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ABSTRACT 

On the Continuity of Functions 

and of Their Restrictions to Function Graphs 

John P. Dalbec 

Master of Science in Mathematics 

Youngstown State University, 1990 

This paper examines a theorem of N. N. Luzin that a function is continuous on a rectangle 

if and only if it is continuous on the graph of every continuous function from one side of 

the rectangle to the other, and presents two original generalizations of that theorem. 



ACKNOWLEDGMENTS 

I wish to thank Dr. Zbigniew Piotrowski for translating and calling to my attention 

the theorem of N. N. Luzin that is the basis for this paper, and for his advice in the 

early stages of its development. I wish to thank Dr. Eric J. Wingler for his guidance in 

transforming a proof of Theorem 2.4 into a thesis. His patience is without equal. I wish to 

thank Drs. Piotrowski and Wingler jointly for their paper [6), which inspired some of the 

constructions herein. I wish to thank Drs. John J. Buoni and S. F. Barger for their advice 

and for their corrections to a draft of this paper. I wish to thank Dr. J. Douglas Faires 

for introducing me to the many forms of 'IF,X, and J. 0. for demonstrating the use of 'IF,X 

to compose a thesis. Finally, I wish to thank Dr. David Pollack for reminding me that 

"You can't finish something until you start it," otherwise I would still be chasing proofs 

and counterexamples, and this paper would exist only in my mind. 



TABLE OF CONTENTS 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 

ACKNOWLEDGMENTS ............................. . ............. . .. iii 

TABLE OF CONTENTS ... . . . . . .. . .. . ..... . . . .. . ...... . ... .. ......... iv 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V 

CHAPTER 0. Introductory Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

CHAPTER 1. A Theorem of N. N. Luzin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

CHAPTER 2. Generalizations of Luzin's Theorem ...... .. . . ... . ....... 13 

CHAPTER 3. Counterexamples . .. ..... ..... . . · .. . ..... . ......... . ... . . 19 

REFERENCES . ...... . . . ................. .. . ... ......... .. ........... 25 

lV 

LUr Iii f. 7, 11 ~ 1 IRRAR'f1 
LQU G TOWN STATE UNLV! ____ ___ 



INTRODUCTION 

This paper is a report of original research by the author regarding the question of 

,.,hich topological properties are necessary for a function to be continuous on a product of 

;opological spaces if and only if it is continuous on the graphs of all continuous functions 

from one factor of the product into the other. This research generalizes a theorem of N. N. 

Luzin which proves the above statement for a function from a product of closed intervals 

into the real line. 

Chapter O presents background material that is used in later chapters. The first sec­

tion of this chapter is optional for readers with a working knowledge of general topology. 

The second section of the chapter, however, is optional only for those readers who are 

familiar with the properties of sequential spaces. Chapter 1 presents Luzin's Theorem and 

describes a generalization to be found in the literature. Chapter 2 presents two original 

generalizations of that theorem, and Chapter 3 presents some counterexamples to show 

the necessity of some of the hypotheses in these generalizations. 



CHAPTER 0 

Introductory Material 

This chapter presents some background material on general topology, some of which the 

reader may already know. The results in the second section of the chapter on sequential 

spaces may well be unfamiliar to him, however, and he is encouraged to read these. Al­

though they do not directly enter into the proof of our main result, they provide some 

indication of what makes some spaces sequential and others not. 

General Topology 

Much more information than is included in this section may be found in most textbooks 

on general topology, for example (2] or (4]. Such information may also be found in part I 

of (8], although fewer proofs are given there. 

A topological space is an ordered pair (X, T) where Xis any set and Tis a collection 

of subsets of X, called a topology. The members of Tare called open sets, and an open 

set including a point is called a neighborhood of that point. The topology T includes 

all (arbitrary) unions and all finite intersections of its members. As such, T must include 

the empty union 0 and the empty intersection X. Usually, we refer to a topological space 

by naming the set X without mentioning the topology T. 

Common examples of topological spaces are the real line R, the closed unit interval I, 

and the general closed interval [a, b] with endpoints a and b. The topology on the real line is 

called the Euclidean topology. This topology consists of all unions of open intervals ( a, b ). 

The topology of a closed interval [a, b] is the subspace topology, the set of intersections 
f 

Un [a, b] for all open sets U in the Euclidean topology on the real line. This also applies 

to the closed unit interval I= [O, 1]. 

A basis for a topology on X is a family B of open sets such that each open set in X is 

the union of open sets included in B. Equivalently, for each point in an open set V there 
18 an open set in B included in V and including that point. This is because a union of 

sets includes a point if and only if one of the sets in that union includes that point. •A 



I basis at a point x is a family B of open sets each including x such that any open 
Joca 

. bborhood of x includes a member of B. Finally, a subbasis for a topology on Xis a 
ne1g 
faxnilY of open sets, the intersections of finitely many members of which constitute a basis 

{or that topology. 

A function f from a topological space X to a topological space Y (f : X -+ Y) is 

continuous if and only if for any open set Vin Y, the inverse image of V with respect to 

f ( denoted by 1-1 (V)) is open in X. If a function f : X -+ Y is continuous, one-to-one, 

and onto, and its inverse is also continuous, f is called a homeomorphism and X and 

y are called homeomorphic. In this case, X and Y are topologically indistinguishable. 

For example, all closed intervals [a, b] are homeomorphic to one another, so the closed unit 

interval I is equivalent to any of them for topological purposes. The real line R is not 

homeomorphic to I. 

A continuous function from the closed unit interval I into a space Y is called a path. 

A space is path-connected if, for each pair x, y of points in Y, there is a path p such 

that p(O) = x and p(l) = y . A space is locally path-connected if it has a basis of 

pa.th-connected sets, i.e, if every open set is the union of path-connected open sets. A 

space is connected if there is no pair of disjoint nonempty open sets whose union is the 

entire space. A space is locally connected if it has a basis of connected sets. If a space 

X is the union of two disjoint nonempty open sets U and V, and x is a point in U and 

y is a point in V, then there is no path p connecting x and y. Otherwise p-1(U) 3 0 

and p- 1(V) 3 1 are disjoint nonempty open sets whose union is the closed unit interval. 

This is impossible, so such a path cannot exist. Therefore path-connectedness implies 

connectedness, and local path-connectedness implies local connectedness. 

A point x in a topological space X is called an isolated point if the set { x} is open. 

A space is called dense in itself if it includes no isolated points. Since an isolated point 

corresponds to a one-point open set, a space is dense in itself if and only if each open set 

includes at least two points. 

A number of separation axioms are used in topology. A space is called T1 if for any 

two distinct points x and y there is an open set including x but not y. The open set is 

said to separate the points x and y, hence the designation "separation axioms." A space 
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. ailed T2 or Hausdorff if for any two distinct points x and y there are two open sets, 
1S C 

•ncluding x and the other including y, which do not intersect one another. (Two sets 
one l 

are called disjoint if they do not intersect.) A space is called T3 if for any point x and 

any closed set K not including x, there are two disjoint open sets, one including x and the 

other including K. Equivalently, a space is T3 if for any point x and any neighborhood 

V of x, there exists a neighborhood U of x whose closure is included in V . A T3 space 

that is also T1 is called regular. Finally, a space is called T3 ½ if for any point x and any 

closed set K not including x, there exists a function I : X -+ I such that I ( x) = 1 and 

J(K) = O. If the space is also T1 , then it is called completely regular. There are several 

other separation axioms, but we will not have occasion to use them here. 

