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ABSTRACT

This thesis goes over various topics of Lie theory and is meant as an introduction
for those who have never studied the subject. This is accomplished by first reviewing
necessary background material, including topics from linear algebra and topology
(where no background knowledge is assumed), before proceeding to the main subject.
We start by discussing the matrix Lie group before discussing what a Lie algebra
is. We define a Lie algebra as a vector space with additional requirements before
defining it again with relation to a Lie group. We then explore various properties and
examples of this. Next, we turn to representation theory and how it can be applied
to Lie theory, including the important subject of roots and weights. Finally we finish
by briefly going over some connections Lie theory has with physics (no background
physics knowledge is assumed of the reader). Overall, the main goal of this thesis is
to be an accessible starting point for someone who has a strong background in linear

and abstract algebra, but has never studied Lie theory.

il



ACKNOWLEDGEMENTS

First I would like to thank my committee members, starting with Dr. Thomas
Madsen. T first had him as my Abstract Algebra 1 instructor and his enthusiasm
inspired me to further pursue algebra (as well as have him for an additional two
classes, an advisor for my undergraduate thesis, and my primary advisor for this
thesis). Unsurprisingly, this past year has been very challenging, but Dr. Madsen
never pressured me into working more on the thesis than I already was. If I needed
to cancel a meeting for a week, I could do that. If I needed more time to look at
something before showing it to him, he was always okay with it. He never made me
feel worse or like I was being lazy, and it’s really awesome to have an advisor who
trusts you to go at your own pace. Dr. Madsen’s youthfully exuberant personality
makes every conversation a joy. He radiates fun and that makes every meeting I have
with him a blessing. Having a mentor whose research interest I enjoy is wonderful,
but having a mentor whose personality makes me smile and laugh is the greatest. My
goal as a future educator is to be as fun as him for anyone I work with — hopefully I
can achieve that goal one day. Thank you.

I would like to thank Dr. Tom Wakefield. I have had him as an instructor for
six different mathematics courses and he has been my academic advisor for the past
five years. He has helped me excel in academia in ways I never dreamed of before,
including encouraging me to join in our local Pi Mu Epsilon chapter, attend multiple
conferences, and participate in an REU experience. I will forever be grateful for his
guidance. In addition to being an extraordinary advisor, Dr. Wakefield is an even
more extraordinary person. He responds to emails faster than a speeding bullet,
always has a smile or laugh to share with the room, and it is impossible to leave
a meeting with him and not have your day significantly improved. His kind nature

makes him easygoing and accessible for students. In short, Dr. Wakefield is the

v



coolest. Thank you.

I would like to thank Dr. Michael Crescimanno, my final committee member,
whose physics expertise was helpful in making sure I (a mathematician with little
physics background) did not say anything incorrect. His excitement in joining my
committee and willingness to answer any questions I had was greatly appreciated.
Thank you.

I would like to thank Dr. Kerns, the graduate coordinator, who helped answer
any questions I had about the program, made sure I was on top of things, and helped
with the formatting of this thesis. Thank you.

I would like to thank the entire Department of Mathematics and Statistics at
Youngstown State University for providing a second-home for me and a place where I
could not just intellectually thrive with a strong and caring faculty, but also socially
thrive with some of the grooviest students. Thank you.

Finally, I would like to thank some of my closest friends for their support: Jonathan
- for always making me smile with his silliness and infectious sense of humor, Kevin -
for always going with the flow and saying hello, and Payton - whose contribution was
invaluable and who I will mention again in the Introduction. To all these wonderful
chaps: thank you.

I am sure I am forgetting people to thank, and so to everyone else: thank you.

This thesis would not have been possible without my support system.



Contents

Introduction

Background Material

2.1 Linear Algebra . . . . . . . . ...
2.2 Dual Space . . . . . . ...
2.3 Tensor Products . . . . . . . . . ... .o

24 Topology . . . . . . .

Introduction to Lie Theory

3.1 Lie Groups and the Exponential . . . . . . . . ... ... ... ....
3.2 Lie Algebras . . . . . . . ..
3.3 Connecting Lie Groups and Lie Algebras . . . . . .. ... ... ...
3.4 Examples of Lie Algebras. . . . . . . ... ... ... ... ...

3.5 Lie Group and Lie Algebra Properties. . . . . . . . .. .. ... ...

Representation Theory

4.1 Basics . . ...
4.2 Representations of Lie Groups and Algebras . . . . .. .. ... ...
4.3 Representations of Homogeneous Polynomials . . . . . ... ... ..
4.4  Tensor Products of Representations . . . . . .. ... ... ... ...

4.5 Dual Representations . . . . . . . . ... .o

vi

12

15
15
20
26
28
33



4.6 Representations of Lie(SLo(C)) . . . . . . ... ... L.
4.7 Roots and Weights . . . . . . . ... ...
4.8 Representations of Lie(SL3(C)) . . . . .. .. ... . L.
4.9 The Weyl Group . . . . . . .. ..

5 Physics Applications
5.1 The Rotation Group . . . . . .. .. . ... .. ... ...
5.2 The Physics Approach . . . . . . .. . ...
5.3 Example with Highest Weight of % ...................

5.4 Combining Particles . . . . . . . .. ...
6 Conclusion

Bibliography

vil

72
72
73
78
81

83

83



Chapter 1

Introduction

The primary goal of this thesis is to provide a clear introduction to Lie theory for
those who have not studied it, but have a suitable background (a solid understanding
of linear and abstract algebra). No knowledge of representation theory is assumed,
but this is an important topic as well. We also use some results from topology, but
again, no prerequisite knowledge is presumed. We will review important background
necessary to understand new topics. As part of this goal, we also want to use this
knowledge to observe some interesting connections between Lie theory and physics.
No physics knowledge is expected of the reader.

This thesis started as a project during the summer of 2020 between Payton Linton
and myself. We worked together to understand Lie theory and he was an invaluable
source to bounce ideas off of. Being a physics major, he was also very helpful with
increasing my understanding of the physics contained here. Finally, he helped type
the sections on roots and weights, and he was always available to help proofread the
thesis. His help is greatly appreciated and I could not have done this without him.

For sources, we primarily used Brian C. Hall’'s Lie Groups, Lie Algebras, and
representations (2015) [4]. Many of our definitions and theorems come from this

source, and it was one of my goals to go through parts of this book and make it as



accessible as possible for those with a less sophisticated background. In particular,
we studied parts of the first four chapters, as well as Chapter 6, when studying Lie
theory. For the Physics Applications chapter, we looked closely at Chapter 4: Group
Theory and the Quark Model from Ta-Pei Cheng and Ling-Fong Li’s Gauge theory of
elementary particle physics [1]. Finally, we also consulted R. Shankar’s Principles of
quantum mechanics (2008) [5] and Woit’s Quantum theory, groups and representations
(2017) 7] to help digest some of the physics material.

The thesis is structured into five chapters. The first is this introduction, while
the second contains some important background material (such as topics from linear
algebra and elementary topology) deemed necessary to understand Lie theory. The
third chapter contains the essence of Lie theory (including Lie groups and Lie alge-
bras), while the fourth chapters uses that in a representation theory setting. Chapter
5 applies the concepts we have discussed to provide interesting physics connections.
We then finish the thesis with some concluding remarks.

Without further ado, we can now start Chapter 2 and dive into some linear algebra.



Chapter 2

Background Material

This chapter will cover results from subjects such as linear algebra and topology, as

well as detail some of the notation we will be using throughout this thesis.

2.1 Linear Algebra

Before we begin, here are some important notes:

e For the entirety of this thesis, all vector spaces we are considering will be finite-

dimensional.

We denote the trace of a matrix A by tr(A).

We denote the transpose of a matrix A by A”.

We denote the adjoint, or complex conjugate transpose, of a matrix A by A*.

We denote the n x n identity matrix by I,,.
Now we can begin with some important definitions from linear algebra.

Definition 2.1.1. The general linear group of degree n over a field F' is defined
by GL,(F) = {A € M,(F) : det(A) # 0}. Since det(A) # 0 <= A is invertible,

this is also known as the set of n X n invertible matrices.
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Note that GL,,(F) is a group (hence its name) and that examples of fields F' that
we can use are the complex field, C, and the field of real numbers, R. Also note that

for a finite-dimensional vector space V', GL(V) = GL,(F).

Definition 2.1.2. The special linear group of degree n over a field F is defined
by SL,(F) = {A € M,(F) : det(A) = 1}. Since det(A) =1 = det(A) # 0, the

special linear group is a subgroup of the general linear group.

Definition 2.1.3. The orthogonal group of degree n over a field F is defined by
O(n) ={A € GL,(F): At = AT}. Similarly, we can define the special orthogonal
group of degree n over a field F as SO(n) = {A € SL,(F): A~ = AT},

Definition 2.1.4. The unitary group of degree n over a field F is defined by U(n) =
{Ae GL,(F): A~' = A*}. Note that if A is a real matriz, then the complex conjugate
transpose would just be the transpose, and so we would have U(n) = O(n). We can
also define the special unitary group of degree n over a field F' by SU(n) = {A €
SL,(V): At = A*}.

Note that for V' = R, we have that U(n) is a real vector space and not a com-
plex vector space because multiplying by an ¢ scalar does not preserve the complex
conjugate transpose.

Before we move on, we will prove the following theorem, which we will refer to

again in the final chapter.

Theorem 2.1.5. Let A be an operator for a vector space V and v € V' be an eigen-
vector with a corresponding eigenvalue A (so Av = \v). Then for another operator B
of V, if AB = BA and we presume that eigenvalues are distinct (you can’t have two
different eigenvectors get you the same eigenvalue), we have Bv = muv, where m is

another eigenvalue corresponding to v.

Proof. Let Av = Av and suppose that AB = BA. Then ABv = BAv = BAv = ABv

(since scalars commute). Since we can’t have two different eigenvectors give us the
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same eigenvalue, Bv must be a scalar multiple of v. Thus, for a scalar m, Bv =

mu. O

We will now define an inner product and prove a result about a common inner

product used.

Definition 2.1.6. Let V' be a complex vector space. An inner product on V is a

map V x V = C given by (u,v) — (u,v) with the following properties:

1. Linearity in the second factor: (u,v,+ave) = (u, v1) + alu,ve) for all u,vy,ve €

V and a € C.

2. Congugate symmetry: (u,v) = (v,u) for all u,v € V.

3. Positivity: For all v € V, the quantity (v,v) > 0, with (v,v) = 0 if and only if

v=0.
Note that the first two points imply that (vy + ave,u) = (vy,u) + a(ve, u).

Theorem 2.1.7. For the vector space M, (C), the Hilbert-Schmidt inner product
is giwen by the formula (A, B) = tr(A*B) and, as its name suggests, is an inner

product.

Proof. We will show that it meets the three conditions required to be an inner product.

Let A, B,C € M,(C) and o € C.

1. Linearity in the second factor: We have (A, B + oC) = tr(A*(B + aC)) =
tr(A*B 4+ aA*C) = tr(A*B) + atr(A*C) = (A, B) + a(A, C).

2. Conjugate symmetry: We have (A, B) = tr(A*B) = tr(A*(B*)*) = tr((B*A)*)

tr((B*A) ) = tr((B*A)), since transpose does not affect the diagonal entries,

which is all that matters when taking the trace. This is, by definition, (B*, A).



3. Positivity: We have (A, A) = tr(A*A). Note that when you multiply matrices,
the diagonal entries of the new matrix product are simply the diagonal entries of
the previous matrices multiplied together. Since A* is the conjugate transpose,
and transposing does not affect diagonal entries, we are essentially multiplying
the diagonal entries of A with A, and adding them up since we are taking that
trace. But multiplying a number by its conjugate results in squares being added
together, so the trace must be greater than or equal to 0. The sum can only be

0 if each entry was 0. Thus, the positivity condition is satisfied.
Thus, this is indeed an inner product. O]

Recall that a unitary operator U has the property that (Uv, Uw) = (v, w) for
all v,w. Note that (Uv,Uw) = UU*(v,w) since (Uv,w) = U(v,w) and (v, Uw) =
U*(v,w) by rules of an inner product. Also recall that a unitary matrix, say U, has
the property that U~ = U*, or UU* is the identity. These both being called unitary
makes sense since (Uv, Uw) = (v,w) <= UU*(v,w) = (v,w) <= UU* =1 <=
U=

Now we will go over the concept of normalization, which will be useful in our last

chapter.

Definition 2.1.8. Let V' be a finite-dimensional vector space, (-, -) be an inner product
onV, and v € V. If (v,v) = 1, then we say that v is normalized. We say that a
vector v can be normalized if multiplying it by a real number results in a normalized

vector.

Theorem 2.1.9. Let V' be a finite-dimensional vector space with an inner product

defined by (v,v) = v*v for allv € V. If v # 0, then v can be normalized.

Proof. We defined our inner product as v*v = (v, v), which we know (by definition
of inner product) must be greater than 0 for a nonzero vector v. So we have that

(v,0)

v

(v,v) = a >0, where a € R. If we let w = 7> then (w,w) = (=, =) =

<
I
<
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by rules of inner product (where (\/La)* = \/La since @ € R). This then equals 1a =
1.Thus, w is normalized, and so we have shown that any nonzero vector v can be

normalized. [

Now we will go over a more complicated group and a theorem utilizing it.

Definition 2.1.10. Let

The complex symplectic group is defined by Sp,(C) = {A € GL,,(C) : —QATQ =
A7}, The real symplectic group is defined by Sp,(R) = {A € GLy,(R) : —QATQ =
A1}

Note —QATQ = A™! —= —QATQA = I,,. Also note that —Q = Q! and

0% = -, as seen below:
0o I, 0o -1, I, O
Qx(—Q) = = = Iyp, s0 —Q =0Q7!
-1, O I, O 0 I,
0 I, 0o I, 0 -1,
02 = Q0 = . e
—I, O -1, O I, O

Now that we have discussed the complex symplectic group, we can discuss the

following result.

Theorem 2.1.11. Sp;(C) = SLy(C) and Spi(R) = SLy(R)

a b
Proof. Note that if n=1, then for an arbitrary matrix A = € Sp,(C), we
c d
have the following:
0 1 a c 0 1 a b 10
-1 0 b d -1 0 c d 0 1



Computing this tells us that it is true if and only if ad—bc = 1. This means that the
determinant must be 1 for all A € Sp;(C). Thus, we can say that Sp;(C) = SLy(C).

It follows, using the same process, that Sp;(R) = SLy(R). O

2.2 Dual Space

In this section, we go over some of the basics of the dual space; namely, its definition

and two resulting theorems.

Definition 2.2.1. For a complex vector space V', the dual space of V is defined by
V*=Hom(V,C)={f:V — C: f is a linear transformation}.

Theorem 2.2.2. Let V' be a complex vector space. Then its dual space V* 1is a

complex vector space.

Proof. Since for all f € Hom(V,C), f is (by definition) a linear transformation, we
have that closure under addition, associativity under addition, commutativity under
addition, scalar distributivity, and scalar associativity all hold.

Now, if fy : V' — {0}, then fy is a linear transformation from V' to C, and fj is
the additive identity of Hom(V,C). Also, since V has an identity element for scalar
multiplication, call it 1, we also have it for any linear transformation in Hom(V,C).
This also gives us that every linear transformation has an additive inverse, as we just

multiply any f by —1. Thus, Hom(V,C) is a complex vector space. O

Theorem 2.2.3. Let V' be a complex vector space with basis {ey...e,}. Then its
dual space V* has a basis {fi,..., fn}, where f : V — C and fi(e;) =1 ifi = j and
file;) =0 if i # j. Note that this theorem implies that dim(V') = dim(V*).

Proof. We want to show that {fi,..., f,} is a basis for V*. So we need to show that it

is linearly independent and spans V*. We will start by showing linear independence.



Let a; be a scalar for all 1 < ¢ < n. Suppose aif; + -+ + anf, = 0. Then
(a1 f1 + -+ anfn)(e;) =0, for some 1 < i < n. Since f; is a linear transformation
for all 4, we have a1 f1(e;) + - -+ anfn(e;) = 0. But fi(e;) # 0if i # j, so we get that
a;fi(e;) = 0. But since fi(e;) = 1if i = j, we get that a; = 0. Since a; was chosen
arbitrarily, this must be true for all 7. Thus, we have linear independence.

