Thus, f is of the form (2-23).
. ifin (2-25), 6 # , then let us write f = f; o f, where
Wy

fi(z2) =T7Y(2) 0 ez 0 T(2),
f2(2) = T7(2) 0 e g(2) 0 T(2).

fi(z) = ~ [ N (z+.)] —i

[e'o (=+a)] -1

.5 i = cos@ + isinf, we can write (2-26) as

(cosf+1+1isinf)z —i(cosf —1+isinb)
i(cosf —1+isinf)z + (cosf +1+isinf)’

fi(z) =

tiplying the numerator and denominator by €sétl=isinb o} aye

Q.n

cos #+1—1sin 6’

(1+cosf)z+sinf  ayz+b
—sinfz+ (14+cosf) c1z+d;’

fi(z) =

erve that a;,b1,c1,d1 € R and

aydy — bye; = (1 + cos 9)2 + (sin 0)2
=2(1+4 cosf) > 0, since 0 # .

' consider the function f,. After simplification, it can be written as

(1 — Re(z0))z + Im(20) _ G2z + b2
Im(29)z + (1 + Re(29)) c2z+d2

f2(2) =

rve that a2,b2,02,d2 € R and

azdz — bycz = (1 — Re(20)) (1 + Re(20)) — (Im(20))”
=1 [(Re(x0))" + (Im(20))’]

=1_|20|2 >0,

20| < 1. Combining (2-28) and (2-29), we have

az+b
tz+d

€ R and ad — bé > 0. Thus, f is of the form (2-23). 1

fz)=(fiof2)(2) =

28
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CHAPTER 3
The Schwarz-Christoffel Transformation

The Riemann mapping theorem (Theorem 0.5) guarantees the existence of a univalent
function that maps a simply connected domain onto the unit disk. Unfortunately, the
theorem does not provide a technique for the actual construction of the function. However,
i we consider simply connected domains that have some “regularity”, specifically bounded
polygons, it is possible to construct the univalent function guaranteed by the Riemann
mapping theorem. In this chapter we shall derive an explicit formula for the mapping of
the upper half-plane onto the interior of a polygon.

Thus, let P be a closed polygonal Jordan curve of n sides lying in the w-plane, with
consecutive vertices at A;,...,A,. We assume that the numbering of the vertices gives P
a positive, or counterclockwise, direction. Let ma,,...,Ta, denote the interior angles of
P at vertices A1, ..., A, respectively, and define the exterior angles mpu,,...,mu, of P by
gar +ur =7, k=1,...,n (see Figure 3.1 for the case n = 5). Observe that 0 < ax < 2
for k=1,...,n, and consequently —1 < pi < 1 for k = 1,...,n. Also, since the sum of

the exterior angles of a polygon is 27, we have the relation

Z'uk = 2. | (3-1)

Figure 3.1

Now let v = f(2) be a univalent function mapping the upper half-plane, IIy =
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' Im(z) > 0}, onto the interior of P. We wish to derive the explicit form of f. We will |
 the technique given by Nehari [11]. This will require the use of a consequence of the |

; Reflection Principle (Theorem 0.7) which we state, without proof, as a corollary.

Jlary 3.1 1 1]. Let A be a domain whose boundary includes a linear segment L, and
Ar be a domain whose boundary includes a linear segment L'. If the function w = f(z) '\
. A onto A' in such a way that the segment L is transformed into the segment L',

fis analytic at the points of L.

1,100 (—00 < @1 << @p < 00) be the points on the real axis such that

a) = Ak for k =1,...,n. Then the points ay,...,a, divide the real axis into n parts,
b of which are mapped to a side of the polygon P. Here, —oo and oo are identified
the point at infinity in the extended complex plane. Thus by Corollary 3.1, f will be

: dticon R\ {a1,...,an}.
Now, consider the side AxAryy of P. Since f(ax) = Ax and f(ax41) = Ai41, side

V. r+1 may be represented by the parametric equation

w(t) = f(ar) +t[f(ak+1) — f(ak)],  t€[0,1].

nsequently, for z € (ak,ax+1), f can be written as

f(z) = f(ar) +1(2) [f(ar+1) — f(ar)], (3-2)

ere ¢ is a real differentiable function mapping (ag, ag+1) onto (0,1). Since f is differen-

able on the interval (ax, ax41), we have

f'(2) =1 (2) [f(ar41) — f(ar)],
f'(2) = t"(2) [f(ar+1) — f(ar)],

() _ ")
f2) = =)

1ce ﬂ 1 $ 1
¢ 18 a real function, the function g(z) =

f %—(%)-willberealforzER\{al,...,an}.
‘ € will now study the behavior of g(z) = {f—',l((f)l at the points a;. Let us consider the .
“H0n when f (ak) = 0. That is, the vertex Ax of P lies at the origin in the w-plane.
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F

Then,

c and C2, meeting at Ay = 0 with an angle ma;. C; and C; can then be represented by
1
- polar equations

for an appropriate €, f will map the interval (ax — €,ax + €) to two line segments,

C: wl(r) =re’ and C: wy(r) =rel®tTn) (3-3)

where 0 is 2 constant and r takes positive values (see Figure 3.2).

