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ABSTRACT

This thesis goes over various topics of Lie theory and is meant as an introduction

for those who have never studied the subject. This is accomplished by first reviewing

necessary background material, including topics from linear algebra and topology

(where no background knowledge is assumed), before proceeding to the main subject.

We start by discussing the matrix Lie group before discussing what a Lie algebra

is. We define a Lie algebra as a vector space with additional requirements before

defining it again with relation to a Lie group. We then explore various properties and

examples of this. Next, we turn to representation theory and how it can be applied

to Lie theory, including the important subject of roots and weights. Finally we finish

by briefly going over some connections Lie theory has with physics (no background

physics knowledge is assumed of the reader). Overall, the main goal of this thesis is

to be an accessible starting point for someone who has a strong background in linear

and abstract algebra, but has never studied Lie theory.
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Chapter 1

Introduction

The primary goal of this thesis is to provide a clear introduction to Lie theory for

those who have not studied it, but have a suitable background (a solid understanding

of linear and abstract algebra). No knowledge of representation theory is assumed,

but this is an important topic as well. We also use some results from topology, but

again, no prerequisite knowledge is presumed. We will review important background

necessary to understand new topics. As part of this goal, we also want to use this

knowledge to observe some interesting connections between Lie theory and physics.

No physics knowledge is expected of the reader.

This thesis started as a project during the summer of 2020 between Payton Linton

and myself. We worked together to understand Lie theory and he was an invaluable

source to bounce ideas off of. Being a physics major, he was also very helpful with

increasing my understanding of the physics contained here. Finally, he helped type

the sections on roots and weights, and he was always available to help proofread the

thesis. His help is greatly appreciated and I could not have done this without him.

For sources, we primarily used Brian C. Hall’s Lie Groups, Lie Algebras, and

representations (2015) [4]. Many of our definitions and theorems come from this

source, and it was one of my goals to go through parts of this book and make it as
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accessible as possible for those with a less sophisticated background. In particular,

we studied parts of the first four chapters, as well as Chapter 6, when studying Lie

theory. For the Physics Applications chapter, we looked closely at Chapter 4: Group

Theory and the Quark Model from Ta-Pei Cheng and Ling-Fong Li’s Gauge theory of

elementary particle physics [1]. Finally, we also consulted R. Shankar’s Principles of

quantum mechanics (2008) [5] andWoit’s Quantum theory, groups and representations

(2017) [7] to help digest some of the physics material.

The thesis is structured into five chapters. The first is this introduction, while

the second contains some important background material (such as topics from linear

algebra and elementary topology) deemed necessary to understand Lie theory. The

third chapter contains the essence of Lie theory (including Lie groups and Lie alge-

bras), while the fourth chapters uses that in a representation theory setting. Chapter

5 applies the concepts we have discussed to provide interesting physics connections.

We then finish the thesis with some concluding remarks.

Without further ado, we can now start Chapter 2 and dive into some linear algebra.
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Chapter 2

Background Material

This chapter will cover results from subjects such as linear algebra and topology, as

well as detail some of the notation we will be using throughout this thesis.

2.1 Linear Algebra

Before we begin, here are some important notes:

• For the entirety of this thesis, all vector spaces we are considering will be finite-

dimensional.

• We denote the trace of a matrix A by tr(A).

• We denote the transpose of a matrix A by AT .

• We denote the adjoint, or complex conjugate transpose, of a matrix A by A∗.

• We denote the n× n identity matrix by In.

Now we can begin with some important definitions from linear algebra.

Definition 2.1.1. The general linear group of degree n over a field F is defined

by GLn(F ) = {A ∈ Mn(F ) : det(A) 6= 0}. Since det(A) 6= 0 ⇐⇒ A is invertible,

this is also known as the set of n× n invertible matrices.
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Note that GLn(F ) is a group (hence its name) and that examples of fields F that

we can use are the complex field, C, and the field of real numbers, R. Also note that

for a finite-dimensional vector space V , GL(V ) ∼= GLn(F ).

Definition 2.1.2. The special linear group of degree n over a field F is defined

by SLn(F ) = {A ∈ Mn(F ) : det(A) = 1}. Since det(A) = 1 =⇒ det(A) 6= 0, the

special linear group is a subgroup of the general linear group.

Definition 2.1.3. The orthogonal group of degree n over a field F is defined by

O(n) = {A ∈ GLn(F ) : A−1 = AT}. Similarly, we can define the special orthogonal

group of degree n over a field F as SO(n) = {A ∈ SLn(F ) : A−1 = AT}.

Definition 2.1.4. The unitary group of degree n over a field F is defined by U(n) =

{A ∈ GLn(F ) : A−1 = A∗}. Note that if A is a real matrix, then the complex conjugate

transpose would just be the transpose, and so we would have U(n) = O(n). We can

also define the special unitary group of degree n over a field F by SU(n) = {A ∈

SLn(V ) : A−1 = A∗}.

Note that for V = R, we have that U(n) is a real vector space and not a com-

plex vector space because multiplying by an i scalar does not preserve the complex

conjugate transpose.

Before we move on, we will prove the following theorem, which we will refer to

again in the final chapter.

Theorem 2.1.5. Let A be an operator for a vector space V and v ∈ V be an eigen-

vector with a corresponding eigenvalue λ (so Av = λv). Then for another operator B

of V , if AB = BA and we presume that eigenvalues are distinct (you can’t have two

different eigenvectors get you the same eigenvalue), we have Bv = mv, where m is

another eigenvalue corresponding to v.

Proof. Let Av = λv and suppose that AB = BA. Then ABv = BAv = Bλv = λBv

(since scalars commute). Since we can’t have two different eigenvectors give us the
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same eigenvalue, Bv must be a scalar multiple of v. Thus, for a scalar m, Bv =

mv.

We will now define an inner product and prove a result about a common inner

product used.

Definition 2.1.6. Let V be a complex vector space. An inner product on V is a

map V × V 7→ C given by (u, v) 7→ 〈u, v〉 with the following properties:

1. Linearity in the second factor: 〈u, v1 +av2〉 = 〈u, v1〉+a〈u, v2〉 for all u, v1, v2 ∈

V and a ∈ C.

2. Conjugate symmetry: 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .

3. Positivity: For all v ∈ V , the quantity 〈v, v〉 ≥ 0, with 〈v, v〉 = 0 if and only if

v = 0.

Note that the first two points imply that 〈v1 + av2, u〉 = 〈v1, u〉+ a〈v2, u〉.

Theorem 2.1.7. For the vector space Mn(C), the Hilbert-Schmidt inner product

is given by the formula 〈A,B〉 = tr(A∗B) and, as its name suggests, is an inner

product.

Proof. We will show that it meets the three conditions required to be an inner product.

Let A,B,C ∈Mn(C) and α ∈ C.

1. Linearity in the second factor: We have 〈A,B + αC〉 = tr(A∗(B + αC)) =

tr(A∗B + αA∗C) = tr(A∗B) + αtr(A∗C) = 〈A,B〉+ α〈A,C〉.

2. Conjugate symmetry: We have 〈A,B〉 = tr(A∗B) = tr(A∗(B∗)∗) = tr((B∗A)∗) =

tr((B∗A)
T

) = tr((B∗A)), since transpose does not affect the diagonal entries,

which is all that matters when taking the trace. This is, by definition, 〈B∗, A〉.
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3. Positivity: We have 〈A,A〉 = tr(A∗A). Note that when you multiply matrices,

the diagonal entries of the new matrix product are simply the diagonal entries of

the previous matrices multiplied together. Since A∗ is the conjugate transpose,

and transposing does not affect diagonal entries, we are essentially multiplying

the diagonal entries of A with A, and adding them up since we are taking that

trace. But multiplying a number by its conjugate results in squares being added

together, so the trace must be greater than or equal to 0. The sum can only be

0 if each entry was 0. Thus, the positivity condition is satisfied.

Thus, this is indeed an inner product.

Recall that a unitary operator U has the property that 〈Uv, Uw〉 = 〈v, w〉 for

all v, w. Note that 〈Uv, Uw〉 = UU∗〈v, w〉 since 〈Uv,w〉 = U〈v, w〉 and 〈v, Uw〉 =

U∗〈v, w〉 by rules of an inner product. Also recall that a unitary matrix, say U , has

the property that U−1 = U∗, or UU∗ is the identity. These both being called unitary

makes sense since 〈Uv, Uw〉 = 〈v, w〉 ⇐⇒ UU∗〈v, w〉 = 〈v, w〉 ⇐⇒ UU∗ = 1 ⇐⇒

U∗ = U−1.

Now we will go over the concept of normalization, which will be useful in our last

chapter.

Definition 2.1.8. Let V be a finite-dimensional vector space, 〈·, ·〉 be an inner product

on V , and v ∈ V . If 〈v, v〉 = 1, then we say that v is normalized. We say that a

vector v can be normalized if multiplying it by a real number results in a normalized

vector.

Theorem 2.1.9. Let V be a finite-dimensional vector space with an inner product

defined by 〈v, v〉 = v∗v for all v ∈ V . If v 6= 0, then v can be normalized.

Proof. We defined our inner product as v∗v = 〈v, v〉, which we know (by definition

of inner product) must be greater than 0 for a nonzero vector v. So we have that

〈v, v〉 = a > 0, where a ∈ R. If we let w = v√
a
, then 〈w,w〉 = 〈 v√

a
, v√

a
〉 = 1√

a
1√
a
〈v, v〉
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by rules of inner product (where ( 1√
a
)∗ = 1√

a
since a ∈ R). This then equals 1

a
a =

1.Thus, w is normalized, and so we have shown that any nonzero vector v can be

normalized.

Now we will go over a more complicated group and a theorem utilizing it.

Definition 2.1.10. Let

Ω =

 0 In

−In 0

.

The complex symplectic group is defined by Spn(C) = {A ∈ GL2n(C) : −ΩATΩ =

A−1}. The real symplectic group is defined by Spn(R) = {A ∈ GL2n(R) : −ΩATΩ =

A−1}.

Note −ΩATΩ = A−1 =⇒ −ΩATΩA = I2n. Also note that −Ω = Ω−1 and

Ω2 = −Ω, as seen below:

Ω ∗ (−Ω) =

 0 In

−In 0


 0 −In

In 0

 =

In 0

0 In

 = I2n, so −Ω = Ω−1

Ω2 = ΩΩ =

 0 In

−In 0


 0 In

−In 0

 =

 0 −In

In 0

 = −Ω.

Now that we have discussed the complex symplectic group, we can discuss the

following result.

Theorem 2.1.11. Sp1(C) = SL2(C) and Sp1(R) = SL2(R)

Proof. Note that if n=1, then for an arbitrary matrix A =

a b

c d

 ∈ Spn(C), we

have the following:

−

 0 1

−1 0


a c

b d


 0 1

−1 0


a b

c d

 =

1 0

0 1

.
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Computing this tells us that it is true if and only if ad−bc = 1. This means that the

determinant must be 1 for all A ∈ Sp1(C). Thus, we can say that Sp1(C) = SL2(C).

It follows, using the same process, that Sp1(R) = SL2(R).

2.2 Dual Space

In this section, we go over some of the basics of the dual space; namely, its definition

and two resulting theorems.

Definition 2.2.1. For a complex vector space V , the dual space of V is defined by

V ∗ = Hom(V,C) = {f : V → C : f is a linear transformation}.

Theorem 2.2.2. Let V be a complex vector space. Then its dual space V ∗ is a

complex vector space.

Proof. Since for all f ∈ Hom(V,C), f is (by definition) a linear transformation, we

have that closure under addition, associativity under addition, commutativity under

addition, scalar distributivity, and scalar associativity all hold.

Now, if f0 : V → {0}, then f0 is a linear transformation from V to C, and f0 is

the additive identity of Hom(V,C). Also, since V has an identity element for scalar

multiplication, call it 1, we also have it for any linear transformation in Hom(V,C).

This also gives us that every linear transformation has an additive inverse, as we just

multiply any f by −1. Thus, Hom(V,C) is a complex vector space.

Theorem 2.2.3. Let V be a complex vector space with basis {e1 . . . en}. Then its

dual space V ∗ has a basis {f1, ..., fn}, where f : V → C and fi(ej) = 1 if i = j and

fi(ej) = 0 if i 6= j. Note that this theorem implies that dim(V ) = dim(V ∗).

Proof. We want to show that {f1, . . . , fn} is a basis for V ∗. So we need to show that it

is linearly independent and spans V ∗. We will start by showing linear independence.
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Let ai be a scalar for all 1 ≤ i ≤ n. Suppose a1f1 + · · · + anfn = 0. Then

(a1f1 + · · · + anfn)(ei) = 0, for some 1 ≤ i ≤ n. Since fi is a linear transformation

for all i, we have a1f1(ei) + · · ·+ anfn(ei) = 0. But fi(ej) 6= 0 if i 6= j, so we get that

aifi(ei) = 0. But since fi(ej) = 1 if i = j, we get that ai = 0. Since ai was chosen

arbitrarily, this must be true for all i. Thus, we have linear independence.

Now we want to show that our potential basis spans V ∗. Let f ∈ V ∗. We want

to show that f = f(e1)f1 + · · · + f(en)fn. Note that (f(e1)f1 + · · · + f(en)fn)(ei) =

f(e1)f1(ei) + · · ·+ f(en)fn(ei) = f(ei) (by similar reasoning as above). Thus, we can

say that f = f(e1)f1 + · · ·+ f(en)fn.

2.3 Tensor Products

In this section, we discuss the complicated topic of tensor products. Since these

are difficult to understand for those who have never studied them, we will try to

give some intuition and lean gently into the topic before formally defining them.

Much of the beginning of this section comes from a YouTube video created by Jim

Fowler (a mathematics professor at Ohio State University), known simply as Tensor

products [3]. It helped the author understand the big idea behind tensor products,

and so we are now introducing tensor products in the same manner here.

Let U, V, andW be finite-dimensional vector spaces. Then we can take the bilinear

space U × V and map it into W , or U × V → W . Note that this is a bilinear map

since U × V is bilinear. The idea of tensor products is to turn this bilinear map into

a linear map, which is easier to understand.

Say U ⊗ V is the vector space of all possible linear combinations of u⊗ v, where

u ∈ U , v ∈ V , and the following conditions are satisfied:

1. u⊗ v1 + u⊗ v2 = u⊗ (v1 + v2) for all u ∈ U and v1, v2 ∈ V

2. u1 ⊗ v + u2 ⊗ v = (u1 + u2)⊗ v for all u1, u2 ∈ U and v ∈ V

9



3. (λu)⊗ v = λ(u⊗ v) = u⊗ (λv) for all u ∈ U , v ∈ V , and scalars λ.

We set up our conditions this way so that the linear map U ⊗V → W is the same

as the bilinear map U × V → W . (Again, we want to turn our original bilinear map

into an easier to work with linear map.)

For example, for a bilinear map f : U × V → W , we have f(u, v1 + v2) =

f(u, v1) + f(u, v2). For the corresponding linear map g : U ⊗ V → W , we have

g(u ⊗ (v1 + v2)) = g(u ⊗ v1 + u ⊗ v2) = g(u ⊗ v1) + g(u ⊗ v2). Note the similarity

between these two maps in how they function, but the tensor product map (which

we will rigorously define in a little) is linear. Now let’s look at a specific example.

Example 2.3.1. Note that the vector space R2 has dimension 2. Say {e1, e2} is a

basis for R2. Then the tensor product R2 ⊗ R2 is spanned by {e1 ⊗ e1, e1 ⊗ e2, e2 ⊗

e1, e2 ⊗ e2}. If we wanted to add, for example, the first two basis elements, we would

have (e1⊗ e1) + (e1⊗ e2) = e1⊗ (e1 + e2). Note that we can not simplify, for example,

(e1 ⊗ e1) + (e2 ⊗ e2), as everything in a vector space is a sum of its basis elements

(and a tensor product is a vector space).

Also, note that (e1+e2)⊗(e1+e2) = (e1⊗e1)+(e1⊗e2)+(e2⊗e1)+(e2⊗e2), which

is the sum of our basis elements. If we had a bilinear map f , then f(a + b, a + b) =

f(a, a) + f(a, b) + f(b, a) + f(b, b), and so again we see how our linear tensor product

map functions like a bilinear map.

We can also see in this example that dim(R2 ⊗ R2) = 4, and it is a fact that

dim(U ⊗ V ) = dim(U)dim(V ) for all finite-dimensional vector spaces U, V .

Now we that we have the general idea behind tensor products, let us formally

define it.

Definition 2.3.2. If U and V are finite-dimensional real or complex vector spaces,

then a tensor product of U with V is a vector space W , together with a bilinear map

φ : U × V → W with the following property: if ψ is any bilinear map of U × V
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into a vector space X, there exists a unique linear map ψ̃ of W into X such that the

following diagram commutes:

U × V W

X

φ

ψ ψ̃

Note that the bilinear map ψ from U × V into X turns into the linear map ψ̃ of

W into X.

There are many fascinating results within the area of tensor products, but we will

only mention the following (although we will return to them when we discuss tensor

products of representations).

Theorem 2.3.3. Let U, V be finite-dimensional vector spaces. Then:

1. The tensor product U ⊗ V exists

2. dim(U ⊗ V ) = dim(U)dim(V ).

