
Construction and Analysis of Conformal Mappings 
on Circular and Polygonal Domains 

by 

Jeffrey A. Osikiewicz 

Submitted in Partial Fulfillment of the Requirements 

for the Degree of 

Master of Science 

in the 

Mathematics 

Program 

Advisor 

'ScJL m. ,~1s\Je~ «, 

Dean of the Graduate School 

YOUNGSTOWN STATE UNIVERSITY 

August , 1990 

Date 

Date 



ABSTRACT 

Construction and Analysis of Conformal Mappings 

. on Circular and Polygonal Domains 

Jeffrey A. Osikiewicz 

Master of Science in Mathematics 

Youngstown State University, 1990 

I;' iJ· 
I 

This paper will consist of an examination of conformal mappings on circular and polygo­

nal domains. In particular, the mapping properties of Mobius, or bilinear, transformations 

will be investigated. Also, the construction of the Schwarz-Christoffel transformation and 

its variations will be examined. 
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INTRODUCTION 

This paper is an expository report designed to elaborate on topics usually found in a 

first year graduate course in complex analysis. Namely, those topics concerning confor­

IDal mappings and their effect on circular and polygonal domains. Therefore, a graduate 

student may find this paper useful as a supplement to his studies in complex analysis. 

Chapter O presents background material referred to in the succeeding chapters of the 

paper. This chapter is optional for the reader with a working knowledge of complex 

analysis. Chapter 1 examines the mapping properties of analytic functions. Chapter 2 

concerns Mobius, or bilinear, transformations and their effect on circular domains. Chapter 

3 is a rigorous development of the Schwarz-Christoffel transformation which maps the upper 

half-plane onto the interior of a polygon. Chapter 4 then presents some variations of the 

transformation developed in Chapter 3. Chapter 5 gives some examples of the theory 

presented in Chapters 2, 3, and 4, while Chapter 6 is the conclusion. 
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CHAPTER 0 

Review Material 

In this chapter, we present background material which will be used in the subsequent 

chapters. This chapter is optional for the reader with a working knowledge of complex 

analysis. 

Definition 0.1 [3]. An arc C in the complex plane is a set of points z = (x, y) such that 

z(t) = x(t) + iy(t), a ::; t ::; b, 

where x(t) and y(t) are continuous functions of the real parameter t. 

Definition 0.2 [3]. An arc C is a simple arc, or Jordan arc, if it does not cross itself 

That is, C is simple if z(ti) =/= z(t2) when t 1 =/= t2, t E [a, b]. If C is simple except for the 

fact that z(b) = z(a), then C is a simple closed curve, or a Jordan curve. 

Definition 0.3 [3]. An arc z = z(t) (a:=; t :=; b) is a smooth arc if its derivative z'(t) is 

both continuous and nonzero throughout the entire interval a :=; t :=; b. 

Definition 0.4 [3]. A set D ~ C is a domain if D is an open connected set. D is a 

simply connected domain if every simple closed contour within D encloses only points 

of D. A domain that is not simply connected is said to be multiply connected . 

We now state, without proof, four theorems and a lemma which will be referred to in 

subsequent chapters. 

Theorem 0.5 (Riemann Mapping Theorem) [9]. Let A be a simply connected do­

main such that A =/= C. Then there exists a bijective conformal map f : A -+ D where 

D == { z: lzl < 1 }. Furthermore, for any :B.xed z0 EA, we can find an f such that f(zo) = 0 

and f'(zo) > 0. With such a specification, f is unique. 

Theorem 0.6 (Rouche's Theorem) [14]. If f and g are each functions which are 

analytic inside and on a simply closed contour C, and if the strict inequality 

lf(z) - g(z)I < lf(z)I, 



bolds at each point on C, then f and g must have the same total number of zeros ( counting 

t11ultiplicity) inside C. 

Theorem 0.7 (Schwarz Reflection Principle) [11]. Let A be a domain whose bound-

:..,c]udes a linear segment L , and let A' be a domain whose boundary includes a a,ry .u• 

]ineaI segment L'. If the analytic function w = f( z ) maps A onto A' in such a way that 

the segment L is transformed into the segment L' , then f can be continued analytically 

across L . 

Hz* is the point symmetric to z with respect to L , and w* is the point symmetric to 

w = J(z) with respect to L' , this analytic continuation is given by the formula 

f( z* ) = w*. 

Theorem 0.8 [11]. A function which is analytic on and within a simple closed contour 

C, and which takes real values at all points of C, must reduce to a constant. 

Lemma 0.9 (Schwarz Lemma) [15]. Let f be analytic on A = { z : Jzl < R} and 

suppose that J(O) = 0 and Jf(z)J ~ M for z EA. Then 

IJ'(O)I ~ 1 and lf( z )I ~ M1zl' for z EA. 

H IJ'(O)I = r;r, or if If (zo)I = M~ol for some zo E A, zo -/- 0, then 

f( ) = ieMz 
z e R , BER. 
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CHAPTER 1 

Elementary Properties of Conformal Mappings 

Consider f : C -t C defined by f(z) = w. A graphical representation off in the 

conventional sense is generally not possible because both z and w are located in a plane, 

rather than on a line. It is possible however to visualize the behavior of f if we display 

z == ( x, y) and w = ( u, v) as points in two different planes, the z-plane and the w-plane, 

and interpret fas a mapping or transformation of the points in the z-plane onto points in 

thew-plane. The z-plane will thus contain the domain of definition off and thew-plane 

will contain the image of J. 

Definition 1.1 [9]. A map J : D -t C is called conformal at z0 E D if there exists an 

0 E [O, 271") and an r > 0 such that for any smooth arc z = z( t) in D passing through z0 = 
z(to), the curve w(t) = f(z(t)) is differentiable at to, lw'(to)I = rlz'(to)I, and arg(w'(to)) = 
arg(z'(t0))+a (mod 271" ). Here, r is called the scale factor and a is the angle of rotation. 

A map will be called conformal in a domain D when it is conformal at every point in 

D. 

Thus, a conformal map rotates and stretches tangent vectors to curves. It is easily seen 

that a conformal map preserves angles between intersecting curves. To show this, we first 

define what is meant by the angle between intersecting curves. 

Definition 1.2 [13]. Let C1 and C2 be two simple curves which 

(i) intersect at z = z0 , 

(ii) are smooth in a neighborhood of z0 , and 

(iii) have tangent vectors T 1 and T 2 respectively at z0 . 

If 81 and 82 are the local polar angles for T 1 and T 2 , respectively, we define b.91,2 lzo , 
the angle from C1 to C2 , as 

b.0 I - , 
{ 

82 - 91 if 92 - 91 >_ 0 
1

'
2 

zo - 271" + (02 - 01), if 02 - 81 < 0, 
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h AB 2 is the positive angle through which T1 must be rotated in order to locally line 
T us 1, 

·th T (see Figure 1.1). Also note that since 81, 82 E [O, 21r), we have 681,2 E [O, 21r). 
up Wt 2 

1 t, 

0 )( 0 

t9~ - e, )O e.-e, <O 

Figure 1.1 

Now, to see that a conformal map preserves angles between intersecting curves, let f 

be a conformal map in a domain D, and let z1 = z1 ( t), z2 = z2 ( t) be two smooth arcs in 

D intersecting at zo = z1(to) = z2(to), Also, let 81 = arg(z~(to)), 82 = arg(z~(to)). The 

images of z1 and z2 will then be w1(t) = f(z1(t)) and w2(t) = f(z2(t)), respectively. Then 

since f is conformal at zo, 3 a E [O, 21r) such that 

¢1 = arg( w~ (to)) = 81 +a+ 21rn1, 

¢2 = arg( w;(to)) = 82 +a+ 21rn2, 

where n1, n 2 are integers. We have 

where k is any integer. But A</>1,2, 681,2 E [O, 21r). Hence k = 0 and 6¢1,2 = 681,2. 

(1-1) 

(1-2) 

(1-3) 

A mapping that preserves the size of the angle between two smooth arcs but not neces­

sarily the sense is called an isogonal mapping [3]. The function f(z) = z is an example 

of an isogonal mapping. ff f is a nonconstant function analytic at z0 and f' ( z0 ) = 0, then 

Zo is called a critical point of the transformation w = f ( z ). The next theorem illustrates 

the mapping behavior of an analytic function near a critical point. 

Theorem 1.3 [3, p.224, exercise 10]. Suppose tbat a function f is analytic at z0 and tbat 

f'(zo) = J"(zo) = · · · = J<m-l)(zo) = 0, 
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m
e positive integer m ~ 2. Then the angle between two smooth arcs which meet at 

for so 
. agniB.ed m times by the mapping f(z) = w. 

zo JS m 

OF
. Since J is analytic at zo, it is analytic in some neighborhood of zo, and J has a 

PRO . 

Taylor series expansion about zo . That is, 
(X) 

J(z) = J(zo) + Lan(z - zof, lz - zol < R, 
n=l 

Hence, 
(X) 

J(z) - J(zo) = L an(z - zof 
n=m 

(X) 

= (z - zo)m L an+m(z - zot 
n=O 

= (z _ z,r [am+ f "•+m(z - z,r J 

= am(z - zo)m [ 1 + a~ f Un+m(z - zo)" l · (1-4) 

ow, let 
1 (X) 

g(z) = - L an+m(z - zof-
am 

n=l 

(1-5) 

Then g is analytic for I z - zo I < R and g( zo) = 0. Thus, ( 1-4) becomes 

=> 

[
j(m>(zo)l 

f(z) - f(zo) = (z - zo)m m! [1 + g(z)], 

arg[f(z)- f(zo)] = arg[(z - zo)m] + arg [j(m~~zo)] + arg[l + g(z)] (mod 21r) 

= m arg(z - zo) + arg [j(m)~zo)] + arg[l + g(z)] (mod 21r). 
m. (1-6) 

ow let C1 be a smooth arc passing through z0 and let r 1 be the image of C1 under the 

transformation w = f ( z) . Let 01 be the argument of the tangent to the curve C1 at z0 and 

let ¢1 be the argument of the tangent to the curve f 1 at f(z 0 ). But, 01 = arg(z - zo) and 

<Pi== arg[J(z) - f(zo)] as z - z0 along C1 . Thus, as z - z0 along C1 , (1-6) becomes 

[
j(m>(zo)] 

cp1 = m01 + arg m! + 0, (1-7) 
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. ·s continuous and g(zo) = 0. Similarly for a smooth arc C2 with image I'2, we have 
since 9 1 

[
f(m)(zo)] 

¢>2 = mB2 + arg m! . (1-8) 

from (l-7) and (1-8), we have 

Thus, the angle between two smooth arcs which meet at zo is magnified m times by the 

mapping J(z) = w . I 

Theorem 1.3 shows that if f is conformal at zo, then it is necessarily true that J'(z0 ) -=/ 0. 

We will now present two theorems which show that conformality is a characteristic property 

of analytic functions. 

Theorem 1.4 [9]. Let f : D --+ C be analytic and f'(zo) =/= 0. Then f is conformal at 

Zo-

PROOF: Let z = z(t) be a smooth arc in D passing through z0 = z(t0 ). Then the curve 

w(t) = f(z(t)) is differentiable at to and by the chain rule, 

w'(to) = J'(z(to))z'(to) = J'(zo)z'(to). 

Hence, 

arg(w'(to)) = arg(f'(zo)) + arg(z'(to)) =a+ arg(z'(to)), 

and, 

lw'(to)I = lf'(zo)l lz'(to)I = r lz'(to)I. 

Thus, f is conformal at z0 , its angle of rotation being arg(f' ( z0 )), and its scale factor being 

1/'(zo)I. I 

The above proof shows that the angle of rotation arg(f' ( z)), and the scale factor If' ( z) I, 

of an analytic map vary from point to point. But since f' is continuous for points z near 

zo, arg(f'(z)) and IJ'(z)I will approximate arg(f'(zo)) and lf'(zo)I respectively. Thus, in 

a local sense, images of small neighborhoods of z0 coincide or "conform" to the original 
region. 
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·11 now show that a mapping f(z) = u(x, y) + iv(x, y) which is conformal and has We w1 

. us partial derivatives of u(x, y) and v(x, y) in a given domain must be analytic. 
continua 

The following theorem relies on the use of conjugate coordinates, so a brief survey of 

bJ·ect is in order [11, pp. 17-20, 32]. 
the su 

Consider the complex variables z = x + iy and z = x - iy. Solving for x and y yields 

1 1 
x = 2(z + z) and y = 

2
i (z - z). (1-9) 

Ifg(x,y) is a complex function which has continuous partial derivatives 9x, 9y, and we 

apply (1-9) and the formal rules of partial differentiation, we have 

89 = ! ( 89 _ i 89) and 89 = ! ( 89 + i 89) . 
az 2 ax 8y az 2 ax 8y 

It can then be shown that if 9 is complex differentiable, 91 
( z) = ~ and the Cauchy­

Riemann equations are equivalent to~ = 0. It can also be shown that if z(t) = x(t)+iy(t), 

where x(t) and y(t) are differentiable functions of a real parameter t, then 

d9 = 89 dx + 89 dy = 89 z'(t) + 89 z'(t). 
dt ax dt 8y dt 8z 8z 

(1-10) 

We now state the theorem. 