Now we want to show that our potential basis spans V*. Let f € V*. We want
to show that f = f(e1)fi + -+ f(en)fn. Note that (f(er)fi + -+ flen)fu)(ei) =
fler)fi(e) + -+ flen) fu(e;) = f(e;) (by similar reasoning as above). Thus, we can

say that f = f(e1)fi + -+ fen) fo. L

2.3 Tensor Products

In this section, we discuss the complicated topic of tensor products. Since these
are difficult to understand for those who have never studied them, we will try to
give some intuition and lean gently into the topic before formally defining them.
Much of the beginning of this section comes from a YouTube video created by Jim
Fowler (a mathematics professor at Ohio State University), known simply as Tensor
products [3]. Tt helped the author understand the big idea behind tensor products,
and so we are now introducing tensor products in the same manner here.

Let U, V, and W be finite-dimensional vector spaces. Then we can take the bilinear
space U x V and map it into W, or U x V' — W. Note that this is a bilinear map
since U x V is bilinear. The idea of tensor products is to turn this bilinear map into
a linear map, which is easier to understand.

Say U ® V is the vector space of all possible linear combinations of u ® v, where

u € U, v €V, and the following conditions are satisfied:
LLu®@u+u®vy =u® (v +v9) for all u € U and vy,vy € V

2. U1 QU+ us ®v = (uy + uy) ®v for all uj,up € U and v € V

9



3. (M) ®@v=ANu®v)=u® (M) for all w € U, v € V, and scalars .

We set up our conditions this way so that the linear map U ® V' — W is the same
as the bilinear map U x V' — W. (Again, we want to turn our original bilinear map
into an easier to work with linear map.)

For example, for a bilinear map f : U x V. — W, we have f(u,v; + vg) =
f(u,v1) + f(u,vy). For the corresponding linear map g : U ® V. — W, we have
gu® (v + 1) =gu®v +u®vy) = glu®vy) + glu ® vy). Note the similarity
between these two maps in how they function, but the tensor product map (which

we will rigorously define in a little) is linear. Now let’s look at a specific example.

Example 2.3.1. Note that the vector space R? has dimension 2. Say {ei,es} is a
basis for R?. Then the tensor product R* @ R? is spanned by {e; @ e1,e; ® €9,e5 @
e1, 63 ® es}. If we wanted to add, for example, the first two basis elements, we would
have (e1 ®e1) + (e1 ®e3) = e1 ® (€1 +e3). Note that we can not simplify, for example,
(e1 ® e1) + (€2 ® e3), as everything in a vector space is a sum of its basis elements
(and a tensor product is a vector space).

Also, note that (e1+e3)®(e1+e2) = (e1®e1)+(e1®e2)+ (e2®e1) +(ea®ea), which
is the sum of our basis elements. If we had a bilinear map f, then f(a+b,a+b) =
fla,a) + f(a,b)+ f(b,a)+ f(b,), and so again we see how our linear tensor product
map functions like a bilinear map.

We can also see in this example that dim(R* @ R?) = 4, and it is a fact that

dim(U @ V) = dim(U)dim(V') for all finite-dimensional vector spaces U,V .

Now we that we have the general idea behind tensor products, let us formally

define it.

Definition 2.3.2. If U and V are finite-dimensional real or complex vector spaces,
then a tensor product of U with V is a vector space W, together with a bilinear map

¢ UxV — W with the following property: if ¢ is any bilinear map of U x V

10



into a vector space X, there exists a unique linear map @/; of W into X such that the

following diagram commutes:

UxV ¢ . W

Note that the bilinear map ¢ from U x V into X turns into the linear map ¢ of

W anto X.

There are many fascinating results within the area of tensor products, but we will
only mention the following (although we will return to them when we discuss tensor

products of representations).

Theorem 2.3.3. Let U,V be finite-dimensional vector spaces. Then:
1. The tensor product U ® V' exists
2. dim(U @ V) = dim(U)dim(V).

3. For A:U —- U and B :' V — V, where A and B are linear operators, there
exists a unique linear operator from U @ V to U ® V, denoted A @ B, such
that (A ® B)(u ® v) = (Au) @ (Bv) for allu € U and v € V. Furthermore,
if A1, Ay are linear operators on U and By, By are linear operators on V', then

(A1 ® B1)(As ® Bs) = (A142) ® (B1By).

We omit the proofs of these theorems, although they can be found in Chapter 4
of Hall’s book [4]. For further reading on tensor products, see Chapter 10 of Bruce

N. Cooperstein’s Advanced linear algebra (2015) [2].
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2.4 Topology

In this section, we go over some topological background relevant to our discussion
of Lie theory. This is not meant to be a detailed discussion of all topology relevant
to the topic, but instead a brief introduction so that we can use this information
later. The definitions, examples, and results contained here are considered common
knowledge for the subject and serve as a useful introduction for those unfamiliar with

the subject. We begin by defining a topological space.

Definition 2.4.1. A topological space is a pair (X, T) of sets where T is a collection

of subsets of X satisfying the following:
1. Both) et and X € 7.

2. If {X;}ier C 7, then Ui X; € T, where I is a set that can be infinitely uncount-

able.
S If Xq,..., X, €7, then X;N---NX, €T.
The sets in T are called the open sets.

Note that a topological space is not necessarily a vector space. We will now move

on to examples of topological spaces.

Example 2.4.2. These first two are examples of topological spaces.
o X ={1,2,3},7={0,X}
o X ={1,2,3},7={0, X, {1},{2},{1,2}}

The following is NOT a topology: X = {1,2,3} with 7 = {0, X,{1,2},{2,3}}. This
is not a topology since the intersection of the last two subsets is {2} and that is not

mT.

12



Now we will define what it means for a subset to be closed and then go over an

example and theorem.

Definition 2.4.3. Let (X, 1) be a topological space. Then a subset C of X is closed
if X\ C is open (which means it is in 7). So the complement of an open set is closed

and the complement of a closed set is open.

Example 2.4.4. Let X = {1,2,3} and let 7 = {0, X,{1},{2},{1,2}}. Since X \
{3} € 7, that set is open. Thus, {3} = X \ {1,2} is closed. Similarly, O is closed
since X \ 0 = X € 7 and is therefore open. Finally, X is closed since X\ X =0 €7

and 1is therefore open.
Theorem 2.4.5. If f : X — Y is any function, then f~* (Y \ C) =X\ f~1(C).

Proof. Note that z € f7{(Y \C) < f(x) e Y \C < f(z)¢C < z ¢
fHC) < z € X\ f7YC). Thus, we have equality. m

Now we define what it means for a function between topological spaces to be

continuous and prove a result using this.

Definition 2.4.6. Let X and Y be topological spaces. A function f : X — Y is

continuous if for all U CY open, f~1(U) is open in X.

Theorem 2.4.7. Say f : X — Y is continuous. If C CY is closed, then f~1(C) C X

1s closed.

Proof. Let f: X — Y be a continuous function and let C' C Y be closed. So Y \ C'is
open, which implies that f~}(Y \ C) is open since f is continuous. By the previous
theorem, this is equivalent to X \ f~1(C), so this must also be open. Thus, f~(C)

is closed because the complement of an open set is closed. O
We now note the following before moving forward.

Definition 2.4.8. Any set of a single element is known as a singleton.

13



Theorem 2.4.9. A singleton is closed in a topological space.

It is also a fact that Lie groups, which we will discuss in the next chapter, are
topological spaces. So they are topological groups. We omit the details of this. We

can now prove the next theorem.

Theorem 2.4.10. The kernel of a Lie group homomorphism is closed.

Proof. Let ® : G — H be a Lie group homomorphism. Then ker(®) = {X € G :
O(X) =eg} =P '({ey}). Since all singletons are closed, {ey} is closed. Thus, by

a previous theorem, ®~1({ey}) = ker(®) is closed. O

Our final theorem in this section will be useful later, but we mention it here as it

is relevant to topology.

Theorem 2.4.11. Let V and W be finite-dimensional real or complex vector spaces.
Then any linear transformation T : V. — W is continuous. More importantly, we

note that a continuous function commutes with a limit.

14



Chapter 3

Introduction to Lie Theory

This section will cover Lie Groups, Lie Algebras, their connection, and various results

stemming from them.

3.1 Lie Groups and the Exponential

Definition 3.1.1. A matriz Lie group is any subgroup G of GL,(C) such that if

A, is any sequence of matrices in G and A,, converges to some matrix A, then either
A€ G orA¢ GL,(C) (which would mean A is not invertible). We also call G a

closed subgroup of GL,(C).

Examples of matrix Lie groups include the following:

e The general linear groups, GL,(C) and GL,(R), since they are subgroups of

the general linear group

e The special linear groups, SL,(C) and SL,(R) (the determinant is a continuous
function, so if A4,, is a sequence of matrices with determinant 1 and A,,, converges

to A, then A also has determinant 1).

e The orthogonal and special orthogonal groups, O(n) and SO(n).

15



e The unitary and special unitary groups, U(n) and SU(n).

e The complex and real symplectic groups mentioned earlier, Sp,(C) and Sp, (R).

An important topic when discussing Lie groups is the exponential, whose definition

we show below.

Definition 3.1.2. If X s an n X n matriz, we define the exponential of X, denoted

o0

eX, by the (usual) power series eX =3 >

T where X° is defined to be the identity

matrix I, and where X™ is the repeated matrixz product of X with itself.

It is a fact that eX converges for all X € M,(C) and that e* is a continuous

function of X. We also have various properties of eX that will be useful for us.

Theorem 3.1.3. Let X and Y be arbitrary n x n matrices. Then the following hold:

3. e~ is invertible and ((BX)_1 =e X

4. elathX — eaXbX for qll a,b e C

5. If XY =YX, then XtV = eXeV =e¥eX
6. If A e GL,(C), then eAX4™ = AeXA~!
7. V) = (X eY).

We omit the proofs of the first 6 results, although they can be found in Chapter

2 of Hall’s book [4]. We will, however, prove the final result.

Proof. We have e*Y) = Yoo (X;;/)n, by definition. To raise an ordered pair to a
power n, you simply raise each component to n, and so we get Y > % Since

this is a summation of an ordered pair over n!, we can “distribute” the summation and
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n! into each component, yielding (>°°° X% % %) This is then, by definition,

n=0 nl> n=0

(e*,e¥). 0
The next theorem is useful as well.

Theorem 3.1.4. Let X be an n x n complex matriz and t € R. Then X € M, (C)

d X

and o

= XX =X X, In particular, when evaluating at t = 0, we get X.

Note that in general, the derivative (as we will call this) of eX

is not equal to
YeX+Y | We also note that general derivative rules work, including the product and
chain rules, which we will utilize.

We will now go over a few interesting results before diving into the next section,

on Lie algebras.

Theorem 3.1.5. Let T' be a linear transformation between finite-dimensional real or

complex vector spaces. Then the derivative function commutes with T ('),

Proof. Say T : M,(C) — M,(C). (This same process will work when utilizing real

T(e(t+h)X) ) —T(etX)
h

entries.) Then 47T(e™) = limy,_0 (note that the derivative is with

respect to t). Since T is a linear transformation, we can pull the 7" out to get

(t+h)X _tX

- ). Finally, since T is continuous, it will commute with this limit.

But this new limit is < (e**). So we have T4 (e"*). Thus, we have commutativity. [

Theorem 3.1.6. Every invertible n x n matriz can be expressed as eX for some
X € M, (C). Since Lie groups are subsets of invertible matrices, all elements of a Lie

group can be expressed as eX for some X € M,(C).
Theorem 3.1.7. For any X € M,(C), det(e*) = etr™X).

Proof. If X is diagonalizable with eigenvalues \;, then eX is diagonalizable with eigen-
values et (note that diagonalizing a matrix does not change its eigenvalues). Thus,
the trace of X is the sum of its eigenvalues and det(e®) = e*...e* (since the deter-

minant of a matrix is the product of its eigenvalues), and this equals e** (by our
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properties of exponentials since eigenvalues commute), and this finally equals e"(X)
(since tr(X) is the sum of its eigenvalues when diagonlized). We omit the proof of

the case where X is not diagonalizable. ]

Theorem 3.1.8. Let

where a,b,c € C. Then ' € SLy(C) for all t € R.

Proof. The theorem is really asking us to show that det(e!4) =1 for all + € R. Note
that A is a matrix with complex entries. Since ¢t € R, we know that the matrix tA
will also be a matrix of the same form as A. So we can essentially ignore the ¢ and

just say tA is equivalent to a matrix of the same form as A, call it X.

Note e = S % Let’s look at a simpler case of X, where b = ¢ = 0. Then we

m=0
have
a 0
X =
0 —a
Expanding this eX out, we get
2
a 0
1 0 a 0 0 —a
+ + 5 + ... and so on.
0 1 0 —a
This means that
P DYy 0

0 Y,

which implies that

det(eX) = e%e ™ =€’ = 1.
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Now, how do we generalize this? Note that this specific case is really a diagonal
matrix. So it is enough to show that our matrix X (which is basically the same as A)
is diagonalizable. If we can show that X is diagonalizable then we are good because

that means it can be of the form written above and therefore the determinant is 1!

b

a
Let A = . Let’s find some eigenvalues:
c —a

JA=X|=(a—N)(—a—A)—bc=0 = —a>+ N —bc=0 = \==+Va?+ b

Let A equal the positive square root and —\ equal the negative square root.

Now we find some eigenvectors:
a— A\ b x 0
c —a— A Y 0

Then we get ax —Ax+by =0 —= z = % If we do the same thing for —\, we get

T = a_f_”:( Letting y = 1 gives us the eigenvector matrix as follows:
- —b
P = a—A  a+A
1 1
So |P| = =% + -2 = 522, Now we know how to find the inverse of a 2x2 matrix;

a—M\ a+\ a?—\2"
you take our original matrix P, then you switch the positions of the main diagonal,
multiply the off-diagonal by—1, and divide the whole thing by |P|. So we get that

A—a?2 JA—a

P_1 _ 26\ 2
a?=X\2  a+)
26\ 2

To actually diagonalize this matrix, we compute P~tAP.

The rest just involves computation. We get for our final diagonalized matrix the

following;:
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Thus, we have shown that X is diagonalizable, and therefore e* has determinant

1. [l

3.2 Lie Algebras

Our main topic for this thesis is Lie theory and, in particular, Lie algebras. We will
define it using a more linear algebra approach first, where we define it as a specific
type of vector space, and then we will define it with its relation to Lie groups. And

we will show that these two definitions are actually equivalent!

Definition 3.2.1. A finite-dimensional real or complex Lie algebra is a finite-
dimensional real or complex vector space g together with a map [-,-] : g X g — ¢

that satisfies the following properties:

1. [-,] is bilinear, or [X + \Y, Z] = [X, Z] + A[Y, Z] and [X,Y + M\Z] = [ X, Y] +
MX, Z] for all X,Y,Z € g and X a scalar in our chosen field.

2. [,+] is skew-symmetric, or [X,Y] = —[Y, X]| for all X,Y € g. Note that this
implies [X, X] =0 for all X € g.

3. The Jacobi identity holds, or [ X,[Y,Z]] + [Y.[Z,X]] + [Z,[X,Y]] = 0 for all
X.Y.Zeg.

We say that two elements X and Y of a Lie algebra g commute if [X, Y] = 0, and
we say that a Lie algebra is commutative if this is true for all of its elements. The
map [, | is referred to as the bracket operation on g. Also, note that Lie algebras
are algebras (which may not have associativity), where the “vector multiplication” is

defined by our Lie bracket.
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We will now prove some examples of vector spaces being Lie algebras.

Theorem 3.2.2. Let [-,-] : R3 x R3 be given by [x,y] = x Xy, where x X y is the cross

product. Then R3 is a Lie algebra.

Proof. Note that R? is a vector space, so we just need to show that the cross prod-
uct is bilinear, skew-symmetric, and satisfies the Jacobi identity. Let (xy,z9,23) =
x, (Y1, Y2,93) = ¥, (21, 22, 23) = 2 € R3 and A € R. Recall that the cross product = x y

is defined by x x y = ($2y3 — X3Y2,T3Y1 — L1Y3,T1Y2 — $2y1)-

1. Bilinearity: We have [z + Ay, z] = (z + A\y) X 2z
= ((m2+Ay2) 23— (w3 +Ay3) 22, (v3+Ays) 21— (21 +Ay1) 23, (21 +Ay1) 22— (T2 + Ay2) 21)
= (T223 + AY223 — 320 + AY3za, T321 + AY321 — 123 — AY123, T122 + AY122 — T221 —
Ay221)
= (X923 — X329, X321 — T123, T120 — To21) + (AY223 + Aysze, \y3z1 — \y123, Ayp 22 —
AY221)
= (x x 2) + (A\y X z) = [z,2] + Ay, 2]. Similarly, we have that [z,y + \z] =

[z, y] + A[z, z]. So we have bilinearity.