LEMMA 0.0. A completely regular space is regular; a regular space is Hausdorff; and a 

Hausdorff space is T1 . 

PROOF: Let x, y be distinct points in a space X and let K be a closed subset of X not 

including x . Suppose that X is T3 1. . Then there is a continuous function I : X -+ I 
2 

where f(x) = l and l(K) = 0. Let U = 1-1 ((1/2, 1]) and V = J-1 ([0, 1/2)). Since I 
is continuous, u and V a.re open. Furthermore, X E 1-1 (1) C u and K C 1-1 (0) C V . 

Therefore Xis T3 • If Xis completely regular, then it is also T1 , hence regular. Suppose 

that Xis regular. Then, since Xis T1 , each point z =/-yin X has an open neighborhood 

not including y. The union of these neighborhoods is X \ {y }, and is open because it is 

the union of open sets. Therefore, the point y is closed, and since X is T3 , there exist 

disjoint open neighborhoods including x and y respectively. Hence Xis Hausdorff. Finally, 

suppose that X is Hausdorff. Then there exist disjoint open neighborhoods U and V of x 

and Y, respectively. Since y (/:. U, X is T1. I 

Warning! A sequence in a space that is not Hausdorff may have more than one limit. 

For this reason we will take lim Xi to be a set rather than a point in such spaces. 

A space X is called compact if for every collection of open sets whose union is X ( an 

open cover), there is a finite subcollection whose union is also X ( a finite subcover ). 

A space is called countably · compact if every countable open cover has a finite sub­

cover. Obviously, a compact space is countably compact. A space is called sequentially 
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P
act if every sequence has a convergent subsequence. 

coIIl 

LEMMA 0.1 [2,p.266]. A sequentially compact space is countably compact. 

PROOF: Let X be sequentially compact and let {Un} be a countable open cover. Suppose 

that {Un} has no finite subcover. We may choose Xn E X \ u;=l Uk for each n because 

the union of finitely many Uk cannot cover X. Then the sequence {xn} has a subsequence 

{x~} converging to some point xo . Since {Un} covers X, Xo E Uno for some number n 0. 

Then there exists a number N such that x~ E Uno for all n > N. But Xn ft. Uno for all 

n ~ no, so at most n0 - 1 points of x~ belong to Uno, contradicting the previous statement. 

Therefore {Un} must have a finite subcover. I 

Sequential Spaces 

A space is called second countable if it has a countable basis and first countable if it 

has a countable local basis at each point. Obviously, a second countable space is also first 

countable. A space is called Frechet if the closure of a set includes precisely the limits of 

all sequences included in the set. A space is called sequential if a set is closed precisely 

when it includes the limits of all sequences included in the set. 

LEMMA 0.2[2,p. 78]. A first countable space is Frechet and a Frechet space is sequential. 

PROOF: Let X be first countable. Let A be a subset of X and let x belong to the closure 

of A. Let {Un} be the countable local basis at x. Since x is in the closure of A, the 

intersection of A with any open neighborhood of xis nonempty. Therefore, we may choose 

Zn E An n;=l Uk for each n. Since any open neighborhood of X includes some UN, it also 

includes Xn for all n ~ N. Thus {xn} converges to x . Since x and A were arbitrary, any 

point in the closure of any set is a limit of some sequence in the set . Since a limit of a 

sequence belongs to the closure of any set including that sequence, Xis Frechet. Now let 

X be Frechet and let A be a subset of X as before. If A includes the limits of all sequences 

that it includes, then A is its own closure, and is closed. Therefore X is sequential. I 

The next two lemmas characterize sequential spaces as those spaces on which a function 
18 continuous if and only if it preserves convergent sequences. 
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LEMMA 0.3 [2,p. 78). A function f from a sequential space X to a topological space Y is 

continuous if and only if f(limxi) C limf(xi) for every sequence {xi} in X. 

PROOF: Fix {xi}, let x E X, and suppose that f is continuous and f(x) ¢ limf(xi). 

Then there exists an open set Vin Y including f(x), but excluding infinitely many of the 

/(xi)· Since f is continu~us, 1-1 (V) is open in X. But 1-1 (V) includes X while excluding 

infinitely many of the Xi. Therefore x ¢ limxi and so f(x) ¢ f(limxi) , We have shown, 

then, that f(limxi) C limf(xi) for the arbitrary sequence {xi}, Conversely, suppose that 

/(liroxi) C limf(xi) for every sequence {xi} in X. Let K be any closed subset of Y and 

let {xd be a sequence in J- 1 (K). Then {f(xi)} CK and so f(limxi) C limf(xi) CK. 

Therefore limxi C J-1(K), and since Xis sequential, 1-1(K) is closed. Since this holds 

for any closed subset K of Y, f is continuous. I 

LEMMA 0.4. Let X be a topological space. Suppose that, for all topological spaces Y and 

all functions f : X -+ Y, f is continuous if and only if f(limxi) C limf(xi) for every 

sequence {xi} in X. Then Xis sequential. 

PROOF: Let A be a subset of X. Let Y be Sierpinski space (the set {O, 1}, with open sets 

0, {O}, and {O, 1}) and let f(x) be 1 if x EA and O otherwise. Suppose that limxi CA for 

every sequence {xi} in A. Then f(limxi) C f(A) = {1} and limf(xi) = lim 1 = {1}. Since 

{1} C {1}, we have f(limxi) C limf(xi), and so f is continuous. But then A= J-1 (1) is 

closed, and so X is sequential. I 

The following lemma, together with Lemma 0.1, shows that countable compactness and 

sequential compactness are equivalent in sequential spaces. 

LEMMA 0 .5 [2,p.266). A countably compact sequential space is sequentially compact. 

PROOF: Let X be sequential and countably compact, and let {xn} be a sequence in X . 

We will show that this sequence has a convergent subsequence. Let Kn = {xdk=n and 

let Un= X \ Kn for all n. Then {Un} is a countable cover of X with no finite subcover. 

Since Xis countably compact, there exists a number m such that Um is not open, and so 

its complement Km is not closed. Let x belong to the closure of Km, but not to Km itself. 

Then there exists a sequence {yn} in Km converging to x. Since {yn} C Km= {xk}k=m C 
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{xri}, {yri} has a convergent subsequence that is a subsequence of {xn}, Since {xn} was 

arbitrary, X is sequentially compact. I 

The topological product of two spaces X and Y is the Cartesian product Xx Y with 

the product topology, which is generated by the basis consisting of all open rectangles 

U x V, where U is open in X and Vis open in Y. Associated with a product space are 

the projections which map a point onto its first (resp. second) coordinate. 

The following lemmas show two ways in which one can force a product of two spaces to 

be sequential. 