Theorem 1.5 [11]. Let f(z) = u(x,y)+iv(x,y) be conformal in a domain D and assume 

Ur,uy,Vx,Vy exist and are continuous in D. Then f is analytic in D. 

PROOF: Let zo E D. Let z1 (t) = z0 + ei91 t, t E [0, 1], be a linear segment in D (81 E 

!0,21r) fixed). Then, 

df -
dt (0) = fz(0)z~ (0) + fz(0)z~ (0) 

= ei81 fz(0) + e-i81 f:z(0) 

= ei91 [fz(0) + e-2i81 fz(0)] . 

Let arg[*(O)] = </>i. Then (1-11) becomes 

arg [ dt (O)l = arg (ei
91

] + arg [fz(0) + e-
2

i
9

i fz(0)] (mod 21r) 

=;, ¢1 = 81 + arg [fz(0) + e-2
i
9

i fz(0)] (mod 21r). 

7 
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1 t (t) = zo + ei82 t, t E [O, 1], be a linear segment in D ( 02 E [O, 21r) fixed, 82 =/ 81 ). 
JfoW, e z2 

·milar process, we have BY a. S1 

¢2 = 82 + arg [lz(O) + e-2
i
82 l:z(O)] (mod 21r), 

,J.. arg[tf:1.dt (O)]. Since l is given to be conformal at z0 , it must be true that 
where <r2 = 
A~

112 
= 601,2 . But this implies that arg [lz(O) + e-2

i
9 fz(O)] is constant for 0 E [O, 21r). 

Now, 
/3 = lz(O) + e-2

i
8 fz(O), 

describes a circle of center lz(O) and radius fz(O) as 0 varies from O to 1r. Hence arg/3 

can remain constant only if the radius of the circle is zero. That is, fz(O) = 0. But this 

condition implies that l satisfies the Cauchy-Riemann equations. Also, since ux,uy,vx,Vy 

were assumed to be continuous, l will be analytic at zo. Since zo was chosen arbitrarily 

in D, f is analytic in D. I 

Theorems 1.4 and 1.5 show that conformal maps and analytic functions are interrelated. 

Thus, throughout the remainder of this paper, we shall identify a conformal map with 

an analytic function having a nonzero derivative [9]. We now state, without proof, the 

inverse function theorem for analytic functions to show that if an analytic function l has a 

nonzero derivative at a point z0 , then it will have a local inverse about the point z0 . That 

is, a conformal map has a local inverse at every point in its domain. 

Theorem 1.6 [9]. Let l: A-+ C be analytic, let z0 EA, and assume that f'(zo) =/ 0. 

Then tbere exists a neighborhood U of z0 and a neigbborbood V of l(zo) sucb that l : 

U--+ V is a bijection and its inverse function 1-1 is analytic, with derivative given by 

d -l 1 
dwl (w) = l'(z)' wbere w = l(z ). 

The next theorem shows that the inverse of a conformal map is conformal and that the 

compasition of two conformal maps is also a conformal map. 

Theorem 1. 7 [9]. (i) If l : A-+ Bis conformal and bijective, then 1-1 : B -+ A is also 

COn/orrnaJ. 

(ii) If f : A -+ B and g : B -+ C are conformal and bijective, then g o l : A -+ C is 

conformal and bijective. 
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paooF: 
(i) Since l is bijective, 1-1 exists. Then, from Theorem 1.6, 1-1 is analytic and 

Vw EB, 
d -l 1 

dwl (w) = f'(z) =I= 0, 

where w == l(z ). Thus 1-1 is conformal. 

(ii) Obviously go l will be bijective and analytic. Now, from the chain rule, 

VzE A, 1 (go f)(z) = g'[J(z)]J'(z) =/= 0, 

since f and g are conformal. Thus, go l is conformal. I 

We now briefly examine some mapping properties of analytic functions, and hence con­

formal maps• 

Theorem 1.8 [9]. Let l be analytic and not constant on a domain D and let zo E D. 

Suppose that h(z) = l(z) - wo has a zero of order k ~ 1 at zo. Then 3 A> 0 such that, 

for any f E (0, A], 3 8 > 0 such that if 0 < lw - wol < 8, then l(z) - w has exactly k 

distinct roots in the disk O < lz - zo I < f . 

While somewhat formal in nature, the theorem states that if l takes on the value w0 at 

z0 with multiplicity k, then for all w sufficiently near w0 , the k roots of l(z) = w near z0 

are distinct. 

PROOF: Since l is not constant, the zeros of h(z) = l(z) - w0 are isolated. Thus, 3 77 > 0 

such that for 0 < lz - zol::; 77, h(z) =/= 0. Now, VEE (0,77], 38 > 0 such that lh(z)I = 
1/(z) - wol ~ 8 > 0, for lz - zol = f. This is due to the fact that his continuous on the 

compact set lz - zo I = f. Thus, if w satisfies lw - w 0 I < 8, then on lz - z0 I = €, we have 

(i) f(z) - w0 f= 0, 

(ii) f(z)- w =/= 0 (since l(z) = w implies lw - wol ~ 8), 

(iii) l[/(z) - w] - [f(z) - wo]I = lw - wol < 8::; lf(z) - wol-

By Rouche's Theorem, f(z)- w has the same number of zeros, counting multiplicities, as 

f(z)-wo, inside the circle lz-zol = €. Thus, in the disk lz -zol < €, f(z)-w has exactly 

k roots, counted with their multiplicities. 

Now, since f is not constant, f' is not identically zero on D. Hence, the zeros off' are 

isolated and 3 A E (0, 77] such that for 0 < lz - zol < A, f(z) - wo and f' are not zero. 
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f( z) _ w will have exactly k roots for w sufficiently near wo , but these roots will 
Thus, 
be first order and hence distinct. I 

The above theorem also shows that for a nonconstant analytic function f in a domain 

•r f'(z) / 0 V z E D, then f is one-to-one or univalent in D. The next theorem D, l 

establishes an important property of conformal maps. 

Theorem 1,9 [10). The conformal map of a domain is also a domain. 

Before proving this theorem, a few notes are in order. We will allow the conformal 

image of a domain to have multiple coverings, i.e. the image of D may overlap itself. This 

overlapping" is clearly illustrated by the function f ( z) = z2 on the unit circle. Also, 

it may be possible that a domain contains points where the derivative of the mapping 

function is zero. Thus, the mapping ceases to be conformal at these points. However, it is 

still acceptable to consider "the conformal map of a domain" even if the domain contains 

critical points of the map. We now prove the theorem. 

PROOF: Let w = f(z) be analytic in a domain D, let zo ED, and let f(D) = D'. Suppose 

that h(z) = f(z) - w0 has a zero of order k ~ l at z0 . From Theorem 1.8, :3 >. > 0 and 

3 6 > 0 such that if O < I w - w 0 I < b, then f ( z) - w has exactly k distinct roots in the 

disk O < lz - zo I < >.. That is, there exists a neighborhood of w 0 which is contained in 

f(D) = D'. Thus, D is open. 

Since f is conformal, continuous arcs in D will be mapped onto continuous arcs in D' . 

Hence D' is connected. We thus conclude that f(D) = D' is a domain. I 

Note that if w = f ( z) is univalent in D, then f ( D) = D' will have no multi ply covered 

points. Such a domain that covers no point more than once is called a schlicht or simple 

domain. Also observe that a univalent map preserves the connectivity of a domain. That 

is, if f is a univalent map defined on a simply connected domain D, then f(D) will also 

he simply connected. 

th
e next theorem shows that if a function f is analytic on a simple closed contour C and 

its. 
mterior D, then the image of C under the mapping w = f ( z) is sufficient to determine 

the image of D. 

10 



rn 1 10 [7). Let C be a simple closed contour, and let f be analytic on C and its 
'fbeore · 

. D On C let f take no value more than once. Then 
wterior · ' 

(i) the mapping w = J( z) transforms C to a simple closed contour C', 

(ii) as z traverses C in the positive direction, w = f(z) traverses C' m the positive 

direction, and 

(iii) w = f ( z) is a univalent map of D on to D', the interior of C'. 

paooF: Since f is analytic, the image of C is a closed contour C'. Also, C' is simple 

because J(z) takes no value more than once. Now let w 0 be any point not on C'. Then, 

from the argument principle, the number of times wo is taken by f is given by 

N - _1 1 f'(z) d 
Wo - , z, 

21ri c f(z) - wo 
(1-13) 

for f(z) =/= wo at any point on C. 

Now, let w = f(z ), dw = J'(z) dz. Then (1-13) becomes 

1 1 dw Nwo=- ---. 
21ri C' W - Wo 

By the residue theorem, N wo = 0 if w 0 is exterior to C'. If w0 is interior to C', that is, 

Wo ED', then Nw 0 = ±1 depending on how C' is traversed. But, since Nw 0 is nonnegative, 

.,0 = 1 for wo ED', and C' is traversed in the positive direction. 

Thus, every point in D' is taken exactly once by a value in D and values exterior to C' 

can not be images of points in D. 

CLAIM: No point on C' can be the image of a point in D. 

PROOF: Deny. Then let w0 be on C' and suppose 3 z0 ED such that f(zo) = wo. Then, 

by Theorem 1.8, there exists a neighborhood V of w0 such that every point in V is the 

lDlage of a point in D. By the Jordan Curve Theorem, there exists aw in V such that w 
18 exterior to C' (see Figure 1.2). Consequently, there exists a z E D such thatf(z) = w. 
But this contradicts the fact that values exterior to C' can not be images of points in D. 

Thus, no point on C' can be the image of a point in D. • 

Thus f · · 
, 1s umvalent in D and w = f(z) maps D onto D'. I 

11 



0 X 0 

Figure 1.2 

We close this chapter by stating, without proof, two theorems which show the importance 

of conformal mappings as applied to applications of physical problems. There is a rich 

literature on applications of conformal mappings [3, p.324}. This paper however will not be 

examining these applications per se, but will rather concentrate on techniques to construct 

a conformal map from a given region onto a "simpler" one. Once in this "simpler" region, 

applied problems are more readily solved. An application will be considered in Chapter 5, 

but this paper will concentrate on the significant techniques in constructing a conformal 

map from a given region to another. 

Recall that a Dirichlet problem is a problem that involves finding a harmonic function on 

a region D whose values are specified on the boundary of D and that a Neumann problem 

involves finding a harmonic function on a region D, where values of the normal derivative 

m the function are prescribed on the boundary. 

Theorem 1.11 [3]. Suppose that an analytic function 

w = f(z) = u(x, y) + iv(x, y), 

maps a domain Dz in the z plane onto a domain D w in the w plane. H h( u, v) is a harmonic 

function de~-ed on Dw, 1·.e. h ( ) + h ( ) 0 th th fun t · llil uu u, V vv u, V = ' en e C lOil 

H(x, y) = h[u(x, y), v(x, y )], 

i, harmonic in Dz. 

Thus, intuitively, a harmonic function remains a harmonic function when transformed 

froni one plane to another by a conform.al mapping. 
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1 12 [3] . Suppose that a transformation 
,rbeorern . 

w = f(z) = u(x, y) + iv(x, y), 

_r. .....,al on a smooth arc C, and let r be the image of C under that transformation. H 
jsCOIJJO"~ 

r a {unction h( u, v) satisfies either of the conditions 
aJong ' 

h = ho or dh = O, 
dn 

,rbere ho is a real constant and :! denotes the derivative normal to r, then along C, the 

{unction 

H(x, y) = h[u(x, y), v(x, y)], 

satisfies the corresponding condition 

H = ho or 
dH 
dN =O, 

bere ~~ denotes derivatives normal to C . 

That is, prescribed conditions on a function or its normal d~rivative remain unaltered 

under the change of variables associated with a conformal mapping. 