2. Skew-symmetry: Note that [z,y] = x X y = (x2ys — T3y, T3y1 — T1Y3, T1Y2 —

Toy1) = —(—Tay3 + TaYo, —T3y1 + T1Y3, —T1Y2 + Tay1) = — (Y3 — Y32, Y321 —

Y123, Y1 T2 — Yor1) = —(y X ) = —[y, z]. So we have skew-symmetry.

3. Jacobi identity: To show that the Jacobi identity is satisfied, we need to show
that [z, [y, 2]] + [y, [z, 2]] + [z, [z,y]] = 0. Note that [z,[y,z]] = [r,y x 2] =
x X (y X z)
= = X (Y223 — Y322, Y321 — Y123, Y122 — Y221). Looking at only the first column, we
end up with @2(y120 —y221) —23(Ys21 — Y123) = Tay122 — T2Y221 — T3Y321 +T3Y123.
Similarly, the first column of [y, [z, z]] is y22102 — Y22021 — Y32371 + Y3213 and

the first column of [z, [x, y]] 1S 2021y2 — 2022y1 — 2323y1 + 23271Yy3. Adding these
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three columns together does indeed result in 0, and the same follows if we were
to compute this for the second and third columns. Thus, the Jacobi identity is

satisfied.

Thus, R? is a Lie algebra. O

Theorem 3.2.3. Let A be an associative algebra and let g be a subspace of A such
that XY =Y X € g forall X, Y € g. Then g is a Lie algebra with the bracket operation
given by the commutator, or [X,Y] = XY — Y X, where X,Y € g.

Proof. Since g is a subspace, and therefore a vector space, we just need to show that
the commutator is bilinear, skew-symmetric, and satisfies the Jacobi identity. Let

X,Y,Z € g and X be a scalar in our chosen field.

1. Bilinearity: We have [X + \Y, Z] = (X + \Y)Z — Z(X + \Y)
— XZ4+ANYZ—ZX +2ZN\Y = XZ—ZX +\YZ — Z)\Y = [X, Z] + \[Y, Z].
Similarly, we have the [X,Y + A\Z] = [X, Y] + A[X, Z]. So we have bilinearity.

2. Skew-symmetric: Note that [X,Y]=XY - YX =—-(YX - XY) =—[Y, X].

So we have skew-symmetry.

3. Jacobi identity: Note that [X,[Y,Z]| = [X,YZ-2Y|=X(YZ-2Y)—(YZ —
ZY)X
— XYZ — XZY —YZX + ZYX. Similatly, [Y,[Z,X]] = YZX -~ YXZ —
ZXY + XZY and [Z,[X, Y]] = ZXY — ZYX — XY Z + Y XZ. Adding these

three results together gives us 0, and so the Jacobi identity is satisfied.
Thus, g is a Lie algebra under the commutator. O]
Now, note the following definition.
Definition 3.2.4. Define sl,,(C) by sl,(C) = {X € M,(C) : tr(X) = 0}.
Based on our last theorem, we have the following.
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Example 3.2.5. We have that sl,,(C) is a Lie algebra with the bracket operation given
by the commutator, or [X,Y] = XY —Y X, where X, Y € sl,(C).

For the remainder of this thesis, the bracket operation will be given by the com-
mutator.

We will now list various definitions relation to Lie algebras. Many of these have
analogous definitions for other algebraic objects (groups, rings, etc.) and so they

should seem familiar. We begin with a subalgebra.

Definition 3.2.6. A subalgebra of a real or complex Lie algebra g is a subspace b
of g such that [Hy, Hs] € § for all Hy, Hy € b. If g is a complex Lie algebra and b is a

real subspace of g which is closed under brackets, then b is said to be a real subalgebra

of g.

Just like how in ring theory, certain subrings are known as ideals, we can define

certain subalgebras as ideals.

Definition 3.2.7. A subalgebra b of a Lie algebra g is said to be an ideal in g if
[X,H| €b forall X € g and H € §.

And just like how we have centers of groups, we have centers of Lie algebras.

Definition 3.2.8. The center of a Lie algebra g is the set of all X € g for which
(X, Y] =0 foralY €g.

An important aspect of algebra is finding relationships between objects. We usu-
ally accomplish this goal by defining a structure-preserving map between these two

objects, which we call a homomorphism. We also have this for Lie algebras.

Definition 3.2.9. If g and b are Lie algebras, then a linear map ¢ : g — b is called
a Lie algebra homomorphism if ¢(|X,Y]) = [¢(X),d(Y)] for all X,Y € g.
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Of course, the most interesting homomorphisms are those that show two algebraic
objects are essentially the same. In other words, there is an isomorphism between the

two objects. We define a Lie algebra isomorphism exactly as one would think.

Definition 3.2.10. A bijective Lie algebra homomorphism is called a Lie algebra

isomorphism.
We can also define automorphisms of Lie algebras just like one would expect.

Definition 3.2.11. A Lie algebra isomorphism of a Lie algebra with itself is called a

Lie algebra automorphism.

Now that we have talked about maps between Lie algebras, we define the adjoint

map, which will be very useful later.

Definition 3.2.12. If g is a Lie algebra and X € g, define the linear map adx :
g — g byadx(Y) = [X,Y]. The map X — adx is the adjoint map or adjoint

representation.

Note that using the definition, we can write [X, [X, [X, [X, Y]]]] = (adx)*(Y). We

also have a useful theorem following from the adjoint map definition.
Theorem 3.2.13. The adjoint map is a Lie algebra homomorphism.

Proof. If g is a Lie algebra, then adixy] = adxady — adyadx = [adx,ady]. So

ad : g — End(g) is a Lie algebra homomorphism. O

Since Lie algebras are, by definition, vector spaces, it makes sense to define some
analogous vector space definitions for Lie algebras: we define a direct sum of Lie
algebras, a Lie algebra decomposition, an irreducible Lie algebra, and a simple Lie

algebra.

Definition 3.2.14. Ifj and € are Lie algebras, the direct sum of j and € is the vector
space direct sum of j and € with the bracket operation given by [(X1, X2), (Y1,Ys)] =
([ X1, Y1), [X2, Ya]) for all X1,Y) €j and X, Y5 € £ .
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Definition 3.2.15. If g is a Lie algebra and j and € are subalgebras, we say that g
decomposes as the Lie algebra direct sum of j and € if g is the direct sum of j and €

as vector spaces with [ X1, Xo] =0 for all X; €j, X, € £.

Definition 3.2.16. A Lie algebra g is called irreducible if the only ideals in g are

g and {0}.

Definition 3.2.17. A Lie algebra is called simple if it is irreducible and dim(g) > 2.
As an enlightening example, we will prove the following theorem for Lie(SLs(C)).

Example 3.2.18. The Lie algebra Lie(SLy(C)) is simple.

Proof. A basis for Lie(SLy(C)) is the following:

01 00 1
Y = ,and Z =

00 10 0 -1

Recall that the bracket operation for this Lie algebra is defined as a commutator.
So [X,Y]=XY —YX =Z. Similarly, [Z, X] =2X and [Z,Y] = —-2Y.

Now we want to show that this Lie algebra is simple, so we want to show that it is
irreducible and has dimension greater than or equal to 2. We have 3 basis elements,
so the dimension is 3, which is indeed greater than 2. Now suppose that b is a non-
trivial ideal of our Lie algebra. Then if W is in our Lie algebra and H € b, we have
by definition that [W, H] € h. Now, since H € b, H is in our Lie algebra, so it can
be written as a linear combination of our basis elements. Say H = aX + bY + ¢Z,
with at least one of the scalars a, b, ¢ non-zero. We want to show that h = sl(C), as
that would imply that the Lie algebra is irreducible (and therefore simple since our
dimension is 2 or greater).

Suppose that b is the only non-zero scalar. Then [X, [X, H]] = [X, [-2cX +bZ]] =

—2bX is a non-zero multiple of X (this can be seen through matrix calculations).
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Since b is an ideal, [X, H| € b, which means that [X,[X, H]] € b, which means
—2bX € b, which means that X € b since we can multiply —20X by the scalar —%
to get X.

Since X is in our ideal, [Y, X] is also in our ideal. But [Y, X] is a nonzero multiple
of Z, so Z is also in our ideal. Similarly, [V, [Y, X]] is in our ideal. Since it is a nonzero
multiple of Y, Y is in our ideal. So we have the basis elements X,Y, and Z in our
ideal. Since our ideal is a subspace that includes all basis elements of the Lie algebra,
it is equal to the Lie algebra.

A similar process works when choosing a being the only non-zero scalar and ¢
being the only non-zero scalar. Since we know each of these cases work individually,
a linear combination of these cases will work because our commutator is bilinear.

Thus, our ideal is equal to our Lie algebra and we have a simple Lie algebra.

3.3 Connecting Lie Groups and Lie Algebras

Now that we have discussed what Lie algebras are, our goal is to make a clear connec-
tion between Lie algebras and Lie groups. We will first give an alternative definition

of a Lie algebra, where we define it as being associate with a Lie group.

Definition 3.3.1. If G is a Lie group that is a subgroup of GL,(C), then its asso-

ciated Lie algebra is defined by Lie(G) = {X € M,(C) : !X € G for all t € R}.

Note that, by definition, Lie(G) is a subset of M, (C), and we have that G # g
(an immediate reason being that g contains the zero matrix, while G does not).

Since it is not clear that Lie(G) is a Lie algebra using our earlier definition, we
need to show that. This proof will be less rigorous than some of our other proofs, but

the goal is to illustrate the idea in a convincing way more so than rigorously prove it.
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Theorem 3.3.2. If G is a Lie group, then Lie(G) is a Lie algebra (using our first

definition) under the commutator bracket.

Proof. Note that Lie(G) is a subset of M, (C), or M,(R), which will use the same
proof techniques as below. So we need to show that Lie(G) is a subspace that has a
Lie bracket (the commutator in this case).

Let A, B € Lie(G). Then e and €' are in G for all t € R. We want to show
that e!A*5) is in G, as that would imply that A+ B € Lie(G), which means that we
would have vector addition. The following is where this proof is less rigorous, as we
have not covered why the following is true, but for the sake of completeness, we will
include it.

. tA tB o . .
We have ¢"“+5) = lim,,_, . (emem )™, where what is inside the limit is also in

G. Since G is closed (as it is a Lie group), the limit must also be in G. Thus, ¢!(4+5)
is in G and so A+ B € Lie(G).

Now we want to show that scalar multiplication holds. Let z € C. We want to
show that 24 € Lie(G), or that e*4 € G. Note that if 2 € R, this works because
tz would become our new scalar in R. We actually don’t know this is true for all
z € C, so we end up with the fact that Lie(G) becomes a real Lie algebra, but not
necessarily a complex Lie algebra.

Finally, we want to show that the Lie bracket holds under the commutator opera-
tion. We will not be showing that each of the properties (bilinearity, skew-symmetric,
and the Jacobi identity) holds, as that follows from how we defined our commutator,
but we will show that there is closure.

Note that we have [A, B] = AB — BA, as defined by our commuator. We want
to show that AB — BA € Lie(G). Note that by a previous theorem, if A € G,
then XAX ™! € Lie(G). So we can have e Be™'* € Lie(G). If we evaluate the
derivative of (¢! B)(e™*) at t = 0 (by utilizing the product rule), we get that

(AB)e’ + (e°B)(—A) = AB — BA, so we have that AB— BA € Lie(G), which means
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our commutator holds. Thus, Lie(G) = Lie(G) is indeed a (real) Lie algebra. O

3.4 Examples of Lie Algebras

This section goes over some fun examples of Lie algebras, which help to illuminate

some of the concepts we have been talking about.
Theorem 3.4.1. Lie(GL,(C)) = M,(C) and Lie(GL,(R)) = M,(R)

Proof. Note that Lie(GL,(C)) = {X € M,(C) : e* € GL,(C) for all t € R} by
definition. We know, by our properties of the exponential, that eX is invertible for

X

all X € M,(C). Since t is merely a scalar in the real numbers, e is also invertible

for all X € M, (C), or ¢ € GL,(C) for all X € M,(C). Thus, Lie(GL,(C)) is the
set of all elements in M, (C) i.e., Lie(GL,(C)) = M,(C). This works similarly with
Lie(GL,(R)) = M, (R). O

Note that from this point on, we will not be specifying each case for both the real
and complex entries of a matrix. In most cases, they will both work out, so we will
only show it is true for the complex entries.

The next few theorems show some equivalent ways of looking at specific Lie alge-

bras.

Theorem 3.4.2. Note that Lie(SL,(C)) = {X € M,(C) : ¢ € SL,(C) for all
t € R} and s1,(C) = {X € M,(C) : tr(X) = 0}. Then Lie(SL,(C)) = sl,(C).

Proof. Say A € Lie(SL,(C)). We want to show that A € {X € M,(C) : tr(X) =
0}. Since A € M,(C) already, we just need to show that ¢tr(A) = 0. Since A €
Lie(SL,(C)), that means ¢ € SL,(C), which means that det(e!!) = 1. By a
previous theorem, we know that det(e*4) = "4 So 1 = "4 = tr(A) since ¢ is

a scalar. In order to have e*¥"(4) = 1, we need ¢ * tr(A) to equal 0, tr(A) must equal
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0 (because this has to work for all ¢ € R). Thus, A € s[,(C) and so Lie(SL,(C)) is
a subset of sl,(C).

Now let A € s[,(C). Then tr(A) = 0. We want to show that A € Lie(SL,(C)).
Since A € M, (C) already, we just need to show that e/t € SL, (C) for all t € R. So
we need to show that det(e’!) = 1. Again, this means that we want to show that
et"t4) = 1, or that e*"(4) = 1. Since tr(A) = 0, this is true! Thus, A € Lie(SL,(C))
and sl,(C) is a subset of Lie(SL,(C)). Thus, since our sets are subsets of each other,

they are equal! H

As an exercise, we will show that Lie(SL,(C)) is a Lie algebra with the now-
equivalent sl,(C) definition. Note, however, that we already know this is true since
Lie(G) is always a Lie algebra for a matrix Lie group G. From this point on, we will

use the notation Lie(SL,(C)) to also refer to sl,(C).

Theorem 3.4.3. Lie(SL,(C)) is a Lie algebra (using our first definition of a Lie

algebra).

Proof. Note that Lie(SL,(C)) is a subset of M,,(C), so we only need to show that it
is a subspace that also satisfies our bracket operation.

We will first show that we have vector addition. Let A, B € Lie(SL,(C)). Then
tr(A) = tr(B) = 0,800 =040 = tr(A) + tr(B) = tr(A + B) (since adding A
and B means you are adding their diagonals, and since the diagonal of each of those
add to be 0, the diagonal of their sum will as well). Thus, since tr(A + B) = 0,
A+ B € Lie(SL,(C)) and we have vector addition.

Now we will show that scalar multiplication holds.Let z € C and A € Lie(SL,(C)).
Then tr(zA) = zxtr(A) = 2% 0 = 0. Thus, zA € Lie(SL,(C)) and we have scalar
multiplication. Thus, we have a subspace. Now we just need to show that there exists
a Lie bracket. We will define it as the commutator, or [A, B] = AB — BA. We need

to show that closure works with the commutator.
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Using our same A and B, note that tr(AB — BA) = tr(AB) — tr(BA) and
this equals 0 since tr(AB) = tr(BA) (utilizing linear algebra). Thus, AB — BA €
Lie(SL,(C)). Since [A, B] = AB— BA, our commutator satisfies closure. This means
that we have a Lie bracket - note that because this Lie bracket also works for M, (C),
all three properties (bilinearity, skew-symmetric, and the Jacobi identity) will also

carry over to this subspace. Thus, we have a Lie algebra. O

For the next several theorems, we will show equivalent ways of looking at Lie
algebras. We will notice that when taking the associated Lie algebra of a matrix
Lie group, we generally change from using determinants to using traces in our sets,
as well as changing the adjoint from equaling its multiplicative inverse to equaling
its additive inverse. Informally, think of Lie algebras as using additive properties,

whereas Lie groups use multiplicative properties.
Theorem 3.4.4. Lie(U(n)) ={X € M,(C) : X* = -X}.