LEMMA 0.6 [2,p.111). The product of two first countable spaces is first countable. 

PROOF: Let X and Y be topological spaces and let (x, y) E X x Y. Let W be an open 

neighborhood of (x, y). Since Wis the union of open rectangles, at least one such rectangle 

includes the point (x,y). Therefore, there exist open neighborhoods U and V of x and y, 

respectively, such that U x V C W. Let {Un} be a local basis at x, and let {Vn} be a 

local basis at y. Then there exist numbers i and j such that Ui C U and V; C V, and so 

Ui x V; C W. Since W was arbitrary, the collection of all sets of the form Ui x V; is a 

local basis at (x, y). Since this collection is countable and (x, y) was arbitrary, Xx Y is 

first countable. I 

LEMMA 0. 7 [2,p.271). The product of two sequential spaces, one of which is sequentially 

compact, is sequential. 

The proof of this result requires several intermediate lemmas. 

A function is a quotient mapping if each set in the range off is closed if and only if 

its inverse image with respect to f is closed. 

The next two lemmas, together with Lemma 0.2, characterize sequential spaces as the 

unages of first countable spaces under quotient mappings. 

LEMMA 0.8 [2,p.134). The image of a sequential space under a quotient mapping is 

Bequential. 

Paoop: Let X be a sequential space and let Y be topological. Let f : X -+ Y be an onto 

quotient mapping. Let A be a subset of Y and let { xn} be any sequence in 1-1 (A). Suppose 
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liIIlf(x ) CA for every such sequence {xn} , Then J(limxn) C limf(xn) CA, so 
that n 

litDXn C J-1(A) for every sequence {xn}, so that J-1(A) is closed. Since f is a quotient 

·ng A is closed also. Since A was arbitrary and any closed set includes the limits of 
JJlS.PP1 ' 

any sequences included in it, Y is a sequential space. I 

LEMMA 0.9 [2,p.134]. Let X be a sequential space, let A be the subspace {0, 1, 1/2, .. . } 

of the real numbers, and iet X A be the space of continuous functions from A to X with the 

discrete topology. Then the evaluation mapping f : X A x A --+ X is a quotient mapping. 

PROOF : Since the space X A is discrete, the basis for the topology of X A x A consists of 

all sets of the form {g} x U, where g is in X A and U is open in A. Let V be open in X . 

Then 1-1(V) = U EX" {g} x g- 1(V). But g- 1(V) is open since every function in XA is 
- g 

continuous. Therefore 1-1 (V) is open, being a union of open sets , and so f is continuous. 

If we take V = X \ K, then f- 1(K) = (XA x A) \ J-1(V) is closed. Let K be a subset 

of X and suppose that 1-1(K) is closed. Since each g E XA is closed as a subset, the set 

{g} x A is closed, and therefore ({g} x A) nJ-1 (K) = {g} x g- 1(K) is closed in {g} x A. 

Since {g} x A and A are isomorphic, g-1 (K) is closed in A. Thus either g-1(K) is finite, 

or it includes the point 0. In other words, either K includes only finitely many points of 

the sequence {g(l/n)}, or it includes the point g(O) = limg(l/n) . Now every convergent 

sequence {xn} C K generates a function g(l/n) = Xn in XA for each of its limit points 

( = g(O)), for the only sets not closed in A are infinite but do not include 0, and since {xn} 

converges, no infinite subset of {xn} is closed that does not include limxn , Therefore every 

convergent sequence contained in K converges, and so K is closed since X is a sequential 

space. Thus f is a quotient mapping. I 

The space X A x A is first countable since each point (g, 1 / n) is open, and each point (g, 0) 

has the countable local basis {{(g , O)} U {(g,1/m)}~=n}~=l · Therefore every sequential 

Bpace is the image of a first countable space under a quotient mapping, and by Lemmas 

0.2 and 0.8, the image of a first countable space under a quotient mapping is sequential. 

A closed function maps each closed set to another closed set . 

LEMMA 0.10. Let X be sequentially compact and let Y be sequential. Then the projection 

P:X X Y-+ Y is closed. 

7 {. U. G.STOWN. 



paooF: Let F be a closed subset of X x Y. Let {yn} be a convergent sequence in p(F). 

Then there exists a sequence {xn} in X such that (xn, Yn) E F for each n. Since X 

. equentially compact, the sequence {(xn, Yn)} has a subsequence {(x~, y~)} such that 
1s s 
{x~} converges. Since the sequence {Yn} converges, the subsequence {y~} converges to 

liIDYn· Then the compound sequence {(x~, y~)} converges, so lim(x~, y~) C F and thus 

liID y~ == lim Yn C p( F). Since {yn} was arbitrary and Y is sequential, p( F) is closed, and 

since F was arbitrary, the projection p is closed. I 

A space is called locally compact (resp. locally sequentially compact) if it has a 

basis, every member of which has a compact (resp. sequentially compact) closure. The 

space XA x A defined above is locally sequentially compact. A basis at each point (g, l/n) 

is the set {(g, 1/n)}, which is closed as well as open, and in which every sequence converges 

to (g, 1/n). A basis at each point (g,0) consists of all sets of the form {g} x ([0, 1/n) n A)= 

{g} x ([0, 1/( n + l )] n A). Every sequence in one of these sets has a convergent subsequence 

that is either eventually constant or converges to (g, 0). Therefore X A x A is locally 

sequentially compact. 

LEMMA 0.11 [2,p.271]. For every locally sequentially compact space X, evezy sequential 

space Y, and evezy quotient mapping g: Y-+ Z, the mapping f: Xx Y-+ Xx Z defined 

by f(x,y) = (x,g(y)) is a quotient mapping. 

PROOF: Let w be a set in XX z and let (xo, zo) be a point of w. Suppose that 1-1 cw) is 

open. Choose a pointy E g-1 (z0 ), and let Ube a neighborhood of x 0 having sequentially 

compact closure and such that u X {y} C 1-1(W). Since (x, y) E 1-1(W) is equivalent to 

f(x,y) = (x,g(y)) E W, which is equivalent to J- 1(x,g(y)) = {x} X g-1 (g(y)) C J- 1(W), 

it follows that U x {y} C J- 1(W) whenever U x g-1(g(y)) C f- 1 (W) for each y E Y. 

Therefore u X g- 1(zo) C 1-1 (W). Let V = {z E ZIU X g- 1(z) C 1-1(W)} . Then 

g-l(V) = {y E YIU X g- 1(g(y)) C 1-1(W)} = {y E YIU X {y} C 1-1(W)} by the 

equivalence noted above. The set (ff x Y) \ J- 1(W) is closed, being the difference of a 

closed set and an open one. Since U is sequentially compact and Y is sequential, the 

Projection p: U x Y-+ Y is closed by Lemma 0.10, so p((ff x Y) \J- 1(W)) is closed. But 
this set is just the complement of g-1 (V), which is therefore open. Since g is a quotient 
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JilS.pping, Vis open also, and so U x Vis an open neighborhood of (xo, zo) included in W. 