Thus, Theorems 1.11 and 1.12 give a technique for solving Dirichlet or Neumann prob­

lems. This involves transforming a given boundary value problem in the xy-plane into a 

simpler" one in the uv-plane in which the problem is more readily solved. Then using 

Theorems 1.11 and 1.12, the solution of the original problem can be written in terms of 

the solution obtained in the uv-plane. 
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CHAPTER 2 

Elementary Mappings - Mobius Transformations 

As was stated at the end of Chapter 1, a technique for solving Dirichlet and Neumann 

bl ~c, involves finding a conformal map that will transform a given domain onto a pw eu= . 
simpler one." Once in this new domain, the problem may be more readily solved. In 

this chapter, we shall investigate the properties of an important class of conformal maps 

called Mobius or bilinear transformations. These transformations will yield a technique 

for mapping a disk or half plane onto another disk or half plane. 

We first examine the mapping defined by 

w = f(z) = az + b, a,b EC, a# 0. (2-1) 

To study the effect of (2-1), consider the case when b = 0. Letting z = pei8 and a= laleitf>, 

(2-1) will yield w = pjajei(e+t/>). Thus, under (2-1), z will be rotated an angle</; about the 

origin and the modulus of z will be magnified (or contracted) by a factor of la!. Hence, the 

transformation z --+ az, merely rotates and magnifies ( or contracts if !al < 1) all points in 

the complex plane. 

Now, if bi= 0, then (2-1) will not only rotate and magnify a given point, but will also 

translate the point an amount Re(b) in the x-direction and an amount Im(b) in the y­

direction. It then follows that under the map f(z) = az + b, geometric figures will be 

preserved. That is, f ( z) = az + b will transform circles to circles and lines to lines. 

A transformation of the form f ( z) = az + b, a,b E C, a i= 0, is called a linear trans­

formation and it is obviously bijective and conformal in the complex plane. 

We now consider a mapping of the form 

1 
f(z) = -. 

z 
(2-2) 

Here, f is called an inversion and it is a one-to-one transformation from C \ {O} onto 

C \ { O} · To see the effect ( 2-2) has on a nonzero point z, let z = pe i 8 . Then the image of z 

under (2-2) will be w = ¼e-i8 . Thus, points exterior to the unit circle will be mapped onto 
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. . terior to the unit circle and conversely. Points on the unit circle are invariant . 
pOJlltS 1n 
~' since arg(w) = -arg(z), (2-2) will reflect points with respect to the real axis. Thus, 

) 
_ 1 is an inversion with respect to the unit circle combined with a reflection with 

J(z - z 

t to the real axis. re5pec 
Now, since it is true that 

. lim ! = 0 
Z-+CX> Z 

and 1
. 1 
lm - = oo, 

z-+O Z 

it is natural to extend f ( z) = ~ to the extended complex plane C= = C U { oo} by defining 

/(oo) == 0 and J(0) = oo . Then f(z) = ¾ will be a bijective map from C= to C=. 

The question now arises as to whether f(z) = ¾ will preserve geometric figures. The 

answer here is no, but if we regard a line as a circle passing through oo, we can state the 

following: 

Proposition 2.1 [11]. The mapping f(z) = ~ transforms circles to circles. 

PROOF: A circle in the xy-plane will be an equation of the form 

x 2 + y2 + Ax + By + C = 0, A,B,C, ER. (2-3) 

In polar form, this becomes 

r 2 + r(Acos0 + Bsin0) + C = 0, (r, 0) = (x, y). (2-4) 

ow, the image of the point z = rei9 (z E C \ {0}) under the map f(z) = ~ is 

p = ~ and 4> = -0. 

Hence, the image of (2-4) is 

1 1 
2 + -( A cos 4> - B sin 4>) + C = 0. 
p p 

(2-5) 

If C "F O ( corresponding to a circle not passing through the origin), then (2-5) becomes 

1 + p( A cos rp - B sin 4>) + C p2 = 0 

2 (A B . ) 1 p + p C cos rp - C sm ,p + C = 0. 
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h
. • s the equation of a circle in the w-plane not passing through the origin. 

sut t JS l 

If C:::: 0 ( corresponding to a circle through the origin), then (2-5) becomes 

1 1 
2 + -( A cos ¢> - B sin ¢>) = 0 
p p 

Ap cos ¢ - B p sin ¢ + 1 = 0. 

If we let w = pei4' = u + iv, (2-6) becomes 

Au -Bv + l = 0, 

(2-6) 

,vbich is an equation of a line in thew-plane. Thus, f (z) = ~ transforms circles to circles. I 

In a similar fashion, it can be shown that the image of a line through the origin will also 

be a line through the origin and a line not through the origin is mapped to a circle passing 

through the origin. We call the family of all lines and circles in C circloids and note that 

under stereographic projection, they correspond to circles on the Riemann sphere [4]. 

Definition 2.2. A mapping of the form 

W = T(z) = az + b' b d d b ...J. a, ,c, E C , a - c , 0, 
cz+d 

(2-7) 

js called a Mobius or bilinear transformation. 

It will be shown later that the condition ad- be =/= 0 insures T will not be a constant . The 

term Mobius transformation is used because in 1853 A.F. Mobius launched the study of 

ID equivalent class of geometrical transformations which he called Kreisverwandtschaften 

(8). 

In a similar fashion to the function f(z) = ~, we can define (2-7) on Ccx, by setting 

T(oo) = oo if c = 0, T(oo) =~and T(-!) = oo if c =I= 0. 

We now claim that (2-7) is conformal on Ccx, . To show this, we first define a mapping 

"'= f(z) to be conformal at z = oo, if w = f( ~) is conformal at z = 0 [2]. Similarly, if 

/(zo) = oo, then f is conformal at z0 if and only if f has a simple pole at zo [10]. 

We now prove the claim. Obviously, T'(z) = (:;;J)c2 =/= 0 for z EC\{-!}. Now, since 

lo=-! is a simple pole of (2-7), Tis conformal at z0 • Finally, to show (2-7) is conformal 

at z - oo .d i - , we cons1 er T( ~ ): 
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Then, 

T'(1) = b [d(a + bz)] 
z ( c + dz) ( c + dz )2 

[be+ bdz - da - bdz] 

(c+dz)2 

(be - ad) 

(c + dz)2 ' 

and when z = 0, T' (~) =/ 0. Thus, T(z) = ~:$~ is conformal and hence univalent in C 00 • 

Now, if we solve (2-7) for z, we have 

az + b 
w= 

CZ+ d 
=} w( cz + d) = az + b 

=} ( cw - a )z = -dw + b 

-dw+b 
=} z=---

cw-a 

Hence, the inverse of a Mobius transformation is a Mobius transformation with form 

(2-8) 

and we can conclude that a Mobius transformation is a bijection of C 00 onto C 00 . 

Now it is easy to see the following: 

Theorem 2.3. The set of all Mobius transformations, M, forms a group under composi­

tion. 

PROOF: Obviously, the identity element will be the transformation I(z) = z. Thus, we 

need to show closure. That is, let 

T1(z) = a1z + b1 
C1Z + d1 

Then, 

and 
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•nee r-1 is given by (2-8), and associativity will clearly hold, we may conclude 
Now, s1 

.M forms a group under composition. I 
that 

Now observe that if c = 0, then T( z) = ~;$~ becomes T( z) = ( J) z + ~, which is a linear 

u-ansforxnation. If c-=/= 0, then we can divide the denominator into the numerator to yield 

a (be - ad) w=-+----
c [c(cz + d)] 

= ~ + [ ( be - ad) ] [ 1 ] . 
c c (cz + d) 

Thus, T(z) can be written as T(z) = (T3 o T2 o T1 )(z), where 

T1(z) = cz + d, 

1 
T2(z) = -, 

z 

( ) a [ ( be - ad) ] T3 z = - + ---- z. 
C C 

(2-9) 

Ti and T3 are linear transformations while T2 is an inversion. Observe that if ad - be= 0, 

then T reduces to a constant. 

From the results shown earlier, we have proved 

Theorem 2.4. Every Mobius transformation maps a circloid onto a circloid. 

ote that circles in the z-plane passing through z = -1, will be mapped onto straight 

lines in the w-plane. 

Mobius transformations have the property that, except for the identity transformation, 

they possess at most two fixed points. That is, there exists at most two points satisfying 

T(z) = z. To see this, let T(z) = ~;;~ be a Mobius transformation. Then, all the fixed 

points of T must satisfy 

az + b 
z=---

cz +d ==> cz2 + (d - a)z - b = 0. 

This equation has at most two roots unless it is identically zero. 

ow let T( z) = ~;;~ be a Mobius transformation, and let z1 ,z2 ,z3 ,z4 be four distinct 

Pe>ints in C. Th en, if w1,w2,w3,w4 are the images of z1,z2,z3,z4 under T, we have from 
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9) 
that for i,j = 1,2,3,4, i #- j, 

(2· 

Hence, 

and, 

Thus, 

[ 
a be - ad ] [ a be - ad ] 

Wi - Wj = ~ + e(ezi + d) - ~ + e(ezi + d) 

= ! [ be - ad _ be - ad] 
e ezi + d ezj + d 

- A [ 
1 

-
1 

] where A = ad - be #- 0, 
- e ezj + d ezi + d ' 

A [ ezi + d - ezj - d] 
= ~ (ezi + d)(ezi + d) 

A(zi - Zj) 

=? Wi - Wj = (ezi + d)(ezi + d) 

(w1 - w4)(w3 - w2) 

(w1 - w2)(w3 - w4) 
(z1 - z4)(z3 - z2) 

(z1 - z2)(z3 - z4)' 

(2-10) 

(2-11) 

(2-12) 

(2-13) 

The expression ~zi-z
4

~~z
3
-z

2
~, is called the cross ratio of the points z1,z2,z3,z4, and is 

z1-z2 Z3-Z4 

denoted C (z1, z2, z3, z4). Equation (2-13) shows that C ( W1, w2, W3, w4) = C (z1, z2, z3, z4), 

and hence, the cross ratio is invariant under the Mobius transformation T. If one of the 

points Zn is infinity, then the corresponding cross ratio will be obtained by letting Zn -----+ oo. 

As an example, if z1 = oo, then 

Similar expressions may be obtained for Wn = oo, n = l, 2, 3, 4. 

ow, if we replace z4 by the variable z, then (2-13) becomes 

(2-14) 

1'here w is the image of z under (2-7). It is easily seen that (2-14) is a Mobius transforma­

tion and it has the property that it maps the three given points z1 ,z2,z3 onto w1 ,w2,w3. In 
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14
) defines the only Mobius transformation which has this property [4]. To see this, r.ct (2-

, T IT' EM and that they both map z1 ,z2,z3 onto w 1 ,w2 ,w3 respectively. Then 
e 1,.L2 ' 

.-uinT has zi z2 z3 as fixed points. But this implies that T2-
1 o T1 = I and consequently r,1 

0 1 ' ' 

7i :::: T2-
1 Since Mobius transformations map circloids to circloids and a circloid is determined by 

three of its points, (2-14) allows us to find a mapping which carries a given circloid in the 

I onto a given circloid in the w-plane. 
-pane 

We are now in a position to expand on Theorem 2.4. Namely, 

Theorem 2.5 [15]. If Cz and Cw are two circloids, and z1 and z2 are two points not 

qing on Cz and Cw , respectively, then there exists a Mobius transformation which maps 

C, onto Cw, and z1 onto z2. 

PROOF: Since a given circloid can be mapped onto the real axis by a particular Mobius 

transformation, we need only to consider the case when Cz and Cw coincide with the real 

axis. 
Let z1 and z2 be two points not on the real axis. If Im(zi) = Im(z2), then the translation 

z) = z + (z2 - z1) maps Cz onto Cw, and T(zi) = z2. 

ow, if Im(z1 ) =/ Im(z2), then consider the point z0 E R where the line connecting z1 

IDd z2 intersects the real axis. Then the transformation 

[
z2 - zo] T(z) = zo + -- (z - zo), 
Z1 - ZQ 

maps Cz onto Cw and T(zi) = z2 . I 

Let T be a Mobius transformation that maps the circle Cz onto the circle Cw and let 

D, denote the interior of Cz. Then Dz will map onto the interior or exterior of Cw. If Dz 

does not contain the pole of T, then it will map onto the interior of Cw (by Theorem 1.10), 

and if Dz contains the pole of T, then its image will be the exterior of Cw. If the image 

of C, is a straight line, then the interior and exterior of C z will be half-planes bounded by 

this lin e. 