Proof. Say X € M,,(C) and that ¢*X € U(n) for all t € R. Then (e/X)* = (!*)~! for
all t € R. By our properties of exponents, this means that e!X" = e!(=%) for all t € R.
If we use our derivative rule to take the derivative of both sides and evaluate them
at t = 0, we find that X* = —X. Thus, we have half of the proof complete.

Say X* = —X. We want to show that ¢ € U(n) for all + € R. Note that
(X)) = o) = X" = oH=X) — o=tX — (X)=1 by our exponential properties and

the fact that X* = —X. So we have containment with both sides and thus our sets

are equal! H
Theorem 3.4.5. Lie(SU(n)) = {X € M,(C): X* = —X,tr(X) = 0}.

Proof. Let X € Lie(SU(n)). Then * € SU(n), so (e!*)* = (e'*)~!, which means
that " = e~*X. Evaluating the derivative at t = 0 on both sides yields X* = —X.

Also, we have that 1 = det(e!®) = e"*X) (by a previous theorem), which equals

t=tr(X) n order for et*(X)

e to equal 1, the exponent must equal 0, which means that

30



t*tr(X) = 0. Since t can be any scalar from R, we must have ¢r(X) = 0. Thus, we
have X* = —X and tr(X) = 0.

Now we will show the other direction. Let X € M, (C) such that —X = X* and
tr(X) = 0. Note then that e=*X = e!*" which means that (e!X)* = (e/X)~1. We also

have that det(e!X) = emtX) = () = 0 = 1. Thus, e € SU(n) and therefore

X € Lie(SU(n)). So we have double containment and our sets are equal. O
Theorem 3.4.6. Lie(O(n)) = Lie(SO(n)) = {X € M,(C) : XT = —X tr(X) = 0}.

Proof. Let X € Lie(O(n)). Then X € O(n), which means that e'X" = e~*X which
implies that X7 = —X (utilizing our favorite derivative rules). Note that X7 = —X
implies tr(X) = 0, as taking the transpose of a matrix leaves the diagonals alone,

so you have each entry equaling its negative, which must mean they are all 0, which

txtr(X)

means adding them gives 0, which means the trace is 0. Sowe have 1 = e® = ¢
e tX) = det(e!X). So etX € SO(n) and thus Lie(O(n)) C Lie(SO(n)).

Now let X € Lie(SO(n)). Then e/X € SO(n),which means that e = e~
which implies that X7 = —X (as we just said). We also have that 1 = det(e!*) =
e (X) " which implies that tr(X) = 0. So Lie(SO(n) C {X € M,(C) : X* =
- X tr(X) = 1}.

Finally, let X € {X € M,(C) : X7 = —X,tr(X) = 0}. So XT = —X, which
means !X = e So X € Lie(O(n)). Thus, we have Lie(O(n)) C Lie(SO(n)) C
{X € M,(C): XT = —X,tr(X) = 1} C Lie(O(n)), which means they are all equal

and we are done. O
Theorem 3.4.7. Lie(Sp,(C)) = {X € My,(C) : QXTQ = X}.

Proof. Let X € Lie(Sp,(C)). Then e € Sp,(C). Then Q! (e!*)TQ = e~**. Note

that the left-hand side yields Q1eX" Q) = ! ' X" (by rules of our exponent), which

—tQXTQ —tQXTQ _ —tX

equals e , since 271 = —Q (see earlier example). So we have e
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If we utilize our derivative rule and evaluate at ¢t = 0, we get that —QX7Q = —X.
Canceling the negative gives us QX7Q = X. So we have one direction complete.
Now let X € M,,(C) such that QXTQ = X. Now, —Q(e*)TQ = —QetX" () =

e X7 — o—tX gince OXTO = X. Thus, X € Lie(Sp,(C), and we are done! H

Much like with Lie(SL,(C)), we will show that Lie(Sp,(C)) is a Lie algebra with
this new, equivalent definition (even though we know this is true since the symplectic

group is a matrix Lie group).
Theorem 3.4.8. Lie(Sp,(C)) is a Lie algebra (using our first definition).

Proof. Note Lie(Sp,(C)) is a subset of M,,(C). Like usual, we need to show vector
addition, scalar multiplication, and that a Lie bracket (the commutator) holds.

Let A and B be elements of our Lie algebra. Then A + B = QATQ + QBTQ
= Q(AT + BT)Q = Q(A + B)TQ. Thus, we have vector addition.

Let 2 € C. Then 24 = 2QATQ = Q2ATQ = Q(zA)TQ. So we have scalar
multiplication.

Now, let [A, B] = AB — BA. Like usual, we just need to show closure. So we have
[A,B] = AB — BA = QATQOBTQ — QOBTOQOATQ = Q(—ATBT)Q + Q(BTAT)Q,
since )2 = —. This then equals Q(BT AT — AT BT)Q), which equals Q(AB — BA)TQ
(by rules of a transpose from linear algebra). Thus, we have closure and therefore a

Lie algebra. [

We have (finally) finished going over examples of Lie algebras and their equivalent

definitions, and hopefully it has been insightful. The next theorem is key for later.

Theorem 3.4.9. The following forms a basis for Lie(SU(2)):

0 - Lo

And the following forms a basis for Lie(SO(3)):
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00 O 0 01 0 -1 0
D=foo0o -1|.E=]10 00].F=[1 0 0
01 O -1 0 0 0 0 0

Then there exists a Lie algebra isomorphism between Lie(SU(2)) and Lie(SO(3)).

Proof. Note that by utilizing the last two examples, we see that both of these Lie alge-
bras have dimension 3 (since they each have 3 basis elements), so they are isomorphic
as vector spaces. Now, by using the same matrices from those two examples, we can
define a map such that A goes to D, B goes to F, and C' goes to F'. Note also that
[A,B] = C,[B,C] = A[C,;A] = B and [D,E] = F,[E,F] = D,[F,D] = E. So this
mapping preserves the commutator relations. Since our Lie algebras share the same
commutator relations (or satisfies the requirements for a Lie algebra homomorphism)

and are isomorphic as vector spaces, they are isomorphic as Lie algebras. O

3.5 Lie Group and Lie Algebra Properties

This section covers some important properties that Lie groups and their corresponding

Lie algebras have.

Theorem 3.5.1. Let G be a matrixz Lie group with an associated Lie algebra Lie(G).
Then AXA™' € Lie(G) for all A € G and X € Lie(G).

Proof. Note that e!AX47™) = AetX A~! by our exponential properties. But this is in
G since A € G and X € G (because X € Lie(G)). Thus, /X4 € G, which

means that AXA™! € Lie(G), and we are done. O

Theorem 3.5.2. Let G and H be matriz Lie groups, with Lie algebras Lie(G) and
Lie(H), respectively. Suppose that ® : G — H is a Lie group homomorphism. Then
there exists a unique real-linear map ¢ : Lie(G) — Lie(H) such that ®(eX) = e?X)

for all X € Lie(G). The map ¢ has the following additional properties:
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1. $(AXA™) =D(A)p(X)P(A)™, for all X € Lie(G) and A € G.

2. o([X,Y]) = [o(X),p(Y)], for all X, Y € Lie(G) (so this map is a Lie algebra

homomorphism,).

3. ¢(X) = LP(e'N)|,=o for all X € Lie(G).

So every Lie group homomorphism gives rise to a (unique) Lie algebra homomor-

phism.

Proof. We will not show the fact that this map is unique, however, we will prove the

three properties.

1. Note that e¢AXA™) — §(AeX A~1) by the properties of our exponential and
since t is a scalar that can distribute. This then equals ®(A)®(™*)P(A)!
since ® is a homomorphism, which then equals ®(A)e?X)®(A)~!, by what we

defined as our unique real-linear map, which then equals e/®(AoX)2(A)~!

, once
again by our properties. By utilizing our derivative theorem and evaluating at
t = 0 on our first term before the very first equals sign and this last term, we

get that p(AXA™) = O(A)p(X)P(A)~L

2. Note that ¢([X,Y]) = (XY - Y X) = ¢(Le'*YeX|,_y), which can be verified
utilizing the product rule. We then know that the derivative commutes with a
linear transformation, so we can rewrite this as £ ¢(e'*Ye™"*)|,—o, which then
equals £® (") (V)P (e¥)|,—o by the first property of this theorem. Finally,
we can rewrite this as £e'@g(Y)e"*®)|,_ by how we defined our map, and

by utilizing the product rule in reverse, this equals [¢p(X), o(Y)].

3. Note that £®(e'¥)|,_ = Le'?(™)],_ by how we defined our linear map, as well
as t being a scalar, and this equals ¢(X) by simply evaluating the derivative.

So ¢(X) = LP(e)|,0.
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Thus, we have finished the proof. O

Theorem 3.5.3. Suppose G, H, and K are matrix Lie groups and ® : G — H and
VU : H — K are Lie group homomorphisms. Let A : G — K be the composition of
® and VU, and let ¢, ¢, and X be the associated Lie algebra maps associated to our

groups. Then we have A = ¢ o).

Proof. For any X € Lie(G), we have eXtX) = A(e!X) = O(U(!Y)) = (X)) =
et (X)) - Differentiating both sides at ¢ = 0 yields A(X) = ¢((X)), and so the

functions are equal. O

Theorem 3.5.4. If ® : G — H is a Lie group homomorphism and ¢ : Lie(G) —
Lie(H) is the associated Lie algebra homomorphism, then ker(®) is a closed, normal

subgroup of G and the Lie algebra of the kernel is given by Lie(ker(®)) = ker(¢).

Proof. We know, from a beginning Abstract Algebra course, that ker(®) is a normal
subgroup of G. We also know, from our detour to topology, that the kernel of a Lie
group homomorphism is closed. So we have ker(®) is a closed, normal subgroup of
G. Now want to show that Lie(ker(®)) = ker(¢).

Recall that all elements of a Lie group can be written in the form e'*. If e/ €
ker(®) for all t € R, we have e/*X) = ®(e!X) = [ for all t € R, where I is the identity.
Differentiating both sides at t = 0 yields ¢(X) = 0, which means that X € ker(¢).

Let X € ker(¢). Then ®(etX) = e!X) = [ for all t € R. Thus, /X € ker(®) and
therefore X € Lie(ker(®)). Thus, we have that Lie(ker(®)) = ker(¢). O

Definition 3.5.5. Let G be a matrixz Lie group with an associated Lie algebra Lie(G).
Then for each A € G, define a map Ada : Lie(G) — Lie(G) by Ada(X) = AXA™L,

We call this the adjoint map.

Theorem 3.5.6. The adjoint map is an invertible linear transformation.
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Proof. Let X,Y € Lie(G) and A be a scalar in our chosen field. Then Ad (X +Y) =
AX +Y)A™ = (AX + AY)A™ = AXATL + AY AL = Ada(X) + Ada(Y). Also,
Mds(X) = MAXA™! = AANXA™! = Ada(MX). Thus, the adjoint map is a linear
transformation.

Now let Ada(X) = Ada(Y). Then AXA™' = AY A~ So we get ATAXA™1A =
ATTAYA™'A = X =Y. Thus, the adjoint map is injective.

Finally, recall that AXA™' € Lie(G) for all A € G and for all X € Lie(G).
So AT'XA € Lie(G). Thus, Ads(A'XA) = AAT'XAA™! = X. Since X is an
arbitrary element in Lie(G), the adjoint map is surjective. Thus, we have shown that

the adjoint map is an invertible linear transformation. O

Theorem 3.5.7. Let G be the matriz Lie group with the associated Lie algebra
Lie(GQ). Let GL(Lie(G)) denote the group of all invertible linear transformations
of Lie(G). Then the map A — Ada is a homomorphism of G into GL(Lie(G)).
Also, for each A € G, Ada is a Lie algebra homomorphism. We omit the proof of

this.

Since Lie(G) is a finite-dimensional real vector space for a matrix Lie group G, it
has dimension n, where n € N. Then GL(Lie(G)) is isomorphic to GL,(R). Thus, we
will regard GL(Lie(G)) as a matrix Lie group. It is a fact that Ad : G — GL(Lie(G))
is a Lie group homomorphism. By a previous theorem, we know that there is an
associated real linear map X — Adx from the Lie algebra of G to the Lie algebra of

GL(Lie(G), with the property that e4?x = Ad,x.

Theorem 3.5.8. Let G be a matriz Lie group, Lie(G) be its associated Lie alge-
bra, and Ad : G — GL(Lie(G)) be as in the last theorem. Let ad : Lie(G) —
Lie(GL(Lie(G))) be the associated Lie algebra map. Then for all X,Y € Lie(G),
adx(Y) =[X,Y].

Proof. By a previous theorem, we know that ady = %AdetX when ¢ = 0. Thus,
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adx(Y) = LeXYeX when ¢t = 0. Computing this using the product rule, with /¥y
as the first term and e~** as the second term, results in Xe!* Ve X 4+ XY (—Xe™tX).

Plugging in ¢ = 0 gives us XY — Y X, which is [ X, Y]. O

Theorem 3.5.9. For any X € M,(C), let adx : M,(C) — M,(C) be given by
adxY = [X,Y]. Then for any Y € M,(C), we have eXYE~X = Adx(Y) = e®x(Y),
where e®™X(Y) =Y + [X, Y]+ 3[X, [X, Y]] + ... (where we note that this comes from

the series definition of eX).

Before we go any further, we are going to mention the topic of complexification.
Since some of these results can work without necessarily having a Lie group corre-

sponding to our Lie algebra, we will use the notation g again.

Definition 3.5.10. If V is a finite-dimensional vector space, then the complexifi-
cation of V', denoted V¢, is the space of formal linear combinations vy + vy, with

v, U9 € V.

Theorem 3.5.11. For a finite-dimensional vector space V', Vi is a complex vector

space if we define i(vy + ivg) = —vy + ivy for all vi,ve € V.

Proof. Note that since V' is a vector space, associativity under vector addition, com-
mutativity under vector addition, scalar distributvity, and scalar associativity all
hold for V. Now let vy,v9,v3,v4 € V. Then vy + ivy,v3 + tvy € V. Then
(v1 + iv2) + (vg + ivg) = (v1 + v3) + i(v2 + vg) € Vi, and so we have closure un-
der addition. Since 0 € V', we have that 0 4+ i0 = 0 is the additive identity in V.
Similarly, we know that —v; and —wvs are in V', and so we have —v; —ivy € V. Then
vy + vy — v — ive = 0, and so every element in V¢ has an additive inverse. Since V'
has an identity element for scalar multiplication, call it 1, we also have it for V¢, as

1(vq + ive) = 1vy + livy = vy + ivy. Thus, V¢ is a complex vector space. O

Note that V is a real subspace of V¢, as any element v € V' can be represented as

v+10=v € V.
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Theorem 3.5.12. Let g be a finite-dimensional real Lie algebra and gc be its com-
plezification. Then the bracket operation on g has a unique extension to gc that makes

gc into a complex Lie algebra.

Proof. The bracket operation on gc must be bilinear, so it has to be given by [X; +
iXo, Y1 +1Ys] = ([ Xy, Y1) —[Xo, Ya])+i([ X1, Ya]+[Xo, Y71]). Therefore it is unique. Now
we have to check that it is bilinear, skew-symmetric, and satisfies the Jacobi identity.
Because g is a real Lie algebra, our map is real bilinear and skew-symmetric. Note
that being skew-symmetric means that if this is complex linear in the first factor, it is
complex linear in the second factor. Thus, we only need to show that [i(X;+iX5), Y1+
iYs] = i[X) + X, Y1 + Ys] implies (—[Xy, V1] — [Xy, Ya]) 4+ 4([X71, V1] — [X2,Y3]) on
both sides. For the Jacobi identity, there is a lot of computation involved.

We have [ X +iXo, [Y1+1iYs, Z1 +i2s)] = [X1+iXo, [Y1, Z1] — [Ya, Zo] +i([Y1, Zo] +
Yo, Z1))] = [Xa + 1 X, 12y — Z0Y1 — Yalo + Z5Ys + Y12y — i Z5Y1 + 1Yo Zy — iZ1Y5).
Using bilinearity, we get a total of 32 terms (and it is quite an ugly mess, hence why
we are excluding it from this proof). After that step, we can then make X into Y,
Y into Z, and Z into X to get 32 new terms. Then we rotate those terms again to
get 32 more terms. Everything ends up canceling, which means the Jacobi identity is

indeed satisfied. Thus, we are done! O

Theorem 3.5.13. Suppose that ¢ C M, (C) is a real Lie algebra and that for all
nonzero X in g, the element i.X is not in g. Then the “abstract” complexification gc

of g is isomorphic to the set of matrices in M, (C) that can be expressed in the form

X +iY, with X,Y € g.