¥ A
¥
& o
iy
\ A e e L.
-+t ‘;k 7 o) ”X ~ ) U
Y Y
Figure 3.2
Now consider the function ¢(w) = w?, where f is a real number. Then,

¢ [wi(r)] = rPe?? and ¢ [wa(r)] = rPei®Fman)d (3-4)

where the branch cut of ¢ is taken so that it does not intersect C; or C,. Consequently ¢
1

will map C, and C; onto a pair of line segments forming an angle rax 3. Letting 8 = a; !,
the function

H(z) = [f(2)] (3-5)
will then map fhe interval (ax — €,ax + €) onto a linear segment passing through the
origin. By Corollary 3.1, H will be analytic at a;. Also, H'(ai) # 0, since the angle 7 is
transformed to the angle 7. Now, since H(ax) =0 and H'(ax) # 0, H can be written as

H(z) = [f(2)]* = (z — ar)h(2), (3-52)

Where £ is analytic at ax and h(ax) # 0.
Iff (a) # 0, then (3-5a) will have the form

H(z) = [£(2) - (@] = (2 — an)h(). (3-6)
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f(2) = f(ax) + (z — ax)** [h(2)]**,

£1(2) = ar(z — ar)™ ™ [h(2)]™* + an(z — ar)* [A(z))™ K (2)
= (2 — az)™ ! {ak [R(2)]™* + ax(z — ax) [h(2)]** h’(z)} . (3-7)

k(z) = ak [R(2)]™* + ar(z — ax) [h(2)]** ~1h!(2), (3-7) becomes
f'(z) = (z — ax)™ " k(2). (3-8)

se that k is analytic at ax and k(ax) # 0, since h(ax) # 0. Differentiating (3-8)

f'(2) = (ax = 1)(z — @)™ “*k(2) + (2 — @)™ 7' K'(2). (3-9)

(3-8) and (3-9), we have
f"(2) _ (o = 1)(z — ar)** 2k(2) + (2 — ar)** T K'(2)

A=) T (= = an)™Th(2)
(-1, K@)
z—ag k(z)
e, K

since ax + pr = 1.

Cz—ax k(z)

e k(ax) # 0, g has a simple pole at z = ax with residue — .

Now, since k is analytic at ax and k(ax) # 0, the function

f"(z) m
O

be analytic at a; and consequently the function

®i(z) =

_ f"(2) Pk ]
2 f’()+Zz—ak (3-10)

9 analytic at the points aj,...,an. But {fl—,' was shown to be analytic on

f“lv--,an}; consequently @ will be analytic on R. Recall that % was shown to
al for all points in R\ {ai1,...,an}, and since ax,ux € Rfor k =1,...,n, ® will be
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1 for all points in R\ {ai1,...,a,}. However, ® is analytic, and hence continuous on R.
. & will be real for all points in R.

now wish to examine the behavior of @ at z = co. To do this, consider the function
-1 applied to the segment (—¢, ¢), where ¢ = max{|a;|,|an|}. Under the mapping
f {-1, (_%, %) will be transformed to the rays (—oo, —c) and (¢, 00). Consequently, the
, f (f—l) will transform the segment (—%, %) into part of side A; A, of the polygon
By Corollary 3.1, f (¢71) is analytic at £ = 0. Thus f (¢7') can be represented by the

Jor series

f(€_1)=icn§"=60+clf+---, €] < R.
n=0
terms of z, this series 1s
f(z)=§cnz_"=co+cz—l+"', 2| > R. (3-11)
erentiating (3-11) yields
fle)=-S -2, (312)
f'(z) = -2:71+ 62%+---, (3-13)

m 18 the first non-zero coefficient, then

flI(Z) _ m(m + l)cmz‘(m+2) 4 (m oo 1)(m + 2)Cm+1z—(m+3) 4.
f'() —memz= (M) — (m 4+ 1)cppr2—(M+2) — ...
_ m(m+1)em +(m+1)(m +2emprz ™ +--
—memz = (m+ Demts —
' =_l (m(m+1)cm+(m+1)(m+2)cm+1z—1 LA
< mem + (m 4+ 1)emprz™t 4+ -+ ) .

(3-14)

ation (3_14) shows that g(z) _ ftl'l(gsz i analytlc at z = oo and g(oo) =0. Indeed, with
bstitution w = 1, (3-14) becomes

z

- —w (m(m + )em +(m+1)(m +2)cmprw + - - -
mcm+(m+1)cm+lw+... 2
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1 is analytic and equal to 0 when w = 0. Consequently, ® will also be analytic at
0 and &(c0) = 0. Thus, ¥(z) = fTI,—((‘f)l + Y re1 ;24— is analytic on the extended

e olane Iy = {z:Im(z) > 0}, and assumes real values for z € R U {oo}. By Theorem

& must be a constant. Since ®(co) = 0, we have & = 0. Hence,
f"(z) Kk
0=®(z +
= f’( ) Z Z = Qg
f'(z) _ Kk
= F - '; P (3-15)

ograting (3-15) yields

log f'(2) = — Z”“‘ log(z — ax) + log A, A€eC,
k=1

— fl2)=AT](z = ax)™™,
k=1
N f(z)=A/ (t—a1)"" ... (¢ —ap)~*~ dt + B,

ere B is a complex constant and 29 € IIy. We have thus proved

sorem 3.2 [8]. Suppose w = f(z) is a univalent function which maps Il onto the inte-
or of a (bounded) closed polygonal Jordan curve P with interior angles
conanm (0 < ax < 2, k = 1,...,n), and suppose the points ai,...,a, (—00 <

+ < ap < +00) correspond to the vertices of P. Then
w=f(z)=A/ (t—a)) ™™ ...(t—a,)"#" dt + B, (3-16)
zo

lere yur =1 — ay, 29 € My, and A, B € C.

t should be noted that three of the points a; may be chosen arbitrarily, provided they
€ the same order as the corresponding vertices. This is due to the fact that the cross
o formula (2-14) enables one to construct a Mébius transformation that maps three
| s onto any other three points.