Another way to determine the image of Dz under Tis by checking orientation. Observe 

that by specifying three distinct points z1 ,z2 ,z3 on C z, Cw will acquire a direction deter­

llbned by traversing C z through z1 ,z2, and z3 in succession. Consequently, Cw will also 
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. ea direction through the points w1 = T(z1), w2 = T(z2), and W3 = T(z3). Now as 

acqU1l" rsed through z1,z2,z3, if Dz lies to the right, then the image of Dz will also lie 
C is trave 

1 
• ht of C (see Figure 2.1). This follows from the fact that Tis conformal. 

&a the ng w 

0 

T 
~ 

Figure 2.1 

Another important property concernmg Mobius transformations 1s their symmetry­

preserving prope~ty. 

Definition 2.6. Let C be a circloid and let z1 ,z2 be two distinct points of C wbich have 

die property that every circloid through z1 and z2 meets C at right angles. Then z1 and 

aa are said to be symmetric with respect to C. 

Notice that if C is a line, then z1 and z2 are symmetric with respect to C if and only if 

C is the perpendicular bisector of the segment z1z2 • The point at infinity is symmetric to 

itael!. Also, if C is a circle with center z0 , then z0 and oo are symmetric with respect to 

C. 

Since a Mobius transformation T is conformal and preserves circloids, symmetry with 

l'elpect to C is preserved by T. That is, if z1 and z2 are symmetric with respect to C, 

'-T(z1) and T(z2 ) are symmetric with respect to T(C). 

Now, given a circle C with center a and radius R, and given a point z0 , we wish to 

~ a formula for finding z0, the point symmetric to z0 with respect to C (14]. First, 
let ua find M-b· . 

a o 1us transformation which maps C onto the real axis. ff we let z1 = a - R, 
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R. z :::: a+ R, and w1 = 0, w2 = 1, W3 = oo, (2-14) yields -a+ i, 3 
II - O - w _ [(a - R) - z][(a + R) - (a+ Ri)] 

0-1 - [(a-R)-(a+Ri)][(a+R)-z] 
[z - (a - R)][Ri - R] 

~ w= [z-(a+R)][Ri+R] 

.z - (a -R) 
~ w = i z - ( a + R). 

· z-(a-R) C t th al · flius,T(z)==iz-{a+R) maps ono ere axis. 

(2-15) 

If zo and Zo are symmetric with respect to C, then T(zo) and T(zo) are symmetric with 

iespect to the real axis (see Figure 2.2). But this implies that T(z0) = T(z0 ), or from 

(2-15) . Zo - ( a - R) . Zo - ( a - R) . Zo - (a - R) 
i-"----- = i----- = -i-----. 

Zo - ( a + R) Zo - ( a + R) Zo - (a + R) 

Solving for Zo yields 

z; = [ -R2 -] + a. 
z0 - a 

(2-16) 

ote that (2-16) shows that the point symmetric to zo with respect to C is unique. 

v-

• r(ro) 
• z: ~ J( 0 L,(_ 

.. ;(~) 

Figure 2.2 

We now wish to investigate the problem of finding a univalent function which will map 
1 half-plane or disk onto a half-plane or disk. The following theorems will show that such 
1 function must be a Mobius transformation. 

Detlnition 2. 7 [1]. A univalent mapping of a region onto itself is called an automor­

Phia111 of that region. 

Le1111na 2.8 [1] . Suppose/ is univalent from D 1 onto D2 . 

(a.) If his univalent from D 1 onto D2, then h =go f, and 
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(b) if
h is an automorphism of D1, then h = 1-1 o go l, 

• an automorphism of D2. 
tr1iere g is 

. (a) Let l and h be two univalent functions from D 1 onto D 2 . Then g = ho J-1 

PROOF . 
. an automorphism of D2 . Thus, h = (ho 1-1

) o l =go l. 

(b) Let J be a univalent function from D 1 onto D 2 and let h be an automorphism of 

D
1

. Then, g = f oho 1-1 is an automorphism of D2, and h = 1-1 o go l - I 

Theorem 2.9 [15]. If l is an automorphism of D(a; R) = { z: lz-al < R}, and l(a) = a, 

&hen f is a Mobius transformation with the form 

l(z) = ei9(z - a)+ a, fJ ER. (2-17) 

Observe that (2-17) is a rotation about the point a. 

PROOF: Since it is possible to find a Mobius transformation T that will map D( a; R) to 

D(O;R) = { z: Jzl < R} with T(a) = 0, we need only consider the case when a= 0. 

Thus, let l be an automorphism of D(0; R), with l(O) = 0. By the Schwarz Lemma 

(Lemma 0.9), 

ll(z)\ S Jzl, for z E D(0; R) . (2-18) 

ow, 1-1 is also an automorphism of D(0; R) and 1-1 (0) = 0. Again by the Schwarz 

Lemma, 

for z E D(0; R). (2-19) 

Combining (2-18) and (2-19) yields 

ll(z)I S lzl = ll-1 [f(z)]I S ll(z)I, for z E D(0; R). 

Renee, 1/(z)I = lzJ for z E D(0; R). From the Schwarz Lemma, we have 

fJ ER. 

Thus f is a Mobius transformation. I 
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rn 2.10 (15]. Every univalent mapping of a disk onto a disk is given by a Mobius 
'fbeore 

trBDsformation. 

F
. Let J be a univalent map which takes D( a1; R 1) = { z : lz - a1 I < R 1 } onto 

pao<> . 
. R ) == { z : lz - a2 I < R2 } , and let f ( a1) = b. By Theorem 2.5, there exists a Mobius 

D(a2, 2 

uansformation T, mapping D( a2; R2) onto D( a1; R1) such that T( b) = a 1. Then g = To f 

is an automorphism of D{ a1; R1 ), with g( a1) = a1 . But Theorem 2.9 implies that g is a 

Mobius transformation and consequently f = T-1 o g is also a Mobius transformation. I 

Using Theorem 2.10, we now wish to classify all univalent mappings of the disk D(O; p) 

onto the disk D(O; r ). We have 

Theorem 2.11 [12, exercise 6, p.323]. All univalent mappings of D(O; p) onto D(O; r) are 

rJthe form 
'(J ( z - zo ) T(z) = rpe' _ 

2 
, (2-20) 

ZoZ - p 

bere 8 ER and lzol < p. 

PROOF: By Theorem 2.10, we know the mapping will be a Mobius transformation. Thus, 

let T be a Mobius transformation which maps D(O; p) onto D(O; r ). Then T will map the 

circle Gp : lzl = p onto the circle Cr : lwl = r. Now, there exists zo E D(O; p) such that 

T(z0 ) = 0. According to (2-16), the point 

* [ p2 ] p2 
Zo = - Q + Q = -=-' zo - zo 

is symmetric to z0 with respect to Gp. But, since the origin is the center of Cr, its 
. £: l)'IIlmetnc point is oo. Hence T(z0) = T( zo) = oo, since Mobius transformations preserve 

l)'IIlmetry with respect to a circle. Thus T has a zero at z0 and a pole at z0* = i. That zo 

T is of the form 

T(z) = k ( z - zo ) = kz0 ( z - zo ) k EC. 
[z - (p2 /z0 )] z0 z - p2 ' 

ow, since T(p) lies on Cr, 

r = IT(p)I = lkzo (z:p--z;2 ) I 
= I kzo 11 ~ - zo I 

p zo - p 

= I k;o I , smce 1~1 = 1. zo-p 
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. ·mplies that jkzol = rp, or kzo = rpei9, where() ER. 
sut this l 

Hence, 

·9 ( Z - Zo ) T(z)=rpe' _ 
2

, 8ER, lzol<p. 
ZoZ - p 

sely to show that (2-20) maps D(O;p) onto D(O;r), we need only show that Gp Conver , 
d onto Cr· Thus, let z = pei9

. Then observe that 111appe 

Bence, 

lzoz - p2 I = lzopei9 - p2 I 
= P lzo - pe-i91 

= p lzo - zi 

= p jz - zol -

IT(z)I = rp l~z - zo~I = rp ( 1 ) = r, 
zoz - p p 

and Gp is mapped onto Cr. Then, by Theorem 1.10, D(O; p) is mapped onto D(O; r). I 

Corollary 2.12. The automorphisms of the unit disk are of the form 

T( z) = e i9 ( ~ - zo ) ' 
z0 z - l 

8 E R, lzo I < 1. 

PaooF: This follows directly from Theorem 2.11 with p = r = l. I 

We now consider the problem of finding a univalent function that maps a half-plane onto 

the unit disk. By performing particular Mobius transformations, namely a rotation and 

a translation, we need only consider finding a univalent function which maps the upper 

half-plane Im(z) > 0 onto the unit disk. From our previous results, it is natural to assume 

that this function will be a Mobius transformation. 

Theorem 2.13 [1,4). All univalent mappings of the upper half-plane Im(z) > 0 onto the 

unit disk are Mobius transformations of the form 

T(z) = ei9 (z -~o)' 
Z - Zo 

()ER, Im(z0 ) > 0. (2-21) 

Paoor: We first show that any Mobius transformation mapping the upper half-plane 

Ln(z) > O, onto the unit disk is of the form (2-21). Let T be such a mapping. Then T 
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h 
al axis onto the circle C : lzl = 1. Also, there exists a point zo with Im(zo) > 0, 

5 t ere 
oaaJ> h t T(zo) = 0. Then zo is the point symmetric to the real axis and T(z0 ) = oo. 
,ucb t a 

ntly T will be of the form 
eonseque ' 

T(z) = k (z -~o) , k E C. 
Z - Zo 

But, 

I 
kzo I 1 = IT(0)I = zo = lkl. 

Bence, k = ei8 , () E R, and T has the form 

T(z) = eie (z -~o). 
z - zo 

ow let J be a univalent mapping of Im(z) > 0 onto the unit disk with f(zo) = 0. By 

~a 2.8, f =go T, where g is an automorphism of the unit circle with g(0) = 0, and 

Tis a Mobius transformation of the form (2-21). Also, f(zo) = (go T)(zo) = g(0) = 0. 

Then, by Theorem 2.9, g(z) = ei 0 z, a ER, and 

f(z) = ei(a+e) (z -~o) . 
Z - Zo 

That is, f is a Mobius transformation of the form (2-21 ). I 

We now wish to find the form of all Mobius transformations which map the real axis 

onto the real axis [11]. To do this, consider (2-14), the cross ratio formula, with z1 ,z2 ,z3 , 

and W1,w2,w3, real numbers. Then solving (2-14) for w yields 

az + b 
w = T(z) = --, 

cz+d 
a, b, c, d ER. 

It is obviously true that (2-22) maps the real line to itself. 

(2-22) 

ow to determine the image of Im(z) > 0 under (2-22), we need only consider the image 

o{ the point z = i. 

w = T(i) = a~+ b 
ci + d 
(ai + b)(-ci + d) 

c2 + a2 
ac + bd . ad - be 

----+i---
- c2 + d2 c2 + d2 . 
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ad- be 
Im(w) = 2 d2. 

e + 
fbUS, bn(z) > 0 will be mapped to Im( w) > 0 if ad - be > 0, and to Im( w) < 0 if 

,J -bc < o. 
. nly natural now that we have the following theorem. It JS 0 

Theorem 2.14 [1). The ~uiomorphisms of the upper half-plane are Mobius transforma-

aoos of tbe form 

( ) 
_ az + b 

T z - d' 
CZ+ 

a, b, e, d E R, ad - be > 0. (2-23) 

PROOF: From the above discussion, we have seen that (2-23) is an automorphism of 

Jm(z) > O. Thus, let f be an automorphism of Im(z) > 0. Then from Lemma 2.8, f 

· of the form f = T-1 o go T where 

and 

z-1, 
T: Im(z) > 0 -t D(0; 1) by T(z) = -., 

z +i 

"(J ( Z - Zo) g:D(0; l)-+D(0;l) by g(z)=e' _ ,forlzol<L 
1 - zoz 

e now show that f is of the form (2-23) .(See [1, exercise 13, p.162 .)) 