Since ( xo, zo) was arbitrary, W is open. Conversely, assume W is open. Then W is the 

union of open rectangles U0 x V0 , where U0 is open in X and V0 is open in Z. Since g is a 

quotient mapping, g-1(Vo) is open, and so 1-1(W) = u1- 1 (U0t X Vo)= LJUO/ X g-1 (Vo) 

is open as well. Thus f is a quotient mapping. I 

PROOF OF LEMMA 0 .7: ·The space (XA x A) x (YA x A) is first countable by Lemma 0.6. 

Since y A x A is locally sequentially compact and the evaluation map g : X A x A -+ X is a 

quotient mapping, so too is the map f : ( X A X A) x (YA x A) -+ X x (YA x A) defined by 

f(x,y) == (x,g(y)) by Lemma 0.11. Then Xx (YA x A) is sequential by Lemma 0.8. Since 

X is locally sequentially compact and the evaluation map g : YA x A -+ Y is a quotient 

mapping, so too is the map f: Xx (YA x A)-+ Xx Y defined as above by Lemma 0.11. 

Then Xx Y is sequential by Lemma 0.8. I 
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CHAPTER 1 

A Theorem of N. N. Luzin 

In (5], N. N. Luzin proves the following theorem: 

THEOREM 1.1. The function P: [a, b] x [c, d] -+ R is continuous if and only if for every 

continuous function f : [a, b] -+ [c, d], the function Pi : [a, b] -+ R denned by P1(x) = 
F(x, f(x )) is continuous, and for evezy continuous function g : [c, d] -+ [a, b], the function 

f9: [c,d]-+ R denned by pg(y) = P(g(y),y) is continuous. 

Luzin's proof of necessity shows that P1 and pg are in fact uniformly continuous, but 

this result is stronger than we need in order to prove this theorem. We give instead a proof 

that Ft and pg are continuous when [a, b], [c, d], and Rare replaced by general topological 

spaces X, Y, and Z, respectively. The general result then applies to the specific case where 

X = [a,b], Y = [c,d], and Z = R. 

NECESSITY: Suppose Pis continuous and fix f and g. We will show that P1 and pg are 

also continuous. Fix x EX and let y = f(x) and z = P1(x) = P(x, y). Let W be an open 

neighborhood of z. Since P is continuous, p-1(W) is open. Since the open rectangles 

form a basis for the product topology on X x Y, there exist open neighborhoods U of x 

and V of y such that u X V C p-1(W). Since f is continuous, 1-1cv) is open, and so 

G = UnJ- 1(V) is an open neighborhood of x such that P1(G) CW. Since Wand x were 

arbitrary, Pi is continuous. A similar argument shows that pg is continuous also. I 

The proof of sufficiency requires the following lemma: 

LEMMA 1.2 [1,p.51;2,p.78]. Let X be a topological space. Let {xn} C X converge to 

Zo. Let {x~} be a subsequence of {xn}- Then {x~} converges to x0 • 

PROOF: Let Ube an open neighborhood of x 0 • Then there exists N such that n $ N for 

all Xn <t U. Since {x~} C {xn}, {x~} \UC {xn} \ U and so {x~} \ U is finite. Thus there 

exists N' such that n $ N' for all x~ ft_ U. Since U was an arbitrary open neighborhood 

of xo, {x~} converges to x0 • I 
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SUFFICIENCY: Suppose that Ft is continuous for every continuous function f and that F 

. discontinuous at ( x o , Yo). Let 
1s 

m(xo, Yo)= lim( inf F(x, y)) 
£-+0 (x ,y) EB((xo ,Yo),£) 

and 
M(xo , Yo)= lim( sup F(x, y)), 

£-+O (x,y)EB((xo,yo),£) 

where B(p, r) is the open ball of radius r about the point p, and m( x0 , y0 ) and M( Xo, Yo) 

may be +oo, -oo, or a real number. Let zo = m(xo, Yo) if m(xo, Yo) -=/- F(xo, Yo) and 

let zo = M(xo, yo) otherwise. Then there exists a sequence {(xn, Yn)} of distinct points 

converging to ( xo, Yo) such that limn-+oo F( Xn, Yn) = zo -=/- F( Xo, Yo). 

We may assume that Xn-=/- Xo for all n > 0. Otherwise, let fn(x) = Yn for all x E [a, b] 

and n > 0. Since f n is constant, it is continuous and so Fin is continuous also. Therefore 

Un = Fi,.1(B(F(xn, Yn), l/n)) is open, hence uncountable, so that we may select x~ E 

Un\ {xo} for all n > 0. Then we have 

lim jF(x~, Yn) - F(xn, Yn)I ::; lim 1/n = 0, n-+oo n-+oo 

so that limn-+oo F(x~, Yn) = limn-+oo F(xn, Yn)- Therefore we may replace Xn by x~ for 

all n > 0 and then we have what we wanted to assume-that Xn -=/- x0 for all n > 0. 

In order to construct a continuous function through infinitely many points of {(xn, Yn)}, 

we first discard those points for which Xn < x 0 if there are infinitely many points for 

which Xn > xo, and discard those points such that Xn > x 0 otherwise. Suppose that 

we have discarded those points for which Xn > x0 • Then we replace {(xn, Yn)} by the 

subsequence {(x~,y~)}, where (x~,YD = (x1 ,y1 ) and for all n > l, (x~,y~) = (xm,Ym) 

where m = minx1i:>x~_
1 

k. By Lemma 1.2, limn-+oo(x~, y~) = limn-+oo(Xn, Yn) = zo. For 

ease of notation we will refer to the subsequence {(x~, y~)} as {(xn, Yn)} for the remainder 

of this proof. 

Let 

{ 

YI X ::; X1, 

f( x) = Yn+i(X-Xn)+Yn(Xn+1-x) X < X < X 
Xn+i-Xn n - - n+I, 

Yo x 2::: xo. 
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This function is well-defined since for all x < xo, there exists a point for which Xn 

beC3use {(xn, Yn)} converges to (x0 , y0 ) , and 

Yn(Xn - Xn-1) + Yn-1 (xn - Xn) _ _ Yn+l (xn - Xn) + Yn(Xn+l - Xn) 
-Yn -

Xn - Xn-1 Xn+l - Xn 

at each point Xn- Therefore/ is well-defined at the points Xn , and f(xn) = Yn · 

>x 

Obviously f is continuous everywhere except possibly at x0 • Now let f > 0 and let 

V == (yo - e, y0 + e). Then there exists a number N such that Yn EV for all n > N . Then 

for all x 2: XN+i, either x 2: Xo, in which case f(x) = Yo EV, or Xn ~ x ~ Xn+i for some 

n > N, in which case f(x) E [Yn, Yn+1] C V . Thus / is continuous at xo as well, so FJ is 

continuous and therefore 

lim F(xn, Yn) = lim F1(xn) = F1(xo) = F(xo, Yo)-
n-+oo n-+oo 

But this contradicts our choice of the original sequence {(xn, Yn)} so that limn-+oo F(xn, Yn) 

w~ z0 . Therefore F must be continuous at (x0 , y0 ). I 

Since the proof of necessity given above holds for general topological spaces X, Y, and 

