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ABSTRACT

In 1969, Lászlo Lovász launched a conjecture that remains open to this day.

Throughout the years, variations of the conjecture have surfaced; the version we

used for this study is: “Every finite connected Cayley graph is Hamiltonian”. Several

studies have determined and proved Hamiltonicity for the Cayley graphs of specific

types of groups with a minimal generating set. However, there are few results on the

Hamiltonicity of the directed Cayley graphs. In this thesis, we look at some of the

cases for which the Hamiltonicity on Cayley digraphs has been determined and we

prove that the Cayley digraph of group G such that G = Zp2 ×Zq is non-Hamiltonian

with a standard generating set.
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1 Introduction

Determining Hamiltonicity on any graph can have important and useful applications.

To determine if a graph is Hamiltonian, we attempt to find a path that starts and

ends at the same vertex and visits every vertex of the graph exactly once. It can be

difficult to find such a path. It can be even more difficult to prove that there does not

exist such a path. Examples of Hamiltonian graphs, the applications of Hamiltonian

graphs, and more information on this type of problem can be found in Chapter 2.1.

Cayley digraphs generally have some form of structure; the group and generat-

ing set we choose dictate the structure of the Cayley digraph. Some of the groups

whose Cayley digraphs are Hamiltonian (with minimal or standard generating sets)

are abelian and/or normal. Chapter 2.2 will provide the necessary background infor-

mation on these types of groups.

Examples of Cayley digraphs, both Hamiltonian and non-Hamiltonian, will be

found in Chapter 3. In the same chapter we will show a few of the known results for

determining Hamiltonicity on Cayley graphs and digraphs.

Lastly, in Chapter 4, we will share the results that sparked our curiosity and

inspired our work. We will prove that the Cayley digraph of a group G = Zp2 × Zq,

where p and q are distinct primes and q 6= 2, is non-Hamiltonian. The lemma we prove

in this chapter is a new result. The proof for our main theorem is a new approach to

a known result.
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2 Preliminaries

In the following subsections we will provide the background information and defini-

tions for our study. Unless cited otherwise, the definitions and notation in Chapters

2.1 and 3 were taken from the textbook Graphs and Digraphs [1], and the definitions

and theorems in Chapter 2.2 were taken from the textbook Algebra: Pure and Applied

[2].

2.1 Graph Theory

In 1736, Loenhard Euler (1707-1783) proved the answer to the question we call the

Könisgberg Bridge Problem [1]. The city formerly known as Könisgberg in what is

now Russia was made up of 4 landmasses that were divided by a river. The city had

7 bridges to grant access to each landmass. The following question was posed.

Starting from any of the four land areas, is it possible to cross each of

the seven bridges exactly once and come back to the starting point without

swimming across the river

We can represent the city as a graph, a mathematical structure that models

relations between objects using vertices and edges, where the vertices represent the

landmasses and edges represent the bridges. The number of vertices of this graph,

or order, is 4 and the number of edges of this graph, or size, is 7. One landmass is

connected to two other landmasses by two bridges each. The remaining landmass is

connected to the other three landmasses by one bridge. We get the following graph.
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Figure 1: Graph Representing Könisgberg Bridge Problem

Euler determined that the walk described above was not possible. Euler’s proof

of this result is considered to be the first theorem of graph theory. This being said,

graph theory was studied only recreationally for several decades. It was not widely

considered theoretical mathematics until the late 1900s. While it is a form of pure

mathematics, there are various applications of graph theory. Like in the Könisgberg

Bridge Problem, concepts of graph theory provide answers to many questions that

occur in everyday life.

Some of the applications of graph theory include finding communities in networks,

ranking hyperlinks, and studying algorithms in computer science. Graphs are used

to represent immense networks of communications [6]. Google uses PageRank, a link

analysis algorithm that was developed using several topics from the field. This means

each Google search requires the use of graph theory. Another common and practical

application of the theory is found in every GPS search. For this, and many other

applications, directed graphs are used. A digraph, or directed graph, is a graph in

which each edge is given an orientation from one end to the other.