Row wish to prove the converse of Theorem 3.2. Namely, the transformation
w=f(z)= A/ (z—a1)™ - (2 —an)"#"dz + B,
D)

34



iy U {oo} one-to-one and continuously onto a set consisting of a closed polygonal

o curve P and its interior. The upper half-plane IIy is mapped analytically onto the

asor of P-
We begin by examining the function

V() =(z-a)™ (2 = an)™Hn, (3-17)

axls That is, define

(z — ak) ™" = |z — ax|** exp(—ipibk) (_g <O < .32ﬂ),

re §x = arg(z —ax), k = 1,...,n. Then ¥ will be analytic in the domain D =
\ {ai,...,an}. Consequently, for 4,B € C, z € D, the function

£l =4 / “w(t)dt + B, (3-18)

0

be analytic throughout D. The path of integration is to be any contour lying within
Since ¥(2) # 0 Vz € D, we have

f'(2) = A¥(2) #0 Vz € D. (3-19)
nma 3.3 [3]. The function

f(z) = A/z U(t)dt + B,

0

ic in Iy and continuous in .

JOF: Since (3-18) is analytic in D = Iy \ {ai,...,an}, it is obviously analytic and
f” ous in ITy;. Thus we need only examine its behavior near the points a;,...,a,. Let

f€n consider the point z = a;. Equation (3-17) can be written as

¥(z) = (2 — a1)"" ¢(2), (3-20)
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N(z) = (z—az)™h - (z — an)™#~. Since ¢ is analytic at z = ay, it has a Taylor

; expansion about the point a;, and (3-20) becomes

¥(2) =(z—a1)™ [¢(a1) + ¢§Tl)(z—a1)+~-- , |z —a1| < Ry,

=d(a1)(z —a1) ™" + (2 — a1)' "M 0(2), (3-21)

- o is analytic in |z — a1| < Ry. If B(z) = (2 — a1)'"#*0(2), then, since 1 — py > 0, B
Je a continuous function in the region .5 = ﬁu n {|z — all < Rl}, provided ﬂ(al) = 0.

oquently, the function
il =/ A= / f—ad P aitid (3-22)

be continuous at z = a;, where z; € D and the path of integration is a contour lying

ely in D. Also, the function
/ $(a1)(t —a1)™ " dt = % [(z = a1)' ™ = (21 —a1)'™"], (3-23)

g the same path of integration, is a continuous function of z at a;, if the value of the
ral is defined to be the limit of (3-23) as z approaches a; in D. (Note that this limit
xist since 1 — p1 > 0.) Thus, (3-22) and (3-23) imply that the function

/: U(t)dt = /: ¢(a1)(t —ay)~* dt + /:(t —a) Mot dt,

ontinuous at z = a;, where the path of integration is again a contour lying in D.

sequently,

f(Z)=A/z:\Il(t)dt+B=A[/: \I:(t)dt+/:\11(t)dt] + B,

1

€ continuous at z = q;.

fie above argument may then be applied to the points as,...,a,. Thus, the function
fGz)=4 / U(t)dt + B,
2z

itinuous in IT;. g
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a 3.4 (3, exercises 10,11, p.271]. The function
-

= A/z ¥(t)dt + B,

0

ceTy, f|>R =  |¥0)< %

oor: If |z| > R > 2max{|ai],...,|as|}, then for k =1,...,n,

|2 — ax| < [2[ + |ak| < 2] + 2] = 2]z],

¥(2)] < |o|T22llmpabb o tlmmnl) = =
e M = 2{l=pl+ -+ |-pal} o
* im,_, f(2) = W, where W € C.

37

z
2 — axl > |2] ~ Jaxl > |#] = 3¢l = 2L
)
|z]| > R = %<|z—ak|<2|z|, k=T
n
2(2) =[] (z = a) ™
k=1
n
_ [M-M 1 % “"*]
k=1 z
= Qg |~ HE
= |z]~2 H ll - 7" , since y_p_; pk = 2.
k=1

(3-24)

(3-25)

(3-25), recalling that —1 < ux < 1, we have 1 — 2| < 2.l for k = 1,...,n.



5. We first consider the limit of f(z) as z tends to infinity through real values. That

zli_{t(:‘:f(:z:) = A/I:o ¥(z)dz + B,

re R is given in (3'24) Letting \Il(z) = u(z) + iv(z), we have

/Izdoql(z)dz=/ u(:z:)dz+i/;°v(z)dz.

R
oo ‘ t
/ u(z)dz = lim/ u(z) dz.
R t—o0 R

(3-24), we have
i /' /' M d
u(z)|dz < —dz.
RI @) r |z|?

lim f(z) =4 /R " W(z)ds+ B=W, (3-26)

re W € C.
ow let z be a point in the half-plane Im(z) > 0 such that p = |z| > R, where R is given

.24). Then |
1£(2) = £(p)| = 'A / U(t)dt— A /,, \Il(t)dt‘ = IA /,, i \Il(t)dt(; (3-27)

e the path of integration is along the arc of the semicircle p = |z| (see Figure 3.3).

£4
z
- - S 2 %
v

Figure 3.3
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_ define a contour C, by z(6) = pe'®, 6 € [0, 7], (3-27) becomes

|£(2) = f(p)| = ‘A/: U(t) dt

= IAI/ |\Il(pei0)piei0| dé
0
= pla| [ [w(pe)| a6

. 7
< pl4] / e df, by (3-24)
o IP

_ lAIM
p
|A| M=

»
s, f(z) — f(p) — 0 as p = |z| — oco. But, as shown in (3-26), as p — oo through real

0

es, f(p) tends to the value W. Thus, f must tend to W as z — oo in an arbitrary
nner in the half-plane Im(z) > 0. That is,

lim f(z)=W. §
e define f(oo) = W, then f(z) = A f:o U(t) dt + B will be continuous at z = co. I
Ve now wish to investigate the mapping properties of (3-18). For real z, z # ax,

17) becomes

U(z)=(z—a)) ™™ --(z—an)" . (3-28)
EER\ {a1,...,a,}, we have
w0

nce, arg(z — £) is constant for z < ¢, but decreases by m as z increases through

x, forz<§
0, forz>¢.

