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ABSTRACT

If the natural number n has the canonical form pa1
1 pa2

2 · · · par
r , then we say that an exponential

divisor of n has the form d = pb1
1 pb2

2 · · · pbr
r , where bi|ai for i = 1, 2, . . . r. We denote the sum of

the exponential divisors of n by σ(e)(n). A natural number n is said to be exponentially perfect (or

e-perfect) if σ(e)(n) = 2n.

The purpose of this thesis is to investigate the existence of e-perfect numbers relatively prime

to 15. In particular, if such numbers exist, are they bounded below? How many distinct prime

divisors must they have? Several lemmas are utilized throughout the paper on route to answering

these questions. Also, computer programs written in Maple are used for numerical estimates.
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1 Introduction and History

The sum of positive divisors of a positive integer n is denoted by σ(n). A positive integer n is said

to be perfect if σ(n) = 2n. The Grolier Multimedia Encyclopedia says that perfect numbers are

“another example of Greek progress in number theory,” and credits the Pythagoreans for coining

the term “perfect”. Euclid noticed that numbers of the form 2n−1(2n − 1), where 2n − 1 is a prime

number, are perfect numbers [4]. Later, L. Euler proved that every even perfect number is of the

above stated form.

For 2n− 1 to be prime, it is necessary but not sufficient that n should be prime. Prime numbers

of the form 2n − 1 are known as Mersenne primes. Consequently, since all even perfect numbers

are of the form 2n−1(2n − 1), where 2n − 1 is a prime number, we know only as many perfect

numbers as we do Mersenne primes.

Computers have played an important role in discovering perfect numbers. So far, 44 such

numbers are known, the largest being 232,582,656(232,582,657 − 1) with 19,616,714 digits [7].

Since any even perfect number is of the form 2n−1(2n − 1), it is a triangular number, which is

a number that is equal to the sum of all the natural numbers up to a certain point. Also, any even

perfect number, with exception to the first, is the sum of the first 2(n−1)/2 odd cubes.

Although there are many results regarding odd perfect numbers, it is not known if any exist.

For instance, if there exists an odd perfect number, then it is greater than 10300, has at least 75

prime factors and at least 9 distinct prime factors [6], and its largest prime factor must be greater

than 108 [5].

We will now move forward to the problem at hand involving exponential divisors. If an integer
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n > 1 has the canonical form

n = pa1
1 pa2

2 · · · par
r , (1.1)

we then say a divisor d of n is an exponential divisor of n if it is of the form

d = pb1
1 pb2

2 · · · pbr
r where bi|ai, i = 1, 2, . . . , r.

These divisors were first introduced and studied by Subbarao [2], and later by Straus and Subbarao

[3] as well as others. Let σ(e)(n) denote the sum of exponential divisors of n. Conventionally,

1 is considered an exponential divisor of itself, so that σ(e)(1) = 1. Also, note that σ(e)(n) is a

multiplicative arithmetic function, that is, σ(e)(mn) = σ(e)(m)σ(e)(n), whenever gcd(m, n) = 1.

It follows that for n > 1 given by (1.1) we have

σ(e)(n) =
r∏

i=1

∑
bi|ai

pbi
i


A positive integer n is said to be exponentially perfect (or e-perfect) if σ(e)(n) = 2n. If m is a

square free, then σ(e)(m) = m. Therefore, if n is an e-perfect number with gcd(m, n) = 1, then

mn is also an e-perfect number. Consequently, we will only look at e-perfect numbers that contain

no primes to the first power, which are referred to as powerful e-perfect numbers.

Not much is known about e-perfect numbers. Straus and Subbarao [3] were able to show that

all e-perfect numbers are even and that for every r the set of powerful e-perfect numbers with r

prime factors is finite.

The first ten powerful e-perfect numbers have been noted in [3] and are listed below as

2232, 233252, 223352, 2432112, 243352112, 263272132, 27325272132

26325272132, 283252721392, 219335272112132192372792109215723132.
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Notice that all of the numbers listed above are divisible by 3. What is not known, however, is if

in fact all e-perfect numbers are divisible by 3. Fabrykowski and Subbarao [1] showed that if there

is an e-perfect number not divisible by three, then it is divisible by 2117 and greater than 10664 and

must have 118 distinct prime factors.

In light of this result, we will show in Section 2 of this paper that if there is an e-perfect number

relatively prime to 15, then it is divisible by 23152 and greater than 1029008 and must have at least

3153 distinct prime factors.