Much like a car on a road going from one location to another, a directed path

is a sequence of edges which joins a sequence of distinct vertices, where all edges

are directed in the same direction. Now, consider a n-cycle, or Cn, meaning a trail

of order n where the only repeating vertices are the first and last vertices. Then a

directed n-cycle is a n-cycle where all the edges are oriented in the same direction.

We can think of this as a car starting at one location, driving to n− 1 locations, and
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finally arriving back to the original location.

A significant type of graph, of which several theorems and conjectures have been

made, are Hamiltonian graphs. These are named after the mathematician and physi-

cist Sir William Rowan Hamilton (1805-1865)[1]. One of Hamilton’s best known

contributions was to abstract algebra; he introduced an extension of the complex

numbers which he called quaternions. Hamilton also laid the groundwork for a con-

cept that became a popular area of study in graph theory, the Hamiltoncity of graphs

and digraphs. A cycle in a graph G that contains every vertex of G is called a Hamil-

tonian cycle of G. And so, a graph that contains a Hamiltonian cycle is itself called

Hamiltonian. See the figures below for an example of a Hamiltonian graph and a

non-Hamiltonian graph.

A

B

C

D

E

F

G

H

A′

B′

C′

D′

E′

F ′

G′

H′

Figure 2: Hamiltonian vs. non-Hamiltonian

The graph on the left is Hamiltonian. The cycle in red is the Hamiltonian cycle.

Starting on any vertex, we can follow the red path to visit every vertex and return to

the vertex we picked. This confirms that this graph is Hamiltonian. However, there

exists no such cycle in the graph on the right. Notice that the vertex A′ on this graph

is a cut vertex, a vertex that when deleted from the graph, along with its incident

edges, will yield a disconnected graph. The following theorem shows why the graph

on the right is not Hamiltonian.

Theorem 2.1. If G contains a cut vertex, then G is not a Hamiltonian graph.
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Notice, in order for the graph in Figure 2 to be Hamiltonian, a Hamiltonian cycle

would enter and exit vertex A′ but would not be able to come back through it order

to reach the starting vertex, or remaining vertices. Notice A′ is the cut vertex.

It has been shown that there are necessary conditions for a graph to be

Hamiltonian[1]. Such as Theorem 2.1 Additionally, there are several known sufficient

conditions for a graph to be Hamiltonian. However, there are no known necessary and

sufficient conditions that make a graph Hamiltonian. This fact makes determining

Hamiltonicity of graphs a particularly difficult problem.

Determining whether a graph is Hamiltonian has been described as “difficult to

solve, easy to verify" [1]. Suppose we are asked to determine Hamiltonicity of a

random graph of large order and size. We might first look for properties of the

graph that allow us to use known theorems to determine that the graph is non-

Hamiltonian. Alternatively, we could first attempt to find a Hamiltonian cycle. If

the graph is indeed Hamiltonian, all we must do to prove this is to identify the

Hamiltonian cycle. If the graph is non-Hamiltonian, it can be a rigourous and lengthy

process to prove why there does not exist a Hamiltonian cycle. There exists a class of

mathematical problems that cannot be solved, that we know of, by a polynomial-time

algorithm. The set of problems containing such problems is called NP, which stands

for nondeterministic polynomial-time. Furthermore, a problem is called NP-complete

if its solution with a polynomial-time algorithm would result in a solution for all other

problems in NP. There are thousands of NP-complete problems known to this day,

and determining the Hamiltonicity of graphs is one of them.

Research on graph theory has gained popularity over the past several decades.

Naturally, research on the relationship between topics in graph theory and those of

other branches of mathematics has developed. For this study, the other field we focus

on is group theory.
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2.2 Group Theory

Group theory is a branch of mathematics that, while containing concepts that can be

traced back to earlier mathematicians, was trailblazed by Éveriste Galois (1811-1831).

He is considered the father of group theory[2]. In his short life, Galois proved under

which conditions an equation can be solved, a problem which was the goal of several

contemporary mathematicians to solve. He brilliantly used the limited knowledge on

groups at the time to achieve his results. Group theory is also considered a theoretical

branch of mathematics; however, we can find applications of group theory in physics,

chemistry and cryptography.