Proof. Consider the map from g¢ into M, (C) sending the formal linear combinations
X 4+ 1Y to the linear combination X + 7Y of matrices. This map is a complex Lie
algebra homomorphism. If g satisfies the assumption in the statement of the theorem,

this map is also injective and thus an isomorphism of gc with g +ig C M,(C). O
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With this theorem in hand, we now have the following isomorphisms (unless oth-

erwise indicated, presume the entries are from the complex field):

o Lie(GL,(R))c = Lie(GL,(C))

o Lie(U(n))c = Lie(GL,(C))

o Lie(SU(n))c = Lie(SL,(C))

o Lie(SL,(R))c = Lie(SL,(C))

o Lie(SO(n))c = Lie(SO,(C))

o Lie(Spn(R))c = Lie(Spa(C)

o Lie(Sp,(C)c = Lie(Sp,(C)

For a detailed example of one of these, see the following theorem:
Theorem 3.5.14. Lie(U(n))c = Lie(GL,(C))

Proof. We will do proof by containment. Note that Lie(GL,(C)) = M,(C). So
any element in Lie(U(n))c must be in Lie(GL,(C)). Thus, we have one side of

containment done.

Now, say X € Lie(GL,(C)) = M,(C). Note that X = X2 4 {XEX " Now,

2

X—X*\x _ X*—-X __ X-X*
(55-) = = —(

5 5 5—). Thus, since the complex transpose equals the negative,

this is in Lie(U(n)). Similarly, (£8X°) = 24X = —(22X)  which would mean
it is also in Lie(U(n)). So by closure, the sum of these elements must also be in
Lie(U(n)), which means that multiplying the second element by i and adding it to
the first element results in something in Lie(U(n))c. But this new element would be

our X. Thus, we have containment in the other direction and so our Lie algebras are

equal. O
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Note that Lie algebras can have isomorphic complexifications without the orig-
inal Lie algebras being isomorphic. For example, although both Lie(SU(2))c and
Lie(SLy(R))c are isomorphic to Lie(SU(2))c, the Lie algebra Lie(SU(2)) is not iso-
morphic to the Lie algebra Lie(SLs(R)).

Theorem 3.5.15. Let g be a real Lie algebra, gc be its complexification, and b and
arbitrary complex Lie algebra. Then every real Lie algebra homomorphism of g into b
extends uniquely to a complex Lie algebra homomorphism of gc into by. This is known

as the Universal Property of Complezification of Real Lie Algebras.

Proof. The unique extension is given by m(X +1iY) = 7(X) + in(Y) where X, Y € g.

This map is a homomorphism of complex Lie algebras, so we are done. O]

In the next chapter, we will use our now vast knowledge of Lie theory to combine

it with the fascinating subject of representation theory!
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Chapter 4

Representation Theory

This chapter will go over the mixing of Lie theory with representation theory. Weights
and roots are also covered and will be mentioned again in the final chapter centered

on physics.

4.1 Basics

Representation theory is about representing algebraic structures as linear transfor-
mations of vector spaces. It is common to look at mappings that go from a group
to some matrix, which itself can be represented as a linear transformation. Even
though group theory is fairly well-studied, sometimes it is easier to look at groups
through the lens of matrices and linear transformations. The formal definition of a

representation of a group is defined as follows:

Definition 4.1.1. A representation of a group G is a homomorphism w : G —

GL(V) for some finite-dimensional complex vector space V.

More information on the representation theory of finite groups can be found in
Benjamin Steinberg’s Representation theory of finite groups (2012) [6]. We will be

focusing on representations involving Lie theory and presume the reader has no back-
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ground knowledge of the subject.

4.2 Representations of Lie Groups and Algebras

Note that for a finite-dimensional vector space V', Lie(GL(V)) = End(V), where
End(V) is the vector space of linear transformations from V into V. These all have
dimension n?.

We have already defined a representation of a finite group, and the definition of a

representation of a Lie group is very similar.

Definition 4.2.1. Let G be a matriz Lie group. A finite-dimensional complex
representation of G is a Lie group homomorphism Il : G — GL(V'), where V is
a finite-dimensional complex vector space (with dimension greater than 0). If V is
a finite-dimensional real vector space, then we call 11 a finite-dimensional real

representation.
The definition of a Lie algebra representation is also very similar.

Definition 4.2.2. Let g be a Lie algebra. A finite-dimensional complex rep-
resentation of g is a Lie algebra homomorphism © : g — M,(V), where V is a
finite-dimensional complex vector space (with dimension greater than 0). If V is a
finite-dimensional real vector space, then we call 7 is a finite-dimensional real

representation.
We also have a specific name for an injective representation.

Definition 4.2.3. A faithful representation is a representation that is an injective
homomorphism.

Note that if IT: G — GL(V) is faithful, then {II(A) : A € G} = G.

Now we can return to our definition of irreducible from earlier and apply it in this

new context, using some new definitions.
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Definition 4.2.4. Let I be a finite-dimensional real or complex representation of a
matriz Lie group G acting on a space V. A subspace W of V is called invariant if

I(A)w e W for allw € W and for all A € G.

Definition 4.2.5. An invariant subspace W is called nontrivial if W # {0} and
WAV,

Definition 4.2.6. A representation with no nontrivial invariant subspaces is called

1rreducible.

A relatively easy example of an irreducible representation is the trivial represen-
tation, of either a Lie group or Lie algebra, as these are mapped into C, which has
no nontrivial subspaces. This is because dim(C) = 1 and you can’t have a subspace
with a lower dimension. Since there are no nontrivial subspaces, there must also be
no nontrivial invariant subspaces.

We will now define a specific linear map between representations, which we can

then use to create an isomorphism definition for representations.

Definition 4.2.7. Let G be a matrixz Lie group, 11 be a representation of G acting on
the space V', and 33 be a representation of G acting on the space W. A linear map ¢ :
V — W is called an intertwining map of representations if ¢(II(A)v) = X(A)p(v)
for all A € G and for all v € V. There is an analogous definition for intertwining

maps of representations of Lie algebras.

The following diagram helps illustrate the previous definition:

V w
H(A)l lE(A)

V—W

¢
¢
Definition 4.2.8. If ¢ is an intertwining map of representations and ¢ is invertible
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(or bijective), then ¢ is said to be an isomorphism of representations. We use the

standard isomorphism notation = to denote isomorphic representations.

We now arrive at our first theorem of representation theory. We will omit the

proof, as it follows similarly from previous work we have done.

Theorem 4.2.9. Let G be a matriz Lie group with corresponding Lie algebra Lie(G)
and let 11 be a finite-dimensional real or complex representation of G acting on the
space V. Then there is a unique representation m of Lie(G) acting on the same space
such that TI(eX) = ™) for all X € Lie(G). The representation T can be computed
as m(X) = LII(e'X) when t = 0. This satisfies T(AXA™') = II(A)m(X)IL(A)~" for
all X € Lie(GQ) and for all A € G.

We note that not every representation 7 of Lie(G) comes from II of G, although
we are not proving this; it is merely a fun fact. Note that we use the term con-
nected in the following theorem, although we omit its definition because it is an-
alytic/topological in nature. Instead, it is more important to note that we already
looked at examples of connected Lie groups, such as SL,(C), and so it is applicable.

More information can be found in Hall’s book [4].

Theorem 4.2.10. If G is a connected matrix Lie group with Lie algebra g, then every

element A € G can be written in the form A = e*t...e*™ for some X1,..., X, in g.

This result allows us to prove some cool results about Lie groups representations
and their associated Lie algebra representations. If the Lie group is connected, then
irreducibility of one implies irreducibility of the other, and the same can be said for

isomorphisms! We formalize this in the next few theorems.

Theorem 4.2.11. Let G be a connected matrixz Lie group with corresponding Lie
algebra Lie(G). Let 11 be a representation of G and 7 be the associated representation

of Lie(GQ). Then II is irreducible <=  is irreducible.

44



Proof. Suppose that II is irreducible. Now let W be a subspace of V' that is invariant
under 7(X) for all X € Lie(G). We want to show that W is either {0} or V. Let
A € (. Since G is connected, by a previous theorem we know that A can be written
as A = eX1...eXm for some X1, ..., X, in Lie(G). Since W is invariant under 7(Xj), it

m(X;)?

will also be invariant under e™X9) = I 4+ 7(X;) + =5

+ ... (from the series definition
of the exponential function); this is because the sum of invariant representations is
also invariant, and 7(X)w € W implies that 7" (X)w € W. Thus, we have II(A) =
[M(eXt...eXm) = (eX)..I(eXm) = e™X1) . e™Xm)  Since II is irreducible and W is
invariant under each II(A), W must either be {0} or V. Thus, 7 is irreducible.

Now suppose that 7 is irreducible and that W is an invariant subspace for II. Then
W is invariant under II(e!*) for all X € Lie(G). Hence, it is also invariant under
m(X) = LII(e'¥) evaluated at ¢ = 0, as taking the derivative does not mess with

invariance. Thus, since 7 is irreducible, W is either {0} or V', and so II is irreducible.

So we’re done! m
We will need the following result before moving on.

Theorem 4.2.12. Let m and 7 be Lie algebra representations. If m1 = mq, then

T(emXy) = em(X)T(v).

Proof. Say my = my. Then there exists a bijective linear transformation 7 : V. — W
such that T(7(X)v) = m(X)T(v). Now, T(emX)(v)) = T((1 + 7 (X) + @ +
)v) =T(1(v) +m(X)(v)+...), where we note that everything in the big parenthesis
is in V. Since T is a linear transformation, this equals 7'(1)(v) + T'(7)(X)(v) + ...,
and so on. But since m = my, we get 1(T)(v) 4+ m2(X)T(v) + ..., and so on. Finally,
we can factor out a T'(v) to get (1 + ma(X) + ...)T(v), which equals ™) T (v), and

we’re done! ]

Theorem 4.2.13. Let G be a connected matrix Lie group, 11; and Iy be represen-

tations of G, and m and 7wy be the associated Lie algebra representations. Then
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I 21, <— m =2 m.

Proof. Say II; = II,. Then there exists a bijective linear transformation 7°: V — W
such that T(IT; (A)v) = [Iy(A)T'(v). Then we get the following (where we evaluate at
t=0): T(m(X)v) = T(LIL ("X v) = LT(I0; (e )v) = LT, (e"*) T (v) = m2(X)T(v).
Thus, m = m,.

Say m = my. Then there exists a bijective linear transformation 7" : V —
W such that T(m(X)v) = m(X)T(v). Now, T(II;(A)v) = T(Il;(eX1...eXm)v) =
T((Hy(eX).. . (eXm))v) = T((em™)...emEm))y). Now, evaluating v at all ™)
yields T'(em X1 w), where w = (e™X2),_emXm))y € V. But T(em X)) = e™X)T (w)

by our previous theorem. Repeating this process eventually gives us (e™(X1), ™ (Xm))T (1),

which equals TI5(A)T (v), and we’re done! O

Now that we have these interesting results, we will return to complexification,

which we will extend to our new representation theory with the following theorem.

Theorem 4.2.14. Let g be a real Lie algebra and gc be its complexification. Then
every finite-dimensional complex representation © of g has a unique extension to a
complez-linear representation of gc, also denoted w. Also, w is irreducible as a repre-
sentation of gc if and only if it is irreducible as a representation of g. The extension

is given by (X +1iY) = n(X) +in(Y) for all X, Y € g.

Proof. The existence and uniqueness of the extension follow from an earlier result.
Note that a complex subspace W of V' is invariant under 7 (X +¢Y’), where XY € g,
if and only if it is invariant under 7(X) and 7(Y"). Thus, the representation of g and
its extension have the same invariant subspaces, and so the claim of irreducibility

holds. [l

Now we apply the concept of unitary for representation theory with the following

definition and theorem.
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Definition 4.2.15. If V' s a finite-dimensional inner product space and G is a matrix
Lie group, a representation 11 : G — GL(V') is unitary if II(A) is a unitary operator

on 'V for every A € GG.

Theorem 4.2.16. Suppose G is a matrix Lie group with corresponding Lie algebra
Lie(G). Suppose V is a finite-dimensional inner product space, 11 is a representation
of G acting on' V', and m is the associated representation of Lie(G). If 11 is unitary,
then w(X) is skew self-adjoint for all X € Lie(G). Conversely, if G is connected,
and 7(X) is skew self-adjoint for all X € Lie(G), then 11 is unitary. Note that we
are saying a representation w of a Lie algebra Lie(G) acting on a finite-dimensional
inner product space is unitary if w(X) is skew self-adjoint for all X € Lie(G), or
7(X)* = —7n(X) for all X € Lie(G). (This is consistent with our past work showing
that inverse equations in a Lie group get turned into negative equations in a Lie

algebra.)

Proof. Suppose that II is unitary. Then for all X € Lie(G), we have (e!™™))* =
M(eX)* = H(etX)! = e X)) where t € R. Differentiating the leftmost and right-
most sides with respect to ¢ at t = 0 reveals that 7(X)* = —n(X). Now suppose
that 7(X)* = —n(X), then the previous calculation shows that II(e!X) = e™X) is
unitary. But since G is connected, every element in G' can be written as a product of

exponential, which reveals that TI(A) is unitary. Thus, both directions are satisfied

and we are done. O

We also have specific types of representations that we can define, namely the

standard, trivial, and adjoint representations.

Definition 4.2.17. Since a matriz Lie group G is a subset of GL,,(C), the map from
G into GL,(C) defined by I1(A) = A is a representation of G, and we call this the
standard representation of G. This works similarly for a Lie algebra g, where the

map defined by 7(X) = X is the standard representation of g.
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Definition 4.2.18. For any matrix Lie group G, we can define the trivial repre-
sentation 11 : G — GL1(C) = C by II(A) = 1 for all A € G. Since C has no
nontrivial subspaces (and therefore no nontrivial invariant subspaces), this is an ir-
reducible representation (as we said earlier). This works similarly for a Lie algebra

g, where we have the map w: g — M;(C) = C defined by m(X) =0 for all X € g.

Definition 4.2.19. If G is a matriz Lie group with corresponding Lie algebra Lie(G),
the adjoint representation of G is the map Ad : G — GL(Lie(G)) given by A —
Ady. Similarly, the adjoint representation of a finite-dimensional Lie algebra g is
the map ad : g — GL(g) given by X — adx. Note that by a previous theorem, the
Lie algebra representation associated to the adjoint representation of G is in fact the

adjoint representation of g.

This covers some of the essentials of the representation theory of Lie theory, and

so we can move on to an interesting example.

4.3 Representations of Homogeneous Polynomials

Let V,,, denote the space of homogeneous polynomials (polynomials whose nonzero
terms have the same degree) of degree m in two complex variables. For each U €
SU(2), 11,,(U) is defined by [I1,,,(U) f](z) = f(U'z), where z € C%. Note that on the
left-hand side, f is inside the parenthesis, which means that that function is inputting
z-values. So its domain is C2. Similarly, on the right-hand side you will also have in
the domain values of C?, as U~ ! is a 2 x 2 matrix and when you multiply that by a
2 x 1 matrix z, you get a 2 X 1 matrix. So we write the left-hand side as such so it
is clear what our domain is, but what’s mainly important is that it is defined by the
right-hand side, which looks a lot nicer. We will show that II,, is a representation of
SU(2).

The first step is to show that I1,,(U) is a map from V,, to itself. Now, elements
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of V,, have the form f(z1,2) = ag2!® + a12]" ‘2o + -+ + @, 25", with 21,2, € C and
a; constant in C for all j € Z. Note that it is written in this way because each term
has to have degree m, as the polynomials are homogeneous. Also note that there are
m + 1 terms, and so dim(V,) = m + 1.