Then in (3-28), arg(z — ax), k = 1,...,n, will remain constant in the intervals

”al)’ (a1,a3),...,(an,00). Thus (3-28) may be written as

Y(z) =% |¥(z)], aj<z<ajy1, J=0,1,...,n, (3-29)
€T ay = —00, @p4; = 00, and
0i=-m > pr, 0.=0. (3-30)
k=j+1
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mma 3.5 [12]. The transformation (3-18) maps the interval [a;, a;+1] one-to-one onto

Le LT
Jine segment f(a;)f(aj41), 7 = 1,...,n — 1. Equation (3-18) also maps the inter-

an,00) one-to-one onto the line segments f(o0o)f(a;) and f(a,)f(o0),

vals (—00, al] and [

,wpecﬁ"e]}"

PROOF: Let j be fixed (j =1,...,n — 1), and let ¢, € be real points such that a; < { <

£< aj41- Then,

) 3
- = A V(z)dz.
O - 50 =4 [ %)
From (3-29), We have )
. . €
f(&) - f(&) = A€ /E ()| dz. (3-31)

Gince ¥(z) # 0 for all z € (aj,aj+1), f(f) # f(€). Also, since 6; is constant for all
2€ (aj,aj+1),

arg (£(€) - £(€)) = arg(4) +9;,

is constant for all z € (a;,a;41).
Since f is continuous on R, letting £ — a; and £ — aj41, the image of [aj,aj4+1] will
correspond to the line segment f(a;)f(a;+1) and this correspondence is one-to-one.

A similar argument holds for the intervals (—oo,a1] and [an,0). §

Lemma 3.6 [12]. Let w = f(z) = A f:o ¥(z)dz + B. Then,

arg(f(aj4+1) — f(a;)] — arg[f(a;) — f(aj-1)] =7, j=1,...,n,

arg[f(a1) — f(o0)] — arg[f(o0) — f(an)] = 0,
'bere aQy = Qn41 = O0.

ProoF: Let &p,&1,.. ., ¢, éo,él,.. .,En be real points such that —oo < &y < fo <ap,a; <

c"<€j <ajyyforj=1,...,n—1,and a, < €, < €, < 00. Then from (3-30) and (3-31),
We have

w8 [f(6) — £(6)] = sub(4) +; = ssg(4) =7 3 g = doeeeim
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S L, L% 5% 'w;x <
Y v
Figure 3.4
arg [£(€) — £(&)] — axg [ F(§-1) = F(&i-0)] = . (3-32)
Figure 3.4).

glf(bo) — f(&0)] — arg[f(6n) — F(€n)] = ) arglf(Ek—1) — f(€x—1)] — arglf (k) — F(&)]
. k=1 ‘

= Z — Tk, from (3-32)
k=1

=0 (mod 27).
W, since f is continuous on R, letting £; — a; and &; — a;4; yields

arg(f(aj+1) — f(a;)] — arg[f(a;) — f(aj-1)] =7p;, j=1,...,n,

arg[f(a1) — f(0)] —arg[f(o0) — f(aa)] =0, (3-33)
€y = a,y; = oo, I
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from Lemmas 3.5 and 3.6, we have that transformation (3-18) maps (—00, a1] U [an, o0)
pe-to-one onto the line segment f(a,)f(a;), and that the image of R U {o0} is a closed
polygonal curve:

We now restrict the choices of ay,...,a, in transformation (3-18) so that this function

ps R U {oo} one-to-one onto a closed polygonal Jordan curve. Then Lemma 3.6 shows
that the exterior angle of this polygon at vertex f(a;) is mp;. (Recall that for a given
pol)'gon with vertex A;, the exterior angle at A; is defined to be mu; = © — 7a;, where Ta;

is the interior angle at A;.)

We are now in a position to prove the converse of Theorem 3.2.

Theorem 3.7 [12]. The transformation
w = f(2) :A/ (z—ay) ™™ .- (2 —ap) ¥ dz + B, (3-34)
Z0
maps IIy U {oo} one-to-one and continuously onto a set consisting of a closed polygonal

Jordan curve P and its interior. The upper half-plane Ily is mapped analytically onto the
interior of P.

PROOF [3, exercise 12, pp.271-272]: By Lemma 3.5, (3-34) maps RU{oco} one-to-one onto
P and by Lemmas 3.3 and 3.4, (3-34) is continuous on IIyy U {oo} and analytic in the upper
half-plane ITy;.

We will now show that (3-34) maps the upper half-plane II;; one-to-one onto the interior
of P.

We are unable to apply Theorem 1.10 because the real axis does not constitute a simple
closed contour of the upper half-plane. However, analogous to the proof of Theorem 1.10,
We shall show that the number of times a point wy is taken by (3-34) is given by

N, =—hm/ f(f(z) dz.

2mi r—oo z) — wo
Then we will be able to use the same argument presented in the proof of Theorem 1.10 to
fonclude that (3-34) is a univalent function mapping the upper half-plane onto the interior
. of the polygon.
Thus let C be a contour in the upper half plane ITy; consisting of the upper half of a circle

bl =r and a segment —r < z < r of the z-axis that contains the points aj,...,an, except
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!

bat & small segment about each point is replaced by the upper half of a circle |z —a;| = p;,
+h that segment as its diameter (see Figure 3.5). Also, let wy be a point not on P. Then,

wl

gom the argument principle, the number of times wy is taken by transformation (3-34)

iﬂwrior toC is Si"en by

) 1 [ AN
27rz/f(z) wo _27rz'/cf(z)—wod’ from (3-19).