3. For A : U → U and B : V → V , where A and B are linear operators, there

exists a unique linear operator from U ⊗ V to U ⊗ V , denoted A ⊗ B, such

that (A ⊗ B)(u ⊗ v) = (Au) ⊗ (Bv) for all u ∈ U and v ∈ V . Furthermore,

if A1, A2 are linear operators on U and B1, B2 are linear operators on V , then

(A1 ⊗ B1)(A2 ⊗ B2) = (A1A2)⊗ (B1B2).

We omit the proofs of these theorems, although they can be found in Chapter 4

of Hall’s book [4]. For further reading on tensor products, see Chapter 10 of Bruce

N. Cooperstein’s Advanced linear algebra (2015) [2].
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2.4 Topology

In this section, we go over some topological background relevant to our discussion

of Lie theory. This is not meant to be a detailed discussion of all topology relevant

to the topic, but instead a brief introduction so that we can use this information

later. The definitions, examples, and results contained here are considered common

knowledge for the subject and serve as a useful introduction for those unfamiliar with

the subject. We begin by defining a topological space.

Definition 2.4.1. A topological space is a pair (X, τ) of sets where τ is a collection

of subsets of X satisfying the following:

1. Both ∅ ∈ τ and X ∈ τ .

2. If {Xi}i∈I ⊆ τ , then ∪i∈IXi ∈ τ , where I is a set that can be infinitely uncount-

able.

3. If X1, . . . , Xn ∈ τ , then X1 ∩ · · · ∩Xn ∈ τ .

The sets in τ are called the open sets.

Note that a topological space is not necessarily a vector space. We will now move

on to examples of topological spaces.

Example 2.4.2. These first two are examples of topological spaces.

• X = {1, 2, 3}, τ = {∅, X}

• X = {1, 2, 3}, τ = {∅, X, {1}, {2}, {1, 2}}

The following is NOT a topology: X = {1, 2, 3} with τ = {∅, X, {1, 2}, {2, 3}}. This

is not a topology since the intersection of the last two subsets is {2} and that is not

in τ .
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Now we will define what it means for a subset to be closed and then go over an

example and theorem.

Definition 2.4.3. Let (X, τ) be a topological space. Then a subset C of X is closed

if X \C is open (which means it is in τ). So the complement of an open set is closed

and the complement of a closed set is open.

Example 2.4.4. Let X = {1, 2, 3} and let τ = {∅, X, {1}, {2}, {1, 2}}. Since X \

{3} ∈ τ , that set is open. Thus, {3} = X \ {1, 2} is closed. Similarly, ∅ is closed

since X \ ∅ = X ∈ τ and is therefore open. Finally, X is closed since X \X = ∅ ∈ τ

and is therefore open.

Theorem 2.4.5. If f : X → Y is any function, then f−1(Y \ C) = X \ f−1(C).

Proof. Note that x ∈ f−1(Y \ C) ⇐⇒ f(x) ∈ Y \ C ⇐⇒ f(x) /∈ C ⇐⇒ x /∈

f−1(C) ⇐⇒ x ∈ X \ f−1(C). Thus, we have equality.

Now we define what it means for a function between topological spaces to be

continuous and prove a result using this.

Definition 2.4.6. Let X and Y be topological spaces. A function f : X → Y is

continuous if for all U ⊆ Y open, f−1(U) is open in X.

Theorem 2.4.7. Say f : X → Y is continuous. If C ⊆ Y is closed, then f−1(C) ⊆ X

is closed.

Proof. Let f : X → Y be a continuous function and let C ⊆ Y be closed. So Y \C is

open, which implies that f−1(Y \ C) is open since f is continuous. By the previous

theorem, this is equivalent to X \ f−1(C), so this must also be open. Thus, f−1(C)

is closed because the complement of an open set is closed.

We now note the following before moving forward.

Definition 2.4.8. Any set of a single element is known as a singleton.
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Theorem 2.4.9. A singleton is closed in a topological space.

It is also a fact that Lie groups, which we will discuss in the next chapter, are

topological spaces. So they are topological groups. We omit the details of this. We

can now prove the next theorem.

Theorem 2.4.10. The kernel of a Lie group homomorphism is closed.

Proof. Let Φ : G → H be a Lie group homomorphism. Then ker(Φ) = {X ∈ G :

Φ(X) = eH} = Φ−1({eH}). Since all singletons are closed, {eH} is closed. Thus, by

a previous theorem, Φ−1({eH}) = ker(Φ) is closed.

Our final theorem in this section will be useful later, but we mention it here as it

is relevant to topology.

Theorem 2.4.11. Let V and W be finite-dimensional real or complex vector spaces.

Then any linear transformation T : V → W is continuous. More importantly, we

note that a continuous function commutes with a limit.
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Chapter 3

Introduction to Lie Theory

This section will cover Lie Groups, Lie Algebras, their connection, and various results

stemming from them.

3.1 Lie Groups and the Exponential

Definition 3.1.1. A matrix Lie group is any subgroup G of GLn(C) such that if

Am is any sequence of matrices in G and Am converges to some matrix A, then either

A ∈ G or A /∈ GLn(C) (which would mean A is not invertible). We also call G a

closed subgroup of GLn(C).

Examples of matrix Lie groups include the following:

• The general linear groups, GLn(C) and GLn(R), since they are subgroups of

the general linear group

• The special linear groups, SLn(C) and SLn(R) (the determinant is a continuous

function, so if Am is a sequence of matrices with determinant 1 and Am converges

to A, then A also has determinant 1).

• The orthogonal and special orthogonal groups, O(n) and SO(n).
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• The unitary and special unitary groups, U(n) and SU(n).

• The complex and real symplectic groups mentioned earlier, Spn(C) and Spn(R).

An important topic when discussing Lie groups is the exponential, whose definition

we show below.

Definition 3.1.2. If X is an n×n matrix, we define the exponential of X, denoted

eX , by the (usual) power series eX =
∑∞

m=0
Xm

m!
, where X0 is defined to be the identity

matrix In and where Xm is the repeated matrix product of X with itself.

It is a fact that eX converges for all X ∈ Mn(C) and that eX is a continuous

function of X. We also have various properties of eX that will be useful for us.

Theorem 3.1.3. Let X and Y be arbitrary n×n matrices. Then the following hold:

1. e0 = In

2. (eX)
∗

= eX
∗

3. eX is invertible and (eX)
−1

= e−X

4. e(a+b)X = eaXebX for all a, b ∈ C

5. If XY = Y X, then eX+Y = eXeY = eY eX

6. If A ∈ GLn(C), then eAXA−1
= AeXA−1

7. e(X,Y ) = (eX , eY ).

We omit the proofs of the first 6 results, although they can be found in Chapter

2 of Hall’s book [4]. We will, however, prove the final result.

Proof. We have e(X,Y ) =
∑∞

n=0
(X,Y )n

n!
, by definition. To raise an ordered pair to a

power n, you simply raise each component to n, and so we get
∑∞

n=0
(Xn,Y n)

n!
. Since

this is a summation of an ordered pair over n!, we can “distribute” the summation and
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n! into each component, yielding (
∑∞

n=0
Xn

n!
,
∑∞

n=0
Y n

n!
). This is then, by definition,

(eX , eY ).

The next theorem is useful as well.

Theorem 3.1.4. Let X be an n× n complex matrix and t ∈ R. Then etX ∈ Mn(C)

and d
dt
etX = XetX = etXX. In particular, when evaluating at t = 0, we get X.

Note that in general, the derivative (as we will call this) of eX+tY is not equal to

Y eX+tY . We also note that general derivative rules work, including the product and

chain rules, which we will utilize.

We will now go over a few interesting results before diving into the next section,

on Lie algebras.

Theorem 3.1.5. Let T be a linear transformation between finite-dimensional real or

complex vector spaces. Then the derivative function commutes with T (etX).

Proof. Say T : Mn(C) → Mn(C). (This same process will work when utilizing real

entries.) Then d
dt
T (etX) = limh→0

T (e(t+h)X))−T (etX)
h

(note that the derivative is with

respect to t). Since T is a linear transformation, we can pull the T out to get

limh→0 T ( e
(t+h)X−etX

h
). Finally, since T is continuous, it will commute with this limit.

But this new limit is d
dt

(etX). So we have T d
dt

(etX). Thus, we have commutativity.

Theorem 3.1.6. Every invertible n × n matrix can be expressed as eX for some

X ∈Mn(C). Since Lie groups are subsets of invertible matrices, all elements of a Lie

group can be expressed as eX for some X ∈Mn(C).

Theorem 3.1.7. For any X ∈Mn(C), det(eX) = etr(X).

Proof. IfX is diagonalizable with eigenvalues λi, then eX is diagonalizable with eigen-

values eλi (note that diagonalizing a matrix does not change its eigenvalues). Thus,

the trace of X is the sum of its eigenvalues and det(eX) = eλ1 ...eλn (since the deter-

minant of a matrix is the product of its eigenvalues), and this equals eλ1...λn (by our
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properties of exponentials since eigenvalues commute), and this finally equals etr(X)

(since tr(X) is the sum of its eigenvalues when diagonlized). We omit the proof of

the case where X is not diagonalizable.

Theorem 3.1.8. Let

A =

a b

c −a

,

where a, b, c ∈ C. Then etA ∈ SL2(C) for all t ∈ R.

Proof. The theorem is really asking us to show that det(etA) = 1 for all t ∈ R. Note

that A is a matrix with complex entries. Since t ∈ R, we know that the matrix tA

will also be a matrix of the same form as A. So we can essentially ignore the t and

just say tA is equivalent to a matrix of the same form as A, call it X.

Note eX =
∑∞

m=0
Xm

m!
. Let’s look at a simpler case of X, where b = c = 0. Then we

have

X =

a 0

0 −a

.

Expanding this eX out, we get

1 0

0 1

+

a 0

0 −a

+


a 0

0 −a


2

2!
+ ... and so on.

This means that

eX =

∑∞m=0
am

m!
0

0
∑∞

m=0
(−a)m

m!

,

which implies that

det(eX) = eae−a = e0 = 1.
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Now, how do we generalize this? Note that this specific case is really a diagonal

matrix. So it is enough to show that our matrix X (which is basically the same as A)

is diagonalizable. If we can show that X is diagonalizable then we are good because

that means it can be of the form written above and therefore the determinant is 1!

Let A =

a b

c −a

. Let’s find some eigenvalues:

|A− λI| = (a− λ)(−a− λ)− bc = 0 =⇒ −a2 + λ2 − bc = 0 =⇒ λ = ±
√
a2 + bc.

Let λ equal the positive square root and −λ equal the negative square root.

Now we find some eigenvectors:a− λ b

c −a− λ


x
y

 =

0

0

.

Then we get ax− λx+ by = 0 =⇒ x = −by
a−λ . If we do the same thing for −λ, we get

x = −by
a+λ

. Letting y = 1 gives us the eigenvector matrix as follows:

P =

 −b
a−λ

−b
a+λ

1 1

.

So |P | = −b
a−λ + b

a+λ
= −2bλ

a2−λ2 . Now we know how to find the inverse of a 2x2 matrix;

you take our original matrix P , then you switch the positions of the main diagonal,

multiply the off-diagonal by−1, and divide the whole thing by |P |. So we get that

P−1 =

λ2−a2
2bλ

λ−a
2λ

a2−λ2
2bλ

a+λ
2λ

.

To actually diagonalize this matrix, we compute P−1AP .

The rest just involves computation. We get for our final diagonalized matrix the

following:
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D =

λ 0

0 −λ

.

Thus, we have shown that X is diagonalizable, and therefore eX has determinant

1.

3.2 Lie Algebras

Our main topic for this thesis is Lie theory and, in particular, Lie algebras. We will

define it using a more linear algebra approach first, where we define it as a specific

type of vector space, and then we will define it with its relation to Lie groups. And

we will show that these two definitions are actually equivalent!

Definition 3.2.1. A finite-dimensional real or complex Lie algebra is a finite-

dimensional real or complex vector space g together with a map [·, ·] : g × g → g

that satisfies the following properties:

1. [·, ·] is bilinear, or [X + λY, Z] = [X,Z] + λ[Y, Z] and [X, Y + λZ] = [X, Y ] +

λ[X,Z] for all X, Y, Z ∈ g and λ a scalar in our chosen field.

2. [·, ·] is skew-symmetric, or [X, Y ] = −[Y,X] for all X, Y ∈ g. Note that this

implies [X,X] = 0 for all X ∈ g.

3. The Jacobi identity holds, or [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 for all

X, Y, Z ∈ g.

We say that two elements X and Y of a Lie algebra g commute if [X, Y ] = 0, and

we say that a Lie algebra is commutative if this is true for all of its elements. The

map [·, ·] is referred to as the bracket operation on g. Also, note that Lie algebras

are algebras (which may not have associativity), where the “vector multiplication” is

defined by our Lie bracket.
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We will now prove some examples of vector spaces being Lie algebras.

Theorem 3.2.2. Let [·, ·] : R3×R3 be given by [x, y] = x×y, where x×y is the cross

product. Then R3 is a Lie algebra.

Proof. Note that R3 is a vector space, so we just need to show that the cross prod-

uct is bilinear, skew-symmetric, and satisfies the Jacobi identity. Let (x1, x2, x3) =

x, (y1, y2, y3) = y, (z1, z2, z3) = z ∈ R3 and λ ∈ R. Recall that the cross product x× y

is defined by x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

1. Bilinearity: We have [x+ λy, z] = (x+ λy)× z

= ((x2+λy2)z3−(x3+λy3)z2, (x3+λy3)z1−(x1+λy1)z3, (x1+λy1)z2−(x2+λy2)z1)

= (x2z3 +λy2z3−x3z2 +λy3z2, x3z1 +λy3z1−x1z3−λy1z3, x1z2 +λy1z2−x2z1−

λy2z1)

= (x2z3−x3z2, x3z1−x1z3, x1z2−x2z1) + (λy2z3 +λy3z2, λy3z1−λy1z3, λy1z2−

λy2z1)

= (x × z) + (λy × z) = [x, z] + λ[y, z]. Similarly, we have that [x, y + λz] =

[x, y] + λ[x, z]. So we have bilinearity.

2. Skew-symmetry: Note that [x, y] = x × y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 −

x2y1) = −(−x2y3 + x3y2,−x3y1 + x1y3,−x1y2 + x2y1) = −(y2x3 − y3x2, y3x1 −

y1x3, y1x2 − y2x1) = −(y × x) = −[y, x]. So we have skew-symmetry.

3. Jacobi identity: To show that the Jacobi identity is satisfied, we need to show

that [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. Note that [x, [y, z]] = [x, y × z] =

x× (y × z)

= x× (y2z3−y3z2, y3z1−y1z3, y1z2−y2z1). Looking at only the first column, we

end up with x2(y1z2−y2z1)−x3(y3z1−y1z3) = x2y1z2−x2y2z1−x3y3z1 +x3y1z3.

Similarly, the first column of [y, [z, x]] is y2z1x2 − y2z2x1 − y3z3x1 + y3z1x3 and

the first column of [z, [x, y]] is z2x1y2 − z2x2y1 − z3x3y1 + z3x1y3. Adding these
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three columns together does indeed result in 0, and the same follows if we were

to compute this for the second and third columns. Thus, the Jacobi identity is

satisfied.

Thus, R3 is a Lie algebra.

Theorem 3.2.3. Let A be an associative algebra and let g be a subspace of A such

that XY −Y X ∈ g for all X, Y ∈ g. Then g is a Lie algebra with the bracket operation

given by the commutator, or [X, Y ] = XY − Y X, where X, Y ∈ g.

Proof. Since g is a subspace, and therefore a vector space, we just need to show that

the commutator is bilinear, skew-symmetric, and satisfies the Jacobi identity. Let

X, Y, Z ∈ g and λ be a scalar in our chosen field.

1. Bilinearity: We have [X + λY, Z] = (X + λY )Z − Z(X + λY )

= XZ + λY Z − ZX + ZλY = XZ − ZX + λY Z − ZλY = [X,Z] + λ[Y, Z].

Similarly, we have the [X, Y + λZ] = [X, Y ] + λ[X,Z]. So we have bilinearity.

2. Skew-symmetric: Note that [X, Y ] = XY − Y X = −(Y X −XY ) = −[Y,X].

So we have skew-symmetry.

3. Jacobi identity: Note that [X, [Y, Z]] = [X, Y Z−ZY ] = X(Y Z−ZY )− (Y Z−

ZY )X

= XY Z − XZY − Y ZX + ZY X. Similarly, [Y, [Z,X]] = Y ZX − Y XZ −

ZXY + XZY and [Z, [X, Y ]] = ZXY − ZY X −XY Z + Y XZ. Adding these

three results together gives us 0, and so the Jacobi identity is satisfied.

Thus, g is a Lie algebra under the commutator.

Now, note the following definition.

Definition 3.2.4. Define sln(C) by sln(C) = {X ∈Mn(C) : tr(X) = 0}.

Based on our last theorem, we have the following.
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Example 3.2.5. We have that sln(C) is a Lie algebra with the bracket operation given

by the commutator, or [X, Y ] = XY − Y X, where X, Y ∈ sln(C).

For the remainder of this thesis, the bracket operation will be given by the com-

mutator.

We will now list various definitions relation to Lie algebras. Many of these have

analogous definitions for other algebraic objects (groups, rings, etc.) and so they

should seem familiar. We begin with a subalgebra.