In (2-25), if() = 1r, then 

f(z) = G~:)-l oe•• (;~;,:) o G~:) 
( 

z - i )-l ( Z - Zo ) ( Z - i) 
= z + i O 

zo z - l 
O 

z + i . 

ow,noting that r-1 (z) = -i (;!~), we have 

f(z) = -Im(z0 )z - (1 + Re(zo)) = az + ~' 
(1 - Re(zo))z + Im(zo) cz + d 

b ~ ~ 

ere a, b, c, d E R . Observe that 

~ ~ 2 
ad - be= - (Im(z0 )) + (1 + Re(zo)) (1 - Re(zo)) 

= 1 - [(Re(zo))2 + (Im(z0 ))
2

] 

= 1 - lzol 2 > 0, 
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I I < 1. Thus, f is of the form (2-23) . 
.;nee zo 

•fin (2-25), 8 =/= 1r, then let us write f = Ji o fz where 
Now, 1 

f1(z) = T-1(z) o ei9 z o T(z), 

fz(z) = T-1(z) o e-i9g(z) o T(z) . 

Then, Ji becomes 
· [ i9 (z-i)] · -i e -. - i 

z+i 

!1 ( Z) = [ . ( . ) ] e'9 z-~ - 1 
z+i 

Letting ei9 = cos 0 + i sin 0, we can write (2-26) as 

f ( ) = ( cos 0 + l + i sin 0) z - i( cos 0 - l + i sin 0) 
1 z i( cos 0 - l + i sin 0)z + ( cos 8 + l + i sin 0) · 

· · h t d d · t b cos 9+ 1 - i sin 9 h ultiplymg t e numera or an enomma or y cos e+i-i sin 9 , we ave 

fi(z) = (1 + cos0)z + sin0 = a1z + b1 
- sin 0z + (l + cos 0) c1 z + d1 · 

Observe that a1, b1 , c1, d1 E R and 

= 2(1 + cosB) > 0, since 0 =/= 1r. 

ow consider the function h . After simplification, it can be written as 

h(z) = (1 - Re(zo))z + Im(zo) = a2z + b2. 
Im(zo)z + (1 + Re(zo)) c2 z + d2 

Observe that a2 , b2 , c2 , d2 E R and 

a2d2 - b2c2 = (1 - Re(zo)) (1 + Re(zo)) - (Im(zo)) 2 

= 1 - [(Re(zo))
2 + (Im(z0 ))

2
] 

= 1 - lzo 12 > 0, 

ce lzol < 1. Combining (2-28) and (2-29), we have 

az + b 
f(z)=(fiofz)(z)= A A' 

cz+d 
lrbereabAdA A A 

1 
, c, E Rand ad - be> o. Thus, f is of the form (2-23). I 
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CHAPTER 3 

The Schwarz-Christoffel Transformation 

The Rieillann II1apping theorem (Theorem 0.5) guarantees the existence of a univalent 

£unction that maps a simply connected domain onto the unit disk. Unfortunately, the 

&hearem does not provide a technique for the actual construction of the function. However, 

ifwe consider simply connected domains that have some "regularity", specifically bounded 

p01ygons, it is possible to construct the univalent function guaranteed by the Riemann 

mapping theorem. In this chapter we shall derive an explicit formula for the mapping of 

die upper half-plane onto the interior of a polygon. 

Thus, let P be a closed polygonal Jordan curve of n sides lying in the w-plane, with 

comecutive vertices at A1, ••. , An. We assume that the numbering of the vertices gives P 

1 positive, or counterclockwise, direction. Let 1r<:l:'1, ••• , 7T'O/n denote the interior angles of 

pat vertices A1 , ... , An respectively, and define the exterior angles 7T' µ 1 , ... , 7T' µn of P by 

roi + 1rµk = 1T', k = l, ... , n (see Figure 3.1 for the case n = 5). Observe that O < O!k < 2 

bk= l, ... , n, and consequently -1 < µk < l for k = l, ... , n. Also, since the sum of 

the exterior angles of a polygon is 21r, we have the relation 

(3-1) 

Figure 3.1 

Now let w _ f(z) be a univalent function mappmg the upper half-plane, Ilu -
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1
: Itn(z) > o }, onto the interior of P. We wish to derive the explicit form off. We will 

{ th technique given by Nehari [11). This will require the use of a consequence of the 
i>UoW e 

Reflection Principle (Theorem 0. 7) which we state, without proof, as a corollary. 
Schwarz 
eorollarY 3.1 [11). Let A be a domain whose boundary includes a linear segment L , and 

A' be a domain whose boundary includes a linear segment L'. If the function w = f ( z) 
Jet . 
ID&PS A onto A' in such a way that the segment L . is transformed into the segment L', 

d,en f is analytic at the points of L. 

Let a
1

, •.. , an ( -oo < a1 < · · · < an < oo) be the points on the real axis such that 

/ (ai) == Ak for k = l, ... , n. Then the points a1, .. . , an divide the real axis into n parts, 

each of which are mapped to a side of the polygon P . Here, -oo and oo are identified 

by the point at infinity in the extended complex plane. Thus by Corollary 3.1, f will be 

analytic on R \ { a1, ... , an}, 

ow, consider the side AkAk+1 of P. Since f(ak) = Ak and f(ak+1) 

AiAk+1 may be represented by the parametric equation 

t E [0, 1). 

CA>nsequently, for z E (ak, ak+1), f can be written as 

(3-2) 

where tis a real differentiable function mapping ( ak, ak+l) onto (0, 1 ). Since f is differen­

tiable on the interval ( ak, ak+l ), we have 

and, 

J'(z) = t'(z) [f(ak+1) - f(ak)], 

J"(z) = t"(z) [f(ak+1) - J(ak)], 

J"(z) _ t"(z) 
f'(z) - t'(z) · 

Sin t" 
ce ti is a real function, the function g(z) = ft;} will be real for z E R \ { a1, ... , an}-

. We will now study the behavior of g( z) = ~:/:] at the points ak. Let us consider the 

tuation when J(ak) = 0. That is, the vertex Ak of P lies at the origin in the w-plane. 
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~ r an appropriate E, f will map the interval ( a1c - E, a1c + E) to two line segments, 
Then, io 

d C meeting at A1c = 0 with an angle 71"01c. C1 and C2 can then be represented by 
C1 an 2, 

&be palar equations 

'8 w1(r) = re' and 

--'- 9 is a constant and r ·takes positive values (see Figure 3.2). wuere . 

0 

Figure 3.2 

Now consider the function </>( w) = wfl, where /3 is a real number. Then, 

and 

(3-3) 

e, 

(3-4) 

where the branch cut of</> is taken so that it does not intersect C1 or C2. Consequently </> 

will map C1 and C2 onto a pair of line segments forming an angle 71"0'.A:/3, Letting /3 = a;1
, 

the function 
-1 

H(z) = [/(z)]°1 , (3-5) 

will then map the interval (ak - t,ak + t) onto a linear segment passing through the 

origin. By Corollary 3.1, H will be analytic at a1c. Also, H'(ak) -:/= 0, since the angle 71" is 

transformed to the angle 71". Now, since H(ak) = 0 and H'(ak)-:/= 0, H can be written as 

-1 

H(z) = [f(z)]° 1 = (z - ak)h(z), (3-5a) 

where h is analytic at ak and h( ak) -:/= 0. 

If /(a1c) :/= 0, then (3-5a) will have the form 

-1 

H(z) = [f(z) - f(ak)]° 1 = (z - ak)h(z). (3-6) 
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and, 

J'(z) = ak(z - ak)°.1:-l [h(z)]°'k + ak(z - ak)°k [h(z)]°'1:-l h'(z) 

= (z - ak)a.1:-l { ak [h(z)]°'1: + ak(z - ak) [h(z)]°'.1:-l h'(z)}. (3-7) 

~ting k(z) = ak [h(z)]°'k + ak(z - ak) [h(z)]°'.1:-l h'(z), (3-7) becomes 

f'(z) = (z - ak) 0
"-

1 k(z). (3-8) 

Observe that k is analytic at ak and k( ak) =/= 0, since h( ak) =/= 0. Differentiating (3-8) 

yields 

From (3-8) and (3-9), we have 

(
z) = f"(z) = (ak - l)(z - ak) 0

.1:-
2 k(z) + (z - ak)0

.1:-
1 k'(z) 

g f'(z) (z - ak) 0 1:-1 k(z) 

= (ak - 1) + k'(z) 
z - ak k(z) 

µk k'(z) 
-- + -- since ak + µk = 1. 
z-ak k(z)' 

Since k(ak) =/= 0, g has a simple pole at z = ak with residue -µk. 

ow, since k is analytic at ak and k( ak) =/= 0, the function 

f"(z) µk 
4>k(z) = -f'( ) + z Z - ak 

will be analytic at ak and consequently the function 

(3-9) 

(3-10) 

1'illbe al. r:._ an ytic at the points a 1 , ... , an. But 1, was shown to be analytic on 

ll \ {a } · · r:._ 11 • • • , an ; consequently 4> will be analytic on R. Recall that f, was shown to 

be real for all points in R \ { a1 , ... , an}, and since ak, µk E R for k = 1, ... , n, 4> will be 
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seal for all points in R \ { a1, ... , an}. However, <P is analytic, and hence continuous on R. 

t will be real for all points in R. 
fbUS, 

.,r • ., wish to examine the behavior of <P at z = oo. To do this, consider the function 
v,e no .. 
:;: cl applied to the segment (-¼, ¼ ), where C = max{la1 I, lanl}- Under the mapping 

,-1 (-! 1) will be transformed to the rays (-oo,-c) and (c,oo). Consequently, the 
:: '- , C' C 

{unction f (e- 1 ) will tran~form the segment(-¼,¼) into part of side A 1 An of the polygon 

p. By Corollary 3.1, f (e-1) is analytic at l = 0. Thus f (e-1) can be represented by the 

Taylor series 
CX) 

f (e-l) = L CnC =Co+ c1l + "". , Ill< R. 
n=O 

In terms of z, this series is 

CX) 

f(z) = L CnZ-n =co+ Ci + · · · , 
z 

n=O 

lzl > R. 

Differentiating ( 3-11) yields 

I C1 2C2 f (z) = -- - - - · · ·, z2 z3 

and, 

J" ( z) = 2c1 + 6c2 + . . . , 
z3 z4 

If Cm is the first non-zero coefficient, then 

f"(z) _ m(m + l)cmz-(m+2) + (m + l)(m + 2)cm+1z-(m+3) + · · · 

f'(z) - -mcmz-(m+l) - (m + l)cm+1z-(m+2) - · · · 

m(m + l)cm + (m + l)(m + 2)cm+1z-1 + · · · 
-mcmz - (m + l)cm+l - · · · 

= _! (m(m + l)cm + (m + l)(m + 2)cm+1z-1 + · · ·). 
z mcm + (m + l)cm+1z-1 + · · · 

(3-11) 

(3-12) 

(3-13) 

(3-14) 

&iuation (3-14) shows that g(z) = ~:g] is analytic at z = oo and g(oo) = 0. Indeed, with 

tbe subsft · 1 ution w = ;, (3-14) becomes 

( ) _ (m(m + l)cm + (m + l)(m + 2)cm+1W + · · ·) g w - -w 
mcm + (m + l)cm+1w + · · · ' 
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. analytic and equal to 0 when w = 0. Consequently, <I> will also be analytic at 
1'1Jicb JS ,, 

::; oO and <I>(oo) = 0. Thus, <I>(z) = ~,f:} + I:;=l ~ is analytic on the extended 

1 
e Ilu = { z : Im( z) 2: 0 } , and assumes real values for z E R U { oo}. By Theorem 

)lllf-P a.n 
JE. ust be a constant. Since <I>( oo) = 0, we have <I> = 0. Hence, 

0.8 ~ IIl 

_ f"(z) n µk 
o = <I>( z) = -1, ( ) + L 

Z k=I Z - ak 

===> 
f"(z) n µk 

f'(z) = - L z - ak · 
k=I 

Integrating (3-15) yields 

n 

log J'(z) = - L µk log(z - ak) + log A, 
k=l 

n 

===> J'(z) = A IT (z - ak)-µk, 
k=I 

AEC, 

===> f(z) = A r (t- ai)-µ 1 ... (t - an)-µn dt + B, 
}zo 

where B is a complex constant and zo E Ilu. We have thus proved 

(3-15) 

Theorem 3.2 [8]. Suppose w = f(z) is a univalent function which maps IIu onto the inte­

rior of a (bounded) closed polygonal Jordan curve P with interior angles 

01ll', ... ,on1r (0 < O'.k < 2, k = l, .. . ,n), and suppose the points a1, .. - ,an (-oo < 

•1 < · · · < an < +oo) correspond to the vertices of P. Then 

W = f(z) = A f\t - ai)-µ 1 • • • (t - an)-µn dt + B, 
}zo 

•hereµ,.= l-ak, z0 E Ilu, and A,B EC. 