5 g
—
£
— &
/‘u PA ) P
A AL AR ) . X
~~r /’\' O “r'X o ° “uw
R “a Jr = i
Figure 3.5

CLAIM: The number of times wy is taken by transformation (3-34) in the upper half-plane
Iy is
G 1 [T ANE)
w = omi r-oo/ o -m e i, o) -—w e &9
PROOF: We first examine the integral

AY(z2)
C., f(z) —wo

8T — co. For r = |z| > R,, where R, is given in (3-24), we have

dz, C,: z(6)=re'®, 6¢€(0,7],

|AIM _ |A|M

|z|2 - r2

|A¥(2)] = |A||2(2)] <

Now, since W is not a point on P, 3 € > 0 such that |f(co)—wp| > 2¢. Since f is continuous
82=00,3R, > 0 such that

r=|z| > Ry = |f(z)— f(o0)| <€

— —If(z) - f(o0)| > —<.
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= |z| > Rz, we have

fhen, for 7 =
|£(2) — wo| = | f(00) — wo + f(2) — f(o0)|
2 |f(o0) — wo| — | f(2) — f(o0)|
> —¢

= €.

Thus, for r > max{R;, R;}, we have

AY(z) dz| < |A|Mr7r _ |A[M7r,
e, @) - re
and
A\Il(z)
d = 0. 3-36
Now, for a given ¢, 2 =1,...,n, we w1sh to examine the integral
AY(z) 0
————dz, p;: z(0)=|z—a;le’”, 6€][0,n],
s pi HO =l —a 0,7]

as p; — 0. Observe that |¥(z)| can be written as
12 (2)] = [&(2)llz — ai| ™,

where 1(z) = [[x=1(z — ax)™#* is a continuous function at z = a;. Consequently, for
k#i

8 > 0,37, > 0 such that
pi =z —ail <m = 6 > [p(2) — ¥(ai)| 2 [(2)] — [¥(ai)
= b1+ |¥(a1)] > [(2)l-
Thus, for pi = |z — ail < n,
|AY(2)| = |Al1$(2)] |z — ai| ™ < |A|(61 + [¥(ai)]) o ™"
Again, since wo is not a point on P, 36, > 0 such that |f(a;) — we| > 262, Since f is
ontinuous at » — a;, 3ny > 0 such that
p=lz—ail <n = |f(z) — f(ai)| < b2
= —|f(2) - f(ai)| > =62
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pen, for pi = |z — ai| < n2, we have

£(2) — wol = |£(2) — f(a:) + f(a:) — wol
2 |f(ai) — wol — |f(2) — f(ai)|
> 26, — 6,

=62.

Phus, for pi < min{n1, N2}, we have

AY(z) ¢w<|AK&++¢()D¢”"ﬂ Al (8 + [$(an)]) mp ™"
pi flz)= b2 & b2 ’

nd since 1 — p; > 0,

- AUz . '
Jim, /,, | f(z)—wod 0. (3-37)

etting r — co and p; = 0,4 =1,...,n, (3-36) and (3-37) imply that the number of times
p is taken by transformation (3-34) in the upper half-plane IIy is

1 1 AT()
New =5 rlf-‘o/ f(Z)—wo Flei—vo ™ ond r‘i"é‘o/ =g 2 ¥

Now, let w = f(z), dw = f'(z)dz. Then we have

1 H e L
N = 27rz rhm / f(z) - wo 27t Jpw —wo

Using the same argument given in the proof of Theorem 1.10, we may conclude that

w=f@)=A4 [ (-a) (o) it B,
Z9
Baps the upper half-plane II; one-to-one onto the interior of P. Theorem 3.7 is thus
Toved. |

The transformation (3-34) is called the Schwarz-Christoffel transformation of the upper
alf-plane onto the interior of a polygon. Formulas of type (3-34) are called Schwarz-

xmtoﬁ'el formulas. In Chapter 4, we will examine some generalizations of transformation

3-34).

45




CHAPTER 4
Variations of the Schwarz-Christoffel Transformation

In this chapter, we wish to develop some variations of the Schwarz-Christoffel transfor-

mation. We begin by ﬁrst’ restating Theorem 3.2:

Theorem 3.2 [8]. Suppose w = f(z) is a univalent function which maps Iy =
{z: Im(z) > 0} onto the interior of a (bounded) closed polygonal Jordan curve P
with interior angles aym,...,a,m (0 < ax < 2, k = 1,...,n), and suppose the points

... .0, (o0 < a3 < -+ < ap < +00) correspond to the vertices of P. Then

zu:f@)=f{/7t-ag-mn-a—ag—wdn+3, (3-16)

where px =1 — ax, z0 € Iy = {z: Im(2) > 0}, and A,B € C.

Formula (3-16) gives the explicit form of a univalent function mapping the upper half-
plane onto the interior of a given polygon. By modifying the proof of Theorem 3.2, it is
possible to obtain the explicit form of a univalent function mapping the upper half-plane

onto the exterior of a polygon. Namely,

Theorem 4.1 [8]. Suppose w = f(z) is a univalent function which maps Iy onto the
exterior of a (bounded) closed polygonal Jordan curve P with interior angles a7, ..., an™
(0<ax <2, k=1,...,n), and suppose the points aj,...,an (—00 < a3 < -+ < @p <

+00) correspond to the vertices of P. Then

al)ﬂ'l cee (t == an)l-"n

N o
“"f”‘A/zo (t— APt — B

dt + B, (4-1)

Where 1) =1 — ax, 2o € Iy, A,B € C, and B(ImfB > 0) is the inverse image of co.