Z, the challenge lies in generalizing the proof of sufficiency. Several generalizations are 

possible. In [7] , A. Rosenthal shows that Fis continuous if it is continuous on the graph 

of every convex differentiable function from [a,b] to [c,d] and from [c,d] to [a,b], and gives 

an example of a discontinuous function that is continuous on the graph of every twice 

differentiable function from [a,b] to [c,d] and from [c,d] to [a,b] . He then proceeds to 

generalize his result to n-dimensional Euclidean space. In the next chapter we present a 

different generalization of this theorem. Although we require the function to be continuous 

on the graphs of all continuous functions, we generalize the setting from the real line and 

closed intervals to more general topological spaces. 
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CHAPTER 2 

Generalizations of Luzin's Theorem 

In this chapter we present two original generalizations of Theorem 1.1. The first gener­

alization places weaker conditions on the spaces involved and a stronger condition on the 

{unction to be proven continuous than does the second generalization. Since their proofs 

are similar, for the second generalization only the modifications necessary to the proof of 

the first are given. The proof of these generalizations resembles the proof of Theorem 1.1, 

except that the function f is constructed differently. It may be thought of as a "bumpy 

plane" where the elevation of the nth "bump" is given by the function f n, and the direc­

tion of the nth "bump" is given by the function Pn• The sets Wn are constructed to keep 

the "bumps" separated one from another, and the sets Gn are constructed to keep the 

"bumps" low near the limit of the sequence through which the function f was constructed. 

Unfortunately, this construction seems to be limited to sequences due to the difficulty of 

constructing the sets W n and G n in the case of a net. 

Our first lemma will be used to construct a subsequence with unique x-coordinates so 

that a single-valued function can be constructed through the subsequence. 

LEMMA 2 .1. Let X be a T1 space and suppose that the sequence of ( not necessarily 

distinct) points {xn} converges to x 0 , and Xn =/:- xo for all n . Then {xn} has an infinite 

subsequence of distinct points {x~}, which converges to x 0 by Lemma 1.2. 

PROOF: Let {x~} be the sequence of all Xn such that Xm =/:- Xn for all m < n. Suppose 

that { x~} has finite length r. Since X is T1 , there exist open neighbor hoods Un of x 0 

such that x~ ¢ Un for 1 ~ n ~ r. Let W = n:=l Un. Since {x~} is finite, Wis an open 

neighborhood of x 0 . Then there exists a number N such that Xn E W for all n > N. 

Let m = inf{nlxn E W}. Since Xm E W and Xn ¢ W for all n < m, Xm =/:- Xn for all 

n < m. Therefore x m is a member of the sequence { x~}. But x~ ¢ W for 1 ~ n ~ r, 

contradicting our assumption that {x~} is finite. Now for all m and n such that m =/:- n, 
thtt . . 

e exist numbers m' and n' such that x~ = Xm•, x~ = Xn•, and m' =/:- n'. Without 
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f generality, we may assume that m' < n'. Then, since Xn• is in the sequence {x~}, 
loss o 

..J. x , . Therefore x~ =/= x~ for all m and n such that m =/= n. I 
Zm' -r n 

The next lemma constructs the sets Wn that separate the "bumps" in the "bumpy 

plane" described above. The construction is complicated by the requirement that each 

Wn be open; otherwise letting Wn = n;:::-01 ½n n n~n+l Un; would suffice, where Un and 

Vn are defined below. But since the sets Wn must be open, we must take them to be the 

intersection of only finitely many open sets. 

LEMMA 2.2. Let X be Hausdorff and suppose that the sequence of distinct points {xn} C 

X converges to xo, and that Xn =/= xo for all n. Then there exist pairwise disjoint open 

neighborhoods Wn of Xn for all n > 0. 

PROOF: Since X is Hausdorff, there exist disjoint open neighborhoods Ui; and ½; of Xi 

and x;, respectively, for all i and j such that O $ i < j. Since { Xn} converges to xo and 

Uo; is an open neighborhood of xo for all j, there exists a number N; for each j such that 

Zn E Uo; for all n > N;. Let 

n-1 Nn 

Wn = n ½n n n Un; n n{uokll $ k < n,xn E Uok}. 
i=O j=n+l 

Then each Wn is open, being the intersection of finitely many open sets. We show that 

Wm n Wn = 0 for all m and n such that m < n. Suppose that n $ Nm. Then Wm C Umn 

and Wn c Vmn• Since Umn n Vmn = 0, Wm n Wn = 0. Suppose, to the contrary, that 

n > Nm. Then xn E Uom, so Wn C Uom- Since Wm C Vom and Uom n Vom = 0, 

Wm n Wn = 0. Thus the sets Wn are indeed pairwise disjoint. I 

The next lemma constructs the sets Gn, which control the altitude of the "bumps" near 

the limit point of the sequence through which we will construct the function f. 

LEMMA 2.3. Let Y be first countable and locally path-connected. Then Y has at each 

PDint Yo a countable local basis of path-connected open sets { Gn} such that Gn+1 C Gn 

for all n. 

PaooF: Let {Gn} be a countable local basis for y at Yo• Let G~ = n;=l Gk for all n. 

Since Y is locally path-connected, there exist path-connected open neighborhoods G! of 
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for each n such that G! C G~. Let G! = U~n Gi for all n. Then {G!} is also a 
!/0 
countable local basis at Yo because Gl C Gi C Gn for all k ~ n and so G! C Gn. Fix two 

. ts x z E G!. Then there exist numbers k, m such that x E Gl and z E G~. Since pain , 

E G2 for all n, there exist paths p, q: J-+ Y such that p(0) = x, p(l) = q(0) = Yo, and 
!/0 n 

q(l):::: z. Let 

{
p(2x) x~l/2 

r(x) = 
q(2x - 1) X ~ 1/2. 

Then r is continuous, r(0) = x, and r(l) = z. Finally, for all n, we have 

00 00 

G! = LJ Gf :) LJ Gf = G!+1 . 

k=n k=n+I 

Thus {G!} satisfies the conclusion of the lemma. I 

The first generalization of Luzin's Theorem places fewer conditions on the domain X of 

the functions f than the second generalization will, and no conditions at all on the range 

z of F, but only at the expense of supposing that F has continuous x-sections. We note 

that the condition that Xx Y be sequential may be satisfied either by taking X to be first 

countable (by Lemmas 0.6 and 0.2) or by taking X to be sequential and either X or Y to 

be sequentially compact (by Lemma 0. 7). 

THEOREM 2.4. Let X be completely regular. Let Y be Erst countable and locally path­

connected. Let Z be a topological space. Suppose that X x Y is sequential, that the 

function F: Xx Y-+ Z has continuous x-sections, and that for any continuous function 

/: X-+ Y, the function Fi: X-+ Z defi.ned by F1(x) = F(x, f(x)) is continuous. Then 

F is also continuous. 