A group, G, is a nonempty set with a binary operation ∗ and satisfies the following

axioms:

1. (closure) For any a, b ∈ G, we have a ∗ b ∈ G.

2. (associativity) For any a, b, c ∈ G, we have a ∗ (b ∗ c) = (a ∗ b) ∗ c.

3. (identity) There exists an element e ∈ G such that for all a ∈ G we have

a ∗ e = e ∗ a = a. Such an element e ∈ G is called an identity in G.

4. (inverse) For each a ∈ G there exists an element a−1 ∈ G such that a ∗ a−1 =

a−1 ∗ a = e. Such an element a−1 ∈ G is called an inverse of a in G.

An isomorphism, or a bijective homomorphism, maps a group to another. We say

two groups are isomorphic if there exists an isomorphism mapping one group to the

other group. If G and H are isomorphic, we denote this G ∼= H. An automorphism

is an isomorphism from one group to itself. Consider the group Z5. Let the map

φ : Z5 −→ Z5 be defined by φ(a) = a. We call a map defined like this the identity

map. We see that φ is bijective, a homomorphism, and maps Z5 to itself; it is an

automorphism.
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A group G is called cyclic if there exists an element a ∈ G such that G = {an|n ∈

Z} = 〈a〉. The element a ∈ G such that G = 〈a〉 is called a generator of G.

Consider 1 ∈ Z4. We see that 11 = 1, 12 = 1 + 1 = 2, 13 = 1 + 1 + 1 = 3, and

14 = 1 + 1 + 1 + 1 = 0. Then {1n|0 ≤ n ≤ 3} = Z4, making 1 a generator of Z4.

Similarly, 1 ∈ Zn is a generator of Zn for all n ∈ Z+. There are groups that cannot

be generated by a single element but can be generated by a set of elements. This set

is a generating set of G. Let G1 and G2 be groups. The group G1 × G2 is a direct

product where G1 × G2 = {(a, b)|a ∈ G, b ∈ G}. The componentwise operation, +,

on G1 × G2 is defined by (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2). Consider the direct

product Z2 × Z4. While 1 ∈ Z2 generates Z2 and 1 ∈ Z generates Z4, we get that

Z2×Z4 6= 〈(1, 1)〉 = {(1, 1), (0, 2), (1, 3), (0, 0)}. The set {(0, 1), (1, 0)} is a generating

set of Z2 × Z4. However, in the direct product Z4 × Z5, we see that (1, 1) is the

generator of Z4 × Z5. The following theorem help us understand why some direct

products are cyclic.

Theorem 2.2. The group Zn×Zm is isomorphic to the cyclic group Zmn if and only

if n and m are relatively prime.

A special type of group comes up quite often when dealing with cyclic groups

called an abelian group. A group G is abelian if ab = ba ∀a, b ∈ G. There are a large

number of studies and theorems over abelian groups. One of these states that every

subgroup of an abelian group is also abelian. Another important result is that all

cyclic groups are abelian. The converse is not true. Another important type of group

is normal subgroups. To define a normal subgroup we must first define cosets. The set

aH = {ah|∀h ∈ H} is the left coset of H in G. Similarly the set Ha = {ha|h ∈ H}

is the right coset of H in G. We say the subgroup H of G is normal if ∀g ∈ G

we have that gH = Hg, denoted H E G. Then by definition, every subgroup of the

abelian group G is a normal subgroup of G. For example, consider G = Z8. We know

this group is cyclic; it can be generated by 1 ∈ Z8. Now let H be the group generated
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by 2. Then H = 〈2〉 = {0, 2, 4, 6}. Notice H ≤ G and moreover, H E G. The next

theorem is powerful. It is used in several results shown in the coming chapter.

Theorem 2.3 (Fundamental Theorem of Finite Abelian Groups). Let G be an Abelian

group of finite order. Then G = Zp
r1
1
× Zp

r2
2
× · · · × Zprss where pi are prime numbers

not necessarily distinct.