2 Main Result

Theorem. If there is an e-perfect number relatively prime to 15, then it is divisible by 23152 and

greater than 1029008.

To prove the theorem, we will make use of several Lemmas and numerical results. Throughout

the paper p, q will denote prime numbers.

Lemma 2.1. For every prime p and integer a≥ 2 we have:

σ(e)(pa)

pa
≤ 1 +

1

p2
+

1

p3
for a ≥ 3

σ(e)(pa)

pa
= 1 +

1

p
for a = 2

Proof. For a = 2, 3, 4, 5 the result is trivial and is easily verified directly. For a ≥ 6 we will

consider possible divisors of a. The first, second, and third largest divisors of a are at most a, a/2,

and a/3 respectively. The rest of the divisors of a are less than or equal to (a/3) − 1, (a/3) −
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2, (a/3)− 3, ... . Consequently, we have

σ(e)(pa)

pa
≤ 1

pa

(
pa + pa/2 + pa/3 + p(a/3)−1 + p(a/3)−2 + . . .

)
= 1 +

1

pa/2
+

pa/3(1 + p−1 + p−2 + . . .)

pa

= 1 +
1

pa/2
+

1

p2a/3
· p

p− 1

≤ 1 +
1

p2
+

1

p3

Definition. The Riemann-Zeta Function ζ(s) is defined by

ζ(s) =
∞∑

n=1

1

ns
, Re s > 1.

An equivalent form of the Riemann-Zeta Function is

ζ(s) =
∏
p∈P

(
1− 1

ps

)−1

, Re s > 1.

where P is the set of all prime numbers.

Lemma 2.2.

ζ(2)ζ(3)

ζ(4)ζ(6)
=

∏
p∈P

(
1 +

1

p2

) (
1 +

1

p3

)
(2.2)

Proof. From the definition of the Riemann-Zeta Function we get

ζ(2)ζ(3)

ζ(4)ζ(6)
=

∏
p∈P

(
1− 1

p2

)−1 (
1− 1

p3

)−1

∏
p∈P

(
1− 1

p4

)−1 (
1− 1

p6

)−1 =

∏
p∈P

(
1− 1

p4

) (
1− 1

p6

)
∏
p∈P

(
1− 1

p2

) (
1− 1

p3

) .
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Factoring the numerator yields∏
p∈P

(
1− 1

p2

) (
1 +

1

p2

) (
1− 1

p3

) (
1 +

1

p3

)
∏
p∈P

(
1− 1

p2

) (
1− 1

p3

) =
∏
p∈P

(
1 +

1

p2

) (
1 +

1

p3

)

which proves the lemma.

Lemma 2.3. If q ≡ 1, 2, or 3 (mod 5) and q ≡ 1 (mod 6), then q ≡ 1, 7, or 13 (mod 30).

Proof. Suppose q ≡ 2 (mod 5) and q ≡ 1 (mod 6). Then this implies that

q = 5m + 2

q = 6n + 1

for some integers m and n. If we multiply the first equation by 6 and the second by 5 we get

6q = 30m + 12

5q = 30n + 5

and subtracting these two equations yields q = 30(m− n) + 7, which proves that q ≡ 7 (mod 30).

A similar proof can be shown for the other two cases and is therefore omitted. Hence, q ≡ 1, 7, or

13 (mod 30).

Lemma 2.4. For x ≥ 7, the function f(x) =
(
1 + 1

x

) (
1 + 1

x2 + 1
x3

)−1 is a decreasing function

and has values greater than one.

Proof. Let us write

f(x) =

(
1 +

1

x

) (
1 +

1

x2
+

1

x3

)−1

=
x3 + x2

x3 + x + 1
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By the quotient rule we have

f ′(x) =
(3x2 + 2x)(x3 + x + 1)− (x3 + x2)(3x2 + 1)

(x3 + x + 1)2

=
−x4 + 2x3 + 4x2 + 2x

(x3 + x + 1)2

Assuming x ≥ 0, then f ′(x) < 0 is equivalent to x3 > 2(x + 1)2, which certainly holds for all real

x ≥ 4. Therefore f(x) is a decreasing function for x ≥ 7.

Next we must show that f(x) > 1 for x ≥ 7 or equivalently that

x3 + x2

x3 + x + 1
> 1.