Say

Ull U12
U= ;

U21 U22

where U;; € SU(2), i corresponds to the row of the matrix, and j corresponds to the

column of the matrix. Then

-1 Usa  —Uio
U Un
Then we have
1 1 Z1
1L, (U) f1(z) = [IL,(U) f] = fU )
Z9 Z9
Uy,  —Usa 21 Uz — Uia2o
= f( )=f
Uy Un 2o U121 + U122

Now, note that Uy, is equal to U;;', which is the 11 entry of U~!. Utilizing this logic,

we then have the following:

Uﬂlzl + Uﬁlzg
)= f(UF 21 + Ut zg, Ustt 21 + Usy' 20)
U2121 + U2_2122
= ag(UGtz1 + Ut )™ 4+ ay (Ut 2y + Ut 20)™ WUst 2y 4+ Uyt 29) 4 - - + am (U 21 +
Usy' 22)™ = >0t ar(Uiy 21 + Uy 22) ™" *(Ugyy 21 + Ugy' 22)%, which has degree m. So

I1,,(U) : Vip = V.
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Now we will show that II,,, is a homomorphism. We have [IL,,,(U1)[I1,,(Us) f])(2) =
[ (U2) fI(U2) = f(U; UL 2) = f((UrU2)""2) = [In(U1U2) f](2). So we have a
homomorphism!

Since II,, is a map from V,, to V,, and is also a homomorphism, it is a represen-
tation!

The associated representation m,, of Lie(SU(2)) can be computed (by a previous

theorem) as
(T (X) [)(2) = £ f(e7*2), evaluated at t = 0.

Now let 2(t) = (21(t), z2(t)) be the curve in C? defined as 2(t) = e **. By the

chain rule,

T(X)f = Glf (e 2)im0 = I (21(t), 22(0))]i=0 = [5L G0 + [5L GRli=o-

Note that % evaluated at ¢t = 0 is the derivative of e **z evaluated at t = 0,
which is —Xz. So m,,(X)f = g—flf(anl + X1229) — g—zf;(Xglzl + X9229), where we get
this from recalling that X is a 2 X 2 matrix and z is a 2 x 1 matrix.

Now we will take the unique complex linear extension of m to Lie(SLy(C)) =

Lie(SU(2))c, as in a previous result.

Now let H, X, and Y be the basis elements of Lie(SLy(C)):

1 0 0 1
H = , X = ,and Y =

0 -1 0 0 10

Then 7,,(H) = _Zlaizl + 228%2, Tm(X) = —228%1, and 7, (Y) = —210025.

So we have

T (H) (" 7"28) = (=gt + 22 ) (205 4) = —(m — k)2 + ka2

= (—m + 2k) 2Rk

We also have
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T (X) (2" 28) = =225 (2" 28) = —za((m — k)2" "7 28) = —(m — k)2 1ag ™

Finally, we have m,,, (Y) (2" " 25) = 20002 (27" % 28) = — 21 (27" Fkah™b) = —kz b1
Recall that an eigenvector v of a matrix A satisfies Av = Av for some scalar
A, which we call the eigenvalue. So z{”_kzg is an eigenvector for m,,(H), with an
eigenvalue of —m + 2k. Since k is arbitrary and —(m — k) is a scalar, —(m —
k)2 AL — (g — k)2 R 254 is an eigenvector for (X)), call it 8. Then
Tm(X)0 = (—m 4+ 2(k + 1))0 = (—m + 2k + 2)0. So the eigenvalue increased by 2.
Using 7,,(Y), we get something similar, except the eigenvalue decreases by 2. The
idea of increasing or decreasing an eigenvalue by an integer is very important and

will appear later when we discuss roots and weights, as well as when we open our

discussion on physics applications. For now, however, we present a theorem:
Theorem 4.3.1. For m > 0, the representation m,, s irreducible.

Proof. We want to show that every nonzero invariant subspace of V,, is equal to V.
Let W be such a space and let 0 # w € W. Then w = a2 +a127" 'z +- - + a2,
with at least one a, # 0. Let ko be the smallest value of k for which a; # 0 and
consider 7,,(X)™ *ow. Since each application of m,,(X) raises the power of z by
1 (and lowers the power of z; by 1), 7, (X)™ %0 will kill all terms in w except the

o 2" 0250 term. We show this below.

We have
T (X) (2] 7F2E) = —(m — k)2 F 12t
We also have

—ko k —ko—1 _ko+1
W= agy 2] 020+ A2 0T 20T b a2

am=ko (X ) (w) = 7=k~ (X) (ag, (—(m — ko))z{”_ko_lzf”l 4+t am(—O)zflz;”“).
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Note that the last term, which is the 25" term (when it is in its original form in w,
before any derivations) dies off. So doing this m — ky times will kill m — &y terms.
Since there are m — kg + 1 terms (as there are m terms after kg, and then we add 1
to include the ko term), we are left with 7, (X)(ag, 2" " 250).

On the other hand, since m,,(X)(2" *25) = 0 = m =k, 7, (X)" " is a
nonzero multiple of 25* (since we raised our z5° by degree (m — ko) to get 25*). Since

W is invariant, W must contain this multiple of 25", and thus z3". Now, for 0 < k£ < m,

k_.m - . k. .m—k m o __ 83? —
we can see that m,(Y)"z3" is a nonzero multiple of 272", as m, (Y)23" = —21 52 =
—mz 2yt = m, (V)P = A\2F2 8 where ) is a scalar. So W contains z¥ 25"

for all 0 < k < m. Since these elements form a basis for V,,, W = V,,, and we are

done. O

Thus, we have shown that the representations m,, of Lie(SU(2)) are irreducible,
which we know also implies that the corresponding Lie group representations II,, of
SU(2) are irreducible. The Lie algebra of SU(2) will be discussed again in our section

on roots and weights, as well as our chapter on physics applications.

4.4 Tensor Products of Representations

This section will involve taking tensor products, which we presented in our back-
ground material chapter, of representations, which we now know a great deal about.
However, before we delve into that subject, we present a definition on direct sums
of representations, as it is a (relatively) easy-to-understand definition that does not

require its own section.

Definition 4.4.1. Let G be a matrixz Lie group and 11y, ... 11, be representations of
G acting on the vector spaces Vi,...,V,,. Then the direct sum of I1,... 11, is a

representation Iy ®- - -G, of G acting on the space Vi&®- - -BV,, defined by [II; H- - -P
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I, (A)](v1, ...y vm) = (i (A)vy, .. I (A)vy,) for all A € G. This works similarly

for the Lie algebra side of things, and both of these are indeed representations.
Now we will define a tensor product of representations.

Definition 4.4.2. Let G and H be matrixz Lie groups, 11y be a representation of G
acting on a space U, and Iy be a representation of H acting on a space V. Then the
tensor product of 11, and 11y is a representation 11y ® 1y of G X H acting on URV,
defined by (I1; @ 115)(A, B) = 11 (A) @ lIy(B) for all A€ G and B € H.

Note that II; ® II; in the above definition is indeed a representation. We can also

define an analogous definition for Lie algebras and get an interesting theorem.

Theorem 4.4.3. Let G and H be matriz Lie groups with Lie algebras Lie(G) and
Lie(H), respectively, and let Ty and 11y be representations of G and H, respectively.
Consider the representation 1y ® Il of G x H. If m ® my denotes the associated
representation of Lie(G) @ Lie(H), then (m; @ mo)(X,Y) = m(X)® [ + I @ m(Y)
for all x € Lie(G) and Y € Lie(H).

We omit the proof of this theorem, as it requires knowledge of smooth curves,
although the proof can be found here [4]. We can use this theorem to moitivate the

following definition:

Definition 4.4.4. Let g and b be Lie algebras, and let m; and mwy be their respective
representations acting on spaces U and V. Then the tensor product of w1 and o,
denoted T &y, is a representation of gbh acting on UKV, given by (m1@m9)(X,Y) =
m(X)R@I+1@m(Y) forallx € g and Y € h.

Note that m; ® w5 in the above definition is indeed a representation.
We already defined a tensor product of a representation with a product group G x
H acting on a space U® V', but we can also define a tensor product of a representation

with two different representations of the same group G acting on spaces U and V.
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Definition 4.4.5. Let G' be a matrix Lie group and 11, and 11y be representations of
G acting on spaces U and V. Then the tensor product representation of G acting on
UV is defined by 11; @ I15)(A) = 111 (A) @ I15(A) for all A € G. Similarly, if 7 and
o are representations of a Lie algebra g, we define a tensor product representation

of g on UV by (m @m)(X) =m(X) @I+ 1®m(X) for all X € g.

These are the essentials of tensor product representations, but we also have another

interesting type of representation that we will discuss next: the dual representation.

4.5 Dual Representations

Much like with tensor products, we discussed dual spaces in the Background Material

chapter so that we could jump right into dual space representations here.

Definition 4.5.1. Let G be a matriz Lie group and 11 : G — GL(V') be a representa-
tion. Then the dual representation is the representation I1* : G — GL(V*) defined
by IT*(g)(f)(v) = f(II(g " )v). Similarly, if g is a Lie algebra and 7w : g — gl(V') is a
representation, then 7 : g — gl(V*) is defined by 7*(X)(f)(v) = f(m(=X)v).

It can be checked that these are indeed representations. It is also a fact that if V
is an inner product space, then for all f € V*, there exists w € V' : f(v) = (w,v), and
so the functions are determined by the inner product. So you have a pairing V' x V*
with (v, f) = f(v).

We also have the following result that we will not prove, but is very interesting

nonetheless.

Theorem 4.5.2. Let II be a representation of a matrix Lie group G. Then IT* is
irreducible if and only if 11 is irreducible. Also, (II*)* = II. There are analogous

results for Lie algebra representations.
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4.6 Representations of Lie(SLy(C))

We will now begin to look at representations of Lie(SLy(C)) and (eventually) repre-
sentations of Lie(SL3(C)). Recall that Lie(SLy(C)) is the set of 2 x 2 matrices with

trace 0 and that it has dimension 3. So we choose the following as our basis:

The commutation relations are,
[H,X]=2X [H Y] =-2Y [X,Y]=H.

Now if V' is a finite-dimensional complex vector space and A, B, and C' are operators

on V satisfying the same commutation relations as H, X, and Y, then we have

[A, B] = 2B,
[A,C] = —20,
[B,C] = A.

Due to the skew symmetry and bilinearity of the brackets, there is a unique linear
map 7 : Lie(SLy(C)) — Lie(GL(V)).

We can now prove the following theorem.

Theorem 4.6.1. For each integer m > 0, there is an irreducible representation of
Lie(SLy(C)) with dimension m + 1. Any two irreducible complex representations of
Lie(SLy(C)) with the same dimension are isomorphic. If w is an irreducible complex
representation of Lie(SLy(C)) with dimension m + 1, then m is isomorphic to the

representation T,,.
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Proof. Let m be an irreducible representation of Lie(SLy(C)) acting on a finite di-
mensional complex vector space V. We want to diagonalize the operator w(H). Since
we're working over C, w(H) must have at least one eigenvector. This is because all
roots to the auxiliary equation are in the complex field. Let u be an eigenvector with

eigenvalue . Then if we apply Theorem 4.6.3 repeatedly,

m(H)m(X)u = (o + 2k)7(X)*u.

Since we’re working over a finite dimensional space, there are only a finitely many
number of eigenvectors and eigenvalues. Since applying 7(X) takes us to a new vector
with eigenvalue o + 2 there has to come a point where we have reached the highest
eigenvalue and any more repeated use of 7(X) cannot take you to another eigenvector,

so we say it goes to 0. More explicitly, there exists some N > 0 such that,
T(X)Nu #0
but,

(X)) = 0.

Let’s call this highest eigenvector up;g, = m(X)Y

u and apign, = a+2N. Then we have
W(H)Uhigh = QhighUhigh,

W(X)um-gh =0.

Now since applying 7(X) raised the eigenvalue by 2 and we know that if we apply

7(Y) the eigenvalue will decrease by 2, this motivates us to define

uy, = 1Y) upign,

for £ > 0. Now if we apply 7(H), which just tells us which eigenvalue we are at, we
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get
7(H)up = (Qpign — 2k)uy.
Now if we apply 7(X) to u, then we get
7(X)up = klonigh — (k — 1)]ug—1.

Now by the same logic, since we're dealing with a finite-dimensional space, if we con-
tinuously apply m(Y") (which lowers the eigenvalue), we will eventually cycle through
all of them and any extra application will give 0. So there exists an integer m such

that

for all £ < m, but

U1 = T(Y)™" M pign = 0.

Now if w11 = 0, then 7(X)u,11 = 0. Therefore,

0 = 7(X )1 = (m + 1) (@pign, —m) = 0.

Since u,, and m+1 are nonzero, this means g, —m = 0. So g, coincides with the
non-negative integer m. From this comes the conclusions that for every irreducible
representation , there exists an integer m > 0 and associated non-zero vectors up;gh...

ug that satisfy the following conditions:

1. W(H)uk = (ozhigh — Qk)uk

(

Ukt 1, ifk<m
27r(Y)uk: e
0, ifk=m
\
k(apign — (K —1))ug_1, if k>0
3. (X = o~ (F = D)
0, itk=m
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The eigenvectors must be linearly independent since they are eigenvalues of 7(H)
with distinct eigenvalues. Also, the span of u, ... u is invariant under 7(H), (YY),
and 7(X). Therefore this is true for all 7(Z), for Z € Lie(SLy(C)), since Z would
be some combination of H, Y, and X. Since 7 is irreducible, the space must be all
of V.

The preceding discussion has shown that every irreducible representation of Lie(S Ly (C))
satisfies the previous conditions. Now if we defined 7(H), 7(Y"), 7(X) by the previous
conditions, then one finds that the operators satisfy the commutations relations we
started with. Therefore any irreducible representation with dimension m + 1 must

satisfy the previous conditions, making them all isomorphic. O

Now were going to prove a nice corollary that comes from this theorem that shows

all shows all eigenvalues for 7(H) are integers.

Corollary 4.6.2. If 7 is a finite-dimensional representation of Lie(SLy(C)), not
necessarily irreducible, then every eigenvalue of w(H) is an integer and if v is an
eigenvector for mw(H) with eigenvalue A\ and w(X)v = 0, then X is a non-negative

integer.

Proof. Suppose v is an eigenvector for w(H) with an associated eigenvalue . There
exists some N > 0 such that 7(X)Yv # 0, but 7#(X)""v = 0. Now 7(X)Nv
is an eigenvector of m(H) with eigenvalue A + 2NN shown in the previous theorem,
m = XA+ 2N must be a non-negative integer, which means A must be an integer. If

m(X)v = 0 then take N = 0 and A = m again is non-negative. O

4.7 Roots and Weights

In this section, we discuss the roots and weights of Lie algebras. Specifically we will
define a weight and a root for Lie(SL3(C)), since that is the next example we are

going to look at.
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Definition 4.7.1. If (r, V) is a representation of Lie(SL3(C)), then an ordered pair

p = (my,my) € C? is called a weight for m if there exists v # 0 € V such that,
w(Hy)v = mqv

w(Hy)v = mav
We can now define a root, which is the weight of the adjoint representation.
Definition 4.7.2. An ordered pair a = (o, ) € C? is called a root if,
1. aq, as are not zero

2. there exists a nonzero Z € Lie(SL3(C)) such that
[Hla Z] = ole

[Hg, Z] = OtQZ

Theorem 4.7.3. Let a = (ay,as) be a root and let Z, € Lie(SL3(C)) be a corre-
sponding root vector. Let m be a representation of Lie(SL3(C)), p = (mq,msy) be

a weight for m, and let v # 0 be a corresponding weight vector. Then we have the

following:

w(Hy)w(Zy)v = (my + a1)7(Zy)v,
T(Hy)w(Zy)v = (Mo + a2)m(Zy)v.

Thus, either m(Zy)v =0 or w(Zy)v is a new weight vector with weight
A4 = (my + ap,mg + as).

Proof. By the definition of a root, we have the commutation relation
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[Hy, Zo) = w(Hy)7(Zo)v — w(Zy)w(Hy) = a1Z4. Thus,
m(H)7(Zo)v = (7n(Zo)7(Hy) + aym(Zy))v

=7(Za)(mv) + aym(Zy)v
= (my + a1)7(Zy)v.
A similar argument allows us to compute m(Hs)7m(Z,)v. O
Now we will define a notion of higher and lower weights.
Definition 4.7.4. Let oy and ag be roots corresponding to the weights py and o,
then py is called higher than s if py — pe can be rewritten as,

p1 — pg = acy + bag

with a > 0 and b > 0.

Definition 4.7.5. If 7 is a representation of Lie(SL3(C)), then a weight g is said

to be a highest weight if for all weights , po > .