Let us look at groups as graphs. The elements of a group are the vertices of graph

G. An edge exists between elements a and b if a+b = 0. By convention, every element

is connected to the vertex representing the identity of the group. See Figure 3 and

Figure 4 for the graph of Z4 and Z5, respectively.

0

2

1

3

Figure 3: Graph of Z4

0

1 3

4 2

Figure 4: Graph of Z5
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3 Cayley Digraphs

This study focuses on the marriage of graph theory and group theory. Specifically,

the concept of Cayley digraphs, which allows us to use our knowledge about both

topics to learn more about one another. Let ∆ = {g1, g2, · · · gk} be a generating set

of a finite group G. We can construct a Cayley digraph of G with respect to ∆,

denoted −−→Cay∆(G), as follows:

1. Each element of G is represented by a vertex.

2. If g1 ∈ ∆ is represented by a directed edge −→, then for a, b ∈ G, a −→ b means

that ag1 = b in G.

3. Each element of ∆ is represented by a different style, or color, of directed edge.

For example g1 might be represented by a solid directed edge −→, while g2

might be represented by a dashed directed edge 99K.

4. If g1a = b and g1b = a, then the arrow is omitted from the edge adjacent to a

and b.

When creating a Cayley digraph, two of the defining features, order and size, are

determined by the group and generating set chosen, respectively. For a cyclic group,

we could choose one of its generators to construct its corresponding Cayley digraph.

A minimal generating set is a set with the smallest number of elements required

to generate a group. For example, {(1, 1)} is a minimal generating set for Z2 × Z3.

Notice {(1, 0), (0, 1)} also generates Z2×Z3 but this is not a minimal generating set.

Choosing a generating set other than the minimal generating set often produces a

more complex and interesting graph.

Consider the group G = Z2 × Z3. Let ∆1 = {(1, 1)} and let Γ be the Cayley

digraph of G with respect to ∆1. Then Γ =
−−→
Cay∆1

(Z2 × Z3) is the following graph.
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(0, 1) (1, 0)

(0, 2)

(1, 1)(0, 0)

(1, 2)

Figure 5: Γ with G = Z2 × Z3 and ∆1

Now consider the same group G with the generating set ∆2 = {(1, 0), (0, 1)}.

We represent (0, 1) with a solid directed edge and (1, 0) with a dotted directed edge.

Recall that when one generator maps two vertices to each other, the arrow is omitted.

Then we have the following graph.

(0, 2) (0, 1)

(0, 0)

(1, 2) (1, 1)

(1, 0)

Figure 6: Γ with G = Z2 × Z3 and ∆2

The graphs −−→Cay∆1
(G) and −−→Cay∆2

(G) look very different. We see then that Γ with

∆1 is a directed 6−cycle while Γ with ∆2 is a prism.

A Cayley graph is the undirected underlying graph of a Cayley digraph of G

with respect to ∆, denoted Cay∆(G). In 1969, Lászlo Lovász launched a conjecture

that remains open to this day. Throughout the years, variations of the conjecture
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have surfaced; the version we used for this study is the following.

Conjecture 3.1. Every finite connected Cayley graph is Hamiltonian.

As mentioned earlier, determining the Hamiltonicity of graphs is a NP-complete

problem. One might think that the structure a group provides would make Hamil-

tonicity easier to determine on Cayley graphs, but this has proven to be just as

difficult. Several papers have been written proving the specific cases of Cayley graphs

that are Hamiltonian. However, little work has been done over the Hamiltonicity of

Cayley digraphs. The added restriction of directed edges makes this an even harder

problem to solve and prove.

Let G be the group G = Z4 × Z3 with the generating set ∆1 = {(0, 1), (1, 0)}.

Notice, ∆1 is not a minimal generating set of G. In Cay∆1(G), we denote the edges

created by applying (0,1) to each element with a dotted line, and the edges created

by applying (1,0) to each element with a solid line. See Figure 7. The edges that

make up a Hamiltonian cycle are colored red. Starting at any vertex, we can follow

the red path to visit each vertex and arrive back to the vertex with which we started.