This inequality holds when x3 + x2 > x3 + x + 1 or when x2 − x− 1 > 0, which clearly holds for

x ≥ 7. Therefore f(x) has values greater than 1 when x ≥ 7.

Lemma 2.5. Let q∗j be the jth prime congruent to 1, 7, or 13 (mod 30). Then the smallest integer

h ≥ 2 for which the inequality

1.891843
2h

σ(e)(2h)
<

h∏
j=1

(
1 +

1

q∗j

) (
1 +

1

q∗2j

+
1

q∗3j

)−1

holds is h = 3152.

Proof. The proof follows from a computer program. See appendix.

Lemma 2.6. The smallest integer k for which the inequality

1.891843
23152

σ(e)(23152)
<

k∏
j=1

(
1 +

1

q∗j

) (
1 +

1

q∗2j

+
1

q∗3j

)−1

holds is k = 3152. Here q∗j has the same meaning as in Lemma 2.5.

Proof. This follows from a computer printout. See appendix.
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Proof of Theorem.

Proof. Let N = 2hM , where gcd(M, 30) = 1, be a powerful e-perfect number. Let us write

M = LK, where for every prime q such that q|L we have q2‖L and gcd(L, K) = 1. We will show

every prime q that is a factor of L is in the arithmetic progression 1 (mod 30), 7 (mod 30), or 13

(mod 30). Since we assumed that 3 - N , it is obvious that 3 - σ(e)(N) since N is an e-perfect

number (i.e., it satisfies the equation σ(e)(N) = 2N ). Therefore, since 3 - σ(e)(N) we have that

3 - σ(e)(L). Hence,

σ(e)(L) =
∏
q2||L

σ(e)(q2) =
∏
q2||L

q(q + 1) ≡/ 0 (mod 3).

This implies that q ≡/ 0 (mod 3) and q + 1 ≡/ 0 (mod 3), which in turn shows that q ≡1 (mod 6).

Also, by assumption, 5 - N implies 5 - σ(e)(N). Thus, 5 - σ(e)(L) and we have

σ(e)(L) =
∏
q2||L

σ(e)(q2) =
∏
q2||L

q(q + 1) ≡/ 0 (mod 5).

Consequently q ≡/ 0 (mod 5) and q + 1 ≡/ 0 (mod 5) which implies q ≡ 1, 2, or 3 (mod 5). Now

since q ≡ 1, 2, or 3 (mod 5) and q ≡ 1 (mod 6), by Lemma 2.3 we have that q ≡ 1, 7, or 13 (mod

30). Hence, if q | L, then it is in the arithmetic progression 1 (mod 30), 7 (mod 30), or 13 (mod 30).

Further, since N is an e-perfect number, it satisfies the equation σ(e)(N) = 2N or equivalently

σ(e)(2h)σ(e)(L)σ(e)(K) = 2 · 2hLK. (2.5)

Now the highest power of 2 that divides the right hand side of (2.5) is h + 1. If θ is the highest

power of 2 dividing the left hand side, then we have θ ≥ 1 + s, where s is the number of prime

divisors of L. Thus h + 1 = θ ≥ s + 1 and we have

h ≥ s (2.6)
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Rearranging equation (2.5) gives

2 · 2h

σ(e)(2h)
=

σ(e)(L)

L

σ(e)(K)

K

and applying Lemma 2.1 yields

σ(e)(L)

L

σ(e)(K)

K
≤

∏
q|L

(
1 +

1

q

) ∏
p|K

(
1 +

1

p2
+

1

p3

)

=
∏
q|L

(
1 +

1

q

) (
1 +

1

q2
+

1

q3

)−1 ∏
p|LK

(
1 +

1

p2
+

1

p3

)

≤
∏
q|L

(
1 +

1

q

) (
1 +

1

q2
+

1

q3

)−1 ∏
p6=2,3,5

(
1 +

1

p2
+

1

p3

)

≤
∏
q|L

(
1 +

1

q

) (
1 +

1

q2
+

1

q3

)−1 ∏
p6=2,3,5

(
1 +

1

p2

) (
1 +

1

p3

)

Next, applying Lemma 2.4 to this result gives

∏
q|L

(
1 +

1

q

) (
1 +

1

q2
+

1

q3

)−1 ∏
p6=2,3,5

(
1 +

1

p2

) (
1 +

1

p3

)