(3-16) 

It should be noted that three of the points ak may be chosen arbitrarily, provided they 

have the same order as the corresponding vertices. This is due to the fact that the cross 

ratio formula (2-14) enables one to construct a Mobius transformation that maps three 

Pe>ints onto any other three points. 

Wen · h ow w1s to prove the converse of Theorem 3.2. Namely, the transformation 

w = f(z) = A r (z - a1 )-µ 1 
• • • (z - an)-µn dz+ B, 

Jzo 
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-
0 

U { 00 } one-to-one and continuously onto a set consisting of a closed polygonal 
o,.aps V 

Urve p and its interior. The upper half-plane Ilu is mapped analytically onto the Jorda.ll C 

jpterior of p. 
We begin by examining the function 

(3-17) 

trbere a1,···,an ER, -oo < a1 < ... <an< oo, µ1, ... ,µn ER, -1 < µk < l, 

r• µk == 2. Define the branch cut of each factor (z - ak)-µk of W to extend below the 
L,t:=l 

real axis. That is, define 

here (h == arg(z - ak), k = l, . .. , n . Then W will be analytic in the domain D 

lfv \ {a1, ... , an}- Consequently, for A, BE C, z0 ED, the function 

f ( z) = A r w ( t) dt + B, 
lzo 

(3-18) 

will be analytic throughout D . The path of integration is to be any contour lying within 

D. Since \J!(z) f. 0 Vz ED, we have 

J'(z) = A\ll(z) f. 0 Vz ED. (3-19) 

Lemma 3.3 [3]. The function 

f(z) = A 1: w(t) dt + B, 

analytic in Ilu and continuous in Ilu . 

Paoor: Since (3-18) is analytic in D = IIu \ {a1, ... ,an}, it is obviously analytic and 

COntinuous in IIu. Thus we need only examine its behavior near the points a1 , ... , an. Let 
then consider the point z = a1 . Equation (3-17) can be written as 

(3-20) 

35 



,(z):::: (z - a2)-µ. 1 
• ··(z - an)-µ." . Since</> is analytic at z = a1, it has a Taylor 

~ ansion about the point a1 , and (3-20) becomes 
_.;es eXP 

\Jf(z):::: (z - a1)-µ. 1 [<t>(a1) + <1>\~i) (z - ai) + · · ·], lz - a1 I< R1, 

:::: ¢>(a1 )(z - a1)-µ. 1 + (z - a1)1-µ. 1 a(z), (3-21) 

(J is analytic in lz - a1 r < R1. If /3(z) = (z - a1)l-µ.,. a(z ), then, since 1 - µk > 0, /3 
_,ere ~ -
.ill be a continuous function in the region D = ITu n {lz - a1 I< Ri}, provided /3(a1 ) = 0. 

o,osequently, the function 

w(z) = l z j3(t)dt = lz(t - a1)1 -µ. 1 a(t)dt , 
z1 z1 

(3-22) 

will be continuous at z = a1, where z1 E D and the path of integration is a contour lying 

fdirely in D. Also, the function 

(3-23) 

umg the same path of integration, is a continuous function of z at a1 , if the value of the 

integral is defined to be the limit of (3-23) as z approaches a1 in D. (Note that this limit 

will exist since 1 - µ 1 > 0.) Thus, (3-22) and (3-23) imply that the function 

continuous at z = a1 , where the path of integration is again a contour lying in D. 
Consequently, 

f(z) = A 1: w(t) dt + B = A [1:1 

w(t) dt + 1~ w(t) dt] + B, 

will be continuous at z = a1 . 

The above argument may then be applied to the points a2 , .•. , an. Thus, the function 

f(z) = A lz w(t) dt + B, 
zo 

COntinuous in Ilu. I 
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3 4 [3 exercises 10,11, p.271). The function 
1,eIJ1P1a • ' 

js continuous at z = oo. 

f ( z) = A t w ( t) dt + B, 
}zo 

OOF . We first claim the following: 
PR · . . 

CLAIM: For R > 2 max{la1 I, ... , lanl}, 3M> 0 such that 

z E IIu, lzl > R 
M 

lw(z)I < r.;p· 

PROOF: If lzl > R > 2max{la1 I, ... , lanl}, then fork= l, ... , n, 

and 

Bence, 

lzl > R 
lzl 
2 < lz - ak I < 2lzl , k = l, ... , n. 

ow, 

n 

l'lf(z)I = IT (z - ak)-µ1: 

k=l 

(3-24) 

(3-25) 

By (3-25), recalling that -1 < µk < l, we have 11 - 71-µ1: < 2!-µ1:I for k = l, ... , n. 

Thus, 

l'lf(z )I < lzl-22{!-µ1 I+ ... +l-µn I} = j~2, 

here M == 2{!-µ1 I+ .. -+!-µ" I}. • 

CtAIM· 1i 
· mz-.oo J(z) = W, where WE C. 
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. We first consider the limit of f(x) as x tends to infinity through real values. That 
paOOF · 

..,consider 
lim f ( x) = A f

00 

'11 ( x) dx + B, z-oo JR 
trbere R is given in (3-24). Letting w(x) = u(x) + iv(x), we have 

loo \JI ( x) dx = loo u( x) dx + i loo v( x) dx. 

OVI, 

f
00 

u(x)dx = lim {' u(x)dx. JR t-oo JR 
Using (3-24), we have 

(' ('M 
JR lu(x)I dx ~ JR lxl2 dx. 

But J;' ~ dx converges absolutely, hence J;' lu(x)I dx converges absolutely. But this 

implies that J;' u( x) dx converges. By a similar procedure, i J;' v( x) dx converges. 

Thus, 

lim f(x) = A f
00 

w(x) dx + B = W, 
z-oo JR (3-26) 

whereWeC. 

Now let z be a point in the half-plane Im(z) ~ 0 such that p = lzl > R, where R is given 

in {3-24). Then 

lf(z) - f(p)I = IA { W(t)dt-A 1: W(t)dtl = IA { W(t)dtl, (3-27) 

where the path of integration is along the arc of the semicircle p = lzl (see Figure 3.3). 

0 

Figure 3.3 
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d fine a contour Cp by z(B) = pei9
, BE [0, 1r], (3-27) becomes 

Jf flf e 

lf(z) - f(p )I = IA /,z w(t) dtl 

~ !Al 11r I w(pei9 )piei9 I dB 

= PIA! 11r jw(pei 9 )I dB 

[1r M 
~ PIA! Jo lpeiBl2 dB, 

= !AIM B 17r 
p 0 

IAIM1r 
p 

by (3-24) 

Thus, f(z) - f(p) ----+ 0 as p = lzl ----+ oo. But, as shown in (3-26), as p ----+ oo through real 

.Iues, f(p) tends to the value W. Thus, f must tend to W as z ----+ oo in an arbitrary 

manner in the half-plane Im(z) ~ 0. That is, 

limf(z)=W• 
z-+oo 

lfwe define f(oo) = W, then f(z) = A J~ w(t) dt + B will be continuous at z = oo. I 

We now wish to investigate the mapping properties of (3-18). For real z, z -=I= ak, 

(3-17) becomes 

If { E R \ { a1, ... , an}, we have 

arg(x - 0 = { 
1r, 

0, 

for X < ~ 
for X > ~-

(3-28) 

Bence, arg( x - 0 is constant for x < ~, but decreases by 1r as x increases through 

(. Then in (3-28), arg(x - ak), k = 1, ... , n, will remain constant in the intervals 

(-oo,a1), (a1,a2), .. . ,(an,oo). Thus (3-28) may be written as 

aj < x < ai+I, 

•here a - d o - -oo, an+I = oo, an 

n 

Bj = -7r L µk, 
k=j+I 
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IJ1Pla 3.5 [12]. The transformation (3-18) maps the interval [aj, ai+1] one-to-one onto 

e Jjne segment f(aj )f(aj+1), j = 1, ... , n - l. Equation (3-18) also maps the inter­

s (-oo, ail and [an , oo) one-to-one onto the line segments f(oo)f(ai) and f(an)f(oo), 

Jloor: Let j be fixed (j = 1, ... ,n-1), and let e,{ be real points such that ai < e < 

i < a;+i. Then, 
A rt 

f(O - f(O =Ale w(x) dx. 

m (3-29), we have 

f(l) - !(6) = Ai '; l l'V(x )I dx. (3-31) 

Since w(x) =J O for all x E (ai ,ai+1) , J({) -=I- f(e) . Also, since 0; is constant for all 

1 € (a;,a;+1) , 

arg (!({) - !(0) = arg(A) + Bj, 

is constant for all x E (a;, ai+I ). 

Since f is continuous on R , letting e - aj and t - aj+I, the image of [aj, aj+1J will 

correspond to the line segment f ( a i )f ( a i + 1) and this correspondence is one-to-one. 

A similar argument holds for the intervals ( -oo, a1 ] and [an , oo ). I 

Lemma 3.6 [12]. Let w = f( z ) = A J~ w(z ) dz+ B . Then , 

and 

arg[f(a1) - f(oo)] - arg[f(oo) - f(an)] = 0, 

bere ao = an+1 = oo. 

Paoor• 1 A A A • A 

· et fo,6, ... , en , eo,6, ... ,en be real pomts such that -oo < eo < fo < a1 , ai < 

(, < !; < ai+I for j = 1, ... 'n - l, and an < en < ln < 00. Then from (3-30) and (3-31), 
ehave 

n 

arg [t(e1) - J(ei)] = arg(A) + ()i = arg(A) - 7l' ~ µk, j = 1, . .. , n . 
k=j+I 
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Figure 3.4 

Bence, for j = 1, ... 'n, 

(3-32) 

(See Figure 3.4 ). 

Also, 

n 

arg(/(!o) - J(eo)l - arg[J(tn) - !(en)] = L arg[f(tk-1) - J(ek-i)] - arg[J({k) - J(ek)] 
k=l 

k=l 

k=l 

= -2,r, 

from (3-32) 

n 

since Lµk = 2 
k=l 

= 0 (mod 2,r ). 

ow, since f is continuous on R, letting e; - a; and l - a;+1 yields 

arg[f(a;+1) - f(a;)] - arg[f(a;) - f(a;-1)] = 1rµ;, j = 1, ... , n, 

arg[f(ai) - f(oo)] - arg[f(oo) - f(an)] = 0, 

"here ao == an+1 = oo. I 
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Lernrnas 3.5 and 3.6, we have that transformation (3-18) maps (-oo, a1] U [an, oo) 
frorn 

t 
one onto the line segment f (an) f ( ai), and that the image of R U { oo} is a closed 

()Ile- 0-

lygonal curve. 

Po We now restrict the choices of a1, . . . , an in transformation (3-18) so that this function 

Ru { 00 } one-to-one onto a closed polygonal Jordan curve. Then Lemma 3.6 shows 
111aps 
that the exterior angle of this polygon at vertex f(ai) is 1rPi · (Recall that for a given 

palygon with vertex Ai , the exterior angle at Ai is defined to be 1r-µi = 1r - 1rai, where 7r0'.i 

is the interior angle at Ai.) 

We are now in a position to prove the converse of Theorem 3.2. 

Theorem 3.7 [12]. The transformation 

w = f(z) = A ((z - ai)-µ 1 
• • • (z - an)-µ" dz+ B, 

}zo 
(3-34) 

maps IIu U { oo} one-to-one and continuously onto a set consisting of a closed polygonal 

Jordan curve P and its interior. The upper half-plane IIu is mapped analytically onto the 

interior of P. 

PROOF [3, exercise 12, pp.271-272]: By Lemma 3.5, (3-34) maps RU { oo} one-to-one onto 

P and by Lemmas 3.3 and 3.4, (3-34) is continuous on Ilu U { oo} and analytic in the upper 

half-plane Ilu. 

We will now show that (3-34) maps the upper half-plane Ilu one-to-one onto the interior 

of P. 

We are unable to apply Theorem 1.10 because the real axis does not constitute a simple 

closed contour of the upper half-plane. However, analogous to the proof of Theorem 1.10, 

•e shall show that the number of times a point w0 is taken by (3-34) is given by 

Nw
0 

= -1- lim Jr f'(z) dz. 
21ri r-= -r f(z) - Wo 

Then we will be able to use the same argument presented in the proof of Theorem 1. 10 to 

ClOnclude that (3-34) is a univalent function mapping the upper half-plane onto the interior 

ci the Polygon. 