Definition 3.2.6. A subalgebra of a real or complex Lie algebra g is a subspace h

of g such that [H1, H2] ∈ h for all H1, H2 ∈ h. If g is a complex Lie algebra and h is a

real subspace of g which is closed under brackets, then h is said to be a real subalgebra

of g.

Just like how in ring theory, certain subrings are known as ideals, we can define

certain subalgebras as ideals.

Definition 3.2.7. A subalgebra h of a Lie algebra g is said to be an ideal in g if

[X,H] ∈ h for all X ∈ g and H ∈ h.

And just like how we have centers of groups, we have centers of Lie algebras.

Definition 3.2.8. The center of a Lie algebra g is the set of all X ∈ g for which

[X, Y ] = 0 for all Y ∈ g.

An important aspect of algebra is finding relationships between objects. We usu-

ally accomplish this goal by defining a structure-preserving map between these two

objects, which we call a homomorphism. We also have this for Lie algebras.

Definition 3.2.9. If g and h are Lie algebras, then a linear map φ : g→ h is called

a Lie algebra homomorphism if φ([X, Y ]) = [φ(X), φ(Y )] for all X, Y ∈ g.
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Of course, the most interesting homomorphisms are those that show two algebraic

objects are essentially the same. In other words, there is an isomorphism between the

two objects. We define a Lie algebra isomorphism exactly as one would think.

Definition 3.2.10. A bijective Lie algebra homomorphism is called a Lie algebra

isomorphism.

We can also define automorphisms of Lie algebras just like one would expect.

Definition 3.2.11. A Lie algebra isomorphism of a Lie algebra with itself is called a

Lie algebra automorphism.

Now that we have talked about maps between Lie algebras, we define the adjoint

map, which will be very useful later.

Definition 3.2.12. If g is a Lie algebra and X ∈ g, define the linear map adX :

g → g by adX(Y ) = [X, Y ]. The map X → adX is the adjoint map or adjoint

representation.

Note that using the definition, we can write [X, [X, [X, [X, Y ]]]] = (adX)4(Y ). We

also have a useful theorem following from the adjoint map definition.

Theorem 3.2.13. The adjoint map is a Lie algebra homomorphism.

Proof. If g is a Lie algebra, then ad[X,Y ] = adXadY − adY adX = [adX , adY ]. So

ad : g→ End(g) is a Lie algebra homomorphism.

Since Lie algebras are, by definition, vector spaces, it makes sense to define some

analogous vector space definitions for Lie algebras: we define a direct sum of Lie

algebras, a Lie algebra decomposition, an irreducible Lie algebra, and a simple Lie

algebra.

Definition 3.2.14. If j and k are Lie algebras, the direct sum of j and k is the vector

space direct sum of j and k with the bracket operation given by [(X1, X2), (Y1, Y2)] =

([X1, Y1], [X2, Y2]) for all X1, Y1 ∈ j and X2, Y2 ∈ k .
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Definition 3.2.15. If g is a Lie algebra and j and k are subalgebras, we say that g

decomposes as the Lie algebra direct sum of j and k if g is the direct sum of j and k

as vector spaces with [X1, X2] = 0 for all X1 ∈ j, X2 ∈ k.

Definition 3.2.16. A Lie algebra g is called irreducible if the only ideals in g are

g and {0}.

Definition 3.2.17. A Lie algebra is called simple if it is irreducible and dim(g) ≥ 2.

As an enlightening example, we will prove the following theorem for Lie(SL2(C)).

Example 3.2.18. The Lie algebra Lie(SL2(C)) is simple.

Proof. A basis for Lie(SL2(C)) is the following:

X =

0 1

0 0

, Y =

0 0

1 0

, and Z =

1 0

0 −1

.

Recall that the bracket operation for this Lie algebra is defined as a commutator.

So [X, Y ] = XY − Y X = Z. Similarly, [Z,X] = 2X and [Z, Y ] = −2Y .

Now we want to show that this Lie algebra is simple, so we want to show that it is

irreducible and has dimension greater than or equal to 2. We have 3 basis elements,

so the dimension is 3, which is indeed greater than 2. Now suppose that h is a non-

trivial ideal of our Lie algebra. Then if W is in our Lie algebra and H ∈ h, we have

by definition that [W,H] ∈ h. Now, since H ∈ h, H is in our Lie algebra, so it can

be written as a linear combination of our basis elements. Say H = aX + bY + cZ,

with at least one of the scalars a, b, c non-zero. We want to show that h = sl2(C), as

that would imply that the Lie algebra is irreducible (and therefore simple since our

dimension is 2 or greater).

Suppose that b is the only non-zero scalar. Then [X, [X,H]] = [X, [−2cX+bZ]] =

−2bX is a non-zero multiple of X (this can be seen through matrix calculations).
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Since h is an ideal, [X,H] ∈ h, which means that [X, [X,H]] ∈ h, which means

−2bX ∈ h, which means that X ∈ h since we can multiply −2bX by the scalar − 1
2b

to get X.

Since X is in our ideal, [Y,X] is also in our ideal. But [Y,X] is a nonzero multiple

of Z, so Z is also in our ideal. Similarly, [Y, [Y,X]] is in our ideal. Since it is a nonzero

multiple of Y , Y is in our ideal. So we have the basis elements X, Y, and Z in our

ideal. Since our ideal is a subspace that includes all basis elements of the Lie algebra,

it is equal to the Lie algebra.

A similar process works when choosing a being the only non-zero scalar and c

being the only non-zero scalar. Since we know each of these cases work individually,

a linear combination of these cases will work because our commutator is bilinear.

Thus, our ideal is equal to our Lie algebra and we have a simple Lie algebra.

3.3 Connecting Lie Groups and Lie Algebras

Now that we have discussed what Lie algebras are, our goal is to make a clear connec-

tion between Lie algebras and Lie groups. We will first give an alternative definition

of a Lie algebra, where we define it as being associate with a Lie group.

Definition 3.3.1. If G is a Lie group that is a subgroup of GLn(C), then its asso-

ciated Lie algebra is defined by Lie(G) = {X ∈Mn(C) : etX ∈ G for all t ∈ R}.

Note that, by definition, Lie(G) is a subset of Mn(C), and we have that G 6= g

(an immediate reason being that g contains the zero matrix, while G does not).

Since it is not clear that Lie(G) is a Lie algebra using our earlier definition, we

need to show that. This proof will be less rigorous than some of our other proofs, but

the goal is to illustrate the idea in a convincing way more so than rigorously prove it.
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Theorem 3.3.2. If G is a Lie group, then Lie(G) is a Lie algebra (using our first

definition) under the commutator bracket.

Proof. Note that Lie(G) is a subset of Mn(C), or Mn(R), which will use the same

proof techniques as below. So we need to show that Lie(G) is a subspace that has a

Lie bracket (the commutator in this case).

Let A,B ∈ Lie(G). Then etA and etB are in G for all t ∈ R. We want to show

that et(A+B) is in G, as that would imply that A+B ∈ Lie(G), which means that we

would have vector addition. The following is where this proof is less rigorous, as we

have not covered why the following is true, but for the sake of completeness, we will

include it.

We have et(A+B) = limm→+∞(e
tA
m e

tB
m )m, where what is inside the limit is also in

G. Since G is closed (as it is a Lie group), the limit must also be in G. Thus, et(A+B)

is in G and so A+B ∈ Lie(G).

Now we want to show that scalar multiplication holds. Let z ∈ C. We want to

show that zA ∈ Lie(G), or that etzA ∈ G. Note that if z ∈ R, this works because

tz would become our new scalar in R. We actually don’t know this is true for all

z ∈ C, so we end up with the fact that Lie(G) becomes a real Lie algebra, but not

necessarily a complex Lie algebra.

Finally, we want to show that the Lie bracket holds under the commutator opera-

tion. We will not be showing that each of the properties (bilinearity, skew-symmetric,

and the Jacobi identity) holds, as that follows from how we defined our commutator,

but we will show that there is closure.

Note that we have [A,B] = AB − BA, as defined by our commuator. We want

to show that AB − BA ∈ Lie(G). Note that by a previous theorem, if A ∈ G,

then XAX−1 ∈ Lie(G). So we can have etABe−tA ∈ Lie(G). If we evaluate the

derivative of (etAB)(e−tA) at t = 0 (by utilizing the product rule), we get that

(AB)e0 + (e0B)(−A) = AB−BA, so we have that AB−BA ∈ Lie(G), which means
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our commutator holds. Thus, Lie(G) = Lie(G) is indeed a (real) Lie algebra.

3.4 Examples of Lie Algebras

This section goes over some fun examples of Lie algebras, which help to illuminate

some of the concepts we have been talking about.

Theorem 3.4.1. Lie(GLn(C)) = Mn(C) and Lie(GLn(R)) = Mn(R)

Proof. Note that Lie(GLn(C)) = {X ∈ Mn(C) : etX ∈ GLn(C) for all t ∈ R} by

definition. We know, by our properties of the exponential, that eX is invertible for

all X ∈ Mn(C). Since t is merely a scalar in the real numbers, etX is also invertible

for all X ∈ Mn(C), or etX ∈ GLn(C) for all X ∈ Mn(C). Thus, Lie(GLn(C)) is the

set of all elements in Mn(C) i.e., Lie(GLn(C)) = Mn(C). This works similarly with

Lie(GLn(R)) = Mn(R).

Note that from this point on, we will not be specifying each case for both the real

and complex entries of a matrix. In most cases, they will both work out, so we will

only show it is true for the complex entries.

The next few theorems show some equivalent ways of looking at specific Lie alge-

bras.

Theorem 3.4.2. Note that Lie(SLn(C)) = {X ∈ Mn(C) : etX ∈ SLn(C) for all

t ∈ R} and sln(C) = {X ∈Mn(C) : tr(X) = 0}. Then Lie(SLn(C)) = sln(C).

Proof. Say A ∈ Lie(SLn(C)). We want to show that A ∈ {X ∈ Mn(C) : tr(X) =

0}. Since A ∈ Mn(C) already, we just need to show that tr(A) = 0. Since A ∈

Lie(SLn(C)), that means etA ∈ SLn(C), which means that det(etA) = 1. By a

previous theorem, we know that det(etA) = etr(tA). So 1 = etr(tA) = et∗tr(A), since t is

a scalar. In order to have et∗tr(A) = 1, we need t ∗ tr(A) to equal 0, tr(A) must equal
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0 (because this has to work for all t ∈ R). Thus, A ∈ sln(C) and so Lie(SLn(C)) is

a subset of sln(C).

Now let A ∈ sln(C). Then tr(A) = 0. We want to show that A ∈ Lie(SLn(C)).

Since A ∈ Mn(C) already, we just need to show that etA ∈ SLn(C) for all t ∈ R. So

we need to show that det(etA) = 1. Again, this means that we want to show that

etr(tA) = 1, or that et∗tr(A) = 1. Since tr(A) = 0, this is true! Thus, A ∈ Lie(SLn(C))

and sln(C) is a subset of Lie(SLn(C)). Thus, since our sets are subsets of each other,

they are equal!

As an exercise, we will show that Lie(SLn(C)) is a Lie algebra with the now-

equivalent sln(C) definition. Note, however, that we already know this is true since

Lie(G) is always a Lie algebra for a matrix Lie group G. From this point on, we will

use the notation Lie(SLn(C)) to also refer to sln(C).

Theorem 3.4.3. Lie(SLn(C)) is a Lie algebra (using our first definition of a Lie

algebra).

Proof. Note that Lie(SLn(C)) is a subset of Mn(C), so we only need to show that it

is a subspace that also satisfies our bracket operation.

We will first show that we have vector addition. Let A,B ∈ Lie(SLn(C)). Then

tr(A) = tr(B) = 0, so 0 = 0 + 0 = tr(A) + tr(B) = tr(A + B) (since adding A

and B means you are adding their diagonals, and since the diagonal of each of those

add to be 0, the diagonal of their sum will as well). Thus, since tr(A + B) = 0,

A+B ∈ Lie(SLn(C)) and we have vector addition.

Now we will show that scalar multiplication holds.Let z ∈ C andA ∈ Lie(SLn(C)).

Then tr(zA) = z ∗ tr(A) = z ∗ 0 = 0. Thus, zA ∈ Lie(SLn(C)) and we have scalar

multiplication. Thus, we have a subspace. Now we just need to show that there exists

a Lie bracket. We will define it as the commutator, or [A,B] = AB − BA. We need

to show that closure works with the commutator.
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Using our same A and B, note that tr(AB − BA) = tr(AB) − tr(BA) and

this equals 0 since tr(AB) = tr(BA) (utilizing linear algebra). Thus, AB − BA ∈

Lie(SLn(C)). Since [A,B] = AB−BA, our commutator satisfies closure. This means

that we have a Lie bracket - note that because this Lie bracket also works for Mn(C),

all three properties (bilinearity, skew-symmetric, and the Jacobi identity) will also

carry over to this subspace. Thus, we have a Lie algebra.

For the next several theorems, we will show equivalent ways of looking at Lie

algebras. We will notice that when taking the associated Lie algebra of a matrix

Lie group, we generally change from using determinants to using traces in our sets,

as well as changing the adjoint from equaling its multiplicative inverse to equaling

its additive inverse. Informally, think of Lie algebras as using additive properties,

whereas Lie groups use multiplicative properties.

Theorem 3.4.4. Lie(U(n)) = {X ∈Mn(C) : X∗ = −X}.

Proof. Say X ∈Mn(C) and that etX ∈ U(n) for all t ∈ R. Then (etX)∗ = (etX)−1 for

all t ∈ R. By our properties of exponents, this means that etX∗
= et(−X) for all t ∈ R.

If we use our derivative rule to take the derivative of both sides and evaluate them

at t = 0, we find that X∗ = −X. Thus, we have half of the proof complete.

Say X∗ = −X. We want to show that etX ∈ U(n) for all t ∈ R. Note that

(etX)∗ = e(tX)∗ = etX
∗

= et(−X) = e−tX = (etX)−1, by our exponential properties and

the fact that X∗ = −X. So we have containment with both sides and thus our sets

are equal!

Theorem 3.4.5. Lie(SU(n)) = {X ∈Mn(C) : X∗ = −X, tr(X) = 0}.

Proof. Let X ∈ Lie(SU(n)). Then etX ∈ SU(n), so (etX)∗ = (etX)−1, which means

that etX∗
= e−tX . Evaluating the derivative at t = 0 on both sides yields X∗ = −X.

Also, we have that 1 = det(etX) = etr(tX) (by a previous theorem), which equals

et∗tr(X). In order for et∗tr(X) to equal 1, the exponent must equal 0, which means that
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t ∗ tr(X) = 0. Since t can be any scalar from R, we must have tr(X) = 0. Thus, we

have X∗ = −X and tr(X) = 0.

Now we will show the other direction. Let X ∈ Mn(C) such that −X = X∗ and

tr(X) = 0. Note then that e−tX = etX
∗ , which means that (etX)∗ = (etX)−1. We also

have that det(etX) = etr(tX) = et∗tr(X) = e0 = 1. Thus, etX ∈ SU(n) and therefore

X ∈ Lie(SU(n)). So we have double containment and our sets are equal.

Theorem 3.4.6. Lie(O(n)) = Lie(SO(n)) = {X ∈Mn(C) : XT = −X, tr(X) = 0}.

Proof. Let X ∈ Lie(O(n)). Then etX ∈ O(n), which means that etXT
= e−tX , which

implies that XT = −X (utilizing our favorite derivative rules). Note that XT = −X

implies tr(X) = 0, as taking the transpose of a matrix leaves the diagonals alone,

so you have each entry equaling its negative, which must mean they are all 0, which

means adding them gives 0, which means the trace is 0. So we have 1 = e0 = et∗tr(X) =

etr(tX) = det(etX). So etX ∈ SO(n) and thus Lie(O(n)) ⊆ Lie(SO(n)).

Now let X ∈ Lie(SO(n)). Then etX ∈ SO(n),which means that etXT
= e−tX ,

which implies that XT = −X (as we just said). We also have that 1 = det(etX) =

et∗tr(X), which implies that tr(X) = 0. So Lie(SO(n) ⊆ {X ∈ Mn(C) : X∗ =

−X, tr(X) = 1}.

Finally, let X ∈ {X ∈ Mn(C) : XT = −X, tr(X) = 0}. So XT = −X, which

means etXT
= e−tX . So X ∈ Lie(O(n)). Thus, we have Lie(O(n)) ⊆ Lie(SO(n)) ⊆

{X ∈ Mn(C) : XT = −X, tr(X) = 1} ⊆ Lie(O(n)), which means they are all equal

and we are done.

Theorem 3.4.7. Lie(Spn(C)) = {X ∈M2n(C) : ΩXTΩ = X}.

Proof. Let X ∈ Lie(Spn(C)). Then etX ∈ Spn(C). Then Ω−1(etX)TΩ = e−tX . Note

that the left-hand side yields Ω−1etX
T
Ω = etΩ

−1XT Ω (by rules of our exponent), which

equals e−tΩXT Ω, since Ω−1 = −Ω (see earlier example). So we have e−tΩXT Ω = e−tX .
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If we utilize our derivative rule and evaluate at t = 0, we get that −ΩXTΩ = −X.

Canceling the negative gives us ΩXTΩ = X. So we have one direction complete.