=
∏
q|L

(
1 +

1

q

) (
1 +

1

q2
+

1

q3

)−1

·
(

1 +
1

22

)−1 (
1 +

1

23

)−1

(
1 +

1

32

)−1 (
1 +

1

33

)−1 (
1 +

1

52

)−1 (
1 +

1

53

)−1
ζ(2)ζ(3)

ζ(4)ζ(6)

=
3555ζ(3)

7 · 13 · π8

∏
q|L

(
1 +

1

q

) (
1 +

1

q2
+

1

q3

)−1

= 1.05716934481...
∏
q|L

(
1 +

1

q

) (
1 +

1

q2
+

1

q3

)−1

on using values in [8]. Hence,

1.891843
2h

σ(e)(2h)
<

∏
q|L

(
1 +

1

q

) (
1 +

1

q2
+

1

q3

)−1

Now from Lemma 2.4, we have that
(
1 + 1

q

) (
1 + 1

q2 + 1
q3

)−1

is a decreasing function of q and

has values greater than 1 for q ≥ 7. Therefore, since h is not less than the number of prime divisors
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of L, ∏
q|L

(
1 +

1

q

) (
1 +

1

q2
+

1

q3

)−1

<
h∏

j=1

(
1 +

1

q∗j

) (
1 +

1

q∗2j

+
1

q∗3j

)−1

where the q∗j ’s have the same meaning as in Lemma 2.5. Therefore, we get

1.891843
2h

σ(e)(2h)
<

h∏
j=1

(
1 +

1

q∗j

) (
1 +

1

q∗2j

+
1

q∗3j

)−1

.

It follows from Lemma 2.5 that h is at least 3152. Also, Lemma 2.6 implies that N must have at

least 3153 distinct prime factors. Therefore since N is a powerful e-perfect number we have

N ≥ 23152

3152∏
j=1

q∗2j > 1029008

thus proving the theorem.

3 Some Remarks

In view of the numerical result presented in this paper, it is reasonable to make the following:

Conjecture 3.1. All e-perfect numbers are divisible either by 3 or by 5.

Conjecture 3.2. If n > 1 is a powerful e-perfect number of the form n = 2hK, where K and h

are integers, gcd(2, K) = 1, and r is the number of prime divisors of K, then h ≥ r.

This conjecture is supported by the list of the first 10 powerful e-perfect numbers that is pre-

sented in this paper.

Acknowledgement. The author would like to thank his advisor for his valuable comments

which led to the result of this paper.
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Appendix

All of the numerical estimates requiring a computer program were solved using programs that

were written in MAPLE, in particular, using the traditional worksheet of Maple 11. The following

lists the function of each program as well as the programs themselves.

Prime Numbers. These functions produce prime numbers that are congruent to 1, 7, or 13

modulo 30.

> F1 := n − > if ithprime(n) mod 30 = 1 then ithprime(n) else NULL end if;

> F2 := n − > if ithprime(n) mod 30 = 7 then ithprime(n) else NULL end if;

> F3 := n − > if ithprime(n) mod 30 = 13 then ithprime(n) else NULL end if;

List of Primes. This code creates an ordered set P of prime numbers that are congruent to 1, 7,

and 13 modulo 30. The entries are ordered from least to greatest and are generated via the

previous functions.

> P := {seq(F1(n), n=1...10000), seq(F2(n), n=1...10000), seq(F3(n), n=1...10000)};

Functions. These functions are used for finding solutions to Lemmas 2.3 and 2.4.

> F := n − > product ( (1 + 1/P[k])*(1 + 1/P[k]ˆ2 + 1/P[k]ˆ3)ˆ(-1), k=1...n );

> with(numtheory):

> G := n − > 1.891843*2ˆn/(sum(2ˆdivisors(n)[k], k=1...tau(n)));
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Lemma 2.5. This code yields the result for Lemma 2.5 which is n = 3152.

> for n from 1 to 3152 do

> if G(n) < F(n) then print(n); end if;

> NULL;

> end do;

Lemma 2.6. This code gives a result for Lemma 2.6 which is n = 3152.

> for n from 1 to 3152 do

> if G(3152) < F(n) then print(n); end if;

> NULL;

> end do;

Function. This function is used for the main theorem.

> K := n − > 2ˆn*product(P[k]ˆ2, k=1...n);

Theorem. This code produces the lower bound for the main theorem which is 1029008.

> floor(log10(K(3152)));
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