Thus, let C be a contour in the upper half plane Ilu consisting of the upper half of a circle 

iii :::: r and a segment -r < x < r of the x-axis that contains the points a1 , ... , an, except 
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~ a small segment about each point is replaced by the upper half of a circle lz - a; I = P;, 

,nth that segment as its diameter (see Figure 3.5). Also, let w0 be a point not on P. Then, 

frolD the argument principle, the number of times w0 is taken by transformation (3-34) 

piterior to C is given by 

Ne=~ f . f'(z) dz= ~ f A\Jl(z) dz, from (3-19). 
21ri le f(z) - wo 21ri le f(z) - wo 

0 

Figure 3.5 

CLAIM: The number of times w0 is ta.ken by transformation (3-34) in the upper half-plane 

nu is 

N - _1 li Jr f'(z) d - _1 li Jr A'11(z) d 
w0 - • m z - . m z . 

21ri r-00 -r f(z) - Wo 21ri r-oo -r J(z) - Wo 

PROOF: We first examine the integral 

f A\Jl(z) dz, Cr: z(9)=rei8 , BE(0,1r], 
ler f(z) - Wo 

11 r-+ oo. For r = lzl > R 1 , where R 1 is given in (3-24), we have 

IA111(z)I = IAll111(z)I < I~~ = I~~. 

(3-35) 

Now, since Wo is not a point on P, 3 e > 0 such that If ( oo )-_w0 I > 2e. Since f is continuous 

at z == 00 , 3 R2 > 0 such that 

r = lzl > R2 ===} lf(z)- f(oo)I < f 

===} -lf(z) - f(oo)I > -€. 
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for r == lzl > R2, we have 
fben, 

lf(z) - wol = lf(oo) - Wo + f(z) - f(oo)I 

2 IJ(oo)- wol - lf(z) - f(oo)I 

> 2€- € 

= €. 

Thus, for r > max{R1 , R2}, we have 

I 
/ Aw(z) dzl < IAIM nr = IAIM1r, 

lcr f(z) - Wo - r 2 € r€ 

and 
lim / Aw(z) dz= 0. 

r-----= Jcr f(z) - Wo 

ow, for a given i, i = 1, .. . , n, we wish to examine the integral 

1 Aw(z) iB 
f( ) _ dz, Pi : z(B) = lz - aile , BE (0, 1r], 

p; Z Wo 

as Pi--+ 0. Observe that l'11(z)I can be written as 

(3-36) 

where tp(z) = Tik=i(z - ak)-µk is a continuous function at z = ai. Consequently, for 
k-:f- i 

61 > 0, 3 T/I > 0 such that 

Pi= lz - ail< T/1 ===> 81 > 1¢(z) - ¢(ai)I 2 1¢(z)l -1¢(ai)I 

===> 81 + l¢(a1)I > 1¢(z)I . 

Thus, for Pi = lz - ai I < T/1' 

Again, since Wo is not a point on P, :3 82 > 0 such that If ( ai) - w0 I > 282, Since f is 

COntinuous at z = ai, :3 .,,2 > O such that 

P = lz - ail < T/2 ===> lf(z) - f(ai)I < 82 

===> -lf(z) - f(ai)I > -82. 
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'hen, for Pi == I z - ai I < T/2, we have 

IJ(z) - wol == lf(z) - f(ai) + f(ai) - wol 

2: IJ(ai) - wol - lf(z) - f(ai)I 

bus, for Pi < min { T/1, T/2}, we have 

d since 1 - µi > 0, 

lim / A\J!(z) dz= 0. 
p;---o }p; f(z) - Wo 

(3-37) 

tting r-+ oo and Pi -+ 0, i = 1, ... , n, (3-36) and (3-37) imply that the number of times 

0 is taken by transformation (3-34) in the upper half-plane Ilu is 

Nw
0 

= _l_ lim Jr f'(z) dz= - 1- lim Jr A\J!(z) dz. • 
2rri r---= -r f(z) - Wo 2rri r---= -r f(z) - Wo 

Now, let w = f(z ), dw = J'(z) dz. Then we have 

N __ l 1. Jr f' ( z) d __ l 1 dw 
wo - . lm Z - . . 

2rri r---= -r f(z) - wo 2rri p w - wo 

sing the same argument given in the proof of Theorem 1.10, we may conclude that 

w = J(z) = A lz (z - a1)-µ 1 
• • • (z - an)-µ" dz+ B, 

zo 

ps t~e upper half-plane Ilu one-to-one onto the interior of P. Theorem 3.7 is thus 

roved. I 

The transformation (3-34) is called the Schwarz-Christoffel transformation of the upper 

-plane onto the interior of a polygon. Formulas of type (3-34) are called Schwarz­

'st0ffel formulas. In Chapter 4, we will examine some generalizations of transformation 
3-34). 
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CHAPTER 4 

Variations of the Schwarz-Christoffel Transformation 

In this chapter, we wish to develop some variations of the Schwarz-Christoffel transfor-

t·on We begin by first restating Theorem 3.2: 
111a 1 · • • 

rfbeorem 3.2 [8]. Suppose w = J( z) is a univalent function which maps ITu = 

{z : Im(z) > 0} onto the interior of a (bounded) closed polygonal Jordan curve P 

with interior angles a11r, ... ,an1r (0 < ak < 2, k = 1, ... ,n), and suppose the points 

a (-oo < a1 < ···<an < +oo) correspond to the vertices of P. Then 01, ... , n 

w = f(z) = A f (t - ai)-µ 1 
• • • (t - an)-µ" dt + B, 

}zo 

whereµk = 1-ak, zo E Ilu = {z : Im(z) 2. 0}, and A,B EC. 

(3-16) 

Formula (3-16) gives the explicit form of a univalent function mapping the upper half­

plane onto the interior of a given polygon. By modifying the proof of Theorem 3.2, it is 

possible to obtain the explicit form of a univalent function mapping the upper half-plane 

onto the exterior of a polygon. Namely, 

Theorem 4.1 [8]. Suppose w = f(z) is a univalent function which maps Ilu onto the 

exterior of a (bounded) closed polygonal Jordan curve P with interior angles a11r, . .. , an 1r 

(0 < ak < 2, k = 1, ... , n), and suppose the points a1, ... , an (-oo < a1 < · · · < an < 

+oo) correspond to the vertices of P . Then 

_ _ f (t-ai)µ 1 · ·• (t-an)µn 
W - f(z) - A }zo (t _ /3)2(t _ /3)2 dt + B, (4-1) 

1Vhere µk = 1 - ak, z0 E Ilu, A, B E C, and /3 (Im /3 > 0) is the inverse image of oo. 

PROOF [8,10]: Since the mapping w = f(z) is conformal at z = /3 and J(/3) = oo, f must 

have a simple pole at z = (3 . Thus, it must be of the form 

f(z) = :~z~, (4-2) 
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,J. is analytic at z = /3 and <P(/3) =/- 0. Then, 
ft'here y, 

f'(z) = -(z - /3)- 2 </J(z) + (z - /3)- 1 </J'(z), 

J"(z) = 2(z - /3)-3</J(z) - 2(z - /3)- 2 </J'(z) + (z - /3)-1</J"(z) , 

and, 

J"(z) 2(z - /3)- 3 </J(z) - 2(z - /3)-2 </J'(z) + (z - /3)- 1 </J''(z) 
f'(z) = -(z - /3)- 2 </J(z) + (z - /3)- 1 </J'(z) 

2</J(z) - 2(z - /3)</J'(z) + (z - /3)2</J"(z) 
(z - /3) [(z - /3)</J'(z) - </J(z)] 

2 (z-/3)</J"( z ) 
= - z - /3 + (z - /3)</J'(z)- </J(z)" 

Thus, 
J"(z) 2 

gi(z) = f'(z) + z - /3' 

is analytic at z = /3 and g1 (/3) = 0. 

(4-3) 

Now, if we apply the symmetry principle tow= f(z) and the upper half-plane, f will 

have a simple pole at z = "{-J. Consequently, by a similar procedure as above, the function 

f"(z) 2 
g2(z) = f'(z) + z - "fJ' (4-4) 

will be analytic at z = "fJ and g2 ("fi) = 0. 

Observe that the mapping w = f(z) will map the real axis onto the polygon P. Conse­

quently, we may use the proof of Theorem 3.2 to conclude that the function 

<I>(z) = f"(z) _ ~ µk + _2_ + ~' 
f'(z) ~z-ak z-/3 z-/3 

k=l 

(4-5) 

is analytic in C= and <I>(oo) = 0. It should be noted that since w = f(z) maps the real 

&Xis to the exterior of the polygon P, the angles a k 1r, k = 1, ... , n, used in the proof of 

Theorem 3.2 are replaced by 21r - ak7r = 1r(2- ak) - Thus, the quantities µk = 1 - Ok used 

in the proof of Theorem 3.2 will be replaced by 

1 - (2 - ak) = -(1 - ak) = -µk, k = 1, ... , n. 
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• <I> is analytic in C= and cl>( oo) = 0, 4> _ 0 by Liouville's theorem. Thus, ( 4-5) yields 
Since 

J"(z) _ n µk __ 2 ___ 2_ 
f'(z) -Lz-ak z-/3 z-~· 

k=l 

Integrating, we have - - lz (t - ai)IL1 ... (t - an)ILn 
w-f(z)-A zo (t-j3) 2 (t-j3) 2 dt+B, 

where A,B EC. I 

Formulas (3-16) and (4-1) hold when ak-/= oo, k = l, ... ,n. However, (3-16) and (4-1) 

can be modified to accept the point at infinity as shown in the following theorem. 

Theorem 4.2 [8]. If an= oo, then formulas (3-16) and (4-1) are replaced by 

w = f(z) = A lz (t - ai)-µ 1 
• • · (t - an-1)-1-Ln-l dt + B, ( 4-6) 

zo 

and, _ _ lz (t - a1)1L 1 
• • • (t - an-1)1-Ln-l 

w-f(z)-A zo (t-j3)2(t-~) 2 dt+B, (4-7) 

respectively. 

PROOF: We shall first consider formula ( 4-6). The Mobius transformation 

z = T(z) = an - ~, 
z 

(4-8) 

is an automorphism of the upper half-plane and maps z = oo onto z = an. Composing 

(3-16) with ( 4-8) yields 

·-1 

f(z) = f (T(z)) = A lan-Z (t - a1)-µ 1 .,. (t - an)-µ" dt + B. 
zo 

Under the change of variable t = an - i- 1 , we have 

f(z) = A 1: ( an - a1 - I )-µ1 
... ( an - an-l - I )-1-Ln-l (-y )-µ" i-2 di+ B, 

•here zo = _1 _ _ Hence 
an -zo ' 

A lz ( 1 )-µn n-1 ( l )-µ1: 
f(z) = A . -~ i-2 II an - ak - ~ di+ B 

zo t k=l t 

= A r (-;)-µ" i-2 IT(-;)-µ" [1 + (ak - an)~ -µ1: di+ B. 
}zo t k=l t ( 4-9) 
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( )
-µ1e ( )-2 

Since ~;::=l µk = 2, we have rr;=l -t = -t , and (4-9) becomes 

f(i) = A ( (-;)-
2 

i-2 IT [1 + (ak - an)i]-µ" di+ B 
lzo t k=l 

l
z n-1 [ 1 ]-µ1e 

= A II - + i di+ B' 
zo k=l ak an 

](i) = _A ( (i - ai)-µ 1 •• • (i - lln-1)-µn-l di+ B, 
lzo 

which is of the form ( 4-7). 

Formula ( 4-7) is proved in the same fashion . I 

As our final generalization of the Schwarz-Christoffel transformation, we have 

(4-10) 

r!'heorem 4.3 (8]. If ITu = { z : Im(z) > 0} is replaced by I< = { z : lzl < 1 }, then 

ormula (3-16) becomes 

W = f(z) = A lz (t - b1)-µ 1 '· • (t - bn-1)-µn-l dt + B, 
Zo 

(4-6) 

here zo EK, z EI<, and the inverse images of the vertices of the polygon a.re of the form 

= ei 91
, •.• ,bn = ei9n, 0 ~ (h < 21r (k = l, ... ,n) and 81 < ··· < Bn . Formula (4-1) 

l z dt 
w=f(z)=A (t-b1? 1 

••• (t-bn?" 2 +B, 
q t 

( 4-11) 

here z == 0 is the inverse image of the point at infinity. 