(1, 1) (2, 0)

(3, 2)

(0, 1)

(1, 0)

(2, 2)

(3, 1)(0, 0)

(1, 2)

(2, 1)

(3, 0)

(0, 2)

Figure 7: Cay∆1(G)
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The figure below is of Cay∆(Z4 × Z5) with the generating set ∆ = {(0, 1), (1, 0)}.

The edges that make up a Hamiltonian cycle are colored red. Again, we can start

at any vertex exactly once, follow the red path to visit each vertex and arrive to the

vertex with which we started. It is not important to differentiate between elements

of a generator when searching for a Hamiltonian cycle in a Cayley graph or digraph.

For this reason, we represent both elements of ∆ with solid directed edges. We will

do so for the rest of the study.

Figure 8: Cay∆2(Z4 × Z5)

In a survey over Hamiltonicity of Cayley graphs [4], very few of the many re-

sults provide sufficient conditions or necessary conditions for a Cayley digraph to be

Hamiltonian. Only one of the listed results provides both necessary and sufficient

conditions for a Cayley digraph to be Hamiltonian. We will see this result in the next

chapter. The following theorem is by G. Lanel [4].

Theorem 3.2. Let G = Zm × Zn. Then the directed cycles Cm × Cn
∼= −−→Cay∆(G)

when ∆ = {(0, 1), (1, 0)}.

The cycles and Cayley digraph in Theorem 3.2 are directed, but it is worth noting

we can intuitively deduce that the underlying cycles are isomorphic to the underlying
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Cayley graph. Figure 5 and Figure 6 are examples of Theorem 3.2, while Figures 7

and 8 illustrate the undirected version of Theorem 3.2.

The following result was proven by A. Heus in 2008 [4].

Theorem 3.3 ([4]). The cartesian product Cn1×· · ·×Cnk
of k cycles is Hamiltonian.

Notice this result is in regards to the undirected Cartesian product of cycles. In

this type of graph we have the freedom of traveling in any direction over its edges and

this makes it easier to identify a Hamiltonian cycle that works for all such graphs.

The graphs from Figure 7 and Figure 8 are examples that corroborate this theorem.

The following result was found and proven by Mary Stelow in 2017[3].

Theorem 3.4 ([3]). For any minimal generating set A of a finite Dedekind group

G, there exists a Hamiltonian A-path on G. Thus all Cayley digraphs of G have a

Hamiltonian path.

A Dedekind group is a group in which every subgroup is normal. We previously

stated all abelian groups are Dedekind groups. The converse is not true. For example,

Hamiltonian groups are non-abelian groups whose subgroups are all normal. Let G

be a group of finite order with minimal generating set A. A sequence S of elements in

G, (s1, s2, · · · , sn), is called a Hamiltonian A-path on G if s1, s2, · · · , sn are elements

of A, and if the partial products of sequential elements, s1, s1s2, · · · ,
∏n

i=1 si = 1, are

all unique elements of G [3]. Using the minimal generating set and the structure that

normal subgroups provide, the proof for the previous theorem succeeds in finding

a Hamiltonian path for each group that fits its requirements. Notice though this

theorem does not indicate Dedking groups are Hamiltonian. Nevertheless, identifying

a Hamiltonian path in this type of graph is quite impressive.

The survey also contains results in regards to special-ordered groups. The follow-

ing theorem was produced by K Kutnar and D. Marusic in 2012 [4].

13



Theorem 3.5 ([4]). Let G be a finite group. Every connected Cayley graph on G

has a Hamiltonian cycle if |G| has any of the following forms (where p, q, and r are

distinct primes):

• kp, where 1 ≤ k < 32,

• kpq, where 1 ≤ k ≤ 5,

• pqr,

• kp2, where 1 ≤ k ≤ 4,

• kp3, where 1 ≤ k ≤ 2.

This theorem served as inspiration for the case we focus on in this study. This

will be further explored in the following chapter. It is worth noting that this theorem

affirms Hamiltonicity of the underlying Cayley graph, and that G need not be abelian.
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4 Main Result

The next two results helped lead us to the specific case and approach of this study.

In [3], Mary Stelow proved the following lemma.