Proor [8,10]: Since the mapping w = f(z) is conformal at z = 8 and f(8) = oo, f must
have simple pole at z = . Thus, it must be of the form

¢(2)
z—p’
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where ¢ is analytic at z = § and #(8) # 0. Then,

fi(z)=—(z=B)*¢(2) + (z = B)7'¢'(2),
f'(z) =2z = B)7¢(2) = 2(z = B)*¢'(2) + (= = B) 719" (2),

F'(2) _ 2= B)9() = 2 = /() + (2 = ) 4"(2)
72) =P8 + - H )
_ 20() = %z = A)¥'(2) + (2 = B4"(2)
G=A)lz— P () — 4(2)
2 G=AE)
28 G- - 9

_ f”(z) 2
1= tiop

is analytic at z = § and ¢,(8) = 0.

(4-3)

have a simple pole at z = . Consequently, by a similar procedure as above, the function

f"(2) 2
= - 4-4

92(2) f’(z) + Z—,H, ( )

will be analytic at z = § and g5(8) = 0.

- Observe that the mapping w = f(z) will map the real axis onto the polygon P. Conse-

quently, we may use the proof of Theorem 3.2 to conclude that the function

i
3

_ ") 2 2 )
=) = Ty ,czlz—ak+2—ﬂ+z—,§, (4-5)

18 analytic in Cw and ®(co0) = 0. It should be noted that since w = f(z) maps the real
l'*“ to the exterior of the polygon P, the angles aym, k = 1,...,n, used in the proof of
theorem 3.2 are replaced by 27 — axm = m(2 — ax). Thus, the quantities ux = 1 — aj used
@ the Proof of Theorem 3.2 will be replaced by

1—(2—ak)=—(1—ak)=—pk, k=1,...,n.
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Gince & is analytic in Co and ®(oc0) = 0, & = 0 by Liouville’s theorem. Thus, (4-5) yields

f'z) e 22
f'(z)_,;Z—ak z2—f z-§

Integrating’ we have

(t—al)"‘ . (t—an) n
S e e

where A, BEC. 1
Formulas (3-16) and (4-1) hold when ax # oo, k =1,...,n. However, (3-16) and (4-1)

can be modified to accept the point at infinity as shown in the following theorem.

Theorem 4.2 [8]. Ifa, = oo, then formulas (3-16) and (4-1) are replaced by

w=f(z)=A4 /Z(t —a1) "M .. (t —ap—1) ¥t dt + B, (4-6)
@ “ (t—ay)# -+ (= apoa)
. o — al 1... P a’:l—l HPn-1 .
O N ey Tl e
respectively.

PRrOOF: We shall first consider formula (4-6). The Mobius transformation
1
z2=T(2) =ay— =, (4-8)
z
18 an automorphism of the upper half-plane and maps 2 = oo onto z = a,. Composing

(3-16) with (4-8) yields

f2)=f(T() =4 /— (t—a1) ™" ... (t— an) ™" dt + B.

20

Under the change of variable ¢t = a, — =1, we have

S z 1 — M1 1 —HUn-1 1 —MUn . .
f(Z):A/ (an—al——h) ...(an—an_l—z) (——.) t_zdt+B,
%0 t t t

<~
P ]
N>
S
I
'
N\.
o N
|
| =
N
|
*
3
)
|
%]
3
|
-
VR
Q
3
|
Q
k-
|
|
.
|
=
o
QL
o~
+
&

1

I
w\.
o N

|
e =
N—

|
§
3
St
|
N
x

(4-9)
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n —Hk -2
Since Z:zl Kk = 2’ we ha’ve Hk:l (—%) = (—%) y and (4‘9) becomeS

z -2 n—1
i) = A/ (_%) 2 T [1 4 (o — an)i] ™ di+ B
z k=1
z 1 -2 ) n—1 1 R —HPk R
=A[ (-1)72 (?) i H(ak —ap) "M [ +t] dt + B
, k=1

2‘0 ak o an

- 2"'—1 : 1 . — Kk .
= 1 dt B » [
A/,;H[ak—an+] + B, (4-10)

0 k=1

where A= A H:;ll (ax — an)**. Letting @y = —2—, (4-10) becomes

an—ag’

f(3) = A/ (f—a)™...(f — Gp—1) "1 di + B,
29

which is of the form (4-7). m

Formula (4-7) is proved in the same fashion. I .

As our final generalization of the Schwarz-Christoffel transformation, we have

Theorem 4.3 [8]. If Iy = {z : Im(z) > 0} is replaced by K = {z : |z|] < 1}, then |
formula (3-16) becomes

w=f(z) = A/z(t —by)"H e (t = bpy) P2 dt + B, (4-6)

Where 2o € K, 2z € K, and the inverse images of the vertices of the polygon are of the form
h=ef b, = 0<6 <2n (k=1,...,n) and 6; < --- < 6,. Formula (4-1) I
becomes

w =f(z)=A/z(t—b1)”1 ...(t—bn)unf—§+3, (4-11) |

'bere D =

0 is the inverse image of the point at infinity. 4

)
ROOF: We shall first show that (3-16) retains the same form. Consider the Mdébius
fansformation |

z=T(£~)=i<1+2>, (4-12)
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< pich maps || < 1 onto Im(z) > 0 (by Theorem 2.13). Now observe that if ¢ =1 (i—'i’—:),

ve have

141 Kk
e =[i(327) o]
I % . s
= (1 t.) [ +fi — ax(1 — )]
-1 123 . ) .
=\13 [{(ak +1) — (ak — )]
T \1-14 ar +1
ar +1 PE PR ap — 1
= — — b = —
(l—t) [t — bi)"*, where by a b i’ |bk| = 1,
o
i 2
dt = ——=dt.
(1-9)2
Jow, with the change of variable ¢t =1 (ﬁ) , composing (3-16) with (4-12) yields

FE=f(T(3) =4 F_ ﬁ (“" s i)_”k (f—by)"# di + B (4-13)
W (1t 2t 17 ¢ ’
here 2y = fgﬁ Simplifying, we have