PROOF: Suppose that F is discontinuous. Then there is an open set W C Z such that 

F-1(W) is not open in X x Y. Since X x Y is sequential, there must be a sequence 

{(zn,Yn)} in (Xx Y) \F-1 (W) converging to a point (xo, y0 ) in F-1 (W). But since Wis 

an open neighborhood of F(x0 , y0 ) and F(xn, Yn) rt, W for all n, {F(xn, Yn)} cannot even 

accumulate to F(x0 , y0 ). Therefore F(x0 , y0 ) is not a limit point of any subsequence of 

{F(xn, Yn)}. 

Let {(x~, y~)} be the sequence of all (xn, Yn) such that Xn = x0 . Suppose that {(x~, y~)} 

is infinite. Then since F has continuous x-sections, by Lemma 1.2 we have limF(x~, y~) = 
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lixnF(xo,Y!) 3 F(xo,Yo). This contradicts our earlier conclusion that F(x0 ,y0 ) is not a 

uxnit point of any subsequence of {F(xn, Yn)}. Thus {(x~, y~)} is finite. Let {(x!, v!)} be 

the sequence of all (xn, Yn) such that Xn =/ Xo . Then {(x!, v!)} = {(xn, Yn)} \ {(x~, v!)} 
. ,_.a~;te so by Lemma 1.2 it converges to (xo, yo). Then, by Lemma 2.1, {x~} has a 
JS lllUJ-U ' 

subsequence of distinct points { x!}. For each n choose m such that x! = x!i and let 

Y!::: y~. Then {(x!, y!)-} is a subsequence of {(x~, y!)} with distinct x-coordinates. 

Let {Gn} be a basis for Y at Yo as in Lemma 2.3. Since {y!} converges to Yo and G1 

is an open neighborhood of Yo, there exists a number N such that Y! E G1 for all n > N. 

Let (x!,Y!) = (x!+N,Y!+N) for all n ~ 1. Then Y! E G1, so that fin= sup{fill ~ 

m :$ n, Y! E Gm} exists for each n. Since Gm" is path-connected for all n, there exist 

paths Pn : J --t Y such that Pn(O) = Yo, Pn(l) = Y!, and Pn(I) C Gmn for all n. Since 

{x!} c {x!}, {x!} is a sequence of distinct points and x! =/ x0 for all n. Therefore, 

by Lemma 2.2, there exist pairwise disjoint open neighborhoods Wn of x! for each n. 
Furthermore, since X is completely regular, there exist continuous functions f n : X --t I 

such that fn(x!) = 1 and fn(X \ Wn) = 0 for all n. 

Let 

f(x) = { PnUn(x)) XE WC:, 
Yo X ft. Un=l Wn, 

Let v be open in Y. If Yo <t. V, then 1-1(V) = u~=l J;1(p;; 1(V)) is open. If Yo E V, 

then there exists a number M such that GM CV. Since {y!} converges to y0 and GM is 

an open neighborhood of y0 , there exists a number N such that Y! E GM for all n > N . 

Therefore Pn(I) C Gm" C GM CV for each n > max(M, N), where fin was defined above 

for each n. Therefore 

N 

f- 1(V) = X \ f- 1(Y \ V) = X \ u J;;1 (p-;; 1 (Y \ V)) 
n=l 

18 open, being the complement of the union of finitely many closed sets. Thus f is contin­

uous, so 

limF(x!,Y!) = limF(x!,f(x!)) = limF1(x!) 3 F1(xo) = F(xo,Yo). 

This contradicts our assumption that F is discontinuous, from which we deduced that 

F(xo, Yo) is not a limit point of any subsequence of F(xn, Yn), I 
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The second generalization of Luzin's Theorem dispenses with the condition that F have 

continuous x-sections by assuming additional hypotheses on the spaces X and Z. Since 

h of the proof is identical to the proof of Theorem 2.4, we give only the additions to 
JilUC 

that proof needed to prove this theorem. 

THEOREM 2.5. Let X be B.rst countable, dense in itself, and completely regular. Let Y 

be nrst countable and locally path-connected. Let Z be B.rst countable and T3 • Given 

3 
{unction F : X x Y -+ Z, suppose that for every continuous function f : X -+ Y the 

[unction Ft: X-+ Z denned by F1(x) = F(x, f(x)) is continuous. Then Fis continuous. 

PROOF: The alterations to the proof of Theorem 1 required to prove Theorem 2 follow. 

First, since X and Y are first countable, X x Y is first countable by Lemma 0.6, hence 

sequential by Lemma 0.2. Next, if the sequence {(x~, y~)} is infinite, we argue as follows: 

Let {Un} and {Vn} be countable bases for X at xo and for Z at F(xo, y0 ) respectively. 

For any open neighborhood W of F(xo,Yo), Z \Wis a closed set not including F(xo,Yo). 

Since Z is T3 , there exist open neighborhoods U and V of F(x0 , y 0 ) and Z \ W. Since 

{Vn} is a countable basis at F(xo, Yo), there exists a number m such that Vm CU. Then, 

since U C ( Z \ V) C W and Z \ V is closed, the closure of V m is a subset of Z \ V, which 

is in turn a subset of W. Let Kn be the closure of Vn for each n. Then for any open nbd 

W of F(xo, Yo), there exists n such that Kn CW. 

Let fn: X-+ Y be defined by fn(x) = Yn for each n. Then let 

Note that Wn is open for each n, being the difference of a finite intersection of open sets 

and the continuous inverse image of a finite union of closed sets. Since Xis dense in itself, 

this means that each Wn includes at least two points, and in particular, Wn \ {x0 } is 

nonempty. Now for all n, choose x! E Wn \ {x0 } and let y~ = Yn· First we show that the 

lequence {x!} converges to x0 . Let Ube an open neighborhood of x 0 . Then there exists 

rn such that Um CU. Since Um is an open neighborhood of x 0 and {xn} converges to xo, 

tbere exists N such that Xn E Um for all n > N. Then by the choice of x!, x! E Um CU 

for all n > max(m, N). Thus {x!} converges to Xo. 
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Finally, after having shown that a subsequence of {F(x!, y!)} converges to F(x0 , y 0 ), 

we show that the corresponding subsequence of {F(xn, Yn)} converges to F(x0 , y0 ). Let V 

be an open neighborhood of F(xo,Yo)- Then there exists a number m such that Km CV. 

If {F(x!, y!)} converges to F(xo, Yo), then there exists a number N such that F(x!, y!) C 

Vm c Km for all n > N. Then F(xn, Yn) E Km CV for all n > max(m, N), otherwise the 

choice of x! leads to a contradiction. Therefore {F(xn, Yn)} converges to F(x0 , y0 ). I 
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CHAPTER3 

Counterexamples 

In this chapter, we present two counterexamples to show the necessity for some of the 

hypotheses in Theorem 2.4. The first counterexample shows that the space Y must be at 

}east locally connected for the conclusion of Theorem 2.4 to hold. Local connectedness is 

weaker than local path-connectedness, so a stronger counterexample may well exist. 