Lemma 4.1. If G = Zm×Zn, and Γ is a Cayley digraph of G on the generators (1, 0)

and (0, 1), Γ has a Hamiltonian cycle if m|n.

By Theorem 3.2 we know Cm × Cn
∼= −−→Cay∆(Zm × Zn) when ∆ = {(0, 1), (1, 0)}.

Notice, the condition in Lemma 4.1 is m|n. We sought to change this condition in

hopes of determining Hamiltonicity for a different set of Cayley digraphs, one that

depends on the order of G.

In 1978, Trotter and Erdös provided the first result that exposed the necessary

conditions for Cn × Cm to be Hamiltonian. Theorem 4.2 is that powerful result [4].

Theorem 4.2. The direct product Cn × Cm of directed cycles is Hamiltonian if and

only if the greatest common divisor, d, of n and m is at least two and there exist

positive integers d1, d2 so that d1 + d2 = d and gcd(n, d1)=gcd(m, d2)=1.

The proof for this theorem uses concepts from number theory, such as the Dio-

phantine Equation, to identify a Hamiltonian cycle that works for all such direct

products. We offer a different approach; one that relies more on the properties of the

graph itself.

In this study, we look at the case when G = Zp2 × Zq where p and q are distinct

primes and q 6= 2. Notice our case differs from that of Theorem 3.5 for two reasons:

Theorem 3.5 is in regards to the underlying Cayley graph, not digraph, and secondly,

the form p2q is unlike any stated in the theorem. Our case differs from Lemma 4.1 in

thatm - n. For this study, we pick the generating set, ∆, such that ∆ = {(1, 0), (0, 1)}.

There are few theorems that determine Hamiltonicity for cyclic groups using the

minimal or standard generating set. There are even less results using the generating
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set we use here. As previously mentioned, the generating set chosen determines the

size of a graph. From now on, we will let Γ be the Cayley digraph of G with respect

to ∆.

Figure 9 (below) is Γ1 when G = Z4 × Z3. See Figure 7 for the Hamiltonian,

underlying graph of Γ.

Figure 9: Γ1 when Z4 × Z3

The graph below is Γ2 where G = Z4 × Z5. We can see in Figures 9 and 7 a key

feature in this type of Cayley digraph that helps us obtain our final result. Notice that

each vertex is part of both a directed p2−cycle and a directed q−cycle. Moreover,

each vertex is unique to these cycles. In fact, it is the case that this is true for

16



Figure 10: Γ where G = Z4 × Z5

Lemma 4.3. Let ∆ = {(1, 0), (0, 1)} and G = Zm × Zn where m,n > 2. Then each

vertex of Γ =
−−→
Cay∆(G) is unique to one m-cycle and one n-cycle.

Proof. Let v1, v2 ∈ V (G) such that v1 6= v2. Suppose v1 and v2 belong to the same

m−cycle and n−cycle in Γ. Let v1 = (a1, b1). Let us apply (1,0) to v1 and the resulting

vertices until we have the directed m−cycle to which v1 belongs. This directed cycle

consists of the vertices {(ai, b1)}mi=1. Since v2 belongs to the same cycle, we have

that v2 = (aj, b1) for some 1 < j ≤ m. Now we apply (0, 1) to v1 and the resulting

vertices to find the n−cycle to which v1 belongs. The vertices in this directed cycle

are {(a1, bi)}ni=1. Since v2 belongs to this cycle, we see that v2 = (a1, bk) for some

1 < k ≤ n. But v2 = (aj, b1) 6= (a1, bi), a contradiction.

We will show that Γ =
−−→
Cay∆(G) when G = Zp2×Zq with the above requirements,

is non-Hamiltonian. Lemma 4.3 plays an important role in our result. It is what gives

us the necessary contradiction.

17



Theorem 4.4. Let Γ =
−−→
Cay∆(Zp2×Zq), with distinct primes p and q such that q 6= 2,

where ∆ = {(1, 0), (0, 1)}. Then Γ is not Hamiltonian.