2 : —Hk
fo-4 25l () G-wd+s,

Z0 (1 - i)2 k=1

- e .
dince Z::l Uk = 2,We have H;:=1 (I_l_—i) = (ﬁ) d and

a0 2 ¥ 24 1 \ s w e
f(z)_A/o (1-19)y (1—5) ,g(t_b") i

z

= fi/ T1 - b)~ di + B.
o k=1
= flz)= A/ (t—=0b)"#"...(t = b,) ¥ dt + B,
2o
hich is of the form (3-16).
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To prove (4- 11),

poi
by

B

we require a Mdbius transformation which maps K onto IIy and the

at 3 =0toz= B. Using Theorem 2.13, we see that this transformation will be given

2 = 8(2)

_ i8-8

o1

z2-—-1

y using (4-14), formula (4-11) is proved in a similar fashion as above. i

(4-14)




CHAPTER 5
Examples

In this chapter, we wish to consider some examples illustrating the results of the previous

chapters. We begin with - -

Example 5.1. Construct a conformal map between the regions shown in Figure 5.1.

Rz

A

Figure 5.1

Let C, represent the circle |z| = 1, C; the circle with center on the real axis passing
through z; and z,, I'; the circle [w| = 1, and I'; the circle [w| = R. Our construction will
center on finding a M6bius transformation which will map |z| > 1 onto |w| < 1, and C; onto

I';. We first note that for any a satisfying 1 < z; < a < z;, the Mdbius transformation

w=T(z)=

zZ—a
¥4

-1’ (5'1)

a

will map |z| > 1 onto |w| < 1.

We now wish to determine a so that C, will map onto I';. Since a is real, T will map
“onjugate points onto conjugate points, and T'(C,) will be bisected by the real axis. Thus,
the diameter z<a<uz <:;f C, will map onto the diameter u; < u < up of T(C;). Hence,
the center 1w, of T(C;) satisfies 2wo = u; + uz = T(z2) + T(z;1). Now, if we let wo = 0, |

then C, wi]] map onto I';, and

—a T —a

0="T(z2) + T(z1) = :’2

’ 5-2
Ty — 1 ar; — 1 ( )
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Simpﬁfying’ we obtain

02(21 + zg) = 20(2122 + 1) + (3:1 + .’L'z) =0. (5-3)
By the quadratic formula,
z172 + 1+ /(2] —1)(z3 - 1) 2122 + 1 — /(2 —1)(§ — 1)
=r = , Of a=ry= "
a T1 4+ T2 T + 2,
(5-4)

Observe that 7172 =1 and r; > ;. Hence, 1 > 1 and r; < 1. Since we require that a > 1,

122 + 1+ \/(zf —1)(=3 - 1). ‘(5-5)

a=7r =
z) + T2
Thus, our transformation becomes
z—a
-3 T = -
w (Z) az — 1’ (5 6)
z122+14/(z2-1)(z2-1)
where a = o,
The value for R is given by
Iy —a
R=T = : %4
@)=2=% (5-7)

As an example of the use of conformal mappings in applications, we consider the following
Dirichlet problem:
Example 5.2. Find a function H(z,y) that is harmonic in the region shown in Figure
9.22 and satisfies the boundary conditions H(z,y) = 0 on the unit circle and H(z,y) =
V, (Ve R), on the circle passing through the points z; and z,, z;,z; € R.

i/////
7

(&




First, consider the Dirichlet problem applied to the region shown in Figure 5.2b. In this
egion, We wish to find a harmonic function h(u,v) such that h(u,v) = 0 on the circle

ol = 1 and h(u,v) =V on the circle |w| = R. Due to the symmetry of the annulus, it can

be shown [5] that the harmonic function satisfying these boundary conditions is given by

|4 o v
h = 2 2 — -
(u’v) ].OgR ].Og u + v lOgR log |'UJI, (5 8)

where w = u + .

Now observe from Example 5.1 that the transformation

w_z—a a_:c1$2+1+\/(:c§—1)(x§—1)
T az-1’ - 1+ T2 ’

maps the region in Figure 5.2a onto the annulus shown in Figure 5.2b. Thus, by Theo-

rems 1.11 and 1.12, the harmonic function satisfying the boundary conditions shown in
Figure 5.2a is given by

Z—a

H(z,y) = hu(z,y), v(z, )] = 1OZR log , (5-9)

az — 1

z172+1+4/(22-1)(z2-1) _ z3—a
e and R = —’—“1_1. 1

where a =
We now consider some examples of the Schwarz-Christoffel transformation.
Example 5.3 [16]. Show that the function
= flz]= /z LA, (5-10)
o (1—tn)»
maps |z| < 1 onto the interior of a regular polygon of order n.
Consider the nth roots of unity b; = 1,b; = w,...,b, = W™}, where w = exp(2%).

Then the transformation

5 dt
f(z)=/0 (t—b)% - -(t—ba)% L)

Will map |z] < 1 onto the interior of an n-sided polygon that has interior angles aym =

T =(1- 2)r, k=1,...,n. Now, note that
H(t—bk) = H (t—exp (-2"—'(:——1))) =t" -1,
k=1 k=1
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and 2 2 2
(" =17 = (-1)» (1= t")" = (1-")".