EXAMPLE 3.1. The Perforated Unit Interval 

Let Y =I\ {1/nln E z+}. Let X = Z = I. Then if f : X --+ Y is continuous, f(X) 

is connected (and locally connected) since X is. If OE f(X), then f(X) = 0. Otherwise, 

Jet y E f(X) \ 0. Then there exists a number n such that 1/n < y, and J-1 ([0, 1/n)) and 

J-1((1/n, 1]) are disjoint nonempty open sets whose union is X. Let 

(x,y)=(0,0) 
(x,y) =/ (0,0). 

Then Fis continuous except at (0, 0), and F is separately continuous everywhere. Since 

the only continuous function through (0, 0) is constant, F satisfies the hypotheses of the 

theorem, but is not continuous. 

The second counterexample (3.5) shows that the space X must be completely regular. It 

is very complicated, and we must build up to it by a series of three preliminary examples 

(3.2, 3.3, and 3.4) At each step we prove the regularity of the space and the constancy of 

real-valued functions on some set. In Example 3.5, this will be the entire space, and we use 

this fact to construct a function that is discontinuous, but continuous on every continuous 

function graph. 

EXAMPLE 3.2 [8,pp.68-70]. Open Ordinal Space [0, r) 

Let r be an ordinal number. Then the open ordinal space [0, r) is the set of all ordinal 

numbers less than r, with the order topology generated by the subbasis consisting of all 

Bets of the form [0, a]= [0, a+ 1) = {x E [o,r)jx < a+ 1} and (o, r) = {x E [0, r)lx > o}. 
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(The closed ordinal space [o,r] is simply [O,r + 1).) For notational convenience let X 

denote [O, r) in the next proof. 

We show that X is regular. Let K be closed in X, let U = X \ K, and let x E U. Since 

U is open, there exist ordinals o and /3 such that x E ( o, /3] C U, since the sets of this 

forID constitute a basis for X. Observe that X \ (o, /3) = [O, o] U (/3, r) is open, so that 

(o,.B] and X \ (o,/3) are -disjoint open neighborhoods of x and K, respectively. Therefore 

Xis Ta. Let o and /3 be ordinal numbers. Suppose, without loss of generality, that o < /3. 

Then [O, o] and ( o, r) are disjoint open neighborhoods of o and /3 respectively. Thus X is 

Hausdorff and therefore regular. 

Now let r be the first uncountable ordinal number n. We show that every continuous 

real-valued function f on X is "eventually" constant, i.e., is constant on some interval 

(o,11). We claim that there exists a sequence {on} such that lf(/3) - f(on)I < 1/n for 

each n for all /3 > On. Otherwise, there exists a number m and an increasing sequence 

hn} such that lf(,n+1) - f(,n)I > 1/m. But the sequence {,n} converges to its least 

upper bound 1 , whereas the sequence {f(,n)} does not converge. This is impossible since 

/ is continuous. Therefore, there exists a sequence {on} such that lf(/3) - f(on)I < 1/n 

for each n for all /3 > On· This sequence has an upper bound o, and for any /3 > o, 

f(/3) = limf(on) since lf(/3) - f(on)I < 1/n. Thus f is constant on (o, fl). 

Finally, we show that every continuous real-valued function f on [O, fl) is constant on 

(a,11] for some ordinal o. We have already shown that it is constant on (o, fl). Now every 

open neighborhood of n includes the set ( o, fl) for some ordinal o < n by the definition of 

(a,11). Thus n is in the closure of (o,n) and so f(fl) is in the closure of f((o,fl)), which 

consists of a single point x. Thus J(n) = x and so f is constant on (o, fl) for some ordinal 

a. 

EXAMPLE 3.3 [8,pp.106-7]. The (Deleted) Tihonov Plank 

Let w be the first infinite ordinal number, and let n be the first uncountable ordinal 

Dumber. The Tihonov plank Tis the space [O, n) x [0,w], and the deleted Tihonov plank 

Too is the subspace T \ {(fl,w)}. 

We show that T is regular. Let K be closed in T, let U = T \ K, and let x E U. Since U 
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. en there exist ordinal numbers a ,/3,,, and 6 such that x E ( (a, /3] X (,, 6)) C T. Let 
1s op ' 
lf:::::(a,,B] x (1 ,6] . Then 

X \ W = (([0, a] U (/3, n]) x [O,w]) U ([0, n] x ([O, ,] U (6,w])), 

hich is open. Since Wand X\ Ware disjoint open neighborhoods of x and K respectively, 
91 . 

Tis T3 • Let ( a, /3) and (, , 6) be distinct points of T. If a =/- 1 , there exists a neighborhood 

U of a in [O, n] excluding,; otherwise, /3 =/- 6 since the points are distinct, and there exists 

a neighborhood V of /3 in [O, w] excluding 6. Then the product U x [O, w] or [O, f!) x V is a 

neighborhood of (a,,B) excluding (,,6). Thus Tis T1 and therefore regular. 

We show that T (X) is regular also. Let K be closed in T (X) and let x E T (X) \ K. Then there 

exists K' closed in T such that K = K' n T (X). Since x r/: K and x E T (X), x r/: K'. Therefore 

there exist disjoint open neighborhoods of x and K' in T, and their intersections with T(X) 

are disjoint open neighborhoods of x and K . Thus T(X) is T3 . Let y =/- x be a point of T(X) . 

Then x has a neighborhood in T excluding y. But the intersection of this neighborhood 

with T00 also excludes y since it is a subset of the T- neighborhood. Therefore T(X) is T1, 

hence regular. 

Finally, we show that every continuous real-valued function f on T (X) can be continuously 

extended to T. For each ordinal number n in [O ,w), there exists an ordinal ,n such that 

/(a, n) = Xn for all a E ( ,n, n) . Furthermore, there exists an ordinal ,w such that 

f(a,w) = Xw for all (l' E (,w,n). Let,= SUPne(o ,w] fn • Then,< n and f(,,n) = Xn 

for all n E [O,w) . Since {f(,,n)} converges to f(,,w), {xn} converges to Xw and so the 

extension off to T by taking J(n, w) = xw is continuous. 

EXAMPLE 3.4 [8,pp.109-11]. Tbe Tibonov Corkscrew 

Let T1, T11, T111, and T1v be four copies of the deleted Tihonov plank T (X), corresponding 

to the four quadrants of the Euclidean plane. For each ordinal number n E [O, w ), identify 

the points (n, n) in T1 and Tu and in Tu1 and T1v , Also identify the points (a,w) in 

TlI a.nd Tu1 for each ordinal number a E [O, f!) to obtain a space P . Let Pn be a copy 

of P for each integer n . For each integer n and each ordinal number a E [O, n), identify 
the points ( a, w) in T1 of Pn and T1v of Pn+l to obtain an infinite corkscrew S. We say 
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that a point of Pn is at level n if it belongs to T1 and its second coordinate is w. By the 

above identification, a point of T1v whose second coordinate is w is at level n - 1. All 

other points of Pn have a level between n and n -1, say n -1/2 for definiteness. We write 

L(x) to denote the level of the point x. To S we adjoin the ideal points a+ and a- to form 

the Tihonov corkscrew X. These two points act like infinity points at either end of the 

corkscrew. We define L(a+) = +oo and L(a-) = -oo. Then the basis neighborhoods for 

a+ are the sets {xlL(x) > n} for all integers n, and basis neighborhoods of a- a.re the sets 

{xlL(x) < n} for all integers n. 