, ROOF: We shall first show that (3-16) retains the same form. Consider the Mobius 

sformation 

T( A) , (1 + i) z= z =i l-i , ( 4-12) 
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which maps Jzl < 1 onto Im(z) > 0 (by Theorem 2.13). Now observe that if t = i C!O, 
we have 

and 

[ (
1 + t) ] J.Lk (t - ak?k = i 
1 

_ i - ak 

( 
1 )J.Lk [• A• ( A)]J.Lk = --A z + tz - ak l - t 

l-t 

= (~) J.Lk [t(ak + i) - (ak - i)] J.Lk 
l-t 

2i A 

dt = A dt. 
(1 - t) 2 

Now, with the change of variable t = i C!O, composing (3-16) with ( 4-12) yields 

}(z) = f (T(i)) = A t 2
i A 

2 
IT (ak + !)-J.Lk (t - bk)-J.Lk di+ B, 

lzo (1 - t) k=I 1 - t 

where 20 = zo+-~. Simplifying, we have 
ZO I 

( )
-J.Lk ( )-2 

Since E;=l µk = 2,we have n;=l l~t = l~t , and 

Tb.at is, 

W = f(z) = A lz (t - b1)-J.L1 
••• (t - bn)-J.Ln dt + B, 

zo 

lihich is of the form ( 3-16). 
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To prove (4-11), we require a Mobius transformation which maps K onto IIu and the 

p0int z == 0 to z = (3. Using Theorem 2.13, we see that this transformation will be given 

by zP- f3 
z = S(i) = A • 

z-1 
( 4-14) 

BY using ( 4-14), formula ( 4-11) is proved in a similar fashion as above. I 

51 



CHAPTER 5 

Examples 

In this chapter, we wish to consider some examples illustrating the results of the previous 

chapters. We begin with · · 

Example 5.1. Construct a conformal map between the regions shown in Figure 5.1. 

Figure 5.1 

Let C1 represent the circle · lzl = 1, C2 the circle with center on the real axis passing 

through x1 and x2 , f 1 the circle lwl = 1, and r2 the circle lwl = R. Our construction will 

center on finding a Mobius transformation which will map lzl > 1 onto lwl < 1, and C2 onto 

r2. We first note that for any a satisfying 1 < x2 < a < x1 , the Mobius transformation 

will map lzl > 1 onto lwl < 1. 

z-a 
w=T(z) = --, 

az -1 
(5-1) 

We now wish to determine a so that C2 will map onto r 2 • Since a is real, T will map 

conjugate points onto conjugate points, and T(C2 ) will be bisected by the real axis. Thus, 

ijie diameter x2 < a ~ x1 of C2 will map onto the diameter u1 ~ u ~ u 2 of T(C2 ). Hence, 

the center Wo of T(C2 ) satisfies 2w0 = u1 + u2 = T(x2) + T(x 1 ). Now, if we let wo = 0, 
then C2 will map onto r2 , and 

. x 2 - a x1 - a 
0 = T(x2) + T(xi) = --+ --. 

ax2 -1 ax1 -1 
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SiJD.Plifying, we obtain 

(5-3) 

By the quadratic formula, 

or a=r
2
=x1x2+l-J(xi-l)(x~-l) _ 

X1 +x2 
(5-4) 

Observe that r1 r2 = 1 and r1 > r2. Hence, r1 > 1 and r2 < 1. Since we require that a > 1, 

Thus, our transformation becomes 

h 
z1z2+1+✓(zf-l)(z~-l) 

Were a= z1+z2 • 

The value for R is given by 

z-a 
w=T(z)=--, 

az - l 

X1 - a -
R=T(xi)=--. I 

ax1 - 1 

(5-5) 

(5-6) 

(5-7) 

As an example of the use of conformal mappings in applications, we consider the following 

Dirichlet problem: 

Example 5.2 . Find a function H(x, y) that is harmonic in the region shown in Figure 

5.2a and satisfies the boundary conditions H(x, y) = 0 on the unit circle and H(x, y) = 
V, (VER), on the circle passing through the points x1 and x2 , x1 ,x2 ER. 

(q_) 
Figure 5.2 
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First, consider the Dirichlet problem applied to the region shown in Figure 5.2b. In this 

region, we wish to find a harmonic function h( u, v) such that h( u, v) = 0 on the circle 

lwl == 1 and h( u, v) =Von the circle lwl = R. Due to the symmetry of the annulus, it can 

be shown [5) that the harmonic function satisfying these boundary conditions is given by 

V ~-- V 
h(u,v) = --log ✓u2 +v2 = --loglwl, 

. _ logR logR 
(5-8) 

l ,here w = u + iv. 

I" Now observe from Example 5.1 that the transformation 

z-a 
w= ' az - l 

x1x2 + 1 + ✓(xi - l)(x~ - 1) 
a=-----~~---~--'-

x1 + X2 ' 

maps the region in Figure 5.2a onto the annulus shown in Figure 5.2b. Thus, by Theo­

rems 1.11 and 1.12, the harmonic function satisfying the boundary conditions shown in 

Figure 5.2a is given by 

V I z-a I H(x, y) = h [u(x, y), v(x, y)] = -
1 

R log -- , 
og az - l 

(5-9) 

h 
x1x2+1+✓(x 12 -l)(x 22 -1) ----"----"-------"-- and R = ..!..1...=i!:... I w ere a= x1+x2 axi-1 

We now consider some examples of the Schwarz-Christoffel transformation. 

Example 5.3 [16]. Show that the function 

W = f(z) = {z dt 
2 

, 

Jo (1 - tn)n 
(5-10) 

maps lzl < 1 onto the interior of a regular polygon of order n. 

C "d th h f · b l b b n-1 h ( 21ri) ons1 er e nt roots o unity 1 = , 2 = w, ... , n = w , w ere w = exp -;- . 

Then the transformation 

iz dt 
f(z)= i i, 

0 ( i - b1 ) n • • • ( i - bn) n 

(5-11) 

will map lzl < 1 onto the interior of an n-sided polygon that has interior angles Gk7r = 
11"- il - (1 2) n - - n 1r, k = l, ... , n. Now, note that 

n n 

II (t - h) = II (t - exp (21ri(;-1))) = tn - l, 
k=l k=l 
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Thus, (5-11) becomes 

We now 

f(z) = r dt 2 • 

lo (l-tn)" 

CLAIM: Equation (5-12) maps lzl = 1 onto a regular polygon of order n. 

(5-12) 

PROOF: Since (5-12) maps lzl = 1 onto an n-sided polygon whose interior angles are all 

equal, we need only show that the lengths of the sides of the polygon are equal. 

Consider the side f(h-1)f(bk) of the polygon. It has length given by 

(5-13) 

ff we perform the substitutions = wt, the integral becomes 

Observe that bkw = wk-lw = wk = bk+l, and bk-l w = wk- 2w = wk-l bk: Hence, 

(5-14) becomes 

and, 

1
bk dt 1 1bk+1 ds 

lf(bk) - f(bk_i)I = 2 = - 2 = lf(bk+1) - f(bk)I, 
h-1 (1 - tn)'i" w bk (1 - sn)" 

Thus, the lengths of the sides of the polygon are equal and (5-12) maps lzl = 1 onto a 

regular polygon of order n. • 

We conclude that the function 

w = f ( z) = r dt 2 , 

lo (1 _ tn) n 

IIlaps lzl < 1 onto the interior of a regular polygon of order n. 
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Since /(0) = 0, the polygon is centered at the origin and the radius of the circumscribed 

circle is 

1
1 dt 

R = l.' 
o (1-t")" 

and the length of a given side is 

. . 11 & 
l = 2R sin ~ = 2 sin ~ l. . 

n n o (1-t")" 
I 

By an argument similar to that used above, it is easily seen that the function 

z 1 t" ¾ 
w = f(z) = 1 ( -t

2 
) dt, 

will map lzl < 1 onto the exterior of a regular polygon of order n. 

Example 5.5 (10, exercise 5, pp.197-198]. Show that 

.2 

1
z (1 t5) 5 

w = f ( z) = 4 dt, 
0 (1 + t5 )5 

maps lzl < 1 onto the pentagram shown in Figure 5.3. 

Figure 5.3 

(5-15) 

(5-16) 

Consider the 10th roots of unity b0 = 1, b1 = w, ... , b9 = w9 
, where w = exp( 

2
1~ ) = 

exp( ~i ). Then the transformation 

(5-17) 

56 



will map lzl < 1 onto the interior of a 10-sided polygon P that has interior angles O:k7r = 

11' + 2; == \Tr at the vertices f(bk), k = 0, 2, 4, 6, 8, and interior angles O:k7r = 1r -
4t = f 

at the vertices f(bk), k = l, 3, 5, 7, 9. Now, note that 

4 4 

IT (t - b2k) = IT (t - exp (2~Tri)) = t 5 
- 1, 

k=O k=O 

and 4 4 

IT( b ) II ( ((2k+l)Tri)) 5 l t - 2 k+ 1 = t - exp 5 = t + . 
k=O k=O 

Hence, ( 5-1 7) becomes 

l l 

1
z ( t5 _ 1) s 1z ( 1 _ tS) s 

f ( z) = 4 dt = 4 dt. 
O ( t 5 + 1) 5 O ( 1 + t 5

) 
5 

(5-18) 

Since f(0) = 0, the polygon P will be the pentagram shown in Figure 3 if lf(bk)I = c1 for 

k = l , 3, 5, 7, 9, and lf(bk)I = c2, where c1 =/ c2, fork= 0, 2, 4, 6, 8. Now, 

Under the substitution s = exp( 2t )t, the integral is 

fl'hen ( 5-19) becomes 

Repeating this process yields 

Similarly, we will have 

If ( bi) I = If ( b3 ) I = . .. = If ( bg) 1. 

lf(bo)I = lf(b2)I = · · · = lf(bs)I . 
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.1S the function 
1 

1z(l-t5)11 
w = f(z) = ~ dt, 

0 (1 + t5 ) Ii 

?S lzl < 1 onto the interior of the pentagram shown in Figure 3. I 

or our final example, we wish to use the Schwarz-Christoffel transformation to map the 

,er half-plane onto a polygon with vertices at infinity. Although the theory presented 

::hapters 3 and 4 concerned bounded polygons, the Schwarz-Christoffel transformation 

be modified to accept unbounded polygons [8]. For our final example, we shall consider 

mbounded polygon a.s a limiting form of a bounded polygon. 

tmple 5.6 [3]. Find a function mapping the upper half-plane onto the domain 

: {z: 0 < Im(z) < 1r} (See Figure 5.4). 

Figure 5.4 

msider the rhombus with vertices at the points w1 = 1ri, w2, w3 = 0, and w 4. We 

consider D a.s the limiting form of this rhombus a.s Re( w 2 ) and Re( w4 ) approach -oo 

+oo respectively. In the limit the exterior angles will be 

•sing the values zo = 1, a2 = 0, a3 = 1, and a4 = oo in formula ( 4-6), we have 

w = f(z) = A lz (t - ai)0 (t - o)- 1(t -1)0 dt + B. 

lifying, we have 

l z dt . 
w = f ( z) :.... A - + B = A log z + B. 

1 t 

58 

(5-20) 

(5-21) 



We now need to determine the values of the constants A and B. Since the image of the 

point a3 = 1 is to be w 3 = 0, B must be 0. Now, when x > 0, the point f(x) = Alogx 

will lie on the real axis . Hence, A must be a real constant. Also, the image of the point 

z === a1 is w = 1ri. That is, 

1ri = Aloga1. (5-22) 

Since a1 is negative, (5-22) becomes 

1ri = A log a1 = A log la1 I + Arri. 

By equating real and imaginary parts, we have la1 I = 1 and A = 1. Thus, the function 

mapping the upper half-plane onto D is 

w = logz. I (5-23) 
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CHAPTER 6 

Conclusion 

The Riemann mapping theorem guarantees the existence of a univalent function that 

Jllaps the unit disk onto a_ simply connected domain D, but it does not provide a technique 

for the actual construction of this function. However, using the results of the previous 

chapters, we are able to construct that function when D is circular or polygonal. By 

a technique somewhat similar to that given in Chapter 3, it is possible to construct a 

univalent function mapping the upper half-plane onto the interior of a circular polygon, 

that is, a polygon whose sides consist of circular arcs [6,10]. 

The question now arises as to whether or not it is possible to construct a univalent 

function , guaranteed by the Riemann mapping theorem, that maps an arbitrary simply 

connected domain onto the unit disk. A technique has been developed to answer this 

question, but its use is severely restricted due to the complicated expressions involved. 

(For a thorough discussion of this technique, see Hille [6] or Nehari [10].) 
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