Now, you may be wondering why we are interested in Lie(SL3(C))? Well its
because Lie(SL3(C)) ~ Lie(SU(3)). This is because the special unitary matrices
have a physical significance in physics. Particularly one can view Lie(SU(n)) as a
set of rotation operators in n dimensions. This leads to the notion of spin that is of

great importance in quantum mechanics.

4.8 Representations of Lie(SL3(C))

Looking at Lie(SL3(C)) is similar to when we looked at Lie(SLy(C)), but now we

increase the intricacy of the problem by adding one more “ H” matrix into the basis.
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But the dimension of Lie(SL3(C)) is 3* — 1 = 8 while Lie(SLy(C)) was 22 —1 = 3, so
simply adding one more H is not enough; we also have to add two more “ X matrices

and two more “Y” matrices. The basis we will choose forLie(SL3(C)) is:

1 0 0 00 O

Hi=|0 -1 0 Hy=101 0

0 0 0 00 —1
010 000 00 1
Xi=1000 Xo=10 01 Xs=100 0
000 000 000
000 000 000
Yi=1100 Yo=10 0 0 Ys=10 0 0
000 010 100

It should be noted that if we take a subalgebra with basis (Hy, X1, Y)) or (Ha, Xs, Ys)
you get a subalgebra isomorphic to Lie(SLs(C)). Therefore, the commutation rela-

tions for each subalgebra are the same as Lie(SLy(C)):

[HlaXl] = 2Xj, [H2,X2] =2X
[Hh)/l] - _2Y17 [HZJYé] - _2}/2
[X171/1] :Hlv [X27}/2] :HQ

Now the rest of the commutation relations are

[Hl,HQ] — O

[H27X1] = _X17 [H27}/i] = 1/1

61



[Hi, Xo] = —X>, [H1,Ys] =Y,

[Hy, X3] = X3, [Hy,Y3] = —Y3

[Hy, X3] = X, [Hy, Y] = Y3
[X3,Y3] = Hy + H,

[X1, Xo] = X, [Y1,Ys] = Y3

[X17}/2] = 07 [X27}/1] =0

[X1, X3] =0, [Y1,Y3] =0
[Xa, X3] =0, [Y2,Y3] =0
[Xo, V3] = Y1, (X3, Ya] = X,
[Xl,Ys] = —Ys, [X3,Y1] =—-X

Since the commutator between H; and Hj is 0, this means they share an eigenbasis
and are able to be simultaneously diagonalized. Similar to Lie(SLy(C)), we will look
for a representation that satisfies the same commutation relations. So we want to
simultaneously diagonalize m(H;) and m(Hs). Now because we have two H matrices,
this means we will have two weights. However we know nothing about 7 (H;)v, so we

will look at the roots for this space.

Table 4.1: Roots for Lie(SL3(C))
o) A o Z

Identifying what the representations of Lie(SL3(C)) look like will be done in the

proof of a theorem that has five different parts. But first, we look at a definition!
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Definition 4.8.1. A representation © of Lie(SL3(C)) is said to be a highest weight
cyclic representation with weight u = (my, my) if there exists v € V and v # 0

such that:
1. v s a weight vector with weight p
2. m(X;)v=0forj=1, 2, 3
3. The smallest tnvariant subspace containing v is V
Now we can look at the five-part theorem we mentioned.
Theorem 4.8.2. We have the following:

1. Every irreducible representation of Lie(SLs(C)) is the direct sum of its weight

spaces.
2. Every irreducible representation of Lie(SL3(C)) has a unique highest weight.

3. Two irreducible representations of Lie(SL3(C)) with the same highest weight

are isomorphic.

4. The highest weight u of an irreducible representation must be of the form p =

(mq,m2), where my and mo are non-negative integers.

5. For every pair (my,my) of non-negative integers, there exists an irreducible

representation of Lie(SLs(C)) with the highest weight (mq,ms).
Proof. Since the theorem is divided into 5 parts, we will divide our proof into 5 parts.

1. Let W be the sum of weight spaces in V. So W = {w € V :w =
a1v; + agvy + ... + ayv, where w(Hy)v; = Nv; and w(H)v; = Nv;}. Now
every representation of Lie(SL3(C)) has at least one weight. From this we
know W # 0. Now, from earlier we defined Z, which took the weight space

corresponding to p and rotated it in the pu + o weight space. Since W is made
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up of all the weight spaces of V', any Z, acting on W will be invariant since
it will give back another weight space which is inside W. Now remember that
Xy, Xo, X3, Yy, Y; Yiare Z, terms. Also, because H; and H, just
tell you the eigenspace you're already in, W is invariant on those terms as well.

So W is invariant under the entire basis of Lie(SL3(C)) and, therefore, W = V.

. We have just shown that every irreducible representation of Lie(SL3(C)) is a
direct sum of its weight spaces. Remember that the representation has finite
dimension, this means that there can only be a finite number of weights. This
means there must be a highest weight p. A highest weight means for any weight

vector v then,

Now since = is irreducible, that means the smallest invariant subspace that

contains v must be the entire space.

. Suppose 7 and ¢ are both irreducible representations with the same highest
weight 1, V' is the vector space corresponding to the representation m, W is the
vector space corresponding to ¢, and let v and w be the highest weight vectors
from V and W, respectively. Now, to actually prove this, there is something that
needs to be known about completely reducible representations of Lie(SL3(C)).
That is if there is a completely reducible representation of Lie(SL3(C)) that is
also highest weight cyclic, then it is irreducible. Now consider a representation
V @& W and let U be the smallest invariant subspace of V' & W which contains
(v, w). By definition, U is a highest weight cyclic representation. Now, because
V @ W is completely reducible, then U is also completely reducible. This means

U is also irreducible. Now consider two maps, called projection maps P, and
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P,. By projection, we mean that given a vector (v, w):

P,(v,w) =v P,(v,w) = w.

Now P, and P, are intertwining maps. This is also true if we restrict them to
U instead of V @ W. Since U is the smallest invariant subspace that contains
(v,w), then P,(v,w) = v and P, (v,w) = w is not the 0 map. Therefore, by
Schur’s Lemma [4], P, is an isomorphism from U to V and P, is an isomorphism
from U to W, which means V ~ U ~ W. Therefore, V' and W are isomorphic,

where the isomorphism between V' and W is P,(P,!).

w

. Now if we restrict = to {X3,Y1, H1} or {Xy,Ys, Ho}, then it is isomorphic to
Lie(SLy(C)). Therefore, with these restrictions we know that m; and ms must
be integers. similarly, we know that they are non-negative in Lie(SLy(C)),
therefore they must be non-negative here as well. For if they were non-integer
or negative, then when we applied the restrictions, which are isomorphic to

Lie(SLy(C)), there would be a contradiction.

. Let V; be the standard representation of Lie(SL3(C)), which will have weight
vectors e, ey, and ez, which gives the weights (1,0), (—1,1), and (0, —1), re-
spectively. The dual of the standard representation is 7(Z) = —Z7T for all
Z € Lie(SL3(C)), and has the weights (—1,0), (1,—1), (0,1). The highest
weight is (0, 1). We call this space V5. Now were going to build a general weight
space of highest weight (m;, my) with various combinations of V; and V5. Now

consider 7, ,,, which is given by

VieVi®.oV)e (1201,0..0 V)

where there are m; Vi’s and my V5’s. Then v = 11®...Q01Qua®...Qvy is a vector
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with weight (mq,mg). Let W be the smallest invariant subspace containing v.
If Ty m, 1s completely reducible, then W will be completely reducible. Then W
is irreducible since it is highest weight cyclic. This means W is an irreducible

space that has highest weight (my, ms).

]

We have now finished our discussion on Lie(SL3(C)). Before diving into some
physical applications of this work, we will take a brief detour into discussing the Weyl

Group, as this is also an interesting aspect of Lie theory.

4.9 The Weyl Group

In this section, we talk about the Weyl group. There are many interesting directions
one could take with this subject, although we will only discuss some aspects of this

engaging topic. We begin by letting h = span{H,, Hy}, where

1 0 0 00 0

=10 -1 0ofandHy =10 1 0

0 0 0 00 —1
Note that b is a two-dimensional subspace of Le(SL3(C)). Now, for A € SU(3)
and H € h, we have Ada(H) = AHA™'. We can then define two more groups: let
N={AeSU@3): Ada(H) e hforall He h} and Z ={A € SU(3) : Ads(H) = H
for all H € h}. Note that AHA™' = H = AH = HA, and so we can think of Z as
a kind of center (as in, the center of a group), hence its label of Z. We then have a

few results that follow from these definitions, all of which involve basic group theory.

Theorem 4.9.1. N is a subgroup of SU(3).
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Proof. By definition, N is a subset of SU(3). So we just need to show that N is a
group (under the same operation as SU(3), which is multiplication). Let z,y € N

and H € h.

1. Closure: We have Ad,,(H) = (zy)H(zy)™' = zyHy 'z7' = zAd,(H)z .
Note that since y € N, Ad,(H) € h. Thus, zAd,(H)z~' = Ad,(Ad,(H)),

which is also in h because x € N. Thus, xy € N and we have closure.
2. Associativity: This follows from the associativity of SU(3).

3. Identity: Note that the 3 x 3 identity matrix is in SU(3), as it is unitary
and has determinant 1. Thus, if we let e be said identity matrix, we have

Ad.(H)=eHe ' = H € h. So e € N and we have an identity element.

4. Inverse:We have Ad,(H) = H € h = zHx '=H = H=z'Hzr =

H = Ad,-,(H'). Since H' is arbitrary, z=' € N and we have inverses.

Thus, N is a subgroup of SU(3).

Theorem 4.9.2. 7 is a subgroup of SU(3).

Proof. By definition, Z is a subset of SU(3) (and actually N, as H € h). So we
just need to show that Z is a group (under the same operation as SU(3), which is

multiplication). Let z,y € Z and H € h.

1. Closure: We have Ad,,(H) = (zy)H(zy)™' = asyHy 'a~' = zAd,(H)z .
Note that since y € Z, Ad,(H) = H. Thus, zAd,(H)x™' = zHa™! =
Ad,(H) = H. Thus, zy € Z and we have closure.

2. Associativity: This follows from the associativity of SU(3).
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3. Identity: Note that the 3 x 3 identity matrix is in SU(3), as it is unitary
and has determinant 1. Thus, if we let e be said identity matrix, we have

Ad,(H) =eHe ™' = H. So e € Z and we have an identity element.

4. Inverse: We have Ad,(H)=H = zHx'=H = H=12"'Hr =— H=

Ad,-1(H). Thus, z=! € Z and we have inverses.

Thus, Z is a subgroup of SU(3).

Theorem 4.9.3. Z is a normal subgroup of N.

Proof. As mentioned in the last proof, Z is a subset of N and a subgroup of SU(3).
Since N and SU(3) have the same operation, it follows that Z is a subgroup of N.
To show normality, we want to show that nzn™! € Z for all z € Z and n € N. So
let 2 € Z,n € N,and H € h. Then we have Ad,,.,-1(H) = nzn"*Hnz"'n"!. Since
n € N, this equals nzH'z"'n"!, where H' € h. Since z € Z, this then equals nH'n™!,
which must equal H (since we had n~'Hn = H’). Thus, nzn™' € Z and 7 is a

normal subgroup of N. m

Since Z is a normal subgroup of N, we can make a quotient group that will be
denoted by W = % This is known as the Weyl group. Now, W acts on h in the
following way: for w = [A] € W, where A € N, we have w.H = Ada(H). This action
is well-defined since if B is an element of the same coset as A, then B = AC' (where
C € Z) and we get Adp(H) = Ada(Adc(H)) = Ada(H) since C' € Z. We now want

to prove the following theorem:

Theorem 4.9.4. This theorem states that we are able to redefine Z and N as
e 0 0
Z={]lo0 €& 0 10,0 € R},

0 0 e i0+9)
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which we will denote as Z', and N = {A € SU(3) : for all j € {1,2,3},3k; €
{1,2,3},60; € R : Ae; = "¢y }. (Note that ey, ez, e5 is the standard basis for C.)

This then implies that W = & ~ Sj.

Before we go through the proof of this, it is a good idea to list an example of such

a matrix in N, as the new definition looks very scary. Such a matrix would look like

0 0 s
67'91 0 0 )
0 e 0

where 0; + 0y + 03 = 0. This is so the matrix is invertible and has determinant 1,
which is necessary since it is also an element of SU(3). Now we continue with the

proof of the theorem.

Proof. The first task that we want to conquer is to find Z. Note that if we pick an
element in Z’, this is also an element of SU(3), as it is unitary with determinant
1, and is satisfies the adjoint condition. So we know that Z’ C Z. Now, suppose
that A € Z. Then since H; € h, we have AH, = H{A. Now, Hie; = le;. So
HiAey = AH e; = Ale; = 1Ae;. This means that Ae; is an eigenvector for H; with
an eigenvalue of 1. So Ae; € E; = span{ei}. So there exists A € C : Ae; = Aej.
This works similarly for e; and e3. So A is diagonal and thus we have A € Z’. Thus,
Z C Z'. Thus, we have found Z.

Now we want to find N. Suppose that A € N. Then AHA™' € h. So AH;A™*
is diagonal. So ey, eq, €3 are eigenvectors for AH; A™!. Note that AH;A™(Ae;) =
AHie, = Ale; = 1Ae;. So Ae; is an eigenvector for AH; A7, So there exists
j A€ span{e;}. Note that if Av = \v and A € U(n), then AA* = A*A = ] and
so v*A* = v*A* = A\*v* (as A is a scalar, so it commutes). This then implies that
|v]|? = v'v = v* v = v A*Av = \*v* Av = Mo A v = X Av*v = [A]||v||?. This implies

that |[A\|? = 1, which implies that || = 1. Thus, there exists § € R : A\ = e%.
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Finally, we want to show that W = % ~ S3. Note that for all A € N, we get a
bijective linear transformation (since A is an invertible matrix), which we can denote
by T : C* — C? and which is defined by Tx(v) = Av. So Ta(e;) = Ae;, where A € C.
We then get a surjective homomorphism that maps from N to Sy, e,.e;3 = 53 defined
by A — T4. The kernel of this homomorphism is {A : Ty = id}, which is Z. Thus,

by the First Isomorphism Theorem, we have that & ~ Ss. O]

Now we can define an inner product on h by (H, H') = tr(H*H’). Note that this
is the Hilbert-Schmidt inner product given in the Background Material chapter. We

will use this in our next definition.

Definition 4.9.5. For a representation 7 of Lie(SL3(C)), A € h is a weight for
if there exists a nonzero v € V such that m(H)v = (A, H)v for all H € h. We call v

the wetight vector, as it is an eigenvector.
We now have the following result:

Theorem 4.9.6. Let II be a representation of SU(3) and 7 be a representation of
Lie(SL3(C)). If X is a weight for m, then w.\ is also a weight for m for all w € W.
Also, A\ and w.\ have the same multiplicity, where the multiplicity of a weight is equal

to the dimension of a weight space.

Proof. First note that for H,H' € h, w = [u] € ¥(u € N) = uz, a coset. Then
we have (w.H,H') = (uHu™',H'"Y = tr((uHu ')*H') = tr(uHu 'H'), where we
are using the fact that we have diagonal and unitary matrices. We also have that
(Hyw ' HY =tr(Hv *Hu) = tr(uH 'u'H") = (w.H, H').

Now, say A\ is a weight with weight vector v. Then for al uw € N, H € h, we
have 7(H)II(u)v = M(u)L(w 7w (H)(uw)v = T(u)r (v Hu)v = T(u)(\, v Hu)v,
where we note that u"'Hu € h. This then equals TI(u)(\, w™ . H)v, where w = [u],
which then equals (w.\, H)II(u)v. So w.\ is a weight with weight vector IT(u)v.

Now, recall that II(u) is an invertible linear map from V' to itself. So we also have
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II(u) : Ex — Ey.\, which can also have an inverse map II(u™!). So we have E\ ~ E,, »,

and so dim(E)) = dim(FEy.)). O
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Chapter 5

Physics Applications

This chapter covers some brief physical applications of the mathematical work we
have looked at, as well as context necessary for those without a physics background.
We will go through an example of constructing an irreducible representation of highest
weight % using a more physics-based approach (although it will still be mathematically
rigorous) and explain what that means from a physics perspective, although we will

need to go over some facts and define certain objects first.