Now let X ∈ M2n(C) such that ΩXTΩ = X. Now, −Ω(etX)TΩ = −ΩetX
T
Ω =

e−tΩX
T Ω = e−tX , since ΩXTΩ = X. Thus, X ∈ Lie(Spn(C), and we are done!

Much like with Lie(SLn(C)), we will show that Lie(Spn(C)) is a Lie algebra with

this new, equivalent definition (even though we know this is true since the symplectic

group is a matrix Lie group).

Theorem 3.4.8. Lie(Spn(C)) is a Lie algebra (using our first definition).

Proof. Note Lie(Spn(C)) is a subset of M2n(C). Like usual, we need to show vector

addition, scalar multiplication, and that a Lie bracket (the commutator) holds.

Let A and B be elements of our Lie algebra. Then A+B = ΩATΩ + ΩBTΩ

= Ω(AT +BT )Ω = Ω(A+B)TΩ. Thus, we have vector addition.

Let z ∈ C. Then zA = zΩATΩ = ΩzATΩ = Ω(zA)TΩ. So we have scalar

multiplication.

Now, let [A,B] = AB−BA. Like usual, we just need to show closure. So we have

[A,B] = AB − BA = ΩATΩΩBTΩ − ΩBTΩΩATΩ = Ω(−ATBT )Ω + Ω(BTAT )Ω,

since Ω2 = −Ω. This then equals Ω(BTAT −ATBT )Ω, which equals Ω(AB−BA)TΩ

(by rules of a transpose from linear algebra). Thus, we have closure and therefore a

Lie algebra.

We have (finally) finished going over examples of Lie algebras and their equivalent

definitions, and hopefully it has been insightful. The next theorem is key for later.

Theorem 3.4.9. The following forms a basis for Lie(SU(2)):

A =

 i
2

0

0 −i
2

 , B =

0 i
2

i
2

0

 , C =

0 −1
2

1
2

0

.

And the following forms a basis for Lie(SO(3)):
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D =


0 0 0

0 0 −1

0 1 0

 , E =


0 0 1

0 0 0

−1 0 0

 , F =


0 −1 0

1 0 0

0 0 0

.

Then there exists a Lie algebra isomorphism between Lie(SU(2)) and Lie(SO(3)).

Proof. Note that by utilizing the last two examples, we see that both of these Lie alge-

bras have dimension 3 (since they each have 3 basis elements), so they are isomorphic

as vector spaces. Now, by using the same matrices from those two examples, we can

define a map such that A goes to D, B goes to E, and C goes to F . Note also that

[A,B] = C, [B,C] = A, [C,A] = B and [D,E] = F, [E,F ] = D, [F,D] = E. So this

mapping preserves the commutator relations. Since our Lie algebras share the same

commutator relations (or satisfies the requirements for a Lie algebra homomorphism)

and are isomorphic as vector spaces, they are isomorphic as Lie algebras.

3.5 Lie Group and Lie Algebra Properties

This section covers some important properties that Lie groups and their corresponding

Lie algebras have.

Theorem 3.5.1. Let G be a matrix Lie group with an associated Lie algebra Lie(G).

Then AXA−1 ∈ Lie(G) for all A ∈ G and X ∈ Lie(G).

Proof. Note that et(AXA−1) = AetXA−1 by our exponential properties. But this is in

G since A ∈ G and etX ∈ G (because X ∈ Lie(G)). Thus, et(AXA−1) ∈ G, which

means that AXA−1 ∈ Lie(G), and we are done.

Theorem 3.5.2. Let G and H be matrix Lie groups, with Lie algebras Lie(G) and

Lie(H), respectively. Suppose that Φ : G → H is a Lie group homomorphism. Then

there exists a unique real-linear map φ : Lie(G) → Lie(H) such that Φ(eX) = eφ(X)

for all X ∈ Lie(G). The map φ has the following additional properties:
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1. φ(AXA−1) = Φ(A)φ(X)Φ(A)−1, for all X ∈ Lie(G) and A ∈ G.

2. φ([X, Y ]) = [φ(X), φ(Y )], for all X, Y ∈ Lie(G) (so this map is a Lie algebra

homomorphism).

3. φ(X) = d
dt

Φ(etX)|t=0 for all X ∈ Lie(G).

So every Lie group homomorphism gives rise to a (unique) Lie algebra homomor-

phism.

Proof. We will not show the fact that this map is unique, however, we will prove the

three properties.

1. Note that etφ(AXA−1) = Φ(AetXA−1) by the properties of our exponential and

since t is a scalar that can distribute. This then equals Φ(A)Φ(etX)Φ(A)−1

since Φ is a homomorphism, which then equals Φ(A)eφ(tX)Φ(A)−1, by what we

defined as our unique real-linear map, which then equals etΦ(A)φ(X)Φ(A)−1 , once

again by our properties. By utilizing our derivative theorem and evaluating at

t = 0 on our first term before the very first equals sign and this last term, we

get that φ(AXA−1) = Φ(A)φ(X)Φ(A)−1.

2. Note that φ([X, Y ]) = φ(XY −Y X) = φ( d
dt
etXY e−tX |t=0), which can be verified

utilizing the product rule. We then know that the derivative commutes with a

linear transformation, so we can rewrite this as d
dt
φ(etXY e−tX)|t=0, which then

equals d
dt

Φ(etX)φ(Y )Φ(e−tX)|t=0 by the first property of this theorem. Finally,

we can rewrite this as d
dt
etφ(x)φ(Y )e−tφ(x)|t=0 by how we defined our map, and

by utilizing the product rule in reverse, this equals [φ(X), φ(Y )].

3. Note that d
dt

Φ(etX)|t=0 = d
dt
etφ(x)|t=0 by how we defined our linear map, as well

as t being a scalar, and this equals φ(X) by simply evaluating the derivative.

So φ(X) = d
dt

Φ(etX)|t=0.
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Thus, we have finished the proof.

Theorem 3.5.3. Suppose G, H, and K are matrix Lie groups and Φ : G → H and

Ψ : H → K are Lie group homomorphisms. Let Λ : G → K be the composition of

Φ and Ψ, and let φ, ψ, and λ be the associated Lie algebra maps associated to our

groups. Then we have λ = φ ◦ ψ.

Proof. For any X ∈ Lie(G), we have eλ(tX) = Λ(etX) = Φ(Ψ(etX)) = Φ(etψ(X)) =

etφ(ψ(X)). Differentiating both sides at t = 0 yields λ(X) = φ(ψ(X)), and so the

functions are equal.

Theorem 3.5.4. If Φ : G → H is a Lie group homomorphism and φ : Lie(G) →

Lie(H) is the associated Lie algebra homomorphism, then ker(Φ) is a closed, normal

subgroup of G and the Lie algebra of the kernel is given by Lie(ker(Φ)) = ker(φ).

Proof. We know, from a beginning Abstract Algebra course, that ker(Φ) is a normal

subgroup of G. We also know, from our detour to topology, that the kernel of a Lie

group homomorphism is closed. So we have ker(Φ) is a closed, normal subgroup of

G. Now want to show that Lie(ker(Φ)) = ker(φ).

Recall that all elements of a Lie group can be written in the form etX . If etX ∈

ker(Φ) for all t ∈ R, we have etφ(X) = Φ(etX) = I for all t ∈ R, where I is the identity.

Differentiating both sides at t = 0 yields φ(X) = 0, which means that X ∈ ker(φ).

Let X ∈ ker(φ). Then Φ(etX) = etφ(X) = I for all t ∈ R. Thus, etX ∈ ker(Φ) and

therefore X ∈ Lie(ker(Φ)). Thus, we have that Lie(ker(Φ)) = ker(φ).

Definition 3.5.5. Let G be a matrix Lie group with an associated Lie algebra Lie(G).

Then for each A ∈ G, define a map AdA : Lie(G) → Lie(G) by AdA(X) = AXA−1.

We call this the adjoint map.

Theorem 3.5.6. The adjoint map is an invertible linear transformation.
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Proof. Let X, Y ∈ Lie(G) and λ be a scalar in our chosen field. Then AdA(X+Y ) =

A(X + Y )A−1 = (AX + AY )A−1 = AXA−1 + AY A−1 = AdA(X) + AdA(Y ). Also,

λAdA(X) = λAXA−1 = AλXA−1 = AdA(λX). Thus, the adjoint map is a linear

transformation.

Now let AdA(X) = AdA(Y ). Then AXA−1 = AY A−1. So we get A−1AXA−1A =

A−1AY A−1A =⇒ X = Y . Thus, the adjoint map is injective.

Finally, recall that AXA−1 ∈ Lie(G) for all A ∈ G and for all X ∈ Lie(G).

So A−1XA ∈ Lie(G). Thus, AdA(A−1XA) = AA−1XAA−1 = X. Since X is an

arbitrary element in Lie(G), the adjoint map is surjective. Thus, we have shown that

the adjoint map is an invertible linear transformation.

Theorem 3.5.7. Let G be the matrix Lie group with the associated Lie algebra

Lie(G). Let GL(Lie(G)) denote the group of all invertible linear transformations

of Lie(G). Then the map A → AdA is a homomorphism of G into GL(Lie(G)).

Also, for each A ∈ G, AdA is a Lie algebra homomorphism. We omit the proof of

this.

Since Lie(G) is a finite-dimensional real vector space for a matrix Lie group G, it

has dimension n, where n ∈ N. Then GL(Lie(G)) is isomorphic to GLn(R). Thus, we

will regard GL(Lie(G)) as a matrix Lie group. It is a fact that Ad : G→ GL(Lie(G))

is a Lie group homomorphism. By a previous theorem, we know that there is an

associated real linear map X → AdX from the Lie algebra of G to the Lie algebra of

GL(Lie(G), with the property that eAdX = AdeX .

Theorem 3.5.8. Let G be a matrix Lie group, Lie(G) be its associated Lie alge-

bra, and Ad : G → GL(Lie(G)) be as in the last theorem. Let ad : Lie(G) →

Lie(GL(Lie(G))) be the associated Lie algebra map. Then for all X, Y ∈ Lie(G),

adX(Y ) = [X, Y ].

Proof. By a previous theorem, we know that adX = d
dt
AdetX when t = 0. Thus,
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adX(Y ) = d
dt
etXY e−tX when t = 0. Computing this using the product rule, with etXY

as the first term and e−tX as the second term, results in XetXY e−tX+etXY (−Xe−tX).

Plugging in t = 0 gives us XY − Y X, which is [X, Y ].

Theorem 3.5.9. For any X ∈ Mn(C), let adX : Mn(C) → Mn(C) be given by

adXY = [X, Y ]. Then for any Y ∈Mn(C), we have eXY E−X = AdeX (Y ) = eadX (Y ),

where eadX (Y ) = Y + [X, Y ] + 1
2
[X, [X, Y ]] + ... (where we note that this comes from

the series definition of eX).

Before we go any further, we are going to mention the topic of complexification.

Since some of these results can work without necessarily having a Lie group corre-

sponding to our Lie algebra, we will use the notation g again.

Definition 3.5.10. If V is a finite-dimensional vector space, then the complexifi-

cation of V , denoted VC, is the space of formal linear combinations v1 + iv2, with

v1, v2 ∈ V .

Theorem 3.5.11. For a finite-dimensional vector space V , VC is a complex vector

space if we define i(v1 + iv2) = −v2 + iv1 for all v1, v2 ∈ V .

Proof. Note that since V is a vector space, associativity under vector addition, com-

mutativity under vector addition, scalar distributvity, and scalar associativity all

hold for VC. Now let v1, v2, v3, v4 ∈ V . Then v1 + iv2, v3 + iv4 ∈ VC. Then

(v1 + iv2) + (v3 + iv4) = (v1 + v3) + i(v2 + v4) ∈ VC, and so we have closure un-

der addition. Since 0 ∈ V , we have that 0 + i0 = 0 is the additive identity in VC.

Similarly, we know that −v1 and −v2 are in V , and so we have −v1− iv2 ∈ VC. Then

v1 + iv2 − v1 − iv2 = 0, and so every element in VC has an additive inverse. Since V

has an identity element for scalar multiplication, call it 1, we also have it for VC, as

1(v1 + iv2) = 1v1 + 1iv2 = v1 + iv2. Thus, VC is a complex vector space.

Note that V is a real subspace of VC, as any element v ∈ V can be represented as

v + i0 = v ∈ VC.
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Theorem 3.5.12. Let g be a finite-dimensional real Lie algebra and gC be its com-

plexification. Then the bracket operation on g has a unique extension to gC that makes

gC into a complex Lie algebra.

Proof. The bracket operation on gC must be bilinear, so it has to be given by [X1 +

iX2, Y1+iY2] = ([X1, Y1]−[X2, Y2])+i([X1, Y2]+[X2, Y1]). Therefore it is unique. Now

we have to check that it is bilinear, skew-symmetric, and satisfies the Jacobi identity.

Because g is a real Lie algebra, our map is real bilinear and skew-symmetric. Note

that being skew-symmetric means that if this is complex linear in the first factor, it is

complex linear in the second factor. Thus, we only need to show that [i(X1+iX2), Y1+

iY2] = i[X1 + iX2, Y1 + iY2] implies (−[X2, Y1] − [X1, Y2]) + i([X1, Y1] − [X2, Y2]) on

both sides. For the Jacobi identity, there is a lot of computation involved.

We have [X1 + iX2, [Y1 + iY2, Z1 + iZ2]] = [X1 + iX2, [Y1, Z1]− [Y2, Z2]+ i([Y1, Z2]+

[Y2, Z1])] = [X1 + iX2, Y1Z1 − Z1Y1 − Y2Z2 + Z2Y2 + iY1Z2 − iZ2Y1 + iY2Z1 − iZ1Y2].

Using bilinearity, we get a total of 32 terms (and it is quite an ugly mess, hence why

we are excluding it from this proof). After that step, we can then make X into Y ,

Y into Z, and Z into X to get 32 new terms. Then we rotate those terms again to

get 32 more terms. Everything ends up canceling, which means the Jacobi identity is

indeed satisfied. Thus, we are done!

Theorem 3.5.13. Suppose that g ⊆ Mn(C) is a real Lie algebra and that for all

nonzero X in g, the element iX is not in g. Then the “abstract” complexification gC

of g is isomorphic to the set of matrices in Mn(C) that can be expressed in the form

X + iY , with X, Y ∈ g.

Proof. Consider the map from gC into Mn(C) sending the formal linear combinations

X + iY to the linear combination X + iY of matrices. This map is a complex Lie

algebra homomorphism. If g satisfies the assumption in the statement of the theorem,

this map is also injective and thus an isomorphism of gC with g + ig ⊆Mn(C).
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With this theorem in hand, we now have the following isomorphisms (unless oth-

erwise indicated, presume the entries are from the complex field):

• Lie(GLn(R))C ∼= Lie(GLn(C))

• Lie(U(n))C ∼= Lie(GLn(C))

• Lie(SU(n))C ∼= Lie(SLn(C))

• Lie(SLn(R))C ∼= Lie(SLn(C))

• Lie(SO(n))C ∼= Lie(SOn(C))

• Lie(Spn(R))C ∼= Lie(Spn(C)

• Lie(Spn(C)C ∼= Lie(Spn(C)

For a detailed example of one of these, see the following theorem:

Theorem 3.5.14. Lie(U(n))C = Lie(GLn(C))

Proof. We will do proof by containment. Note that Lie(GLn(C)) = Mn(C). So

any element in Lie(U(n))C must be in Lie(GLn(C)). Thus, we have one side of

containment done.

Now, say X ∈ Lie(GLn(C)) = Mn(C). Note that X = X−X∗

2
+ iX+X∗

2i
. Now,

(X−X
∗

2
)∗ = X∗−X

2
= −(X−X

∗

2
). Thus, since the complex transpose equals the negative,

this is in Lie(U(n)). Similarly, (X+X∗

2i
)∗ = X∗+X

−2i
= −(X+X∗

2i
), which would mean

it is also in Lie(U(n)). So by closure, the sum of these elements must also be in

Lie(U(n)), which means that multiplying the second element by i and adding it to

the first element results in something in Lie(U(n))C. But this new element would be

our X. Thus, we have containment in the other direction and so our Lie algebras are

equal.
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Note that Lie algebras can have isomorphic complexifications without the orig-

inal Lie algebras being isomorphic. For example, although both Lie(SU(2))C and

Lie(SL2(R))C are isomorphic to Lie(SU(2))C, the Lie algebra Lie(SU(2)) is not iso-

morphic to the Lie algebra Lie(SL2(R)).

Theorem 3.5.15. Let g be a real Lie algebra, gC be its complexification, and h and

arbitrary complex Lie algebra. Then every real Lie algebra homomorphism of g into h

extends uniquely to a complex Lie algebra homomorphism of gC into h. This is known

as the Universal Property of Complexification of Real Lie Algebras.

Proof. The unique extension is given by π(X + iY ) = π(X) + iπ(Y ) where X, Y ∈ g.

This map is a homomorphism of complex Lie algebras, so we are done.

In the next chapter, we will use our now vast knowledge of Lie theory to combine

it with the fascinating subject of representation theory!
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Chapter 4

Representation Theory

This chapter will go over the mixing of Lie theory with representation theory. Weights

and roots are also covered and will be mentioned again in the final chapter centered

on physics.