Since each quadrant of each level P n of S is homeomorphic to the regular space T, S 

is regular. To show that X is regular, we need consider only those cases involving a+ 

or a-. If K is a closed set not including a+, then X \ K is open and therefore includes 

{xlL(x) > n} for some integer n. Then {xlL(x) > n+ 1} and {xlL(x) < n+ 1} a.re disjoint 

open neighborhoods of a+ and K, respectively. The argument for a- is symmetric. Thus 

X is regular. 

Let f be a continuous real-valued function on X. We show that f(a+) = f(a-). Since 

the restriction off to each quadrant of Smay be extended to the missing point (!1,w) and 

f is eventually constant on each T1 n T1v and each Tu n Tu 1, by induction f is constant 

on a set including {(a,w)la E (,B,!1]} for some ordinal number ,8 in each quadrant of S. 

Therefore there exists a sequence { ai} ~ex> on which f is constant such that limi-+<X> ai = a+ 

and limi-+-ex>ai = a-. Then f(a+) = f(a-). 

EXAMPLE 3.5 [3;8,pp.111-3]. Hewitt's Condensed Corkscrew 

Let T = SU {a+} U {a-} be the Tihonov corkscrew and let A be the Cartesian product 

TX [O, !1). Let X be the subset S x [O, !1) of A. Let A_x be the subset T x {A} of A. Let 

r: X x X -+ [O, !1) be a bijection and let 1r1 and 1r2 be the coordinate projections from 

XX X to X. We define the function t/; from A\ X onto X by t/;(a+, A) = 1r1(r-1 (A)) 

and t/J(a-, A) = 1r2(r-1 (A)). Then for any two points x and y of X, the sets t/;-1 (x) and 

v,-1
(Y) both intersect Ar(x,y)· 

The topology of A is generated by basis neighborhoods N of each point x E X, which 

satisfy t/J-1(N n X) c N. Let u be the product topology on A = T x [O, n) where 
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(O, n) is taken to have the discrete topology. A basis neighborhood of x E X is constructed 

inductively by taking N 0 to be a neighborhood of { x} u'lj)-1 
( x) in the u topology and taking 

Nn+l to be a neighborhood of Nn u ¢-1(Nn n X) in the u topology. Then N = u~=O Nn 

. a basis neighborhood of x in the topology of A, and as stated above, 
JS 

00 00 

n=O n=O 

Let x and y be distinct points in X . Since each AA is T1 in the u topology, we may 

construct a basis neighborhood of x inductively, as above, choosing each Nn to exclude y. 

Then the basis neighborhood N also excludes y . Therefore Xis T1 . 

Fix x E X and let N be a basis neighborhood of x . Then N is the union of relatively 

open sets NA C AA n X. We claim that the closure of N in X is the union, for each 

,\ E (0, n), of the closure of NA in AA. Suppose not. Then there exists a point y which 

is not in the closure of any NA but every neighborhood of which intersects N. Let M 

be a neighborhood of y. Since there exist neighborhoods of y in the u topology that 

do not intersect any NA, the intersection of M and N must include a neighborhood of 

an ideal point (a+,>.) or (a-,>.). Call this point z. There exist numbers m and n such 

that z E Mm n Nn, where Mm and Nn were defined above in the construction of basis 

neighborhoods. Now 'lj)(z) E Mm-In Nn-l· As before, this intersection must include a 

neighborhood of an ideal point. Repeating this process eventually yields x EM or y EN. 

The former cannot hold for all neighborhoods M since X is T1 , and the latter contradicts 

the choice of y. Therefore the closure of an open neighborhood is the union of the closures 

of its parts ( which also happens to be its closure in the u topology). 

Since each open neighborhood of a point x in the u topology includes the closure of 

another open neighborhood of x, each neighborhood N of a point x contains the closure 

of some other neighborhood N' of x. Therefore X is T3 • Since X is T1 , it is also regular. 

We show that any function f defined on X may be extended to a continuous function 

j defined on A. Let f(x) = f(x) for all x EX and let J(a) = f('lj)(a)) for all a EA\ X. 

Then for any open set U, J- 1(U) = f- 1(U)U(fo¢)-1 (U) = 1-1(U)u¢-1(f-1 (U)), and 

J-
1
(U) is an open subset of X. Therefore 1-1 (U) = X n N = X n U~o Nn, where N is 

ope . 
n in A and the sets N n are the open sets from the u topology used to construct N. We 
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JllaY choose each set N n to include only those ideal points that are required by the choice of 

N so that Nn \X = 1P-1(XnNn-1) or, equivalently, Nn = (XnNn)u1P-1(XnNn-1). 
,i-1, 

Then 

j-1(U) = ( X n <_Q, N.)) u ( ,r'(X n <Q, N.))) 
00 00 

= U (X n Nn) U U 1P-1 (X n Nn) 
n=O 
00 

n=O 

because Nn = (X n Nn) U 1P-1(X n Nn-1) C (X n Nn) U 1P-1(X n Nn) C Nn+1 and so 

u~=oNn C u:=o(XnNn)uu:=o1P-1(XnNn)U~oNn+l = u:=1Nn C u:=oNn. Thus 

j- 1(U) is open and so J is continuous. 

We show that every real-valued function on X is constant. Let x and y be points of X. 

Then t/,(a+,r(x,y)) = x and t/,(a-,r(x,y)) = y. Since J is continuous on A, hence on 

Ar(z,y), f(x) = ](a+,r) = ](a-,r) = f(y). Since x and y were arbitrary, f is constant. 

Now let Y = I and let Z be Sierpinski space. Let {xn} be a convergent sequence in X 

that does not include its limit, for example the sequence {(O, n)} in the quadrant T1 of 

the plank P0 of the corkscrew A0 • Define F(xn, l/n) = 1, and F(x, y) = 0 for all other 

points (x, y) of Xx Y. Then Fis discontinuous since limF(xn, 1/n) = lim 1 = 1 whereas 

F(Iim(xn, 1/n)) = F(lim(xn), 0) = 0. Nevertheless, we will show that F has continuous 

x-sections and is continuous on the graph of every continuous function from X to Y. 

Since {1} is the only nontrivial closed set in Sierpinski space, a function f into Sierpinski 

space is continuous if and only if J-1(1) is closed. Fix x, and let Fx be the restriction 

of F to XX {x}. Then F{;~(l) = {(xn, 1/n)}. Since X \ {xn} is the union of open 

neighborhoods of each of its points not including Xn, and similarly for Y \ {l/n }, it follows 

that X \ {xn} x YU Xx Y \ {1/n} =Xx Y \ {(xn, 1/n)} is open and so {(xn, 1/n)} is 

closed. For other values of x, Fx-1(1) = 0, which is trivially closed. Thus F has continuous 

Z-sections. Now let f be a continuous (hence constant) function from X to Y. Then 

F;1(1) = l/n if f(x) = Xn, or F11(1) = 0 otherwise. Thus Fi is continuous for every 

continuous J. 
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