Thus, (5-11) becomes
; d
f(z)=/o T (5-12)

(1)
We now

cLAaM: Equation (5-12) maps |2| = 1 onto a regular polygon of order n.

pRroOF: Since (5-12) maps |z| = 1 onto an n-sided polygon whose interior angles are all
equal, we need only show that the lengths of the sides of the polygon are equal.
Consider the side f(bx—1)f(bk) of the polygon. It has length given by

/"k dt
br_1 (1 — t")%

If we perform the substitution s = wt, the integral becomes

bi brw brw
I Y L Y B
br—1 (1 — tn)n w br_1w (1 — (i)n) n w br_1w (1 _ e—-21r13n)n

k—1

|f(bk) — f(bk-1)| = , (5-13)

w = w* = byq, and bp_jw = W 2w = wWF! = b;.. Hence,

/"k dt 1 /”Hl ds
o (1—tm)n @ o (1—sm)n

/"k dt 1 /”~+1 ds
s (1—tm)" | |@Jbe  (1—sm)*

Thus, the lengths of the sides of the polygon are equal and (5-12) maps |z| = 1 onto a

Observe that byw = w
(5-14) becomes

and,

|£(bk) = f(ba-1)| = = | f(bi+1) — F(br)l-

regular polygon of order n. ¢

We conclude that the function

z dt
gl Srerrs

Maps |2| < 1 onto the interior of a regular polygon of order n.
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since f(0) = 0, the polygon is centered at the origin and the radius of the circumscribed

1
R=/ o
o (1-tn)?

crcle is

and the length of a given side 1s
.o 1
1=2Rsin1=2sin3/ %
n n Jo (l_tn)n

By an argument similar to that used above, it is easily seen that the function
2
1=t

will map |z| < 1 onto the exterior of a regular polygon of order n.

Example 5.5 [10, exercise 5, pp.197-198]. Show that
z (1 - t5
w = f(2) =/ ———( )4 dt, (5-16)
0

maps |z| < 1 onto the pentagram shown in Figure 5.3.

of

Figure 5.3

Consider the 10th roots of unity by = 1,b; = w,...,by = w®, where w = exp(zl%') =

exp( ). ‘Then the transformation

# H::O(t - b2k)§
dt, 5-17
0 H:=o(t — boky1)? (&17)

56

f(z) =

1|




¢ill map |z| < 1 onto the interior of a 10-sided polygon P that has interior angles am =

21 = I at the vertices f(bx), k = 0,2,4,6,8, and interior angles aym = m —

t+ 5
.t the vertices f(bx), k=1,3,5,7,9. Now, note that

4

H(t—bgk = H t—exp(“’")) =t -1,

and y

ﬁ(t — bakt1) = H (t — exp (QH%)&)) =t +1.
k=0

=0

Hence, (5-17) becomes

N z_(_ts_i_ _ z(l_tS)s
f()—/0 E 1) dt /0—(1_“5)% dt.

4w

SIE]

(5-18)

Since f(0) = 0, the polygon P will be the pentagram shown in Figure 3 if | f(bx)| = c1 for

k=1,3,5,7,9, and |f(bk)| = c2, where ¢; # ¢z, for k =0,2,4,6,8. Now,

|f(b1)] = }f (eXP (%))’ = /:1%i g—lgdt :

Under the substitution s = exp(2Z*)t, the integral is

Then (5-19) becomes

|f(b1 )| =

Repeating this process yields

|f(bo) = [£(bs) = --- = |f(bo)l-

Similarly, we will have

|f(Bo)l = |f(b2) = --- = |f(bs)].
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s the function ‘

o= s0= [0, }

(1+15)¢
s |z| < 1 onto the interior of the pentagram shown in Figure 3. § (
r our final example, we wish to use the Schwarz-Christoffel transformation to map the
.r half-plane onto a polygon with vertices at infinity. Although the theory presented
hapters 3 and 4 concerned bounded polygons, the Schwarz-Christoffel transformation
he modified to accept unbounded polygons [8]. For our final example, we shall consider
nbounded polygon as a limiting form of a bounded polygon.
mple 5.6 [3]. Find a function mapping the upper half-plane onto the domain
{z:0 < Im(z) < 7} (See Figure 5.4).

_

£

Figure 5.4

msider the rhombus with vertices at the points w; = 71, w,, w3 = 0, and wy. We ‘
consider D as the limiting form of this rhombus as Re(w;) and Re(w,) approach —oo I

+o00 respectively. In the limit the exterior angles will be J
prm =0, per=m, pywr=0, pr=m.
sing the values zg = 1, a2 =0, a3 = 1, and a4 = oo in formula (4-6), we have

w=f(z)=A /lz(t -a;)°(t-0)"(t-1)"dt + B. (5-20)

lifying, we have

* dt |
w=f(z)'=A/ —t-+B=Alogz+B. (5-21) |
1
|
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We now need to determine the values of the constants A and B. Since the image of the
point a3 = 1 is to be wy = 0, B must be 0. Now, when Z > 0, the point f(Z) = AlogZ
will lie on the real axis. Hence, A must be a real constant. Also, the image of the point

, = ay is w = mi. That is,
mi = Aloga,. (5-22)

Since a; is negative, (5-22) becomes
ni = Aloga; = Alog|a,| + Am.

By equating real and imaginary parts, we have |a;] = 1 and A = 1. Thus, the function

mapping the upper half-plane onto D is

w=logz. |1 (5-23)
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CHAPTER 6

Conclusion

The Riemann mapping theorem guarantees the existence of a univalent function that
maps the unit disk onto a simply connected domain D, but it does not provide a technique
for the actual construction of this function. However, using the results of the previous
chapters, we are able to construct that function when D is circular or polygonal. By

a technique somewhat similar to that given in Chapter 3, it is possible to construct a

univalent function mapping the upper half-plane onto the interior of a circular polygon,
that is, a polygon whose sides consist of circular arcs [6,10].

The question now arises as to whether or not it is possible to construct a univalent
function, guaranteed by the Riemann mapping theorem, that maps an arbitrary simply
connected domain onto the unit disk. A technique has been developed to answer this
question, but its use is severely restricted due to the complicated expressions involved.

(For a thorough discussion of this technique, see Hille [6] or Nehari [10].)
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