5.1 The Rotation Group

A very important note is that SO(3) is known as the rotation group because it is
the group that models the rotations in a three-dimensional space; that is, if you take
the origin of R?, then SO(3) is the group of the rotations about that origin. So SO(3)
is an important group because it is one that represents the physical world in which
we live. We ignore the details of why this is the case, but it is common knowledge for
physicists, so we accept it.

Now, we know that SO(3) is a Lie group and Lie(SO(3)) is its corresponding Lie
algebra. We also know that Lie(SO(3)) = Lie(SU(2)). What we are going to do

in the next section is construct an irreducible representation of Lie(SU(2)) with a
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highest weight of % While we will not go in-depth with the details, note that this is
useful in physics because of the connection we just made: Lie(SU(2)) = Lie(SO(3)),
which is the corresponding Lie algebra of SO(3), the rotation group that models the

real world we live in.

5.2 The Physics Approach

We call this section the Physics Approach not because we are necessarily using a lot
of physics information - it is still mainly pure mathematics - but because this specific
way of going about it is how a physicist would. The notation would vary slightly and
some of the details might not be figured out with as much mathematical precision,
but the basic form is very much what a physicist would see. So let’s begin!

Note the following information, some of which we have mentioned before, all of

which comes from Hall’s book [4]:

e For compact Lie groups, their representations are isomorphic to unitary repre-

sentations.

e If a Lie group representation II is unitary, then its corresponding Lie algebra
representation 7 satisfies m(g)* = —m(g) for all g in the Lie algebra (note that

we discussed this earlier).

e We know that SU(2) is compact (and we can ignore what exactly being compact
means). So II: SU(2) — GL,(C) is always unitary or isomorphic to a unitary
representation, and so the Lie algebra representation corresponding to II, 7 :
Lie(SU(2) — M,(C), either satisfies m(g)* = —n(g) for all g € Lie(SU(2)), or

7 is isomorphic to a representation with this skew self-adjoint property.

e We also know that if a Lie group G is simply connected, then all representations

7 of Lie(G) come from the representations I of G.
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e Since we know that SU(2) is simply connected, all Lie(SU(2)) representations
7 come from SU(2) representations. Thus, for a Lie algebra representation r :

Lie(SU(2)) — M, (C), we always have 7(g)* = —m(g) for all g € Lie(SU(2)).

Let m : Lie(SU(2)) — M,(C) be a Lie algebra representation. We choose our

basis for Lie(SU(2)) to be the following matrices:

0 =t

IS
o
o

e

01 = ) , 09 = , 03 =

[\

IS
=}

N[

Note that this is the same basis we chose earlier when we worked on this, way
back when, and so we know that these satisfy the commutation relations: |01, 0s] =
03, (02, 03] = 01, and [o3, 01] = 0.

By our bullet notes above, we have that 7(ox)* = —m(0y). Since 7 is a representa-
tion, we then get —m (o) = w(—oy). Finally, since oy, € Lie(SU(2)), we end up with
w(—ox) = mw(o}). So m(ox)* = 7w(o}) Now define J, = —in(oy), where k € {1,2,3}.
Then we get that J; = (—in(oy))" = in(ox)* = in(o}) = in(—ox) = —in(op) = Ji,
which means that J, is Hermitian.

Now let’s go over some commutation relations. We have [Jy, Jo] = J1Jy — Joy =
m(o1)m (o) — w(og)m(01) = [7(01), 7(02)] = 7([01, 09]) = 7(03) = iJ5. Repeating this
process, we find that [Jy, J5] = iJ; and [J3, J1| = iJs.

We can also define J? = J + J3 + J2. Then [J?, Ji] = 0. For example,

[J2, ] = J2J; — J,J?
= (JE+ J3+J2)J — Ji(JE+ T3+ J3)
= B4 J2 4 J2J — = JE— JyJ2
= J3J — I3+ T3 — I J3
= J20y — JodyJy + JodiJy — 1 J2 4 J3 — Js v Js + JsJyJs — JyJ2
= Jo[Jo, J1] + [J2, J1]Jo + J3[J5, J1] + [ 3, J1] T3
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= —iJoJs —iJs o +id3 Sy + 1o )3

Also note that [J2, J] =0 = J2J, — L JJ? =0 = J?J, = JpJ>
Now we will define J, = J; &= i.J5. Then,

Jod_ = (L +ide)(Jy —ide) = JF —iJyJy +idoJy + J3.
Similarly, J_J, = J +iJyJy — iJoJ; + J3. So adding these together gives us
JoJ_ +J J=2J}+2J3.
Thus, we have
=T+ I3+ J;=5(JeJ_+ J_Jy) + J.
Also,

i J ) = Jod_ — J_Jp=J? —idyJy +idady + J2 — (J2 +idy o — iy + J2) =
20T, Ty + 20y dy = 2o, Ji] = 2.

Next, we have

[J+, Jg] - (Jl "— ZJZ)J:), — J3(J1 + ZJQ) — J1J3 + ’iJQJg - J3J1 - iJgJQ -
[y, J5] + i Ja, J5) = —ido — Jp = —(Jy 4+ iJo) = —J .

Similarly, [J_, J3] = J_. Thus, we have that [Ji, J3| = FJ5.
Moving forward, recall that we said [J2, Jy] = 0 for k € {1,2,3}. So [J?, J3] = 0,

or J2J3 = J3J?. If we presume that we have distinct eigenvalues, we have

J?v = v

J3v = mw.
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This follows from a theorem we showed in Chapter 2, although we note that even if
we presumed eigenvalues were not distinct, this would still work. However, we omit
the details of this.

Note that [Ji, J3] = FJy = JoJs — J3Jr = FJo — J3Jp = £JL + JoJs.
So JyJiv = (£Jx + JrJs)v = £Jp0 + Jodsv = £Jv + Jome = (£1 + m)Jyv =
(m £ 1)Jrv. Therefore, we have that JsJov = (m £ 1)Jy0.

We also have J2Jyv = J2(J; £ id)v = (J2J, £ iJ?J)v = (J1J? £ iy J?)v =
(J1 £ iJy)J?v = Jp v = AJyv. Thus, we have J2(J1v) = A(J1v).

So we have

J2(Jv) = A(Jv)
JgJ:tU = (m + 1)J:|:U.

Recall that any nonzero vector can be normalized. So
(Jpv, o) >0 = (Jpo)* o >0 = v* i Sy >0 = v*Jiv >0

since we know that J; is Hermitian (and therefore J, = J;). Utilizing this, we get

that

v 0 = o (JE 4+ JE + JEv = v v = vt SR + vt Jiu + vt JRu

= \*v = v*Jiv + v*Jiv + mPvtu

since v*Jiv = v*J3JJsv = v*Jsmu = mu*Jsv = mu*mu = m*v*v. We know that v
can be normalized (since v is an eigenvector and therefore nonzero), so we have that
v*v = (v,v) = 1. This means that we end up with \ = v*J2v + v*J2v + m?. Now,
v*Jiv > 0 and v* Jiv > 0 because we said that v*.J2v > 0. So we finally end up with
A=v"Jv+v'Siv+m?>m? = A>m? =
A—m?>0.

Note that since Lie(SU(2)) is a finite-dimensional vector space, there are a finite

number of eigenvalues. So if we start with J5J,w = (m + 1)w (where w is our
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eigenvector), we can apply J, on w a finite number (say n) times, eventually giving
us J3(J4)"w = (m + n)(Jy)"w. Since n was our maximum finite number, we could
not have J3(J, )" w = (m+n+1)(J; )" tw, where (J, )" w is an eigenvector. But
we know this formula still needs to be true, which means that (J,)""'w = 0 because
that eliminates it from being an eigenvector.

With this all being said, we can let j = m + n such that J5(J.)"w = j(J;)"w.
Using our earlier terminology, j would be a highest weight. If let v = (J)"w for the
sake of easier notation, we have that J, v = 0. This implies that J_J,v = 0. So we get
0=J_Jyw=(J1—iJo)(Ji+iJo)v = (Ji+iJyJo—iJo 1 +J3)v = (J2—J3+i[ ]y, Jo])v =
(JP—J2—T3)v = J*w—J2v—J3v = Av—j2v—jv=(A—j2—j)v. So 0= (A—j2—j)v.
Since v is an eigenvector, v # 0, and so we must have that A — j2 — j = 0, which
implies that A = j2 +j = j(j + 1).

We have a similar result by letting j' = m — n such that J5(J_)"w = j'(J_)"w.
Then we say j’ is a lowest weight. Similar to what we did with j, we get that
A=j(j/—=1). Thus, we have that j(j +1) =7 (-1 = j=—jorj=7j5 -1
But j’ is the smallest weight, so j # j' — 1, as that implies that ;' — 1 is the smallest.
So we get that j = —j’. Since J_ lowers the value of m by 1, it is an integer number
of times to go from j to —j. Since we are constantly subtracting by 1, this gives us a
total of 27 steps (e.g., to go from 5 to —5, you have to subtract 1 ten times, or 2 % 5).
But we said this was an integer number, and so j must be a half-integer multiple.
Thus, our highest and lowest weights must be half-integer multiples.

Now we note that Ji = (J; +iJy)* = Jf —iJ; = Jiy —iJy (since we know that Jj
is Hermitian). But this is just J_. Similarly, we have that J* = J,. Thus, we have
Ji = Js.

We also know that since Jiv is a nonzero vector, we can normalize it to get
J1v = cyw, where c4 is a scalar and w is a normalized vector.

We now have v*J_Jyv = (Jpv)*Jiv = (cyw)cyw = wicieiw = cleiw'w =
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¢’ ¢y (since w is normalized). But this just equals |c.|? since |a] = v/a*a for a vector
a.

But we also have that v*J_J,v = v*(J? — J3 — J3)v = v*(J?v — J2v — Jyv) =

2 2

v*Av — v*mv — v*'mv = A — m® —m (since we could choose v to be normalized, and

therefore we get v*v = 1 once we move around the scalars). But A = j(j + 1), so we

get j(j +1) — m?* —m. So we end up with [c; > =j(j +1) —m? —m = |cy| =

:t\/j(j+1)—m2—m

= |cy| =+/4(j +1) — m2 — m since |c;| must be positive. Then we get that

cp = +/j(G+1) —m2—m. But |c;| = \/cicy, and so our square root must be

positive. So we finally, we end up with ¢y = /(j —m)(j +m + 1). Similarly, c. =

V(i +m)(j —m+1). Thus, we have that

Jiv =ciw = Jiv= \/(j$m)(j +m+ 1w.

We have shown a lot of mathematics, and so now we will show an example utilizing

what we have learned.

5.3 Example with Highest Weight of %

Say we have a highest weight of j = % (which we are allowed since we said they must

be half-integer multiples). Then the lowest weight is —j = —%. Since m values go

up and down by 1 each time, and we know it cannot get any higher than % (or lower

than —%), we know that the only possible values for m are % and —%. Then we have

that, for a vector v,

Jsv =20

Jaw = —1w.

Now, let
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1 0
v = and w = ,

0 1

since they are easy enough matrices to work with, and try to construct a representa-
tion from here. Then since v and w are 2 x 1 matrices, J3 must be a 2 x 2 matrix

(for matrix multiplication to work). We have that

N
NI

% — _ = ﬁa:%andc:O.

o
ISH
[an}
[en}
e}
o
e}

a b 1
=0 -!) = b=0andd=—1.
2 2
c d 0
Thus,
10 1 0
Js= |2 =1
0 —3 0 -1
Since % is the highest weight, we know that J,v = 0. Also, Jsw = —%w and we
know that JsJ w = (m+1)J,w. In this case, m = —%, so JsJiw = %J+w. Since we

presumed eigenvalues were distinct, it must be the case that J,w = c v, where c;

is a scalar that has a formula we know. So we get Jyw = \/(j —m)(j +m+ 1)v =
JE= DG+ + e =w.

So far, we have

J+’U:0

Jrw = .

This means that

and
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= — f=1and h=0.

g h 1 0
Thus, we have
0 1
J+:
0 0
So
0 0
J_=Ji =
10

Since J, = J; +1iJy and J_ = J; — iJ,, we have:

J1:J+—iJ2 - Jl—iJ2:J++iJ2—iJ2 - J_:J+—2iJ2 - J_—J+:

—2iJs.
We then get:
Jy—J 0! [0 % [0 1 :
Jo = 5= =5 =3 =3 since 7 = —i.
-1 0 L0 i 0
Finally, we end up with
o 0 1
Jl — J+ . iJ+2—iJ7 — 21J+_Z2{L.++1J7 — J+—5J7 — % 1 O

Thus, we have found J;, J5, and J3 given a highest weight of % We can go even
further and find out how the representation works, which is (from a mathematics
perspective) what we would really be interested in.

We have the following:

0 % 0 1 0 i
—i | =1 =Ji = —in(o1) = 7(o) = | = 7(01) = 09.
10 10 3 0
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— = % = Jy = —in(09) = 7(03) = = 7(02) =
10 i 0 -3 0
—03.
s o) 1 o0 | 3 0
—1 ' — 5 = J3 = —271—(0—3) —— 7T(03) - ) - 7-‘-(0—3) -
0 & 0 —1 0 —3
01q.

Thus, we have found how this representation acts on the basis elements of Lie(SU(2)),
and so we have constructed a representation of Lie(SU(2)) using a highest weight of
%. But what does this mean physically?

A particle in physics is defined as an irreducible representation, which our 7 is.
So we have found a particle with a highest weight of % We say that such a particle
has a spin of % Note that when the highest weight is %, the only possible weights
are % and —%. Physically, this means that our particle can either have spin up or spin
down. We call these the states of the particle. So essentially, the spin of a particle

corresponds to the highest weight, while the state of a particle can correspond to any

of its weights. Next, we will discuss what it means to combine particles.

5.4 Combining Particles

Let m; and my be two particles (irreducible representations) with spin (highest weight)
%. If both 7 and 7y were in a state (weight) of %, then adding them together would
give us 1. If one of them had a state of —% and the other had a state of %, we would
get 0. If they both had a state of —%, we would get —1. So when we combine these
particles, they can end up with a state of 1, 0, or —1. But what does it mean to
mathematically combine particles?

Consider, for example, a particle with 3 states and another particle with 2 states.

If you combined these particles, you would get a total 6 different states in this new,
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combined particle (this is because 3 * 2 = 6). Since we want a way to mathemat-
ically express multiplying particle states, what do we use? Well, since particles
are irreducible representations, the way that one “multiplies” irreducible represen-
tations is through tensor products. For example, if A and B were particles, then
dim(A® B) = dim(A)dim(B), and so it makes intuitive sense to say that combining
particles is just like computing tensor products of irreducible representations, as we
want a multiplicative-like operation.

For our particular case, we are looking at particles for Lie(SU(2)). For both
m and 7y, their corresponding weights are % and —%. Since each of these particles
have two possible weights, there are four possible ways to combine them. Let a;
be the weight vector corresponding to a weight of % for m; and B; be the weight
vector corresponding to a weight of —% for my. Similarly, let as and By be these
corresponding weight vectors for my. Just like with our work in the previous sections,
each of these particles will have J’s that have the same properties as we used above.
All of the J’s will be labeled the same as before, with J() corresponding to 7 and
J®? corresponding to m,. If there is no superscript, then it is the J corresponding to
the tensor product m ® ms.

Then we can say that J3(a; ® ay) = Jél)al Iy +IMa; ® Jél)ag, since Js is a
scalar multiple of a Lie algebra tensor product representation (where this follows by
definition). This then equals %al R+ ® %Oég = %(oq ®ag)+ %(oq Rag) = oy Q.
Since this has a scalar multiple of 1, this weight vector a; ® as has a corresponding
weight of 1. Similarly, the weight vector 5; ® By has a corresponding weight of —1.
When you combine an « with a 3, in both cases you get a weight of 0. Thus, we
can see how utilizing tensor products of these particles gives us states of 1, 0, or —1.
Using mathematical language, this means that tensor products of these irreducible

representations gives us weights of 1, 0, or —1. More could be done with tensor

products of these representations, but we will stop our discussion here.
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Chapter 6

Conclusion

We have reached the end of our journey through Lie theory. We started with some
interesting knowledge from linear algebra and topology to get a common base for our
audience. Then we looked at the interesting structures of Lie groups and Lie algebras,
and their relationship. Next, we saw how representation theory could be utilized in
this situation, in particular with our discussion of roots and weights. Finally, we used
some of what we learned to take a brief trip through physics. Hopefully you learned

some cool math (and physics) and enjoyed the ride!
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