Proof. Suppose to the contrary that Γ is Hamiltonian. Then there exists a directed

n-cycle in Γ, −→Cn, where n = p2q. From this directed cycle we will build Γ. Let

{v1, v2, · · · vn} be the set of vertices of −→Cn with vertex sequence (v1, v2, · · · , vn, v1).

Then ∃ c ∈ N such that p2q + 1 = c(p2 + q − 2) + 1 + r where 0 ≤ r < p2 + q − 2.

Suppose r = 0, then p2q + 1 = c(p2 + q − 2) + 1 or p2 = c(q−2)
q−c . Note q − 2 is odd.

If c is odd, then q − c is even and c(q − 2) is odd. But then c(q−2)
q−c = p2 /∈ Z. Thus c

is even. Therefore q − c is odd and c(q − 2) is even. We have that p2 = c(q−2)
q−c ∈ 2Z.

Then p2 must be 4. So we see 4q + 1 = c(4 + q − 2) + 1 or q = 2c
4−c . Since c is even,

and c 6= 4, then c = 2. Then we get q = 2, a contradiction. Therefore, r 6= 0 and

0 < r < p2 + q − 2.

Each vertex is uniquely a part of each p2−cycle and q−cycle, by Lemma 4.3. Thus

we add an arc, WLOG, to form the p2-cycle to which v1 belongs, from vp2 to v1. Then

to create the q-cycle to which vp2 belongs, we must add an arc from vk to vp2 where

k = p2 + q − 1. Similarly, to form the p2-cycle to which vk belongs, we are forced

to add an arc from vl to vk where l = 2p2 + q − 2. Then to create the q-cycle to

which vl belongs, we must add an arc from vm to vl where m = 2p2 + 2q − 3. We

continue to add arcs in this forced manner until we have c p2-cycles and c q-cycles.

The forced arc we added last is the arc from vg to vf where f = cp2 + (c − 1)q − 2c

and g = cp2 + cq − 2c + 1. This arc creates the q-cycle to which vg belongs. On −→Cn,

(vg, vg+1, · · · , v1) forms a path of length r.

Notice if r ≤ p2, then adding the forced arc from vh to vg where h = (c + 1)p2 +

cq − 2c creates a p2−cycle. We have then that vh = imodn for some 1 ≤ i < p2.

Thus, v1 is a part of this p2-cycle as well, a contradiction.

This means p2 < r < p2 + q − 2. To create the p2-cycle to which vg belongs,

we must add an arc from vh to vg where h = (c + 1)p2 + cq − 2c. Then, to create
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the q−cycle to which vh belongs, we are forced to add an arc from vj to vh where

j = (c + 1)p2 + (c + 1)q − 1 = i modn for some 2 ≤ i < q. But then v1 and v2 form

part of the same p2-cycle and q-cycle, a contradiction.

∴ Γ is not Hamiltonian.
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5 Conclusion

In regards to the Lovász Conjecture, it is my belief that this problem will remain

open for several years to come. The large number of groups up to isomorphism

with a given number of vertices is one of the things that influence this belief. As

previously mentioned, if a Cayley digraph is Hamiltonian then its underlying graph

is Hamiltonian. So if we make progress as a collective to determine Hamiltonicity for

all Cayley digraphs, then we will of course make progress on the famed conjecture.

Additionally, I hope to prove that Γ is non-Hamiltonian where G = Zm × Zn,

∆ = {(1, 0), (0, 1)}, and gcd(m,n) = 1. We know these Cayley digraphs are non-

Hamiltonian by Theorem 4.2. Later on, I would like to prove the Caylye digrpah of

this group is non-Hamiltonian regardless of what the generating set is.

However, the nuance of proving that a Cayley digraph of a given group is non-

Hamiltonian versus proving that a similar Cayley digraph is Hamiltonian has proven

to be an interesting challenge. Most of the known results for Cayley digraphs provide

conditions for Hamiltonicity. The results we hope to achieve in the future would

provide conditions for non-Hamiltonicity. It is my hope to use a similar technique of

attempting to construct Γ from the directed mn−cycle and finding a contradiction. I

believe this can work for Γ when G = Zp×Zq but the proof for Γ when G = Zm×Zn

does not seem as intuitive.
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