4.1 Basics

Representation theory is about representing algebraic structures as linear transfor-

mations of vector spaces. It is common to look at mappings that go from a group

to some matrix, which itself can be represented as a linear transformation. Even

though group theory is fairly well-studied, sometimes it is easier to look at groups

through the lens of matrices and linear transformations. The formal definition of a

representation of a group is defined as follows:

Definition 4.1.1. A representation of a group G is a homomorphism π : G 7→

GL(V ) for some finite-dimensional complex vector space V .

More information on the representation theory of finite groups can be found in

Benjamin Steinberg’s Representation theory of finite groups (2012) [6]. We will be

focusing on representations involving Lie theory and presume the reader has no back-
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ground knowledge of the subject.

4.2 Representations of Lie Groups and Algebras

Note that for a finite-dimensional vector space V , Lie(GL(V )) = End(V ), where

End(V ) is the vector space of linear transformations from V into V . These all have

dimension n2.

We have already defined a representation of a finite group, and the definition of a

representation of a Lie group is very similar.

Definition 4.2.1. Let G be a matrix Lie group. A finite-dimensional complex

representation of G is a Lie group homomorphism Π : G → GL(V ), where V is

a finite-dimensional complex vector space (with dimension greater than 0). If V is

a finite-dimensional real vector space, then we call Π a finite-dimensional real

representation.

The definition of a Lie algebra representation is also very similar.

Definition 4.2.2. Let g be a Lie algebra. A finite-dimensional complex rep-

resentation of g is a Lie algebra homomorphism π : g → Mn(V), where V is a

finite-dimensional complex vector space (with dimension greater than 0). If V is a

finite-dimensional real vector space, then we call π is a finite-dimensional real

representation.

We also have a specific name for an injective representation.

Definition 4.2.3. A faithful representation is a representation that is an injective

homomorphism.

Note that if Π : G→ GL(V ) is faithful, then {Π(A) : A ∈ G} ∼= G.

Now we can return to our definition of irreducible from earlier and apply it in this

new context, using some new definitions.

42



Definition 4.2.4. Let Π be a finite-dimensional real or complex representation of a

matrix Lie group G acting on a space V . A subspace W of V is called invariant if

Π(A)w ∈ W for all w ∈ W and for all A ∈ G.

Definition 4.2.5. An invariant subspace W is called nontrivial if W 6= {0} and

W 6= V .

Definition 4.2.6. A representation with no nontrivial invariant subspaces is called

irreducible.

A relatively easy example of an irreducible representation is the trivial represen-

tation, of either a Lie group or Lie algebra, as these are mapped into C, which has

no nontrivial subspaces. This is because dim(C) = 1 and you can’t have a subspace

with a lower dimension. Since there are no nontrivial subspaces, there must also be

no nontrivial invariant subspaces.

We will now define a specific linear map between representations, which we can

then use to create an isomorphism definition for representations.

Definition 4.2.7. Let G be a matrix Lie group, Π be a representation of G acting on

the space V , and Σ be a representation of G acting on the space W . A linear map φ :

V → W is called an intertwining map of representations if φ(Π(A)v) = Σ(A)φ(v)

for all A ∈ G and for all v ∈ V . There is an analogous definition for intertwining

maps of representations of Lie algebras.

The following diagram helps illustrate the previous definition:

V W

V W

φ

Π(A) Σ(A)

φ

Definition 4.2.8. If φ is an intertwining map of representations and φ is invertible
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(or bijective), then φ is said to be an isomorphism of representations. We use the

standard isomorphism notation ∼= to denote isomorphic representations.

We now arrive at our first theorem of representation theory. We will omit the

proof, as it follows similarly from previous work we have done.

Theorem 4.2.9. Let G be a matrix Lie group with corresponding Lie algebra Lie(G)

and let Π be a finite-dimensional real or complex representation of G acting on the

space V . Then there is a unique representation π of Lie(G) acting on the same space

such that Π(eX) = eπ(X) for all X ∈ Lie(G). The representation π can be computed

as π(X) = d
dt

Π(etX) when t = 0. This satisfies π(AXA−1) = Π(A)π(X)Π(A)−1 for

all X ∈ Lie(G) and for all A ∈ G.

We note that not every representation π of Lie(G) comes from Π of G, although

we are not proving this; it is merely a fun fact. Note that we use the term con-

nected in the following theorem, although we omit its definition because it is an-

alytic/topological in nature. Instead, it is more important to note that we already

looked at examples of connected Lie groups, such as SLn(C), and so it is applicable.

More information can be found in Hall’s book [4].

Theorem 4.2.10. If G is a connected matrix Lie group with Lie algebra g, then every

element A ∈ G can be written in the form A = eX1 ...eXm for some X1, ..., Xm in g.

This result allows us to prove some cool results about Lie groups representations

and their associated Lie algebra representations. If the Lie group is connected, then

irreducibility of one implies irreducibility of the other, and the same can be said for

isomorphisms! We formalize this in the next few theorems.

Theorem 4.2.11. Let G be a connected matrix Lie group with corresponding Lie

algebra Lie(G). Let Π be a representation of G and π be the associated representation

of Lie(G). Then Π is irreducible ⇐⇒ π is irreducible.
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Proof. Suppose that Π is irreducible. Now let W be a subspace of V that is invariant

under π(X) for all X ∈ Lie(G). We want to show that W is either {0} or V . Let

A ∈ G. Since G is connected, by a previous theorem we know that A can be written

as A = eX1 ...eXm for some X1, ..., Xm in Lie(G). Since W is invariant under π(Xj), it

will also be invariant under eπ(Xj) = I+π(Xj) +
π(Xj)2

2
+ ... (from the series definition

of the exponential function); this is because the sum of invariant representations is

also invariant, and π(X)w ∈ W implies that πn(X)w ∈ W . Thus, we have Π(A) =

Π(eX1 ...eXm) = Π(eX1)...Π(eXm) = eπ(X1)...eπ(Xm). Since Π is irreducible and W is

invariant under each Π(A), W must either be {0} or V . Thus, π is irreducible.

Now suppose that π is irreducible and thatW is an invariant subspace for Π. Then

W is invariant under Π(etX) for all X ∈ Lie(G). Hence, it is also invariant under

π(X) = d
dt

Π(etX) evaluated at t = 0, as taking the derivative does not mess with

invariance. Thus, since π is irreducible, W is either {0} or V , and so Π is irreducible.

So we’re done!

We will need the following result before moving on.

Theorem 4.2.12. Let π1 and π2 be Lie algebra representations. If π1
∼= π2, then

T (eπ1(X)v) = eπ2(X)T (v).

Proof. Say π1
∼= π2. Then there exists a bijective linear transformation T : V → W

such that T (π1(X)v) = π2(X)T (v). Now, T (eπ1(X)(v)) = T ((1 + π1(X) +
π2
1(X)

2
+

...)v) = T (1(v)+π1(X)(v)+ ...), where we note that everything in the big parenthesis

is in V . Since T is a linear transformation, this equals T (1)(v) + T (π1)(X)(v) + ...,

and so on. But since π1
∼= π2, we get 1(T )(v) + π2(X)T (v) + ..., and so on. Finally,

we can factor out a T (v) to get (1 + π2(X) + ...)T (v), which equals eπ2(X)T (v), and

we’re done!

Theorem 4.2.13. Let G be a connected matrix Lie group, Π1 and Π2 be represen-

tations of G, and π1 and π2 be the associated Lie algebra representations. Then
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Π1
∼= Π2 ⇐⇒ π1

∼= π2.

Proof. Say Π1
∼= Π2. Then there exists a bijective linear transformation T : V → W

such that T (Π1(A)v) = Π2(A)T (v). Then we get the following (where we evaluate at

t = 0): T (π1(X)v) = T ( d
dt

Π1(etXv) = d
dt
T (Π1(etX)v) = d

dt
Π2(etX)T (v) = π2(X)T (v).

Thus, π1
∼= π2.

Say π1
∼= π2. Then there exists a bijective linear transformation T : V →

W such that T (π1(X)v) = π2(X)T (v). Now, T (Π1(A)v) = T (Π1(eX1 ...eXm)v) =

T ((Π1(eX1)...Π1(eXm))v) = T ((eπ1(X)...eπ1(Xm))v). Now, evaluating v at all eπ1(Xj)

yields T (eπ1(X1)w), where w = (eπ1(X2)...eπ1(Xm))v ∈ V . But T (eπ1(X1)w) = eπ2(X1)T (w)

by our previous theorem. Repeating this process eventually gives us (eπ2(X1)...eπ2(Xm))T (v),

which equals Π2(A)T (v), and we’re done!

Now that we have these interesting results, we will return to complexification,

which we will extend to our new representation theory with the following theorem.

Theorem 4.2.14. Let g be a real Lie algebra and gC be its complexification. Then

every finite-dimensional complex representation π of g has a unique extension to a

complex-linear representation of gC, also denoted π. Also, π is irreducible as a repre-

sentation of gC if and only if it is irreducible as a representation of g. The extension

is given by π(X + iY ) = π(X) + iπ(Y ) for all X, Y ∈ g.

Proof. The existence and uniqueness of the extension follow from an earlier result.

Note that a complex subspace W of V is invariant under π(X+ iY ), where X, Y ∈ g,

if and only if it is invariant under π(X) and π(Y ). Thus, the representation of g and

its extension have the same invariant subspaces, and so the claim of irreducibility

holds.

Now we apply the concept of unitary for representation theory with the following

definition and theorem.
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Definition 4.2.15. If V is a finite-dimensional inner product space and G is a matrix

Lie group, a representation Π : G→ GL(V ) is unitary if Π(A) is a unitary operator

on V for every A ∈ G.

Theorem 4.2.16. Suppose G is a matrix Lie group with corresponding Lie algebra

Lie(G). Suppose V is a finite-dimensional inner product space, Π is a representation

of G acting on V , and π is the associated representation of Lie(G). If Π is unitary,

then π(X) is skew self-adjoint for all X ∈ Lie(G). Conversely, if G is connected,

and π(X) is skew self-adjoint for all X ∈ Lie(G), then Π is unitary. Note that we

are saying a representation π of a Lie algebra Lie(G) acting on a finite-dimensional

inner product space is unitary if π(X) is skew self-adjoint for all X ∈ Lie(G), or

π(X)∗ = −π(X) for all X ∈ Lie(G). (This is consistent with our past work showing

that inverse equations in a Lie group get turned into negative equations in a Lie

algebra.)

Proof. Suppose that Π is unitary. Then for all X ∈ Lie(G), we have (etπ(X))∗ =

Π(etX)∗ = Π(etX)−1 = e−tπ(X), where t ∈ R. Differentiating the leftmost and right-

most sides with respect to t at t = 0 reveals that π(X)∗ = −π(X). Now suppose

that π(X)∗ = −π(X), then the previous calculation shows that Π(etX) = etπ(X) is

unitary. But since G is connected, every element in G can be written as a product of

exponential, which reveals that Π(A) is unitary. Thus, both directions are satisfied

and we are done.

We also have specific types of representations that we can define, namely the

standard, trivial, and adjoint representations.

Definition 4.2.17. Since a matrix Lie group G is a subset of GLn(C), the map from

G into GLn(C) defined by Π(A) = A is a representation of G, and we call this the

standard representation of G. This works similarly for a Lie algebra g, where the

map defined by π(X) = X is the standard representation of g.
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Definition 4.2.18. For any matrix Lie group G, we can define the trivial repre-

sentation Π : G → GL1(C) = C by Π(A) = 1 for all A ∈ G. Since C has no

nontrivial subspaces (and therefore no nontrivial invariant subspaces), this is an ir-

reducible representation (as we said earlier). This works similarly for a Lie algebra

g, where we have the map π : g 7→M1(C) = C defined by π(X) = 0 for all X ∈ g.

Definition 4.2.19. If G is a matrix Lie group with corresponding Lie algebra Lie(G),

the adjoint representation of G is the map Ad : G → GL(Lie(G)) given by A →

AdA. Similarly, the adjoint representation of a finite-dimensional Lie algebra g is

the map ad : g → GL(g) given by X → adX . Note that by a previous theorem, the

Lie algebra representation associated to the adjoint representation of G is in fact the

adjoint representation of g.

This covers some of the essentials of the representation theory of Lie theory, and

so we can move on to an interesting example.

4.3 Representations of Homogeneous Polynomials

Let Vm denote the space of homogeneous polynomials (polynomials whose nonzero

terms have the same degree) of degree m in two complex variables. For each U ∈

SU(2), Πm(U) is defined by [Πm(U)f ](z) = f(U−1z), where z ∈ C2. Note that on the

left-hand side, f is inside the parenthesis, which means that that function is inputting

z-values. So its domain is C2. Similarly, on the right-hand side you will also have in

the domain values of C2, as U−1 is a 2× 2 matrix and when you multiply that by a

2 × 1 matrix z, you get a 2 × 1 matrix. So we write the left-hand side as such so it

is clear what our domain is, but what’s mainly important is that it is defined by the

right-hand side, which looks a lot nicer. We will show that Πm is a representation of

SU(2).

The first step is to show that Πm(U) is a map from Vm to itself. Now, elements
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of Vm have the form f(z1, z2) = a0z
m
1 + a1z

m−1
1 z2 + · · · + amz

m
2 , with z1, z2 ∈ C and

aj constant in C for all j ∈ Z. Note that it is written in this way because each term

has to have degree m, as the polynomials are homogeneous. Also note that there are

m+ 1 terms, and so dim(Vm) = m+ 1.

Say

U =

U11 U12

U21 U22

,

where Uij ∈ SU(2), i corresponds to the row of the matrix, and j corresponds to the

column of the matrix. Then

U−1 =

 U22 −U12

−U21 U11

.

Then we have

[Πm(U)f ](z) = [Πm(U)f ]

z1

z2

 = f(U−1

z1

z2

)

= f(

 U22 −U12

−U21 U11


z1

z2

) = f(

 U22z1 − U12z2

−U21z1 + U11z2

).

Now, note that U22 is equal to U−1
11 , which is the 11 entry of U−1. Utilizing this logic,

we then have the following:

f(

U−1
11 z1 + U−1

12 z2

U21z1 + U−1
22 z2

) = f(U−1
11 z1 + U−1

12 z2, U
−1
21 z1 + U−1

22 z2)

= a0(U−1
11 z1 + U−1

12 z2)m + a1(U−1
11 z1 + U−1

12 z2)m−1(U−1
21 z1 + U−1

22 z2) + · · ·+ am(U−1
21 z1 +

U−1
22 z2)m =

∑m
k=0 ak(U

−1
11 z1 + U−1

12 z2)m−k(U−1
21 z1 + U−1

22 z2)k, which has degree m. So

Πm(U) : Vm → Vm.
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Now we will show that Πm is a homomorphism. We have [Πm(U1)[Πm(U2)f ]](z) =

[Πm(U2)f ](U−1z) = f(U−1
2 U−1

1 z) = f((U1U2)−1z) = [Πm(U1U2)f ](z). So we have a

homomorphism!

Since Πm is a map from Vm to Vm and is also a homomorphism, it is a represen-

tation!

The associated representation πm of Lie(SU(2)) can be computed (by a previous

theorem) as

(πm(X)f)(z) = d
dt
f(e−tXz), evaluated at t = 0.

Now let z(t) = (z1(t), z2(t)) be the curve in C2 defined as ẑ(t) = e−tX . By the

chain rule,

πm(X)f = d
dt

[f(e−tXz)]t=0 = d
dt

[f(z1(t), z2(t))]t=0 = [ ∂f
∂z1

dz1
dt

]t=0 + [ ∂f
∂z2

dz2
dt

]t=0.

Note that dẑ
dt

evaluated at t = 0 is the derivative of e−tXz evaluated at t = 0,

which is −Xz. So πm(X)f = −∂f
∂z1

(X11z1 +X12z2)− ∂f
∂z2

(X21z1 +X22z2), where we get

this from recalling that X is a 2× 2 matrix and z is a 2× 1 matrix.

Now we will take the unique complex linear extension of π to Lie(SL2(C)) ∼=

Lie(SU(2))C, as in a previous result.

Now let H,X, and Y be the basis elements of Lie(SL2(C)):

H =

1 0

0 −1

, X =

0 1

0 0

, and Y =

0 0

1 0

.

Then πm(H) = −z1
∂
∂z1

+ z2
∂
∂z2

, πm(X) = −z2
∂
∂z1

, and πm(Y ) = −z1∂∂z2.

So we have

πm(H)(zm−k1 zk2 ) = (−z1
∂
∂z1

+ z2
∂
∂z2

)(zm−k1 zk2 ) = −(m− k)zm−k1 zk2 + kzm−k1 zk2

= (−m+ 2k)zm−k1 zk2 .

We also have
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πm(X)(zm−k1 zk2 ) = −z2
∂
∂z1

(zm−k1 zk2 ) = −z2((m− k)zm−k−1
1 zk2 ) = −(m− k)zm−k−1

1 zk+1
2 .

Finally, we have πm(Y )(zm−k1 zk2 ) = −z1∂∂z2(zm−k1 zk2 ) = −z1(zm−k1 kzk−1
2 ) = −kzm−k+1

1 zk−1
2 .

Recall that an eigenvector v of a matrix A satisfies Av = λv for some scalar

λ, which we call the eigenvalue. So zm−k1 zk2 is an eigenvector for πm(H), with an

eigenvalue of −m + 2k. Since k is arbitrary and −(m − k) is a scalar, −(m −

k)z
m−(k+1)
1 zk+1

2 = −(m − k)zm−k−1
1 zk+1

2 is an eigenvector for πm(X), call it v̂. Then

πm(X)v̂ = (−m + 2(k + 1))v̂ = (−m + 2k + 2)v̂. So the eigenvalue increased by 2.

Using πm(Y ), we get something similar, except the eigenvalue decreases by 2. The

idea of increasing or decreasing an eigenvalue by an integer is very important and

will appear later when we discuss roots and weights, as well as when we open our

discussion on physics applications. For now, however, we present a theorem:

Theorem 4.3.1. For m ≥ 0, the representation πm is irreducible.

Proof. We want to show that every nonzero invariant subspace of Vm is equal to Vm.

Let W be such a space and let 0 6= w ∈ W . Then w = a0z
m
1 +a1z

m−1
1 z2 + · · ·+amz

m
2 ,

with at least one ak 6= 0. Let k0 be the smallest value of k for which ak 6= 0 and

consider πm(X)m−k0w. Since each application of πm(X) raises the power of z2 by

1 (and lowers the power of z1 by 1), πm(X)m−k0 will kill all terms in w except the

ak0z
m−k0
1 zk02 term. We show this below.

We have

πm(X)(zm−k1 zk2 ) = −(m− k)zm−k−1
1 zk+1

2 .

We also have

w = ak0z
m−k0
1 zk02 + ak0+1z

m−k0−1
1 zk0+1

2 + · · ·+ amz
0
1z

m
2 .

So

πm−k0m (X)(w) = πm−k0−1
m (X)(ak0(−(m− k0))zm−k0−1

1 zk0+1
2 + · · ·+ am(−0)z−1

1 zm+1
2 ).

51



Note that the last term, which is the zm2 term (when it is in its original form in w,

before any derivations) dies off. So doing this m − k0 times will kill m − k0 terms.

Since there are m − k0 + 1 terms (as there are m terms after k0, and then we add 1

to include the k0 term), we are left with πm(X)(ak0z
m−k0
1 zk02 ).

On the other hand, since πm(X)(zm−k1 zk2 ) = 0 =⇒ m = k, πm(X)m−k0 is a

nonzero multiple of zm2 (since we raised our zk02 by degree (m− k0) to get zm2 ). Since

W is invariant,W must contain this multiple of zm2 , and thus zm2 . Now, for 0 ≤ k ≤ m,

we can see that πm(Y )kzm2 is a nonzero multiple of zk1z
m−k
2 , as πm(Y )zm2 = −z1

∂zm2
∂z2

=

−mz1z
m−1
2 =⇒ πm(Y )kzm2 = λzk1z

m−k
2 , where λ is a scalar. So W contains zk1z

m−k
2

for all 0 ≤ k ≤ m. Since these elements form a basis for Vm, W = Vm, and we are

done.

Thus, we have shown that the representations πm of Lie(SU(2)) are irreducible,

which we know also implies that the corresponding Lie group representations Πm of

SU(2) are irreducible. The Lie algebra of SU(2) will be discussed again in our section

on roots and weights, as well as our chapter on physics applications.

4.4 Tensor Products of Representations

This section will involve taking tensor products, which we presented in our back-

ground material chapter, of representations, which we now know a great deal about.

However, before we delve into that subject, we present a definition on direct sums

of representations, as it is a (relatively) easy-to-understand definition that does not

require its own section.

Definition 4.4.1. Let G be a matrix Lie group and Π1, . . . ,Πm be representations of

G acting on the vector spaces V1, . . . , Vm. Then the direct sum of Π1, . . . ,Πm is a

representation Π1⊕· · ·⊕Πm of G acting on the space V1⊕· · ·⊕Vm defined by [Π1⊕· · ·⊕
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Πm(A)](v1, . . . , vm) = (Π1(A)v1, . . . ,Πm(A)vm) for all A ∈ G. This works similarly

for the Lie algebra side of things, and both of these are indeed representations.

Now we will define a tensor product of representations.

Definition 4.4.2. Let G and H be matrix Lie groups, Π1 be a representation of G

acting on a space U , and Π2 be a representation of H acting on a space V . Then the

tensor product of Π1 and Π2 is a representation Π1⊗Π2 of G×H acting on U⊗V ,

defined by (Π1 ⊗ Π2)(A,B) = Π1(A)⊗ Π2(B) for all A ∈ G and B ∈ H.

Note that Π1⊗Π2 in the above definition is indeed a representation. We can also

define an analogous definition for Lie algebras and get an interesting theorem.

Theorem 4.4.3. Let G and H be matrix Lie groups with Lie algebras Lie(G) and

Lie(H), respectively, and let Π1 and Π2 be representations of G and H, respectively.

Consider the representation Π1 ⊗ Π2 of G × H. If π1 ⊗ π2 denotes the associated

representation of Lie(G) ⊕ Lie(H), then (π1 ⊗ π2)(X, Y ) = π1(X) ⊗ I + I ⊗ π2(Y )

for all x ∈ Lie(G) and Y ∈ Lie(H).

We omit the proof of this theorem, as it requires knowledge of smooth curves,

although the proof can be found here [4]. We can use this theorem to moitivate the

following definition:

Definition 4.4.4. Let g and h be Lie algebras, and let π1 and π2 be their respective

representations acting on spaces U and V . Then the tensor product of π1 and π2,

denoted π1⊗π2, is a representation of g⊕h acting on U⊗V , given by (π1⊗π2)(X, Y ) =

π1(X)⊗ I + I ⊗ π2(Y ) for all x ∈ g and Y ∈ h.

Note that π1 ⊗ π2 in the above definition is indeed a representation.

We already defined a tensor product of a representation with a product group G×

H acting on a space U⊗V , but we can also define a tensor product of a representation

with two different representations of the same group G acting on spaces U and V .
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Definition 4.4.5. Let G be a matrix Lie group and Π1 and Π2 be representations of

G acting on spaces U and V . Then the tensor product representation of G acting on

U ⊗V is defined by Π1⊗Π2)(A) = Π1(A)⊗Π2(A) for all A ∈ G. Similarly, if π2 and

π2 are representations of a Lie algebra g, we define a tensor product representation

of g on U ⊗ V by (π1 ⊗ π2)(X) = π1(X)⊗ I + I ⊗ π2(X) for all X ∈ g.

These are the essentials of tensor product representations, but we also have another

interesting type of representation that we will discuss next: the dual representation.

4.5 Dual Representations

Much like with tensor products, we discussed dual spaces in the Background Material

chapter so that we could jump right into dual space representations here.

Definition 4.5.1. Let G be a matrix Lie group and Π : G→ GL(V ) be a representa-

tion. Then the dual representation is the representation Π∗ : G→ GL(V ∗) defined

by Π∗(g)(f)(v) = f(Π(g−1)v). Similarly, if g is a Lie algebra and π : g→ gl(V ) is a

representation, then π∗ : g→ gl(V ∗) is defined by π∗(X)(f)(v) = f(π(−X)v).

It can be checked that these are indeed representations. It is also a fact that if V

is an inner product space, then for all f ∈ V ∗, there exists w ∈ V : f(v) = 〈w, v〉, and

so the functions are determined by the inner product. So you have a pairing V × V ∗

with 〈v, f〉 = f(v).

We also have the following result that we will not prove, but is very interesting

nonetheless.

Theorem 4.5.2. Let Π be a representation of a matrix Lie group G. Then Π∗ is

irreducible if and only if Π is irreducible. Also, (Π∗)∗ ∼= Π. There are analogous

results for Lie algebra representations.
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4.6 Representations of Lie(SL2(C))

We will now begin to look at representations of Lie(SL2(C)) and (eventually) repre-

sentations of Lie(SL3(C)). Recall that Lie(SL2(C)) is the set of 2× 2 matrices with

trace 0 and that it has dimension 3. So we choose the following as our basis:

X =

0 1

0 0

 , Y =

0 0

1 0

 , H =

1 0

0 −1

 .

The commutation relations are,

[H,X] = 2X [H, Y ] = −2Y [X, Y ] = H.

Now if V is a finite-dimensional complex vector space and A, B, and C are operators

on V satisfying the same commutation relations as H, X, and Y , then we have

[A,B] = 2B,

[A,C] = −2C,

[B,C] = A.

Due to the skew symmetry and bilinearity of the brackets, there is a unique linear

map π : Lie(SL2(C))→ Lie(GL(V )).

We can now prove the following theorem.

Theorem 4.6.1. For each integer m ≥ 0, there is an irreducible representation of

Lie(SL2(C)) with dimension m + 1. Any two irreducible complex representations of

Lie(SL2(C)) with the same dimension are isomorphic. If π is an irreducible complex

representation of Lie(SL2(C)) with dimension m + 1, then π is isomorphic to the

representation πm.
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Proof. Let π be an irreducible representation of Lie(SL2(C)) acting on a finite di-

mensional complex vector space V. We want to diagonalize the operator π(H). Since

we’re working over C, π(H) must have at least one eigenvector. This is because all

roots to the auxiliary equation are in the complex field. Let u be an eigenvector with

eigenvalue α. Then if we apply Theorem 4.6.3 repeatedly,

π(H)π(X)ku = (α + 2k)π(X)ku.

Since we’re working over a finite dimensional space, there are only a finitely many

number of eigenvectors and eigenvalues. Since applying π(X) takes us to a new vector

with eigenvalue α + 2 there has to come a point where we have reached the highest

eigenvalue and any more repeated use of π(X) cannot take you to another eigenvector,

so we say it goes to 0. More explicitly, there exists some N ≥ 0 such that,

π(X)Nu 6= 0

but,

π(X)N+1u = 0.

Let’s call this highest eigenvector uhigh = π(X)Nu and αhigh = α+2N . Then we have

π(H)uhigh = αhighuhigh,

π(X)uhigh = 0.

Now since applying π(X) raised the eigenvalue by 2 and we know that if we apply

π(Y ) the eigenvalue will decrease by 2, this motivates us to define

uk = π(Y )kuhigh,

for k ≥ 0. Now if we apply π(H), which just tells us which eigenvalue we are at, we
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get

π(H)uk = (αhigh − 2k)uk.

Now if we apply π(X) to uk, then we get

π(X)uk = k[αhigh − (k − 1)]uk−1.

Now by the same logic, since we’re dealing with a finite-dimensional space, if we con-

tinuously apply π(Y ) (which lowers the eigenvalue), we will eventually cycle through

all of them and any extra application will give 0. So there exists an integer m such

that

uk = π(Y )kuhigh 6= 0

for all k ≤ m, but

um+1 = π(Y )m+1uhigh = 0.

Now if um+1 = 0, then π(X)um+1 = 0. Therefore,

0 = π(X)um+1 = (m+ 1)(αhigh −m) = 0.

Since um and m+1 are nonzero, this means αhigh−m = 0. So αhigh coincides with the

non-negative integer m. From this comes the conclusions that for every irreducible

representation π, there exists an integerm ≥ 0 and associated non-zero vectors uhigh...

u0 that satisfy the following conditions:

1. π(H)uk = (αhigh − 2k)uk

2. π(Y )uk =

uk+1, if k < m

0, if k = m


3. π(X)uk =

k(αhigh − (k − 1))uk−1, if k > 0

0, if k = m
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The eigenvectors must be linearly independent since they are eigenvalues of π(H)

with distinct eigenvalues. Also, the span of uα ... u0 is invariant under π(H), π(Y ),

and π(X). Therefore this is true for all π(Z), for Z ∈ Lie(SL2(C)), since Z would

be some combination of H, Y , and X. Since π is irreducible, the space must be all

of V .

The preceding discussion has shown that every irreducible representation of Lie(SL2(C))

satisfies the previous conditions. Now if we defined π(H), π(Y ), π(X) by the previous

conditions, then one finds that the operators satisfy the commutations relations we

started with. Therefore any irreducible representation with dimension m + 1 must

satisfy the previous conditions, making them all isomorphic.

Now were going to prove a nice corollary that comes from this theorem that shows

all shows all eigenvalues for π(H) are integers.

Corollary 4.6.2. If π is a finite-dimensional representation of Lie(SL2(C)), not

necessarily irreducible, then every eigenvalue of π(H) is an integer and if v is an

eigenvector for π(H) with eigenvalue λ and π(X)v = 0, then λ is a non-negative

integer.

Proof. Suppose v is an eigenvector for π(H) with an associated eigenvalue λ. There

exists some N ≥ 0 such that π(X)Nv 6= 0, but π(X)N+1v = 0. Now π(X)Nv

is an eigenvector of π(H) with eigenvalue λ + 2N shown in the previous theorem,

m = λ + 2N must be a non-negative integer, which means λ must be an integer. If

π(X)v = 0 then take N = 0 and λ = m again is non-negative.

4.7 Roots and Weights

In this section, we discuss the roots and weights of Lie algebras. Specifically we will

define a weight and a root for Lie(SL3(C)), since that is the next example we are

going to look at.
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Definition 4.7.1. If (π, V) is a representation of Lie(SL3(C)), then an ordered pair

µ = (m1,m2) ∈ C2 is called a weight for π if there exists v 6= 0 ∈ V such that,

π(H1)v = m1v

π(H2)v = m2v

We can now define a root, which is the weight of the adjoint representation.

Definition 4.7.2. An ordered pair α = (α1, α2) ∈ C2 is called a root if,

1. α1, α2 are not zero

2. there exists a nonzero Z ∈ Lie(SL3(C)) such that

[H1, Z] = α1Z

[H2, Z] = α2Z

Theorem 4.7.3. Let α = (a1, a2) be a root and let Zα ∈ Lie(SL3(C)) be a corre-

sponding root vector. Let π be a representation of Lie(SL3(C)), µ = (m1,m2) be

a weight for π, and let v 6= 0 be a corresponding weight vector. Then we have the

following:

π(H1)π(Zα)v = (m1 + a1)π(Zα)v,

π(H2)π(Zα)v = (m2 + a2)π(Zα)v.

Thus, either π(Zα)v = 0 or π(Zα)v is a new weight vector with weight

µ+ α = (m1 + a1,m2 + a2).

Proof. By the definition of a root, we have the commutation relation
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[H1, Zα] = π(H1)π(Zα)v − π(Zα)π(H1) = a1Zα. Thus,

π(H1)π(Zα)v = (π(Zα)π(H1) + a1π(Zα))v

= π(Zα)(m1v) + a1π(Zα)v

= (m1 + a1)π(Zα)v.

A similar argument allows us to compute π(H2)π(Zα)v.

Now we will define a notion of higher and lower weights.

Definition 4.7.4. Let α1 and α2 be roots corresponding to the weights µ1 and µ2,

then µ1 is called higher than µ2 if µ1 − µ2 can be rewritten as,

µ1 − µ2 = aα1 + bα2

with a ≥ 0 and b ≥ 0.

Definition 4.7.5. If π is a representation of Lie(SL3(C)), then a weight µ0 is said

to be a highest weight if for all weights µ, µ0 ≥ µ.

Now, you may be wondering why we are interested in Lie(SL3(C))? Well its

because Lie(SL3(C)) ' Lie(SU(3)). This is because the special unitary matrices

have a physical significance in physics. Particularly one can view Lie(SU(n)) as a

set of rotation operators in n dimensions. This leads to the notion of spin that is of

great importance in quantum mechanics.

4.8 Representations of Lie(SL3(C))

Looking at Lie(SL3(C)) is similar to when we looked at Lie(SL2(C)), but now we

increase the intricacy of the problem by adding one more “H” matrix into the basis.
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But the dimension of Lie(SL3(C)) is 32−1 = 8 while Lie(SL2(C)) was 22−1 = 3, so

simply adding one more H is not enough; we also have to add two more “X” matrices

and two more “Y ” matrices. The basis we will choose forLie(SL3(C)) is:

H1 =


1 0 0

0 −1 0

0 0 0

 H2 =


0 0 0

0 1 0

0 0 −1



X1 =


0 1 0

0 0 0

0 0 0

 X2 =


0 0 0

0 0 1

0 0 0

 X3 =


0 0 1

0 0 0

0 0 0



Y1 =


0 0 0

1 0 0

0 0 0

 Y2 =


0 0 0

0 0 0

0 1 0

 Y3 =


0 0 0

0 0 0

1 0 0


It should be noted that if we take a subalgebra with basis 〈H1, X1, Y1〉 or 〈H2, X2, Y2〉

you get a subalgebra isomorphic to Lie(SL2(C)). Therefore, the commutation rela-

tions for each subalgebra are the same as Lie(SL2(C)):

[H1, X1] = 2X1, [H2, X2] = 2X2

[H1, Y1] = −2Y1, [H2, Y2] = −2Y2

[X1, Y1] = H1, [X2, Y2] = H2

Now the rest of the commutation relations are

[H1, H2] = 0

[H2, X1] = −X1, [H2, Y1] = Y1
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[H1, X2] = −X2, [H1, Y2] = Y2

[H1, X3] = X3, [H1, Y3] = −Y3

[H2, X3] = X3, [H2, Y3] = −Y3

[X3, Y3] = H1 +H2

[X1, X2] = X3, [Y1, Y2] = −Y3

[X1, Y2] = 0, [X2, Y1] = 0

[X1, X3] = 0, [Y1, Y3] = 0

[X2, X3] = 0, [Y2, Y3] = 0

[X2, Y3] = Y1, [X3, Y2] = X1

[X1, Y3] = −Y2, [X3, Y1] = −X2

Since the commutator between H1 and H2 is 0, this means they share an eigenbasis

and are able to be simultaneously diagonalized. Similar to Lie(SL2(C)), we will look

for a representation that satisfies the same commutation relations. So we want to

simultaneously diagonalize π(H1) and π(H2). Now because we have two H matrices,

this means we will have two weights. However we know nothing about π(Hi)v, so we

will look at the roots for this space.

Table 4.1: Roots for Lie(SL3(C))

α Z α Z
(2,-1) X1 (-2,1) Y1

(-1,2) X2 (1,-2) Y2

(1,1) X3 (-1,-1) Y3

Identifying what the representations of Lie(SL3(C)) look like will be done in the

proof of a theorem that has five different parts. But first, we look at a definition!
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Definition 4.8.1. A representation π of Lie(SL3(C)) is said to be a highest weight

cyclic representation with weight µ = (m1,m2) if there exists v ∈ V and v 6= 0

such that:

1. v is a weight vector with weight µ

2. π(Xj)v = 0 for j = 1, 2, 3

3. The smallest invariant subspace containing v is V

Now we can look at the five-part theorem we mentioned.

Theorem 4.8.2. We have the following:

1. Every irreducible representation of Lie(SL3(C)) is the direct sum of its weight

spaces.

2. Every irreducible representation of Lie(SL3(C)) has a unique highest weight.

3. Two irreducible representations of Lie(SL3(C)) with the same highest weight

are isomorphic.

4. The highest weight µ of an irreducible representation must be of the form µ =

(m1,m2), where m1 and m2 are non-negative integers.

5. For every pair (m1,m2) of non-negative integers, there exists an irreducible

representation of Lie(SL3(C)) with the highest weight (m1,m2).

Proof. Since the theorem is divided into 5 parts, we will divide our proof into 5 parts.

1. Let W be the sum of weight spaces in V . So W = {w ∈ V : w =

a1v1 + a2v2 + ... + anvn where π(H1)vi = λivi and π(H2)vi = λivi}. Now

every representation of Lie(SL3(C)) has at least one weight. From this we

know W 6= 0. Now, from earlier we defined Zα which took the weight space

corresponding to µ and rotated it in the µ+ α weight space. Since W is made
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up of all the weight spaces of V , any Zα acting on W will be invariant since

it will give back another weight space which is inside W . Now remember that

X1, X2, X3, Y1, Y2, Y3 are Zα terms. Also, because H1 and H2 just

tell you the eigenspace you’re already in, W is invariant on those terms as well.

SoW is invariant under the entire basis of Lie(SL3(C)) and, therefore, W = V .

2. We have just shown that every irreducible representation of Lie(SL3(C)) is a

direct sum of its weight spaces. Remember that the representation has finite

dimension, this means that there can only be a finite number of weights. This

means there must be a highest weight µ. A highest weight means for any weight

vector v then,

π(Xj)v = 0 j = 1, 2, 3

Now since π is irreducible, that means the smallest invariant subspace that

contains v must be the entire space.

3. Suppose π and σ are both irreducible representations with the same highest

weight µ, V is the vector space corresponding to the representation π, W is the

vector space corresponding to σ, and let v and w be the highest weight vectors

from V andW , respectively. Now, to actually prove this, there is something that

needs to be known about completely reducible representations of Lie(SL3(C)).

That is if there is a completely reducible representation of Lie(SL3(C)) that is

also highest weight cyclic, then it is irreducible. Now consider a representation

V ⊕W and let U be the smallest invariant subspace of V ⊕W which contains

(v, w). By definition, U is a highest weight cyclic representation. Now, because

V ⊕W is completely reducible, then U is also completely reducible. This means

U is also irreducible. Now consider two maps, called projection maps Pv and
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Pw. By projection, we mean that given a vector (v, w):

Pv(v, w) = v Pw(v, w) = w.

Now Pv and Pw are intertwining maps. This is also true if we restrict them to

U instead of V ⊕W . Since U is the smallest invariant subspace that contains

(v, w), then Pv(v, w) = v and Pw(v, w) = w is not the 0 map. Therefore, by

Schur’s Lemma [4], Pv is an isomorphism from U to V and Pw is an isomorphism

from U to W , which means V ' U ' W . Therefore, V and W are isomorphic,

where the isomorphism between V and W is Pv(P−1
w ).

4. Now if we restrict π to {X1, Y1, H1} or {X2, Y2, H2}, then it is isomorphic to

Lie(SL2(C)). Therefore, with these restrictions we know that m1 and m2 must

be integers. similarly, we know that they are non-negative in Lie(SL2(C)),

therefore they must be non-negative here as well. For if they were non-integer

or negative, then when we applied the restrictions, which are isomorphic to

Lie(SL2(C)), there would be a contradiction.

5. Let V1 be the standard representation of Lie(SL3(C)), which will have weight

vectors e1, e2, and e3, which gives the weights (1, 0), (−1, 1), and (0,−1), re-

spectively. The dual of the standard representation is π(Z) = −ZT for all

Z ∈ Lie(SL3(C)), and has the weights (−1, 0), (1,−1), (0, 1). The highest

weight is (0, 1). We call this space V2. Now were going to build a general weight

space of highest weight (m1,m2) with various combinations of V1 and V2. Now

consider πm1,m2 which is given by

(V1 ⊗ V1 ⊗ ...⊗ V1)⊗ (V2 ⊗ V2 ⊗ ...⊗ V2)

where there arem1 V1’s andm2 V2’s. Then v = v1⊗...⊗v1⊗v2⊗...⊗v2 is a vector
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with weight (m1,m2). Let W be the smallest invariant subspace containing v.

If πm1,m2 is completely reducible, then W will be completely reducible. Then W

is irreducible since it is highest weight cyclic. This means W is an irreducible

space that has highest weight (m1,m2).

We have now finished our discussion on Lie(SL3(C)). Before diving into some

physical applications of this work, we will take a brief detour into discussing the Weyl

Group, as this is also an interesting aspect of Lie theory.

4.9 The Weyl Group

In this section, we talk about the Weyl group. There are many interesting directions

one could take with this subject, although we will only discuss some aspects of this

engaging topic. We begin by letting h = span{H1, H2}, where

H1 =


1 0 0

0 −1 0

0 0 0

 and H2 =


0 0 0

0 1 0

0 0 −1

.

Note that h is a two-dimensional subspace of Le(SL3(C)). Now, for A ∈ SU(3)

and H ∈ h, we have AdA(H) = AHA−1. We can then define two more groups: let

N = {A ∈ SU(3) : AdA(H) ∈ h for all H ∈ h} and Z = {A ∈ SU(3) : AdA(H) = H

for all H ∈ h}. Note that AHA−1 = H =⇒ AH = HA, and so we can think of Z as

a kind of center (as in, the center of a group), hence its label of Z. We then have a

few results that follow from these definitions, all of which involve basic group theory.

Theorem 4.9.1. N is a subgroup of SU(3).
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Proof. By definition, N is a subset of SU(3). So we just need to show that N is a

group (under the same operation as SU(3), which is multiplication). Let x,y ∈ N

and H ∈ h.

1. Closure: We have Adxy(H) = (xy)H(xy)−1 = xyHy−1x−1 = xAdy(H)x−1.

Note that since y ∈ N , Ady(H) ∈ h. Thus, xAdy(H)x−1 = Adx(Ady(H)),

which is also in h because x ∈ N . Thus, xy ∈ N and we have closure.

2. Associativity: This follows from the associativity of SU(3).

3. Identity: Note that the 3 × 3 identity matrix is in SU(3), as it is unitary

and has determinant 1. Thus, if we let e be said identity matrix, we have

Ade(H) = eHe−1 = H ∈ h. So e ∈ N and we have an identity element.

4. Inverse:We have Adx(H) = H ′ ∈ h =⇒ xHx−1 = H ′ =⇒ H = x−1H ′x =⇒

H = Adx−1(H ′). Since H ′ is arbitrary, x−1 ∈ N and we have inverses.

Thus, N is a subgroup of SU(3).

Theorem 4.9.2. Z is a subgroup of SU(3).

Proof. By definition, Z is a subset of SU(3) (and actually N , as H ∈ h). So we

just need to show that Z is a group (under the same operation as SU(3), which is

multiplication). Let x,y ∈ Z and H ∈ h.

1. Closure: We have Adxy(H) = (xy)H(xy)−1 = xyHy−1x−1 = xAdy(H)x−1.

Note that since y ∈ Z, Ady(H) = H. Thus, xAdy(H)x−1 = xHx−1 =

Adx(H) = H. Thus, xy ∈ Z and we have closure.

2. Associativity: This follows from the associativity of SU(3).
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3. Identity: Note that the 3 × 3 identity matrix is in SU(3), as it is unitary

and has determinant 1. Thus, if we let e be said identity matrix, we have

Ade(H) = eHe−1 = H. So e ∈ Z and we have an identity element.

4. Inverse: We have Adx(H) = H =⇒ xHx−1 = H =⇒ H = x−1Hx =⇒ H =

Adx−1(H). Thus, x−1 ∈ Z and we have inverses.

Thus, Z is a subgroup of SU(3).

Theorem 4.9.3. Z is a normal subgroup of N .

Proof. As mentioned in the last proof, Z is a subset of N and a subgroup of SU(3).

Since N and SU(3) have the same operation, it follows that Z is a subgroup of N .

To show normality, we want to show that nzn−1 ∈ Z for all z ∈ Z and n ∈ N . So

let z ∈ Z, n ∈ N , and H ∈ h. Then we have Adnzn−1(H) = nzn−1Hnz−1n−1. Since

n ∈ N , this equals nzH ′z−1n−1, where H ′ ∈ h. Since z ∈ Z, this then equals nH ′n−1,

which must equal H (since we had n−1Hn = H ′). Thus, nzn−1 ∈ Z and Z is a

normal subgroup of N .

Since Z is a normal subgroup of N , we can make a quotient group that will be

denoted by W = N
Z
. This is known as the Weyl group. Now, W acts on h in the

following way: for w = [A] ∈ W , where A ∈ N , we have w.H = AdA(H). This action

is well-defined since if B is an element of the same coset as A, then B = AC (where

C ∈ Z) and we get AdB(H) = AdA(AdC(H)) = AdA(H) since C ∈ Z. We now want

to prove the following theorem:

Theorem 4.9.4. This theorem states that we are able to redefine Z and N as

Z = {


eiθ 0 0

0 eiφ 0

0 0 e−i(θ+φ)

 : θ, φ ∈ R},
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which we will denote as Z ′, and N = {A ∈ SU(3) : for all j ∈ {1, 2, 3}, ∃kj ∈

{1, 2, 3}, θj ∈ R : Aej = eiθjekj}. (Note that e1, e2, e3 is the standard basis for C3.)

This then implies that W = N
Z
' S3.

Before we go through the proof of this, it is a good idea to list an example of such

a matrix in N , as the new definition looks very scary. Such a matrix would look like
0 0 eiθ3

eiθ1 0 0

0 eiθ2 0

,

where θ1 + θ2 + θ3 = 0. This is so the matrix is invertible and has determinant 1,

which is necessary since it is also an element of SU(3). Now we continue with the

proof of the theorem.

Proof. The first task that we want to conquer is to find Z. Note that if we pick an

element in Z ′, this is also an element of SU(3), as it is unitary with determinant

1, and is satisfies the adjoint condition. So we know that Z ′ ⊆ Z. Now, suppose

that A ∈ Z. Then since H1 ∈ h, we have AH1 = H1A. Now, H1e1 = 1e1. So

H1Ae1 = AH1e1 = A1e1 = 1Ae1. This means that Ae1 is an eigenvector for H1 with

an eigenvalue of 1. So Ae1 ∈ E1 = span{e1}. So there exists λ ∈ C : Ae1 = λe1.

This works similarly for e2 and e3. So A is diagonal and thus we have A ∈ Z ′. Thus,

Z ⊆ Z ′. Thus, we have found Z.

Now we want to find N . Suppose that A ∈ N . Then AH1A
−1 ∈ h. So AH1A

−1

is diagonal. So e1, e2, e3 are eigenvectors for AH1A
−1. Note that AH1A

−1(Ae1) =

AH1e1 = A1e1 = 1Ae1. So Ae1 is an eigenvector for AH1A
−1. So there exists

j : A ∈ span{ej}. Note that if Av = λv and A ∈ U(n), then AA∗ = A∗A = I and

so v∗A∗ = v∗λ∗ = λ∗v∗ (as λ is a scalar, so it commutes). This then implies that

‖v‖2 = v∗v = v∗Iv = v∗A∗Av = λ∗v∗Av = λ∗v∗λv = λ∗λv∗v = |λ|2‖v‖2. This implies

that |λ|2 = 1, which implies that |λ| = 1. Thus, there exists θ ∈ R : λ = eiθ.
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Finally, we want to show that W = N
Z
' S3. Note that for all A ∈ N , we get a

bijective linear transformation (since A is an invertible matrix), which we can denote

by TA : C3 → C3 and which is defined by TA(v) = Av. So TA(ei) = λej, where λ ∈ C.

We then get a surjective homomorphism that maps from N to S{e1,e2,e3} = S3 defined

by A → TA. The kernel of this homomorphism is {A : TA = id}, which is Z. Thus,

by the First Isomorphism Theorem, we have that N
Z
' S3.

Now we can define an inner product on h by 〈H,H ′〉 = tr(H∗H ′). Note that this

is the Hilbert-Schmidt inner product given in the Background Material chapter. We

will use this in our next definition.

Definition 4.9.5. For a representation π of Lie(SL3(C)), λ ∈ h is a weight for π

if there exists a nonzero v ∈ V such that π(H)v = 〈λ,H〉v for all H ∈ h. We call v

the weight vector, as it is an eigenvector.

We now have the following result:

Theorem 4.9.6. Let Π be a representation of SU(3) and π be a representation of

Lie(SL3(C)). If λ is a weight for π, then w.λ is also a weight for π for all w ∈ W .

Also, λ and w.λ have the same multiplicity, where the multiplicity of a weight is equal

to the dimension of a weight space.

Proof. First note that for H,H ′ ∈ h, w = [u] ∈ N
Z

(u ∈ N) = uz, a coset. Then

we have 〈w.H,H ′〉 = 〈uHu−1, H ′〉 = tr((uHu−1)∗H ′) = tr(uHu−1H ′), where we

are using the fact that we have diagonal and unitary matrices. We also have that

〈H,w−1.H ′〉 = tr(H∗u−1H ′u) = tr(uH−1u−1H ′) = 〈w.H,H ′〉.

Now, say λ is a weight with weight vector v. Then for al u ∈ N,H ∈ h, we

have π(H)Π(u)v = Π(u)Π(u−1)π(H)Π(u)v = Π(u)π(u−1Hu)v = Π(u)〈λ, u−1Hu〉v,

where we note that u−1Hu ∈ h. This then equals Π(u)〈λ,w−1.H〉v, where w = [u],

which then equals 〈w.λ,H〉Π(u)v. So w.λ is a weight with weight vector Π(u)v.

Now, recall that Π(u) is an invertible linear map from V to itself. So we also have
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Π(u) : Eλ → Ew.λ, which can also have an inverse map Π(u−1). So we have Eλ ' Ew.λ,

and so dim(Eλ) = dim(Ew.λ).
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Chapter 5

Physics Applications

This chapter covers some brief physical applications of the mathematical work we

have looked at, as well as context necessary for those without a physics background.

We will go through an example of constructing an irreducible representation of highest

weight 1
2
using a more physics-based approach (although it will still be mathematically

rigorous) and explain what that means from a physics perspective, although we will

need to go over some facts and define certain objects first.

5.1 The Rotation Group

A very important note is that SO(3) is known as the rotation group because it is

the group that models the rotations in a three-dimensional space; that is, if you take

the origin of R3, then SO(3) is the group of the rotations about that origin. So SO(3)

is an important group because it is one that represents the physical world in which

we live. We ignore the details of why this is the case, but it is common knowledge for

physicists, so we accept it.

Now, we know that SO(3) is a Lie group and Lie(SO(3)) is its corresponding Lie

algebra. We also know that Lie(SO(3)) ∼= Lie(SU(2)). What we are going to do

in the next section is construct an irreducible representation of Lie(SU(2)) with a
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highest weight of 1
2
. While we will not go in-depth with the details, note that this is

useful in physics because of the connection we just made: Lie(SU(2)) ∼= Lie(SO(3)),

which is the corresponding Lie algebra of SO(3), the rotation group that models the

real world we live in.

5.2 The Physics Approach

We call this section the Physics Approach not because we are necessarily using a lot

of physics information - it is still mainly pure mathematics - but because this specific

way of going about it is how a physicist would. The notation would vary slightly and

some of the details might not be figured out with as much mathematical precision,

but the basic form is very much what a physicist would see. So let’s begin!

Note the following information, some of which we have mentioned before, all of

which comes from Hall’s book [4]:

• For compact Lie groups, their representations are isomorphic to unitary repre-

sentations.

• If a Lie group representation Π is unitary, then its corresponding Lie algebra

representation π satisfies π(g)∗ = −π(g) for all g in the Lie algebra (note that

we discussed this earlier).

• We know that SU(2) is compact (and we can ignore what exactly being compact

means). So Π : SU(2) 7→ GLn(C) is always unitary or isomorphic to a unitary

representation, and so the Lie algebra representation corresponding to Π, π :

Lie(SU(2) 7→ Mn(C), either satisfies π(g)∗ = −π(g) for all g ∈ Lie(SU(2)), or

π is isomorphic to a representation with this skew self-adjoint property.

• We also know that if a Lie group G is simply connected, then all representations

π of Lie(G) come from the representations Π of G.
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• Since we know that SU(2) is simply connected, all Lie(SU(2)) representations

π come from SU(2) representations. Thus, for a Lie algebra representation π :

Lie(SU(2)) 7→Mn(C), we always have π(g)∗ = −π(g) for all g ∈ Lie(SU(2)).

Let π : Lie(SU(2)) 7→ Mn(C) be a Lie algebra representation. We choose our

basis for Lie(SU(2)) to be the following matrices:

σ1 =

 i
2

0

0 −i
2

 , σ2 =

0 i
2

i
2

0

 , σ3 =

0 −1
2

1
2

0

.

Note that this is the same basis we chose earlier when we worked on this, way

back when, and so we know that these satisfy the commutation relations: [σ1, σ2] =

σ3, [σ2, σ3] = σ1, and [σ3, σ1] = σ2.

By our bullet notes above, we have that π(σk)
∗ = −π(σk). Since π is a representa-

tion, we then get −π(σk) = π(−σk). Finally, since σk ∈ Lie(SU(2)), we end up with

π(−σk) = π(σ∗k). So π(σk)
∗ = π(σ∗k) Now define Jk = −iπ(σk), where k ∈ {1, 2, 3}.

Then we get that J∗k = (−iπ(σk))
∗ = iπ(σk)

∗ = iπ(σ∗k) = iπ(−σk) = −iπ(σk) = Jk,

which means that Jk is Hermitian.

Now let’s go over some commutation relations. We have [J1, J2] = J1J2 − J2J1 =

π(σ1)π(σ2)− π(σ2)π(σ1) = [π(σ1), π(σ2)] = π([σ1, σ2]) = π(σ3) = iJ3. Repeating this

process, we find that [J2, J3] = iJ1 and [J3, J1] = iJ2.

We can also define J2 = J2
1 + J2

2 + J2
3 . Then [J2, Jk] = 0. For example,

[J2, J1] = J2J1 − J1J
2

= (J2
1 + J2

2 + J2
3 )J1 − J1(J2

1 + J2
2 + J2

3 )

= J3
1 + J2

2J1 + J2
3J1 − J3

1 − J1J
2
2 − J1J

2
3

= J2
2J1 − J1J

2
2 + J2

3J1 − J1J
2
3

= J2
2J1 − J2J1J2 + J2J1J2 − J1J

2
2 + J2

3J1 − J3J1J3 + J3J1J3 − J1J
2
3

= J2[J2, J1] + [J2, J1]J2 + J3[J3, J1] + [J3, J1]J3
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= −iJ2J3 − iJ3J2 + iJ3J2 + iJ2J3

= 0.

Also note that [J2, Jk] = 0 =⇒ J2Jk − JkJ2 = 0 =⇒ J2Jk = JkJ
2.

Now we will define J± = J1 ± iJ2. Then,

J+J− = (J1 + iJ2)(J1 − iJ2) = J2
1 − iJ1J2 + iJ2J1 + J2

2 .

Similarly, J−J+ = J2
1 + iJ1J2 − iJ2J1 + J2

2 . So adding these together gives us

J+J− + J−J+ = 2J2
1 + 2J2

2 .

Thus, we have

J2 = J2
1 + J2

2 + J2
3 = 1

2
(J+J− + J−J+) + J2

3 .

Also,

[J+, J−] = J+J− − J−J+ = J2
1 − iJ1J2 + iJ2J1 + J2

2 − (J2
1 + iJ1J2 − iJ2J1 + J2

2 ) =

−2iJ1J2 + 2iJ2J1 = 2i[J2, J1] = 2J3.

Next, we have

[J+, J3] = (J1 + iJ2)J3 − J3(J1 + iJ2) = J1J3 + iJ2J3 − J3J1 − iJ3J2 =

[J1, J3] + i[J2, J3] = −iJ2 − J1 = −(J1 + iJ2) = −J+.

Similarly, [J−, J3] = J−. Thus, we have that [J±, J3] = ∓J±.

Moving forward, recall that we said [J2, Jk] = 0 for k ∈ {1, 2, 3}. So [J2, J3] = 0,

or J2J3 = J3J
2. If we presume that we have distinct eigenvalues, we have

J2v = λv

J3v = mv.
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This follows from a theorem we showed in Chapter 2, although we note that even if

we presumed eigenvalues were not distinct, this would still work. However, we omit

the details of this.

Note that [J±, J3] = ∓J± =⇒ J±J3 − J3J± = ∓J± =⇒ J3J± = ±J± + J±J3.

So J3J±v = (±J± + J±J3)v = ±J±v + J±J3v = ±J±v + J±mv = (±1 + m)J±v =

(m± 1)J±v. Therefore, we have that J3J±v = (m± 1)J±v.

We also have J2J±v = J2(J1 ± iJ2)v = (J2J1 ± iJ2J2)v = (J1J
2 ± iJ2J

2)v =

(J1 ± iJ2)J2v = J±λv = λJ±v. Thus, we have J2(J±v) = λ(J±v).

So we have

J2(J±v) = λ(J±v)

J3J±v = (m± 1)J±v.

Recall that any nonzero vector can be normalized. So

〈Jkv, Jkv〉 ≥ 0 =⇒ (Jkv)∗Jkv ≥ 0 =⇒ v∗J∗kJkv ≥ 0 =⇒ v∗J2
kv ≥ 0

since we know that Jk is Hermitian (and therefore Jk = J∗k ). Utilizing this, we get

that

v∗J2v = v∗(J2
1 + J2

2 + J2
3 )v =⇒ v∗λv = v∗J2

1v + v∗J2
2v + v∗J2

3v

=⇒ λv∗v = v∗J2
1v + v∗J2

2v +m2v∗v

since v∗J2
3v = v∗J3J3v = v∗J3mv = mv∗J3v = mv∗mv = m2v∗v. We know that v

can be normalized (since v is an eigenvector and therefore nonzero), so we have that

v∗v = 〈v, v〉 = 1. This means that we end up with λ = v∗J2
1v + v∗J2

2v + m2. Now,

v∗J2
1v ≥ 0 and v∗J2

2v ≥ 0 because we said that v∗J2
kv ≥ 0. So we finally end up with

λ = v∗J2
1v + v∗J2

2v +m2 ≥ m2 =⇒ λ ≥ m2 =⇒

λ−m2 ≥ 0.

Note that since Lie(SU(2)) is a finite-dimensional vector space, there are a finite

number of eigenvalues. So if we start with J3J+w = (m + 1)w (where w is our

76



eigenvector), we can apply J+ on w a finite number (say n) times, eventually giving

us J3(J+)nw = (m + n)(J+)nw. Since n was our maximum finite number, we could

not have J3(J+)n+1w = (m+n+ 1)(J+)n+1w, where (J+)n+1w is an eigenvector. But

we know this formula still needs to be true, which means that (J+)n+1w = 0 because

that eliminates it from being an eigenvector.

With this all being said, we can let j = m + n such that J3(J+)nw = j(J+)nw.

Using our earlier terminology, j would be a highest weight. If let v = (J+)nw for the

sake of easier notation, we have that J+v = 0. This implies that J−J+v = 0. So we get

0 = J−J+v = (J1−iJ2)(J1+iJ2)v = (J2
1 +iJ1J2−iJ2J1+J2

2 )v = (J2−J3
3 +i[J1, J2])v =

(J2−J2
3−J3)v = J2v−J2

3v−J3v = λv−j2v−jv = (λ−j2−j)v. So 0 = (λ−j2−j)v.

Since v is an eigenvector, v 6= 0, and so we must have that λ − j2 − j = 0, which

implies that λ = j2 + j = j(j + 1).

We have a similar result by letting j′ = m − n such that J3(J−)nw = j′(J−)nw.

Then we say j′ is a lowest weight. Similar to what we did with j, we get that

λ = j′(j′ − 1). Thus, we have that j(j + 1) = j′(j′ − 1) =⇒ j = −j′ or j = j′ − 1.

But j′ is the smallest weight, so j 6= j′− 1, as that implies that j′− 1 is the smallest.

So we get that j = −j′. Since J− lowers the value of m by 1, it is an integer number

of times to go from j to −j. Since we are constantly subtracting by 1, this gives us a

total of 2j steps (e.g., to go from 5 to −5, you have to subtract 1 ten times, or 2 ∗ 5).

But we said this was an integer number, and so j must be a half-integer multiple.

Thus, our highest and lowest weights must be half-integer multiples.

Now we note that J∗+ = (J1 + iJ2)∗ = J∗1 − iJ∗2 = J1 − iJ2 (since we know that Jk

is Hermitian). But this is just J−. Similarly, we have that J∗− = J+. Thus, we have

J∗± = J∓.

We also know that since J±v is a nonzero vector, we can normalize it to get

J±v = c±w, where c± is a scalar and w is a normalized vector.

We now have v∗J−J+v = (J+v)∗J+v = (c+w)∗c+w = w∗c∗+c+w = c∗+c+w
∗w =
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c∗+c+ (since w is normalized). But this just equals |c+|2 since |a| =
√
a∗a for a vector

a.

But we also have that v∗J−J+v = v∗(J2 − J2
3 − J3)v = v∗(J2v − J2

3v − J3v) =

v∗λv − v∗m2v − v∗mv = λ−m2 −m (since we could choose v to be normalized, and

therefore we get v∗v = 1 once we move around the scalars). But λ = j(j + 1), so we

get j(j + 1) −m2 −m. So we end up with |c+|2 = j(j + 1) −m2 −m =⇒ |c+| =

±
√
j(j + 1)−m2 −m

=⇒ |c+| =
√
j(j + 1)−m2 −m since |c+| must be positive. Then we get that

c+ = ±
√
j(j + 1)−m2 −m. But |c+| =

√
c∗+c+, and so our square root must be

positive. So we finally, we end up with c+ =
√

(j −m)(j +m+ 1). Similarly, c− =√
(j +m)(j −m+ 1). Thus, we have that

J±v = c±w =⇒ J±v =
√

(j ∓m)(j ±m+ 1)w.

We have shown a lot of mathematics, and so now we will show an example utilizing

what we have learned.

5.3 Example with Highest Weight of 1
2

Say we have a highest weight of j = 1
2
(which we are allowed since we said they must

be half-integer multiples). Then the lowest weight is −j = −1
2
. Since m values go

up and down by 1 each time, and we know it cannot get any higher than 1
2
(or lower

than −1
2
), we know that the only possible values for m are 1

2
and −1

2
. Then we have

that, for a vector v,

J3v = 1
2
v

J3w = −1
2
w.

Now, let
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v =

1

0

 and w =

0

1

,

since they are easy enough matrices to work with, and try to construct a representa-

tion from here. Then since v and w are 2 × 1 matrices, J3 must be a 2 × 2 matrix

(for matrix multiplication to work). We have thata b

c d


1

0

 = 1
2

1

0

 =

1
2

0

 =⇒

a
c

 =

1
2

0

 =⇒ a = 1
2
and c = 0.

Similarly, we have thata b

c d


1

0

 =

(
0 −1

2

)
=⇒ b = 0 and d = −1

2
.

Thus,

J3 =

1
2

0

0 −1
2

 = 1
2

1 0

0 −1


Since 1

2
is the highest weight, we know that J+v = 0. Also, J3w = −1

2
w and we

know that J3J+w = (m+ 1)J+w. In this case, m = −1
2
, so J3J+w = 1

2
J+w. Since we

presumed eigenvalues were distinct, it must be the case that J+w = c+v, where c+

is a scalar that has a formula we know. So we get J+w =
√

(j −m)(j +m+ 1)v =√
(1

2
− (−1

2
))(1

2
+ (−1

2
) + 1)v = v.

So far, we have

J+v = 0

J+w = v.

This means that e f

g h


1

0

 =

0

0

 =⇒ e = g = 0

and
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e f

g h


0

1

 =

1

0

 =⇒ f = 1 and h = 0.

Thus, we have

J+ =

0 1

0 0

.

So

J− = J∗+ =

0 0

1 0

.

Since J+ = J1 + iJ2 and J− = J1 − iJ2, we have:

J1 = J+ − iJ2 =⇒ J1 − iJ2 = J+ + iJ2 − iJ2 =⇒ J− = J+ − 2iJ2 =⇒ J− − J+ =

−2iJ2.

We then get:

J2 = J+−J−
2i

= 1
2i

 0 1

−1 0

 = 1
2

 0 1
i

−1
i

0

 = 1
2

0 −i

i 0

 since 1
i

= −i.

Finally, we end up with

J1 = J+ − iJ+−J−2i
= 2iJ+−iJ++iJ−

2i
= J++J−

2
= 1

2

0 1

1 0

.

Thus, we have found J1, J2, and J3 given a highest weight of 1
2
. We can go even

further and find out how the representation works, which is (from a mathematics

perspective) what we would really be interested in.

We have the following:

−i

0 i
2

i
2

0

 = 1
2

0 1

1 0

 = J1 = −iπ(σ1) =⇒ π(σ1) =

0 i
2

i
2

0

 =⇒ π(σ1) = σ2.

80



−i

 0 1
2

−1
2

0

 = 1
2

0 −i

i 0

 = J2 = −iπ(σ2) =⇒ π(σ2) =

 0 1
2

−1
2

0

 =⇒ π(σ2) =

−σ3.

−i

 i
2

0

0 − i
2

 = 1
2

1 0

0 −1

 = J3 = −iπ(σ3) =⇒ π(σ3) =

 i
2

0

0 − i
2

 =⇒ π(σ3) =

σ1.

Thus, we have found how this representation acts on the basis elements of Lie(SU(2)),

and so we have constructed a representation of Lie(SU(2)) using a highest weight of

1
2
. But what does this mean physically?

A particle in physics is defined as an irreducible representation, which our π is.

So we have found a particle with a highest weight of 1
2
. We say that such a particle

has a spin of 1
2
. Note that when the highest weight is 1

2
, the only possible weights

are 1
2
and −1

2
. Physically, this means that our particle can either have spin up or spin

down. We call these the states of the particle. So essentially, the spin of a particle

corresponds to the highest weight, while the state of a particle can correspond to any

of its weights. Next, we will discuss what it means to combine particles.

5.4 Combining Particles

Let π1 and π2 be two particles (irreducible representations) with spin (highest weight)

1
2
. If both π1 and π2 were in a state (weight) of 1

2
, then adding them together would

give us 1. If one of them had a state of −1
2
and the other had a state of 1

2
, we would

get 0. If they both had a state of −1
2
, we would get −1. So when we combine these

particles, they can end up with a state of 1, 0, or −1. But what does it mean to

mathematically combine particles?

Consider, for example, a particle with 3 states and another particle with 2 states.

If you combined these particles, you would get a total 6 different states in this new,
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combined particle (this is because 3 ∗ 2 = 6). Since we want a way to mathemat-

ically express multiplying particle states, what do we use? Well, since particles

are irreducible representations, the way that one “multiplies” irreducible represen-

tations is through tensor products. For example, if A and B were particles, then

dim(A⊗B) = dim(A)dim(B), and so it makes intuitive sense to say that combining

particles is just like computing tensor products of irreducible representations, as we

want a multiplicative-like operation.

For our particular case, we are looking at particles for Lie(SU(2)). For both

π1 and π2, their corresponding weights are 1
2
and −1

2
. Since each of these particles

have two possible weights, there are four possible ways to combine them. Let α1

be the weight vector corresponding to a weight of 1
2
for π1 and β1 be the weight

vector corresponding to a weight of −1
2
for π1. Similarly, let α2 and β2 be these

corresponding weight vectors for π2. Just like with our work in the previous sections,

each of these particles will have J ’s that have the same properties as we used above.

All of the J ’s will be labeled the same as before, with J (1) corresponding to π1 and

J (2) corresponding to π2. If there is no superscript, then it is the J corresponding to

the tensor product π1 ⊗ π2.

Then we can say that J3(α1⊗α2) = J
(1)
3 α1⊗ I(2)α2 + I(1)α1⊗J (1)

3 α2, since J3 is a

scalar multiple of a Lie algebra tensor product representation (where this follows by

definition). This then equals 1
2
α1⊗α2 +α1⊗ 1

2
α2 = 1

2
(α1⊗α2)+ 1

2
(α1⊗α2) = α1⊗α2.

Since this has a scalar multiple of 1, this weight vector α1 ⊗ α2 has a corresponding

weight of 1. Similarly, the weight vector β1 ⊗ β2 has a corresponding weight of −1.

When you combine an α with a β, in both cases you get a weight of 0. Thus, we

can see how utilizing tensor products of these particles gives us states of 1, 0, or −1.

Using mathematical language, this means that tensor products of these irreducible

representations gives us weights of 1, 0, or −1. More could be done with tensor

products of these representations, but we will stop our discussion here.

82



Chapter 6

Conclusion

We have reached the end of our journey through Lie theory. We started with some

interesting knowledge from linear algebra and topology to get a common base for our

audience. Then we looked at the interesting structures of Lie groups and Lie algebras,

and their relationship. Next, we saw how representation theory could be utilized in

this situation, in particular with our discussion of roots and weights. Finally, we used

some of what we learned to take a brief trip through physics. Hopefully you learned

some cool math (and physics) and enjoyed the ride!
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